Science.gov

Sample records for fatty acid uptake

  1. Fatty acid uptake in normal human myocardium

    SciTech Connect

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R. )

    1991-09-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 {plus minus} 0.024 mumol/g and 0.37 {plus minus} 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells.

  2. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  3. Net release of individual fatty acids from white adipose tissue during lipolysis in vitro: evidence for selective fatty acid re-uptake.

    PubMed Central

    Raclot, T; Oudart, H

    2000-01-01

    During lipolysis, adipose tissue triacylglycerols (TAG) undergo concurrent breakdown and synthesis because some of the newly hydrolysed and released non-esterified ('free') fatty acids (NEFA) can subsequently be taken up and re-esterified. The present study examines whether and how the release of individual fatty acids is affected by the re-uptake of some of the newly hydrolysed fatty acids in vitro during lipolysis. To alter fatty acid release and re-uptake, adipose tissue fragments and isolated adipocytes from rats were incubated under various conditions, i.e. several cell concentrations or adipose fragment quantities, with or without glucose. In the various conditions tested, the NEFA/glycerol molar ratio ranged from 1.5 to 2.9. Whatever the incubation conditions, including those resulting in very low, medium or high fatty acid re-uptake (as assessed by the NEFA/glycerol ratio), the percentage weight of fatty acids in NEFA was significantly different from that in TAG for 20-24 of the 35 fatty acids that were considered. Thus the greater the fatty acid re-uptake, the higher the proportion of polyunsaturated fatty acids and the lower the proportion of long-chain saturated and monounsaturated fatty acids in NEFA. Moreover, the relative mobilization (%NEFA/%TAG) of the least readily mobilized fatty acid (C(22:1,n-11)) was 6.2-fold lower than that of the most readily mobilized fatty acid (C(20:5,n-3)) under conditions of very low fatty acid re-uptake, and 14.8-fold lower under conditions of high fatty acid re-uptake, indicating a widening of the range of relative mobilizations. We conclude that the composition of the NEFA pool is affected by the rate of fatty acid re-uptake. This provides strong evidence for the selective re-uptake of adipose tissue fatty acids during lipolysis. PMID:10794723

  4. Insulin activation of plasma non-esterified fatty acid uptake in metabolic syndrome

    PubMed Central

    Ramos-Roman, Maria A.; Lapidot, Smadar A.; Phair, Robert D.; Parks, Elizabeth J.

    2012-01-01

    Objectives Insulin control of fatty acid metabolism has long been deemed dominated by suppression of adipose lipolysis. This study’s goal was to test the hypothesis that this single role of insulin is insufficient to explain observed fatty acid dynamics. Methods and Results Fatty acid kinetics were measured during a meal-tolerance test and insulin sensitivity assessed by IVGTT in overweight human subjects (n=15, BMI 35.8 ± 7.1 kg/m2). Non-steady state tracer kinetic models were formulated and tested using ProcessDB© software. Suppression of adipose release alone could not account for NEFA concentration changes postprandially, but when combined with insulin activation of fatty acid uptake was consistent with the NEFA data. The observed insulin Km for NEFA uptake was inversely correlated with both insulin sensitivity of glucose uptake (IVGTT Si) (r=−0.626, P=0.01), and whole body fat oxidation after the meal (r=−0.538, P=0.05). Conclusions These results support insulin regulation of fatty acid turnover by both release and uptake mechanisms. Activation of fatty acid uptake is consistent with the human data, has mechanistic precedent in cell culture, and highlights a new potential target for therapies aimed at improving the control of fatty acid metabolism in insulin-resistant disease states. PMID:22723441

  5. Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae.

    PubMed

    van Roermund, Carlo W T; Ijlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R; Folkerts, Hendrik; Wanders, Ronald J A; Hellingwerf, Klaas J

    2012-06-08

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.

  6. Peroxisomal Fatty Acid Uptake Mechanism in Saccharomyces cerevisiae*

    PubMed Central

    van Roermund, Carlo W. T.; IJlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R.; Folkerts, Hendrik; Wanders, Ronald J. A.; Hellingwerf, Klaas J.

    2012-01-01

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2. PMID:22493507

  7. Cellular differentiation and I-FABP protein expression modulate fatty acid uptake and diffusion.

    PubMed

    Atshaves, B P; Foxworth, W B; Frolov, A; Roths, J B; Kier, A B; Oetama, B K; Piedrahita, J A; Schroeder, F

    1998-03-01

    The effect of cellular differentiation on fatty acid uptake and intracellular diffusion was examined in transfected pluripotent mouse embryonic stem (ES) cells stably expressing intestinal fatty acid binding protein (I-FABP). Control ES cells, whether differentiated or undifferentiated, did not express I-FABP. The initial rate and maximal uptake of the fluorescent fatty acid, 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-octadec anoic acid (NBD-stearic acid), was measured in single cells by kinetic digital fluorescence imaging. I-FABP expression in undifferentiated ES cells increased the initial rate and maximal uptake of NBD-stearic acid 1.7- and 1.6-fold, respectively, as well as increased its effective intracellular diffusion constant (Deff) 1.8-fold as measured by the fluorescence recovery after photobleaching technique. In contrast, ES cell differentiation decreased I-FABP expression up to 3-fold and decreased the NBD-stearic acid initial rate of uptake, maximal uptake, and Deff by 10-, 4.7-, and 2-fold, respectively. There were no significant differences in these parameters between the differentiated control and differentiated I-FABP-expressing ES cell lines. In summary, differentiation and expression of I-FABP oppositely modulated NBD-stearic acid uptake parameters and intracellular diffusion in ES cells.

  8. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-01-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5-50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  9. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-09-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5 50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  10. Fatty acids alter monolayer integrity, paracellular transport, and iron uptake and transport in Caco-2 cells.

    PubMed

    Droke, Elizabeth A; Briske-Anderson, Mary; Lukaski, Henry C

    2003-12-01

    The Caco-2 cell line was used as a model to determine if the type of fatty acid, unsaturated versus saturated, differentially altered the uptake and transport of iron in the human intestine and if the changes were the result of alterations in monolayer integrity and paracellular transport. Cells were cultured in either a lower-iron or normal-iron medium and incubated with a bovine serum albumin control, linoleate, oleate, palmatate, or stearate. Oleate, palmatate, and stearate enhanced (p < 0.05) iron uptake in cells grown in lower iron. The fatty acid effect on iron uptake by cells grown in normal iron was not as pronounced. Iron transport was not affected (p > 0.05) by an interaction between the type of medium (iron concentration) and the type of fatty acid. Iron transport was enhanced (p < 0.05) with palmatate and stearate. Various indicators of monolayer integrity and paracellular transport were also affected by the fatty acids, thus impacting iron uptake and transport. These results indicate that oleate, palmatate, and stearic can enhance iron uptake and transport; however, this enhancement may be the result of alterations in the integrity of the intestine.

  11. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression.

    PubMed

    Riedel, Annett; Lang, Roman; Rohm, Barbara; Rubach, Malte; Hofmann, Thomas; Somoza, Veronika

    2014-07-01

    Pyridines are widely distributed in foods. Nicotinic acid (NA), a carboxylated pyridine derivative, inhibits lipolysis in adipocytes by activation of the orphan NA receptor (HM74A) and is applied to treat hyperlipidemia. However, knowledge on the impact of pyridine derivatives on intestinal lipid metabolism is scarce. This study was performed to identify the structural determinants of pyridines for their effects on fatty acid uptake in enterocyte-like Caco-2 cells and to elucidate the mechanisms of action. The impact of 17 pyridine derivatives on fatty acid uptake was tested. Multiple regression analysis revealed the presence of a methyl group to be the structural determinant at 0.1 mM, whereas at 1 mM, the presence of a carboxylic group and the N-methylation presented further structural characteristics to affect the fatty acid uptake. NA, showing a stimulating effect on FA uptake, and N-methyl-4-phenylpyridinium (MPP), inhibiting FA uptake, were selected for mechanistic studies. Gene expression of the fatty acid transporters CD36, FATP2 and FATP4, and the lipid metabolism regulating transcription factors peroxisome proliferator-activated receptor (PPAR) α and PPARγ was up-regulated upon NA treatment. Caco-2 cells were demonstrated to express the low-affinity NA receptor HM74 of which the gene expression was up-regulated upon NA treatment. We hypothesize that the NA-induced fatty acid uptake might result from NA receptor activation and related intracellular signaling cascades. In contrast, MPP increased transepithelial electrical resistance. We therefore conclude that NA and MPP, both sharing the pyridine motif core, exhibit their contrary effects on intestinal FA uptake by activation of different mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Betaine affects muscle lipid metabolism via regulating the fatty acid uptake and oxidation in finishing pig.

    PubMed

    Li, Sisi; Wang, Haichao; Wang, Xinxia; Wang, Yizhen; Feng, Jie

    2017-01-01

    Betaine affects fat metabolism in animals, but the specific mechanism is still not clear. The purpose of this study was to investigate possible mechanisms of betaine in altering lipid metabolism in muscle tissue in finishing pigs. A total of 120 crossbred gilts (Landrace × Yorkshire × Duroc) with an average initial body weight of 70.1 kg were randomly allotted to three dietary treatments. The treatments included a corn-soybean meal basal diet supplemented with 0, 1250 or 2500 mg/kg betaine. The feeding experiment lasted 42 d. Betaine addition to the diet significantly increased the concentration of free fatty acids (FFA) in muscle (P < 0.05). Furthermore, the levels of serum cholesterol and high-density lipoprotein cholesterol were decreased (P < 0.05) and total cholesterol content was increased in muscle (P < 0.05) of betaine fed pigs. Experiments on genes involved in fatty acid transport showed that betaine increased expression of lipoprotein lipase(LPL), fatty acid translocase/cluster of differentiation (FAT/CD36), fatty acid binding protein (FABP3) and fatty acid transport protein (FATP1) (P < 0.05). The abundance of fatty acid transport protein and fatty acid binding protein were also increased by betaine (P < 0.05). As for the key factors involved in fatty acid oxidation, although betaine supplementation didn't affect the level of carnitine and malonyl-CoA, betaine increased mRNA and protein abundance of carnitine palmitransferase-1(CPT1) and phosphorylated-AMPK (P < 0.05). The results suggested that betaine may promoted muscle fatty acid uptake via up-regulating the genes related to fatty acid transporter including FAT/CD36, FATP1 and FABP3. On the other hand, betaine activated AMPK and up-regulated genes related to fatty acid oxidation including PPARα and CPT1. The underlying mechanism regulating fatty acid metabolism in pigs supplemented with betaine is associated with the up-regulation of genes involved in fatty acid transport and fatty

  13. Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects.

    PubMed

    Li, Yuwen; Zhang, Tiejun; Cui, Jia; Jia, Na; Wu, Yin; Xi, Miaomiao; Wen, Aidong

    2015-07-01

    The aim of this study is to investigate antidiabetic effects and molecular mechanisms of the chemical Chikusetsu saponin IVa (CHS) that isolated from root bark of Aralia taibaiensis, which has multiple pharmacological activity, such as relieving rheumatism, promoting blood circulation to arrest pain and antidiabetic action. Rats with streptozotocin/nicotinamide-induced type 2 diabetes mellitus (T2DM) and insulin-resistant myocytes were used. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase were quantified by immunoblotting. Assays of glucose uptake, fatty acid oxidation, glucose transporter 4 (GLUT4) translocation and carnitine palmitoyl transferase-1 (CPT-1) activity were performed. Chronic oral administration of CHS effectively decreases blood glucose, triglyceride, free fatty acid (FFA) and low density lipoprotein-cholesterol levels in T2DM rats. In both normal and insulin-resistant C2C12 myocytes, CHS activates AMPK, and increases glucose uptake or fatty acid oxidation through enhancing membrane translocation of GLUT4 or CPT-1 activity respectively. Knockdown of AMPK significantly diminishes the effects of CHS on glucose uptake and fatty acid oxidation. CHS is a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders. © 2015 Royal Pharmaceutical Society.

  14. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids.

    PubMed

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-02-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8(-/-)) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin- and αvβ5 integrin-dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.

  15. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids

    PubMed Central

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-01-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications. PMID:24441829

  16. Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake.

    PubMed

    Teusink, Bas; Voshol, Peter J; Dahlmans, Vivian E H; Rensen, Patrick C N; Pijl, Hanno; Romijn, Johannes A; Havekes, Louis M

    2003-03-01

    There is controversy over the extent to which fatty acids (FAs) derived from plasma free FAs (FFAs) or from hydrolysis of plasma triglycerides (TGFAs) form communal or separate pools and what the contribution of each FA source is to cellular FA metabolism. Chylomicrons and lipid emulsions were labeled with [(3)H]triolein, injected into mice, and appearance in plasma of [(3)H]oleic acid was estimated, either through a steady-state approach or by compartmental modeling. [(14)C]oleic acid was included to trace plasma FFA. Eighty to 90% of triglyceride (TG) label was recovered in plasma, irrespective of tracer method or TG source. The contribution of TG lipolysis to total plasma FA turnover was 10-20%. After infusion of [(3)H]TG and [(14)C]FA, the retention of these labels varied substantially among liver, adipose tissue, and skeletal and heart muscle. Retention of TG label changed during fasting in the same direction as lipoprotein lipase (LPL) activity is regulated. We propose a model that reconciles the paradoxical 80-90% loss of TG label into plasma with LPL-directed differential uptake of TGFA in tissues. In this model, TGFAs mix locally at the capillaries with plasma FFAs, where they would lead to an increase in the local FA concentration, and hence, FA uptake. Our data indicate that a distinction between TG-derived FA and plasma FFA cannot be made.

  17. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis.

    PubMed

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death

    PubMed Central

    Ahowesso, Constance; Black, Paul N.; Saini, Nipun; Montefusco, David; Chekal, Jessica; Malosh, Chrysa; Lindsley, Craig W.; Stauffer, Shaun R.; DiRusso, Concetta C.

    2015-01-01

    Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6 µM for all cell lines except human adipocytes (39 µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb 13C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut. PMID:26394026

  19. Brain uptake and utilization of fatty acids: applications to peroxisomal biogenesis diseases.

    PubMed

    Watkins, P A; Hamilton, J A; Leaf, A; Spector, A A; Moore, S A; Anderson, R E; Moser, H W; Noetzel, M J; Katz, R

    2001-01-01

    The brain is rich in diverse fatty acids saturated, monounsaturated and polyunsaturated fatty acids with chain lengths ranging from less than 16 to more than 24 carbons that make up the complex lipids present in this organ. While some fatty acids are derived from endogenous synthesis, others must come from exogenous sources. The mechanism(s) by which fatty acids enter cells has been the subject of much debate. While some investigators argue for a protein-mediated process, others suggest that simple diffusion is sufficient. In the brain, uptake is further complicated by the presence of the blood-brain barrier. Brain fatty acid homeostasis is disturbed in many human disorders, as typified by the peroxisomal biogenesis diseases. A workshop designed to bring together researchers from varied backgrounds to discuss these issues in an open forum was held in March, 2000. In addition to assessing the current state of knowledge, areas requiring additional investigation were identified and recommendations for future research were made. A brief overview of the invited talks is presented here.

  20. Growth of Escherichia coli on short-chain fatty acids: nature of the uptake system.

    PubMed

    Salanitro, J P; Wegener, W S

    1971-11-01

    Mutants of Escherichia coli K-12 which grow on butyrate and valerate were studied with respect to uptake of these substrates. To utilize short-chain and medium-chain fatty acids, E. coli must synthesize the beta-oxidation enzymes constitutively. In addition, growth on the C(4) and C(5) acids requires a second mutation which permits entry of these substrates. At pH 5, both in the parent and mutant strains, butyrate and valerate penetrate as the undissociated acids but appear not to be activated and thus inhibit growth. At pH 7, the parent strain is not permeable to the anions, whereas the mutant concentrates these substrates. There appear to be two components of the uptake system, a nonspecific diffusion component and an energy-linked activating enzyme. Two mutant types which take up short-chain fatty acids are described. One synthesizes the uptake system constitutively and is inhibited by 4-pentenoate when cultured on acetate. In the other, the uptake system is inducible, and the strain is pentenoate-resistant when grown on acetate but pentenoate-sensitive when cultured on butyrate or valerate.

  1. Dietary Medium Chain Fatty Acid Supplementation Leads to Reduced VLDL Lipolysis and Uptake Rates in Comparison to Linoleic Acid Supplementation

    PubMed Central

    van Schalkwijk, Daniël B.; Pasman, Wilrike J.; Hendriks, Henk F. J.; Verheij, Elwin R.; Rubingh, Carina M.; van Bochove, Kees; Vaes, Wouter H. J.; Adiels, Martin; Freidig, Andreas P.; de Graaf, Albert A.

    2014-01-01

    Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates. PMID:25049048

  2. Sulfated Cholecystokinin-8 Promotes CD36—Mediated Fatty Acid Uptake into Primary Mouse Duodenal Enterocytes

    PubMed Central

    Demenis, Claire; McLaughlin, John; Smith, Craig P.

    2017-01-01

    Cholecystokinin (CCK) is an archetypal incretin hormone secreted by intestinal enteroendocrine cells (EEC) in response to ingested nutrients. The aim of this study was to determine whether CCK modulates enterocyte fatty acid uptake by primary mouse duodenal cells. Exposure of primary mouse duodenal cells to 10 pM sulfated CCK-8 caused a two fold increase in dodecanoic acid fatty acid (FA) uptake. The selective CCK A receptor antagonist loxiglumide (100 μM) completely abolished the CCK-8 induced FA uptake. The CD36 fatty acid translocase-specific inhibitor sulfo-N-succinimidyl oleate (1 μM) also completely inhibited CCK-8 induced FA uptake, as did treatment with 200 μM phloretin. Together these data show CCK induces FA uptake into duodenal enterocytes; this action involves the CCK-RA receptor and is carrier mediated by CD36.

  3. Effect of fatty acid coatings on ozone uptake to deliquesced KI/NaCl aerosol particles

    NASA Astrophysics Data System (ADS)

    Ammann, M.; Rouvière, A.

    2009-12-01

    Phase transfer kinetics of gas phase oxidants may limit oxidative aging of aerosol particles. The aim of this work is to study the role of amphiphilic organic aerosol constituents on the kinetics of phase transfer of gaseous species to the bulk aqueous phase. The effect of (C9-C20) fatty acid surfactants on the phase transfer of ozone to deliquesced potassium iodide and sodium chloride have been investigated. Some other experiments of ozone uptake have been performed with different mixtures and proportions of fatty acids. The kinetic experiments were performed in an aerosol flow tube at room temperature and atmospheric pressure. To obtain deliquesced inorganic particles, the relative humidity was adjusted in the range of 75% to 80%. It is shown that the fatty acids in monolayer quantities may substantially inhibit the phase transfer of ozone to deliquesced particles. The results showed that especially the C15-C20 limit the mass transfer of ozone to the aqueous phase, whereby the magnitude of this effect was following the monolayer properties of the fatty acids. It was also possible to determine a resistance of such films to the transfer of ozone to the bulk phase.

  4. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process.

    PubMed Central

    Stremmel, W

    1988-01-01

    The mechanism by which fatty acids enter cardiomyocytes is unclear. Therefore, the influx kinetics of [3H]oleate into isolated rat heart myocytes were examined. Cells were incubated at 37 degrees C with [3H]oleate bound to albumin in various molar ratios and the initial rate of uptake (V0) was determined as a function of the unbound oleate concentration in the medium. V0 was saturable with increasing oleate concentrations incubated (Km 78 nM; Vmax 1.9 nmol X min-1 per 10(6) cells) and temperature dependent with an optimum at 37 degrees C. Furthermore, binding of [3H]oleate to isolated plasma membranes of cardiomyocytes was saturable, revealing a KD of 42 nM, and was inhibited by heat denaturation or trypsin pretreatment of the membranes. From these membranes a single 40-kD protein with high affinity for a variety of long chain fatty acids was isolated. With a monospecific antibody to this membrane protein, binding as well as cellular influx of [3H]oleate was selectively inhibited. These data indicate that at least a portion of myocardial fatty acid uptake is mediated by a specific membrane protein. Images PMID:3343344

  5. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake

    PubMed Central

    Labrie, Marilyne; Lalonde, Simon; Najyb, Ouafa; Thiery, Maxime; Daneault, Caroline; Des Rosiers, Chrisitne; Rassart, Eric; Mounier, Catherine

    2015-01-01

    Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ transcriptional activity by AA leading to increased fatty acid uptake by the liver. PMID:26083030

  6. Effect of dietary fatty acids on jejunal and ileal oleic acid uptake by rat brush border membrane vesicles.

    PubMed

    Prieto, R M; Stremmel, W; Sales, C; Tur, J A

    1996-04-18

    To test the effect of dietary fatty acids on fatty acid uptake, the influx kinetics of a representative long-chain fatty acid, 3H-oleic acid, in both the jejunum and ileum of rats has been studied using brush border membrane vesicles (BBMV). Animals were fed with semipurified diets containing 5 g fat/100 g diet, as corn oil (control group), safflower oil (unsaturated group) and coconut oil hydrogenated (saturated group). With increasing unbound oleate concentration in the medium, the three dietary groups showed saturable kinetics in both jejunal and ileal BBMV (controls: Vmax = 0.15 +/- 0.01 nmol x mg protein-1 x 5 min-1 and Km = 136 +/- 29.1 nmol for jejunum, and Vmax = 0.23 +/- 0.03 nmol x mg protein-1 x 5 min-1 and Km = 196 +/- 50.3 nmol for ileum; unsaturated: Vmax = 0.28 +/- 0.05 nmol x mg protein-1 x 5 min-1 and Km = 242.7 +/- 91.8 nmol for jejunum, and Vmax = 1.29 +/- 0.06 nmol x mg protein-1 x 5 min-1 and Km = 509.8 +/- 97.5 nmol for ileum; saturated: Vmax = 0.03 +/- 0.01 nmol x mg protein-1 x 5 min-1 and Km = 124.5 +/- 72.6 nmol for jejunum, and Vmax = 0.04 +/- 0.01 nmol x mg protein -1.5 min-1 and Km = 205.6 +/- 85.3 nmol for ileum). These results support the theory that feeding an isocaloric diet containing only unsaturated fatty acids enhanced oleic acid uptake, and feeding an isocaloric diet containing only saturated fatty acids decreased oleic acid uptake. The results obtained in the present work also show the adaptative ability of jejunum and ileum to the type of dietary fat.

  7. Differential expression of fatty acid uptake in 3T3-L1 cells

    SciTech Connect

    Waggoner, D.; Bernlohr, D.A.

    1987-05-01

    Cultured 3T3-L1 cells have been used as a model system to investigate the mechanism of fatty acid uptake by adipose tissue. Using a 1:1 molar ratio of /sup 14/C-oleate and defatted bovine serum albumin (BSA), fatty acid (FA) uptake was quantitated at 4/sup 0/ and 37/sup 0/ as cell associated radioactivity. The profile of FA uptake in preadipocytes and adipocytes was biphasic; an initial rapid phase (1-20s) followed by a second slower phase (60-480s). At 37/sup 0/ the initial rate of FA accumulation in preadipocytes was identical to that in adipocytes, whereas the rate of accumulation during the second phase increased 7-fold (100 ..mu..M total FA) as a consequence of adipose conversion. When uptake measurements were made at 4/sup 0/ in adipocytes, the initial rate was identical to that at 37/sup 0/, however the rate of second phase decreased 5-fold. Incubation of /sup 14/C-BSA and nonradiolabeled FA with adipocyte monolayers (100 ..mu..M total FA) resulted in the rapid association (t/sub 1/2/ = 20s) of the BSA-FA complex with the cell surface. Incubation of 100, 10, and 1 ..mu..M total FA with adipocytes resulted in a 50-fold change in FA accumulation during the second phase. These results suggest that (1) FA uptake is significantly increased after differentiation, suggesting the participation of specialized proteins, (2) the temperature-insensitive initial FA accumulation can be attributed to rapid association of the BSA-FA complex to the cell surface, (3) the second phase of FA accumulation represents uptake.

  8. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. The role of total lipids and fatty acids profile on the water uptake of barley grain during steeping.

    PubMed

    Cozzolino, D; Roumeliotis, S; Eglinton, J K

    2014-05-15

    Steeping is the first operation of malting and its overall purpose is to increase the water content of the grain, as well as to activate the enzymatic pool in the endosperm. The aim of this study was to evaluate the effects of total lipids content and individual fatty acids on water uptake, by commercial barley varieties. The results from this study showed that unsaturated fatty acids, such as oleic acid (18:1-n9), have a role in controlling water uptake by the barley endosperm during steeping. When partial least squares (PLS) regression was used to relate total lipids, individual fatty acids and water uptake, oleic (18:1-n9) acid had a positive effect, while long chain unsaturated fatty acids such as arachidic (20:0) and lignoceric (24:0) acids had a negative effect on explaining 72% of the total variability in water uptake. Water uptake by the endosperm is just a component of the system that is responsible for the overall malt quality properties and chemical characteristics of a given material. In this context, both total lipids and individual fatty acids have a role on determining malt quality in barley. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length

    PubMed Central

    Park, Woo-Jae; Park, Joo-Won; Merrill, Alfred H.; Storch, Judith; Pewzner-Jung, Yael; Futerman, Anthony H.

    2015-01-01

    Ceramide synthase 2 (CerS2) null mice cannot synthesize very-long acyl chain (C22-C24) ceramides resulting in significant alterations in the acyl chain composition of sphingolipids. We now demonstrate that hepatic triacylglycerol (TG) levels are reduced in liver but not in adipose tissue or skeletal muscle in the CerS2 null mouse, both before and after feeding with a high fat diet (HFD), where no weight gain was observed and large hepatic nodules appeared. Uptake of both BODIPY-palmitate and [3H]-palmitate were also abrogated in hepatocytes and liver. The role of a number of key proteins involved in fatty acid uptake was examined, including FATP5, CD36/FAT, FABPpm and cytoplasmic FABP1. Levels of FATP5 and FABP1 were decreased in CerS2 null mouse liver, whereas CD36/FAT levels were significantly elevated and CD36/FAT was also mislocalized upon insulin treatment. Moreover, treatment of hepatocytes with C22-C24-ceramides down-regulated CD36/FAT levels. Infection of CerS2 null mice with recombinant adeno-associated virus (rAAV)-CerS2 restored normal TG levels and corrected the mislocalization of CD36/FAT, but had no effect on the intracellular localization or levels of FATP5 or FABP1. Together, these results demonstrate that hepatic fatty acid uptake via CD36/FAT can be regulated by altering the acyl chain composition of sphingolipids. PMID:25241943

  11. Saturated fatty acid diet prevents radiation-associated decline in intestinal uptake

    SciTech Connect

    Thomson, A.B.; Keelan, M.; Lam, T.; Cheeseman, C.I.; Walker, K.; Clandinin, M.T.

    1989-01-01

    Adult female Sprague-Dawley rats were fed isocaloric semipurified diets containing a high content of either polyunsaturated (P) or saturated (S) fatty acids; these diets were nutritionally adequate, providing for all known essential nutrient requirements. On day 3 after beginning S or P, one group of animals was exposed to a single 6-Gy dose of abdominal radiation, and the other half was sham irradiated. S or P diets were continued for a further 14 days. Brush-border membrane purification and sucrase-specific activities were unaffected by diet or by abdominal irradiation. In rats fed P, irradiation was associated with an increase in jejunal brush-border membrane total phospholipid and the ratio of phospholipid to cholesterol; these changes were not observed in animals fed S. In irradiated rats, ileal brush-border membrane phospholipid per cholesterol was high in animals fed S compared with P. In irradiated animals fed P, there was reduced jejunal and ileal uptake of several medium- and long-chain saturated and unsaturated fatty acids and cholesterol, and the ileal uptake of higher concentrations of glucose was reduced in irradiated animals fed P. In contrast, lipid uptake was similar in control and irradiated animals fed S except for cholesterol uptake, which was reduced. Ileal uptake of higher concentrations of glucose was increased in irradiated animals fed S. Quantitative autoradiography failed to demonstrate any change in the distribution of leucine or lysine transport sites along the villus 1 or 2 wk after abdominal irradiation or in response to feeding S or P. Also, these differences in transport achieved by feeding S to radiated animals were not explained by variations in the animals' food consumption or intestinal mucosal surface area.

  12. Nonnutritive flow impairs uptake of fatty acid by white muscles of the perfused rat hindlimb.

    PubMed

    Clerk, L H; Smith, M E; Rattigan, S; Clark, M G

    2003-03-01

    Triglyceride hydrolysis by the perfused rat hindlimb is enhanced with serotonin-induced nonnutritive flow (NNF) and may be due to the presence of nonnutritive route-associated connective tissue fat cells. Here, we assess whether NNF influences muscle uptake of 0.55 mM palmitate in the perfused hindlimb. Comparisons were made with insulin-mediated glucose uptake. NNF induced during 60 nM insulin infusion inhibited hindlimb oxygen uptake from 22.0 +/- 0.5 to 9.7 +/- 0.8 micromol x g(-1) x h(-1) (P < 0.001), 1-methylxanthine metabolism (indicator of nutritive flow) from 5.8 +/- 0.4 to 3.8 +/- 0.4 nmol x min(-1) x g(-1) (P = 0.004), glucose uptake from 29.2 +/- 1.7 to 23.1 +/- 1.8 micromol x g(-1) x h(-1) (P = 0.005) and muscle 2-deoxyglucose uptake from 82.1 +/- 4.6 to 41.6 +/- 6.7 micromol x g(-1) x h(-1) (P < 0.001). Palmitate uptake, unaffected by insulin alone, was inhibited by NNF in extensor digitorum longus, white gastrocnemius, and tibialis anterior muscles; average inhibition was from 13.9 +/- 1.2 to 6.9 +/- 1.4 micromol x g(-1) x h(-1) (P = 0.02). Thus NNF impairs both fatty acid and glucose uptake by muscle by restricting flow to myocytes but, as shown previously, favors triglyceride hydrolysis and uptake into nearby connective tissue fat cells. The findings have implications for lipid partitioning in limb muscles between myocytes and attendant adipocytes.

  13. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins

    PubMed Central

    Hannukainen, Jarna C; Nuutila, Pirjo; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 ± 10% higher V˙O2,max (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 ± 4.3 versus 9.0 ± 6.1 μmol (100 ml)−1 min−1, P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  14. Fatty acid composition of chylomicron remnant-like particles influences their uptake and induction of lipid accumulation in macrophages.

    PubMed

    De Pascale, Clara; Avella, Michael; Perona, Javier S; Ruiz-Gutierrez, Valentina; Wheeler-Jones, Caroline P D; Botham, Kathleen M

    2006-12-01

    The influence of the fatty acid composition of chylomicron remnant-like particles (CRLPs) on their uptake and induction of lipid accumulation in macrophages was studied. CRLPs containing triacylglycerol enriched in saturated, monounsaturated, n-6 or n-3 polyunsaturated fatty acids derived from palm, olive, corn or fish oil, respectively, and macrophages derived from the human monocyte cell line THP-1 were used. Lipid accumulation (triacylglycerol and cholesterol) in the cells was measured after incubation with CRLPs for 5, 24 and 48 h, and uptake over 24 h was determined using CRLPs radiolabelled with [3H]triolein. Total lipid accumulation in the macrophages was significantly greater with palm CRLPs than with the other three types of particle. This was mainly due to increased triacylglycerol concentrations, whereas changes in cholesterol concentrations did not reach significance. There were no significant differences in lipid accumulation after incubation with olive, corn or fish CRLPs. Palm and olive CRLPs were taken up by the cells at a similar rate, which was considerably faster than that observed with corn and fish CRLPs. These findings demonstrate that CRLPs enriched in saturated or monounsaturated fatty acids are taken up more rapidly by macrophages than those enriched in n-6 or n-3 polyunsaturated fatty acids, and that the faster uptake rate results in greater lipid accumulation in the case of saturated fatty acid-rich particles, but not monounsaturated fatty acid-rich particles. Thus, dietary saturated fatty acids carried in chylomicron remnants may enhance their propensity to induce macrophage foam cell formation.

  15. Ruminant and industrial trans-fatty acid uptake in the heart.

    PubMed

    Ganguly, Riya; LaVallee, Renee; Maddaford, Thane G; Devaney, Brittany; Bassett, Chantal M C; Edel, Andrea L; Pierce, Grant N

    2016-05-01

    Dietary trans-fats are strongly associated with heart disease. However, the capacity for the tissues of the body, and specifically the heart, to take up trans-fats is unknown. It is also unknown if different trans-fats have different uptake capacities in the heart and other tissues of the body. Diets of low-density lipoprotein receptor-deficient mice were supplemented for 14weeks with foods that contained 1.5% of the trans-fat elaidic acid or vaccenic acid. Tissues were extracted and frozen in liquid nitrogen, and then lipids were analyzed by gas chromatography for fatty acid content. Isolated cardiomyocytes were also exposed to elaidic or vaccenic acid in cell culture media for 24h. Dietary supplementation with vaccenic or elaidic acid resulted in a 20-fold higher accumulation of these TFAs in fat deposits in the body in comparison to liver. Liver tissue accumulated about twice as much per gram tissue as heart. Similar quantities of both elaidic acid and vaccenic acid were taken up by the tissues. Isolated cardiomyocytes exhibited an unusually large uptake of trans-fat, and this was dependent upon both the concentration and duration of exposure to the trans-fats but not upon the type of trans-fat. Expression levels of CD36 and FATP4 were not significantly changed during dietary interventions or exposure of cells to trans-fats. We conclude that fat, liver and heart (including cardiomyocytes) are all capable of accumulating trans-fat in response to dietary supplementation without changes in fatty acid transport protein expression.

  16. An exponential relationship exists between fatty acid uptake and myocardial blood flow

    SciTech Connect

    Sloof, G.W.; Comans, E.F.I.; Visser, F.C.

    1997-05-01

    High lineair (lin) correlations have been reported between myocardial blood flow (MBF) and uptake of various fatty acid (FA) analogues. However, the positive intercept with the Y-axis is not physiologically explainable (FA uptake without flow). This study investigates the appropriateness of an exponential (exp) model function. Methods: In 10 open-chest dogs the left anterior descending coronary artery was cannulated and extra corporally bypass perfused at reduced flow. MBF was assessed with scandium-46 labeled microspheres. 40 Minutes after iv. injection of 37 MBq 15-(p-[I-125]-iodophenyl)-3,3-dirnethylpentadecanoic acid (DMIPP), the heart was excised and cut into 120 samples. In each sample MBF (ml/g*min) and DMIPP uptake were assessed.In each dog, MBF and DMIPP uptake data were normalized to die respective means of the normally perfused myocardium. Uptake data were fitted to an exp model A[1-exp(-MBF/Fc)] by adjusting the flow constant Fc for minimal residual variance and adapting the amplitude A to obtain a zero mean residual error. The goodness of each fit was expressed by the standard error of the estimate (SEE). The mean SEE of the 10 dogs was 0.12{+-}0.04 with the exp fit and 0.24{+-}0.07 with the lin fit: p<0.001, F-test. For pooled data, the SEE was 0.15 with the exp fit and 0.26 with the lin fit (fig). Lin fit without zero intercept revealed a SEE of 0.18, which is higher than the SEE of the exp fit. The intercept was 0.54. Conclusion: In the normal to low MBF range, uptake of (methyl branched) FA analogues shows an exponential relationship, which is more appropriate than a linear relationship from a physiological point of view.

  17. Fatty acids - trans fatty acids

    USDA-ARS?s Scientific Manuscript database

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  18. Brain uptake and utilization of fatty acids, lipids & lipoproteins: recommendations for future research.

    PubMed

    Katz, Robert; Hamilton, James A; Pownall, Henry J; Deckelbaum, Richard J; Hillard, Cecilia J; Leboeuf, Renee C; Watkins, Paul A

    2007-09-01

    A major goal of the second International Workshop on "Brain Uptake and Utilization of Fatty Acids, Lipids and Lipoproteins: Application to Neurological Disorders" was the identification of important future research areas that would lead to accelerated and systematic progress in the field. Major themes identified for future research include the following: (1) Rigorous research protocols for fatty acid (FA) studies should be established to overcome errors introduced by small differences in chain length and degree of unsaturation. (2) Using cellular integration models consisting of endothelial cells, astrocytes, and neurons, investigation of functional lipidomics, cell-specific signaling by lipids, and nutritional considerations should be undertaken. (3) Educational programs should be undertaken for women of childbearing age on the health benefits of omega3 long chain (LC) polyunsaturated fatty acids (PUFA) from fish consumption vs risks of mercury in fish. (4) Studies of the "flip-flop" model of passive diffusion should be extended to include other quantitative measures, such as the sizes of different fatty acid pools. (5) Investigations to establish physiologic roles and concentrations of omega3 LC-PUFA in various compartments of the brain should be undertaken. (6) Further studies should be carried out to illuminate the role and behavior of tight junctions in the microvascular endothelium of the blood-brain barrier and astrocytes, with emphasis on developing new LC-PUFA and lipid-based carriers of biomolecules across this barrier. (7) Roles and localization of very low density lipoproteins, low density lipoprotein (LDL), and the LDL receptor in the brain and their interactions with omega3 LC-PUFA, cholesterol, apolipoprotein E1-4, and their derivatives in Alzheimer's disease (AD) should be assessed. (8) Investigation of intraneuronal synthesis of DHA and its effects on signal transduction, apoptosis, and neurite growth stimulation should be undertaken. (9) Nutrition

  19. Mechanism of oleoylethanolamide on fatty acid uptake in small intestine after food intake and body weight reduction.

    PubMed

    Yang, Yingkui; Chen, Min; Georgeson, Keith E; Harmon, Carroll M

    2007-01-01

    The increase in the prevalence of human obesity highlights the need to identify molecular and cellular mechanisms involved in control of feeding and energy balance. Oleoylethanolamide (OEA), an endogenous lipid produced primarily in the small intestine, has been identified to play an important role in the regulation of animal food intake and body weight. Previous studies indicated that OEA activates peroxisome proliferator-activated receptor-alpha, which is required to mediate the effects of appetite suppression, reduces blood lipid levels, and enhances peripheral fatty acid catabolism. However, the effect of OEA on enterocyte function is unclear. In this study, we have examined the effect of OEA on intestinal fatty acid uptake and FAT/CD36 expression in vivo and in vitro. We intraperitoneally administered OEA to rats and examined FAT/CD36 mRNA level and fatty acid uptake in enterocytes isolated from the proximal small intestine, as well as in adipocytes. Our results indicate that OEA treatment significantly increased FAT/CD36 mRNA expression in intestinal mucosa and isolated jejunal enterocytes. In addition, we also found that OEA treatment significantly increases fatty acid uptake in isolated enterocytes in vitro. These results suggest that in addition to appetite regulation, OEA may regulate body weight by altered peripheral lipid metabolism, including increased lipolysis in adipocytes and enhanced fatty acid uptake in enterocytes, both in conjunction with increased expression of FAT/CD36. This study may have important implications in understanding the mechanism of OEA in the regulation of fatty acid absorption in human physiological and pathophysiological conditions.

  20. Oil uptake by beef during pan frying: impact on fatty acid composition.

    PubMed

    Clerjon, S; Kondjoyan, A; Bonny, J M; Portanguen, S; Chevarin, C; Thomas, A; Bauchart, D

    2012-05-01

    Fat entering food during frying needs to be monitored to control the nutritional properties of the products: fat penetration and fatty acid (FA) composition. The large difference between the apparent diffusion coefficients of lipids and meat fibers allows the use of diffusion-weighted magnetic resonance imaging (DWI) to measure oil uptake profiles. This method, in association with analysis of FAs by gas-liquid chromatography, predicts nutritional changes. Beef samples from finishing cows given control feed or high FA supplemented feed were fried in olive oil at 130 °C and 180 °C. Frying oil penetration was quantified by computing oil signal profiles from 3D DWI. Oil penetration was deeper at 180 °C (5 mm) than at 130 °C (2.5 mm), consistent with oil penetration processes. Oil penetration evaluated with DWI was correlated (R²=0.82) with biochemical analysis of FA composition. These results highlight the predominance of oil uptake over animal feed effects in the first millimeters of in-plane fried meat. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid: a useful new agent to evaluate myocardial fatty acid uptake

    SciTech Connect

    Knapp, F.F. Jr.; Goodman, M.M.; Callahan, A.P.; Kirsch, G.

    1986-04-01

    Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPP) has been prepared as a new terminal iodophenyl-substituted fatty acid containing dimethyl-branching at the beta position. For the synthesis of this new agent, chain homologation was accomplished by fabrication of a 2,5-disubstituted thiophene by successive Friedel-Crafts acylation and Wolff-Kishner reduction reactions, followed by thiophene ring opening. The dimethyl-branching was introduced using the monomethyl ester of dimethylglutaryl chloride. Radioiodination of the 15-phenyl-3,3-dimethylpentadecanoic acid substrate in the para position then gave DMIPP. Iodine-125-labeled DMIPP showed rapid, high myocardial uptake (min, mean % injected dose/g) in fasted rats (5, 4.67; 30, 5.06; 60, 4.79; 120, 4.37), and also exhibited good heart:blood ratios (min, heart:blood: 5, 3:1; 30, 12:1; 60, 12:1; 120, 13:1). To further evaluate the effects of dimethyl-branching, the biodistribution properties of DMIPP were compared with the 3-monomethyl-branched (15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid; BMIPP) and the unbranched (15-(p-iodophenyl)pentadecanoic acid; IPP) analogs. A triple-labeled (/sup 123/I)DMIPP/(/sup 131/I)BMIPP/(/sup 125/I)IPP mixture was administered to groups of fasted rats. These results confirmed the greater myocardial retention and higher heart:blood ratios observed with DMIPP in comparison with both the 3-monomethyl-(BMIPP) and unbranched (IPP) analogs. These data suggest that (/sup 123/3I)DMIPP is an excellent candidate for clinical evaluation of regional energy substrates (fatty acid) uptake.

