NASA Astrophysics Data System (ADS)
Soler-Membrives, Anna; Rossi, Sergio; Munilla, Tomás
2011-05-01
Fatty acid analysis has proved valuable in determining seasonal trophic links and the feeding behavior in organisms in which these diet and trophic links cannot be inferred from stomach content analyses. Seasonal variations in total free fatty acid content (TFFA) and fatty acid composition of seston (<250 μm), the brown macroalgae Stypocaulon spp., polychaetes (Nereididae) and the pycnogonid Ammothella longipes have been used to establish their trophic links, with particular focus on seasonality and feeding ecology of A. longipes. Samples were collected in a coastal environment (NW Mediterranean Sea) at 7-10 m depth, in five different periods (August and October 2008, February, June and September 2009). Seston and Stypocaulon spp. samples did not show significant seasonal variations in TFFA content, while nereids showed a significant variation. Analysis of fatty acid profile showed high similarities of fatty acid composition between seston and Stypocaulon spp. Nereids were closer to seston and Stypocaulon spp. than A. longipes, which seemed to follow a seasonal trend. The results of this study reveal that A. longipes may change its feeding behavior depending on the season and available food. This pycnogonid species appears to be carnivore during spring and early summer but seems to feed on detritus when availability of prey diminishes during winter. Notable high amounts of odd-chain fatty acids are found in summer-autumn for this species, which may come from bacteria acquired from the detrital diet or from de novo biosynthesis from propionate. The results obtained provide new and valuable data on the understudied feeding biology of pycnogonids in general, and contribute to the understanding of their functioning of Mediterranean shallow oligotrophic systems and their trophic links.
NASA Astrophysics Data System (ADS)
Pokhrel, Ambarish; Kawamura, Kimitaka; Seki, Osamu; Matoba, Sumio; Shiraiwa, Takayuki
2015-01-01
An ice core drilled at Aurora Peak in southeast Alaska was analyzed for homologous series of straight chain fatty acids (C12:0-C30:0) including unsaturated fatty acid (oleic acid) using gas chromatography (GC/FID) and GC/mass spectrometry (GC/MS). Molecular distributions of fatty acids are characterized by even carbon number predominance with a peak at palmitic acid (C16:0, av. 20.3 ± SD. 29.8 ng/g-ice) followed by oleic acid (C18:1, 19.6 ± 38.6 ng/g-ice) and myristic acid (C14:0, 15.3 ± 21.9 ng/g-ice). The historical trends of short-chain fatty acids, together with correlation analysis with inorganic ions and organic tracers suggest that short-chain fatty acids (except for C12:0 and C15:0) were mainly derived from sea surface micro layers through bubble bursting mechanism and transported over the glacier through the atmosphere. This atmospheric transport process is suggested to be linked with Kamchatka ice core δD record from Northeast Asia and Greenland Temperature Anomaly (GTA). In contrast, long-chain fatty acids (C20:0-C30:0) are originated from terrestrial higher plants, soil organic matter and dusts, which are also linked with GTA. Hence, this study suggests that Alaskan fatty acids are strongly influenced by Pacific Decadal Oscillation/North Pacific Gyre Oscillation and/or extra tropical North Pacific surface climate and Arctic oscillation. We also found that decadal scale variability of C18:1/C18:0 ratios in the Aurora Peak ice core correlate with the Kamchatka ice core δD, which reflects climate oscillations in the North Pacific. This study suggests that photochemical aging of organic aerosols could be controlled by climate periodicity.
Barreiro, R; Regal, P; Díaz-Bao, M; Vázquez, B I; Cepeda, A
2017-04-01
Milk from 40 Holstein dairy cows was collected from two different farms in Galicia (Spain). The differences in the fatty acid composition of two groups of cows, 20 pregnant and 20 non-pregnant, was studied to determine whether pregnancy status is a determinant factor that can alter the fatty acid profile of milk. Gas-chromatography (GC) coupled to flame ionisation detection (FID) was used for the determination of the fatty acids. Differences in the milk fatty acids between pregnant and non-pregnant cows were pronounced showing statistically significant differences for some fatty acids and the total saturated and monounsaturated fatty acids. Milk from non-pregnant cows was lower in saturated fatty acids and higher in monounsaturated fatty acids (unlike milk from pregnant cows). The effects of the consumption of bovine milk, particularly milk fat, on human health have been studied in depth and sometimes are associated with negative effects, but milk has also several beneficial characteristics linked to some fatty acids.
USDA-ARS?s Scientific Manuscript database
Genetic variation in fatty acid desaturases (FADS) has previously been linked to long-chain polyunsaturated fatty acids (PUFAs) in adipose tissue and cardiovascular risk. The goal of our study was to test associations between six common FADS polymorphisms (rs174556, rs3834458, rs174570, rs2524299, r...
9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.
Code of Federal Regulations, 2011 CFR
2011-01-01
... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to... level of fat, fatty acid, and cholesterol in a product may only be made on the label or in labeling of...
9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.
Code of Federal Regulations, 2011 CFR
2011-01-01
... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to... level of fat, fatty acid, and cholesterol in a product may only be made on the label or in labeling of...
The type I fatty acid and polyketide synthases: a tale of two megasynthases
Tsai, Shiou-Chuan
2008-01-01
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897
Fatty Acid–Regulated Transcription Factors in the Liver
Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.
2014-01-01
Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177
Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E; Lecker, Stewart H; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan
2016-04-01
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
NASA Astrophysics Data System (ADS)
Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.
1996-11-01
Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.
ERIC Educational Resources Information Center
Kirby, A.; Woodward, A.; Jackson, S.; Wang, Y.; Crawford, M. A.
2010-01-01
Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs),…
USDA-ARS?s Scientific Manuscript database
Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...
De Mel, Damitha; Suphioglu, Cenk
2014-08-15
Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.
Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.
Parisi, Laura R; Li, Nasi; Atilla-Gokcumen, G Ekin
2017-12-21
Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
De Mel, Damitha; Suphioglu, Cenk
2014-01-01
Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration. PMID:25195602
Drewery, M L; Gaitán, A V; Spedale, S B; Monlezun, C J; Miketínas, D C; Lammi-Keefe, C J
2017-11-01
Early life heart rate (HR) and heart rate variability (HRV) reflect autonomic system maturation. Intervention with n-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy favorably affects fetal HR and HRV, complementing previous observations for n-3 LCPUFA intervention during infancy. The relationship between maternal fatty acid status during pregnancy and infant HR/HRV has not previously been assessed. The aim of this study was to explore associations between maternal n-6 and n-3 fatty acid status during pregnancy and infant HR and HRV at 2 weeks, 4 months, and 6 months of age using linear regression models. Maternal n-3 fatty acids were inversely related to infant HR and positively related to HRV. Conversely, maternal n-6 fatty acids were positively related to infant HR and inversely related to HRV. These data build on existing literature evidencing a role for n-3 fatty acids in accelerating autonomic development and link n-6 fatty acids to HR/HRV. Copyright © 2017 Elsevier Ltd. All rights reserved.
SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids.
Mason, Paul; Liang, Beirong; Li, Lingyun; Fremgen, Trisha; Murphy, Erin; Quinn, Angela; Madden, Stephen L; Biemann, Hans-Peter; Wang, Bing; Cohen, Aharon; Komarnitsky, Svetlana; Jancsics, Kate; Hirth, Brad; Cooper, Christopher G F; Lee, Edward; Wilson, Sean; Krumbholz, Roy; Schmid, Steven; Xiang, Yibin; Booker, Michael; Lillie, James; Carter, Kara
2012-01-01
Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway.
Schönfeld, Peter; Reiser, Georg
2013-01-01
It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood–brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain. PMID:23921897
Schönfeld, Peter; Reiser, Georg
2013-10-01
It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.
Rinchard, Jacques; Kimmel, David G.
2017-01-01
The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty acid composition varied in comparison with the zooplankton community composition and fatty acid composition during the period of anadromous larval fish residency. The seston fatty acid profiles showed no distinct pattern in relation to sampling time or location. The mesozooplankton community composition varied spatially and the fatty acid profiles were typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event during May, which resulted in brackish water species dominating the zooplankton community and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton community composition once again became dominated by freshwater species and the fatty acid profiles shifted to reflect this change; however, EPA levels remained high, particularly in the lower river. We found correlations between the seston, microzooplankton and mesozooplankton fatty acid compositions. Salinity was the main factor correlated to the observed pattern in species composition, and fatty acid changes in the mesozooplankton. These data suggest that anadromous fish nursery habitat likely experiences considerable spatial variability in fatty acid profiles of zooplankton prey and that are correlated to seston community composition and hydrodynamic changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid composition is present in the Chowan River to support larval fish production. PMID:28828262
PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.
Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G
2016-04-01
Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.
Marchetti, Piera M; Kelly, Van; Simpson, Joanna P; Ward, Mairi; Campopiano, Dominic J
2018-04-18
The marine bacterium Pseudoalteromonas tunicata produces the bipyrrole antibiotic tambjamine YP1. This natural product is built from common amino acid and fatty acid building blocks in a biosynthetic pathway that is encoded in the tam operon which contains 19 genes. The exact role that each of these Tam proteins plays in tambjamine biosynthesis is not known. Here, we provide evidence that TamA initiates the synthesis and controls the chain length of the essential tambjamine fatty amine tail. Sequence analysis suggests the unusual TamA is comprised of an N-terminal adenylation (ANL) domain fused to a C-terminal acyl carrier protein (ACP). Mass spectrometry analysis of recombinant TamA revealed the surprising presence of bound C11 and C12 acyl-adenylate intermediates. Acylation of the ACP domain was observed upon attachment of the phosphopantetheine (4'-PP) arm to the ACP. We also show that TamA can transfer fatty acids ranging in chain length from C6-C13 to an isolated ACP domain. Thus TamA bridges the gap between primary and secondary metabolism by linking fatty acid and pyrrole biosynthetic pathways.
Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?
Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.
2015-01-01
Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768
9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.
Code of Federal Regulations, 2012 CFR
2012-01-01
... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to..., and cholesterol in a product may only be made on the label or in labeling of products if: (1) The...
9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.
Code of Federal Regulations, 2012 CFR
2012-01-01
... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to..., and cholesterol in a product may only be made on the label or in labeling of products if: (1) The...
SCD1 Inhibition Causes Cancer Cell Death by Depleting Mono-Unsaturated Fatty Acids
Mason, Paul; Liang, Beirong; Li, Lingyun; Fremgen, Trisha; Murphy, Erin; Quinn, Angela; Madden, Stephen L.; Biemann, Hans-Peter; Wang, Bing; Cohen, Aharon; Komarnitsky, Svetlana; Jancsics, Kate; Hirth, Brad; Cooper, Christopher G. F.; Lee, Edward; Wilson, Sean; Krumbholz, Roy; Schmid, Steven; Xiang, Yibin; Booker, Michael; Lillie, James; Carter, Kara
2012-01-01
Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway. PMID:22457791
NASA Astrophysics Data System (ADS)
Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.
2017-09-01
The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.
Short chain fatty acid production and glucose responses by methane producers
USDA-ARS?s Scientific Manuscript database
Fermentation by gut microbiota has been linked to physiologic responses in the host. Methanogenic gut bacteria may remove more carbon from indigestible food matrices especially poorly digested carbohydrates. We sought to assess the effects of methane production on short chain fatty acid (SCFA) con...
Walker, Rebecca; Decker, Eric A; McClements, David Julian
2015-01-01
Consumption of biologically active amounts of omega-3 fatty acids is linked to improved human health, which has partly been attributed to their important role in brain development and cardiovascular health. Western diets are relatively low in omega-3 fatty acids and many consumers turn to supplements or functional foods to increase their intake of these healthy lipids. Fish oil is one of the most widely used sources of omega-3 fatty acid for supplementation and has greater health benefits than plant sources because of its higher concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The incorporation of omega-3 fatty acids into foods and beverages is often challenging due to their low water-solubility, poor oxidative stability, and variable bioavailability. Nanoemulsions offer a promising way to incorporate omega-3 fatty acids into liquid food systems like beverages, dressing, sauces, and dips. Nanoemulsions are colloidal dispersions that contain small oil droplets (r<100 nm) that may be able to overcome many of the challenges of fortifying foods and beverages with omega-3 fatty acids. The composition and fabrication of nanoemulsions can be optimized to increase the chemical and physical stability of oil droplets, as well as to increase the bioavailability of omega-3 fatty acids.
Fernandes, Ricardo; Beserra, Bruna Teles Soares; Cunha, Raphael Salles Granato; Hillesheim, Elaine; Camargo, Carolina de Quadros; Pequito, Danielle Cristina Tonello; de Castro, Isabela Coelho; Fernandes, Luiz Cláudio; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes
2013-01-01
Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin) and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P = 0.027) and eicosapentaenoic acid (EPA) (P = 0.037) and positively with arachidonic acid (AA) (P = 0.035), AA/EPA ratio (P = 0.005), and n-6/n-3 polyunsaturated fatty acids ratio (P = 0.035). C-Reactive Protein (CRP) was negatively correlated with lauric acid (P = 0.048), and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P = 0.010, P = 0.008, resp.). Albumin was positively correlated with EPA (P = 0.027) and margaric acid (P = 0.008). Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients. PMID:24167354
Trends in the content and forms of vitamin K in processed foods
USDA-ARS?s Scientific Manuscript database
High intake of trans fatty acids has been linked to deleterious health effects including increased risk of cardiovascular disease. Since 2006, the Food and Drug Administration requires companies to label the trans fatty acid content of foods, which has resulted in an overall decrease of commercially...
USDA-ARS?s Scientific Manuscript database
Inefficient muscle long-chain fatty acid (LCFA) combustion is associated with insulin resistance, but molecular links between mitochondrial fat catabolism and insulin action remain controversial. We hypothesized that plasma acylcarnitine profiling would identify distinct metabolite patterns reflect...
Omega-3 fatty acid supplementation and cardiovascular disease
Jump, Donald B.; Depner, Christopher M.; Tripathy, Sasmita
2012-01-01
Epidemiological studies on Greenland Inuits in the 1970s and subsequent human studies have established an inverse relationship between the ingestion of omega-3 fatty acids [C20–22 ω 3 polyunsaturated fatty acids (PUFA)], blood levels of C20–22 ω 3 PUFA, and mortality associated with cardiovascular disease (CVD). C20–22 ω 3 PUFA have pleiotropic effects on cell function and regulate multiple pathways controlling blood lipids, inflammatory factors, and cellular events in cardiomyocytes and vascular endothelial cells. The hypolipemic, anti-inflammatory, anti-arrhythmic properties of these fatty acids confer cardioprotection. Accordingly, national heart associations and government agencies have recommended increased consumption of fatty fish or ω 3 PUFA supplements to prevent CVD. In addition to fatty fish, sources of ω 3 PUFA are available from plants, algae, and yeast. A key question examined in this review is whether nonfish sources of ω 3 PUFA are as effective as fatty fish-derived C20–22 ω 3 PUFA at managing risk factors linked to CVD. We focused on ω 3 PUFA metabolism and the capacity of ω 3 PUFA supplements to regulate key cellular events linked to CVD. The outcome of our analysis reveals that nonfish sources of ω 3 PUFA vary in their capacity to regulate blood levels of C20–22 ω 3 PUFA and CVD risk factors. PMID:22904344
The use of fatty acid esters to enhance free acid sophorolipid synthesis.
Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A
2006-02-01
Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.
Inflammation in Response to n3 Fatty Acids in a Porcine Obesity Model
Faris, Richard J; Boddicker, Rebecca L; Walker-Daniels, Jennifer; Li, Jenny; Jones, Douglas E; Spurlock, Michael E
2012-01-01
Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16–CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue. PMID:23561883
Guemez-Gamboa, Alicia; Nguyen, Long N; Yang, Hongbo; Zaki, Maha S; Kara, Majdi; Ben-Omran, Tawfeg; Akizu, Naiara; Rosti, Rasim Ozgur; Rosti, Basak; Scott, Eric; Schroth, Jana; Copeland, Brett; Vaux, Keith K; Cazenave-Gassiot, Amaury; Quek, Debra Q Y; Wong, Bernice H; Tan, Bryan C; Wenk, Markus R; Gunel, Murat; Gabriel, Stacey; Chi, Neil C; Silver, David L; Gleeson, Joseph G
2015-07-01
Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.