  2. 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake.

    PubMed Central

    Isola, L M; Zhou, S L; Kiang, C L; Stump, D D; Bradbury, M W; Berk, P D

    1995-01-01

    To explore the relationship between mitochondrial aspartate aminotransferase (mAspAT; EC 2.6.1.1) and plasma membrane fatty acid-binding protein (FABPpm) and their role in cellular fatty acid uptake, 3T3 fibroblasts were cotransfected with plasmid pMAAT2, containing a full-length mAspAT cDNA downstream of a Zn(2+)-inducible metallothionein promoter, and pFR400, which conveys methotrexate resistance. Transfectants were selected in methotrexate, cloned, and exposed to increasing methotrexate concentrations to induce gene amplification. Stably transfected clones were characterized by Southern blotting; those with highest copy numbers of pFR400 alone (pFR400) or pFR400 and pMAAT2 (pFR400/pMAAT2) were expanded for further study. [3H]Oleate uptake was measured in medium containing 500 microM bovine serum albumin and 125-1000 microM total oleate (unbound oleate, 18-420 nM) and consisted of saturable and nonsaturable components. pFR400/pMAAT2 cells exhibited no increase in the rate constant for nonsaturable oleate uptake or in the uptake rate of [14C]octanoate under any conditions. By contrast, Vmax (fmol/sec per 50,000 cells) of the saturable oleate uptake component increased 3.5-fold in pFR400/pMAAT2 cells compared to pFR400, with a further 3.2-fold increase in the presence of Zn2+. Zn2+ had no effect in pFR400 controls (P > 0.5). The overall increase in Vmax between pFR400 and pFR400/pMAAT2 in the presence of Zn2+ was 10.4-fold (P < 0.01) and was highly correlated (r = 0.99) with expression of FABPpm in plasma membranes as determined by Western blotting. Neither untransfected 3T3 nor pFR400 cells expressed cell surface FABPpm detectable by immunofluorescence. By contrast, plasma membrane immunofluorescence was detected in pFR400/pMAAT2 cells, especially if cultured in 100 microM Zn2+. The data support the dual hypotheses that mAspAT and FABPpm are identical and mediate saturable long-chain free fatty acid uptake. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7568234

  3. CD36-dependent fatty acid uptake regulates expression of peroxisome proliferator activated receptors.

    PubMed

    Drover, V A; Abumrad, N A

    2005-02-01

    CD36 is an important regulator of lipid metabolism in vivo due to its role in the facilitated uptake of long-chain FAs (fatty acids). CD36-deficient mice display reduced TAG (triacylglycerol) in muscle, but elevated hepatic TAG. Also, insulin sensitivity is enhanced peripherally, while it appears impaired in the liver. Tissues such as muscle, which normally express high levels of CD36, shift to high glucose utilization in CD36 deficiency, so we hypothesized that this shift must involve adaptive changes in the PPAR (peroxisome-proliferator-activated receptor) transcription factors which regulate FA metabolism. To test this, we examined mRNA levels for the three PPAR isoforms in tissues of WT (wild-type) and CD36-deficient mice following the administration of saline, glucose or olive oil by intragastric gavage. Compared with WT mice, CD36-null mice had 5-10-fold increased PPAR mRNA in adipose tissue in the basal state, and did not exhibit diet-induced changes. Correlations between adipose PPAR mRNA abundance and plasma lipids were observed in WT mice, but not in CD36-null mice. The opposite was true for hepatic PPAR mRNA levels, which correlated with plasma FA, TAG and/or glucose only in CD36-null mice. No significant differences were observed in PPAR mRNA levels in the intestine, where CD36 does not impact on FA uptake. The data suggest that CD36 and the PPARs are components of the FA-sensing machinery to respond to changes in FA flux in a tissue-specific manner.

  4. Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages.

    PubMed

    Reddy, Aravind T; Lakshmi, Sowmya P; Zhang, Yingze; Reddy, Raju C

    2014-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disease, thought to be largely transforming growth factor β (TGFβ) driven, for which there is no effective therapy. We assessed the potential benefits in IPF of nitrated fatty acids (NFAs), which are unique endogenous agonists of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor that exhibits wound-healing and antifibrotic properties potentially useful for IPF therapy. We found that pulmonary PPARγ is down-regulated in patients with IPF. In vitro, knockdown or knockout of PPARγ expression in isolated human and mouse lung fibroblasts induced a profibrotic phenotype, whereas treating human fibroblasts with NFAs up-regulated PPARγ and blocked TGFβ signaling and actions. NFAs also converted TGFβ to inactive monomers in cell-free solution, suggesting an additional mechanism through which they may inhibit TGFβ. In vivo, treating mice bearing experimental pulmonary fibrosis with NFAs reduced disease severity. Also, NFAs up-regulated the collagen-targeting factor milk fat globule-EGF factor 8 (MFG-E8), stimulated collagen uptake and degradation by alveolar macrophages, and promoted myofibroblast dedifferentiation. Moreover, treating mice with established pulmonary fibrosis using NFAs reversed their existing myofibroblast differentiation and collagen deposition. These findings raise the prospect of treating IPF with NFAs to halt and perhaps even reverse the progress of IPF. © FASEB.

  5. Regulation of AMPK Activation by CD36 Links Fatty Acid Uptake to β-Oxidation

    PubMed Central

    Sun, Jingyu; Pietka, Terri; Gross, Richard W.; Eckel, Robert H.; Su, Xiong; Stahl, Philip D.

    2015-01-01

    Increases in muscle energy needs activate AMPK and induce sarcolemmal recruitment of the fatty acid (FA) translocase CD36. The resulting rises in FA uptake and FA oxidation are tightly correlated, suggesting coordinated regulation. We explored the possibility that membrane CD36 signaling might influence AMPK activation. We show, using several cell types, including myocytes, that CD36 expression suppresses AMPK, keeping it quiescent, while it mediates AMPK activation by FA. These dual effects reflect the presence of CD36 in a protein complex with the AMPK kinase LKB1 (liver kinase B1) and the src kinase Fyn. This complex promotes Fyn phosphorylation of LKB1 and its nuclear sequestration, hindering LKB1 activation of AMPK. FA interaction with CD36 dissociates Fyn from the protein complex, allowing LKB1 to remain cytosolic and activate AMPK. Consistent with this, CD36−/− mice have constitutively active muscle and heart AMPK and enhanced FA oxidation of endogenous triglyceride stores. The molecular mechanism described, whereby CD36 suppresses AMPK, with FA binding to CD36 releasing this suppression, couples AMPK activation to FA availability and would be important for the maintenance of cellular FA homeostasis. Its dysfunction might contribute to the reported association of CD36 variants with metabolic complications of obesity in humans. PMID:25157091

  6. Phenolic Elderberry Extracts, Anthocyanins, Procyanidins, and Metabolites Influence Glucose and Fatty Acid Uptake in Human Skeletal Muscle Cells.

    PubMed

    Ho, Giang Thanh Thi; Kase, Eili Tranheim; Wangensteen, Helle; Barsett, Hilde

    2017-04-05

    Uptake of glucose and fatty acids in skeletal muscle is of interest for type 2 diabetes treatment. The aim was to study glucose and fatty acid uptake in skeletal muscle cells, antioxidant effects, and inhibition of carbohydrate-hydrolyzing enzymes by elderberries. Enhanced glucose and oleic acid uptake in human skeletal muscle cells were observed after treatment with phenolic elderberry extracts, anthocyanins, procyanidins, and their metabolites. The 96% EtOH and the acidified MeOH extracts were highly active. Of the isolated substances, cyanidin-3-glucoside and cyanidin-3-sambubioside showed highest stimulation of uptake. Phloroglucinol aldehyde was most active among the metabolites. Isolated anthocyanins and procyanidins are strong radical scavengers and are good inhibitors of 15-lipoxygenase and moderate inhibitors of xanthine oxidase. As α-amylase and α-glucosidase inhibitors, they are considerably better than the positive control acarbose. The antidiabetic property of elderberry phenolics increases the nutritional value of this plant and indicates potential as functional food against diabetes.

  7. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence.

    PubMed

    Paczkowski, M; Schoolcraft, W B; Krisher, R L

    2014-10-01

    Fatty acid β-oxidation (FAO) is essential for oocyte maturation in mice. The objective of this study was to determine the effect of etomoxir (a FAO inhibitor; 100 μM), carnitine (1 mM), and palmitic acid (1 or 100 μM) during maturation on metabolism and gene expression of the oocyte and cumulus cells, and subsequent embryo development in the mouse. Carnitine significantly increased embryo development, while there was a decrease in development following maturation with 100 μM palmitic acid or etomoxir (P<0.05) treatment. Glucose consumption per cumulus-oocyte complex (COC) was decreased after treatment with carnitine and increased following etomoxir treatment (P<0.05). Intracellular oocyte lipid content was decreased after carnitine or etomoxir exposure (P<0.05). Abundance of Slc2a1 (Glut1) was increased after etomoxir treatment in the oocyte and cumulus cells (P<0.05), suggesting stimulation of glucose transport and potentially the glycolytic pathway for energy production when FAO is inhibited. Abundance of carnitine palmitoyltransferase 2 (Cpt2) tended to increase in oocytes (P=0.1) after treatment with 100 μM palmitic acid and in cumulus cells after exposure to 1 μM palmitic acid (P=0.07). Combined with carnitine, 1 μM palmitic acid increased the abundance of Acsl3 (P<0.05) and Cpt2 tended to increase (P=0.07) in cumulus cells, suggesting FAO was increased during maturation in response to stimulators and fatty acids. In conclusion, fatty acid and glucose metabolism are related to the mouse COC, as inhibition of FAO increases glucose consumption. Stimulation of FAO decreases glucose consumption and lipid stores, positively affecting subsequent embryo development, while an overabundance of fatty acid or reduced FAO negatively affects oocyte quality.

  8. Peroxisome Proliferator-Activated Receptor γ Decouples Fatty Acid Uptake from Lipid Inhibition of Insulin Signaling in Skeletal Muscle

    PubMed Central

    Hu, Shanming; Yao, Jianrong; Howe, Alexander A.; Menke, Brandon M.; Sivitz, William I.; Spector, Arthur A.

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity. PMID:22474127

  9. Peroxisome proliferator-activated receptor γ decouples fatty acid uptake from lipid inhibition of insulin signaling in skeletal muscle.

    PubMed

    Hu, Shanming; Yao, Jianrong; Howe, Alexander A; Menke, Brandon M; Sivitz, William I; Spector, Arthur A; Norris, Andrew W

    2012-06-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity.

  10. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  11. Long chain fatty acid uptake in vivo: comparison of [125I]-BMIPP and [3H]-bromopalmitate.

    PubMed

    Shearer, Jane; Coenen, Kimberly R; Pencek, R Richard; Swift, Larry L; Wasserman, David H; Rottman, Jeffrey N

    2008-08-01

    Insulin resistance is characterized by increased metabolic uptake of fatty acids. Accordingly, techniques to examine in vivo shifts in fatty acid metabolism are of value in both clinical and experimental settings. Partially metabolizable long chain fatty acid (LCFA) tracers have been recently developed and employed for this purpose: [9,10-3H]-(R)-2-bromopalmitate ([3H]-BROMO) and [125I]-15-(rho-iodophenyl)-3-R,S-methylpentadecanoic acid ([125I]-BMIPP). These analogues are taken up like native fatty acids, but once inside the cell do not directly enter beta-oxidation. Rather, they become trapped in the slower processes of omega and alpha-oxidation. Study aims were to (1) simultaneously assess and compare [3H]-BROMO and [125I]-BMIPP and (2) determine if tracer breakdown is affected by elevated metabolic demands. Catheters were implanted in a carotid artery and jugular vein of Sprague-Dawley rats. Following 5 days recovery, fasted animals (5 h) underwent a rest (n = 8) or exercise (n = 8) (0.6 mi/h) protocol. An instantaneous bolus containing both [3H]-BROMO and [125I]-BMIPP was administered to determine LCFA uptake. No significant difference between [125I]-BMIPP and [3H]-BROMO uptake was found in cardiac or skeletal muscle during rest or exercise. In liver, rates of uptake were more than doubled with [3H]-BROMO compared to [125I]-BMIPP. Analysis of tracer conversion by TLC demonstrated no difference at rest. Exercise resulted in greater metabolism and excretion of tracers with approximately 37% and approximately 53% of [125I]-BMIPP and [3H]-BROMO present in conversion products at 40 min. In conclusion, [3H]-BROMO and [125I]-BMIPP are indistinguishable for the determination of tissue kinetics at rest in skeletal and cardiac muscle. Exercise preferentially exacerbates the breakdown of [3H]-BROMO, making [125I]-BMIPP the analogue of choice for prolonged (>30 min) experimental protocols with elevated metabolic demands.

  12. Dietary uptake of omega-3 fatty acids in mouse tissue studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS).

    PubMed

    Sjövall, Peter; Rossmeisl, Martin; Hanrieder, Jörg; Kuda, Ondrej; Kopecky, Jan; Bryhn, Morten

    2015-07-01

    Dietary intake of omega-3 fatty acids is associated with considerable health benefits, including the prevention of metabolic disorders such as cardiovascular disease and type 2 diabetes. Furthermore, incorporation of the main omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), at the systemic level has been found to be more efficient when these fatty acids are supplied in the form of marine phospholipids compared to triglycerides. In this work, the uptake of omega-3 fatty acids and their incorporation in specific lipids were studied in adipose, skeletal muscle, and liver tissues of mice given high-fat diets with or without omega-3 supplements in the form of phospholipids or triglycerides using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results demonstrate significant uptake of EPA and DHA, and the incorporation of these fatty acids in specific lipid molecules, in all three tissue types in response to the dietary omega-3 supplements. Moreover, the results indicate reduced concentrations of arachidonic acid (AA) and depletion of lipids containing AA in tissue samples from mice given supplementary omega-3, as compared to the control mice. The effect on the lipid composition, in particular the DHA uptake and AA depletion, was found to be significantly stronger when the omega-3 supplement was supplied in the form of phospholipids, as compared to triglycerides. TOF-SIMS was found to be a useful technique for screening the lipid composition and simultaneously obtaining the spatial distributions of various lipid classes on tissue surfaces.

  13. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake

    PubMed Central

    Poppelreuther, Margarete; Rudolph, Berenice; Du, Chen; Großmann, Regina; Becker, Melanie; Thiele, Christoph; Ehehalt, Robert; Füllekrug, Joachim

    2012-01-01

    Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids. PMID:22357706

  14. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake.

    PubMed

    Poppelreuther, Margarete; Rudolph, Berenice; Du, Chen; Großmann, Regina; Becker, Melanie; Thiele, Christoph; Ehehalt, Robert; Füllekrug, Joachim

    2012-05-01

    Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.

  15. Dietary fructose during the suckling period increases body weight and fatty acid uptake into skeletal muscle in adult rats.

    PubMed

    Huynh, Minh; Luiken, Joost J J P; Coumans, Will; Bell, Rhonda C

    2008-08-01

    The suckling period is one potentially "critical" period during which nutritional intake may permanently "program" metabolism to promote increased adult body weight and insulin resistance in later life. This study determined whether fructose introduced during the suckling period altered body weight and induced changes in fatty acid transport leading to insulin resistance in adulthood in rats. Pups were randomly assigned to one of four diets: suckle controls (SCs), rat milk substitute formula (Rat Milk Substitute), fructose-containing formula (Fructose), or galactose-containing formula (Galactose). Starting at weaning, all pups received the same diet; at 8 weeks of age, half of the SC rats began ingesting a diet containing 65% kcal fructose (SC-Fructose). This continued until animals were 12 weeks old and the study ended. At weeks 8, 10, and 11, the Fructose group weighed more than SC and SC-Fructose groups (P < 0.05). At weeks 8 and 10 of age, the Fructose group had significantly higher insulin concentrations vs. rats in the SC-Fructose group. (3)H-Palmitate transport into vesicles from hind limb skeletal muscle was higher in Fructose vs. SC rats (P < 0.05). CD36 expression was increased in the sarcolemma but not in whole tissue homogenates from skeletal muscle from Fructose rats (P < 0.05) suggesting a redistribution of this protein associated with fatty acid uptake across the plasma membrane. This change in subcellular localization of CD36 is associated with insulin resistance in muscle. Consuming fructose during suckling may result in lifelong changes in body weight, insulin secretion, and fatty acid transport involving CD36 in muscle and ultimately promote insulin resistance.

  16. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  17. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells.

    PubMed

    Goncalves, Aurélie; Gleize, Béatrice; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2013-10-01

    We have recently shown that vitamin D3 (cholecalciferol) absorption is not a simple passive diffusion but involves cholesterol transporters. As free fatty acids (FAs) modulate cholesterol intestinal absorption and metabolism, we hypothesized that FAs may also interact with vitamin D absorption. Effects of FAs were evaluated at different levels of cholecalciferol intestinal absorption. First, the physicochemical properties of micelles formed with different FAs were analyzed. The micelles were then administered to human Caco-2 cells in culture to evaluate FA effects on (i) cholecalciferol uptake and basolateral efflux and (ii) the regulation of genes coding proteins involved in lipid absorption process. Micellar electric charge was correlated with both FA chain length and degree of unsaturation. Long-chain FAs at 500 μM in mixed micelles decreased cholecalciferol uptake in Caco-2 cells. This decrease was annihilated as soon as the long-chain FAs were mixed with other FAs. Oleic acid significantly improved cholecalciferol basolateral efflux compared to other FAs. These results were partly explained by a modulation of genes coding for lipid transport proteins such as Niemann-pick C1-like 1 and scavenger receptor class B type I. The data reported here show for the first time that FAs can interact with cholecalciferol intestinal absorption at different key steps of the absorption process. Cholecalciferol intestinal absorption may thus be optimized according to oil FA composition.

  18. Contrast of volatile fatty acid driven and inorganic acid or base driven phosphorus release and uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew A

    2012-04-01

    Addition of an inorganic acid or base was detrimental to net phosphorus removals in short-term batch experiments, suggesting there might be system upset when pH changes. In contrast, addition of volatile fatty acids (VFAs) increased anaerobic phosphorus release and aerobic phosphorus uptake while maintaining or improving net phosphorus removals. The effect of pH change differed if the acid or base added was inorganic versus organic. Volatile fatty acids that resulted in poly-3-hydroxy-butyrate rather than poly-3-hydroxy-valerate resulted in greater net phosphorus removals, and this corresponded to differences in consumption of reducing equivalents. Acetic acid resulted in improved net phosphorus removal compared to sodium acetate, suggesting that acid forms of VFAs might be superior as supplemental VFAs. It is hypothesized that anaerobic phosphorus release following addition of inorganic acid is primarily a result of phosphorus and proton (H+) symport (excretion from the cell) for pH homeostasis, whereas addition of VFAs results in phosphorus and H+ release to maintain the proton motive force.

  19. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    PubMed

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The effect of caveolin-1 (Cav-1) on fatty acid uptake and CD36 localization and lipotoxicity in vascular smooth muscle (VSM) cells.

    PubMed

    Mattern, Heather M; Raikar, Leena S; Hardin, Christopher D

    2009-01-01

    The purpose of this study was to determine whether caveolin-1 (Cav-1) is involved in lipotoxicity in vascular smooth muscle (VSM) cells by altering CD36 membrane localization. Normal A7r5 cells (cultured rat aortic smooth muscle cells), Cav-1 overexpressing cells, and cells treated with 10 mM cyclodextrin for 30 minutes were immunolabeled with Cav-1 and CD36. The peripheral to central ratio of CD36 in Cav-1 overexpressing cells (1.52±0.19) was significantly higher than in control cells (1.05±0.16, p=0.035) and cyclodextrin-treated cells (0.861±0.279, p=0.035). Fatty acid uptake at 5, 10, and 15 seconds was quantified with fluorescence of C1BODIPY 500/510 C12, a long-chain fatty acid analog. A7r5 VSM cells overexpressing Cav-1 had decrease a in the rate of fatty acid uptake compared to control cells. Cells treated with cyclodextrin also had a decrease in fatty acid uptake compared to control. Cav-1 overexpressing cells incubated in 0.05 mM palmitate had 31.4±8.8% apoptosis, where only 3.9±1.0% of Cav-1 overexpressing cells incubated in palmitate were apoptotic (p=0.044). Cyclodextrin treatment resulted in a decrease in apoptosis in cells incubated in 0.1 mM palmitate (69.7±2.1%) compared to control cells incubated in palmitate (85.6±2.7%) (p=0.003). These data suggest that in cells overexpressing Cav-1, CD36 is relocated to the plasma membrane of VSM cells, where it may play an increased role in fatty acid uptake and possibly lipotoxicity.

  1. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes.

    PubMed

    Żebrowska, Aleksandra; Mizia-Stec, Katarzyna; Mizia, Magda; Gąsior, Zbigniew; Poprzęcki, Stanisław

    2015-01-01

    The study aimed to evaluate the effects of a 3-week n-3 polyunsaturated fatty acids (n-3 PUFA) supplementation on serum nitric oxide (NO), asymmetric dimethyloarginine (ADMA), ultrasound indices of endothelial function and maximal oxygen uptake (VO2 max) of elite cyclists. The effects of dietary supplementation (n-3 PUFA at a dose of 1.3 g twice daily for 3 weeks) and placebo administration on flow-mediated dilatation (FMD), pulse wave velocity, serum markers (NO, ADMA), lipid profile, and ΔVO2max were analysed in 13 cyclists both before and after dietary protocols. Significant differences between pre- and post-intervention baseline NO levels were observed after n-3 PUFA dietary protocol (13.9 ± 4.2 vs. 23.5 ± 3.6 µmol·l(-1); P < 0.001). Higher post-intervention baseline NO level was observed after n-3 PUFA diet compared with placebo (23.5 ± 3.6 vs. 15.3 ± 3.0 µmol·l(-1); P < 0.01, respectively). The n-3 PUFA increased baseline NO concentration (ΔNO) by 6.7 ± 3.8 µmol·l(-1) and placebo by 1.6 ± 4.4 µmol·l(-1). The positive correlation was observed between baseline post-intervention NO concentration and maximal oxygen uptake (r = 0.72; P < 0.01) and also between ΔNO and ΔVO2max (r = 0.54; P < 0.05) in response to omega-3 fatty acids supplementation. There was an association between a 5.25% higher FMD (P < 0.05) and higherΔVO2max (P < 0.001) after n-3 PUFA diet compared with lower values of placebo (r = 0.68; P < 0.05). These findings suggest that an increase in NO release in response to n-3 PUFA supplementation may play a central role in cardiovascular adaptive mechanisms and enhanced exercise performance in cyclists.

  2. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  3. Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages.

    PubMed

    Lichtenstein, Laeticia; Mattijssen, Frits; de Wit, Nicole J; Georgiadi, Anastasia; Hooiveld, Guido J; van der Meer, Roelof; He, Yin; Qi, Ling; Köster, Anja; Tamsma, Jouke T; Tan, Nguan Soon; Müller, Michael; Kersten, Sander

    2010-12-01

    Dietary saturated fat is linked to numerous chronic diseases, including cardiovascular disease. Here we study the role of the lipoprotein lipase inhibitor Angptl4 in the response to dietary saturated fat. Strikingly, in mice lacking Angptl4, saturated fat induces a severe and lethal phenotype characterized by fibrinopurulent peritonitis, ascites, intestinal fibrosis, and cachexia. These abnormalities are preceded by a massive acute phase response induced by saturated but not unsaturated fat or medium-chain fat, originating in mesenteric lymph nodes (MLNs). MLNs undergo dramatic expansion and contain numerous lipid-laden macrophages. In peritoneal macrophages incubated with chyle, Angptl4 dramatically reduced foam cell formation, inflammatory gene expression, and chyle-induced activation of ER stress. Induction of macrophage Angptl4 by fatty acids is part of a mechanism that serves to reduce postprandial lipid uptake from chyle into MLN-resident macrophages by inhibiting triglyceride hydrolysis, thereby preventing macrophage activation and foam cell formation and protecting against progressive, uncontrolled saturated fat-induced inflammation.

  4. Correlation of hetorogeneous blood flow and uptake of a di-methyl-branched IODO fatty acid in the normal and ischemic dog heart

    SciTech Connect

    Sloof, G.W.; Visser, F.C.; Comans, E.F.I. |

    1995-05-01

    Myocardial blood flow (MBF) is heterogeneously distributed in normal and ischemic myocardium (myoc). Methylated iodinated fatty acids, like 15-(p-I-125-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPPA) can be used to study fatty acid metabolism with SPECT. We studied the relationship between DMIPPA uptake and MBF. In 10 open-chest dogs, ischemica was induced in the LAD coronary artery by an extra-corporal bypass system. MBF was measured with Sc-46 labeled microspheres. Fourty min. after DMIPPA iv. (34{plus_minus}4 MBq), hearts were excised and left ventricles were cut into 120 pieces, weighed and radioactivities counted. MBF and DMIPPA uptake were determined by counting in normal and ischemic myoc. Heterogeneity is expressed as the coefficient of variation (CV) and agreement as the CV of the DMIPPA uptake to MBF ratio. A control study, normal flow in LAD, in 4 dogs revealed no differences in MBF or DMIPPA uptake between the cannulated versus native perfused myoc. We conclude the DMIPPA detects ischemia, in which it shows a different relation with MBF compared to normal myoc. DMIPPA is less heterogeneously distributed than MBF and agreement between MFB and DMIPPA uptake decreases during ischemia.

  5. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 Increase the Cellular Fatty Acid Uptake of 3T3-L1 Adipocytes but Are Localized on Intracellular Membranes

    PubMed Central

    Zhan, Tianzuo; Poppelreuther, Margarete; Ehehalt, Robert; Füllekrug, Joachim

    2012-01-01

    Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake. PMID:23024797

  6. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  7. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  8. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  9. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca(2+) uptake, without altering permeability transition or left ventricular function.

    PubMed

    O'Connell, Kelly A; Dabkowski, Erinne R; de Fatima Galvao, Tatiana; Xu, Wenhong; Daneault, Caroline; de Rosiers, Christine; Stanley, William C

    2013-06-01

    High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca(2+)-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca(2+) uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function.

  10. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca2+ uptake, without altering permeability transition or left ventricular function

    PubMed Central

    O'Connell, Kelly A; Dabkowski, Erinne R; de Fatima Galvao, Tatiana; Xu, Wenhong; Daneault, Caroline; de Rosiers, Christine; Stanley, William C

    2013-01-01

    High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca2+-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca2+ uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function. PMID:24303101

  11. Uptake of algal carbon and the synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-01-01

    Foraminifera are an important component of benthic communities in oxygen depleted settings, where they potentially play a~significant role in the processing of organic matter. We tracked the uptake of a 13C-labeled algal food source into individual fatty acids in the benthic foraminiferal species, Uvigerina ex. gr. semiornata, from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan Margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labeled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m and for 2.5 days duration, whilst a laboratory incubation used an oxystat system to maintain ambient dissolved oxygen concentrations. These shipboard experiments were terminated after 5 days. Uptake of diatoms was rapid, with high incorporation of diatom fatty acids into foraminifera after ~2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in~situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that this foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The experiments also suggested that U. ex. gr. semiornata consumed non-labeled bacterial food items, particularly bacteria, and synthesised the polyunsaturated fatty acid 20:4(n-6) de novo. 20:4(n-6) is often abundant in benthic fauna yet its origins and function have remained unclear. This study demonstrates that U. ex. gr. semiornata is capable of de novo synthesis of this "essential fatty acid" and is potentially a major source of this dietary nutrient in benthic food

  12. Heterogeneity of myocardial fatty acid tracer uptake in the porcine heart wall

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.; Beighley, Patricia E.

    1997-05-01

    Spatial heterogeneity of myocardial perfusion has been recognized for many years. We have previously shown that whole-body CT is a method for providing the simultaneous measurements of heterogeneity of myocardial perfusion and myocardial blood volume. In the present study we found that the spatial distribution of myocardial metabolism, as indicated by the local accumulation of iodinated phenyl pentadecanoic acid, is slightly more heterogeneous than, but not statistically different from, the heterogeneity of perfusion and blood volume. These findings are consistent with the notion that a common factor is likely to play a major role in determining the spatial heterogeneity of myocardial intravascular blood volume, of myocardial perfusion and of myocardial metabolism.

  13. New radiohalogenated alkenyl tellurium fatty acids

    SciTech Connect

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs.

  14. Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R. M.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-07-01

    Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a 13C-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after ~ 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that fatty acid" is often abundant in benthic fauna, yet

  15. β-Lactoglobulin-linoleate complexes: In vitro digestion and the role of protein in fatty acid uptake.

    PubMed

    Le Maux, Solène; Brodkorb, André; Croguennec, Thomas; Hennessy, Alan A; Bouhallab, Saïd; Giblin, Linda

    2013-07-01

    The dairy protein β-lactoglobulin (BLG) is known to bind fatty acids such as the salt of the essential longchain fatty acid linoleic acid (cis,cis-9,12-octadecadienoic acid, n-6, 18:2). The aim of the current study was to investigate how bovine BLG-linoleate complexes, of various stoichiometry, affect the enzymatic digestion of BLG and the intracellular transport of linoleate into enterocyte-like monolayers. Duodenal and gastric digestions of the complexes indicated that BLG was hydrolyzed more rapidly when complexed with linoleate. Digested as well as undigested BLG-linoleate complexes reduced intracellular linoleate transport as compared with free linoleate. To investigate whether enteroendocrine cells perceive linoleate differently when part of a complex, the ability of linoleate to increase production or secretion of the enteroendocrine satiety hormone, cholecystokinin, was measured. Cholecystokinin mRNA levels were different when linoleate was presented to the cells alone or as part of a protein complex. In conclusion, understanding interactions between linoleate and BLG could help to formulate foods with targeted fatty acid bioaccessibility and, therefore, aid in the development of food matrices with optimal bioactive efficacy.

  16. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice.

    PubMed

    Goldenberg, Joseph R; Wang, Xuerong; Lewandowski, E Douglas

    2016-05-01

    Acyl CoA synthetase-1 (ACSL1) is localized at intracellular membranes, notably the mitochondrial membrane. ACSL1 and female sex are suggested to indirectly facilitate lipid availability to the heart and other organs. However, such mechanisms in intact, functioning myocardium remain unexplored, and roles of ACSL1 and sex in the uptake and trafficking of fats are poorly understood. To determine the potential for ACSL1 and sex-dependent differences in metabolic trapping and trafficking effects of long-chain fatty acids (LCFA) within cardiomyocytes of intact hearts. (13)C NMR of intact, beating mouse hearts, supplied (13)C palmitate, revealed 44% faster trans-sarcolemmal uptake of LCFA in male hearts overexpressing ACSL1 (MHC-ACSL1) than in non-transgenic (NTG) males (p<0.05). Acyl CoA content was elevated by ACSL1 overexpression, 404% in males and 164% in female, relative to NTG. Despite similar ACSL1 content, NTG females displayed faster LCFA uptake kinetics compared to NTG males, which was reversed by ovariectomy. NTG female LCFA uptake rates were similar to those in ACSL1 males and ACSL1 females. ACSL1 and female sex hormones both accelerated LCFA uptake without affecting triglyceride content or turnover. ACSL1 hearts contained elevated ceramide, particularly C22 ceramide in both sexes and specifically, C24 in males. ACSL1 also induced lower content of fatty acid transporter-6 (FATP6) indicating cooperative regulation with ACSL1. Surprisingly, ACSL1 overexpression did not increase mitochondrial oxidation of exogenous palmitate, which actually dropped in female ACSL1 hearts. ACSL1-mediated metabolic trapping of exogenous LCFA accelerates LCFA uptake rates, albeit to a lesser extent in females, which distinctly affects LCFA trafficking to acyl intermediates but not triglyceride storage or mitochondrial oxidation and is affected by female sex hormones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice

    PubMed Central

    Goldenberg, Joseph R.; Wang, Xuerong; Lewandowski, E. Douglas

    2016-01-01

    Rationale Acyl CoA synthetase-1 (ACSL1) is localized at intracellular membranes, notably the mitochondrial membrane. ACSL1 and female sex are suggested to indirectly facilitate lipid availability to the heart and other organs. However, such mechanisms in intact, functioning myocardium remain unexplored, and roles of ACSL1 and sex in the uptake and trafficking of fats are poorly understood. Objective To determine the potential for ACSL1 and sex-dependent differences in metabolic trapping and trafficking effects of long-chain fatty acids (LCFA) within cardiomyocytes of intact hearts. Methods and Results 13C NMR of intact, beating mouse hearts, supplied 13C palmitate, revealed 44% faster trans-sarcolemmal uptake of LCFA in male hearts overexpressing ACSL1 (MHC-ACSL1) than in non-transgenic (NTG) males (P<0.05). Acyl CoA content was elevated by ACSL1 overexpression, 404% in males and 164% in female, relative to NTG. Despite similar ACSL1 content, NTG females displayed faster LCFA uptake kinetics compared to NTG males, which was reversed by ovariectomy. NTG female LCFA uptake rates were similar to those in ACSL1 males and ACSL1 females. ACSL1 and female sex hormones both accelerated LCFA uptake without affecting triglyceride content or turnover. ACSL1 hearts contained elevated ceramide, particularly C22 ceramide in both sexes and specifically, C24 in males. ACSL1 also induced lower content of fatty acid transporter-6 (FATP6) indicating cooperative regulation with ACSL1. Surprisingly, ACSL1 overexpression did not increase mitochondrial oxidation of exogenous palmitate, which actually dropped in female ACSL1 hearts. Conclusions ACSL1-mediated metabolic trapping of exogenous LCFA accelerates LCFA uptake rates, albeit to a lesser extent in females, which distinctly affects LCFA trafficking to acyl intermediates but not triglyceride storage or mitochondrial oxidation and is affected by female sex hormones. PMID:26995156

  18. Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels.

    PubMed

    Hall, J L; Lopaschuk, G D; Barr, A; Bringas, J; Pizzurro, R D; Stanley, W C

    1996-11-01

    Malonyl CoA is an important regulator of fatty acid oxidation in the heart secondary to its ability to inhibit carnitine palmitoyltransferase 1 (CPT 1). Malonyl CoA is produced from acetyl CoA in a reaction catalyzed by acetyl CoA carboxylase (ACC). In this study we determined if alterations in malonyl CoA regulation of fatty acid metabolism are involved in the increase in energy transduction seen following an increase in cardiac work. Anesthetized, open-chest, domestic swine were subjected to a 30 min control period followed by a 30 min treatment period with either dobutamine (15 micrograms.kg-1. min-1 i.v.) (n = 6) or saline (n = 6). Heart rate, left ventricular peak dp/dt, and MVO2, were significantly increased in the dobutamine group compared to the saline group during the treatment period. Free fatty acid and glucose uptake were increased 210 and 248%, respectively, in the dobutamine group during the treatment period. Malonyl CoA content was decreased by 55% (from 0.40 +/- 0.05 to 0.18 +/- 0.12 nmol/g wet wt; P < 0.05) with dobutamine treatment, but was not affected by saline treatment. ACC activity was not significantly different between groups (0.31 +/- 0.02 vs. 0.30 +/- 0.04 nmol. min-1. mg protein-1, respectively). The activity of AMP-dependent protein kinase (AMPK), which phosphorylates and inactivates ACC, was also not significantly different in the dobutamine hearts compared to the saline hearts (322 +/- 26 vs. 338 +/- 39 pmol. min-1. mg protein-1, respectively). The increased cardiac work following dobutamine infusion is accompanied by a decrease in malonyl CoA levels and an increase in fatty acid uptake. However, the decrease in malonyl CoA cannot be explained by a decrease in ACC activity.

  19. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver.

    PubMed

    Demers, Annie; Samami, Samaneh; Lauzier, Benjamin; Des Rosiers, Christine; Ngo Sock, Emilienne Tudor; Ong, Huy; Mayer, Gaetan

    2015-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver. © 2015 American Heart Association, Inc.

  20. New Bioactive Fatty Acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  1. New bioactive fatty acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  2. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  3. History of fatty acids

    USDA-ARS?s Scientific Manuscript database

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  4. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  5. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  6. Effects of cAMP modulators on long-chain fatty-acid uptake and utilization by electrically stimulated rat cardiac myocytes.

    PubMed Central

    Luiken, J J F P; Willems, J; Coort, S L M; Coumans, W A; Bonen, A; Van Der Vusse, G J; Glatz, J F C

    2002-01-01

    Recently, we established that cellular contractions increase long-chain fatty-acid (FA) uptake by cardiac myocytes. This increase is dependent on the transport function of an 88 kDa membrane FA transporter, FA translocase (FAT/CD36), and, in analogy to skeletal muscle, is likely to involve its translocation from an intracellular pool to the sarcolemma. In the present study, we investigated whether cAMP-dependent signalling is involved in this translocation process. Isoproterenol, dibutyryl-cAMP and the phosphodiesterase (PDE) inhibitor, amrinone, which markedly raised the intracellular cAMP level, did not affect cellular FA uptake, but influenced the fate of intracellular FAs by directing these to mitochondrial oxidation in electrostimulated cardiac myocytes. The PDE inhibitors 3-isobutyl-1-methylxanthine, milrinone and dipyridamole each significantly stimulated FA uptake as well as intracellular cAMP levels, but these effects were quantitatively unrelated. The stimulatory effects of these PDE inhibitors were antagonized by sulpho- N -succinimidylpalmitate, indicating the involvement of FAT/CD36, albeit that the different PDE inhibitors use different molecular mechanisms to stimulate FAT/CD36-mediated FA uptake. Notably, 3-isobutyl-1-methylxanthine and milrinone increased the intrinsic activity of FAT/CD36, possibly through its covalent modification, and dipyridamole induces translocation of FAT/CD36 to the sarcolemma. Elevation of intracellular cGMP, but not of cAMP, by the PDE inhibitor zaprinast did not have any effect on FA uptake and metabolism by cardiac myocytes. The stimulatory effects of PDE inhibitors on cardiac FA uptake should be considered when applying these agents in clinical medicine. PMID:12093365

  7. Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co-substrate uptake.

    PubMed

    Fradinho, J C; Oehmen, A; Reis, M A M

    2014-09-20

    This work studied the effect of the substrate feeding composition on the polyhydroxyalkanoate (PHA) accumulation capacity of an acetate enriched photosynthetic mixed culture (PMC). From the six tested organic acids - malate, citrate, lactate, acetate, propionate and butyrate - only the three volatile fatty acids (VFAs) enabled PHA production, with acetate and butyrate leading to polyhydroxybutyrate (PHB) formation and propionate leading to a HB:HV copolymer with a 51% fraction of hydroxyvalerate (HV). Also, results showed an acceleration of butyrate and propionate consumption when fed in the presence of acetate, suggesting that the latter can act as a co-substrate for butyrate and propionate uptake. Furthermore, results suggest that some PMC bacterial groups present a substrate preference for butyrate in relation to acetate and propionate. These findings indicate the possibility of feeding the PMC with cheap VFA rich fermented wastes, leading to a more cost-effective and environmentally sustainable PHA production system.

  8. Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodeling of synthetic phospholipids containing various polyunsaturated fatty acids.

    PubMed

    Sato, Sho; Kurihara, Tatsuo; Kawamoto, Jun; Hosokawa, Masashi; Sato, Satoshi B; Esaki, Nobuyoshi

    2008-11-01

    An Antarctic psychrotrophic bacterium, Shewanella livingstonensis Ac10, produces cis-5,8,11,14,17-eicosapentaenoic acid (EPA), a long-chain polyunsaturated fatty acid (LPUFA), as a component of membrane phospholipids at low temperatures. The EPA-less mutant generated by disruption of the EPA synthesis gene becomes cold-sensitive. We studied whether the cold sensitivity could be suppressed by supplementation of various LPUFAs. The EPA-less mutant was cultured at 6 degrees C in the presence of synthetic phosphatidylethanolamines (PEs) that contained oleic acid at the sn-1 position and various C20 fatty acids with different numbers of double bonds from zero to five or cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) at the sn-2 position. Mass spectrometric analyses revealed that all these fatty acids became components of various PE and phosphatidylglycerol species together with shorter partner fatty acids, indicating that large-scale remodeling followed the incorporation of synthetic PEs. As the number of double bonds in the sn-2 acyl chain decreased, the growth rate decreased and the cells became filamentous. The growth was restored to the wild-type level only when the medium was supplemented with phospholipids containing EPA or DHA. We found that about a half of DHA was converted into EPA. The results suggest that intact EPA is best required for cold adaptation of this bacterium.

  9. The Short-Chain Fatty Acid Uptake Fluxes by Mice on a Guar Gum Supplemented Diet Associate with Amelioration of Major Biomarkers of the Metabolic Syndrome

    PubMed Central

    den Besten, Gijs; Havinga, Rick; Bleeker, Aycha; Rao, Shodhan; Gerding, Albert; van Eunen, Karen; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2014-01-01

    Studies with dietary supplementation of various types of fibers have shown beneficial effects on symptoms of the metabolic syndrome. Short-chain fatty acids (SCFAs), the main products of intestinal bacterial fermentation of dietary fiber, have been suggested to play a key role. Whether the concentration of SCFAs or their metabolism drives these beneficial effects is not yet clear. In this study we investigated the SCFA concentrations and in vivo host uptake fluxes in the absence or presence of the dietary fiber guar gum. C57Bl/6J mice were fed a high-fat diet supplemented with 0%, 5%, 7.5% or 10% of the fiber guar gum. To determine the effect on SCFA metabolism, 13C-labeled acetate, propionate or butyrate were infused into the cecum of mice for 6 h and the isotopic enrichment of cecal SCFAs was measured. The in vivo production, uptake and bacterial interconversion of acetate, propionate and butyrate were calculated by combining the data from the three infusion experiments in a single steady-state isotope model. Guar gum treatment decreased markers of the metabolic syndrome (body weight, adipose weight, triglycerides, glucose and insulin levels and HOMA-IR) in a dose-dependent manner. In addition, hepatic mRNA expression of genes involved in gluconeogenesis and fatty acid synthesis decreased dose-dependently by guar gum treatment. Cecal SCFA concentrations were increased compared to the control group, but no differences were observed between the different guar gum doses. Thus, no significant correlation was found between cecal SCFA concentrations and metabolic markers. In contrast, in vivo SCFA uptake fluxes by the host correlated linearly with metabolic markers. We argue that in vivo SCFA fluxes, and not concentrations, govern the protection from the metabolic syndrome by dietary fibers. PMID:25203112

  10. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome.

    PubMed

    den Besten, Gijs; Havinga, Rick; Bleeker, Aycha; Rao, Shodhan; Gerding, Albert; van Eunen, Karen; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M

    2014-01-01

    Studies with dietary supplementation of various types of fibers have shown beneficial effects on symptoms of the metabolic syndrome. Short-chain fatty acids (SCFAs), the main products of intestinal bacterial fermentation of dietary fiber, have been suggested to play a key role. Whether the concentration of SCFAs or their metabolism drives these beneficial effects is not yet clear. In this study we investigated the SCFA concentrations and in vivo host uptake fluxes in the absence or presence of the dietary fiber guar gum. C57Bl/6J mice were fed a high-fat diet supplemented with 0%, 5%, 7.5% or 10% of the fiber guar gum. To determine the effect on SCFA metabolism, 13C-labeled acetate, propionate or butyrate were infused into the cecum of mice for 6 h and the isotopic enrichment of cecal SCFAs was measured. The in vivo production, uptake and bacterial interconversion of acetate, propionate and butyrate were calculated by combining the data from the three infusion experiments in a single steady-state isotope model. Guar gum treatment decreased markers of the metabolic syndrome (body weight, adipose weight, triglycerides, glucose and insulin levels and HOMA-IR) in a dose-dependent manner. In addition, hepatic mRNA expression of genes involved in gluconeogenesis and fatty acid synthesis decreased dose-dependently by guar gum treatment. Cecal SCFA concentrations were increased compared to the control group, but no differences were observed between the different guar gum doses. Thus, no significant correlation was found between cecal SCFA concentrations and metabolic markers. In contrast, in vivo SCFA uptake fluxes by the host correlated linearly with metabolic markers. We argue that in vivo SCFA fluxes, and not concentrations, govern the protection from the metabolic syndrome by dietary fibers.

  11. SLC27 fatty acid transport proteins.

    PubMed

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  12. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    SciTech Connect

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.; Rand, J.; Kiang, C.L.; Stump, D.; Berk, P.D.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of (/sup 3/H)-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound (/sup 3/H)oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation of the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 ..mu..g/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10/sup 4/ adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut.

  13. Spexin is a Novel Human Peptide that Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-induced Obesity*

    PubMed Central

    Walewski, José L.; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J.; Vasselli, Joseph; Pomp, Afons; Dakin, Gregory; Berk, Paul D.

    2014-01-01

    Objective Microarray studies identified Ch12:orf39 (Spexin) as the most dysregulated gene in obese human fat. Therefore we examined its role in obesity pathogenesis. Design and Methods Spexin effects on food intake, meal patterns, body weight, Respiratory Exchange Ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with dietary-induced obesity (DIO). Its effects on adipocyte [3H]-oleate uptake were determined. Results In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = −0.797) with Leptin. In rats, Spexin (35 μg/kg/day s.c) reduced caloric intake ~32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 μg/kg/day i.p.) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70μg/kg/day i.p.) demonstrated no aversive Spexin effects. Conclusions Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. PMID:24550067

  14. Involvement of Fatty Acid Amide Hydrolase and Fatty Acid Binding Protein 5 in the Uptake of Anandamide by Cell Lines with Different Levels of Fatty Acid Amide Hydrolase Expression: A Pharmacological Study

    PubMed Central

    Björklund, Emmelie; Blomqvist, Anders; Hedlin, Joel; Persson, Emma; Fowler, Christopher J.

    2014-01-01

    Background The endocannabinoid ligand anandamide (AEA) is removed from the extracellular space by a process of cellular uptake followed by metabolism. In many cells, such as the RBL-2H3 cell line, inhibition of FAAH activity reduces the observed uptake, indicating that the enzyme regulates uptake by controlling the intra- : extracellular AEA concentration gradient. However, in other FAAH-expressing cells, no such effect is seen. It is not clear, however, whether these differences are methodological in nature or due to properties of the cells themselves. In consequence, we have reinvestigated the role of FAAH in gating the uptake of AEA. Methodology/Principal Findings The effects of FAAH inhibition upon AEA uptake were investigated in four cell lines: AT1 rat prostate cancer, RBL-2H3 rat basophilic leukaemia, rat C6 glioma and mouse P19 embryonic carcinoma cells. Semi-quantitative PCR for the cells and for a rat brain lysate confirmed the expression of FAAH. No obvious expression of a transcript with the expected molecular weight of FLAT was seen. FAAH expression differed between cells, but all four could accumulate AEA in a manner inhibitable by the selective FAAH inhibitor URB597. However, there was a difference in the sensitivities seen in the reduction of uptake for a given degree of FAAH inhibition produced by a reversible FAAH inhibitor, with C6 cells being more sensitive than RBL-2H3 cells, despite rather similar expression levels and activities of FAAH. The four cell lines all expressed FABP5, and AEA uptake was reduced in the presence of the FABP5 inhibitor SB-FI-26, suggesting that the different sensitivities to FAAH inhibition for C6 and RBL2H3 cells is not due to differences at the level of FABP-5. Conclusions/Significance When assayed using the same methodology, different FAAH-expressing cells display different sensitivities of uptake to FAAH inhibition. PMID:25078278

  15. Fatty acid uptake and blood flow in adipose tissue compartments of morbidly obese subjects with or without type 2 diabetes: effects of bariatric surgery.

    PubMed

    Dadson, Prince; Ferrannini, Ele; Landini, Linda; Hannukainen, Jarna C; Kalliokoski, Kari K; Vaittinen, Maija; Honka, Henri; Karlsson, Henry K; Tuulari, Jetro J; Soinio, Minna; Salminen, Paulina; Parkkola, Riitta; Pihlajamäki, Jussi; Iozzo, Patricia; Nuutila, Pirjo

    2017-08-01

    Body fat accumulation, distribution, and metabolic activity are factors in the pathophysiology of obesity and type 2 diabetes (T2D). We investigated adipose blood flow, fatty acid uptake (FAU), and subcutaneous and visceral fat cellularity in obese patients with or without T2D. A total of 23 morbidly obese (mean body mass index = 42 kg/m(2)) patients were studied before and 6 mo after bariatric surgery; 15 nonobese subjects served as controls. Positron emission tomography was used to measure tissue FAU (with (18)F-FTHA) and blood flow (with H2(15)O); MRI was used for fat distribution and fat biopsy for adipocyte size. Obese subjects had subcutaneous hyperplasia and hypertrophy and lower blood flow; when expressed per cell, flow was similar to controls. FAU into subcutaneous and visceral depots was increased in the obese; per unit tissue mass, however, FAU was similar to controls but reduced in skeletal muscle. Fatty acid fractional extraction in subcutaneous fat and muscle was only increased in obese patients with T2D. We conclude that surgery reduces subcutaneous fat hyperplasia and hypertrophy; subcutaneous blood flow and FAU decrease in absolute terms and per cell while fractional FAU remains unchanged in T2D. In the obese, subcutaneous blood flow is a determinant of FAU and is coupled with cellularity; efficiency of FAU is enhanced in subcutaneous fat and muscle in T2D. Copyright © 2017 the American Physiological Society.

  16. Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes.

    PubMed

    Yang, Won-Mo; Jeong, Hyo-Jin; Park, Seung-Yoon; Lee, Wan

    2014-06-13

    MicroRNAs have been shown to play an important role in insulin signaling but their biological function in insulin resistance induced by saturated fatty acids (SFA) remains largely unknown. Here, we report that SFA palmitate and high fat diet (HFD) significantly increase expression of miR-29a in myocytes. miR-29a targets IRS-1 3'UTR directly and represses IRS-1 expression at the translational level. Furthermore, the ectopic expression of miR-29a impairs insulin signaling and glucose uptake in myocytes through a substantial decrease in IRS-1. These findings suggest that the up-regulation of miR-29a by SFA is causally related to the development of insulin resistance in myocytes.

  17. Peroxisome proliferator-activated receptor-γ in capillary endothelia promotes fatty acid uptake by heart during long-term fasting.

    PubMed

    Goto, Kosaku; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Suga, Toshihiro; Hattori, Akinari; Irie, Yasunori; Shinagawa, Yuji; Matsui, Hiroki; Syamsunarno, Mas Rizky A A; Matsui, Miki; Haque, Anwarul; Arai, Masashi; Kunimoto, Fumio; Yokoyama, Tomoyuki; Endo, Keigo; Gonzalez, Frank J; Kurabayashi, Masahiko

    2013-01-18

    Endothelium is a crucial blood-tissue interface controlling energy supply according to organ needs. We investigated whether peroxisome proliferator-activated receptor-γ (PPARγ) induces expression of fatty acid-binding protein 4 (FABP4) and fatty acid translocase (FAT)/CD36 in capillary endothelial cells (ECs) to promote FA transport into the heart. Expression of FABP4 and CD36 was induced by the PPARγ agonist pioglitazone in human cardiac microvessel ECs (HCMECs), but not in human umbilical vein ECs. Real-time PCR and immunohistochemistry of the heart tissue of control (Pparg(fl/null)) mice showed an increase in expression of FABP4 and CD36 in capillary ECs by either pioglitazone treatment or 48 hours of fasting, and these effects were not found in mice deficient in endothelial PPARγ (Pparg(▵)(EC)(/null)). Luciferase reporter constructs of the Fabp4 and CD36 promoters were markedly activated by pioglitazone in HCMECs through canonical PPAR-responsive elements. Activation of PPARγ facilitated FA uptake by HCMECs, which was partially inhibited by knockdown of either FABP4 or CD36. Uptake of an FA analogue, (125)I-BMIPP, was significantly reduced in heart, red skeletal muscle, and adipose tissue in Pparg(▵)(EC)(/null) mice as compared with Pparg(fl/null) mice after olive oil loading, whereas those values were comparable between Pparg(fl/null) and Pparg(▵)(EC)(/null) null mice on standard chow and a high-fat diet. Furthermore, Pparg(▵)(EC)(/null) mice displayed slower triglyceride clearance after olive oil loading. These findings identified a novel role for capillary endothelial PPARγ as a regulator of FA handing in FA-metabolizing organs including the heart in the postprandial state after long-term fasting.

  18. Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate.

    PubMed

    Vandevoorde, Séverine; Fowler, Christopher J

    2005-08-01

    There is some dispute concerning the extent to which the uptake inhibitor VDM11 (N-(4-hydroxy-2-methylphenyl) arachidonoyl amide) is capable of inhibiting the metabolism of the endocannabinoid anandamide (AEA) by fatty acid amide hydrolase (FAAH). In view of a recent study demonstrating that the closely related compound AM404 (N-(4-hydroxyphenyl)arachidonylamide) is a substrate for FAAH, we re-examined the interaction of VDM11 with FAAH. In the presence of fatty acid-free bovine serum albumin (BSA, 0.125% w v(-1)), both AM404 and VDM11 inhibited the metabolism of AEA by rat brain FAAH with similar potencies (IC(50) values of 2.1 and 2.6 microM, respectively). The compounds were about 10-fold less potent as inhibitors of the metabolism of 2-oleoylglycerol (2-OG) by cytosolic monoacylglycerol lipase (MAGL). The potency of VDM11 towards FAAH was dependent upon the assay concentration of fatty acid-free bovine serum albumin (BSA). Thus, in the absence of fatty acid-free BSA, the IC(50) value for inhibition of FAAH was reduced by a factor of about two (from 2.9 to 1.6 microM). A similar reduction in the IC(50) value for the inhibition of membrane bound MAGL by both this compound (from 14 to 6 microM) and by arachidonoyl serinol (from 24 to 13 microM) was seen. An HPLC assay was set up to measure 4-amino-m-cresol, the hypothesised product of FAAH-catalysed VDM11 hydrolysis. 4-Amino-m-cresol was eluted with a retention time of approximately 2.4 min, but showed a time-dependent degradation to compounds eluting at peaks of approximately 5.6 and approximately 8 min. Peaks with the same retention times were also found following incubation of the membranes with VDM11, but were not seen when the membranes were preincubated with the FAAH inhibitors URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) and CAY10401 (1-oxazolo[4,5-b]pyridin-2-yl-9-octadecyn-1-one) prior to addition of VDM11. The rate of metabolism of VDM11 was estimated to be roughly 15-20% of that for

  19. The effect of gestational age on expression of genes involved in uptake, trafficking and synthesis of fatty acids in the rat placenta.

    PubMed

    Rodríguez-Cruz, Maricela; González, Raúl Sánchez; Maldonado, Jorge; López-Alarcón, Mardia; Bernabe-García, Mariela

    2016-10-15

    Gestation triggers a tight coordination among maternal tissues to provide fatty acids (FA) to the fetus through placental transport; however, there is insufficient evidence regarding regulation of proteins involved in placental transport of FA according to gestational age. The aim of this study was to determine the role of gestational age on the expression of genes involved in FA uptake, trafficking and synthesis in the rat placenta to support fetal demands. Gene expression of encoding proteins for placental transport and synthesis of FA was measured in placenta. Also, FA composition was measured in placenta, fetuses and newborns. mRNA expression of lipoprotein lipase (lpl) and fatp-1 (for uptake) was 4.4- and 1.43-fold higher, respectively, during late gestation than at P14, but expression of p-fabp-pm decreased 0.37-fold at late pregnancy in comparison with P14. Only mRNA fabp-4 member for trafficking of FA was 2.95-fold higher at late gestation than at P14. mRNA of fasn and elovl-6 participating in saturated FA and enzymes for the polyunsaturated FA synthesis were downregulated during late gestation and their regulator srebf-1c increased at P16. This study suggests that gestational age has an effect on expression of some genes involved in uptake, trafficking and synthesis of FA in the rat placenta; mRNA expression of lpl and, fatp-1 for uptake and fabp-4 implicated in trafficking was expressed at high levels at late gestation. In addition, placenta expresses the mRNAs involved in FA synthesis; these genes were expressed at low levels at late gestation. Additionally, mRNAs of Srebf-1c transcriptional regulator of desaturases and elongases was highly expressed during late gestation. Finally, these changes in the rat placenta allowed the placenta to partially supply saturated and monounsaturated FA to the fetus.

  20. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice.

    PubMed

    Rao, Anuradha; Kosters, Astrid; Mells, Jamie E; Zhang, Wujuan; Setchell, Kenneth D R; Amanso, Angelica M; Wynn, Grace M; Xu, Tianlei; Keller, Brad T; Yin, Hong; Banton, Sophia; Jones, Dean P; Wu, Hao; Dawson, Paul A; Karpen, Saul J

    2016-09-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and safe and effective therapies are needed. Bile acids (BAs) and their receptors [including the nuclear receptor for BAs, farnesoid X receptor (FXR)] play integral roles in regulating whole-body metabolism and hepatic lipid homeostasis. We hypothesized that interruption of the enterohepatic BA circulation using a luminally restricted apical sodium-dependent BA transporter (ASBT) inhibitor (ASBTi; SC-435) would modify signaling in the gut-liver axis and reduce steatohepatitis in high-fat diet (HFD)-fed mice. Administration of this ASBTi increased fecal BA excretion and messenger RNA (mRNA) expression of BA synthesis genes in liver and reduced mRNA expression of ileal BA-responsive genes, including the negative feedback regulator of BA synthesis, fibroblast growth factor 15. ASBT inhibition resulted in a marked shift in hepatic BA composition, with a reduction in hydrophilic, FXR antagonistic species and an increase in FXR agonistic BAs. ASBT inhibition restored glucose tolerance, reduced hepatic triglyceride and total cholesterol concentrations, and improved NAFLD activity score in HFD-fed mice. These changes were associated with reduced hepatic expression of lipid synthesis genes (including liver X receptor target genes) and normalized expression of the central lipogenic transcription factor, Srebp1c Accumulation of hepatic lipids and SREBP1 protein were markedly reduced in HFD-fed Asbt(-/-) mice, providing genetic evidence for a protective role mediated by interruption of the enterohepatic BA circulation. Together, these studies suggest that blocking ASBT function with a luminally restricted inhibitor can improve both hepatic and whole body aspects of NAFLD.

  1. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  2. Peroxisome Proliferator‐Activated Receptor‐γ in Capillary Endothelia Promotes Fatty Acid Uptake by Heart During Long‐Term Fasting

    PubMed Central

    Goto, Kosaku; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Suga, Toshihiro; Hattori, Akinari; Irie, Yasunori; Shinagawa, Yuji; Matsui, Hiroki; Syamsunarno, Mas Rizky A. A.; Matsui, Miki; Haque, Anwarul; Arai, Masashi; Kunimoto, Fumio; Yokoyama, Tomoyuki; Endo, Keigo; Gonzalez, Frank J.; Kurabayashi, Masahiko

    2013-01-01

    Background Endothelium is a crucial blood–tissue interface controlling energy supply according to organ needs. We investigated whether peroxisome proliferator‐activated receptor‐γ (PPARγ) induces expression of fatty acid–binding protein 4 (FABP4) and fatty acid translocase (FAT)/CD36 in capillary endothelial cells (ECs) to promote FA transport into the heart. Methods and Results Expression of FABP4 and CD36 was induced by the PPARγ agonist pioglitazone in human cardiac microvessel ECs (HCMECs), but not in human umbilical vein ECs. Real‐time PCR and immunohistochemistry of the heart tissue of control (Ppargfl/null) mice showed an increase in expression of FABP4 and CD36 in capillary ECs by either pioglitazone treatment or 48 hours of fasting, and these effects were not found in mice deficient in endothelial PPARγ (Pparg∆EC/null). Luciferase reporter constructs of the Fabp4 and CD36 promoters were markedly activated by pioglitazone in HCMECs through canonical PPAR‐responsive elements. Activation of PPARγ facilitated FA uptake by HCMECs, which was partially inhibited by knockdown of either FABP4 or CD36. Uptake of an FA analogue, 125I‐BMIPP, was significantly reduced in heart, red skeletal muscle, and adipose tissue in Pparg∆EC/null mice as compared with Ppargfl/null mice after olive oil loading, whereas those values were comparable between Ppargfl/null and Pparg∆EC/null null mice on standard chow and a high‐fat diet. Furthermore, Pparg∆EC/null mice displayed slower triglyceride clearance after olive oil loading. Conclusions These findings identified a novel role for capillary endothelial PPARγ as a regulator of FA handing in FA‐metabolizing organs including the heart in the postprandial state after long‐term fasting. PMID:23525438

  3. [Omega-3 fatty acids].

    PubMed

    Huyghebaert, C

    2007-01-01

    Omega-3 fatty acids have been drawing the interest of researchers for quite a number of years. The study of the impact of fish consumption on health and particularly on a cardiovascular level is the subject of much research. Some encouraging results have led to the study of omega-3 fatty acids in various other diseases. The interest in 'omega-3' has been widely relayed by the media and a huge market has developed with several allegations in its favour. This article is an attempt to shed light on these health claims, based on currently available scientific data.

  4. Synthesis and biological evaluation of (E)-19-iodo-3,3-dimethyl-18-nonadecenoic acid, a new dimethyl-branched long-chain fatty acid to evaluate regional myocardial fatty acid uptake

    SciTech Connect

    Goodman, M.M.; Ambrose, K.R.; Neff, K.H.; Knapp, F.F. Jr.

    1986-01-01

    The synthetic method for the preparation of (E)-19-iodo-3,3-dimethyl-18-nonadecenoic acid (DMIVN) involved introduction of substituents into the 2- and 5-positions of a thiophene ring followed by sulfur extrusion of a 2,5-dialkyl thiophene derivative to provide a key 3,3-dimethyl-branched fatty acid intermediate, 17-iodo-3,3-dimethylheptadecanoic acid. Myocardial subcellular distribution studies of the /sup 125/I-labeled DMIVN in fasted rats showed a higher association of radioactivity with the microsomes when compared to the results obtained with the 19-carbon straight chain analogue. With the nonfasted rats the distribution profiles of the two analogues showed differences that seemed to correlate with the differences in myocardial retention that fasting and feeding can induce. 5 refs., 3 figs., 2 tabs.

  5. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  6. Angiotensin II type 2 receptor stimulation improves fatty acid ovarian uptake and hyperandrogenemia in an obese rat model of polycystic ovary syndrome.

    PubMed

    Leblanc, Samuel; Battista, Marie-Claude; Noll, Christophe; Hallberg, Anders; Gallo-Payet, Nicole; Carpentier, André C; Vine, Donna F; Baillargeon, Jean-Patrice

    2014-09-01

    Polycystic ovary syndrome (PCOS) is mainly defined by hyperandrogenism but is also characterized by insulin resistance (IR). Studies showed that overexposure of nonadipose tissues to nonesterified fatty acids (NEFA) may explain both IR and hyperandrogenism. Recent studies indicate that treatment with an angiotensin II type 2 receptor (AT2R)-selective agonist improves diet-induced IR. We thus hypothesized that PCOS hyperandrogenism is triggered by ovarian NEFA overexposure and is improved after treatment with an AT2R agonist. Experiments were conducted in 12-week-old female JCR:LA-cp/cp rats, which are characterized by visceral obesity, IR, hyperandrogenism, and polycystic ovaries. Control JCR:LA +/? rats have a normal phenotype. Rats were treated for 8 days with saline or the selective AT2R agonist C21/M24 and then assessed for: 1) fasting testosterone, NEFA, and insulin levels; and 2) an iv 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid test to determine NEFA ovarian tissue uptake (Km). Compared with controls, saline-treated PCOS/cp rats displayed higher insulin (100 vs 5.6 μU/mL), testosterone (0.12 vs 0.04 nmol/L), NEFA (0.98 vs 0.48 mmol/L), and Km (20.7 vs 12.9 nmol/g·min) (all P < .0001). In PCOS/cp rats, C21/M24 did not significantly improve insulin or NEFA but normalized testosterone (P = .004) and Km (P = .009), which were strongly correlated together in all PCOS/cp rats (ρ = 0.74, P = .009). In conclusion, in an obese PCOS rat model, ovarian NEFA uptake and testosterone levels are strongly associated and are both significantly reduced after short-term C21/M24 therapy. These findings provide new information on the role of NEFA in PCOS hyperandrogenemia and suggest a potential role for AT2R agonists in the treatment of PCOS.

  7. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats

    PubMed Central

    Warner, Amy; Kjellstedt, Ann; Carreras, Alba; Böttcher, Gerhard; Peng, Xiao-Rong; Seale, Patrick; Oakes, Nicholas

    2016-01-01

    Activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) present potential new therapies for obesity and type 2 diabetes. Here, we examined the effects of β3-adrenergic stimulation on tissue-specific uptake and storage of free fatty acids (FFA) and its implications for whole body FFA metabolism in diet-induced obese rats using a multi-radiotracer technique. Male Wistar rats were high fat-fed for 12 wk and administered β3-agonist CL316,243 (CL, 1 mg·kg−1·day−1) or saline via osmotic minipumps during the last 3 wk. The rats were then fasted and acutely infused with a tracer mixture ([14C]palmitate and the partially metabolized R-[3H]bromopalmitate) under anesthesia. CL infusion decreased body weight gain and fasting plasma glucose levels. While core body temperature was unaffected, infrared thermography showed an increase in tail heat dissipation following CL infusion. Interestingly, CL markedly increased both FFA storage and utilization in interscapular and perirenal BAT, whereas the flux of FFA to skeletal muscle was decreased. In this rat model of obesity, only sporadic populations of beige adipocytes were detected in the epididymal WAT depot of CL-infused rats, and there was no change in FFA uptake or utilization in WAT following CL infusion. In summary, β3-agonism robustly increased FFA flux to BAT coupled with enhanced utilization. Increased BAT activation most likely drove the increased tail heat dissipation to maintain thermostasis. Our results emphasize the quantitative role of brown fat as the functional target of β3-agonism in obesity. PMID:27780820

  8. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats.

    PubMed

    Warner, Amy; Kjellstedt, Ann; Carreras, Alba; Böttcher, Gerhard; Peng, Xiao-Rong; Seale, Patrick; Oakes, Nicholas; Lindén, Daniel

    2016-12-01

    Activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) present potential new therapies for obesity and type 2 diabetes. Here, we examined the effects of β3-adrenergic stimulation on tissue-specific uptake and storage of free fatty acids (FFA) and its implications for whole body FFA metabolism in diet-induced obese rats using a multi-radiotracer technique. Male Wistar rats were high fat-fed for 12 wk and administered β3-agonist CL316,243 (CL, 1 mg·kg(-1)·day(-1)) or saline via osmotic minipumps during the last 3 wk. The rats were then fasted and acutely infused with a tracer mixture ([(14)C]palmitate and the partially metabolized R-[(3)H]bromopalmitate) under anesthesia. CL infusion decreased body weight gain and fasting plasma glucose levels. While core body temperature was unaffected, infrared thermography showed an increase in tail heat dissipation following CL infusion. Interestingly, CL markedly increased both FFA storage and utilization in interscapular and perirenal BAT, whereas the flux of FFA to skeletal muscle was decreased. In this rat model of obesity, only sporadic populations of beige adipocytes were detected in the epididymal WAT depot of CL-infused rats, and there was no change in FFA uptake or utilization in WAT following CL infusion. In summary, β3-agonism robustly increased FFA flux to BAT coupled with enhanced utilization. Increased BAT activation most likely drove the increased tail heat dissipation to maintain thermostasis. Our results emphasize the quantitative role of brown fat as the functional target of β3-agonism in obesity. Copyright © 2016 the American Physiological Society.

  9. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  10. A low-protein, high-carbohydrate diet increases fatty acid uptake and reduces norepinephrine-induced lipolysis in rat retroperitoneal white adipose tissue.

    PubMed

    Santos, Maísa P dos; França, Suélem A de; Santos, José Tiago F dos; Buzelle, Samyra L; Bertolini, Gisele L; Garófalo, Maria Antonieta R; Kettelhut, Isis C do; Frasson, Danúbia; Chaves, Valéria E; Kawashita, Nair H

    2012-03-01

    A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-α, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-¹⁴C]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-¹⁴C]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.

  11. Docosahexaenoic acid affects arachidonic acid uptake in megakaryocytes

    SciTech Connect

    Schick, P.K.; Webster, P.

    1987-05-01

    Dietary omega 3 fatty acids are thought to prevent atherosclerosis, possibly by modifying platelet (PT) function and arachidonic acid (20:4) metabolism. The study was designed to determine whether omega 3 fatty acids primarily affect 20:4 metabolism in megakaryocytes (MK), bone marrow precursors of PT, rather than in circulating PT. MK and PT were isolated from guinea pigs and incubated with (/sup 14/C)-20:4 (0.13uM). Docosahexaenoic acid (22:6) is a major omega 3 fatty acid in marine oils. The incubation of MK with 22:6 (0.1, 1.0 uM) resulted in the decrease of incorporation of (/sup 14/C)-20:4 into total MK phospholipids, 16% and 41% respectively. Alpha-linolenic acid (18:3), a major omega 3 fatty acid present in American diets, had no effect on 20:4 uptake in MK. 22:6 primarily affected the uptake of (/sup 14/C)-20:4 into phosphatidylethanolamine (PE) and phosphatidylserine (PS) in MK. In MK, 22:6 (0.1, 1.0 uM) caused a decrease of incorporation of (/sup 14/C)-20:4 into PE, 21% and 55% respectively; a decrease into PS, 16% and 48% respectively; but only a decrease of 4% and 18%, respectively, into phosphatidylcholine; and a decrease of 3% and 21% into phosphatidylinositol 22:6 (3.0 uM) had no effect on the uptake of AA into PT phospholipids. The study shows that 22:6 has a selective effect on AA uptake in MK and that the acylation or transacylation of PE and PS are primarily affected. 22:6 and other marine omega 3 fatty acids appear to primarily affect megakaryocytes which may result in the production of platelets with abnormal content and compartmentalization of AA.

  12. Wheat germ extract decreases glucose uptake and RNA ribose formation but increases fatty acid synthesis in MIA pancreatic adenocarcinoma cells.

    PubMed

    Boros, L G; Lapis, K; Szende, B; Tömösközi-Farkas, R; Balogh, A; Boren, J; Marin, S; Cascante, M; Hidvégi, M

    2001-08-01

    The fermented wheat germ extract with standardized benzoquinone composition has potent tumor propagation inhibitory properties. The authors show that this extract induces profound metabolic changes in cultured MIA pancreatic adenocarcinoma cells when the [1,2-13C2]glucose isotope is used as the single tracer with biologic gas chromatography-mass spectrometry. MIA cells treated with 0.1, 1, and 10 mg/mL wheat germ extract showed a dose-dependent decrease in cell glucose consumption. uptake of isotope into ribosomal RNA (2.4%, 9.4%, and 28.0%), and release of 13CO2. Conversely, direct glucose oxidation and ribose recycling in the pentose cycle showed a dose-dependent increase of 1.2%, 20.7%, and 93.4%. The newly synthesized fraction of cell palmitate and the 13C enrichment of acetyl units were also significantly increased with all doses of wheat germ extract. The fermented wheat germ extract controls tumor propagation primarily by regulating glucose carbon redistribution between cell proliferation-related and cell differentiation-related macromolecules. Wheat germ extract treatment is likely associated with the phosphorylation and transcriptional regulation of metabolic enzymes that are involved in glucose carbon redistribution between cell proliferation-related structural and functional macromolecules (RNA, DNA) and the direct oxidative degradation of glucose, which have devastating consequences for the proliferation and survival of pancreatic adenocarcinoma cells in culture.

  13. Regulation of Hepatocellular Fatty Acid Uptake in Mouse Models of Fatty Liver Disease with and without Functional Leptin Signaling: Roles of NfKB and SREBP-1C and the Effects of Spexin.

    PubMed

    Ge, Jasmine F; Walewski, J L; Anglade, D; Berk, P D

    2016-09-01

    The processes causing increased hepatic triglycerides (TGs) in mouse models of hepatic steatosis (HS) due to high fat diet (HFD)-induced obesity (DIO), EtOH consumption, or obesity mutations (ob/ob, db/db) are uncertain. This report summarizes two studies. Study 1 focused on regulation by five transcription factors (TFs) (NfKb, Srebp-lc, AMPK, PPARα, PPARγ) of seven, much-studied hepatic long-chain fatty acid (LCFA) transporters (FABPpm, CD36, FATPl, FATP2, FATP4, FATP5, & Caveolin-1 [CAV-1]), and expression of genes for enzymes of LCFA synthesis (SCD-1, FASN) in mice with HS from various causes. Study 2 examined the effects of spexin, a novel adipokine, on obesity, type 2 diabetes mellitus (T2DM), and HS in these mice. Study 1 showed that: (1) processes underlying HS differed in mice with normal leptin signaling (DIO, EtoH-fed) versus those without it (ob/ob, db/db). Increased hepatocellular LCFA uptake was the principal cause of HS in the former, but increased hepatocellular LCFA synthesis predominated in the latter. (2) Expression of individual transporters was variable in the HS models studied, but strong correlations between TF expression and mean expression of four transporter genes across multiple HS models suggested regulatory interaction, and support the postulate that complexes of several different transporters mediate hepatic LCFA uptake. Study 2 indicated (1) that obese DIO mice often also have T2DM and/or nonalcoholic fatty liver disease (NAFLD); (2) confirmed that spexin treatment caused weight loss in DIO mice; (3) in DIO mice with T2DM, spexin also improved glucose tolerance, decreasing insulin resistance and HbAlc. Incubation with spexin directly inhibited LCFA uptake by hepatocytes isolated from DIO mice with HS/NAFLD by ≤70%. Spexin treatment in vivo for 4 weeks reduced hepatic lipids by 60%, and reduced serum alanine and aspartate aminotransferases. These studies in mice with DIO, T2DM, and HS/NAFLD suggest spexin may be an effective

  14. Resolving Confounding Enrichment Kinetics Due to Overlapping Resonance Signals From 13C-Enriched Long Chain Fatty Acid Oxidation and Uptake Within Intact Hearts

    PubMed Central

    O'Donnell, J. Michael; Fasano, Matthew J.; Lewandowski, E. Douglas

    2014-01-01

    Purpose Long chain fatty acid (LCFA) oxidation measurements in the intact heart from 13C-NMR rely on detection of 13C-enriched glutamate. However, progressive increases in overlapping resonance signal from LCFA can confound detection of the glutamate 4-carbon (GLU-C4) signal. We evaluated alternative 13C labeling for exogenous LCFA and developed a simple scheme to distinguish kinetics of LCFA uptake and storage from oxidation. Methods Sequential 13C-NMR spectra were acquired from isolated rat hearts perfused with 13C LCFA and glucose. Spectra were evaluated from hearts supplied: U 13C LCFA, [2,4,6,8,10,12,14,16-13C8] palmitate, [2,4,6,8,10,12,14,16,18-13C9] oleate, [4,6,8,10,12,14,16-13C7] palmitate, or [4,6,8,10,12, 14,16,18-13C8] oleate. Results 13C signal reflected the progressive enrichment at 34.6 ppm from GLU-C4, confounded by additional signal with distinct kinetics attributed to 13C-enriched LCFA 2-carbon (34.0 ppm). Excluding 13C at the 2-carbon of both palmitate and oleate eliminated signal overlap and enabled detection of the exponential enrichment of GLU-C4 for assessing LCFA oxidation. Conclusion Eliminating enrichment at the 2-carbon of 13C LCFA resolved confounding kinetics between GLU-C4 and LCFA 2-carbon signals. With this enrichment scheme, oxidation of LCFA, the primary fuel for cardiac ATP synthesis, can now be more consistently examined in whole organs with dynamic mode, proton-decoupled 13C-NMR. PMID:25199499

  15. Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis.

    PubMed

    Hassan, Aishlin; Ahn, Jinsoo; Suh, Yeunsu; Choi, Young Min; Chen, Paula; Lee, Kichoon

    2014-08-01

    Selenium (Se) has been utilized in the differentiation of primary pig and rat preadipocytes, indicating that it may have proadipogenic potential; however, some studies have also demonstrated that Se has antiadipogenic activity. In this study, chicken embryonic fibroblasts (CEFs) were used to investigate the role of Se in adipogenesis in vitro and in ovo. Se supplementation increased lipid droplet accumulation and inhibited proliferation of cultured CEFs isolated from 6-day-old embryos dose-dependently. This suggests that Se may play a role in cell cycle inhibition, thereby promoting the differentiation of fibroblasts to adipocytes. Se did not stimulate adipogenic differentiation of CEFs isolated from 9- to 12-day-old embryos, implying a permissive stage of adipogenic determination by Se at earlier embryonic ages. Microarray analysis comparing control and Se treatments on CEFs from 6-day-old embryos and confirmatory analysis by quantitative real-time polymerase chain reaction revealed that genes involved in adipocyte determination and differentiation, fatty acid uptake and triacylglycerol synthesis were up-regulated. In addition, up-regulation of an anti-lipolytic G0/G1 switch gene 2 and down-regulation of a prolipolytic monoglyceride lipase may lead to inhibition of lipolysis by Se. Both osteogenic and myogenic genes were down-regulated, and several genes related to oxidative stress response during adipogenesis were up-regulated. In ovo injection of Se at embryonic day 8 increased adipose tissue mass by 30% and caused adipocyte hypertrophy in 17-day-old chicken embryos, further supporting the proadipogenic role of Se during the embryonic development of chickens. These results suggest that Se plays a significant role in several mechanisms related to adipogenesis.

  16. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  17. Ferritin couples iron and fatty acid metabolism.

    PubMed

    Bu, Weiming; Liu, Renyu; Cheung-Lau, Jasmina C; Dmochowski, Ivan J; Loll, Patrick J; Eckenhoff, Roderic G

    2012-06-01

    A physiological relationship between iron, oxidative injury, and fatty acid metabolism exists, but transduction mechanisms are unclear. We propose that the iron storage protein ferritin contains fatty acid binding sites whose occupancy modulates iron uptake and release. Using isothermal microcalorimetry, we found that arachidonic acid binds ferritin specifically and with 60 μM affinity. Arachidonate binding by ferritin enhanced iron mineralization, decreased iron release, and protected the fatty acid from oxidation. Cocrystals of arachidonic acid and horse spleen apoferritin diffracted to 2.18 Å and revealed specific binding to the 2-fold intersubunit pocket. This pocket shields most of the fatty acid and its double bonds from solvent but allows the arachidonate tail to project well into the ferrihydrite mineralization site on the ferritin L-subunit, a structural feature that we implicate in the effects on mineralization by demonstrating that the much shorter saturated fatty acid, caprylate, has no significant effects on mineralization. These combined effects of arachidonate binding by ferritin are expected to lower both intracellular free iron and free arachidonate, thereby providing a previously unrecognized mechanism for limiting lipid peroxidation, free radical damage, and proinflammatory cascades during times of cellular stress.

  18. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  19. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  20. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    PubMed

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  1. Fatty acids and lymphocyte functions.

    PubMed

    Calder, P C; Yaqoob, P; Thies, F; Wallace, F A; Miles, E A

    2002-01-01

    The immune system acts to protect the host against pathogenic invaders. However, components of the immune system can become dysregulated such that their activities are directed against host tissues, so causing damage. Lymphocytes are involved in both the beneficial and detrimental effects of the immune system. Both the level of fat and the types of fatty acid present in the diet can affect lymphocyte functions. The fatty acid composition of lymphocytes, and other immune cells, is altered according to the fatty acid composition of the diet and this alters the capacity of those cells to produce eicosanoids, such as prostaglandin E2, which are involved in immunoregulation. A high fat diet can impair lymphocyte function. Cell culture and animal feeding studies indicate that oleic, linoleic, conjugated linoleic, gamma-linolenic, dihomo-gamma-linolenic, arachidonic, alpha-linolenic, eicosapentaenoic and docosahexaenoic acids can all influence lymphocyte proliferation, the production of cytokines by lymphocytes, and natural killer cell activity. High intakes of some of these fatty acids are necessary to induce these effects. Among these fatty acids the long chain n-3 fatty acids, especially eicosapentaenoic acid, appear to be the most potent when included in the human diet. Although not all studies agree, it appears that fish oil, which contains eicosapentaenoic acid, down regulates the T-helper 1-type response which is associated with chronic inflammatory disease. There is evidence for beneficial effects of fish oil in such diseases; this evidence is strongest for rheumatoid arthritis. Since n-3 fatty acids also antagonise the production of inflammatory eicosanoid mediators from arachidonic acid, there is potential for benefit in asthma and related diseases. Recent evidence indicates that fish oil may be of benefit in some asthmatics but not others.

  2. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  3. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  4. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity.