Komaniecka, Iwona; Choma, Adam; Mazur, Andrzej; Duda, Katarzyna A.; Lindner, Buko; Schwudke, Dominik; Holst, Otto
2014-01-01
The chemical structures of the unusual hopanoid-containing lipid A samples of the lipopolysaccharides (LPS) from three strains of Bradyrhizobium (slow-growing rhizobia) have been established. They differed considerably from other Gram-negative bacteria in regards to the backbone structure, the number of ester-linked long chain hydroxylated fatty acids, as well as the presence of a tertiary residue that consisted of at least one molecule of carboxyl-bacteriohopanediol or its 2-methyl derivative. The structural details of this type of lipid A were established using one- and two-dimensional NMR spectroscopy, chemical composition analyses, and mass spectrometry techniques (electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry and MALDI-TOF-MS). In these lipid A samples the glucosamine disaccharide characteristic for enterobacterial lipid A was replaced by a 2,3-diamino-2,3-dideoxy-d-glucopyranosyl-(GlcpN3N) disaccharide, deprived of phosphate residues, and substituted by an α-d-Manp-(1→6)-α-d-Manp disaccharide substituting C-4′ of the non-reducing (distal) GlcpN3N, and one residue of galacturonic acid (d-GalpA) α-(1→1)-linked to the reducing (proximal) amino sugar residue. Amide-linked 12:0(3-OH) and 14:0(3-OH) were identified. Some hydroxy groups of these fatty acids were further esterified by long (ω-1)-hydroxylated fatty acids comprising 26–34 carbon atoms. As confirmed by mass spectrometry techniques, these long chain fatty acids could form two or three acyloxyacyl residues. The triterpenoid derivatives were identified as 34-carboxyl-bacteriohopane-32,33-diol and 34-carboxyl-2β-methyl-bacteriohopane-32,33-diol and were covalently linked to the (ω-1)-hydroxy group of very long chain fatty acid in bradyrhizobial lipid A. Bradyrhizobium japonicum possessed lipid A species with two hopanoid residues. PMID:25371196
Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids.
Leber, Christopher; Da Silva, Nancy A
2014-02-01
Carbon feedstocks from fossilized sources are being rapidly depleted due to rising demand for industrial and commercial applications. Many petroleum-derived chemicals can be directly or functionally substituted with chemicals derived from renewable feedstocks. Several short chain organic acids may fulfill this role using their functional groups as a target for chemical catalysis. Saccharomyces cerevisiae was engineered to produce short chain carboxylic acids (C6 to C10 ) from glucose using the heterologous Homo sapiens type I fatty acid synthase (hFAS). This synthase was activated by phosphopantetheine transfereases AcpS and Sfp from Escherichia coli and Bacillus subtilis, respectively, both in vitro and in vivo. hFAS was produced in the holo-form and produced carboxylic acids in vitro, confirmed by NADPH and ADIFAB assays. Overexpression of hFAS in a yeast FAS2 knockout strain, deficient in de novo fatty acid synthesis, demonstrated the full functional replacement of the native fungal FAS by hFAS. Two active heterologous short chain thioesterases (TEs) from Cuphea palustris (CpFatB1) and Rattus norvegicus (TEII) were evaluated for short chain fatty acid (SCFA) synthesis in vitro and in vivo. Three hFAS mutants were constructed: a mutant deficient in the native TE domain, a mutant with a linked CpFatB1 TE and a mutant with a linked TEII TE. Using the native yeast fatty acid synthase for growth, the overexpression of the hFAS mutants and the short-chain TEs (linked or plasmid-based) increased in vivo caprylic acid and total SCFA production up to 64-fold (63 mg/L) and 52-fold (68 mg/L), respectively, over the native yeast levels. Combined over-expression of the phosphopantetheine transferase with the hFAS mutant resulted in C8 titers of up to 82 mg/L and total SCFA titers of up to 111 mg/L. © 2013 Wiley Periodicals, Inc.
Nabeebaccus, Adam A.; Zoccarato, Anna; Hafstad, Anne D.; Santos, Celio X.C.; Brewer, Alison C.; Zhang, Min; Beretta, Matteo; West, James A.; Eykyn, Thomas R.; Shah, Ajay M.
2017-01-01
Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. PMID:29263294
USDA-ARS?s Scientific Manuscript database
Transition from adolescence to puberty is marked by changes in metabolic activity. Fatty acid synthase (FASN) catalyzes the de novo synthesis of fatty acids and increased expression has been linked to excess energy intake and obesity. The enzyme, DNA-protein kinase (DNA-PK) plays a role in DNA damag...
Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.
Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke
2014-12-01
Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.
Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors
Panagos, PG; Vishwanathan, R; Penfield-Cyr, A; Matthan, NR; Shivappa, N; Wirth, MD; Hebert, JR; Sen, S
2016-01-01
OBJECTIVE To determine the impact of maternal obesity on breastmilk composition. STUDY DESIGN Breastmilk and food records from 21 lean and 21 obese women who delivered full-term infants were analyzed at 2 months post-partum. Infant growth and adiposity were measured at birth and 2 months of age. RESULT Breastmilk from obese mothers had higher omega-6 to omega-3 fatty acid ratio and lower concentrations of docosahexaenoic acid, eicosapentaenoic acid, docasapentaenoic acid and lutein compared with lean mothers (P < 0.05), which were strongly associated with maternal body mass index. Breastmilk saturated fatty acid and monounsaturated fatty acid concentrations were positively associated with maternal dietary inflammation, as measured by dietary inflammatory index. There were no differences in infant growth measurements. CONCLUSION Breastmilk from obese mothers has a pro-inflammatory fatty acid profile and decreased concentrations of fatty acids and carotenoids that have been shown to have a critical role in early visual and neurodevelopment. Studies are needed to determine the link between these early-life influences and subsequent cardiometabolic and neurodevelopmental outcomes. PMID:26741571
Classroom Research: GC Studies of Linoleic and Linolenic Fatty Acids Found in French Fries
NASA Astrophysics Data System (ADS)
Crowley, Janice P.; Deboise, Kristen L.; Marshall, Megan R.; Shaffer, Hannah M.; Zafar, Sara; Jones, Kevin A.; Palko, Nick R.; Mitsch, Stephen M.; Sutton, Lindsay A.; Chang, Margaret; Fromer, Ilana; Kraft, Jake; Meister, Jessica; Shah, Amar; Tan, Priscilla; Whitchurch, James
2002-07-01
A study of fatty-acid ratios in French fries has proved to be an excellent choice for an entry-level research class. This research develops reasoning skills and involves the subject of breast cancer, a major concern of American society. Analysis of tumor samples removed from women with breast cancer revealed high ratios of linoleic to linolenic acid, suggesting a link between the accelerated growth of breast tumors and the combination of these two fatty acids. When the ratio of linoleic to linolenic acid was approximately 9 to 1, accelerated growth was observed. Since these fatty acids are found in cooking oils, Wichita Collegiate students, under the guidance of their chemistry teacher, decided that an investigation of the ratios of these two fatty acids should be conducted. A research class was structured using a gas chromatograph for the analysis. Separation of linoleic from linolenic acid was successfully accomplished. The students experienced inductive experimental research chemistry as it applies to everyday life. The structure of this research class can serve as a model for high school and undergraduate college research curricula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan
Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 andmore » mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.« less
Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.
2013-01-01
All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well. PMID:23762027
Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon
2017-02-01
Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. Copyright © 2016 Elsevier Inc. All rights reserved.
Blindauer, Claudia A; Khazaipoul, Siavash; Yu, Ruitao; Stewart, Alan J
2016-01-01
Human serum albumin (HSA) is the major protein in blood plasma and is responsible for circulatory transport of a range of small molecules including fatty acids, metal ions and drugs. We previously identified the major plasma Zn2+ transport site on HSA and revealed that fatty-acid binding (at a distinct site called the FA2 site) and Zn2+ binding are interdependent via an allosteric mechanism. Since binding affinities of long-chain fatty acids exceed those of plasma Zn2+, this means that under certain circumstances the binding of fatty acid molecules to HSA is likely to diminish HSA Zn2+-binding, and hence affects the control of circulatory and cellular Zn2+ dynamics. This relationship between circulatory fatty acid and Zn2+ dynamics is likely to have important physiological and pathological implications, especially since it has been recognised that Zn2+ acts as a signalling agent in many cell types. Fatty acid levels in the blood are dynamic, but most importantly, chronic elevation of plasma fatty acid levels is associated with some metabolic disorders and disease states - including myocardial infarction and other cardiovascular diseases. In this article, we briefly review the metal-binding properties of albumin and highlight the importance of their interplay with fatty acid binding. We also consider the impact of this dynamic link upon levels and speciation of plasma Zn2+, its effect upon cellular Zn2+ homeostasis and its relevance to cardiovascular and circulatory processes in health and disease.