    PubMed Central

    Calder, P C; Yaqoob, P; Harvey, D J; Watts, A; Newsholme, E A

    1994-01-01

    The fatty acid compositions of the neutral lipid and phospholipid fractions of rat lymph node lymphocytes were characterized. Stimulation of rat lymphocytes with the T-cell mitogen concanavalin A resulted in significant changes in the fatty acid composition of both neutral lipids and phospholipids (a decrease in the proportions of stearic, linoleic and arachidonic acids and an increase in the proportion of oleic acid). Membrane fluidity was measured using nitroxide spin-label e.s.r., and increased during culture with concanavalin A. Culturing the lymphocytes in the absence of mitogen did not affect fatty acid composition or membrane fluidity. The uptake and fate of palmitic, oleic, linoleic and arachidonic acids were studied in detail; there was a time-dependent incorporation of each fatty acid into all lipid classes but each fatty acid had a characteristic fate. Palmitic and arachidonic acids were incorporated principally into phospholipids whereas oleic and linoleic acids were incorporated in similar proportions into phospholipids and triacylglycerols. Oleic acid was incorporated mainly into phosphatidylcholine, palmitic and linoleic acids were incorporated equally into phosphatidylcholine and phosphatidylethanolamine, and arachidonic acid was incorporated mainly into phosphatidylethanolamine. Supplementation of the culture medium with particular fatty acids (myristic, palmitic, stearic, oleic, linoleic, alpha-linolenic, arachidonic, eicosapentaenoic or docosahexaenoic acid) led to enrichment of that fatty acid in both neutral lipids and phospholipids. This generated lymphocytes with phospholipids differing in saturated/unsaturated fatty acid ratio, degree of polyunsaturation, index of unsaturation and n - 6/n - 3 ratio. This method allowed the introduction into lymphocyte phospholipids of fatty acids not normally present (e.g. alpha-linolenic) or usually present in low proportions (eicosapentaenoic and docosahexaenoic). These three n - 3 polyunsaturated fatty

  5. Fatty acid biosynthesis in actinomycetes

    PubMed Central

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  6. Polyunsaturated Fatty Acids in Children

    PubMed Central

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-immune diseases or degenerative neurologic diseases. PUFAs are used for metabolic syndrome related with obesity or diabetes. However, there are several considerations related with intake of PUFAs. Obsession with the intake of unsaturated fatty acids could bring about the shortage of essential fatty acids that are crucial for our body, weaken the immune system, and increase the risk of heart disease, arrhythmia, and stroke. In this review, we discuss types, physiologic mechanism of action of PUFAs, intake of PUFAs for children, recommended intake of PUFAs, and considerations for the intake of PUFAs. PMID:24224148

  7. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  8. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fatty acids. 172.860 Section 172.860 Food and... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  9. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Fatty acids. 172.860 Section 172.860 Food and... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  10. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Fatty acids. 172.860 Section 172.860 Food and... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  11. Conjugated Fatty Acid Synthesis

    PubMed Central

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  12. Omega-3 Fatty Acids during Pregnancy

    MedlinePlus

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your baby gets most ... eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important family of building ...

  13. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  14. Liver Fatty Acid Binding Protein and Obesity

    PubMed Central

    Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15 member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP, or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair-fed a high fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity. PMID:20537520

  15. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  16. Nitrated fatty acids: synthesis and measurement.

    PubMed

    Woodcock, Steven R; Bonacci, Gustavo; Gelhaus, Stacy L; Schopfer, Francisco J

    2013-06-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia/reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis and sample extraction from complex biological matrices and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by liquid chromatography-mass spectrometry. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed.

  17. Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids.

    PubMed

    Lam, Y Y; Hatzinikolas, G; Weir, J M; Janovská, A; McAinch, A J; Game, P; Meikle, P J; Wittert, G A

    2011-01-01

    The study aims to determine the effect of long-chain saturated and polyunsaturated (PUFA) fatty acids, specifically palmitic acid (PA; 16:0), docosahexaenoic acid (DHA; 22:6n-3) and linoleic acid (LA; 18:2n-6), and their interactions with factors from adipose tissue, on insulin sensitivity and lipid metabolism in skeletal muscle. L6 myotubes were cultured with PA, DHA or LA (0.4mmol/l), with or without conditioned media from human subcutaneous (SC) and visceral (IAB) fat. Insulin-stimulated glucose uptake, lipid content, mRNA expression of key genes involved in nutrient utilization and protein expression of inhibitor protein inhibitor kappa B (IκB)-α and mammalian target of rapamycin (mTOR) were measured. PA and IAB fat reduced insulin-stimulated glucose uptake and their combined effect was similar to that of PA alone. PA-induced insulin resistance was ameliorated by inhibiting the de novo synthesis of ceramide, IκBα degradation or mTOR activation. The PA effect was also partially reversed by DHA and completely by LA in the presence of SC fat. PA increased diacylglycerol content, which was reduced by LA and to a greater extent when either IAB or SC fat was also present. PA increased SCD1 whereas DHA and LA increased AMPKα2 mRNA. In the presence of SC or IAB fat, the combination of PA with either DHA or LA decreased SCD1 and increased AMPKα2 mRNA. PA-induced insulin resistance in skeletal muscle involves inflammatory (nuclear factor kappa B/mTOR) and nutrient (ceramide) pathways. PUFAs promote pathways, at a transcriptional level, that increase fat oxidation and synergize with factors from SC fat to abrogate PA-induced insulin resistance. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Fatty acid composition of selected prosthecate bacteria.

    PubMed

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  19. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  20. Fatty acid composition of frequently consumed foods in Turkey with special emphasis on trans fatty acids.

    PubMed

    Karabulut, Ihsan

    2007-12-01

    Fatty acid compositions of frequently consumed foods in Turkey were analyzed by capillary gas chromatography with particular emphasis on trans fatty acids. The survey was carried out on 134 samples that were categorized as meat products, chocolates, bakery products and others. The meat products except chicken-based foods have trans fatty acids, arising as a result of ruminant activity, with an average content of 1.45 g/100 g fatty acids. The conjugated linoleic acid content of meat and chicken doner kebabs were found higher than other meat products. Chocolate samples contained trans fatty acids less than 0.17 g/100 g fatty acids, with the exceptional national product of chocolate bars and hazelnut cocoa cream (2.03 and 3.68 g/100 g fatty acids, respectively). Bakery products have the highest trans fatty acid contents and ranged from 0.99 to 17.77 g/100 g fatty acids. The average trans fatty acid contents of infant formula and ice-cream, which are milk-based products, were 0.79 and 1.50 g/100 g fatty acids, respectively. Among the analyzed foods, it was found that coffee whitener and powdered whipped topping had the highest saturated fatty acid contents, with an average content of 98.71 g/100 g fatty acids.

  1. Omega-3 polyunsaturated fatty acids.

    PubMed

    Hull, Mark A

    2011-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are naturally occurring omega (ω)-3 long-chain polyunsaturated fatty acids (PUFAs), which are found in highest quantities in oily fish such as sardines and mackerel. Epidemiological studies of the association between fish intake, ω-3 PUFA intake or blood ω-3 PUFA levels and colorectal cancer (CRC) risk have not consistently suggested beneficial effects of ω-3 PUFAs on CRC (and other gastrointestinal cancer) risk. However, dietary administration of one or both of the main ω-3 PUFAs in rodent models of colorectal carcinogenesis has been demonstrated to reduce colorectal tumour size and multiplicity, compatible with CRC chemopreventative activity. EPA has now been demonstrated to reduce rectal polyp number and size in patients with familial adenomatous polyposis. A randomized polyp prevention trial of EPA is underway in order to test chemopreventative efficacy against 'sporadic' colorectal neoplasia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Amino Acid Uptake in Arbuscular Mycorrhizal Plants

    PubMed Central

    Whiteside, Matthew D.; Garcia, Maria O.; Treseder, Kathleen K.

    2012-01-01

    We examined the extent to which arbuscular mycorrhizal (AM) fungi root improved the acquisition of simple organic nitrogen (ON) compounds by their host plants. In a greenhouse-based study, we used quantum dots (fluorescent nanoparticles) to assess uptake of each of the 20 proteinaceous amino acids by AM-colonized versus uncolonized plants. We found that AM colonization increased uptake of phenylalanine, lysine, asparagine, arginine, histidine, methionine, tryptophan, and cysteine; and reduced uptake of aspartic acid. Arbuscular mycorrhizal colonization had the greatest effect on uptake of amino acids that are relatively rare in proteins. In addition, AM fungi facilitated uptake of neutral and positively-charged amino acids more than negatively-charged amino acids. Overall, the AM fungi used in this study appeared to improve access by plants to a number of amino acids, but not necessarily those that are common or negatively-charged. PMID:23094070

  3. Omega-3 fatty acids and neuropsychiatric disorders.

    PubMed

    Young, Genevieve; Conquer, Julie

    2005-01-01

    Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.

  4. Saturated Fatty Acid Requirer of Neurospora crassa

    PubMed Central

    Henry, Susan A.; Keith, Alec D.

    1971-01-01

    Dietary saturated fatty acids containing 12- to 18-carbon atoms satisfy growth requirements of Neurospora crassa mutant cel (previously named ol; Perkins et al., reference 11); unsaturated fatty acids are synthesized by direct desaturation when an appropriate saturate is available. Odd-chain saturates, 15 carbons and 17 carbons long, satisfy the requirement, and elaidic acid (18:1 Δ9trans) results in slow growth. Oleic acid and other cis-unsaturated fatty acids do not satisfy growth requirements; however, oleic acid plus elaidic acid result in growth at a faster rate than elaidate alone. The use of a spin-label fatty acid reveals that hyphae produced by cel during a slow basal level of growth have lipids that reflect a relatively rigid state of viscosity compared to wild type. cel Supplemented with fatty acids and wild type supplemented in the same way have lipids of the same viscosities as reflected by electron spin resonance. PMID:4323964

  5. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  6. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  7. Exogenous fatty acid metabolism in bacteria.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Fatty acid profile of kenaf seed oil

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  9. The linoleic acid and trans fatty acids of margarines.

    PubMed

    Beare-Rogers, J L; Gray, L M; Hollywood, R

    1979-09-01

    Fifty brands of margarine were analysed for cis-polyunsaturated acids by lipoxidase, for trans fatty acid by infared spectroscopy, and for fatty acid composition by gas-liquid chromatography. High concentrations of trans fatty acids tended to be associated with low concentrations of linoleic acid. Later analyses on eight of the brands, respresenting various proportions of linoleic to trans fatty acids, indicated that two of them contained still higher levels of trans fatty acids (greater than 60%) and negligible amounts of linoleic acid. It is proposed that margarine could be a vehicle for the distribution of some dietary linoleic acid and that the level of linoleic acid and the summation of the saturated plus trans fatty acids be known to ascertain nutritional characteristics.

  10. Facilitated Long Chain Fatty Acid Uptake by Adipocytes Remains Upregulated Relative to BMI for More Than a Year After Major Bariatric Surgical Weight Loss*

    PubMed Central

    Ge, Fengxia; Walewski, José L; Torghabeh, Mehyar Hefazi; Lobdell, Harrison; Hu, Chunguang; Zhou, Shengli; Dakin, Greg; Pomp, Alfons; Bessler, Marc; Schrope, Beth; Ude-Welcome, Aku; Inabnet, William B; Feng, Tianshu; Carras-Terzian, Elektra; Anglade, Dieunine; Ebel, Faith E.; Berk, Paul D.

    2015-01-01

    Objective This study examined whether changes in adipocyte LCFA uptake kinetics explain the weight regain increasingly observed post bariatric surgery. Design Three groups (10 patients each) were studied: patients who were not obese (NO: BMI 24.2±2.3 kg/m2); patients with obesity (O: BMI 49.8±11.9); and patients classified as super obese (SO: BMI 62.6±2.8). NO patients underwent omental & subcutaneous fat biopsies during clinically indicated abdominal surgeries; O were biopsied during bariatric surgery, and SO during both a sleeve gastrectomy and at another bariatric operation 16±2 months later, after losing 113±13 lbs. Adipocyte sizes & [3H]-LCFA uptake kinetics were determined in all biopsies. Results Vmax for facilitated LCFA uptake by omental adipocytes increased exponentially from 5.1±0.95 to 21.3±3.20 to 68.7±9.45 pmol/sec/50,000 cells in NO, O, and SO patients, respectively, correlating with BMI (r = 0.99, p < 0.001). Subcutaneous results were virtually identical. By the 2nd operation, the mean BMI (SO patients) fell significantly (p<0.01) to 44.4±2.4 kg/m2, similar to the O group. However, Vmax (40.6±11.5) in this weight-reduced group remained ~2X that predicted from the BMI:Vmax regression among NO, O, & SO patients. Conclusions Facilitated adipocyte LCFA uptake remains significantly up-regulated ≥1 year after bariatric surgery, possibly contributing to weight re-gain. PMID:26584686

  11. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    ]oleate utilization were greater, relative to FABP concentrations, than in 60-d-old animals. The sex differences that characterize fatty acid utilization in adult rat hepatocytes are not present in cells from immature animals, and reflect in part the influence of sex steroids. It remains to be determined whether the observed relationship of hepatic FABP concentration to [14C]oleate utilization in adult cells is causal or secondary to changes in cellular fatty acid uptake effected through another mechanism. In either case, modulation of triglyceride-rich lipoprotein production by six steroids appears to be mediated to a significant extent by their effects on hepatic fatty acid utilization. PMID:7364935

  12. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are derived...

  13. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are derived...

  14. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are derived...

  15. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis and...

  16. Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes.

    PubMed Central

    Yu, N; Martin, J L; Stella, N; Magistretti, P J

    1993-01-01

    Arachidonic acid (AA) has recently been shown to influence various cellular functions in the central nervous system. Here we report that AA increases, in a time- and concentration-dependent manner, 2-deoxy-D-[1-3H]glucose ([3H]2DG) uptake in primary cultures of astrocytes prepared from the cerebral cortex of neonatal mice. This effect is mimicked by an unsaturated fatty acid such as linolenic acid, while palmitic and arachidic acids, two saturated fatty acids, are inactive. Pharmacological agents that increase the endogenous levels of AA by stimulating AA release (melittin) or by inhibiting its reacylation (thimerosal) also promote [3H]2DG uptake by astrocytes. We also report that norepinephrine (NE) stimulates the release of [3H]AA from membrane phospholipids, with an EC50 of 3 microM; this effect is accompanied, with a temporal delay of approximately 4 min, by the stimulation of [3H]2DG uptake, for which the EC50 of NE is 1 microM. Since the cerebral cortex, the brain region from which astrocytes used in this study were prepared, receives a massive noradrenergic innervation, originating from the locus coeruleus, the effects of NE reported here further stress the notion that certain neurotransmitters may play a role in the regulation of energy metabolism in the cerebral cortex and point at astrocytes as the likely targets of such metabolic effects. PMID:8483920

  17. Fatty Acids as Therapeutic Auxiliaries for Oral and Parenteral Formulations

    PubMed Central

    Hackett, Michael J.; Zaro, Jennica L.; Shen, Wei-Chiang; Guley, Patrick C.; Cho, Moo J.

    2012-01-01

    Many drugs have decreased therapeutic activity due to issues with absorption, distribution, metabolism and excretion. The co-formulation or covalent attachment of drugs with fatty acids has demonstrated some capacity to overcome these issues by improving intestinal permeability, slowing clearance and binding serum proteins for selective tissue uptake and metabolism. For orally administered drugs, albeit at low level of availability, the presence of fatty acids and triglycerides in the intestinal lumen may promote intestinal uptake of small hydrophilic molecules. Small lipophilic drugs or acylated hydrophilic drugs also show increased lymphatic uptake and enhanced passive diffusional uptake. Fatty acid conjugation of small and large proteins or peptides have exhibited protracted plasma half-lives, site-specific delivery and sustained release upon parenteral administration. These improvements are most likely due to associations with lipid-binding serum proteins, namely albumin, LDL and HDL. These molecular interactions, although not fully characterized, could provide the ability of using the endogenous carrier systems for improving therapeutic outcomes. PMID:22921839

  18. Antibacterial Targets in Fatty Acid Biosynthesis

    PubMed Central

    Wright, H. Tonie; Reynolds, Kevin A.

    2008-01-01

    Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686

  19. Antibacterial targets in fatty acid biosynthesis.

    PubMed

    Wright, H Tonie; Reynolds, Kevin A

    2007-10-01

    The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for the development of new antibacterial agents. The extended use of the antituberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for antibacterial development. Differences in subcellular organization of the bacterial and eukaryotic multienzyme fatty acid synthase systems offer the prospect of inhibitors with host versus target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalog of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes.

  20. Cellular Effects of Perfluorinated Fatty Acids.

    DTIC Science & Technology

    1985-01-01

    TCDD appeared to interfere with fatty acid metabolism leading to an increase in unsaturation. Furthermore, Andersen et al. (2) proposed that such an...increase in cellular unsaturated fatty acids may lead-to excessive membrane fluidity (as indicated by induced changes in red blood cell fragility) and...TASK WORK UNITELEMENT NO. NO. NO. NO. 11. TITLE (include Security Claificati on) ~/~. Cellular Effects of Perfluorinated Fatty Ac ds 12. PERSONAL

  1. [Effect of Gram-negative bacteria on fatty acids].

    PubMed

    Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J

    1981-01-01

    The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.

  2. Physiological activities of hydroxyl fatty acids

    USDA-ARS?s Scientific Manuscript database

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  3. Fatty acids in an estuarine mangrove ecosystem.

    PubMed

    Alikunhi, Nabeel M; Narayanasamy, Rajendran; Kandasamy, Kathiresan

    2010-06-01

    Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus), prawns (Metapenaeus monoceros and Macrobrachium rosenbergii) and finfish (Mugil cephalus), that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of monounsaturated fatty acids. The branched fatty acids are absent in undecomposed mangrove leaves, but present significantly in the decomposed leaves and in prawns and finfish, representing an important source for them. This revealed that the microbes are dominant producers that contribute significantly to the fishes and prawns in the mangrove ecosystem. This work has proved the fatty acid biomarkers as an effective tool for identifying the trophic interactions among dominant producers and consumers in this mangrove.

  4. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  5. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  6. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.860 Fatty acids...

  7. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  8. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    PubMed

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  9. Consequences of Essential Fatty Acids

    PubMed Central

    Lands, Bill

    2012-01-01

    Essential fatty acids (EFA) are nutrients that form an amazingly large array of bioactive mediators that act on a large family of selective receptors. Nearly every cell and tissue in the human body expresses at least one of these receptors, allowing EFA-based signaling to influence nearly every aspect of human physiology. In this way, the health consequences of specific gene-environment interactions with these nutrients are more extensive than often recognized. The metabolic transformations have similar competitive dynamics for the n-3 and n-6 homologs when converting dietary EFA from the external environment of foods into the highly unsaturated fatty acid (HUFA) esters that accumulate in the internal environment of cells and tissues. In contrast, the formation and action of bioactive mediators during tissue responses to stimuli tend to selectively create more intense consequences for n-6 than n-3 homologs. Both n-3 and n-6 nutrients have beneficial actions, but many common health disorders are undesired consequences of excessive actions of tissue n-6 HUFA which are preventable. This review considers the possibility of preventing imbalances in dietary n-3 and n-6 nutrients with informed voluntary food choices. That action may prevent the unintended consequences that come from eating imbalanced diets which support excessive chronic actions of n-6 mediators that harm human health. The consequences from preventing n-3 and n-6 nutrient imbalances on a nationwide scale may be very large, and they need careful evaluation and implementation to avoid further harmful consequences for the national economy. PMID:23112921

  10. Omega-3 fatty acids and anorexia.

    PubMed

    Goncalves, Carolina G; Ramos, Eduardo J B; Suzuki, Susumu; Meguid, Michael M

    2005-07-01

    To review the mechanisms of action of omega-3 fatty acids and their role in the brain, as well as their therapeutic implications in anorexia. Recent studies have demonstrated that omega-3 fatty acids modulate changes in the concentrations and actions of several orexigenic and anorexigenic neuropeptides in the brain, including neuropeptide Y, alpha-melanocyte stimulating hormone and the neurotransmitters serotonin and dopamine. In patients with acute and chronic inflammatory conditions, low tissue concentrations of omega-3 fatty acids and high concentrations of proinflammatory cytokines are found, in association with anorexia and decreased food intake. The data suggest that omega-3 fatty acid supplementation suppresses proinflammatory cytokine production and improves food intake by normalizing hypothalamic orexigenic peptides and neurotransmitters. Based on current data, omega-3 fatty acid supplementation has a role in the treatment of anorexia by stimulating the production and release of orexigenic neurotransmitters in food intake regulatory nuclei in the hypothalamus.

  11. Relative irritancy of free fatty acids of different chain length.

    PubMed

    Stillman, M A; Maibach, H I; Shalita, A R

    1975-01-01

    Free fatty acids of human skin surface lipids have previously been implicated in the pathogenesis of acne vulgaris because of their apparent irritant and comedogenic properties. Prior studies on the relative irritancy of free fatty acids revealed the saturated C8 to C14 fatty acids and a C18 dienoic unsaturated fatty acid (linoleic) to be most irritating. Saturated free fatty acids from C3 to C18, and unsaturated C18 free fatty acids were applied daily under occlusive patch tests to human skin until detectable erythema appeared. The most irritating fatty acids were C8 through C12. Of the unsaturated fatty acids tested, only linoleic acid produced irritation.

  12. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  13. Inhibited muscle amino acid uptake in sepsis.

    PubMed Central

    Hasselgren, P O; James, J H; Fischer, J E

    1986-01-01

    Amino acid uptake in vivo was determined in soleus (SOL) muscle, diaphragm, heart, and liver following intravenous injection of [3H]-alpha-amino-isobutyric acid ([3H]-AIB) in rats made septic by cecal ligation and puncture (CLP) and in sham-operated controls. Muscle amino acid transport was also measured in vitro by determining uptake of [3H]-AIB in incubated extensor digitorum longus (EDL) and SOL muscles. Results were expressed as distribution ratio between [3H]-AIB in intracellular and extracellular fluid. AIB uptake in vivo was reduced by 90% in SOL and cardiac muscle and by 45% in diaphragm 16 hours after CLP. In contrast, AIB uptake by liver was almost four times higher in septic than in control animals. AIB uptake in vitro was reduced by 18% in EDL 8 hours after CLP but was not significantly altered in SOL at the same time point. Sixteen hours after CLP, AIB uptake was significantly reduced in both muscles, i.e., by 17% in EDL and by 65% in SOL. When muscles from untreated rats were incubated in the presence of plasma from septic animals (16 hours CLP) or from animals injected with endotoxin (2 mg/kg body weight), AIB uptake was reduced. Addition of endotoxin in vitro (2-200 micrograms/ml) to incubated muscles did not affect AIB uptake. The results suggest that sepsis leads to marked impairment of amino acid transport system A in muscle and that this impairment is mediated by a circulating factor that is not endotoxin. Reduced uptake of amino acids by skeletal muscle during sepsis may divert amino acids to the liver for increased gluconeogenesis and protein synthesis. PMID:3963895

  14. [Omega-3 fatty acids and cognition].

    PubMed

    Hashimoto, Michio

    2014-04-01

    Docosahexaenoic acid, the most abundant omega3 fatty acid in the brain, plays a role in cognitive development, learning ability, neuronal membrane plasticity, synaptogenesis, and neurogenesis, all of which are involved in synaptic transmission and the well-being of normal brain functions, and search on the functionality is still in progress. Establishment of prevention and treatment of neuropsychiatric illnesses, such as dementia is not easy, but from numerous basic and epidemiological studies, increase of omega3 fatty acid dietary intake is reported likely to prevent the onset of dementia. This paper is outlined the relevance of cognitive function and omega3 fatty acids, especially docosahexaenoic acid, and the possibility of preventive effect of the fatty acid on dementia.

  15. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.

  16. Omega-3 fatty acids and cardiovascular disease.

    PubMed

    Jain, A P; Aggarwal, K K; Zhang, P-Y

    2015-01-01

    Cardioceuticals are nutritional supplements that contain all the essential nutrients including vitamins, minerals, omega-3-fatty acids and other antioxidants like a-lipoic acid and coenzyme Q10 in the right proportion that provide all round protection to the heart by reducing the most common risks associated with the cardiovascular disease including high low-density lipoprotein cholesterol and triglyceride levels and factors that contribute to coagulation of blood. Omega-3 fatty acids have been shown to significantly reduce the risk for sudden death caused by cardiac arrhythmias and all-cause mortality in patients with known coronary heart disease. Omega-3 fatty acids are also used to treat hyperlipidemia and hypertension. There are no significant drug interactions with omega-3 fatty acids. The American Heart Association recommends consumption of two servings of fish per week for persons with no history of coronary heart disease and at least one serving of fish daily for those with known coronary heart disease. Approximately 1 g/day of eicosapentaenoic acid plus docosahexaenoic acid is recommended for cardio protection. Higher dosages of omega-3 fatty acids are required to reduce elevated triglyceride levels (2-4 g/day). Modest decreases in blood pressure occur with significantly higher dosages of omega-3 fatty acids.

  17. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  18. Omega-3 fatty acids for cystic fibrosis.

    PubMed

    Oliver, Colleen; Jahnke, Nikki

    2011-08-10

    Studies suggest that a diet rich in omega-3 essential fatty acids may have beneficial anti-inflammatory effects for chronic conditions such as cystic fibrosis. To determine whether there is evidence that omega-3 polyunsaturated fatty acid supplementation reduces morbidity and mortality and to identify any adverse events associated with supplementation. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Authors and persons interested in the subject of the review were contacted.Date of last search: 10 March 2011. Randomised controlled trials in people with cystic fibrosis comparing omega-3 fatty acid supplements with placebo. Two authors independently selected studies for inclusion, extracted data and assessed the risk of bias of the studies. The searches identified 13 studies; four studies with 91 participants were included. Two studies compared omega-3 fatty acids to olive oil for six weeks. One study compared a liquid dietary supplement containing omega-3 fatty acids to one without for six months. One study compared omega-3 fatty acids and omega-6 fatty acids to a control (capsules with customised fatty acid blends) for three months. Only one short-term study (19 participants) comparing omega-3 to placebo reported a significant improvement in lung function and Shwachman score and a reduction in sputum volume in the omega-3 group. Another study (43 participants) demonstrated a significant increase in serum phospholipid essential fatty acid content and a significant drop in the n-6/n-3 fatty acid ratio following omega-3 fatty acid supplementation compared to control. The longer-term study (17 participants) demonstrated a significant increase in essential fatty acid content in neutrophil membranes and a significant decrease in the leukotriene B4 to leukotriene B5 ratio

  19. PPARs: fatty acid sensors controlling metabolism.

    PubMed

    Poulsen, Lars la Cour; Siersbæk, Majken; Mandrup, Susanne

    2012-08-01

    The peroxisome proliferator activated receptors (PPARs) are nuclear receptors that play key roles in the regulation of lipid metabolism, inflammation, cellular growth, and differentiation. The receptors bind and are activated by a broad range of fatty acids and fatty acid derivatives and they thereby serve as major transcriptional sensors of fatty acids. Here we review the function, regulation, and mechanism of the different PPAR subtypes with special emphasis on their role in the regulation of lipid metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Omega-3 Fatty Acid supplementation during pregnancy.

    PubMed

    Greenberg, James A; Bell, Stacey J; Ausdal, Wendy Van

    2008-01-01

    Omega-3 fatty acids are essential and can only be obtained from the diet. The requirements during pregnancy have not been established, but likely exceed that of a nonpregnant state. Omega-3 fatty acids are critical for fetal neurodevelopment and may be important for the timing of gestation and birth weight as well. Most pregnant women likely do not get enough omega-3 fatty acids because the major dietary source, seafood, is restricted to 2 servings a week. For pregnant women to obtain adequate omega-3 fatty acids, a variety of sources should be consumed: vegetable oils, 2 low-mercury fish servings a week, and supplements (fish oil or algae-based docosahexaenoic acid).

  1. New insights into the molecular mechanism of intestinal fatty acid absorption

    PubMed Central

    Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.

    2013-01-01

    Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389

  2. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactylic esters of fatty acids. 172.848 Section... § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food in accordance with the following prescribed conditions: (a) They are prepared from lactic acid and fatty acids...

  3. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR-/- mice by suppressing fatty acid desaturases.

    PubMed

    Njoroge, Sarah W; Laposata, Michael; Boyd, Kelli L; Seegmiller, Adam C

    2015-01-01

    Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to overexpression of fatty acid desaturases that can be reversed by supplementation with the long-chain polyunsaturated fatty acids docosahexaenoate and eicosapentaenoate. However, these findings have not been tested in vivo. The current study aimed to test these results in an in vivo model system, the CFTR(-/-) knockout mouse. When compared with wild-type mice, the knockout mice exhibited fatty acid abnormalities similar to those seen in cystic fibrosis patients and other model systems. The abnormalities were confined to lung, ileum and pancreas, tissues that are affected by the disease. Similar to in vitro models, these fatty acid changes correlated with increased expression of Δ5- and Δ6-desaturases and elongase 5. Dietary supplementation with high-dose free docosahexaenoate or a combination of lower-dose docosahexaenoate and eicosapentaenoate in triglyceride form corrected the fatty acid abnormalities and reduced expression of the desaturase and elongase genes in the ileum and liver of knockout mice. Only the high-dose docosahexaenoate reduced histologic evidence of disease, reducing mucus accumulation in ileal sections. These results provide in vivo support for the hypothesis that fatty acid abnormalities in cystic fibrosis result from abnormal expression and activity of metabolic enzymes in affected cell types. They further demonstrate that these changes can be reversed by dietary n-3 fatty acid supplementation, highlighting the potential therapeutic benefit for cystic fibrosis patients.

  4. Saturated Fatty Acid Mutant of Saccharomyces cerevisiae with an Intact Fatty Acid Synthetase

    PubMed Central

    Meyer, Karl H.; Schweizer, Eckhart

    1974-01-01

    A Saccharomyces cerevisiae conditional mutant, LK 181, is described which grows at 37 C only when supplemented with a saturated fatty acid of 12 to 14 carbon atoms chain length. At 22 C, however, no fatty acid supplementation is required for growth. The fatty acid concentration required for optimal growth at 37 C is about four times lower for LK 181 than for fatty acid synthetase-deficient mutants. In contrast to all fatty acid synthetase mutants so far examined, mutant LK 181 cannot grow with palmitic acid. The addition of palmitic, palmitoleic, or oleic acid to the culture medium prevents LK 181 growth at temperatures between 22 and 37 C. In vivo as well as in vitro, cellular de novo fatty acid biosynthesis from acetate is unimpaired in this mutant. It is suggested that endogenously synthesized fatty acids, due to their chain lengths of 16 and more carbon atoms, cannot supplement the mutant LK 181. It is concluded that the exogeneously supplied fatty acids act as allosteric effectors for a mutationally altered cellular protein to restore its biological function at elevated temperatures, rather than as a substitute for endogenously synthesized long-chain fatty acids. PMID:4590462

  5. Antisense technologies targeting fatty acid synthetic enzymes.

    PubMed

    Lin, Jinshun; Liu, Feng; Jiang, Yuyang

    2012-05-01

    Fatty acid synthesis is a coordinated process involving multiple enzymes. Overexpression of some of these enzymes plays important roles in tumor growth and development. Therefore, these enzymes are attractive targets for cancer therapies. Antisense agents provide highly specific inhibition of the expression of target genes and thus have served as powerful tools for gene functional studies and potential therapeutic agents for cancers. This article reviews different types of antisense agents and their applications in the modulation of fatty acid synthesis. Patents of antisense agents targeting fatty acid synthetic enzymes are introduced. In addition, miR-122 has been shown to regulate the expression of fatty acid synthetic enzymes, and thus antisense agent patents that inhibit miR-122 expression are also discussed.

  6. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects.

  7. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-12-02

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained.

  8. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... of fatty acids. The food additive salts of fatty acids may be safely used in food and in the... salts of the fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty acids...

  9. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs.

  10. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  11. [Elimination of all trans fatty acids].

    PubMed

    Katan, M B

    2008-02-09

    At the start of the 20th century, the production of trans fatty acids was originally largely driven by the increasing demand for margarine. The two Dutch margarine firms Van den Bergh and Jurgens played an important role in this early development. In the early 1990s it was shown that trans fatty acids increase the risk of heart disease. Unilever, the successor to Van den Bergh and Jurgens, then took the lead in eliminating trans fatty acids from retail foods worldwide. As a result, intake in The Netherlands fell from 15 g per day in 1980 to 3 g per day in 2003. Dairy products and meat are now the major source of trans fatty acids. The effects on health of these ruminant trans fatty acids are unclear. There are three lessons to be learned from the rise and fall of trans fatty acids. First, a history of safe use does not guarantee safety of food components, because routine surveillance will fail to detect adverse effects on common illnesses with long incubation periods. Second, it shows that it is more effective and easier to change the composition of foods than to change consumer behaviour. And third, governments can have a major impact on consumers' health by mandating the use of healthier food ingredients.

  12. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... Sucrose fatty acid esters. Sucrose fatty acid esters identified in this section may be safely used in accordance with the following prescribed conditions: (a) Sucrose fatty acid esters are the mono-, di-, and...

  13. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these substances...

  14. [Biology of essential fatty acids (EFA)].

    PubMed

    Dobryniewski, Jacek; Szajda, Sławomir Dariusz; Waszkiewicz, Napoleon; Zwierz, Krzysztof

    2007-01-01

    Essential Fatty Acids (EFA), are unsaturated fatty acids not produced by human being, but essential for proper functioning of the human body. To EFA-s belongs: linoleic acid (LA) (18:2,cis detla(9,12), omega6)--precursor o f gamma-linolenic acid (GLA), gamma-linolenic acid (GLA) (18:3,cisA6,9,12, )6) and alpha-linolenic acid (ALA)(18:3,cisdelta(9, 12, 15), omega3)--product of dehydrogenation of linoleic acid (LA). Most important EFA is gamma-linolenic acid (GLA)--18 carbons, one-carboxylic, non-branched fatty acid with 3 double cis-bonds (the last is situated by 6-th carbon from methylic end). The diet devoided of EFA leads to decreased growth, skin and kidney injury and infertility. Modern research of GLA and others EFA's is concerned mainly on therapeutic impact on the inflammatory process. The biogenic amines, cytokines, prostaglandins, tromboxanes and leukotrienes are the main inflammatory mediators. The last three are described with the common name eicosanoides (eico-twenty). Eicosanoides are synthesized from 20-carbon unsaturated fatty acids: dihomo-gamma-linoleic (DGLA) (20:3, cis delta(8,11,14), omega6), arachidonic acid (AA-20:4, cis delta(5,8,11,14), omega6), and eicosapentaenoic acid (EPA-20:5, cis delta(5,8,11,14,17, omega3). Derivatives of gamma and gamma-linolenic acids regulate the inflammatory process, through their opposed activity. PG2, leucotrien C4 and tromboxan A2 have the strongest proinflammatory action. Derivatives of alpha-linolenic acid 15-HETE and prostaglandin E1 (PGE1) have weak pro-inflammatory action, or even anti-inflammatory (PGE1), and additionally, they inhibit the transformation of arachidonic acid (AA) to leukotriens. delta6-desaturase (transformes linolenic acid into gamma-linolenic acid by making additional double bond) is the slowest step of the fatty acid metabolism. It's activity is impaired by many physiological and pathologic factors and leads to gamma-linolenic acid (GLA) deficiency. The gamma-linolenic acid

  15. Omega 3 fatty acids and the eye.

    PubMed

    Cakiner-Egilmez, Tulay

    2008-01-01

    The health benefits of fish oil have been known for decades. Most of the health benefits of fish oil can be attributed to the presence of omega-3 essential fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Clinical studies have suggested that DHA and EPA lower triglycerides; slow the buildup of atherosclerotic plaques; lower blood pressure slightly; as well as reduce the risk of death, heart attack, and arrhythmias. Studies have also shown that omega-3 fatty acids may slow the progression of vision loss from AMD and reverse the signs of dry eye syndrome.

  16. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  17. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    PubMed

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  18. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    SciTech Connect

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  19. Control of bovine hepatic fatty acid oxidation

    SciTech Connect

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-(/sup 14/C)palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C)acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO/sup 2/ and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 ..mu..M). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 ..mu..M and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine.

  20. Omega-3 fatty acids and athletics.

    PubMed

    Simopoulos, Artemis P

    2007-07-01

    Human beings evolved consuming a diet that contained about equal amounts of y-6 and y-3 essential fatty acids. Today, in Western diets, the ratio of y-6 to y-3 fatty acids ranges from approximately 10:1 to 20:1 instead of the traditional range of 1:1 to 2:1. Studies indicate that a high intake of y-6 fatty acids shifts the physiologic state to one that is prothrombotic and proaggregatory, characterized by increases in blood viscosity, vasospasm, and vasoconstriction, and decreases in bleeding time. y-3 fatty acids, however, have anti-inflammatory, antithrombotic, antiarrhythmic, hypolipidemic, and vasodilatory properties. Excessive radical formation and trauma during high-intensity exercise leads to an inflammatory state that is made worse by the increased amount of y-6 fatty acids in Western diets, although this can be counteracted by eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). For the majority of athletes, especially those at the leisure level, general guidelines should include EPA and DHA of about 1 to 2 g/d at a ratio of EPA:DHA of 2:1.

  1. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). 721.10629 Section 721.10629 Protection... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a...

  2. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). 721.10629 Section 721.10629 Protection... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a...

  3. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  4. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  5. The Association of Fatty Acids With Breast Cancer.

    DTIC Science & Technology

    1995-08-09

    Experimental studies have shown that omega-6 fatty acids enhance and omega - 3 fatty acids suppress oncogenesis. Correlational studies also indicate...that breast cancer incidence is positively linked to omega-6 consumption but is negatively related to intake of omega - 3 fatty acids, derived mainly from...arachidonic acid), and omega - 3 fatty acids (20:5n3, eicosapentaenoic acid; 22:6n-3, docosahexaenoic acid) were similar in cases and controls

  6. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  7. Mitochondrial fatty acid synthesis and respiration.

    PubMed

    Hiltunen, J Kalervo; Autio, Kaija J; Schonauer, Melissa S; Kursu, V A Samuli; Dieckmann, Carol L; Kastaniotis, Alexander J

    2010-01-01

    Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.

  8. Omega 3 fatty acids in the elderly.

    PubMed

    Ubeda, Natalia; Achón, María; Varela-Moreiras, Gregorio

    2012-06-01

    Population ageing affects the entire world population. Also at world level one can observe a sharp increase in the proportion of older people. The challenge posed by population ageing translates into ensuring that the extra years of life will be as good as possible, free from high-cost dependency. Omega-3 fatty acids are now generally recognized as potential key nutrients to prevent the pathological conditions associated to the aging process. Ageing physiological process, its association with quality of life and the impact of omega-3 fatty acids intake and/or status is the focus of the present review. This report deals with the effects of omega-3 fatty acids on normal aging of older adults ( ≥ 65 years) mainly on the effects such as nutritional status itself, cognition, bone health, muscle tonus, and general health status. The preliminary broad search of the literature on the effects of omega-3 fatty acids on normal aging yielded 685 citations. Forty two full text papers were checked for inclusion and thirty six studies were finally included in this review. It may be concluded that paradoxically even though the elderly population is the largest one, the number of studies and the methodology employed clearly lacks of sufficient evidence to establish definite conclusions on the effects of omega-3 fatty acids on aging metabolism without pathological conditions and on quality of life.

  9. Fluorescing fatty acids in rat fatty liver models.

    PubMed

    Croce, Anna C; Ferrigno, Andrea; Di Pasqua, Laura G; Berardo, Clarissa; Mannucci, Barbara; Bottiroli, Giovanni; Vairetti, Mariapia

    2017-06-01

    The autofluorescence (AF) of NAD(P)H and flavins has been at the basis of many in-situ studies of liver energy metabolism and functionality. Conversely, few data have been so far reported on fluorescing lipids. In this work we investigated the AF of liver lipid extracts from two fatty liver models, Wistar rats fed with MCD diet for 12 days (Wi-MCD), and obese (fa/fa) Zucker rats. Among the most abundant fatty acids in the lipid extracts, indicated by mass spectrometry, arachidonic acid (AA) exhibited higher quantum yield than the other fluorescing fatty acids (FLFA), and red shifted AF spectrum. This allowed to estimate the AA contribution to the overall emission of lipid extracts by curve fitting analysis. AA prevailed in obese Zucker livers, accounting for the different AF spectral profiles between the two models. AF and mass spectrometry indicated also a different balance between the fluorescing fraction and the overall amount of AA in the two models. The ability of AF to detect directly AA and FLFA was demonstrated, suggesting its supportive role as tool in wide-ranging applications, from the control of animal origin food, to experimental investigations on liver fat accumulation, lipotoxicity and disease progression, with potential translation to the clinics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  11. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris [Portola Valley, CA; Broun, Pierre [Burlingame, CA; van de Loo, Frank [Weston, AU; Boddupalli, Sekhar S [Manchester, MI

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  12. Fatty Acid Oxidation in Cardiac and Skeletal Muscle Mitochondria is Unaffected by Deletion of CD36

    PubMed Central

    King, Kristen L.; Stanley, William C.; Rosca, Mariana; Kerner, Janos; Hoppel, Charles L.; Febbraio, Maria

    2009-01-01

    Recent studies found that the plasma membrane fatty acid transport protein CD36 also resides in mitochondrial membranes in cardiac and skeletal muscle. Pharmacological studies suggest that CD36 may play an essential role in mitochondrial fatty acid oxidation. We isolated cardiac and skeletal muscle mitochondria from wild type and CD36 knock-out mice. There were no differences between wild type and CD36 knock-out mice in mitochondrial respiration with palmitoyl-CoA, palmitoyl-carnitine or glutamate as substrate. We investigated a potential alternative role for CD36 in mitochondria, ie. the export of fatty acids generated in the matrix. Palmitate export was not different between wild type and CD36 knock out mice. Taken together, CD36 does not appear to play an essential role in mitochondrial uptake of fatty acids or export of fatty acid anions. PMID:17904092

  13. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  14. Omega-3 fatty acids for cystic fibrosis.