Laguerre, Aisha; Wielens, Jerome; Parker, Michael W.; Porter, Christopher J. H.; Scanlon, Martin J.
2011-01-01
Fatty-acid binding proteins (FABPs) are abundantly expressed proteins that bind a range of lipophilic molecules. They have been implicated in the import and intracellular distribution of their ligands and have been linked with metabolic and inflammatory responses in the cells in which they are expressed. Despite their high sequence identity, human intestinal FABP (hIFABP) and rat intestinal FABP (rIFABP) bind some ligands with different affinities. In order to address the structural basis of this differential binding, diffraction-quality crystals have been obtained of hIFABP and rIFABP in complex with the fluorescent fatty-acid analogue 11-(dansylamino)undecanoic acid. PMID:21301109
Förster, M E; Staib, W
1992-07-01
1. The kinetics of mitochondrial mammalian pyruvate dehydrogenase multienzyme complex (PDHC) is studied by the formation of CO2 using tracer amounts of [1-14C]pyruvate. It is found that the Hill plot results in a (pseudo-)cooperativity with a transition of n-1----3 at a pyruvate concentration about Ks. 2. Addition of L-carnitine, octanoate, palmitoyl-CoA or palmitate + L-carnitine + fatty acid-binding protein results in a Hill coefficient of n = 2 following the kinetics of pyruvate oxidation. 3. Addition of fatty acid-binding protein to an assay system oxidizing palmitate in presence of L-carnitine alters the pattern of the kinetics in the Hill plot so that an apparently lower level of L-carnitine is necessary for the reaction course of beta-degradation. 4. It is concluded that beta-degradation is a coordinated, multienzyme-complex based mechanism tightly linked to citric acid cycle and it is proposed that L-carnitine is actively involved into the reaction and not only functioning as carrier-molecule for transmembrane transport.
Trophic links and nutritional condition of fish early life stages in a temperate estuary.
Primo, Ana Lígia; Correia, Catarina; Marques, Sónia Cotrim; Martinho, Filipe; Leandro, Sérgio; Pardal, Miguel
2018-02-01
The physiological and nutritional condition of fish larvae affect their survival and thus, the success of estuaries as nursery areas. Fatty acid composition has been useful to determine fish nutritional condition, as well as trophic relationships in marine organisms. The present study analyses the fatty acid (FA) composition of fish larvae during spring and summer in the Mondego estuary, Portugal. FA composition, trophic markers (FATM) and fish nutritional condition was analysed for Gobiidae and Sardina pilchardus larvae and the relationships with the local environment evaluated. Results showed that both taxa differed mainly in the stearic acid (C18:0) and eicosapentaenoic acid (EPA) content, with important amounts in Gobiidae and S. pilchardus, respectively. Gobiidae larvae presenting high nutritional condition and omnivore FATM. Fatty acid composition seems to be related with their natural habitat selection and food availability, while fish larvae nutritional condition also showed a strong link with the water temperature and presence of potential predators. This study suggests that FA composition can be a useful tool in assessing planktonic trophic relationships and in identifying species natural habitat. Copyright © 2017. Published by Elsevier Ltd.
Purification and characterization of monoclonal antibodies to alpha-linolenic acid.
Buffière, F; Cook-Moreau, J; Gualde, N; Rigaud, M
1989-01-01
The covalently linked antigenic complex, bovine serum albumin-alpha-linolenic acid, was used to immunize Balb/c mice against the hapten. Hybridization between splenocytes and the myeloma cell line, P 3 X63 Ag 8,651, resulted in stable clones synthesizing monoclonal antibodies (Mab) that were subsequently purified and characterized. Four Mab (A, B, C, D) were retained and their specificities studied by ELISA. Antibody D only recognized 18-carbon fatty acids having a cis,cis,-cis-1,4,7 unsaturated system in the omega-3 position: it was specific for alpha-linolenic acid. B recognized all fatty acids containing the structure cis,cis,cis-1,4,7-octatriene. A and C recognized polyunsaturated fatty acids with a degree of unsaturation superior to two double bonds.
21 CFR 177.2420 - Polyester resins, cross-linked.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... this section: (1) Acids: Adipic. Fatty acids, and dimers thereof, from natural sources. Fumaric...
21 CFR 177.2420 - Polyester resins, cross-linked.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... this section: (1) Acids: Adipic. Fatty acids, and dimers thereof, from natural sources. Fumaric...
Imaging of Myocardial Fatty Acid Oxidation
Mather, Kieren J; DeGrado, Tim
2016-01-01
Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. PMID:26923433
Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R
2015-01-01
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.
Granafei, Sara; Losito, Ilario; Trotta, Massimo; Italiano, Francesca; de Leo, Vincenzo; Agostiano, Angela; Palmisano, Francesco; Cataldi, Tommaso R I
2016-01-15
Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic generation of this ester-linked chain in R. sphaeroides. Copyright © 2015 Elsevier B.V. All rights reserved.
Kain, Vasundhara; Ingle, Kevin A; Kachman, Maureen; Baum, Heidi; Shanmugam, Gobinath; Rajasekaran, Namakkal S; Young, Martin E; Halade, Ganesh V
2018-02-01
Maintaining a balance of ω-6 and ω-3 fatty acids is essential for cardiac health. Current ω-6 and ω-3 fatty acids in the American diet have shifted from the ideal ratio of 2:1 to almost 20:1; while there is a body of evidence that suggests the negative impact of such a shift in younger organisms, the underlying age-related metabolic signaling in response to the excess influx of ω-6 fatty acids is incompletely understood. In the present study, young (6 mo old) and aging (≥18 mo old) mice were fed for 2 mo with a ω-6-enriched diet. Excess intake of ω-6 enrichment decreased the total lean mass and increased nighttime carbohydrate utilization, with higher levels of cardiac cytokines indicating low-grade chronic inflammation. Dobutamine-induced stress tests displayed an increase in PR interval, a sign of an atrioventricular defect in ω-6-fed aging mice. Excess ω-6 fatty acid intake in aging mice showed decreased 12-lipoxygenase with a concomitant increase in 15-lipoxygenase levels, resulting in the generation of 15( S)-hydroxyeicosatetraenoic acid, whereas cyclooxygenase-1 and -2 generated prostaglandin E 2 , leukotriene B 4, and thromboxane B 2 . Furthermore, excessive ω-6 fatty acids led to dysregulated nuclear erythroid 2-related factor 2/antioxidant-responsive element in aging mice. Moreover, ω-6 fatty acid-mediated changes were profound in aging mice with respect to the eicosanoid profile while minimal changes were observed in the size and shape of cardiomyocytes. These findings provide compelling evidence that surplus consumption of ω-6 fatty acids, coupled with insufficient intake of ω-3 fatty acids, is linked to abnormal changes in ECG. These manifestations contribute to functional deficiencies and expansion of the inflammatory mediator milieu during later stages of aging. NEW & NOTEWORTHY Aging has a profound impact on the metabolism of fatty acids to maintain heart function. The excess influx of ω-6 fatty acids in aging perturbed electrocardiography with marked signs of inflammation and a dysregulated oxidative-redox balance. Thus, the quality and quantity of fatty acids determine the cardiac pathology and energy utilization in aging.
Kindleysides, Sophie; Beck, Kathryn L; Walsh, Daniel C I; Henderson, Lisa; Jayasinghe, Shakeela N; Golding, Matt; Breier, Bernhard H
2017-08-15
Perception of fat taste, aroma, and texture are proposed to influence food preferences, thus shaping dietary intake and eating behaviour and consequently long-term health. In this study, we investigated associations between fatty acid taste, olfaction, mouthfeel of fat, dietary intake, eating behaviour, and body mass index (BMI). Fifty women attended three sessions to assess oleic acid taste and olfaction thresholds, the olfactory threshold for n -butanol and subjective mouthfeel ratings of custard samples. Dietary intake and eating behaviour were evaluated using a Food Frequency and Three-Factor Eating Questionnaire, respectively. Binomial regression analysis was used to model fat taste and olfaction data. Taste and olfactory detection for oleic acid were positively correlated ( r = 0.325; p < 0.02). Oleic acid taste hypersensitive women had significantly increased n -butanol olfactory sensitivity ( p < 0.03). The eating behaviour disinhibition and BMI were higher in women who were hyposensitive to oleic acid taste ( p < 0.05). Dietary intake of nuts, nut spreads, and seeds were significantly correlated with high olfactory sensitivity to oleic acid ( p < 0.01). These findings demonstrate a clear link between fatty acid taste sensitivity and olfaction and suggest that fat taste perception is associated with specific characteristics of eating behaviour and body composition.