    PubMed

    Oliver, Colleen; Watson, Helen

    2016-01-05

    Studies suggest that a diet rich in omega-3 essential fatty acids may have beneficial anti-inflammatory effects for chronic conditions such as cystic fibrosis. This is an updated version of a previously published review. To determine whether there is evidence that omega-3 polyunsaturated fatty acid supplementation reduces morbidity and mortality and to identify any adverse events associated with supplementation. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Authors and persons interested in the subject of the review were contacted.Date of last search: 13 August 2013. Randomised controlled trials in people with cystic fibrosis comparing omega-3 fatty acid supplements with placebo. Two authors independently selected studies for inclusion, extracted data and assessed the risk of bias of the studies. The searches identified 15 studies; four studies with 91 participants (children and adults) were included; duration of studies ranged from six weeks to six months. Two studies were judged to be at low risk of bias based on adequate randomisation but this was unclear in the other two studies. Three of the studies adequately blinded patients, however, the risk of bias was unclear in all studies with regards to allocation concealment and selective reporting.Two studies compared omega-3 fatty acids to olive oil for six weeks. One study compared a liquid dietary supplement containing omega-3 fatty acids to one without for six months. One study compared omega-3 fatty acids and omega-6 fatty acids to a control (capsules with customised fatty acid blends) for three months. Only one short-term study (19 participants) comparing omega-3 to placebo reported a significant improvement in lung function and Shwachman score and a reduction in sputum volume in the omega-3 group. Another

  15. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  16. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  17. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    PubMed Central

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  18. [Recent biochemical nutrition knowledge in relation to metabolism and the significance of essential fatty acids and n-3-fatty acids contained in fish].

    PubMed

    Kolb, E

    1989-10-01

    A survey is given on some newer knowledge about metabolism and about the importance of the essential fatty acids and of the n-3 fatty acids (eicosapentaenic, docosapentaenic, docosahexaenic acids) which occur in fish oils. In the body the linoleic acid via intermediate steps can be transformed into the arachidonic acid, from which various prostaglandins and leucotriens as well as the thromboxane A2 can be formed. The transformation of the linolenic acid into the eicosapentaenic acid is slight in man. The docosahexaenic acid is necessary for the construction of phospholipids in the brain and in the retina. The uptake of fish fatty acids inhibits the formation of thromboxane A2 and of leukotriens from the arachidonic acid. The fish fatty acids further in the liver in the peroxisomas the activity of the enzymes for the beta-oxidation; the formation of lipoproteins of high density increases under their influence: the triacylglyceride content, the cholesterol as well as the lipoprotein content of very low and low density decreases, when there is an adequate part of fish fatty acids in the nutrition.

  19. Trans fatty acids and fatty acid composition of mature breast milk in turkish women and their association with maternal diet's.

    PubMed

    Samur, Gülhan; Topcu, Ali; Turan, Semra

    2009-05-01

    The aim of this study was to determine the fatty acid composition and trans fatty acid and fatty acid contents of breast milk in Turkish women and to find the effect of breastfeeding mothers' diet on trans fatty acid and fatty acid composition. Mature milk samples obtained from 50 Turkish nursing women were analyzed. Total milk lipids extracts were transmethylated and analyzed by using gas liquid chromatography to determine fatty acids contents. A questionnaire was applied to observe eating habits and 3 days dietary records from mothers were obtained. Daily dietary intake of total energy and nutrients were estimated by using nutrient database. The mean total trans fatty acids contents was 2.13 +/- 1.03%. The major sources of trans fatty acids in mothers' diets were margarines-butter (37.0%), bakery products and confectionery (29.6%). Mothers who had high level of trans isomers in their milk consumed significantly higher amounts of these products. Saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty acids of human milk constituted 40.7 +/- 4.7%, 26.9 +/- 4.2% and 30.8 +/- 0.6% of the total fatty acids, respectively. The levels of fatty acids in human milk may reflect the current diet of the mother as well as the diet consumed early in pregnancy. Margarines, bakery products and confectionery are a major source of trans fatty acids in maternal diet in Turkey.

  20. Fat deposition, fatty acid composition and meat quality: A review.

    PubMed

    Wood, J D; Enser, M; Fisher, A V; Nute, G R; Sheard, P R; Richardson, R I; Hughes, S I; Whittington, F M

    2008-04-01

    for forage diets also limits the amount available for tissue uptake compared with 18:2n-6 from concentrate diets. A positive feature of grass feeding is that levels of the nutritionally important long chain n-3 PUFA are increased ie EPA (20:5n-3) and DHA (22:6n-3). Future research should focus on increasing n-3 PUFA proportions in lean carcasses and the use of biodiverse pastures and conservation processes which retain the benefits of fresh leafy grass offer opportunities to achieve this. The varying fatty acid compositions of adipose tissue and muscle have profound effects on meat quality. Fatty acid composition determines the firmness/oiliness of adipose tissue and the oxidative stability of muscle, which in turn affects flavour and muscle colour. Vitamin E is an essential nutrient, which stabilises PUFA and has a central role in meat quality, particularly in ruminants.

  1. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic acid...

  2. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic acid...

  3. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic acid...

  4. Exogenous polyunsaturated fatty acids (PUFAs) impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species.

    PubMed

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-09-01

    The pathogenic Vibrio species (cholerae, parahaemolyticus and vulnificus) represent a constant threat to human health, causing food-borne and skin wound infections as a result of ingestion or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings herein link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.Importance Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and

  5. Is Bacterial Fatty Acid Synthesis a Valid Target for Antibacterial Drug Discovery?

    PubMed Central

    Parsons, Joshua B.; Rock, Charles O.

    2011-01-01

    The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there isn’t a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements. PMID:21862391

  6. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?

    PubMed

    Parsons, Joshua B; Rock, Charles O

    2011-10-01

    The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there is not a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements.

  7. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  8. Acute effects of dietary fatty acids on the fatty acids of human milk.

    PubMed

    Francois, C A; Connor, S L; Wander, R C; Connor, W E

    1998-02-01

    Although it is known that the fatty acid profile of human milk is altered by diet, the rapidity with which this occurs has not been addressed. We hypothesized that after absorption the fatty acids of a given meal would be transferred rapidly from the chylomicrons of the blood into human milk. Fourteen lactating women drank six test formulas, each containing a different fat: menhaden oil, herring oil, safflower oil, canola oil, coconut oil, or cocoa butter. The subjects collected a midfeeding milk sample before consuming the breakfast test formula and additional samples at 6, 10, 14, and 24 h and then once daily for 4-7 d. Fatty acids of special interest included eicosapentaenoic and docosahexaenoic acids from menhaden oil, cetoleic acid from herring oil, linoleic acid from safflower oil, linolenic acid from canola oil, lauric acid from coconut oil, and palmitic and stearic acids from cocoa butter. Each of these fatty acids increased significantly in human milk within 6 h of consumption of the test formulas (P < 0.001). Maximum increases occurred 10 h after safflower oil; 14 h after cocoa utter, coconut oil, canola oil, and menhaden oil (eicosapentaenoic acid); and 24 h after herring oil and menhaden oil (docosahexaenoic acid). All of these fatty acids remained significantly elevated in milk (P < 0.05) for 10-24 h, except for docosahexaenoic acid, which remained significantly elevated for 2 d, and eicosapentaenoic acid, which remained elevated for 3 d. These data support the hypothesis that there is a rapid transfer of dietary fatty acids from chylomicrons into human milk.

  9. Effect of fatty acids on the permeability barrier of model and biological membranes.

    PubMed

    Arouri, Ahmad; Lauritsen, Kira E; Nielsen, Henriette L; Mouritsen, Ole G

    2016-10-01

    Because of the amphipathicity and conical molecular shape of fatty acids, they can efficiently incorporate into lipid membranes and disturb membrane integrity, chain packing, and lateral pressure profile. These phenomena affect both model membranes as well as biological membranes. We investigated the feasibility of exploiting fatty acids as permeability enhancers in drug delivery systems for enhancing drug release from liposomal carriers and drug uptake by target cells. Saturated fatty acids, with acyl chain length from C8 to C20, were tested using model drug delivery liposomes of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the breast cancer MCF-7 cell line as a model cell. A calcein release assay demonstrated reduction in the membrane permeability barrier of the DPPC liposomes, proportionally to the length of the fatty acid. Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) experiments revealed that C12 to C20 fatty acids can stabilize DPPC liposomal bilayers and induce the formation of large structures, probably due to liposome aggregation and bilayer morphological changes. On the other hand, the short fatty acids C8 and C10 tend to destabilize the bilayers and only moderately cause the formation of large structures. The effect of fatty acids on DPPC liposomes was not completely transferrable to the MCF-7 cell line. Using cytotoxicity assays, the cells were found to be relatively insensitive to the fatty acids at apoptotic sub-millimolar concentrations. Increasing the fatty acid concentration to few millimolar substantially reduced the viability of the cells, most likely via the induction of necrosis and cell lysis. A bioluminescence living-cell-based luciferase assay showed that saturated fatty acids in sub-cytotoxic concentrations cannot reduce the permeability barrier of cell membranes. Our results confirm that the membrane perturbing effect of fatty acids on model membranes cannot simply be carried over to biological

  10. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii*

    PubMed Central

    Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Pujol, François M.; Brooks, Carrie F.; van Dooren, Giel G.; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.; McConville, Malcolm J.; Striepen, Boris

    2012-01-01

    Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [13C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0–26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host. PMID:22179608

  11. Polyunsaturated fatty acids in emerging psychosis.

    PubMed

    Mossaheb, Nilufar; Schloegelhofer, Monika; Schaefer, Miriam R; Fusar-Poli, Paolo; Smesny, Stefan; McGorry, Pat; Berger, Gregor; Amminger, G Paul

    2012-01-01

    The role of polyunsaturated fatty acids and their metabolites for the cause and treatment of psychotic disorders are widely discussed. The efficacy as an augmenting agent in chronic schizophrenia seems to be small or not present, however epidemiological data, as well as some recent controlled studies in emerging psychosis point towards possible preventive effects of long-chain polyunsaturated fatty acids in early and very early stages of psychotic disorders and some potential secondary or tertiary beneficial long-term effects in later, more chronic stages, in particular for metabolic or extra-pyramidal side effects. In this comprehensive review, we describe the physiology and metabolism of polyunsaturated fatty acids, phospholipases, epidemiological evidence and the effect of these fatty acids on the brain and neurodevelopment. Furthermore, we examine the available evidence in indicated prevention in emerging psychosis, monotherapy, add-on therapy and tolerability. The neuroprotective potential of n-3 LC-PUFAs for indicated prevention, i.e. delaying transition to psychosis in high-risk populations needs to be further explored.

  12. Lipid and Fatty Acid Requirements of Tilapia

    USDA-ARS?s Scientific Manuscript database

    Dietary lipids are an important source of highly digestible energy and are the only source of essential fatty acids required for normal growth and development. They are also carriers and assist in the absorption of fat-soluble nutrients, such as sterols and fat-soluble vitamins, serve as a source of...

  13. Hydroxyl Fatty Acids and Hydroxyl Oils

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  14. [THE FATTY ACIDS AND RELATIONSHIP WITH HEALTH].

    PubMed

    Sanhueza Catalán, Julio; Durán Agüero, Samuel; Torres García, Jairo

    2015-09-01

    The functionality of the eukaryotic cell depends on the cell membrane, the genetic information and action of different organelles with or without the presence of membranes. The functionality of the cell membrane and organelles containing it depends primarily on the type and location of fatty acids in the phospholipids and the type of enzymes associated with them, this allows the fatty acids to be metabolized to new species that exert various functions. From this perspective, some essential fatty acids (EFAs) that produce metabolites that exert health benefits are identified, (for example antiinflammatory, neuroprotection, etc) and exert negative effects metabolites (eg inflammation, necrosis promoters, atheroma, etc.) are also generated. In general, these adverse or beneficial effects depend on the ratio of omega-6/omega-3 obtained in the diet. Thus, the higher this ratio is more negative effect; therefore the challenge of the current supply is obtained through food consumption, lower ratios in these fatty acids. The present review aims to present recent evidence on the effects of some AGEs, and the role of diet in maintaining health.

  15. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  16. Melting of saturated fatty acid zinc soaps.

    PubMed

    Barman, S; Vasudevan, S

    2006-11-16

    The melting of alkyl chains in the saturated fatty acid zinc soaps of different chain lengths, Zn(C(n)H(2n+1)COO)(2); n = 11, 13, 15, and 17, have been investigated by powder X-ray diffraction, differential scanning calorimetry, and vibrational spectroscopy. These compounds have a layer structure with the alkyl chains arranged as tilted bilayers and with all methylene chains adopting a planar, all-trans conformation at room temperature. The saturated fatty acid zinc soaps exhibit a single reversible melting transition with the associated enthalpy change varying linearly with alkyl chain length, but surprisingly, the melting temperature remaining constant. Melting is associated with changes in the conformation of the alkyl chains and in the nature of coordination of the fatty acid to zinc. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting is established. It is found that, irrespective of the alkyl chain length, melting occurs when 30% of the chains in the soap are disordered. These results highlight the universal nature of the melting of saturated fatty acid zinc soaps and provide a simple explanation for the observed phenomena.

  17. Fatty acid composition of California grown almonds.

    PubMed

    Sathe, S K; Seeram, N P; Kshirsagar, H H; Heber, D; Lapsley, K A

    2008-11-01

    Eight almond (Prunus dulcis L.) cultivars from 12 different California counties, collected during crop years 2004 to 2005 and 2005 to 2006, were extracted with petroleum ether. The extracts were subjected to GC-MS analyses to determine fatty acid composition of soluble lipids. Results indicated palmitic (C16:0), oleic (C18:1), linoleic (C18:2), and alpha-linolenic (C18:3) acid, respectively, accounted for 5.07% to 6.78%, 57.54% to 73.94%, 19.32% to 35.18%, and 0.04% to 0.10%; of the total lipids. Oleic and linoleic acid were inversely correlated (r=-0.99, P= 0.05) and together accounted for 91.16% to 94.29% of the total soluble lipids. Statistically, fatty acid composition was significantly affected by cultivar and county.

  18. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  19. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I.

    PubMed

    Boshoff, Helena I; Mizrahi, Valerie; Barry, Clifton E

    2002-04-01

    The effects of low extracellular pH and intracellular accumulation of weak organic acids were compared with respect to fatty acid synthesis by whole cells of Mycobacterium tuberculosis and Mycobacterium smegmatis. The profile of fatty acids synthesized during exposure to benzoic, nicotinic, or pyrazinoic acids, as well as that observed during intracellular hydrolysis of the corresponding amides, was not a direct consequence of modulation of fatty acid synthesis by these compounds but reflected the response to inorganic acid stress. Analysis of fatty acid synthesis in crude mycobacterial cell extracts demonstrated that pyrazinoic acid failed to directly modulate the fatty acid synthase activity catalyzed by fatty acid synthase I (FAS-I). However, fatty acid synthesis was irreversibly inhibited by 5-chloro-pyrazinamide in a time-dependent fashion. Moreover, we demonstrate that pyrazinoic acid does not inhibit purified mycobacterial FAS-I, suggesting that this enzyme is not the immediate target of pyrazinamide.

  20. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    SciTech Connect

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  1. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  2. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  3. Structure of Zebrafish IRBP Reveals Fatty Acid Binding

    PubMed Central

    Ghosh, Debashis; Haswell, Karen M.; Sprada, Molly; Gonzalez-Fernandez, Federico

    2015-01-01

    Interphotoreceptor retinoid-binding protein (IRBP) has a remarkable role in targeting and protecting all-trans and 11-cis retinol, and 11-cis retinal during the rod and cone visual cycles. Little is known about how the correct retinoid is efficiently delivered and removed from the correct cell at the required time. It has been proposed that different fatty composition at that the outer-segments and retinal-pigmented epithelium could have an important role is regulating the delivery and uptake of the visual cycle retinoids at the cell-interphotoreceptor-matrix interface. Although this suggests intriguing mechanisms for the role of local fatty acids in visual-cycle retinoid trafficking, nothing is known about the structural basis of IRBP-fatty acid interactions. Such regulation may be mediated through IRBP’s unusual repeating homologous modules, each containing about 300 amino acids. We have been investigating structure-function relationships of Zebrafish IRBP (zIRBP), which has only two tandem modules (z1 and z2), as a model for the more complex four-module mammalian IRBP’s. Here we report the first X-ray crystal structure of a teleost IRBP, and the only structure with a bound ligand. The X-ray structure of z1, determined at 1.90Å resolution, reveals a two-domain organization of the module (domains A and B). A deep hydrophobic pocket was identified within the N-terminal domain A. In fluorescence titrations assays, oleic acid displaced all-trans retinol from zIRBP. Our study, which provides the first structure of an IRBP with bound ligand, supports a potential role for fatty acids in regulating retinoid binding. PMID:26344741

  4. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  5. Towards an understanding of Mesocestoides vogae fatty acid binding proteins' roles.

    PubMed

    Alvite, Gabriela; Garrido, Natalia; Kun, Alejandra; Paulino, Margot; Esteves, Adriana

    2014-01-01

    Two fatty acid binding proteins, MvFABPa and MvFABPb were identified in the parasite Mesocestoides vogae (Platyhelmithes, Cestoda). Fatty acid binding proteins are small intracellular proteins whose members exhibit great diversity. Proteins of this family have been identified in many organisms, of which Platyhelminthes are among the most primitive. These proteins have particular relevance in flatworms since de novo synthesis of fatty acids is absent. Fatty acids should be captured from the media needing an efficient transport system to uptake and distribute these molecules. While HLBPs could be involved in the shuttle of fatty acids to the surrounding host tissues and convey them into the parasite, FABPs could be responsible for the intracellular trafficking. In an effort to understand the role of MvFABPs in fatty acid transport of M. vogae larvae, we analysed the intracellular localization of both MvFABPs and the co-localization with in vivo uptake of fatty acid analogue BODIPY FL C16. Immunohistochemical studies on larvae sections using specific antibodies, showed a diffuse cytoplasmic distribution of each protein with some expression in nuclei and mitochondria. MvFABPs distribution was confirmed by mass spectrometry identification from 2D-electrophoresis of larvae subcellular fractions. This work is the first report showing intracellular distribution of MvFABPs as well as the co-localization of these proteins with the BODIPY FL C16 incorporated from the media. Our results suggest that fatty acid binding proteins could target fatty acids to cellular compartments including nuclei. In this sense, M. vogae FABPs could participate in several cellular processes fulfilling most of the functions attributed to vertebrate's counterparts.

  6. Towards an Understanding of Mesocestoides vogae Fatty Acid Binding Proteins’ Roles

    PubMed Central

    Alvite, Gabriela; Garrido, Natalia; Kun, Alejandra; Paulino, Margot; Esteves, Adriana

    2014-01-01

    Two fatty acid binding proteins, MvFABPa and MvFABPb were identified in the parasite Mesocestoides vogae (Platyhelmithes, Cestoda). Fatty acid binding proteins are small intracellular proteins whose members exhibit great diversity. Proteins of this family have been identified in many organisms, of which Platyhelminthes are among the most primitive. These proteins have particular relevance in flatworms since de novo synthesis of fatty acids is absent. Fatty acids should be captured from the media needing an efficient transport system to uptake and distribute these molecules. While HLBPs could be involved in the shuttle of fatty acids to the surrounding host tissues and convey them into the parasite, FABPs could be responsible for the intracellular trafficking. In an effort to understand the role of MvFABPs in fatty acid transport of M. vogae larvae, we analysed the intracellular localization of both MvFABPs and the co-localization with in vivo uptake of fatty acid analogue BODIPY FL C16. Immunohistochemical studies on larvae sections using specific antibodies, showed a diffuse cytoplasmic distribution of each protein with some expression in nuclei and mitochondria. MvFABPs distribution was confirmed by mass spectrometry identification from 2D-electrophoresis of larvae subcellular fractions. This work is the first report showing intracellular distribution of MvFABPs as well as the co-localization of these proteins with the BODIPY FL C16 incorporated from the media. Our results suggest that fatty acid binding proteins could target fatty acids to cellular compartments including nuclei. In this sense, M. vogae FABPs could participate in several cellular processes fulfilling most of the functions attributed to vertebrate’s counterparts. PMID:25347286

  7. Manipulation of Galactolipid Fatty Acid Composition with Substituted Pyridazinones

    PubMed Central

    John, Judith B. St.

    1976-01-01

    The fatty acid composition of the major lipids of the chloroplast membranes, the mono- and digalactosyl diglycerides, can be definably altered with various substituted pyridazinones. Galactolipid fatty acid composition of wheat (Triticum aestivum L.) can be altered so that there is a decrease in linolenic acid accompanied by an increase in linoleic acid without a shift in the relative proportion of saturated to unsaturated fatty acids; the fatty acid composition can be shifted toward a higher proportion of saturated fatty acids; or the fatty acid composition of the monogalactosyl diglycerides can be altered in preference to the digalactosyl diglycerides. Also, the light-mediated parallel accumulation of chlorophyll and linolenic acid can be separated with a substituted pyridazinone. The substituted pyridazinones may be useful tools in clarifying the role the galactolipids and their component fatty acids play in the structure and function of chloroplast membranes in higher plants. PMID:16659420

  8. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  9. Effects of Increased Free Fatty Acid Availability on Adipose Tissue Fatty Acid Storage in Men

    PubMed Central

    Mundi, Manpreet S.; Koutsari, Chistina

    2014-01-01

    Context: A portion of free fatty acids (FFA) released from adipose tissue lipolysis are re-stored in adipocytes via direct uptake. Rates of direct adipose tissue FFA storage are much greater in women than men, but women also have greater systemic FFA flux and more body fat. Objective: We tested the hypotheses that experimental increases in FFA in men would equalize the rates of direct adipose tissue FFA storage in men and women. Design: We used a lipid emulsion infusion to raise FFA in men to levels seen in post-absorptive women. Direct FFA storage (μmol·kg fat−1·min−1) rates in abdominal and femoral fat was assessed using stable isotope tracer infusions to measure FFA disappearance rates and an iv FFA radiotracer bolus/timed biopsy. Setting: These studies were performed in a Clinical Research Center. Participants: Data from 13 non-obese women was compared with that from eight obese and eight non-obese men. Intervention: The men received a lipid emulsion infusion to raise FFA. Main Outcome Measures: We measured the rates of direct FFA storage in abdominal and femoral adipose tissue. Results: The three groups were similar in age and FFA flux by design; obese men had similar body fat percentage as non-obese women. Despite matching for FFA concentrations and flux, FFA storage per kg abdominal (P < .01) and femoral (P < .001) fat was less in both lean and obese men than in non-obese women. Abdominal FFA storage rates were correlated with proteins/enzymes in the FFA uptake/triglyceride synthesis pathway in men. Conclusion: The lesser rates of direct FFA adipose tissue in men compared with women cannot be explained by reduced FFA availability. PMID:25192251

  10. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lactylic esters of fatty acids. 172.848 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food in accordance with the following prescribed conditions: (a) They...

  11. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is subject...

  12. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  13. 75 FR 14082 - Ammonium Salts of Fatty Acids (C8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... AGENCY 40 CFR Part 180 Ammonium Salts of Fatty Acids (C 8 -C 18 Saturated); Exemption from the... fatty acids (C 8 -C 18 saturated) applied pre- and post-harvest on all raw agricultural commodities when... eliminates the need to establish a maximum permissible level for residues of ammonium salts of fatty acids (C...

  14. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN P-03-388...

  15. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  16. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  17. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  18. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  19. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  20. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  1. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  2. Naturally occurring fatty acids: Source, chemistry, and uses

    USDA-ARS?s Scientific Manuscript database

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  3. Bioconverted Products of Essential Fatty Acids as Potential Antimicrobial Agents

    USDA-ARS?s Scientific Manuscript database

    This review deals with the recent findings on the microbial conversion of essential fatty acids (EFAs) through Pseudomonas aeruginosa PR3 NRRL-B-18602, and the antimicrobial properties of bioconverted essential fatty acids, with particular emphasis on n-3 or n-6 fatty acids. The first section deals...

  4. 40 CFR 721.10691 - Fatty acid amide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide (generic). 721.10691... Substances § 721.10691 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-13-267) is...

  5. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  6. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  7. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  8. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  9. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  10. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN...

  11. 40 CFR 721.10687 - Fatty acid amide hydrochlorides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide hydrochlorides... Specific Chemical Substances § 721.10687 Fatty acid amide hydrochlorides (generic). (a) Chemical substance... fatty acid amide hydrochlorides (PMNs P-13-201, P-13-203, P-13-204, P-13-205, P-13-206, P-13-207,...

  12. 40 CFR 721.10680 - Fatty acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amides (generic). 721.10680... Substances § 721.10680 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as fatty acid amides (PMNs...

  13. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  14. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  15. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    PubMed

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Maze solving using fatty acid chemistry.

    PubMed

    Suzuno, Kohta; Ueyama, Daishin; Branicki, Michal; Tóth, Rita; Braun, Artur; Lagzi, István

    2014-08-12

    This study demonstrates that the Marangoni flow in a channel network can solve maze problems such as exploring and visualizing the shortest path and finding all possible solutions in a parallel fashion. The Marangoni flow is generated by the pH gradient in a maze filled with an alkaline solution of a fatty acid by introducing a hydrogel block soaked with an acid at the exit. The pH gradient changes the protonation rate of fatty acid molecules, which translates into the surface tension gradient at the liquid-air interface through the maze. Fluid flow maintained by the surface tension gradient (Marangoni flow) can drag water-soluble dye particles toward low pH (exit) at the liquid-air interface. Dye particles placed at the entrance of the maze dissolve during this motion, thus exhibiting and finding the shortest path and all possible paths in a maze.

  17. Isoprenoid quinones and fatty acids of Zoogloea.

    PubMed

    Hiraishi, A; Shin, Y K; Sugiyama, J; Komagata, K

    1992-04-01

    Nine Zoogloea strains including the type strain of Z. ramigera (IAM 12136 = ATCC 19544 = N.C. Dondero 106) and newly isolated strains were investigated for isoprenoid quinone composition and whole-cell fatty acid profiles. Seven of the tested strains, having phenotypic properties typical of Zoogloea, were characterized by their production of both ubiquinone-8 and rhodoquinone-8 as major quinones, whereas the remaining two strains, Z. ramigera IAM 12669 (= K. Crabtree I-16-M) and IAM 12670 (= P.R. Dugan 115), formed ubiquinone-10 and ubiquinone-8, respectively, as the sole quinone. All rhodoquinone-producing strains contained palmitoleic acid and 3-hydroxy-decanoic acid as the major components of nonpolar and hydroxylated fatty acids, respectively. Marked differences were noted in the fatty acid composition between the strains with and without rhodoquinones. The chemotaxonomic data suggested that the rhodoquinone-lacking strains should be excluded from the genus Zoogloea. Since there have been no reliable taxonomic tools for Zoogloea, rhodoquinone analysis may provide a new criterion of great promise for identifying Zoogloea strains.

  18. Gas chromatographic analysis of infant formulas for total fatty acids, including trans fatty acids.

    PubMed

    Satchithanandam, Subramaniam; Fritsche, Jan; Rader, Jeanne I

    2002-01-01

    Twelve powdered and 13 liquid infant formulas were analyzed by using an extension of AOAC Official Method 996.01 for fat analysis in cereal products. Samples were hydrolyzed with 8 N HCl and extracted with ethyl and petroleum ethers. Fatty acid methyl esters were prepared by refluxing the mixed ether extracts with methanolic sodium hydroxide in the presence of 14% boron trifluoride in methanol. The extracts were analyzed by gas chromatography. In powdered formulas, saturated fatty acid (SFA) content (mean +/- SD; n = 12) was 41.05 +/- 3.94%, monounsaturated fatty acid (MUFA) content was 36.97 +/- 3.38%, polyunsaturated fatty acid (PUFA) content was 20.07 +/- 3.08%, and total trans fatty acid content was 1.30 +/- 1.27%. In liquid formulas, SFA content (mean +/- SD; n = 13) was 42.29 +/- 2.98%, MUFA content was 36.05 +/- 2.47%, PUFA content was 20.65 +/- 2.40%, and total trans fatty acid content was 0.88 +/- 0.54%. Total fat content in powdered formulas ranged from 4.4 to 5.5 g/100 kcal and linoleic acid content ranged from 868 to 1166 mg/100 kcal. In liquid formulas, total fat content ranged from 4.1 to 5.1 g/100 kcal and linoleic acid content ranged from 820 to 1100 mg/100 kcal. There were no significant differences between powdered and liquid infant formulas in concentrations of total fat, SFA, MUFA, PUFA, or trans fatty acids.

  19. Fatty acid facts, Part I. Essential fatty acids as treatment for depression, or food for mood?

    PubMed

    Pawels, E K J; Volterrani, D

    2008-10-01

    The epidemic character of depressive disorders has prompted further research into dietary habits that could make an etiological contribution. One clear change in the diet of the population in developed countries has been the replacement of omega-3 polyunsaturated fatty acids by saturated fats and trans-fats as well as by omega-6 polyunsaturated fatty acids. Omega-3 and omega-6 fatty acids are essential fatty acids, and the members of the -3 and -6 series are crucial for human health. In biochemical processes there is a competition between these two series. A higher dietary intake of omega-6 results in the excessive incorporation of these molecules in the cell membrane with numerous pathological consequences, presumably due to the formation of proinflammatory eicosanoids. Members of the omega-3 family and their derivatives modulate the inflammatory action. Essential fatty acids play a major role in brain development and brain functioning. The omega-3 series members docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) provide fluidity to the cell membrane, facilitating certain processes including neurotransmission and ion channel flow. It is thought that omega-3 deficiency during the fetal and postnatal period may have a long-term effect at various levels. Epidemiological studies have demonstrated a positive association between omega-3 deficits and mood disorders. As for treatment, there is convincing evidence that add-on omega-3 fatty acids to standard antidepressant pharmacotherapy results in improved mood. There is no evidence that fatty acid monotherapy has a mood-elevating effect, with a possible exception for childhood depression. There are indications that omega-3 has a prophylactic effect on perinatal depression and has a negative effect on natural killer cell activity and T-lymphocyte function. These observations need further study in view of the popularity of self-medication. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  20. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  1. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  2. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production.

    PubMed

    Kishino, Shigenobu; Ogawa, Jun; Yokozeki, Kenzo; Shimizu, Sakayu

    2009-08-01

    Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11-18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, alpha-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], gamma-linolenic acid (cis-6,cis-9,cis-12-18:3), columbinic acid (trans-5,cis-9,cis-12-18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from alpha-linolenic acid, which were identified as cis-9,trans-11,cis-15-18:3, trans-9,trans-11,cis-15-18:3, and trans-10,cis-15-18:2. Four major fatty acids were produced from gamma-linolenic acid, which were identified as cis-6,cis-9,trans-11-18:3, cis-6,trans-9,trans-11-18:3, cis-6,trans-10-18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from alpha-linolenic acid and gamma-linolenic acid.

  3. Improved myocardial lactate extraction after propranolol in coronary artery disease: effected by peripheral glutamate and free fatty acid metabolism.

    PubMed Central

    Nielsen, T T; Bagger, J P; Thomassen, A

    1986-01-01

    Ten patients with chronic effort angina and coronary artery disease (luminal diameter reduction greater than 75%) were stressed by atrial pacing (140 beats/minutes) before and 15 minutes after intravenous propranolol (mean dose 7.4 mg). Myocardial substrate exchange of oxygen, blood lactate, plasma free fatty acids, citrate, glucose, glutamate, and alanine as well as coronary sinus blood flow were measured. Coronary sinus blood flow, oxygen consumption, and systemic haemodynamics did not change after propranolol. Propranolol did not influence arterial lactate concentration, and it reduced the arterial concentration of free fatty acid by 37% and increased that of glutamate by 21%. During pacing myocardial lactate extraction increased in all 10 patients; in two lactate release was converted to lactate uptake. Propranolol reduced free fatty acid uptake and increased glutamate uptake during pacing. For both substances the changes in aortocoronary sinus differences or in uptake or both correlated positively with the changes in their delivery to the heart from extracardial sources (arterial concentrations/loads). In the unstressed state before pacing, aortocoronary sinus lactate differences correlated inversely with free fatty acid differences and positively with those of glutamate. During pacing the relation between lactate and glutamate differences remained positive while the inverse correlation between lactate and free fatty acid differences was lost. Myocardial citrate release was halved during pacing and recovery. Propranolol did not influence alanine or glucose exchanges. An improved myocardial lactate extraction after propranolol administration may be secondary to decreased free fatty acid uptake or increased glutamate uptake or both. In the unstressed state both mechanisms may be of importance. During pacing induced ischaemia, increased glutamate uptake is more likely than reduced free fatty acid uptake to be the mechanism responsible for the improvement in

  4. Fatty acid composition of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Saito, T; Ochiai, H

    1998-03-01

    The cellular slime mold Polysphondylium pallidum was grown upon Escherichia coli B/r, and the fatty acid compositions of total lipids obtained from vegetative amebae and aggregation-competent cells were compared. Fatty acids isolated from vegetative cells included C-17 and C-19 cyclopropane fatty acids and also straight-chain, saturated fatty acids. The cyclopropane fatty acids were derived from the ingested bacteria. Development of amebae to aggregation-competent cells was accompanied by a substantial decrease in saturated cyclopropane fatty acids and a concomitant increase in unsaturated fatty acids and unsaturated cyclopropane fatty acids, mostly as 18:3 (5,9,12). We report here the fatty acid composition and identify the occurrence of delta 5 desaturation of cyclopropane fatty acids, namely, 9,10-methylene 5-hexadecenoic acid and 11,12-methylene 5-octadecenoic acid. These fatty acids have not been reported previously in the related species Dictyostelium discoideum, which also feeds on E. coli B/r and has delta 5-desaturation activity.

  5. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells

    PubMed Central

    Angela, Mulki; Endo, Yusuke; Asou, Hikari K.; Yamamoto, Takeshi; Tumes, Damon J.; Tokuyama, Hirotake; Yokote, Koutaro; Nakayama, Toshinori

    2016-01-01

    To fulfil the bioenergetic requirements for increased cell size and clonal expansion, activated T cells reprogramme their metabolic signatures from energetically quiescent to activated. However, the molecular mechanisms and essential components controlling metabolic reprogramming in T cells are not well understood. Here, we show that the mTORC1–PPARγ pathway is crucial for the fatty acid uptake programme in activated CD4+ T cells. This pathway is required for full activation and rapid proliferation of naive and memory CD4+ T cells. PPARγ directly binds and induces genes associated with fatty acid uptake in CD4+ T cells in both mice and humans. The PPARγ-dependent fatty acid uptake programme is critical for metabolic reprogramming. Thus, we provide important mechanistic insights into the metabolic reprogramming mechanisms that govern the expression of key enzymes, fatty acid metabolism and the acquisition of an activated phenotype during CD4+ T cell activation. PMID:27901044

  6. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  7. Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Broussard, Tyler C.; Bose, Jeffrey L.; Rosch, Jason W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus. PMID:25002480

  8. Research on food and nutrition characteristics of conjugated fatty acids.

    PubMed

    Tsuduki, Tsuyoshi

    2015-01-01

    In this study, the physiological effects of fatty acids with conjugated double bonds were widely examined in vitro and in vivo. Initially, a method for determination of conjugated fatty acids in food and biological samples was established. I then clarified that the oxidative stability of conjugated fatty acids was improved by the form of triacylglycerol and addition of an antioxidant, and the influence of this effect on the metabolism and pharmacokinetics of conjugated fatty acids was clarified in vivo. In addition, antitumor, anti-angiogenesis, and antiobesity effects of conjugated fatty acids were found for the first time, thus demonstrating the usefulness of conjugated fatty acids. This communication mainly outlines the data obtained for conjugated linolenic acid. In addition, this review summarizes my research on conjugated fatty acid.

  9. Reactive uptake of pinonaldehyde on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng

    2006-12-01

    The reactive uptake of pinonaldehyde, a monoterpene oxidation product, on aerosols has been studied in a reaction chamber. Monodisperse inorganic seed aerosols, consisting of acidic mixtures of (NH4)2SO4 and H2SO4, were exposed to gaseous pinonaldehyde for several hours within the chamber under relative humidity conditions of 3-65%. The aerosol inorganic and organic mass were quantitatively monitored in real time with an aerosol mass spectrometer (AMS) which also measured the mass spectra of the aerosols. Numerous fragments in the mass spectra were observed with masses greater than what can be accounted for by pinonaldehyde alone and have arisen from oligomerization in reactive uptake processes. The evolution of the mass spectra also revealed a progression toward larger oligomers over time. Significant organic mass was added to the aerosols in most experiments immediately upon exposure, resulting in maximum organic mass loadings from 3.5-110 μgm-3 depending on the experiments. Organic mass to seed aerosol SO4= ratios were also highly variable (0.06-4.75), resulting in particles ranging in composition from primarily inorganic to mostly organic. This reactive uptake was highly dependent upon the aerosol water activity, and hence acidity and did not occur on neutral (NH4)2SO4 aerosols suggesting that acidity is necessary. Reactive uptake coefficients (γ) of pinonaldehyde were calculated by fitting a model of organic mass growth to the data. The coefficients spanned two orders of magnitude (1.2 × 10-5-1.3 × 10-3) and were primarily dependent upon aerosol water activity and acidity but independent of gas phase pinonaldehyde concentrations. These coefficients indicated that the heterogeneous reactions of pinonaldehyde are of little importance as a gas phase loss mechanism but potentially of major importance as a source of secondary organic aerosols (SOA). Estimates of SOA production via pinonaldehyde, using the derived γ, suggest that 1-750 ng m-3 of organic

  10. Inhibition of Ileal Water Absorption by Intraluminal Fatty Acids INFLUENCE OF CHAIN LENGTH, HYDROXYLATION, AND CONJUGATION OF FATTY ACIDS

    PubMed Central

    Ammon, Helmut V.; Phillips, Sidney F.

    1974-01-01

    The influence of fatty acids on ileal absorption of water, electrolytes, glucose, and taurocholate was examined in Thirty-Vella fistulas in five mongrel dogs. Fatty acid absorption also was measured. Segments of terminal ileum were perfused at steady state with isotonic electrolyte solutions containing 11.2 mM glucose, 4.5 mM taurocholate, and 0.1-5.0 mM fatty acid. Three C18 fatty acids, oleic acid, 10(9)-hydroxystearic acid, and ricinoleic acid, completely inhibited water absorption at 5 mM. Sodium, chloride, and potassium absorptions were inhibited in parallel with absorption of water. Differences between the potencies of C18 fatty acids were apparent when lesser concentrations were perfused. Dodecanoic and decanoic acids were as effective as C18 fatty acids at 5 mM but octanoic and hexanoic acids were ineffective. The polar group of C18 fatty acids was modified by conjugating oleic and ricinoleic acids with taurine. When these compounds and a substituted C18 fatty acid, p-n-decylbenzenesulfonate, were perfused, water absorption was also inhibited. Short-chain fatty acids (C3 and C4) and their hydroxylated derivatives were ineffective at 5 mM. When water absorption was inhibited, absorption of glucose and taurocholate was decreased. We speculate that the phenomenon of inhibition of water and electrolyte absorption by fatty acids may be relevant to steatorrhea and diarrhea in man. Images PMID:4808636

  11. Identification of fatty acids in canine seminal plasma.

    PubMed

    Díaz, R; Inostroza, K; Risopatrón, J; Sanchez, R; Sepúlveda, N

    2014-03-01

    Seminal plasma contains various biochemical components associated with sperm function. However, there is limited information regarding the fatty acid composition of seminal plasma and their effect on sperm. The aim of this study was to identify the fatty acid content in canine seminal plasma using gas chromatography. Twelve ejaculates were studied, the seminal plasma was obtained by centrifugation and then the lipids were extracted, methylated and analysed by chromatography. The total lipids in the seminal plasma were 2.5 ± 0.3%, corresponding to 85% saturated fatty acids (SFA) and 15% unsaturated fatty acids (UFA). The greatest proportions of SFA were palmitic acid (30.4%), stearic acid (23.4%) and myristic acid (5.3%) and of UFA oleic acid (9.0%). Therefore, the protocols and techniques used enabled the identification of 18 different fatty acids in canine seminal plasma, which constitutes a good method to evaluate and quantify the fatty acid profile in this species.

  12. Omega-3 fatty acids (ῳ-3 fatty acids) in epilepsy: animal models and human clinical trials.

    PubMed

    DeGiorgio, Christopher M; Taha, Ameer Y

    2016-10-01

    There is growing interest in alternative and nutritional therapies for drug resistant epilepsy. ῳ-3 fatty acids such as fish or krill oil are widely available supplements used to lower triglycerides and enhance cardiovascular health. ῳ-3 fatty acids have been studied extensively in animal models of epilepsy. Yet, evidence from randomized controlled clinical trials in epilepsy is at an early stage. This report focuses on the key ῳ-3 fatty acids DHA and EPA, their incorporation into the lipid bilayer, modulation of ion channels, and mechanisms of action in reducing excitability within the central nervous system. This paper presents pre-clinical evidence from mouse, rat, and canine models, and reports the efficacy of n-3 fatty acids in randomized controlled clinical trials. An English language search of PubMed and Google scholar for the years 1981-2016 was performed for animal studies and human randomized controlled clinical trials. Expert commentary: Basic science and animal models provide a cogent rationale and substantial evidence for a role of ῳ-3 fatty acids in reducing seizures. Results in humans are limited. Recent Phase II RCT evidence suggests that low to moderate dose of ῳ-3 fatty acids reduce seizures; however, larger multicenter randomized trials are needed to confirm or refute the evidence. The safety, health effects, low cost and ease of use make ῳ-3 fatty acids an intriguing alternative therapy for drug resistant epilepsy. Though safety of profile is excellent, the human data is not yet sufficient to support efficacy in drug resistant epilepsy at this time.