Moravec, Anna R.; Siv, Andrew W.; Hobby, Chelsea R.; Lindsay, Emily N.; Norbash, Layla V.; Shults, Daniel J.; Symes, Steven J. K.
2017-01-01
ABSTRACT The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. PMID:28864654
Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina
2006-05-19
Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.
Zamroziewicz, Marta K; Paul, Erick J; Zwilling, Chris E; Barbey, Aron K
2017-07-01
Recent evidence demonstrates that age and disease-related decline in cognition depends not only upon degeneration in brain structure and function, but also on dietary intake and nutritional status. Memory, a potential preclinical marker of Alzheimer's disease, is supported by white matter integrity in the brain and dietary patterns high in omega-3 and omega-6 polyunsaturated fatty acids. However, the extent to which memory is supported by specific omega-3 and omega-6 polyunsaturated fatty acids, and the degree to which this relationship is reliant upon microstructure of particular white matter regions is not known. This study therefore examined the cross-sectional relationship between empirically-derived patterns of omega-3 and omega-6 polyunsaturated fatty acids (represented by nutrient biomarker patterns), memory, and regional white matter microstructure in healthy, older adults. We measured thirteen plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids, memory, and regional white matter microstructure in 94 cognitively intact older adults (65 to 75 years old). A three-step mediation analysis was implemented using multivariate linear regressions, adjusted for age, gender, education, income, depression status, and body mass index. The mediation analysis revealed that a mixture of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids is linked to memory and that white matter microstructure of the fornix fully mediates the relationship between this pattern of plasma phospholipid polyunsaturated fatty acids and memory. These results suggest that memory may be optimally supported by a balance of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids through the preservation of fornix white matter microstructure in cognitively intact older adults. This report provides novel evidence for the benefits of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acid balance on memory and underlying white matter microstructure.
Knief, Claudia; Altendorf, Karlheinz; Lipski, André
2003-11-01
A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.
Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui
2016-06-01
Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.
Dietary fatty acids linking postprandial metabolic response and chronic diseases.
Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G
2012-01-01
Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.
NASA Astrophysics Data System (ADS)
Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.
2014-07-01
The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes. Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ∼6 weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers than those from afaunal controls. Aldose suite alterations were similar in faunated microcosms and afaunal controls, however the impact of faunal gut passage on sedimentary aldose compositions may be observable over longer timescales. Therefore this study provides direct evidence that polychaete gut passage influences OM composition both through taxon-specific selective assimilation and retention in polychaete tissues, and also through interactions with the microbial community. Polychaete gut passage will result in selective loss, preservation, and retention in polychaete tissues of specific aldoses and fatty acids. The pattern of selectivity will be taxon specific. Changes observed during gut passage will align with those commonly observed during OM decay, thus indicating that macrofaunal gut passage is one of the factors controlling sedimentary OM composition. Together with a previous publication reporting amino acid data from the same experiments (Woulds et al., 2012), this study represents the most complete description of OM alteration during gut passage that is available to date.
Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol
Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S
2015-01-01
Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. PMID:25639597
Fillmore, N; Mori, J; Lopaschuk, G D
2014-01-01
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24147975
Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.
2014-01-01
In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis. PMID:24113382
Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N
2013-11-01
In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.
Zanardi, Emanuela; Ghidini, Sergio; Battaglia, Alessandra; Chizzolini, Roberto
2004-02-01
Lipolysis and lipid oxidation in Mediterranean and North Europe type sausages were studied in relation to raw material, processing conditions and additives. In particular the effect of ascorbic acid, nitrites and spices was evaluated. Lipolysis was measured by the determination of total and free fatty acids of fresh minces and matured products and lipid oxidation was evaluated by thiobarbituric acid reactive substances and cholesterol oxidation products. The increase of free fatty acids during maturation appears to be independent from processing conditions and the differences in polyunsaturated fatty acids increment found among the formulations appear to be due to inherent variations of raw materials. The presence of ascorbic acid and/or nitrite seems important for cholesterol protection and, as a consequence, for the safety of fermented meat products while spices at doses up to 0.1% do not seem to have a remarkable effect. The effect on fatty acid oxidation of the same additives and of the different processing technologies is not significantly different and the variations linked to raw material may play the greatest role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, Elaina M.; Center for Cardiovascular Sciences, Albany Medical College, Albany, NY; Cerny, Ronald L.
Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4,more » for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis.« less
Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte
2016-01-01
This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After these three pre-treatments, the percolate is brought to a refinery to extract the non-polar fatty acids using bio-diesel, which was generated from used kitchen oil at the refinery. The extraction tests in the lab have proved that the efficiency of the liquid-liquid-extraction is directly linked with the chain length and polarity of the fatty acids. By using a non-polar bio-diesel mainly the non-polar fatty acids, like pentanoic to octanoic acid, are extracted. After extraction, the bio-diesel enriched with the fatty acids is esterified. As a result bio-diesel with a lower viscosity than usual is produced. The fatty acids remaining in the percolate after the extraction can be used in another fermentation process to generate biogas. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xuqin; Sun, Tao; Wang, Xiaodong, E-mail: xdwang666@hotmail.com
2013-07-05
Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcriptionmore » of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.« less
Metillo, Ephrime Bicoy; Aspiras-Eya, Anna Arlene
2014-08-01
Fatty acids are important in human health and useful in the analysis of the marine food web, however information on tropical pelagic organisms is scarce. Six zooplanktivorous small pelagic fish species (Decapterus kurroides, Decapterus macarellus, Selar crumenophthalmus, Sardinella lemuru, Spratilloides gracilis and Stolephorus insularis) and four of their zooplanktonic crustacean prey [three sergestoid species (Acetes erythraeus, Acetes intermedius and Lucifer penicillifer) and one calanoid copepod (Acartia erythraea)] were collected from the Mindanao Sea, and their fatty acids were profiled. The resulting profiles revealed 17 fatty acids that were specific to certain species and 9 {myristic acid [C14:0], palmitic acid [C16:0], stearic acid [C18:0]; palmitoleic acid [C16:1], oleic acid [C18:1n9c], linoleic acid [C18:2n6c], linolenic acid [C18:3n3], eicosapentaenoic acid (EPA) [C20:5n3] and docosahexaenoic acid (DHA) [C22:6n3]} that were common to all species. Cluster analysis and non-metric multidimensional scaling (NMDS) of fatty acids indicate a high similarity in profiles in all species, but separate fish and zooplankton clusters were obtained. Mackerel species (D. macarellus, D. kurroides and S. crumenophthalmus) had concentrations of total n-3 fatty acids that match those of their Acetes prey. The copepod A. erythraea and the sergestoid L. penicillifer exhibited the lowest values of the EPA:DHA ratio, which was most likely due to their phytoplanktivorous feeding habits, but the occurrence of the highest values of the ratio in Acetes suggests the inclusion of plant detritus in their diet. DHA values appear to affirm the trophic link among copepod, Lucifer, Acetes and mackerel species.
Shabalina, Irina G; Jacobsson, Anders; Cannon, Barbara; Nedergaard, Jan
2004-09-10
Elucidation of the regulation of uncoupling protein 1 (UCP1) activity in its native environment, i.e. the inner membrane of brown-fat mitochondria, has been hampered by the presence of UCP1-independent, quantitatively unresolved effects of investigated regulators on the brown-fat mitochondria themselves. Here we have utilized the availability of UCP1-ablated mice to dissect UCP1-dependent and UCP1-independent effects of regulators. Using a complex-I-linked substrate (pyruvate), we found that UCP1 can mediate a 4-fold increase in thermogenesis when stimulated with the classical positive regulator fatty acids (oleate). After demonstrating that the fatty acids act in their free form, we found that UCP1 increased fatty acid sensitivity approximately 30-fold (as compared with the 1.5-fold increase reported earlier based on nominal fatty acid values). By identifying the UCP1-mediated fraction of the response, we could conclude that the interaction between purine nucleotides (GDP) and fatty acids (oleate) unexpectedly displayed simple competitive kinetics. In GDP-inhibited mitochondria, oleate apparently acted as an activator. However, only a model in which UCP1 is inherently active (i.e."activating" fatty acids cannot be included in the model), where GDP functions as an inhibitor with a K(m) of 0.05 mm, and where oleate functions as a competitive antagonist for the GDP effect (with a K(i) of 5 nm) can fit all of the experimental data. We conclude that, when examined in its native environment, UCP1 functions as a proton (equivalent) carrier in the absence of exogenous or endogenous fatty acids.
Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol.
Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S
2015-04-15
Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Effect of ocean acidification on the fatty acid composition of a natural plankton community
NASA Astrophysics Data System (ADS)
Leu, E.; Daase, M.; Schulz, K. G.; Stuhr, A.; Riebesell, U.
2013-02-01
The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway) at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm), yielding pH values (on the total scale) from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1) prior to the addition of inorganic nutrients, (2) first bloom after nutrient addition, and (3) second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs): 44-60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA), an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes) increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.
A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids
López-Frías, Magdalena; López-Aliaga, Inmaculada; Ochoa, Julio J.
2013-01-01
Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κ β (RANK), a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health. PMID:24302863
Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid
Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan
2004-09-14
A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.
Evaluation of nutritive quality of common carp, Cyprinus carpio L.
NASA Astrophysics Data System (ADS)
Ljubojević, D.; Đorđević, V.; Ćirković, M.
2017-09-01
Common carp is the most important commercial fish species in Serbia. This fish is a valuable source of nutritive components and plays a role in healthy human nutrition. This review evaluates the nutritive quality of common carp including proximate and fatty acid compositions as well as their effects on human health. The fat content and fatty acid composition of carp have been shown to vary due to different environmental factors and particularly due to nutrition. Technology of production and composition of planktonic and benthic organisms in fish ponds have been recognised as significant factors affecting carp meat quality and desirable chemical and fatty acid composition. Carp meat quality but also production parameters and fish health are positively influenced by a balanced feed mixture. Due to the low content of saturated fatty acids and cholesterol plus high levels of unsaturated fatty acids, common carp meat consumption could be linked with reduced risk of different heart diseases in humans. Also, fish proteins can have many beneficial roles in the preservation of human health. This paper emphasises the importance of consumption of common carp in order to prevent many diseases and preserve human health.
Bakke, Siril S; Moro, Cedric; Nikolić, Nataša; Hessvik, Nina P; Badin, Pierre-Marie; Lauvhaug, Line; Fredriksson, Katarina; Hesselink, Matthijs K C; Boekschoten, Mark V; Kersten, Sander; Gaster, Michael; Thoresen, G Hege; Rustan, Arild C
2012-10-01
Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100μM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid β-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance. Copyright © 2012 Elsevier B.V. All rights reserved.
Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R
2009-04-02
In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).
Fatty acid ω-hydroxylases from Solanum tuberosum.
Bjelica, Anica; Haggitt, Meghan L; Woolfson, Kathlyn N; Lee, Daniel P N; Makhzoum, Abdullah B; Bernards, Mark A
2016-12-01
Potato StCYP86A33 complements the Arabidopsis AtCYP86A1 mutant, horst - 1. Suberin is a cell-wall polymer that comprises both phenolic and aliphatic components found in specialized plant cells. Aliphatic suberin is characterized by bi-functional fatty acids, typically ω-hydroxy fatty acids and α,ω-dioic acids, which are linked via glycerol to form a three-dimensional polymer network. In potato (Solanum tuberosum L.), over 65 % of aliphatics are either ω-hydroxy fatty acids or α,ω-dioic acids. Since the biosynthesis of α,ω-dioic acids proceeds sequentially through ω-hydroxy fatty acids, the formation of ω-hydroxy fatty acids represents a significant metabolic commitment during suberin deposition. Four different plant cytochrome P450 subfamilies catalyze ω-hydroxylation, namely, 86A, 86B, 94A, and 704B; though to date, only a few members have been functionally characterized. In potato, CYP86A33 has been identified and implicated in suberin biosynthesis through reverse genetics (RNAi); however, attempts to express the CYP86A33 protein and characterize its catalytic function have been unsuccessful. Herein, we describe eight fatty acid ω-hydroxylase genes (three CYP86As, one CYP86B, three CYP94As, and a CYP704B) from potato and demonstrate their tissue expression. We also complement the Arabidopsis cyp86A1 mutant horst-1 using StCYP86A33 under the control of the Arabidopsis AtCYP86A1 promoter. Furthermore, we provide preliminary analysis of the StCYP86A33 promoter using a hairy root transformation system to monitor pStCYP86A33::GUS expression constructs. These data confirm the functional role of StCYP86A33 as a fatty acid ω-hydroxylase, and demonstrate the utility of hairy roots in the study of root-specific genes.
Rutkofsky, Ian Hunter; Khan, Anser Saeed; Sahito, Sindhu; Kumar, Vikram
2017-01-01
Context • Psychoneuroimmunology is the interdisciplinary study that links behavioral health with the neuroendocrinal system and investigates that link's bidirectional impact on the human immune system. Mechanistic studies have shown how omega-3 polyunsaturated fatty acids (PUFAs), like those found in fish oil, can modulate key pathways involved in inflammation, sympathetic activity, oxidative stress, transcription factors, and inflammatory cytokine production. Objective • The research team intended to investigate the effects that PUFAs have on the brain and the immune system, including the effects of proinflammatory cytokines and oxidative stress, and their therapeutic benefits in major depressive disorder (MDD) and bipolar disorder, either as an alternative monotherapy or a complementary adjunct treatment. Design • A literature search was conducted through PubMed and Google Scholar, with no restrictions on the publication dates or geographically. Setting • The research occurred at research facilities in Washington, DC, and Davis, California. Results • Well-described links between inflammation and MDD and bipolar disorder have been established. Similarly, a highly inflammatory state is a contributing factor to many significant health complications, and omega-3 PUFAs can help treat those issues. Conclusions • The research team concluded that omega-3 fatty acids have therapeutic benefits in the treatment of both MDD and bipolar disorder and are effective as a monotherapy and, particularly, as an adjunct therapy. The efficacy of omega-3 supplementation is clearly useful in promoting better health overall and supplementation should be encouraged in the primary care setting. A meta-analysis exploring an adjunct treatment of supplemental eicosapentaenoic acid or docosahexaenoic acid is likely to yield the greatest benefits to psychiatric conditions and provide an answer to proper dosing regimens. The team also created a chart of the supplements' salient features, demonstrating the overall health benefits of omega-3 fatty acids.
Biosynthesis of the Caenorhabditis elegans dauer pheromone.
Butcher, Rebecca A; Ragains, Justin R; Li, Weiqing; Ruvkun, Gary; Clardy, Jon; Mak, Ho Yi
2009-02-10
To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.
Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M
1997-01-01
The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species. PMID:9171426
Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M
1997-06-01
The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species.
Salomé Campos, Dijon Henrique; Grippa Sant’Ana, Paula; Okoshi, Katashi; Padovani, Carlos Roberto; Masahiro Murata, Gilson; Nguyen, Son; Kolwicz, Stephen C.; Cicogna, Antonio Carlos
2018-01-01
Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue. PMID:29494668
Cheng, Yu-Shian; Tseng, Ping-Tao; Chen, Yen-Wen; Stubbs, Brendon; Yang, Wei-Chieh; Chen, Tien-Yu; Wu, Ching-Kuan; Lin, Pao-Yen
2017-01-01
Aim Deficiency of omega 3 fatty acids may be linked to autism spectrum disorder (ASD). Evidence about the potential therapeutic effects of supplementation of omega 3 fatty acids is lacking in ASD patients. Methods We searched major electronic databases from inception to June 21, 2017, for randomized clinical trials, which compared treatment outcomes between supplementation of omega 3 fatty acids and placebo in patients with ASD. An exploratory random-effects meta-analysis of the included studies was undertaken. Results and conclusion Six trials were included (n=194). Meta-analysis showed that supplementation of omega 3 fatty acids improved hyperactivity (difference in means =−2.692, 95% confidence interval [CI] =−5.364 to −0.020, P=0.048, studies =4, n=109), lethargy (difference in means =−1.969, 95% CI =−3.566 to −0.372, P=0.016, studies =4, n=109), and stereotypy (difference in means =−1.071, 95% CI =−2.114 to −0.029, P=0.044, studies =4, n=109). No significant differences emerged between supplementation of omega 3 fatty acids and placebo in global assessment of functioning (n=169) or social responsiveness (n=97). Our preliminary meta-analysis suggests that supplementation of omega 3 fatty acids may improve hyperactivity, lethargy, and stereotypy in ASD patients. However, the number of studies was limited and the overall effects were small, precluding definitive conclusions. Future large-scale randomized clinical trials are needed to confirm or refute our findings. PMID:29042783
Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu
2015-01-28
Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces.