  13. Fatty acid profile of unconventional oilseeds.

    PubMed

    Sabikhi, Latha; Sathish Kumar, M H

    2012-01-01

    The continued increase in human population has resulted in the rise in the demand as well as the price of edible oils, leading to the search for alternative unconventional sources of oils, particularly in the developing countries. There are hundreds of un- or underexplored plant seeds rich in oil suitable for edible or industrial purposes. Many of them are rich in polyunsaturated essential fatty acids, which establish their utility as "healthy oils." Some agrowaste products such as rice bran have gained importance as a potential source of edible oil. Genetic modification has paved the way for increasing the oil yields and improving the fatty acid profiles of traditional as well as unconventional oilseeds. Single cell oils are also novel sources of edible oil. Some of these unconventional oils may have excellent potential for medicinal and therapeutic uses, even if their low oil contents do not promote commercial production as edible oils.

  14. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy

    PubMed Central

    2015-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a complex, multifactorial disease in which an increase in pulmonary vascular resistance leads to increased afterload on the right ventricle (RV), causing right heart failure and death. Our understanding of the pathophysiology of RV dysfunction in PAH is limited but is constantly improving. Increasing evidence suggests that in PAH RV dysfunction is associated with various components of metabolic syndrome, such as insulin resistance, hyperglycemia, and dyslipidemia. The relationship between RV dysfunction and fatty acid/glucose metabolites is multifaceted, and in PAH it is characterized by a shift in utilization of energy sources toward increased glucose utilization and reduced fatty acid consumption. RV dysfunction may be caused by maladaptive fatty acid metabolism resulting from an increase in fatty acid uptake by fatty acid transporter molecule CD36 and an imbalance between glucose and fatty acid oxidation in mitochondria. This leads to lipid accumulation in the form of triglycerides, diacylglycerol, and ceramides in the cytoplasm, hallmarks of lipotoxicity. Current interventions in animal models focus on improving RV dysfunction through altering fatty acid oxidation rates and limiting lipid accumulation, but more specific and effective therapies may be available in the coming years based on current research. In conclusion, a deeper understanding of the complex mechanisms of the metabolic remodeling of the RV will aid in the development of targeted treatments for RV failure in PAH. PMID:26064451

  15. [The fatty acids and fatty aldehydes of blood as a biochemical of multiple organ failure].

    PubMed

    Osipenko, A N; Akulich, N V; Marochkov, A V

    2012-10-01

    The article presents the results of analysis of fatty acids and fatty aldehydes of plasma and blood erythrocytes in patients with the syndrome of multiple organ failure. The increase of relative level of mono-unsaturated fatty acids and decrease of poly-saturated fatty acids and saturated stearic acid in blood plasma is demonstrated. The reliable alterations in erythrocytes concerning the content of saturated palmitic and poly-saturated linoleic fatty acids are detected. In patients with multiple organ failure the decrease of level of fatty aldehydes and cholesterol in blood plasma is established too. The conclusion is made about significant role of mono non-saturated fatty acids in disorders of systemic haemodynamics and evaluation of degree of disorder of lipid metabolism between cells and blood plasma lipoproteins.

  16. Fatty acid effects on fibroblast cholesterol synthesis

    SciTech Connect

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-05-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 ..mu..mol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 ..mu..Ci (/sup 14/C)acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest (/sup 14/C)acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total /sup 14/C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1(BSA).

  17. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    PubMed

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Amino acid uptake in rust fungi

    PubMed Central

    Struck, Christine

    2015-01-01

    The plant pathogenic rust fungi colonize leaf tissue and feed off their host plants without killing them. Certain economically important species of different genera such as Melampsora, Phakopsora, Puccinia, or Uromyces are extensively studied for resolving the mechanisms of the obligate biotrophy. As obligate parasites rust fungi only can complete their life cycle on living hosts where they grow through the leaf tissue by developing an extended network of intercellular hyphae from which intracellular haustoria are differentiated. Haustoria are involved in key functions of the obligate biotrophic lifestyle: suppressing host defense responses and acquiring nutrients. This review provides a survey of rust fungi nitrogen nutrition with special emphasis on amino acid uptake. A variety of sequences of amino acid transporter genes of rust fungi have been published; however, transport activity of only three in planta highly up-regulated amino acid permeases have been characterized. Functional and immunohistochemical investigations have shown the specificity and localization of these transporters. Sequence data of various genome projects allowed identification of numerous rust amino acid transporter genes. An in silico analysis reveals that these genes can be classified into different transporter families. In addition, genetic and molecular data of amino acid transporters have provided new insights in the corresponding metabolic pathways. PMID:25699068

  19. Amino acid uptake in rust fungi.

    PubMed

    Struck, Christine

    2015-01-01

    The plant pathogenic rust fungi colonize leaf tissue and feed off their host plants without killing them. Certain economically important species of different genera such as Melampsora, Phakopsora, Puccinia, or Uromyces are extensively studied for resolving the mechanisms of the obligate biotrophy. As obligate parasites rust fungi only can complete their life cycle on living hosts where they grow through the leaf tissue by developing an extended network of intercellular hyphae from which intracellular haustoria are differentiated. Haustoria are involved in key functions of the obligate biotrophic lifestyle: suppressing host defense responses and acquiring nutrients. This review provides a survey of rust fungi nitrogen nutrition with special emphasis on amino acid uptake. A variety of sequences of amino acid transporter genes of rust fungi have been published; however, transport activity of only three in planta highly up-regulated amino acid permeases have been characterized. Functional and immunohistochemical investigations have shown the specificity and localization of these transporters. Sequence data of various genome projects allowed identification of numerous rust amino acid transporter genes. An in silico analysis reveals that these genes can be classified into different transporter families. In addition, genetic and molecular data of amino acid transporters have provided new insights in the corresponding metabolic pathways.

  20. Unsaturated fatty acids, desaturases, and human health.

    PubMed

    Lee, Hyungjae; Park, Woo Jung

    2014-02-01

    With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in a diet is important since they are associated with major diseases, such as cancers, diabetes, and cardiovascular disease. The biosynthesis of unsaturated fatty acids (UFA) requires the expression of dietary fat-associated genes, such as SCD, FADS1, FADS2, and FADS3, which encode a variety of desaturases, to catalyze the addition of a double bond in a fatty acid chain. Recent studies using new molecular techniques and genomics, as well as clinical trials have shown that these genes and UFA are closely related to physiological conditions and chronic diseases; it was found that the existence of alternative transcripts of the desaturase genes and desaturase isoforms might affect human health and lipid metabolism in different ways. In this review, we provide an overview of UFA and desaturases associated with human health and nutrition. Moreover, recent findings of UFA, desaturases, and their associated genes in human systems are discussed. Consequently, this review may help elucidate the complicated physiology of UFA in human health and diseases.

  1. Fatty acid oxidation and ketogenesis during development.

    PubMed

    Girard, J; Duée, P H; Ferré, P; Pégorier, J P; Escriva, F; Decaux, J F

    1985-01-01

    Fatty acids are the preferred oxidative substrates of the heart, skeletal muscles, kidney cortex and liver in adult mammals. They are supplied to these tissues either as nonesterified fatty acids (NEFA), or as triglycerides after hydrolysis by lipoprotein lipase. During fetal life, tissue capacity to oxidize NEFA is very low, even in species in which the placental transfer of NEFA and carnitine is high. At birth, the ability to oxidize NEFA from endogenous sources or from milk (a high-fat diet) develops rapidly in various tissues and remains very high throughout the suckling period. Ketogenesis appears in the liver by 6 to 12 hrs after birth, and the ketone bodies are used as oxidative fuels by various tissues during the suckling period. At the time of weaning, the transition from a high-fat to a high-carbohydrate diet is attended by a progressive decrease in the ketogenic capacity of the liver, whereas other tissues (skeletal muscle, heart, kidney) maintain a high capacity for NEFA oxidation. The nutritional and hormonal factors involved in changes in fatty acid oxidation during development are discussed.

  2. Ageing, adipose tissue, fatty acids and inflammation.

    PubMed

    Pararasa, Chathyan; Bailey, Clifford J; Griffiths, Helen R

    2015-04-01

    A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

  3. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this section...

  4. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this section...

  5. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  6. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  7. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  8. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  9. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Oleic acid derived from tall oil fatty acids. 172... Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as a component in the manufacture of...

  10. Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids

    USDA-ARS?s Scientific Manuscript database

    Thespesia populnea belongs to the plant family of Malvaceae which contain cyclopropane and cyclopropene fatty acids. However, previous literature reports vary regarding the content of these compounds in Thespesia populnea seed oil. In this work, the content of malvalic acid (8,9-methylene-9-heptade...

  11. Choline treatment affects the liver reticuloendothelial system and plasma fatty acid composition in diabetic rats.

    PubMed

    Al-Saeedi, Fatma J; Cheng, Behling

    2013-07-01

    This study investigated effects of choline treatment on hepatic reticuloendothelial and biliary functions and plasma fatty acid composition in diabetic rats. Diabetes was induced by streptozotocin (STZ). Choline was administered to untreated rats and a portion of STZ-treated rats for two sequences of five consecutive days, separated by a 2-day interval. Hepatic functions were studied using (99m) Tc Tin (II) colloid (TIN) and 99 mTc mebrofenin [bromo-iminodiacetic acid (BrIDA)] imaging. The TIN-uptake ratios (organ/whole body) of heart, liver and spleen, and the BrIDA-uptake ratios (organ or tissue/whole body) of liver, biliary tree and abdomen were obtained following imaging studies. Fatty acids were analysed by GC/MS. Choline treatment did not attenuate hyperglycaemic development. Diabetic rats showed (i) a decreased TIN-uptake ratio in liver with co-increased ratios in heart and spleen; choline treatment diminished these changes, (ii) elevated BrIDA-uptake ratios in biliary tree and abdomen but not in liver; choline treatment did not attenuate the elevations and (iii) decreases in plasma palmitoleic acid and oleic acid, reflecting an impaired stearoyl-CoA desaturase function; choline treatment did not affect the diminutions, but caused a decrease in arachidonic acid with a co-increase in linoleic acid. Some rats developed hypoproteinemia (HPO). HPO rats also exhibited decreases in plasma palmitoleic acid and oleic acid. Diabetes caused almost absence of palmitoleic acid in HPO rats. Choline treatment exerted no effect on the plasma fatty acid composition of diabetic HPO rats. Choline treatment affected hepatic reticuloendothelial function and plasma fatty acid composition, but not hepatobiliary function, in diabetic rats. Whether choline treatment is beneficial requires further studies. © 2013 The Authors Clinical Physiology and Functional Imaging © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  12. Overview of Omega-3 Fatty Acid Therapies

    PubMed Central

    Bradberry, J. Chris; Hilleman, Daniel E.

    2013-01-01

    The triglyceride (TG)-lowering benefits of the very-long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well documented. Available as prescription formulations and dietary supplements, EPA and DHA are recommended by the American Heart Association for patients with coronary heart disease and hypertriglyceridemia. Dietary supplements are not subject to the same government regulatory standards for safety, efficacy, and purity as prescription drugs are; moreover, supplements may contain variable concentrations of EPA and DHA and possibly other contaminants. Reducing low-density lipoprotein-cholesterol (LDL-C) levels remains the primary treatment goal in the management of dyslipidemia. Dietary supplements and prescription formulations that contain both EPA and DHA may lower TG levels, but they may also increase LDL-C levels. Two prescription formulations of long-chain omega-3 fatty acids are available in the U.S. Although prescription omega-3 acid ethyl esters (OM-3-A EEs, Lovaza) contain high-purity EPA and DHA, prescription icosapent ethyl (IPE, Vascepa) is a high-purity EPA agent. In clinical trials of statin-treated and non–statin-treated patients with hypertriglyceridemia, both OM-3-A EE and IPE lowered TG levels and other atherogenic markers; however, IPE did not increase LDL-C levels. Results of recent outcomes trials of long-chain omega-3 fatty acids, fibrates, and niacin have been disappointing, failing to show additional reductions in adverse cardiovascular events when combined with statins. Therefore, the REDUCE–IT study is being conducted to evaluate the effect of the combination of IPE and statins on cardiovascular outcomes in high-risk patients. The results of this trial are eagerly anticipated. PMID:24391388

  13. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  14. Dietary essential fatty acids change the fatty acid profile of rat neural mitochondria over time.

    PubMed

    Dyer, J R; Greenwood, C E

    1991-10-01

    This experiment examined the time course over which the amount of dietary essential fatty acids (EFA) affects brain mitochondrial fatty acids. Weanling rats were fed 20% (wt/wt) fat diets that contained either 4 or 15% (wt/wt of diet) EFA for 1, 2, 3 or 6 wk or a 10% EFA diet for 3 or 6 wk. The EFA ratio [18:2(n-6)/18:3(n-3)] of all diets was approximately 30. Fatty acid analysis of brain mitochondrial phosphatidylethanolamine, phosphatidylcholine and cardiolipin revealed that the largest dietary effect was on 18:2(n-6), which was 30% higher in rats fed the 15 vs. 4% EFA diets after 1 wk. This difference increased to twofold by 3 wk and was still twofold after 6 wk. These results demonstrate several facts: 1) the response of 18:2(n-6) in cardiolipin to dietary EFA is very fast and large, relative to changes in other quantitatively major fatty acids observed in weanling rats; 2) the 18:2(n-6) level in neural cardiolipin stabilizes after 3 wk of feeding at a level dependent upon the amount of dietary EFA; and 3) at least one neural fatty acid, 18:2(n-6), is very sensitive to amounts of dietary EFA that are well above the animal's EFA requirement.

  15. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  16. Fatty acid profiles of some Fabaceae seed oils

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  17. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  18. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  19. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  20. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  1. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  2. Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation

    PubMed Central

    Capozzi, Megan E.; Hammer, Sandra S.; McCollum, Gary W.; Penn, John S.

    2016-01-01

    The objective of the present study was to assess the effect of elevating epoxygenated fatty acids on retinal vascular inflammation. To stimulate inflammation we utilized TNFα, a potent pro-inflammatory mediator that is elevated in the serum and vitreous of diabetic patients. In TNFα-stimulated primary human retinal microvascular endothelial cells, total levels of epoxyeicosatrienoic acids (EETs), but not epoxydocosapentaenoic acids (EDPs), were significantly decreased. Exogenous addition of 11,12-EET or 19,20-EDP when combined with 12-(3-adamantane-1-yl-ureido)-dodecanoic acid (AUDA), an inhibitor of epoxide hydrolysis, inhibited VCAM-1 and ICAM-1 expression and protein levels; conversely the diol product of 19,20-EDP hydrolysis, 19,20-DHDP, induced VCAM1 and ICAM1 expression. 11,12-EET and 19,20-EDP also inhibited leukocyte adherence to human retinal microvascular endothelial cell monolayers and leukostasis in an acute mouse model of retinal inflammation. Our results indicate that this inhibition may be mediated through an indirect effect on NFκB activation. This is the first study demonstrating a direct comparison of EET and EDP on vascular inflammatory endpoints, and we have confirmed a comparable efficacy from each isomer, suggesting a similar mechanism of action. Taken together, these data establish that epoxygenated fatty acid elevation will inhibit early pathology related to TNFα-induced inflammation in retinal vascular diseases. PMID:27966642

  3. Bioavailability of long-chain omega-3 fatty acids.

    PubMed

    Schuchardt, Jan Philipp; Hahn, Andreas

    2013-07-01

    Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n-3) and Docosahexaenoic acid (DHA 22:6n-3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.

  4. MOLECULAR MODELING AND FUNCTIONAL CONFIRMATION OF A PREDICTED FATTY ACID BINDING SITE OF MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE

    PubMed Central

    Bradbury, Michael W.; Stump, Decherd; Guarnieri, Frank; Berk, Paul D.

    2011-01-01

    Molecular interactions are necessary for proteins to perform their functions. The identification of a putative plasma membrane fatty acid transporter as mitochondrial aspartate aminotransferase indicated that that protein must have a fatty acid binding site. Molecular modeling suggests that such a site exists in the form of a 500 Å3 hydrophobic cleft on the surface of the molecule, and identifies specific amino acid residues likely to be important for binding. The modeling and comparison with the cytosolic isoform indicated that two residues (Arg 201, Ala 219) were likely to be important to the structure and function of the binding site. These residues were mutated to determine if they were essential to that function. Expression constructs with wild-type or mutated cDNAs were produced for bacteria and eukaryotic cells. Proteins expressed in E. coli were tested for oleate binding affinity, which was decreased in the mutant proteins. 3T3 fibroblasts were transfected with expression constructs for both normal and mutated forms. Plasma membrane expression was documented by indirect immunofluorescence before [3H]-oleic acid uptake kinetics were assayed. The Vmax for uptake was significantly increased by over-expression of the wild type protein, but changed little after transfection with mutated proteins, despite their presence on the plasma membrane. The hydrophobic cleft in mitochondrial aspartate aminotransferase can serve as a fatty acid binding site. Specific residues are essential for normal fatty acid binding, without which fatty acid uptake is compromised. These results confirm the function of this protein as a fatty acid binding protein. PMID:21803047

  5. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    PubMed

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  6. Neurological benefits of omega-3 fatty acids.

    PubMed

    Dyall, S C; Michael-Titus, A T

    2008-01-01

    The central nervous system is highly enriched in long-chain polyunsaturated fatty acid (PUFA) of the omega-6 and omega-3 series. The presence of these fatty acids as structural components of neuronal membranes influences cellular function both directly, through effects on membrane properties, and also by acting as a precursor pool for lipid-derived messengers. An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development. Furthermore, there is increasing evidence that increased intake of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may confer benefits in a variety of psychiatric and neurological disorders, and in particular neurodegenerative conditions. However, the mechanisms underlying these beneficial effects are still poorly understood. Recent evidence also indicates that in addition to the positive effects seen in chronic neurodegenerative conditions, omega-3 PUFA may also have significant neuroprotective potential in acute neurological injury. Thus, these compounds offer an intriguing prospect as potentially new therapeutic approaches in both chronic and acute conditions. The purpose of this article is to review the current evidence of the neurological benefits of omega-3 PUFA, looking specifically at neurodegenerative conditions and acute neurological injury.

  7. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  8. Role of serotonin in fatty acid-induced non-alcoholic fatty liver disease in mice.

    PubMed

    Ritze, Yvonne; Böhle, Maureen; Haub, Synia; Hubert, Astrid; Enck, Paul; Zipfel, Stephan; Bischoff, Stephan C

    2013-12-09

    Saturated fatty acids are thought to be of relevance for the development of non-alcoholic fatty liver disease and obesity. However, the underlying mechanisms are poorly understood. In previous studies we found that food-derived carbohydrates such as fructose alter the intestinal serotonergic system while inducing fatty liver disease in mice. Here, we examined the effect of fatty acid quantity (11% versus 15%) and quality (saturated, monounsaturated, or polyunsaturated fatty acids) on hepatic fat accumulation, intestinal barrier and the intestinal serotonergic system. C57BL/6 mice had free access to diets enriched with one of the three fatty acids or standard diet, for 8 weeks. In an additional experiment mice were fed diets enriched with saturated, monounsaturated fatty acids or standard diet supplemented with tryptophan (0.4 g/(kg.d), 8 weeks) or not. Hepatic fat accumulation, small intestinal barrier impairment and components of the serotonergic system were measured with RT-PCR, western blot or immunoassays. For statistical analysis t-test and one-way ANOVA with Tukey's post hoc test and Bartlett's test for equal variances was used. Hepatic triglycerides, liver weight and liver to body weight ratio were significantly changed depending on the fat quality but not fat quantity. In contrast, fat quantity but not quality decreased the expression of the tight junction proteins occludin and claudin-1 in the small intestine. These changes seemed to result in enhanced portal vein endotoxin concentrations and fatty liver disease after feeding diet enriched with saturated and monounsaturated fatty acids but not polyunsaturated fatty acids. Neither fatty acid quantity nor quality significantly influenced the intestinal serotonergic system. Similarly, tryptophan supplementation had no impact on small intestinal barrier or fatty liver disease. In conclusion, diets rich in saturated or monounsaturated fatty acids promote the development of fatty liver disease in mice, likely

  9. Role of serotonin in fatty acid-induced non-alcoholic fatty liver disease in mice

    PubMed Central

    2013-01-01

    Background Saturated fatty acids are thought to be of relevance for the development of non-alcoholic fatty liver disease and obesity. However, the underlying mechanisms are poorly understood. In previous studies we found that food-derived carbohydrates such as fructose alter the intestinal serotonergic system while inducing fatty liver disease in mice. Here, we examined the effect of fatty acid quantity (11% versus 15%) and quality (saturated, monounsaturated, or polyunsaturated fatty acids) on hepatic fat accumulation, intestinal barrier and the intestinal serotonergic system. Methods C57BL/6 mice had free access to diets enriched with one of the three fatty acids or standard diet, for 8 weeks. In an additional experiment mice were fed diets enriched with saturated, monounsaturated fatty acids or standard diet supplemented with tryptophan (0.4 g/(kg.d), 8 weeks) or not. Hepatic fat accumulation, small intestinal barrier impairment and components of the serotonergic system were measured with RT-PCR, western blot or immunoassays. For statistical analysis t-test and one-way ANOVA with Tukey’s post hoc test and Bartlett’s test for equal variances was used. Results Hepatic triglycerides, liver weight and liver to body weight ratio were significantly changed depending on the fat quality but not fat quantity. In contrast, fat quantity but not quality decreased the expression of the tight junction proteins occludin and claudin-1 in the small intestine. These changes seemed to result in enhanced portal vein endotoxin concentrations and fatty liver disease after feeding diet enriched with saturated and monounsaturated fatty acids but not polyunsaturated fatty acids. Neither fatty acid quantity nor quality significantly influenced the intestinal serotonergic system. Similarly, tryptophan supplementation had no impact on small intestinal barrier or fatty liver disease. Conclusion In conclusion, diets rich in saturated or monounsaturated fatty acids promote the

  10. The development of iodine-123-methyl-branched fatty acids and their applications in nuclear cardiology

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Kropp, J.; Biersack, H.J.; Goodman, M.M.; Franken, P.; Reske, S.N.; Som, P.; Sloof, G.W.; Visser, F.C.

    1993-06-01

    Continued Interest in the use of iodine-1 23-labeled fatty acids for myocardial Imaging results from observations from a variety of studies that in many types of cardiac disease, regional fatty acid myocardial uptake patterns are often different than regional distribution of flow tracers. These differences may reflect alterations in important parameters of metabolism which can be useful for patient management or therapeutic strategy decision making. In addition, use of iodine-I 23-labeled fatty acid distribution may represent a unique metabolic probe to relate some aspects of the metabolism of these substrates with the regional viability of cardiac tissue. The use of such viability markers could provide important prognostic information on myocardial salvage, helping to identify patients for revascularization or angioplasty. Clinical studies are currently in progress with the iodine-123-labeled 1 5-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) fatty acid analogue at several institutions. The goals of this paper are to discuss development of the concept of metabolic trapping of fatty acids, to briefly review development and evaluation of various radioiodinated methyl-branched fatty acids and to discuss recent patient studies with iodine-123 (BMIPP) using single photon emission computerized tomography (SPECT).

  11. The development of iodine-123-methyl-branched fatty acids and their applications in nuclear cardiology

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R. ); Kropp, J.; Biersack, H.J. . Inst. fuer Klinische und Experimentelle Nuklearmedizin); Goodman, M.M. . Dept. of Radiology); Franken, P. . Nuclear Medicine Dept.); Reske, S.N. (Ulm Univ. (Germany

    1993-01-01

    Continued Interest in the use of iodine-1 23-labeled fatty acids for myocardial Imaging results from observations from a variety of studies that in many types of cardiac disease, regional fatty acid myocardial uptake patterns are often different than regional distribution of flow tracers. These differences may reflect alterations in important parameters of metabolism which can be useful for patient management or therapeutic strategy decision making. In addition, use of iodine-I 23-labeled fatty acid distribution may represent a unique metabolic probe to relate some aspects of the metabolism of these substrates with the regional viability of cardiac tissue. The use of such viability markers could provide important prognostic information on myocardial salvage, helping to identify patients for revascularization or angioplasty. Clinical studies are currently in progress with the iodine-123-labeled 1 5-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) fatty acid analogue at several institutions. The goals of this paper are to discuss development of the concept of metabolic trapping of fatty acids, to briefly review development and evaluation of various radioiodinated methyl-branched fatty acids and to discuss recent patient studies with iodine-123 (BMIPP) using single photon emission computerized tomography (SPECT).

  12. Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans

    PubMed Central

    Deline, Marshall L.; Vrablik, Tracy L.; Watts, Jennifer L.

    2013-01-01

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method. PMID:24326396

  13. Metabolomics of Dietary Fatty Acid Restriction in Patients with Phenylketonuria

    PubMed Central

    Mütze, Ulrike; Beblo, Skadi; Kortz, Linda; Matthies, Claudia; Koletzko, Berthold; Bruegel, Mathias; Rohde, Carmen; Thiery, Joachim; Kiess, Wieland; Ceglarek, Uta

    2012-01-01

    Background Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. Methodology/Principal Findings 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls. Conclusion/Significance Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional

  14. HIV-Protease Inhibitors Suppress Skeletal Muscle Fatty Acid Oxidation by Reducing CD36 and CPT-I Fatty Acid Transporters

    PubMed Central

    Richmond, Scott R.; Carper, Michael J.; Lei, Xiaoyong; Zhang, Sheng; Yarasheski, Kevin E.; Ramanadham, Sasanka

    2010-01-01

    Infection with human immunodeficiency virus (HIV) and treatment with HIV-protease inhibitor (PI)-based highly active antiretroviral therapies (HAART) is associated with dysregulated fatty acid and lipid metabolism. Enhanced lipolysis, increased circulating fatty acid levels, and hepatic and intramuscular lipid accumulation appear to contribute to insulin resistance in HIV-infected people treated with PI-based HAART. However, it is unclear whether currently prescribed HIV-PIs directly alter skeletal muscle fatty acid transport, oxidation, and storage. We find that ritonavir (r, 5 μmol/l) plus 20 μmol/l of atazanavir (ATV), lopinavir (LPV), or darunavir (DRV) reduce palmitate oxidation(16-21%) in differentiated C2C12 myotubes. Palmitate oxidation was increased following exposure to high fatty acid media but this effect was blunted when myotubes were pre-exposed to the HIV-PIs. However, LPV/r and DRV/r, but not ATV/r suppressed palmitate uptake into myotubes. We found no effect of the HIV-PIs on FATP1, FATP4, or FABPpm but both CD36/FAT and carnitine palmitoyltransferase I (CPTI) were reduced by all three regimens though ATV/r caused only a small decrease in CPT1, relative to LPV/r or DRV/r. In contrast, sterol regulatory element binding protein-1 was increased by all 3 HIV-PIs. These findings suggest that HIV-PIs suppress fatty acid oxidation in murine skeletal muscle cells and that this may be related to decreases in cytosolic- and mitochondrial-associated fatty acid transporters. HIV-PIs may also directly impair fatty acid handling and partitioning in skeletal muscle, and this may contribute to the cluster of metabolic complications that occur in people living with HIV. PMID:20117238

  15. Fatty Acid Activation in Cyanobacteria Mediated by Acyl-Acyl Carrier Protein Synthetase Enables Fatty Acid Recycling1[W

    PubMed Central

    Kaczmarzyk, Danuta; Fulda, Martin

    2010-01-01

    In cyanobacteria fatty acids destined for lipid synthesis can be synthesized de novo, but also exogenous free fatty acids from the culture medium can be directly incorporated into lipids. Activation of exogenous fatty acids is likely required prior to their utilization. To identify the enzymatic activity responsible for activation we cloned candidate genes from Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 and identified the encoded proteins as acyl-acyl carrier protein synthetases (Aas). The enzymes catalyze the ATP-dependent esterification of fatty acids to the thiol of acyl carrier protein. The two protein sequences are only distantly related to known prokaryotic Aas proteins but they display strong similarity to sequences that can be found in almost all organisms that perform oxygenic photosynthesis. To investigate the biological role of Aas activity in cyanobacteria, aas knockout mutants were generated in the background of Synechocystis sp. PCC 6803 and S. elongatus PCC 7942. The mutant strains showed two phenotypes characterized by the inability to utilize exogenous fatty acids and by the secretion of endogenous fatty acids into the culture medium. The analyses of extracellular and intracellular fatty acid profiles of aas mutant strains as well as labeling experiments indicated that the detected free fatty acids are released from membrane lipids. The data suggest a considerable turnover of lipid molecules and a role for Aas activity in recycling the released fatty acids. In this model, lipid degradation represents a third supply of fatty acids for lipid synthesis in cyanobacteria. PMID:20061450

  16. n-3 fatty acids from vegetable oils.

    PubMed

    Hunter, J E

    1990-05-01

    Principal food sources of the n-3 fatty acid alpha-linolenic acid are salad and cooking oil, salad dressing, shortening, margarine, and food-service fat and oil products made from canola oil or soybean oil. Using food production data provided by US trade associations and by Statistics Canada, I estimated the per capita availability of alpha-linolenic acid from vegetable-oil products in the United States to be approximately 1.2 g/d and in Canada, approximately 2 g/d. The higher alpha-linolenic acid availability in Canada is largely accounted for by widespread use of canola oil there. Considering also contributions to dietary alpha-linolenic acid of other foods such as nuts, dairy products, and vegetables, it would appear that total intake of alpha-linolenic acid in US and Canadian diets adequately exceeds the reported nutritional requirement. Emerging research has suggested possible health benefits associated with modest increases in dietary alpha-linolenic acid, including reduced blood-clotting tendency and reduced blood pressure.

  17. Applications of cellular fatty acid analysis.

    PubMed Central

    Welch, D F

    1991-01-01

    More than ever, new technology is having an impact on the tools of clinical microbiologists. The analysis of cellular fatty acids by gas-liquid chromatography (GLC) has become markedly more practical with the advent of the fused-silica capillary column, computer-controlled chromatography and data analysis, simplified sample preparation, and a commercially available GLC system dedicated to microbiological applications. Experience with applications in diagnostic microbiology ranges from substantial success in work with mycobacteria, legionellae, and nonfermentative gram-negative bacilli to minimal involvement with fungi and other nonbacterial agents. GLC is a good alternative to other means for the identification of mycobacteria or legionellae because it is rapid, specific, and independent of other specialized testing, e.g., DNA hybridization. Nonfermenters show features in their cellular fatty acid content that are useful in identifying species and, in some cases, subspecies. Less frequently encountered nonfermenters, including those belonging to unclassified groups, can ideally be characterized by GLC. Information is just beginning to materialize on the usefulness of cellular fatty acids for the identification of gram-positive bacteria and anaerobes, despite the traditional role of GLC in detecting metabolic products as an aid to identification of anaerobes. When species identification of coagulase-negative staphylococci is called for, GLC may offer an alternative to biochemical testing. Methods for direct analysis of clinical material have been developed, but in practical and economic terms they are not yet ready for use in the clinical laboratory. Direct analysis holds promise for detecting markers of infection due to an uncultivable agent or in clinical specimens that presently require cultures and prolonged incubation to yield an etiologic agent. PMID:1747860

  18. [Control of adipogenesis by fatty acids].

    PubMed

    Queiroz, Jean César Farias de; Alonso-Vale, Maria Isabel Cardoso; Curi, Rui; Lima, Fabio Bessa

    2009-07-01

    Obesity is one of the major Public Health problems. Obese individuals are more susceptible to develop cardiovascular diseases and type 2 diabetes mellitus. The obesity results from the increase in size and number of the adipocytes. The balance between adipogenesis and adiposity determines the degree of obesity. Mature adipocytes secrete adipokines, such as TNFalpha, IL-6, leptine and adiponectin, and lipokine, the palmitoleic acid omega-7. The production of adipokines is increased in obesity, contributing to the onset of peripheral insulin resistance. The knowledge about the molecular events that regulate the differentiation of pre-adipocytes and mesenchymal stem cells into adipocytes (adipogenesis) is important for the comprehension of the genesis of obesity. Activation of transcription factor PPARgamma plays an essential role in the adipogenesis. Certain fatty acids are PPARgamma ligands and can control adipogenesis. Moreover, some fatty acids act as signaling molecules regulating their differentiation into adipocytes or death. Accordingly, the lipid composition of the diet and PPARgamma agonists can regulate the balance between adipogenesis and death of adipocytes and, therefore, the obesity.

  19. Serum free fatty acids level in senile cataract.

    PubMed

    Chang, Dong; Rong, Shengzhong; Zhang, Yannan; Sha, Qian; Liang, Meihua; Zhang, Xuefei; Li, Miaojing; Pan, Hongzhi

    2014-01-01

    To evaluate and compare the levels of free fatty acids between senile cataract patients and normal controls. Fifty consecutive patients with newly diagnosed senile cataract and 50 age- and gender-matched controls were evaluated. Subjects/patients were randomized according to selection criteria. The levels of free fatty acids (FFAs) in serum were measured by gas chromatography-mass spectrometry (GC-MS). Sixteen fatty acids from 14:0 to 24:1 were identified. The values were compared between cataract and control groups by parametric independent sample test and Mann-Whitney U tests. A significant decrease was observed in arachidonic acid (C20:4n-6, ARA), cis-4,7,10,13,16,19-docosahexaenoic acid (C22:6n-3, DHA), tetracosanoic acid (C24: 0), cis-7,10,13,16,19-docosapentaenoic acid (C22:5n-6, DPA), total n-3 long-chain polyunsaturated fatty acids (LC-PUFAs), total n-6 LC-PUFAs, total fatty acids, unsaturated fatty acids (USFAs), polyunsaturated fatty acids (PUFAs), and nonessential fatty acid levels in patients with senile cataract in comparison with healthy persons (p < 0.05). The levels of FFA including DPA, tetracosanoic acid, ARA, and DHA were significantly lower in the senile cataract group compared to that in the normal controls. FFA may be helpful in preventing senile cataract.

  20. Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae

    PubMed Central

    Shen, Pei-Li; Wang, Hai-Tao; Pan, Yan-Fei; Meng, Ying-Ying; Wu, Pei-Chun; Xue, Song

    2016-01-01

    The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG). Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3) were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content, and thus, the correlation coefficient presenting r2 were 0.96, 0.94, and 0.97, respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0 and EPA were 0.94 and 0.97, respectively, and in Chlorella pyrenoidosa r2-values for C18:1 and C18:3 with TAG content were 0.91 and 0.99, repectively. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods. PMID:26941747

  1. Hyperinsulinemia and skeletal muscle fatty acid trafficking.

    PubMed

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2013-08-15

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-¹³C]palmitate (0400-0900 h) and [U-¹³C]oleate (0800-1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass⁻¹·min⁻¹) clamp (0800-1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-¹³C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ~1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin.

  2. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    PubMed Central

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ∼1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  3. Mechanisms of Gene Regulation by Fatty Acids12

    PubMed Central

    Georgiadi, Anastasia; Kersten, Sander

    2012-01-01

    Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved considerably and have provided the foundation for the emerging concept of fatty acid sensing, which can be interpreted as the property of fatty acids to influence biological processes by serving as signaling molecules. An important mechanism of fatty acid sensing is via stimulation or inhibition of DNA transcription. Here, we focus on fatty acid sensing via regulation of gene transcription and address the role of peroxisome proliferator–activated receptors, sterol regulatory element binding protein 1, Toll-like receptor 4, G protein–coupled receptors, and other putative mediators. PMID:22516720

  4. Metabolism of fatty acids in rat brain in microsomal membranes

    SciTech Connect

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool.

  5. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum.

    PubMed

    Radakovits, Randor; Eduafo, Patrick M; Posewitz, Matthew C

    2011-01-01

    Renewable diesel surrogates made from shorter chain length fatty acids have improved cold flow properties. Acyl-ACP thioesterases specific for shorter chain length fatty acids are therefore of considerable interest in the genetic engineering of biofuel producing organisms, both for their ability to increase the production of shorter fatty acids, and for their involvement in fatty acid secretion in bacterial systems. Here we show that the heterologous expression of two thioesterases, biased towards the production of lauric (C12:0) and myristic acid (C14:0), causes increased accumulation of shorter chain length fatty acids in the eukaryotic microalga Phaeodactylum tricornutum. Accumulation of shorter chain length fatty acids corresponds to transgene transcript levels. We achieved levels of C12:0 of up to 6.2% of total fatty acids and C14:0 of up to 15% by weight. Unlike observations in cyanobacteria, no significant secretion of fatty acids was observed. Instead, we found that 75-90% of the shorter chain length fatty acids produced was incorporated into triacylglycerols. Our results demonstrate that overexpression of thioesterases is a valid way to improve the biofuel production phenotype of eukaryotic microalgae. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Human Fatty Acid Transport Protein 2a/Very Long Chain Acyl-CoA Synthetase 1 (FATP2a/Acsvl1) Has a Preference in Mediating the Channeling of Exogenous n-3 Fatty Acids into Phosphatidylinositol*

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; Watkins, Paul A.; DiRusso, Concetta C.; Black, Paul N.

    2011-01-01

    The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. We have expressed two naturally occurring splice variants of human FATP2 (Acsvl1) in yeast and 293T-REx cells and addressed their roles in fatty acid transport, activation, and intracellular trafficking. Although both forms (FATP2a (Mr 70,000) and FATP2b (Mr 65,000 and lacking exon3, which encodes part of the ATP binding site)) were functional in fatty acid import, only FATP2a had acyl-CoA synthetase activity, with an apparent preference toward very long chain fatty acids. To further address the roles of FATP2a or FATP2b in fatty acid uptake and activation, LC-MS/MS was used to separate and quantify different acyl-CoA species (C14–C24) and to monitor the trafficking of different classes of exogenous fatty acids into intracellular acyl-CoA pools in 293T-REx cells expressing either isoform. The use of stable isotopically labeled fatty acids demonstrated FATP2a is involved in the uptake and activation of exogenous fatty acids, with a preference toward n-3 fatty acids (C18:3 and C22:6). Using the same cells expressing FATP2a or FATP2b, electrospray ionization/MS was used to follow the trafficking of stable isotopically labeled n-3 fatty acids into phosphatidylcholine and phosphatidylinositol. The expression of FATP2a resulted in the trafficking of C18:3-CoA and C22:6-CoA into both phosphatidylcholine and phosphatidylinositol but with a distinct preference for phosphatidylinositol. Collectively these data demonstrate FATP2a functions in fatty acid transport and activation and provides specificity toward n-3 fatty acids in which the corresponding n-3 acyl-CoAs are preferentially trafficked into acyl-CoA pools

  7. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids...

  8. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  9. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  10. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  11. The role of membrane fatty-acid transporters in regulating skeletal muscle substrate use during exercise.

    PubMed

    Pelsers, Maurice M A L; Stellingwerff, Trent; van Loon, Luc J C

    2008-01-01

    While endogenous carbohydrates form the main substrate source during high-intensity exercise, long-chain fatty acids (LCFA) represent the main substrate source during more prolonged low- to moderate-intensity exercise. Adipose tissue lipolysis is responsible for the supply of LCFA to the contracting muscle. Once taken up by skeletal muscle tissue, LCFA can either serve as a substrate for oxidative phosphorylation or can be directed towards esterification into triacylglycerol. Myocellular uptake of LCFA comprises a complex and incompletely understood process. Although LCFA can enter the cell via passive diffusion, more recent reports indicate that LCFA uptake is tightly regulated by plasma membrane-located transport proteins (fatty acid translocase [FAT/CD36], plasmalemmal-located fatty acid binding protein [FABPpm] and fatty acid transport protein [FATP]). Depending on cardiac and skeletal muscle energy demands, some of these LCFA transporters can translocate rapidly from intracellular pools to the plasma membrane to allow greater LCFA uptake. This translocation process can be induced by insulin and/or muscle contraction. However, the precise signalling pathways responsible for activating the translocation machinery remain to be elucidated. This article will provide an overview on the effects of diet, acute exercise and exercise training on the expression and/or translocation of the various LCFA transporters in skeletal muscle tissue (FAT/CD36, FABPpm, FATP).

  12. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

    PubMed Central

    Salameh, Ahmad; Daquinag, Alexes C.; Staquicini, Daniela I.; An, Zhiqiang; Pasqualini, Renata; Kolonin, Mikhail G.