Ma, Wenjie; Wu, Jason H Y; Wang, Qianyi; Lemaitre, Rozenn N; Mukamal, Kenneth J; Djoussé, Luc; King, Irena B; Song, Xiaoling; Biggs, Mary L; Delaney, Joseph A; Kizer, Jorge R; Siscovick, David S; Mozaffarian, Dariush
2015-01-01
Experimental evidence suggests that hepatic de novo lipogenesis (DNL) affects insulin homeostasis via synthesis of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). Few prospective studies have used fatty acid biomarkers to assess associations with type 2 diabetes. We investigated associations of major circulating SFAs [palmitic acid (16:0) and stearic acid (18:0)] and MUFA [oleic acid (18:1n-9)] in the DNL pathway with metabolic risk factors and incident diabetes in community-based older U.S. adults in the Cardiovascular Health Study. We secondarily assessed other DNL fatty acid biomarkers [myristic acid (14:0), palmitoleic acid (16:1n-7), 7-hexadecenoic acid (16:1n-9), and vaccenic acid (18:1n-7)] and estimated dietary SFAs and MUFAs. In 3004 participants free of diabetes, plasma phospholipid fatty acids were measured in 1992, and incident diabetes was identified by medication use and blood glucose. Usual diets were assessed by using repeated food-frequency questionnaires. Multivariable linear and Cox regression were used to assess associations with metabolic risk factors and incident diabetes, respectively. At baseline, circulating palmitic acid and stearic acid were positively associated with adiposity, triglycerides, inflammation biomarkers, and insulin resistance (P-trend < 0.01 each), whereas oleic acid showed generally beneficial associations (P-trend < 0.001 each). During 30,763 person-years, 297 incident diabetes cases occurred. With adjustment for demographics and lifestyle, palmitic acid (extreme-quintile HR: 1.89; 95% CI: 1.27, 2.83; P-trend = 0.001) and stearic acid (HR: 1.62; 95% CI: 1.09, 2.41; P-trend = 0.006) were associated with higher diabetes risk, whereas oleic acid was not significantly associated. In secondary analyses, vaccenic acid was inversely associated with diabetes (HR: 0.56; 95% CI: 0.38, 0.83; P-trend = 0.005). Other fatty acid biomarkers and estimated dietary SFAs or MUFAs were not significantly associated with incident diabetes. In this large prospective cohort, circulating palmitic acid and stearic acid were associated with higher diabetes risk, and vaccenic acid was associated with lower diabetes risk. These results indicate a need for additional investigation of biological mechanisms linking specific fatty acids in the DNL pathway to the pathogenesis of diabetes. © 2015 American Society for Nutrition.
Wu, Jason HY; Wang, Qianyi; Lemaitre, Rozenn N; Mukamal, Kenneth J; Djoussé, Luc; King, Irena B; Song, Xiaoling; Biggs, Mary L; Delaney, Joseph A; Kizer, Jorge R; Siscovick, David S; Mozaffarian, Dariush
2015-01-01
Background: Experimental evidence suggests that hepatic de novo lipogenesis (DNL) affects insulin homeostasis via synthesis of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). Few prospective studies have used fatty acid biomarkers to assess associations with type 2 diabetes. Objectives: We investigated associations of major circulating SFAs [palmitic acid (16:0) and stearic acid (18:0)] and MUFA [oleic acid (18:1n–9)] in the DNL pathway with metabolic risk factors and incident diabetes in community-based older U.S. adults in the Cardiovascular Health Study. We secondarily assessed other DNL fatty acid biomarkers [myristic acid (14:0), palmitoleic acid (16:1n–7), 7-hexadecenoic acid (16:1n–9), and vaccenic acid (18:1n–7)] and estimated dietary SFAs and MUFAs. Design: In 3004 participants free of diabetes, plasma phospholipid fatty acids were measured in 1992, and incident diabetes was identified by medication use and blood glucose. Usual diets were assessed by using repeated food-frequency questionnaires. Multivariable linear and Cox regression were used to assess associations with metabolic risk factors and incident diabetes, respectively. Results: At baseline, circulating palmitic acid and stearic acid were positively associated with adiposity, triglycerides, inflammation biomarkers, and insulin resistance (P-trend < 0.01 each), whereas oleic acid showed generally beneficial associations (P-trend < 0.001 each). During 30,763 person-years, 297 incident diabetes cases occurred. With adjustment for demographics and lifestyle, palmitic acid (extreme-quintile HR: 1.89; 95% CI: 1.27, 2.83; P-trend = 0.001) and stearic acid (HR: 1.62; 95% CI: 1.09, 2.41; P-trend = 0.006) were associated with higher diabetes risk, whereas oleic acid was not significantly associated. In secondary analyses, vaccenic acid was inversely associated with diabetes (HR: 0.56; 95% CI: 0.38, 0.83; P-trend = 0.005). Other fatty acid biomarkers and estimated dietary SFAs or MUFAs were not significantly associated with incident diabetes. Conclusions: In this large prospective cohort, circulating palmitic acid and stearic acid were associated with higher diabetes risk, and vaccenic acid was associated with lower diabetes risk. These results indicate a need for additional investigation of biological mechanisms linking specific fatty acids in the DNL pathway to the pathogenesis of diabetes. This trial was registered at clinicaltrials.gov as NCT00005133. PMID:25527759
Schütt, B S; Brummel, M; Schuch, R; Spener, F
1998-06-01
To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinacia oleracea L.) leaves, rape (Brassica napus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction.
Homocysteine regulates fatty acid and lipid metabolism in yeast
Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O.; Wolinski, Heimo; Rechberger, Gerald N.; Tehlivets, Oksana
2018-01-01
S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. PMID:29414770
Morley, John E
2010-02-01
Severe nutritional deficiencies, such as protein energy malnutrition and deficiency of nicotinamide, vitamin B(12), folate, and thiamine, have long been recognized to cause severe confusion. Lesser vitamin deficiencies have been linked to the pathogenesis of delirium. Hypo- and hyperglycemia and hypertriglyceridemia can cause cognitive deficits. Epidemiologic and animal studies have linked several other nutrients (omega-3 fatty acids, lutein, alpha-lipoic acid, and the Mediterranean diet) to cognitive performance and the prevention of dementia.
Seifert, Erin L; Bézaire, Véronic; Estey, Carmen; Harper, Mary-Ellen
2008-09-12
Uncoupling protein-3 (UCP3) is a mitochondrial inner membrane protein expressed most abundantly in skeletal muscle and to a lesser extent in heart and brown adipose tissue. Evidence supports a role for UCP3 in fatty acid oxidation (FAO); however, the underlying mechanism has not been explored. In 2001 we proposed a role for UCP3 in fatty acid export, leading to higher FAO rates (Himms-Hagen, J., and Harper, M. E. (2001) Exp. Biol. Med. (Maywood) 226, 78-84). Specifically, this widely held hypothesis states that during elevated FAO rates, UCP3 exports fatty acid anions, thereby maintaining mitochondrial co-enzyme A availability; reactivation of exported fatty acid anions would ultimately enable increased FAO. Here we tested mechanistic aspects of this hypothesis as well as its functional implications, namely increased FAO rates. Using complementary mechanistic approaches in mitochondria from wild-type and Ucp3(-/-) mice, we find that UCP3 is not required for FAO regardless of substrate type or supply rate covering a 20-fold range. Fatty acid anion export and reoxidation during elevated FAO, although present in skeletal muscle mitochondria, are independent of UCP3 abundance. Interestingly, UCP3 was found to be necessary for the fasting-induced enhancement of FAO rate and capacity, possibly via mitigated mitochondrial oxidative stress. Thus, although our observations indicate that UCP3 can impact FAO rates, the mechanistic basis is not via an integral function for UCP3 in the FAO machinery. Overall our data indicate a function for UCP3 in mitochondrial adaptation to perturbed cellular energy balance and integrate previous observations that have linked UCP3 to reduced oxidative stress and FAO.
Gnoni, Antonio; Giudetti, Anna M
2016-09-01
The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15 % w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21 days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21 days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect.