    2016-01-01

    We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases. PMID:27468426

  13. Fatty acid biosynthesis in novel ufa mutants of Neurospora crassa.

    PubMed

    Goodrich-Tanrikulu, M; Stafford, A E; Lin, J T; Makapugay, M I; Fuller, G; McKeon, T A

    1994-10-01

    New mutants of Neurospora crassa having the ufa phenotype have been isolated. Two of these mutants, like previously identified ufa mutants, require an unsaturated fatty acid for growth and are almost completely blocked in the de novo synthesis of unsaturated fatty acids. The new mutations map to a different chromosomal location than previously characterized ufa mutations. This implies that at least one additional genetic locus controls the synthesis of unsaturated fatty acids in Neurospora.

  14. Fatty acid supplements improve hair coat condition in rhesus macaques.

    PubMed

    Hamel, A F; Menard, M T; Novak, M A

    2017-05-02

    As captive rhesus macaques often exhibit hair loss, alopecia was quantified and behavior was recorded before, during, and after fatty acid supplementation in six macaques. Fatty acid treatment was associated with a decrease in alopecia and in self-grooming behavior. Therefore, fatty acids may be a viable treatment for alopecia in some captive primates. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. 40 CFR 721.10682 - Fatty acid amide hydrochlorides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide hydrochlorides... Specific Chemical Substances § 721.10682 Fatty acid amide hydrochlorides (generic). (a) Chemical substances... fatty acid amide hydrochlorides (PMNs P-13-63, P-13-64, P-13-65, P-13-69, P-13-70, P-13-71, P-13-72,...

  16. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  17. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  18. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  19. Cellular fatty acid composition of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus.

    PubMed Central

    Braunthal, S D; Holt, S C; Tanner, A C; Socransky, S S

    1980-01-01

    Strains of Actinobacillus actinomycetemcomitans isolated from deep pockets of patients with juvenile periodontitis were analyzed for their content of cellular fatty acids. Oral Haemophilus strains, morphologically and biochemically similar to Haemophilus aphrophilus, were also examined for their content of cellular fatty acids. The extractable lipids of the actinobacilli represented approximately 10% of the cell dry weight, with the bound lipids representing 2 to 5%. The major fatty acids consisted of myristic (C14:0) and palmitic (C16:0) acids and a C16:1 acid, possibly palmitoleic acid, accounting for 21, 35, and 31% of the total extractable fatty acids, respectively. Haemophilus strains had a similar cellular fatty acid content. PMID:7430333

  20. Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation.

    PubMed

    Clarke, S D; Turini, M; Jump, D B; Abraham, S; Reedy, M

    1998-01-01

    Polyunsaturated fatty acids (PUFA) of the (n-6) and (n-3) families inhibit the rate of gene transcription for a number of hepatic lipogenic and glycolytic genes, e.g., fatty acid synthase (FAS). In contrast, saturated and monounsaturated fatty acids have no inhibitory capability. The suppression of gene transcription resulting from the addition of PUFA to a high carbohydrate diet: occurs quickly (< 3 h) after its addition to a high glucose diet; can be recreated with hepatocytes cultured in a serum-free medium containing insulin and glucocorticoids; can be demonstrated in diabetic rats fed fructose; and is independent of glucagon. While the nature of the intracellular PUFA inhibitor is unclear, it appears that delta-6 desaturation is a required step in the process. Recently, the fatty acid activated nuclear factor, peroxisome-proliferator activated receptor (PPAR) was suggested to be the PUFA-response factor. However, the potent PPAR activators ETYA and Wy-14643 did not suppress hepatic expression of FAS, but did induce the PPAR-responsive gene, acyl-CoA oxidase (AOX). Similarly, treating rat hepatocytes with 20:4 (n-6) suppressed FAS expression but had no effect on AOX. Thus, it appears that the PUFA regulation of gene transcription involves a PUFA-response factor that is independent from PPAR.

  1. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production

    PubMed Central

    Gajewski, Jan; Pavlovic, Renata; Fischer, Manuel; Boles, Eckhard; Grininger, Martin

    2017-01-01

    Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms. PMID:28281527

  2. Dietary omega-3 fatty acid intake and cardiovascular risk.

    PubMed

    Psota, Tricia L; Gebauer, Sarah K; Kris-Etherton, Penny

    2006-08-21

    Dietary omega-3 fatty acids decrease the risk of cardiovascular disease (CVD). Both epidemiologic and interventional studies have demonstrated beneficial effects of omega-3 fatty acids on many CVD end points, including all CVD (defined as all coronary artery disease [CAD], fatal and nonfatal myocardial infarction [MI], and stroke combined), all CAD, fatal and nonfatal MI, stroke, sudden cardiac death, and all-cause mortality. Much of the evidence comes from studies with fish oil and fish; to a lesser extent, data relate to plant-derived omega-3 fatty acids. Cardioprotective benefits have been observed with daily consumption of as little as 25 to 57 g (approximately 1 to 2 oz) of fish high in omega-3 fatty acids, an intake equivalent to >or=1 fish meal weekly or even monthly, with greater intakes decreasing risk further in a dose-dependent manner, up to about 5 servings per week. Fish, including farm-raised fish and their wild counterparts, are the major dietary sources of the longer-chain omega-3 fatty acids. Sources of plant-derived omega-3 fatty acids include flaxseed, flaxseed oil, walnuts, canola oil, and soybean oil. Because of the remarkable cardioprotective effects of omega-3 fatty acids, consumption of food sources that provide omega-3 fatty acids--especially the longer-chain fatty acids (>or=20 carbons) from marine sources--should be increased in the diet to decrease CVD risk significantly.

  3. Radioiodinated methyl-branched fatty acids: Evaluation of catabolites formed in vivo

    SciTech Connect

    Knapp, F.F. Jr.; Reske, S.N.; Kirsch, G.; Ambrose, K.R.; Blystone, S.L.; Goodman, M.M.

    1987-01-01

    Radioiodinated terminal iodophenyl-substituted long-chain fatty acids containing either racemic mono-methyl or geminal dimethyl-branching in the alkyl chain have been shown to exhibit delayed myocardial clearance properties which make these agents useful for the SPECT evaluation of myocardial fatty acid uptake patterns. Although the myocardial clearance rate of 15-(p-iodophenyl)-3-R,S- methylpentadecanoic acid (BMIPP) is considerably delayed, in comparison with the IPPA straight-chain analogue, analysis of the radioiodinated lipids present in the outflow tract of isolated rat hearts administered BMIPP have clearly demonstrated the presence of a polar metabolite. The synthesis of ..beta..-hydroxy fatty acids has been developed to allow investigation of the possible formation of ..beta..-hydroxy catabolites in vivo. The preparation of ..beta..-hydroxy BMIPP and ..beta..-hydroxy IPPA are described, and the possible significance of their formation in vivo discussed. 4 figs.

  4. Nucleic acids encoding metal uptake transporters and their uses

    DOEpatents

    Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan

    1999-01-01

    The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

  5. Algal swimming velocities signal fatty acid accumulation.

    PubMed

    Hansen, Travis J; Hondzo, Miki; Mashek, Mara T; Mashek, Douglas G; Lefebvre, Paul A

    2013-01-01

    The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics.

  6. Antiarrhythmic effects of omega-3 fatty acids.

    PubMed

    Reiffel, James A; McDonald, Arline

    2006-08-21

    Fish oil, and omega-3 fatty acids in particular, have been found to reduce plasma levels of triglycerides and increase levels of high-density lipoprotein in patients with marked hypertriglyceridemia, and a pharmaceutical-grade preparation has recently received approval from the US Food and Drug Administration to market for this purpose. However, in both bench research studies and clinical trials, evidence for clinically significant antiarrhythmic properties has also been detected in association with omega-3 fatty acid intake. Arguably the most significant finding in this data set was the reduction in the incidence of sudden death in survivors of myocardial infarction in the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione trial and the subsequent recommendation for administration of fish oil as part of the postinfarction regimen in Europe. This article reviews in detail the basic and clinical research studies of fish oil as an antiarrhythmic entity, the forms of preparation and/or administration that appear to possess these properties and those that do not, the types of arrhythmias (ventricular ectopy and atrial fibrillation as well as ventricular tachyarrhythmias) that have been beneficially affected by fish oil administration, and the presumed and known mechanisms by which the beneficial actions are exerted.

  7. Acetylenes and fatty acids from Codonopsis pilosula

    PubMed Central

    Jiang, Yueping; Liu, Yufeng; Guo, Qinglan; Jiang, Zhibo; Xu, Chengbo; Zhu, Chenggen; Yang, Yongchun; Lin, Sheng; Shi, Jiangong

    2015-01-01

    Four new acetylenes (1–4) and one new unsaturated ω-hydroxy fatty acid (5), together with 5 known analogues, were isolated from an aqueous extract of Codonopsis pilosula roots. Their structures were determined by spectroscopic and chemical methods. The new acetylenes are categorized as an unusual cyclotetradecatrienynone (1), tetradecenynetriol (2), and rare octenynoic acids (3 and 4), respectively, and 3 and 4 are possibly derived from oxidative metabolic degradation of 1 and/or 2. The absolute configuration of 1 was assigned by comparison of the experimental circular dichroism (CD) spectrum with the calculated electronic circular dichroism (ECD) spectra of stereoisomers based on the quantum-mechanical time-dependent density functional theory, while the configuration of 2 was assigned by using modified Mosher׳s method based on the MPA determination rule of ΔδRS values for diols. PMID:26579449

  8. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  9. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  10. Fatty acids profiling reveals potential candidate markers of semen quality.

    PubMed

    Zerbinati, C; Caponecchia, L; Rago, R; Leoncini, E; Bottaccioli, A G; Ciacciarelli, M; Pacelli, A; Salacone, P; Sebastianelli, A; Pastore, A; Palleschi, G; Boccia, S; Carbone, A; Iuliano, L

    2016-11-01

    Previous reports showed altered fatty acid content in subjects with altered sperm parameters compared to normozoospermic individuals. However, these studies focused on a limited number of fatty acids, included a short number of subjects and results varied widely. We conducted a case-control study involving 155 patients allocated into four groups, including normozoospermia (n = 33), oligoasthenoteratozoospermia (n = 32), asthenozoospermia (n = 25), and varicocoele (n = 44). Fatty acid profiling, including 30 species, was analyzed by a validated gas chromatography (GC) method on the whole seminal fluid sample. Multinomial logistic regression modeling was used to identify the associations between fatty acids and the four groups. Specimens from 15 normozoospermic subjects were also analyzed for fatty acids content in the seminal plasma and spermatozoa to study the distribution in the two compartments. Fatty acids lipidome varied markedly between the four groups. Multinomial logistic regression modeling revealed that high levels of palmitic acid, behenic acid, oleic acid, and docosahexaenoic acid (DHA) confer a low risk to stay out of the normozoospermic group. In the whole population, seminal fluid stearic acid was negatively correlated (r = -0.53), and DHA was positively correlated (r = 0.65) with sperm motility. Some fatty acids were preferentially accumulated in spermatozoa and the highest difference was observed for DHA, which was 6.2 times higher in spermatozoa than in seminal plasma. The results of this study highlight complete fatty acids profile in patients with different semen parameters. Given the easy-to-follow and rapid method of analysis, fatty acid profiling by GC method can be used for therapeutic purposes and to measure compliance in infertility trials using fatty acids supplements. © 2016 American Society of Andrology and European Academy of Andrology.

  11. [Raman spectrometry of several saturated fatty acids and their salts].

    PubMed

    Luo, Man; Guan, Ping; Liu, Wen-hui; Liu, Yan

    2006-11-01

    Saturated fatty acids and their salts widely exist in the nature, and they are well known as important chemical materials. Their infrared spectra have been studied in detail. Nevertheless, few works on the Raman spectra characteristics of saturated fatty acids and their salts have been published before. Man-made crystals of acetic acid, stearic acid, calcium acetate, magnesium acetate, calcium stearate and magnesium stearate were investigated by means of Fourier transform Raman spectrometry for purpose of realizing their Raman spectra. Positive ions can cause the distinctions between the spectra of saturated fatty acids and their salts. The differences in mass and configuration between Ca2+ and Mg2+ result in the Raman spectra's diversity between calcium and magnesium salts of saturated fatty acids. Meanwhile, it is considered that the long carbon chain weakened the influence of different positive ions on the salts of saturated fatty acids.

  12. Structure-activity relationship of reversibly lipidized peptides: studies of fatty acid-desmopressin conjugates.

    PubMed

    Wang, Jeff; Wu, Daphne; Shen, Wei-Chiang

    2002-05-01

    To synthesize a series of reversible fatty acid-desmopressin (DDAVP) conjugates and to study their structure-activity relationship as anti-diuretic drugs. Seven fatty acid conjugates of DDAVP were prepared using various reversible lipidization reagents as described in our previous reports. All products were purified by acid precipitation and/or size-exclusion chromatography. Reversed-phase HPLC was used to evaluate their purity and lipophilicity. The anti-diuretic efficacy of these fatty acid conjugates was assessed in vasopressin-deficient Brattleboro rats. Four selected conjugates, i.e., DPA, DPH, DPD and DPP (acetic, hexanoic. decanoic, and palmitic acid conjugate, respectively), along with DDAVP itself were used in Caco-2 cell uptake studies and their degradation and the regeneration of active DDAVP were investigated using an in vitro liver slice metabolic system coupled with a HPLC assay. All fatty acid-DDAVP conjugates were more lipophilic than DDAVP as examined by HPLC analyses. When cysteine was used as the linker, the capacity index (k', a measure of lipophilicity) of the conjugates was linearly correlated with the number of carbons in the fatty acid chain. The anti-diuretic activity of the conjugates was correlated with the length of the fatty acid chain, with C10 as the minimal requirement for possessing the enhanced anti-diuretic activity. Among the seven fatty acid conjugates, palmitic acid conjugate was the most potent DDAVP derivative. Removal of carboxyl group from the cysteine linker completely abolished the enhancement of the activity. The extent of cellular uptake also positively correlated with the lipophilicity of the conjugates. The metabolism of DDAVP, DPH, DPD, and DPP by liver slices all followed first order kinetics with half-life of 0.30, 0.01, 0.06 and 3.44 hr, respectively. The degradation rates of DPH and DPD in the liver slice incubation were much faster than that of DDAVP and therefore an accumulation of regenerated DDAVP in the

  13. Resolution and quantification of isomeric fatty acids by silver ion HPLC: fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae).

    PubMed

    Denev, Roumen V; Kuzmanova, Ivalina S; Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2011-01-01

    A silver ion HPLC procedure is described that is suitable to determine the fatty acid composition of plant seed oils. After conversion of fatty acids to p-methoxyphenacyl derivatives, it was possible to achieve baseline resolution of all fatty acid components with 0 to 3 double bonds, including the positionally isomeric 18:1 fatty acids oleic acid (cis 9-18:1), petroselinic acid (cis 6-18:1), and cis-vaccenic acid (cis 11-18:1), in aniseed oil (Pimpinella anisum, Apiaceae) by a single gradient run on a single cation exchange column laboratory converted to the silver ion form. The UV detector response (280 nm) was linearly related to the fatty acid concentration in the range 0.01 to 3.5 mg/mL.

  14. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    PubMed

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  15. Abnormal myocardial fatty acid metabolism in dilated cardiomyopathy detected by iodine-123 phenylpentadecanoic acid and tomographic imaging

    SciTech Connect

    Ugolini, V.; Hansen, C.L.; Kulkarni, P.V.; Jansen, D.E.; Akers, M.S.; Corbett, J.R.

    1988-11-01

    The radioidinated synthetic fatty acid iodine-123 phenylpentadecanoic acid (IPPA) has proven useful in the identification of regional abnormalities of cardiac metabolism in patients with myocardial ischemia. The present study was performed to test the hypothesis that the myocardial distribution and turnover of fatty acids, assessed noninvasively with IPPA, are altered in patients with cardiomyopathy. Nine normal volunteers and 19 patients with dilated cardiomyopathy of various etiologies underwent cardiac imaging with single-photon emission computed tomography (SPECT) after intravenous injection of IPPA. Apical short-axis and basal short-axis sections were reconstructed and quantitatively analyzed for relative IPPA activity distribution and washout. Patients with congestive cardiomyopathy demonstrated significantly greater heterogeneity of IPPA uptake than normal subjects (maximal percent variation of activity 27 +/- 11 vs 18 +/- 4, p less than 0.01). They also demonstrated a more rapid percent washout rate than control subjects (24 +/- 8 vs 17 +/- 6 for the apical short-axis section, p less than 0.05; 26 +/- 7 vs 18 +/- 5 for the basal short-axis section, p less than 0.01). These abnormalities of fatty acid distribution and turnover were independent of the etiology of the cardiomyopathy. The degree of heterogeneity of IPPA uptake was significantly related to the patients' New York Heart Association functional class (r = 0.64, p less than 0.01). Thus, compared with normal myocardium, the myocardium of patients with congestive cardiomyopathy demonstrates a more heterogeneous distribution of fatty acid uptake, which parallels the clinical severity of the disease. Furthermore, patients with congestive cardiomyopathy demonstrate a more rapid myocardial clearance of the labeled fatty acid, as assessed with SPECT imaging.

  16. Polyunsaturated fatty acids and inflammatory diseases.

    PubMed

    Gil, A

    2002-10-01

    Inflammation is overall a protective response, whose main goal is to liberate the human being of cellular lesions caused by micro-organisms, toxins, allergens, etc., as well as its consequences, and of death cells and necrotic tissues. Chronic inflammation, which is detrimental to tissues, is the basic pathogenic mechanism of hypersensitivity reactions against xenobiotics. Other frequent pathologies, for instance atherosclerosis, chronic hepatitis, inflammatory bowel disease (IBD), liver cirrhosis, lung fibrosis, psoriasis, and rheumatoid arthritis are also chronic inflammatory diseases. Chemical mediators of inflammation are derived from blood plasma or different cell-type activity. Biogenic amines, eicosanoids and cytokines are within the most important mediators of inflammatory processes. The different activities of eicosanoids derived from arachidonic acid (20:4 n-6) versus those derived from eicosapentaenoic acid (20:5 n-3) are one of the most important mechanisms to explain why n-3, or omega-3, polyunsaturated fatty acids (PUFA) exhibit anti-inflammatory properties in many inflammatory diseases. Dietary supplements ranging 1-8 g per day of n-3 PUFA have been reportedly beneficial in the treatment of IBD, eczema, psoriasis and rheumatoid arthritis. In addition, recent experimental studies in rats with experimental ulcerative colitis, induced by intrarectal injection of trinitrobenzene sulphonic acid, have documented that treatment with n-3 long-chain PUFA reduces mucosal damage as assessed by biochemical and histological markers of inflammation. Moreover, the defence antioxidant system in this model is enhanced in treated animals, provided that the n-3 PUFA supply is adequately preserved from oxidation.

  17. [Possible route for thiamine participation in fatty acid synthesis].

    PubMed

    Buko, V U; Larin, F S

    1976-01-01

    The possibility of thiamine partaking in the synthesis of fatty acids through the functions unrelated to the catalytic properties of thiamine-diphosphate was studied. Rats kept on a fat-free ration devoid of thiamine were given thiamine of thiochrome with no vitaminic properties. The total fatty acids content in different tissues and incorporation therein of tagged acetate and pyruvate was determined, while the fatty acids composition of the liver was investigated by using gas chromatography. Thiamine and thiochrome produced a similar effect on a number of the study factors, i.e. they forced down the total acids level in the spleen, intensified incorporation of tagged acetate and pyruvate in fatty acids of the heart and uniformly changed the fatty acids composition in the liver. It is suggested that the unindirectional effects of thiamine and thiochrome is due to the oxidative transformation of thiamine into thiochrome.

  18. [Fat and fatty acids chosen in chocolates content].

    PubMed

    Tarkowski, Andrzej; Kowalczyk, Magdalena

    2007-01-01

    The objective of present work was to comparison of fat and chosen fatty acid in chocolates with, approachable on national market. In the investigations on fat and fatty acids content in the milk chocolates, there were used 14 chocolates, divided into 3 groups either without, with supplements and stuffing. Crude fat content in the chocolates was determined on Soxhlet automatic apparatus. The saturated ad nsaturated acids content was determined using gas chromatographic method. Content of fat and fatty cids in chocolates were differentiation. The highest crude fat content was finding in chocolates with tuffing (31.8%) and without supplements (28.9%). The sum of saturated fatty acids content in fat above 62%) was highest and low differentiation in the chocolates without supplements. Among of saturated and unsaturated fatty acids depended from kind of chocolates dominated, palmitic, stearic, oleic and, linoleic acids. Supplements of nut in chocolates had on influence of high oleic and linoleic level

  19. Fatty acid composition of two Tunisian pine seed oils.

    PubMed

    Nasri, Nizar; Khaldi, Abdelhamid; Hammami, Mohamed; Triki, Saida

    2005-01-01

    Oils were extracted from fully ripen Pinus pinea L. and Pinus halepensis Mill seeds and fatty acid composition has been established by capillary gas chromatography. Seeds are rich in lipids, 34.63-48.12% on a dry weight basis. Qualitatively, fatty acid composition of both species is identical. For P. halepensis linoleic acid is the major fatty acid (56.06% of total fatty acids) followed by oleic (24.03%) and palmitic (5.23%) acids. For P. pinea, the same fatty acids are found with the proportions 47.28%, 36.56%, and 6.67%, respectively. Extracted fatty acids from both species are mainly unsaturated, respectively, 89.87% and 88.01%. Pinus halepensis cis-5 olefinic acids are more abundant (7.84% compared to 2.24%). Results will be important as a good indication of the potential nutraceutical value of Pinus seeds as new sources of fruit oils rich in polyunsaturated fatty acids and cis-5 olefinic acids.

  20. Omega-3 Fatty Acids in the Management of Epilepsy.

    PubMed

    Tejada, Silvia; Martorell, Miquel; Capó, Xavier; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2016-01-01

    Omega-3 and omega-6 fatty acids are polyunsaturated fatty acids (PUFAs) with multiple double bonds. Linolenic and alpha-linolenic acids are omega-6 and omega-3 PUFAs, precursors for the synthesis of long-chain PUFAs (LC-PUFAs), such as arachidonic acid (omega-6 PUFA), and eicosapentaenoic and docosahexaenoic acids (omega-3 PUFAs). The three most important omega-3 fatty acids are alpha-linolenic, eicosapentaenoic and docosahexaenoic acids, which cannot be synthesized in enough amounts by the body, and therefore they must be supplied by the diet. Omega-3 fatty acids are essential for the correct functioning of the organism and participate in many physiological processes in the brain. Epilepsy is a common and heterogeneous chronic brain disorder characterized by recurrent epileptic seizures leading to neuropsychiatric disabilities. The prevalence of epilepsy is high achieving about 1% of the general population. There is evidence suggesting that omega-3 fatty acids may have neuroprotective and anticonvulsant effects and, accordingly, may have a potential use in the treatment of epilepsy. In the present review, the potential use of omega-3 fatty acids in the treatment of epilepsy, and the possible proposed mechanisms of action are discussed. The present article summarizes the recent knowledge of the potential protective role of dietary omega-3 fatty acids in epilepsy.

  1. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  2. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  3. Site-selective Alkane Dehydrogenation of Fatty Acids

    DTIC Science & Technology

    2011-12-14

    dehydrogenation of fatty acids Contract/Grant#: FA9550-10-1-0532 Final Reporting Period: 15 September 2011 to 14 September 2011...directly incorporate fatty acids into the ligand. The preparation of the acyl phosphines (1-5) was easily accomplished starting from the corresponding...AFOSR Final Report Final Report 
 The proposed research examines the site-selective dehydrogenation of alkanes. The alkanes employed were fatty

  4. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.

    PubMed

    Yoshinaga, Naoko; Alborn, Hans T; Nakanishi, Tomoaki; Suckling, David M; Nishida, Ritsuo; Tumlinson, James H; Mori, Naoki

    2010-03-01

    Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

  5. Modulating fatty acid oxidation in heart failure

    PubMed Central

    Lionetti, Vincenzo; Stanley, William C.; Recchia, Fabio A.

    2011-01-01

    In the advanced stages of heart failure, many key enzymes involved in myocardial energy substrate metabolism display various degrees of down-regulation. The net effect of the altered metabolic phenotype consists of reduced cardiac fatty oxidation, increased glycolysis and glucose oxidation, and rigidity of the metabolic response to changes in workload. Is this metabolic shift an adaptive mechanism that protects the heart or a maladaptive process that accelerates structural and functional derangement? The question remains open; however, the metabolic remodelling of the failing heart has induced a number of investigators to test the hypothesis that pharmacological modulation of myocardial substrate utilization might prove therapeutically advantageous. The present review addresses the effects of indirect and direct modulators of fatty acid (FA) oxidation, which are the best pharmacological agents available to date for ‘metabolic therapy’ of failing hearts. Evidence for the efficacy of therapeutic strategies based on modulators of FA metabolism is mixed, pointing to the possibility that the molecular/biochemical alterations induced by these pharmacological agents are more complex than originally thought. Much remains to be understood; however, the beneficial effects of molecules such as perhexiline and trimetazidine in small clinical trials indicate that this promising therapeutic strategy is worthy of further pursuit. PMID:21289012

  6. Modulating fatty acid oxidation in heart failure.

    PubMed

    Lionetti, Vincenzo; Stanley, William C; Recchia, Fabio A

    2011-05-01

    In the advanced stages of heart failure, many key enzymes involved in myocardial energy substrate metabolism display various degrees of down-regulation. The net effect of the altered metabolic phenotype consists of reduced cardiac fatty oxidation, increased glycolysis and glucose oxidation, and rigidity of the metabolic response to changes in workload. Is this metabolic shift an adaptive mechanism that protects the heart or a maladaptive process that accelerates structural and functional derangement? The question remains open; however, the metabolic remodelling of the failing heart has induced a number of investigators to test the hypothesis that pharmacological modulation of myocardial substrate utilization might prove therapeutically advantageous. The present review addresses the effects of indirect and direct modulators of fatty acid (FA) oxidation, which are the best pharmacological agents available to date for 'metabolic therapy' of failing hearts. Evidence for the efficacy of therapeutic strategies based on modulators of FA metabolism is mixed, pointing to the possibility that the molecular/biochemical alterations induced by these pharmacological agents are more complex than originally thought. Much remains to be understood; however, the beneficial effects of molecules such as perhexiline and trimetazidine in small clinical trials indicate that this promising therapeutic strategy is worthy of further pursuit.

  7. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids.

    PubMed

    Den Ruijter, Hester M; Verkerk, Arie O; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy.

  8. Incorporated Fish Oil Fatty Acids Prevent Action Potential Shortening Induced by Circulating Fish Oil Fatty Acids

    PubMed Central

    Ruijter, Hester M. Den; Verkerk, Arie O.; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy. PMID:21423389

  9. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  10. 6-methyl-8-hexadecenoic acid: A novel fatty acid from the marine spongeDesmapsama anchorata.

    PubMed

    Carballeira, N M; Maldonado, M E

    1988-07-01

    The novel fatty acid 7-methyl-8-hexadecenoic (1) was identified in the marine spongeDesmapsama anchorata. Other interesting fatty acids identified were 14-methyl-8-hexadecenoic (2), better known through its methyl ester as one of the components of the sex attractant of the female dermestid beetle, and the saturated fatty acid 3-methylheptadecanoic (3), known to possess larvicidal activity. The main phospholipid fatty acids encountered inD. anchorata were palmitic (16∶0), behenic (22∶0) and 5,9-hexacosadienoic acid (26∶2), which together accounted for 50% of the total phospholipid fatty acid mixture.

  11. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus.

    PubMed

    Shi, Jianghua; Lang, Chunxiu; Wu, Xuelong; Liu, Renhu; Zheng, Tao; Zhang, Dongqing; Chen, Jinqing; Wu, Guanting

    2015-10-23

    The quality and end-use of oil from oilseed crops is determined by its fatty acid composition. In particular, the relative proportions of erucic and oleic acids are key selection traits for breeders. The goal of our research is to genetically improve the nutritional quality of Brassica napus cultivar CY2, the oil of which is high in erucic acid (about 40%) and low in oleic acid (about 20%). Here, we report the use of a seed-specific napin A promoter to drive the knockdown of BnFAE1 in transgenic CY2. Southern blotting results confirmed the presence of the transgene. RT-PCR analysis showed that the levels of BnFAE1 were greatly decreased in BnFAE1-Ri lines compared with the CY2 cultivar. Knockdown of BnFAE1 sharply decreased the levels of erucic acid (less than 3%), largely increased the contents of oleic acid (more than 60%) and slightly increased the polyunsaturated chain fatty acids. Compared with high erucic acid parents, expression of BnFAE1 was dramatically decreased in developing F1 seeds derived from reciprocally crossed BnFAE1-Ri lines and high erucic acid cultivars. In addition, F1 seeds derived from reciprocal crosses between BnFAE1-Ri lines and high erucic acid cultivars showed significantly increased oleic acid (more than 52%) and sharply decreased erucic acid (less than 4%), demonstrating that the RNAi construct of BnFAE1 can effectively interfere with the target gene in F1 seeds. Taken together, our results demonstrate that BnFAE1 is a reliable target for genetic improvement of rapeseed in seed oil quality promotion. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Associations of erythrocyte fatty acid patterns with insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  13. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Salts of volatile fatty acids. 573.914 Section 573...

  14. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Salts of volatile fatty acids. 573.914 Section 573...

  15. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... accordance with the following prescribed conditions: (a) They are prepared from corn oil, cottonseed oil, lard, palm oil from fruit, peanut oil, safflower oil, sesame oil, soybean oil, and tallow and the fatty....860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862....

  16. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    DOE PAGES

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less

  17. Fatty acid composition of seed oil from Fremontodendron californicum

    USDA-ARS?s Scientific Manuscript database

    The fatty acid composition of the low water-use shrub Fremontodendron californicum was examined by high temperature capillary gas chromatography. The ground seeds were extracted by supercritical fluid extraction (SFE) to obtain the oil (25.6% w/w) and for subsequent determination of the fatty acid c...

  18. An overview of the properties of fatty acid alkyl esters

    USDA-ARS?s Scientific Manuscript database

    Fatty acid alkyl esters of plant oils, especially in the form of methyl esters, have numerous applications with fuel use having received the most attention in recent times due to the potential high volume. Various properties imparted by neat fatty acid alkyl esters have been shown to influence fuel ...

  19. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  20. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  1. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  2. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  3. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  4. DETERGENCY OF THE 12 TO 18 CARBON SATURATED FATTY ACIDS

    DTIC Science & Technology

    saturated fatty acids ) were explored to determine the relationship of the detergencies of such systems to the physico-chemical nature (HLB, hydrophile...suggested that in such systems the chief action is van der Waals adsorption between hydr oxide mole ratio adducts of tridecyl alcohol are poor detergents of the saturated fatty acids .

  5. Distillation of natural fatty acids and their chemical derivatives

    USDA-ARS?s Scientific Manuscript database

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  6. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  7. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lactylic esters of fatty acids. 172.848 Section 172.848 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters...

  8. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lactylic esters of fatty acids. 172.848 Section 172.848 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters...

  9. Fatty acid profile of 25 alternative lipid feedstocks

    USDA-ARS?s Scientific Manuscript database

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  10. Fatty acid composition of Tilia spp. seed oils

    USDA-ARS?s Scientific Manuscript database

    As part of a study of the seed oil fatty acid composition of Malvaceae plants, seeds of seven Tilia species (limes or linden trees) were evaluated for their fatty acid profiles. Seeds were obtained from the Germplasm Research Information Network and from various commercial sources. After extractio...

  11. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  12. Determination of free fatty acids in beer.

    PubMed

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Factors affecting human colostrum fatty acid profile: A case study

    PubMed Central

    Cavouras, Dionisis; Boutsikou, Theodora; Briana, Despina D.; Lantzouraki, Dimitra Z.; Paliatsiou, Stella; Volaki, Paraskevi; Bratakos, Sotiris; Malamitsi-Puchner, Ariadne; Zoumpoulakis, Panagiotis

    2017-01-01

    The role of maternal colostrum to infant development has been extensively studied and presented. Among the main factors which contribute to breast milk composition are maternal diet, age and body mass index, parity, duration of pregnancy and stage of lactation. This study aims to investigate the potential impact of several factors including demographic (i.e. maternal age and nationality) on the colostrum fatty acid profile. Colostrum was collected the third day postpartum in a Greek maternity hospital. Certain lipid quality indices and fatty acid ratios were estimated and results were statistically processed. The main identified fatty acids were palmitic (C16:0), oleic (C18:1ω-9), and linoleic (C18:2ω-6) acids. Among fatty acids, saturated fatty acids predominated (47.61%), followed by monounsaturated fatty acids (39.26%), while polyunsaturated fatty acids had the lowest proportion (13.13%). Values of lipid quality indices were within the reported in the literature ranges. Maternal body mass index, nationality, age, mode of delivery, gender and fetal weight percentile were studied in respect to their potential influence on the fatty acid profile of colostrum fat. Results suggest that colostrum fatty acid profile was mainly dependent on maternal nationality and age rather than mode of delivery and maternal BMI. Regarding the effect of maternal nationality, significant differences were found for saturated and monounsaturated fatty acids. Of the most interesting findings is that colostrum fat from older (≥35 years) mothers had less saturated fat and more appropriate LQIs values. Finally, a reversed correlation was observed between the customized centile of the infants and the colostrum fat content. PMID:28410426

  14. Fatty acids profiles of some Spanish wild vegetables.

    PubMed

    Morales, P; Ferreira, I C F R; Carvalho, A M; Sánchez-Mata, M C; Cámara, M; Tardío, J

    2012-06-01

    Polyunsaturated fatty acids play an important role in human nutrition, being associated with several health benefits. The analyzed vegetables, in spite of its low fat content, lower than 2%, present a high proportion of polyunsaturated fatty acids of n-3, n-6 and n-9 series, such as α-linolenic, linoleic and oleic acids, respectively. Wild edible plants contain in general a good balance of n-6 and n-3 fatty acids. The present study tries to contribute to the preservation and valorization of traditional food resources, studying the fatty acids profile of 20 wild vegetables by gas-liquid chromatography with flame ionization detection. Results show that species in which leaves are predominant in their edible parts have in general the highest polyunsaturated fatty acid/saturated fatty acid ratios: Rumex pulcher (5.44), Cichorium intybus (5.14) and Papaver rhoeas (5.00). Due to the low n-6/n-3 ratios of the majority of the samples, they can be considered interesting sources of n-3 fatty acids, especially those with higher total fat amount, such as Bryonia dioica, Chondrilla juncea or Montia fontana, with the highest contents of α-linolenic acid (67.78, 56.27 and 47.65%, respectively). The wild asparaguses of Asparagus acutifolius and Tamus communis stand out for their linoleic acid content (42.29 and 42.45%, respectively). All these features reinforce the interest of including wild plants in diet, as an alternative to the variety of vegetables normally used.

  15. Production of extracellular fatty acid using engineered Escherichia coli.

    PubMed

    Liu, Hui; Yu, Chao; Feng, Dexin; Cheng, Tao; Meng, Xin; Liu, Wei; Zou, Huibin; Xian, Mo

    2012-04-03

    As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing 'TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn't strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-'tesA-ΔfadL) produced 4.8 g L⁻¹ extracellular fatty acid, with the specific productivity of 0.02 g h⁻¹ g⁻¹ dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-'tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain pACY-'tesA could also be chosen as

  16. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-07

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  17. Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat.

    PubMed

    Amusquivar, Encarnación; Herrera, Emilio

    2003-01-01

    To determine whether the composition of long-chain polyunsaturated fatty acids (PUFA) could be modified in the fetus by maternal dietary fatty acids, pregnant Sprague-Dawley rats were fed semipurified diets that differed only in the non-vitamin lipid component. The diets contained either 10 g palm, sunflower, olive or fish oil (FOD)/100 g diet. A total of 5-6 rats were studied in each group. At day 20 of gestation, corresponding to 1.5 days prior parturition, the fatty acids in maternal adipose tissue were closely related to the fatty acid composition in the corresponding diet. An important proportion of arachidonic acid (AA) appeared in maternal liver and plasma, although it was lower in the FOD than in the other groups. Except for saturated fatty acids, the proportion of individual fatty acids in the placenta correlated linearly with that in maternal plasma. Also, PUFA in fetal plasma and liver showed significant correlations with PUFA in maternal plasma. Again, AA showed the lowest proportion in the plasma and liver of the FOD group. Therefore, the maternal dietary fatty acid composition influences maternal and fetal plasma and tissue composition, and an increase in dietary omega-3 fatty acids decreases the amount of AA in maternal and fetal tissues.

  18. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  19. Fatty acid composition of selected macrophytes.

    PubMed

    Patarra, R F; Leite, J; Pereira, R; Baptista, J; Neto, A I

    2013-04-01

    The content of total lipids and the fatty acid (FA) profile were determined for eight macroalgae (Cystoseira abies-marina, Fucus spiralis, Chaetomorpha pachynema, Codium elisabethae, Porphyra sp., Osmundea pinnatifida, Pterocladiella capillacea and Sphaeroccoccus coronopifolius). Total lipids were extracted using a solvent mixture of methanol/chloroform (2/1, v/v) and further derivatised to FA methyl esters (FAME). The analyses of FAME samples were performed by gas chromatography coupled to a flame ionisation detector. The total lipid content ranged from 0.06 to 3.54 g (per 100 g). The most abundant saturated FA were palmitic (C16:0) and myristic (C14:0), while oleic (C18:1 n-9) was the dominant monounsaturated acid. All seaweeds contained linoleic FA (C18:2 n-6). The α-linolenic (C18:3 n-3) and eicosapentaenoic (20:5 n-3) acids were present only in Porphyra sp. (3.34% ± 0.13) and C. pachynema (0.47% ± 0.12), respectively. The n-6/n-3 and h/H ratios were low, suggesting a high nutritional value of the algae studied.

  20. Fatty acids as modulators of neutrophil recruitment, function and survival.

    PubMed

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Trans-fatty acids and cardiovascular risk: does origin matter?

    PubMed

    Dawczynski, Christine; Lorkowski, Stefan

    2016-09-01

    Several studies have aimed to unravel the contribution of different types of dietary fatty acids to human health and disease. Investigations have consistently shown that high consumption of industrially produced trans-fatty acids from partially hydrogenated vegetable oils is harmful to human health, in particular cardiovascular health. Therefore, the U.S. Food and Drug Administration announced that partially hydrogenated oils are no longer 'generally recognized as safe', and trans-fatty acids are not permitted in the U.S. food supply. On the other hand, recent studies analyzing the association between circulating trans-fatty acids and disease have revealed that some ruminant-specific trans-fatty acids are associated with a reduction in incidence of disease. In this special report, we highlight recent findings and point out perspectives for future studies on this topic.

  2. Fatty acids and the Endoplasmic Reticulum in Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Gentile, Christopher L.; Frye, Melinda A.; Pagliassotti, Michael J.

    2011-01-01

    Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning public health concernin westernized nations. The obesity-related disorder is associated with an increased risk of cardiovascular disease, type 2 diabetes and liver failure. Although the underlying pathogenesis of NAFLD is unclear, increasing evidence suggests that excess saturated fatty acids presented to or stored within the liver may play a role in both the development and progression of the disorder. Aputative mechanism linking saturated fatty acids to NAFLD may been doplasmic reticulum (ER) stress. Specifically, excess saturated fatty acids may induce an ER stress response that, if left unabated, can activate stress signaling pathways, cause hepatocyte cell death, and eventually lead to liver dysfunction. In the current review we discuss the involvement of saturated fatty acids in the pathogenesis of NAFLD with particular emphasis on the role of ER stress. PMID:21328622

  3. Cloning and functional expression of the first plant fatty acid elongase specific for Delta(6)-polyunsaturated fatty acids.

    PubMed

    Zank, T K; Zähringer, U; Lerchl, J; Heinz, E

    2000-12-01

    In order to elucidate the biosynthesis of long-chain polyunsaturated fatty acids (PUFAs) in plants we searched for a cDNA encoding a Delta(6)-specific PUFA elongase from Physcomitrella patens, which is known to contain high proportions of arachidonic acid (20:4 Delta(5,8,11,14)). An EST clone from P. patens was identified by its low homology to the yeast gene ELO1, which is required for the elongation of medium-chain fatty acids. We functionally characterized this cDNA by heterologous expression in Saccharomyces cerevisiae grown in the presence of several fatty acids. Analysis of the fatty acid profile of the transgenic yeast revealed that the cDNA encodes a protein that leads to the elongation of the C(18) Delta(6)-polyunsaturated fatty acids gamma-linolenic acid (18:3 Delta(6,9,12)) and stearidonic acid (18:4 Delta(6,9,12,15)), which were recovered to 45-51% as their elongation products. In contrast, linoleic and alpha-linolenic acids were hardly elongated and we could not measure any elongation of saturated and mono-unsaturated fatty acids (including 18:1 Delta(6)), indicating that the elongase is highly specific for the polyunsaturated nature of the fatty acid acting as substrate.

  4. Overproduction of a Functional Fatty Acid Biosynthetic Enzyme Blocks Fatty Acid Synthesis in Escherichia coli

    PubMed Central

    Subrahmanyam, Satyanarayana; Cronan, John E.

    1998-01-01

    β-Ketoacyl-acyl carrier protein (ACP) synthetase II (KAS II) is one of three Escherichia coli isozymes that catalyze the elongation of growing fatty acid chains by condensation of acyl-ACP with malonyl-ACP. Overexpression of this enzyme has been found to be extremely toxic to E. coli, much more so than overproduction of either of the other KAS isozymes, KAS I or KAS III. The immediate effect of KAS II overproduction is the cessation of phospholipid synthesis, and this inhibition is specifically due to the blockage of fatty acid synthesis. To determine the cause of this inhibition, we examined the intracellular pools of ACP, coenzyme A (CoA), and their acyl thioesters. Although no significant changes were detected in the acyl-ACP pools, the CoA pools were dramatically altered by KAS II overproduction. Malonyl-CoA increased to about 40% of the total cellular CoA pool upon KAS II overproduction from a steady-state level of around 0.5% in the absence of KAS II overproduction. This finding indicated that the conversion of malonyl-CoA to fatty acids had been blocked and could be explained if either the conversion of malonyl-CoA to malonyl-ACP and/or the elongation reactions of fatty acid synthesis had been blocked. Overproduction of malonyl-CoA:ACP transacylase, the enzyme catalyzing the conversion of malonyl-CoA to malonyl-ACP, partially relieved the toxicity of KAS II overproduction, consistent with a model in which high levels of KAS II blocks access of the other KAS isozymes to malonyl-CoA:ACP transacylase. PMID:9721301

  5. Fatty Acids, Lipid Mediators, and T-Cell Function

    PubMed Central

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  6. [Trans fatty acids (elaidic and vaccenic) in the human milk].

    PubMed

    Jamioł-Milc, Dominika; Stachowska, Ewa; Janus, Tomasz; Barcz, Anna; Chlubek, Dariusz

    2015-01-01

    The structure of trans unsaturated fatty acids (TFAs) includes at least one double bond with a trans configuration. Numerous studies have shown that TFAs influence negative changes in blood lipid profile, may initiate or accelerate the course of many inflammatory diseases, and reduce n-6 and n-3 fatty acids' utilization. Their presence in tissues and systemic fluids is mainly the result of ingestion of TFA-containing foods. The objective of this study was to determine the concentration profiles of elaidic and vaccenic acids in human milk, and the existence of potential correlations between the levels of trans-unsaturated fatty acids and long chain polyunsaturated fatty acids. The study group consisted of 53 lactating women, aged 18-39 years, 5-6 weeks after delivery. Elaidic and vaccenic acid levels were determined in human milk. Fatty acid methyl esters were injected onto the capillary column of an Agilent 6890M gas chromatography system integrated with an autosampler. Geometrical and positional isomers of fatty acids were identified by comparing their retention times with those of the fatty acid standards from Sigma-Aldrich. The content of individual fatty acids was determined from the reference curves and expressed in mg/mL. The level of elaidic acid was 0.2572 ± 0.1811 mg/mL, and the level of vaccenic acid was 0.2736 ± 0.1852 mg/mL. No negative correlations between the levels of the analyzed TFAs and PUFAs were observed in human milk. The levels of elaidic and vaccenic acid were similar and had no negative influence on the levels of arachidonic acid and docosahexaenoic acid.

  7. Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids.

    PubMed

    Scerbo, Diego; Son, Ni-Huiping; Sirwi, Alaa; Zeng, Lixia; Sas, Kelli M; Cifarelli, Vincenza; Schoiswohl, Gabriele; Huggins, Lesley-Ann; Gumaste, Namrata; Hu, Yunying; Pennathur, Subramaniam; Abumrad, Nada A; Kershaw, Erin E; Hussain, M Mahmood; Susztak, Katalin; Goldberg, Ira J

    2017-04-12

    Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or non-esterified fatty acids (NEFAs). With overnight fasting, kidneys accumulated triglyceride but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a beta adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cd36 mRNA increased 2-fold, and Angptl4, an LpL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LpL with poloxamer 407 or by use of mice with induced genetic LpL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter CD36.

  8. Inhibition of in vitro cholesterol synthesis by fatty acids.

    PubMed

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  9. Prenatal omega-3 fatty acids: review and recommendations.

    PubMed

    Jordan, Robin G

    2010-01-01

    The influence of dietary omega-3 fatty acids on health outcomes is widely recognized. The adequate intake of omega-3 fatty acids docasahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in particular can increase gestation length and improve infant cognitive and visual performance. Adequate levels of omega-3 fatty acids have also been shown to reduce the incidence of preterm birth in some populations. Research on prenatal omega-3 intake and other outcomes, such as preeclampsia and fetal growth restriction, is inconclusive. Women in the United States consume low levels of omega-3 fatty acids compared to omega-6 fatty acids; this dietary pattern is associated with poor health outcomes. Omega-3 fatty acids are found primarily in fish, yet many pregnant women avoid fish because of concerns about potential mercury and polychlorinated biphenyl contamination. It is important for prenatal care providers to assess women's diets for omega-3 fatty acid intake and ensure that pregnant women are consuming between 200 and 300 mg daily from safe food sources. Purified fish, algal oil supplements, and DHA-enriched eggs are alternative sources for pregnant women who do not eat fish.

  10. Fatty acids are precursors of alkylamines in Deinococcus radiodurans.

    PubMed Central

    Anderson, R; Huang, Y

    1992-01-01

    Deinococcus radiodurans contains novel phospholipids of which the structures of three have been previously described. These three lipids contain both fatty acids and alkylamines. Both the fatty acid and alkylamine constituents were found to be composed of a mixture of species, of which C15, C16, and C17 saturated and monounsaturated alkyl chains predominated. Alkylamines contained a relatively higher proportion of saturated species. Progression of bacterial growth through the mid-log to stationary phases was accompanied by an increase in the proportions of C15 and C17 alkyl chains in both fatty acid and alkylamine constituents. Radiolabeled palmitic acid was found to be rapidly incorporated into both fatty acid and alkylamine components of phosphatidylglyceroylalkylamine, which is the precursor of the more-complex phosphoglycolipids found in major amounts in D. radiodurans. After culturing D. radiodurans in the presence of a mixture of palmitic acids labeled with 14C and 3H in the 1 and 9,10 positions, respectively, the same 14C/3H ratio was recovered in both fatty acid and alkylamine constituents, strongly suggesting that alkylamines are derived from intact fatty acids rather than by a de novo pathway. The results identify a novel product of fatty acid metabolism which has not to date been observed in any other organism. Images PMID:1429439

  11. Characterization of ascorbic acid uptake by isolated rat kidney cells

    SciTech Connect

    Bowers-Komro, D.M.; McCormick, D.B. )

    1991-01-01

    Isolated kidney cells accumulated L(1-14C)ascorbic acid in a time-dependent manner and reached a steady state after 15 min at 37 degrees C. Initial velocity for uptake was over 300 pmol/mg protein per min when cells were separated from the bathing solution using a density gradient established during centrifugation. The uptake process was saturable with an apparent concentration at half maximal uptake of 36 mumols/L. Ascorbate uptake was reduced by metabolic inhibitors and was temperature dependent. Although ascorbic acid is an acid anion at pH 7.4, uptake did not appear to be inhibited by other acid anions such as p-aminohippurate and probenecid; however, involvement of the ion gradient established by Na+, H(+)-adenosine triphosphatase could not be confirmed. Replacing the sodium ion with other monovalent ions reduced the accumulation of ascorbate significantly. Isoascorbic and dehydroascorbic acids inhibited ascorbate uptake (34 and 13 mmol/L, respectively), whereas high concentrations of glucose showed some stimulation. These findings indicated that ascorbic acid is reabsorbed by the kidney in a sodium-dependent active transport process that is not common to other acid anions and has some specificity for the ascorbic acid structure.

  12. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela A.; Kuzyakov, Yakov

    2016-02-01

    Fatty acids have been used as plant and microbial biomarkers, and knowledge about their transformation pathways in soils and sediments is crucial for interpreting fatty acid signatures, especially because the formation, recycling and decomposition processes are concurrent. We analyzed the incorporation of free fatty acids into microbial fatty acids in soil by coupling position-specific 13C labeling with compound-specific 13C analysis. Position-specifically and uniformly 13C labeled palmitate were applied in an agricultural Luvisol. Pathways of fatty acids were traced by analyzing microbial utilization of 13C from individual molecule positions of palmitate and their incorporation into phospholipid fatty acids (PLFA). The fate of palmitate 13C in the soil was characterized by the main pathways of microbial fatty acid metabolism: Odd positions (C-1) were preferentially oxidized to CO2 in the citric acid cycle, whereas even positions (C-2) were preferentially incorporated into microbial biomass. This pattern is a result of palmitate cleavage to acetyl-CoA and its further use in the main pathways of C metabolism. We observed a direct, intact incorporation of more than 4% of the added palmitate into the PLFA of microbial cell membranes, indicating the important role of palmitate as direct precursor for microbial fatty acids. Palmitate 13C was incorporated into PLFA as intact alkyl chain, i.e. the C backbone of palmitate was not cleaved, but palmitate was incorporated either intact or modified (e.g. desaturated, elongated or branched) according to the fatty acid demand of the microbial community. These modifications of the incorporated palmitate increased with time. Future PLFA studies must therefore consider the recycling of existing plant and microbial-derived fatty acids. This study demonstrates the intact uptake and recycling of free fatty acids such as palmitate in soils, as well as the high turnover and transformation of cellular PLFA. Knowledge about the intact

  13. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase.

    PubMed

    Bisogno, T; Melck, D; De Petrocellis, L; Bobrov MYu; Gretskaya, N M; Bezuglov, V V; Sitachitta, N; Gerwick, W H; Di Marzo, V

    1998-07-30

    Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis of bioactive fatty acid amides and esters such as the endogenous cannabinoid receptor ligands, anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol, and the putative sleep inducing factor cis-9-octadecenoamide (oleamide). Most FAAH blockers developed to date also inhibit cytosolic phospholipase A2 (cPLA2) and/or bind to the CB1 cannabinoid receptor subtype. Here we report the finding of four novel FAAH inhibitors, two of which, malhamensilipin A and grenadadiene, were screened out of a series of thirty-two different algal natural products, and two others, arachidonoylethylene glycol (AEG) and arachidonoyl-serotonin (AA-5-HT) were selected out of five artificially functionalized polyunsaturated fatty acids. When using FAAH preparations from mouse neuroblastoma N18TG2 cells and [14C]anandamide as a substrate, the IC50s for these compounds ranged from 12.0 to 26 microM, the most active compound being AA-5-HT. This substance was also active on FAAH from rat basophilic leukaemia (RBL-2H3) cells (IC50 = 5.6 microM), and inhibited [14C]anandamide hydrolysis by both N18TG2 and RBL-2H3 intact cells without affecting [14C]anandamide uptake. While AEG behaved as a competitive inhibitor and was hydrolyzed to arachidonic acid (AA) by FAAH preparations, AA-5-HT was resistant to FAAH-catalyzed hydrolysis and behaved as a tight-binding, albeit non-covalent, mixed inhibitor. AA-5-HT did not interfere with cPLA2-mediated, ionomycin or antigen-induced release of [3H]AA from RBL-2H3 cells, nor with cPLA2 activity in cell-free experiments. Finally, AA-5-HT did not activate CB1 cannabinoid receptors since it acted as a very weak ligand in in vitro binding assays, and, at 10-15 mg/kg body weight, it was not active in the 'open field', 'hot plate' and rectal hypothermia tests carried out in mice. Conversely AEG behaved as a cannabimimetic substance in these tests as well as in the 'ring' immobility test where AA-5

  14. Recent trends in the advanced analysis of bioactive fatty acids.

    PubMed

    Ruiz-Rodriguez, Alejandro; Reglero, Guillermo; Ibañez, Elena

    2010-01-20

    The consumption of dietary fats have been long associated to chronic diseases such as obesity, diabetes, cancer, arthritis, asthma, and cardiovascular disease; although some controversy still exists in the role of dietary fats in human health, certain fats have demonstrated their positive effect in the modulation of abnormal fatty acid and eicosanoid metabolism, both of them associated to chronic diseases. Among the different fats, some fatty acids can be used as functional ingredients such as alpha-linolenic acid (ALA), arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), stearidonic acid (STA) and conjugated linoleic acid (CLA), among others. The present review is focused on recent developments in FAs analysis, covering sample preparation methods such as extraction, fractionation and derivatization as well as new advances in chromatographic methods such as GC and HPLC. Special attention is paid to trans fatty acids due its increasing interest for the food industry.

  15. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: Meta-analysis of nine studies in the CHARGE consortium.

    PubMed

    Smith, Caren E; Follis, Jack L; Nettleton, Jennifer A; Foy, Millennia; Wu, Jason H Y; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W; Wu, Hongyu; Chu, Audrey Y; Steffen, Lyn M; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K; Ferruci, Luigi; Chen, Yii-Der Ida; Rich, Stephen S; Djoussé, Luc; Ridker, Paul M; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y; Bandinelli, Stefania; Rotter, Jerome I; Hu, Frank B; Chasman, Daniel I; Psaty, Bruce M; Arnett, Donna K; King, Irena B; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E; Siscovick, David S; Ordovás, José M; Lemaitre, Rozenn N

    2015-07-01

    Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid, eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid. We conducted meta-analyses (N = 11 668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein), and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma versus erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary alpha-linolenic acid and linoleic acid for docosahexaenoic acid and docosapentaenoic acid. Our findings reinforce earlier reports that genetically based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth.

    PubMed

    Liu, Yilan; Chen, Ting; Yang, Maohua; Wang, Caixia; Huo, Weiyan; Yan, Daojiang; Chen, Jinjin; Zhou, Jiemin; Xing, Jianmin

    2014-01-03

    Microbial production of fatty acids and fatty alcohols has attracted increasing concerns because of energy crisis and environmental impact of fossil fuels. Therefore, simple and efficient methods for the extraction and quantification of these compounds become necessary. In this study, a high-performance liquid chromatography-refractive index detection (HPLC-RID) method was developed for the simultaneous quantification of fatty acids and fatty alcohols in these samples. The optimum chromatographic conditions are C18 column eluted with methanol:water:acetic acid (90:9.9:0.1, v/v/v); column temperature, 26°C; flow rate, 1.0mL/min. Calibration curves of all selected analytes showed good linearity (r(2)≥0.9989). The intra-day and inter-day relative standard deviations (RSDs) of the 10 compounds were less than 4.46% and 5.38%, respectively, which indicated that the method had good repeatability and precision. Besides, a method for simultaneous extraction of fatty acids and fatty alcohols from fermentation broth was optimized by orthogonal design. The optimal extraction conditions were as follows: solvent, ethyl acetate; solvent to sample ratio, 0.5:1; rotation speed, 2min at 260rpm; extraction temperature, 10°C. This study provides simple and fast methods to simultaneously extract and quantify fatty acids and fatty alcohols for the first time. It will be useful for the study of microbial production of these products. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study

    USDA-ARS?s Scientific Manuscript database

    Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at ...

  18. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    USDA-ARS?s Scientific Manuscript database

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  19. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.

    PubMed

    Lolicato, Francesca; Brouwers, Jos F; de Lest, Chris H A van; Wubbolts, Richard; Aardema, Hilde; Priore, Paola; Roelen, Bernard A J; Helms, J Bernd; Gadella, Bart M

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report, we described the effects of the three predominant fatty acids in follicular fluid (saturated palmitate and stearate and unsaturated oleate) on oocyte maturation and quality. In the current study, the effects of elevated fatty acid levels on cumulus cells were investigated. In a dose-dependent manner, the three fatty acids induced lipid storage in cumulus cells accompanied by an enhanced immune labeling of perilipin-2, a marker for lipid droplets. Lipidomic analysis confirmed incorporation of the administered fatty acids into triglyceride, resulting in a 3- to 6-fold increase of triglyceride content. In addition, palmitate selectively induced ceramide formation, which has been implicated in apoptosis. Indeed, of the three fatty acids tested, palmitate induced reactive oxygen species formation, caspase 3 activation, and mitochondria deterioration, leading to degeneration of the cumulus cell layers. This effect could be mimicked by addition of the ceramide-C2 analog and could be inhibited by the ceramide synthase inhibitor fumonisin-B1. Interfering with the intactness of the cumulus cell layers, either by mechanical force or by palmitate treatment, resulted in enhanced uptake of lipids in the oocyte and increased radical formation. Our results show that cumulus cells act as a barrier, protecting oocytes from in vitro induced lipotoxic effects. We suggest that this protective function of the cumulus cell layers is important for the developmental competence of the oocyte. The relevance of our findings for assisted reproduction technologies is discussed.

  20. Characterization of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum✯

    PubMed Central

    Fairfax, Keke C.; Vermeire, Jon J.; Harrison, Lisa M.; Bungiro, Richard D.; Grant, Wayne; Husain, Sohail Z.; Cappello, Michael

    2009-01-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesize essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real time-PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40–47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development. PMID:19591834

  1. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer

    PubMed Central

    Wen, Yang-An; Xing, Xiaopeng; Harris, Jennifer W; Zaytseva, Yekaterina Y; Mitov, Mihail I; Napier, Dana L; Weiss, Heidi L; Mark Evers, B; Gao, Tianyan

    2017-01-01

    Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells. PMID:28151470

  2. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum.

    PubMed

    Fairfax, Keke C; Vermeire, Jon J; Harrison, Lisa M; Bungiro, Richard D; Grant, Wayne; Husain, Sohail Z; Cappello, Michael

    2009-12-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development.

  3. Regulation of hepatic gene expression by saturated fatty acids

    PubMed Central

    Vallim, T.; Salter, A.M.

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors. PMID:20227267

  4. Regulation of hepatic gene expression by saturated fatty acids.

    PubMed

    Vallim, T; Salter, A M

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  5. Inhibition of polyunsaturated fatty acid accumulation in plants expressing a fatty acid epoxygenase.

    PubMed

    Singh, S; Thomaeus, S; Lee, M; Green, A; Stymne, S

    2000-12-01

    Earlier, we described the isolation of a Crepis palaestina cDNA (Cpal2) which encoded a Delta12-epoxygenase that could catalyse the synthesis of 12,13-epoxy-cis-9-octadecenoic acid (18:1E) from linoleic acid (18:2). When the Cpal2 gene was expressed under the control of a seed-specific promoter in Arabidopsis, plants were able to accumulate small amounts 18:1E and 12,13-epoxy-cis-9,15-octadec-2-enoic acid in their seed lipids. In this report we give results obtained from a detailed analysis of transgenic Arabidopsis plants containing the Cpal2 gene. The seeds from these plants accumulate varying levels of 18:1E, but show a marked increase in 18:1 and equivalent decrease in 18:2 and 18:3. We further observed that the co-expression of a C. palaestina Delta12-desaturase in Arabidopsis appears to return the relative proportions of the C(18) seed fatty acids to normal levels and results in a 2-fold increase in total epoxy fatty acids.

  6. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.

    PubMed

    Teixeira, Paulo Gonçalves; Ferreira, Raphael; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2017-03-15

    In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. We analyzed the metabolite dynamics of a faa1Δ faa4Δ strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under the control of different promoters in order to balance FFA and acyl-CoA interconversion rates and to achieve optimal levels for conversion to fatty alcohols. Expressing FAA1 under control of the HXT1 promoter led to an increased accumulation of fatty alcohols per OD600 up to 41% while FFA levels were decreased by 63% compared with the control strain. Fine-tuning and dynamic regulation of key metabolic steps can be used to improve cell factories when the rates of downstream reactions are limiting. This avoids loss of

  7. CONTENT OF AMINO ACIDS, FATTY ACIDS AND SOME GLYCIDES IN THE FUNGUS STACHYBOTRYS ALTERNANS

    DTIC Science & Technology

    The amino acid, fatty acid, and glycide content of the mycelium of Stachybotrys alternans was determined, and, for purposes of comparison, of some...unsaturated fatty acids. In the case of Stachybotrys alternans the individual strains exhibited small differences in the composition with respect to these...substances. Differences in the occurrence of amino acids and fatty acids were found in some strains of Stachybotrys alternans even after long-lasting

  8. Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography.

    PubMed

    Aveldano, M I; VanRollins, M; Horrocks, L A

    1983-01-01

    Reverse phase high pressure liquid chromatography (HPLC) on octadecylsilyl columns separates mixtures of either free fatty acids or fatty acid methyl esters prepared from mammalian tissue phospholipids. Acetonitrile-water mixtures are used for the elution of esters. Aqueous phosphoric acid is substituted for water for the separation of the free acids. Unsaturated compounds are detected and quantitated by their absorption at 192 nm. Saturates are detected better at 205 nm. The order of elution of fatty acids in complex mixtures varies as a function of acetonitrile concentration. At any given concentration, some compounds overlap. However, by varying the solvent strength, any fatty acid of interest can be resolved including many geometrical and positional isomers. Methyl esters prefractionated according to unsaturation by argentation thin-layer chromatography (TLC) are rapidly and completely separated by elution with CH3CN alone. Argentation TLC-reverse phase HPLC can be used as an analytical as well as a preparative procedure. Octylsilyl columns are used for rapid resolution and improved detection of minor or low ultraviolet-absorbing components in the fractions. For example, monoenoic fatty acids with up to 32 carbons have been detected in bovine brain glycerophospholipids. Specific radioactivities of 3H- and 14C-labeled fatty acids and the distribution of radioactivity among acyl groups from complex lipids are measured. The method is not recommended for complete compositional analysis, but is useful for determinations of specific radioactivities during studies on turnover and metabolic conversions of labeled fatty acids.

  9. [Fatty acid content of sausages manufactured in Venezuela].

    PubMed

    Araujo de Vizcarrondo, C; Martín, E

    1997-06-01

    The moisture and lipid content as well as the fatty acid composition of sausages were determined. Lipids were extracted and purified with a mixture of cloroform/methanol 2:1. Fatty acids in the lipid extract were methylated with 4% sulfuric acid/methanol solution and later were separated as methyl esters by gas liquid cromatography (GLC). Sausages presented a lipid content between 7.10% for canned sausages and 35.23% for the cocktail type. Most of the fatty acids were monounsatured with oleic acid as the major component with values between 42.54% for ham sausage and 48.83% for francfort type. Satured fatty acids followed, with palmitic acid as the major component in a range between 21.46% and 26.59% for bologna and Polaca sausage respectively. Polyunsaturated fatty acids were present in less quantities with concentration of linoleic acid between 8.5% (cotto salami type) and 12.60% (cocktail type). Turkey and poultry sausages presented a higher content of polyunsaturated and less saturated fatty acids than the other types of sausages studied.

  10. Fatty acids are potential endogenous regulators of aldosterone secretion.

    PubMed

    Goodfriend, T L; Ball, D L; Elliott, M E; Morrison, A R; Evenson, M A

    1991-05-01

    Adrenal glomerulosa cells washed with delipidated albumin produced increased amounts of aldosterone in response to angiotensin-II (AII) or (Bu)2cAMP. Albumin treatment also increased binding of 125I-labeled AII to high affinity binding sites on adrenal cells. Lipid extracts of albumin solutions that were used to wash cells inhibited AII binding and aldosterone responses by washed glomerulosa cells. Chromatographic fractionation and mass spectroscopic analysis indicated that the inhibitors removed from cells by albumin were long chain fatty acids. Exogenous fatty acids not only inhibited AII binding, but they inhibited basal aldosterone production and increments in aldosterone caused by AII or dbcAMP, suggesting an effect on postreceptor steps in aldosteronogenesis. The most potent and most abundant fatty acids removed from adrenal cells were oleic, linoleic, and arachidonic. These fatty acids inhibited at micromolar concentrations in the absence of albumin and at somewhat higher concentrations in its presence. Cells that had been washed, then inhibited by exogenous oleic acid in vitro, were restored to their enhanced responsiveness by a second albumin wash, making it unlikely that cell damage is the mechanism of inhibition by fatty acids. Responses of fasciculata cells were not potentiated by albumin washes, and cortisol production was less sensitive than aldosterone production to exogenous fatty acids. Binding of ANP to glomerulosa cells was not affected by albumin or fatty acids. These results combined with clinical correlations make it plausible that unesterified fatty acids are naturally occurring regulators of the adrenal glomerulosa. Insulin's ability to lower plasma levels of fatty acids may be one way that it causes sodium retention.

  11. Plasma Free Fatty Acids in Hyperemesis Gravidarum Pregnancy.

    PubMed

    Ulubay, Mustafa; Ozturk, Mustafa; Ozturk, Ozlem; Keskin, Ugur; Fidan, Ulas; Sertoglu, Erdim; Aydin, Hakan; Yilmaz, Ali; Cemal Yenen, Mufit

    2017-01-01

    We evaluated the free fatty acids differences in plasma between hyperemesis gravidarum(HG) and healthy pregnant in first trimester pregnancy. We aimed to compare the plasma levels of DHA, AA and EPA, between HG patients and healthy pregnant women. Fifty-two pregnants were involved in the study. Twenty-six pregnants of them were HG as study group, and twenty-six pregnants were enrolled as healthy pregnant women at the similar gestational age. The saturated fatty acids C14, C15, C16, C18, C20, C22, and C24; the omega-3 fatty acids eicosapentaenoic acid, (EPA) and docosahexaenoic acid, (DHA); the omega-6 fatty acids linoleic acid, arachidonic acid (AA), and homo-gamma-linolenic acid; and the omega-9 fatty acids oleic acid, erucic acid, and nervonic acid were analysed by gas chromatography. Statistically differences was not seen between the groups with maternal age, gestational age, or plasma levels of EPA, DHA, and AA. Statistically significant difference was seen between the groups with plasma levels of C20 and C22(p(<)0.05). C20 was declined but C22 was rised in the HG patients. EPA, DHA, or AA, which related to placental and fetal neural development are not changing from Hyperemesis gravidarum.

  12. Polyunsaturated fatty acids and conjugated linoleic acid isomers in breast milk are associated with plasma non-esterified and erythrocyte membrane fatty acid composition in lactating women.

    PubMed

    Torres, Alexandre G; Ney, Jacqueline G; Meneses, Flávia; Trugo, Nádia M F

    2006-03-01

    Maternal adipose tissue is a major contributor to breast milk long-chain fatty acids, probably through the pool of plasma NEFA. The fatty acid composition of the erythrocyte membrane (EM) is a biochemical index of the intake of fatty acids not synthesized endogenously and of PUFA and long-chain PUFA fatty acid status. The present study investigated the associations between breast milk fatty acid composition and the composition of plasma NEFA and of EM fatty acids with special reference to PUFA, long-chain PUFA and conjugated linoleic acid (CLA). The detailed fatty acid composition of mature breast milk was also reported. Thirty-three healthy, lactating Brazilian women donated milk samples; of these, twenty-four also donated blood samples in an observational cross-sectional study. Breast milk fatty acid composition presented several associations with NEFA and EM composition, which explained most (> or =50 %) of the variability of selected milk PUFA, long-chain PUFA and CLA. Milk CLA was associated with fatty acids that are markers of dairy fat intake in the diet, NEFA and EM. In general, breast milk n-3 fatty acids and CLA, but not n-6 fatty acids, were associated with EM composition, whereas both the n-6 and n-3 fatty acids and CLA in milk were associated with NEFA composition, possibly owing to its role as a direct source of fatty acids for breast milk. These findings emphasize the contribution of the NEFA pool derived from the adipose tissue to the long-chain fatty acid composition of breast milk.

  13. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  14. Hepatic mitochondrial dysfunction induced by fatty acids and ethanol.

    PubMed

    Gyamfi, Daniel; Everitt, Hannah E; Tewfik, Ihab; Clemens, Dahn L; Patel, Vinood B

    2012-12-01

    Understanding the key aspects of the pathogenesis of alcoholic fatty liver disease particularly alterations to mitochondrial function remains to be resolved. The role of fatty acids in this regard requires further investigation due to their involvement in fatty liver disease and obesity. This study aimed to characterize the early effects of saturated and unsaturated fatty acids alone on liver mitochondrial function and during concomitant ethanol exposure using isolated liver mitochondria and VA-13 cells (Hep G2 cells that efficiently express alcohol dehydrogenase). Liver mitochondria or VA-13 cells were treated with increasing concentrations of palmitic or arachidonic acid (1 to 160 μM) for 24 h with or without 100 mM ethanol. The results showed that in isolated liver mitochondria both palmitic and arachidonic acids significantly reduced state 3 respiration in a concentration-dependent manner (P<0.001), implicating their ionophoric activities. Increased ROS production occurred in a dose-dependent manner especially in the presence of rotenone (complex I inhibitor), which was significantly more prominent in arachidonic acid at 80 μM (+970%, P<0.001) than palmitic acid (+40%, P<0.01). In VA-13 cells, ethanol alone and both fatty acids (40 μM) were able to decrease the mitochondrial membrane potential and cellular ATP levels and increase lipid formation. ROS production was significantly increased with arachidonic acid (+110%, P<0.001) exhibiting a greater effect than palmitic acid (+39%, P<0.05). While in the presence of ethanol, the drop in the mitochondrial membrane potential, cellular ATP levels, and increased lipid formation were further enhanced by both fatty acids, but with greater effect in the case of arachidonic acid, which also correlated with significant cytotoxicity (P<0.001). This study confirms the ability of fatty acids to promote mitochondrial injury in the development of alcoholic fatty liver disease.

  15. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  16. Fatty acids regulation of inflammatory and metabolic genes.

    PubMed

    Masi, Laureane N; Rodrigues, Alice C; Curi, Rui

    2013-07-01

    Fatty acids influence human health and diseases in various ways. In recent years, much work has been carried out to elucidate the mechanisms by which dietary fatty acids control short-term and long-term cellular functions. We have reviewed herein the most recent studies on modulation of gene expression by fatty acids. A number of genes respond to transcription factors and present a transcription factor response element in their promoter regions. Fatty acids may exert their effects on metabolism by regulating gene transcription via transcription factors. Understanding how fatty acids control expression of metabolic genes is a promising strategy to be investigated by aiming to treat metabolic diseases such as insulin resistance, obesity, and type 2 diabetes mellitus. Fatty acids exert many of their biological effects through the modulation of the activity of transcription factors, such as sterol regulatory element-binding proteins, peroxisome proliferator-activated receptors, and liver X receptors. Fatty acid action through transcription factors controls the expression of several inflammatory and metabolic genes.

  17. Fatty acid and phytosterol content of commercial saw palmetto supplements.

    PubMed

    Penugonda, Kavitha; Lindshield, Brian L

    2013-09-13

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  18. Toxicity of fatty acid salts to German and American cockroaches.

    PubMed

    Baldwin, R W; Koehler, P G; Pereira, R M

    2008-08-01

    The toxicity of fatty acid salts to German, Blattella germanica (L.), and American cockroaches, Periplaneta americana (L.), was evaluated. Potassium and sodium laurate caused up to 95% mortality of German cockroaches and 100% mortality of American cockroaches. Even-numbered potassium fatty acid salts, C8-C18 were assessed for toxicity at 0.125, 0.25, 0.5, 1, and 2% concentrations by a 30-s immersion of cockroaches. The more soluble of the fatty acid salts at 2% concentration caused 65-95% mortality of German cockroaches and 100% mortality of American cockroaches. Potassium oleate, C18, was most toxic to both German (LC50 = 0.36%) and American (LC50 = 0.17%) cockroaches. Fatty acid salt solutions on a substrate were tested by placing cockroaches in contact with treated floor tiles immediately after application (wet) or after the solutions had dried. Sodium laurate and potassium caprate caused mortality of German (62 +/- 17.4 and 58 +/- 12.6%, respectively) and American cockroaches (52 +/- 18.5 and 28 +/- 4.9%, respectively) on wet tiles, whereas potassium oleate caused mortality of German cockroaches (67 +/- 14.1%) only. Dry fatty acids caused no mortality among exposed cockroaches. Fatty acid salt solutions can be effective in killing German and American cockroaches but only when insects are thoroughly wetted with 1-2% fatty acid salt solutions.

  19. Temperature adaptation in yeasts: the role of fatty acids.

    PubMed

    Suutari, M; Liukkonen, K; Laakso, S

    1990-08-01

    Studies on the yeasts Candida oleophila, Candida utilis, Lipomyces starkeyi, Rhodosporidium toruloides and Saccharomyces cerevisiae revealed the existence of three different temperature adaptation responses involving changes in fatty acid composition. These conclusions were drawn by determining the growth rates, total cellular fatty acid content, fatty acid composition, degree of unsaturation, and the mean chain length of fatty acids over a range of growth temperatures. Within temperatures permitting growth, there were no changes in the major fatty acids of any of the yeasts, but the absolute amounts and relative compositions of the fatty acids did alter. In S. cerevisiae there were temperature-induced changes in the mean fatty acid chain length, whereas in R. toruloides there were changes in the degree of unsaturation. C. oleophila, C. utilis and L. starkeyi showed both responses, depending on whether the growth temperature was above or below 20-26 degrees C. Below 20-26 degrees C temperature-dependent changes were observed in the mean chain length whereas above 20-26 degrees C there were changes in the degree of unsaturation.

  20. It is all about fluidity: Fatty acids and macrophage phagocytosis.

    PubMed

    Schumann, Julia

    2016-08-15

    Phagocytosis is an early and fundamental step for the effective clearance of disease causing agents. The ability to engulf and kill pathogens is considered as a major effector function of macrophages. In their phagocytic role macrophages are part of the first line of innate immune defense. A number of studies investigating fatty acid effects on macrophage phagocytosis have been conducted over many years. In vitro-data consistently report that alterations in macrophage membrane fatty acid composition are linked to an altered phagocytic capacity, i.e. an increase in membrane unsaturated fatty acid content is associated with an increase in engulfment and killing rate. The mode of action of fatty acids seems to be the modulation of the physical nature of the macrophage plasma membrane. It appears that the saturated-to-unsaturated fatty acid ratio of macrophage membrane phospholipids is of importance in determining macrophage phagocytic capacity. Available in vivo-data are less clear. At present, there is a lack of systematic studies elucidating key factors such as fatty acid efficacy, effective dose or dosing intervals. Without this knowledge the targeted modulation of macrophage phagocytosis in vivo by fatty acids is still a distant possibility.

  1. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    PubMed Central

    Penugonda, Kavitha; Lindshield, Brian L.

    2013-01-01

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols. PMID:24067389

  2. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids.

    PubMed

    Mann, S; Nydam, D V; Lock, A L; Overton, T R; McArt, J A A

    2016-07-01

    The objective of our study was to extend the limited research available on the association between concentrations of milk fatty acids and elevated nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations in early lactation dairy cattle. Measurement of milk fatty acids for detection of cows in excessive negative energy balance has the potential to be incorporated in routine in-line monitoring systems. Blood samples were taken from 84 cows in second or greater lactation 3 times per week between 3 to 14 d in milk. Cows were characterized as hyperketonemic (HYK) if blood BHB concentration was ≥1.2mmol/L at least once and characterized as having elevated concentrations of NEFA (NEFAH) if serum NEFA concentration was ≥1mmol/L at least once. Composition of colostrum and milk fatty acids at wk 2 postpartum was used to investigate the potential diagnostic value of individual fatty acids and fatty acid ratios for the correct classification of cows with NEFA and BHB concentrations above these thresholds, respectively. Receiver operating characteristic (ROC) curves were used to identify thresholds of fatty acid concentration and fatty acid ratios when ROC area under the curve was ≥0.70. Correct classification rate (CCR, %) was calculated as {[(number of true positives + number of true negatives)/total number tested] × 100}. None of the colostrum fatty acids yielded a sufficiently high area under the curve in ROC analysis for the association with HYK and NEFAH. The following fatty acids and fatty acid ratios were identified for an association with NEFAH (threshold, CCR): C15:0 (≤0.65g/100g, 68.3%); cis-9 C16:1 (≥1.85g/100g, 70.7%); cis-9 C18:1 (≥26g/100g, 69.5%), cis-9 C18:1 to C15:0 ratio (≥45, 69.5%); cis-9 C16:1 to C15:0 (≥2.50, 73.2%). Several fatty acids were associated with HYK (threshold, CCR): C6:0 (≤1.68g/100g, 80.5%), C8:0 (≤0.80g/100g, 80.5%), C10:0 (≤1.6g/100g, 79.3%); C12:0 (≤1.42g/100g, 82.9%); C14:0 (≤6.10g/100g, 84

  3. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  4. Quantification of primary fatty acid amides in commercial tallow and tallow fatty acid methyl esters by HPLC-APCI-MS.

    PubMed

    Madl, Tobias; Mittelbach, Martin

    2005-04-01

    Primary fatty acid amides are a group of biologically highly active compounds which were already identified in nature. Here, these substances were determined in tallow and tallow fatty acid methyl esters for the first time. As tallow is growing in importance as an oleochemical feedstock for the soap manufacturing, the surfactant as well as the biodiesel industry, the amounts of primary fatty acid amides have to be considered. As these compounds are insoluble in tallow as well as in the corresponding product e.g. tallow fatty acid methyl esters, filter plugging can occur. For the quantification in these matrices a purification step and a LC-APCI-MS method were developed. Although quantification of these compounds can be performed by GC-MS, the presented approach omitted any derivatization and increased the sensitivity by two orders of magnitude. Internal standard calibration using heptadecanoic acid amide and validation of the method yielded a limit of detection of 18.5 fmol and recoveries for the tallow and fatty acid methyl ester matrices of 93% and 95%, respectively. A group of commercially available samples were investigated for their content of fatty acid amides resulting in an amount of up to 0.54%m/m (g per 100 g) in tallow and up to 0.16%m/m (g per 100 g) in fatty acid methyl esters.

  5. Retinoic acid stimulates essential fatty acid-supplemented human keratinocytes in culture.

    PubMed

    Marcelo, C L; Dunham, W R

    1997-05-01

    The effect of all-trans retinoic acid on the proliferation of essential fatty acid (EFA)-deficient and of EFA-supplemented adult human keratinocytes was investigated. EFA-deficient cell strains were supplied with one of four different fatty acid-supplemented media at the P0 to P1 passage. All-trans retinoic acid at 0.5 or 1.0 microM was added to the cultures at the P1 to P2 passage. At passage P3, and 3 and 7 d thereafter, the cell growth rate was determined. The fatty acid content of cultures grown in each medium was measured using gas chromatography. All the EFA media "normalized" the cellular fatty acid composition and drastically decreased the cell number and total DNA and protein of the cultures. All-trans retinoic acid at 1 microM prevented the loss of cell viability and growth usually associated with EFA supplementation but did not affect the control (EFA deficient) or 18:1 fatty acid-supplemented cultures. All-trans retinoic acid at 1 microM altered the fatty acid content of the EFA-supplemented cultures. A statistically significant increase in 14:0, 14:1, 16:1, 18:1, and 20:4 fatty acids occurred, whereas the amounts of 18:0 and 18:2 fatty acids decreased. The largest changes were in 16:1 fatty acid (8-14%) and 18:2 fatty acid (12-5%). All-trans retinoic acid at 0.5 microM also affected both cell growth and fatty acid composition without induction of the CRABP II message. These studies demonstrate that all-trans retinoic acid stimulates the growth of EFA-supplemented keratinocyte cultures while also altering the fatty acid composition of the cells.

  6. Essential fatty acids in health and chronic disease.

    PubMed

    Simopoulos, A P

    1999-09-01

    Human beings evolved consuming a diet that contained about equal amounts of n-3 and n-6 essential fatty acids. Over the past 100-150 y there has been an enormous increase in the consumption of n-6 fatty acids due to the increased intake of vegetable oils from corn, sunflower seeds, safflower seeds, cottonseed, and soybeans. Today, in Western diets, the ratio of n-6 to n-3 fatty acids ranges from approximately 20-30:1 instead of the traditional range of 1-2:1. Studies indicate that a high intake of n-6 fatty acids shifts the physiologic state to one that is prothrombotic and proaggregatory, characterized by increases in blood viscosity, vasospasm, and vasoconstriction and decreases in bleeding time. n-3 Fatty acids, however, have antiinflammatory, antithrombotic, antiarrhythmic, hypolipidemic, and vasodilatory properties. These beneficial effects of n-3 fatty acids have been shown in the secondary prevention of coronary heart disease, hypertension, type 2 diabetes, and, in some patients with renal disease, rheumatoid arthritis, ulcerative colitis, Crohn disease, and chronic obstructive pulmonary disease. Most of the studies were carried out with fish oils [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)]. However, alpha-linolenic acid, found in green leafy vegetables, flaxseed, rapeseed, and walnuts, desaturates and elongates in the human body to EPA and DHA and by itself may have beneficial effects in health and in the control of chronic diseases.

  7. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    PubMed Central

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  8. THE BASIS OF STABILITY IN LYSINE AND ARGININE SALTS OF UNSATURATED FATTY ACIDS.

    DTIC Science & Technology

    LINOLEIC ACID , STABILIZATION), (* FATTY ACIDS , STABILITY), (*AMINO ACIDS , SALTS), (*ANTIOXIDANTS, AMINO ACIDS ), DEHYDRATED FOODS, ADDITIVES...PRESERVATION, COMPLEX COMPOUNDS, ELECTRICAL CONDUCTIVITY, INFRARED SPECTRA, NUCLEAR MAGNETIC RESONANCE, CHROMATOGRAPHIC ANALYSIS, X RAY DIFFRACTION, CRYSTAL LATTICES, MOLECULAR ISOMERISM, FATTY ACID ESTERS

  9. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and o