Benzer, Meryem; Tekin Neijmann, Sebnem; Gültekin, Nazlı Dilay; Uluturk Tekin, Aslı
2017-01-01
Liver-type fatty acid-binding protein is a small cytoplasmic protein which is expressed in the human renal proximal tubular epithelium and synthesized in response to renal tubular injury. The aim of the present study was to investigate the importance of urinary liver-type fatty acid-binding protein levels in children who diagnosed with vesicoureteral reflux. Fifty-six patients with vesicoureteral reflux and 51 healthy controls were enrolled to the study. The cases were divided into three groups as follows: group A-the controls, group B-the patients who had renal parenchymal scarring and group C-the patients who had no scarring. Urinary liver-type fatty acid-binding protein was measured by enzyme-linked immunosorbent assay method. Creatinine was measured by modified Jaffe method, protein was measured by turbidimetric method, and urine density was determined by using the "falling drop" procedure. Urinary liver-type fatty acid-binding protein and urinary liver-type fatty acid-binding protein/creatinine levels were significantly higher in the whole patient group than in the controls (p = 0.016, 0.006). Significant differences were also determined by comparing the three groups (p = 0.015, 0.014), and those levels were found as significantly higher in group C. Urinary liver-type fatty acid-binding protein was considered to be helpful for the diagnosis of vesicoureteral reflux, and also it might contribute to understand the mechanisms causing scar tissue formation especially for the patients who had vesicoureteral reflux. Further clinical and experimental investigations are required to elucidate in detail the physiology of liver-type fatty acid-binding protein.
Shen, D; Zhang, X; Li, Z; Bai, H; Chen, L
2017-12-01
There is conflicting evidence regarding the effects of omega-3 fatty acids on bone turnover markers in postmenopausal women. Thus, we systematically reviewed the efficacy of omega-3 fatty acids by conducting a meta-analysis of available randomized controlled trials. PubMed, Embase, Cochrane Library and Scopus were searched in December 2016. The standardized mean difference (SMD) or weighted mean difference (WMD) and the corresponding 95% confidence intervals (CIs) were calculated using a fixed-effects model. Eight trials were included in the present meta-analysis. The pooled findings did not identify significant decreases in bone-specific alkaline phosphatase (SMD -0.08, 95% CI -0.29 to 0.12, p = 0.429) and collagen type I cross-linked C-telopeptide (WMD 0 ng/ml, 95% CI -0.04 to 0.04, p = 0.899). There was a significant decrease in osteocalcin (WMD -0.86 ng/ml, 95% CI -1.68 to -0.04, p = 0.040) as compared with control. Omega-3 fatty acids reduced postmenopausal women's serum osteocalcin. Further well-designed studies are needed to verify the effects of omega-3 fatty acids on bone mass density and other bone turnover markers in postmenopausal women. CRD42016053219 ( https://www.crd.york.ac.uk/PROSPERO/ ).
Mente, Andrew; de Koning, Lawrence; Shannon, Harry S; Anand, Sonia S
2009-04-13
Although a wealth of literature links dietary factors and coronary heart disease (CHD), the strength of the evidence supporting valid associations has not been evaluated systematically in a single investigation. We conducted a systematic search of MEDLINE for prospective cohort studies or randomized trials investigating dietary exposures in relation to CHD. We used the Bradford Hill guidelines to derive a causation score based on 4 criteria (strength, consistency, temporality, and coherence) for each dietary exposure in cohort studies and examined for consistency with the findings of randomized trials. Strong evidence supports valid associations (4 criteria satisfied) of protective factors, including intake of vegetables, nuts, and "Mediterranean" and high-quality dietary patterns with CHD, and associations of harmful factors, including intake of trans-fatty acids and foods with a high glycemic index or load. Among studies of higher methodologic quality, there was also strong evidence for monounsaturated fatty acids and "prudent" and "western" dietary patterns. Moderate evidence (3 criteria) of associations exists for intake of fish, marine omega-3 fatty acids, folate, whole grains, dietary vitamins E and C, beta carotene, alcohol, fruit, and fiber. Insufficient evidence (< or =2 criteria) of association is present for intake of supplementary vitamin E and ascorbic acid (vitamin C); saturated and polyunsaturated fatty acids; total fat; alpha-linolenic acid; meat; eggs; and milk. Among the dietary exposures with strong evidence of causation from cohort studies, only a Mediterranean dietary pattern is related to CHD in randomized trials. The evidence supports a valid association of a limited number of dietary factors and dietary patterns with CHD. Future evaluation of dietary patterns, including their nutrient and food components, in cohort studies and randomized trials is recommended.
Rzehak, Peter; Thijs, Carel; Standl, Marie; Mommers, Monique; Glaser, Claudia; Jansen, Eugène; Klopp, Norman; Koppelman, Gerard H.; Singmann, Paula; Postma, Dirkje S.; Sausenthaler, Stefanie; Dagnelie, Pieter C.; van den Brandt, Piet A.; Koletzko, Berthold; Heinrich, Joachim
2010-01-01
Background Association of genetic-variants in the FADS1-FADS2-gene-cluster with fatty-acid-composition in blood of adult-populations is well established. We analyze this genetic-association in two children-cohort-studies. In addition, the association between variants in the FADS-gene-cluster and blood-fatty-acid-composition with eczema was studied. Methods and Principal Findings Data of two population-based-birth-cohorts in the Netherlands and Germany (KOALA, LISA) were pooled (n = 879) and analyzed by (logistic) regression regarding the mutual influence of single-nucleotide-polymorphisms (SNPs) in the FADS-gene-cluster (rs174545, rs174546, rs174556, rs174561, rs3834458), on polyunsaturated fatty acids (PUFA) in blood and parent-reported eczema until the age of 2 years. All SNPs were highly significantly associated with all PUFAs except for alpha-linolenic-acid and eicosapentaenoic-acid, also after correction for multiple-testing. All tested SNPs showed associations with eczema in the LISA-study, but not in the KOALA-study. None of the PUFAs was significantly associated with eczema neither in the pooled nor in the analyses stratified by study-cohort. Conclusions and Significance PUFA-composition in young children's blood is under strong control of the FADS-gene-cluster. Inconsistent results were found for a link between these genetic-variants with eczema. PUFA in blood was not associated with eczema. Thus the hypothesis of an inflammatory-link between PUFA and eczema by the metabolic-pathway of LC-PUFAs as precursors for inflammatory prostaglandins and leukotrienes could not be confirmed by these data. PMID:20948998
Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio
2010-11-01
The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients. Copyright © 2010 Mosby, Inc. All rights reserved.
Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human.
Tremblay-Franco, Marie; Zerbinati, Chiara; Pacelli, Antonio; Palmaccio, Giuseppina; Lubrano, Carla; Ducheix, Simon; Guillou, Hervé; Iuliano, Luigi
2015-07-01
Obesity and the related entity metabolic syndrome are characterized by altered lipid metabolism and associated with increased morbidity risk for cardiovascular disease and cancer. Oxysterols belong to a large family of cholesterol-derived molecules known to play crucial role in many signaling pathways underlying several diseases. Little is known on the potential effect of obesity and metabolic syndrome on oxysterols in human. In this work, we questioned whether circulating oxysterols might be significantly altered in obese patients and in patients with metabolic syndrome. We also tested the potential correlation between circulating oxysterols and fatty acids. 60 obese patients and 75 patients with metabolic syndrome were enrolled in the study along with 210 age- and sex-matched healthy subjects, used as control group. Plasma oxysterols were analyzed by isotope dilution GC/MS, and plasma fatty acids profiling was assessed by gas chromatography coupled with flame ionization detection. We found considerable differences in oxysterols profiling in the two disease groups that were gender-related. Compared to controls, males showed significant differences only in 4α- and 4β-hydroxycholesterol levels in obese and metabolic syndrome patients. In contrast, females showed consistent differences in 7-oxocholesterol, 4α-hydroxycholesterol, 25-hydroxycholesterol and triol. Concerning fatty acids, we found minor differences in the levels of these variables in males of the three groups. Significant changes were observed in plasma fatty acid profile of female patients with obesity or metabolic syndrome. We found significant correlations between various oxysterols and fatty acids. In particular, 4β-hydroxycholesterol, which is reduced in obesity and metabolic syndrome, correlated with a number of saturated and mono-unsaturated fatty acids that are end-products of de novo lipogenesis. Our data provide the first evidence that obesity and metabolic syndrome are associated with major, gender-specific, changes in circulating oxysterols and fatty acids. These findings suggest a metabolic link between oxysterols and fatty acids, and that oxysterols may contribute to the epidemic diseases associated with obesity and metabolic syndrome in female. Copyright © 2015 Elsevier Inc. All rights reserved.
López, Miguel; Lelliott, Christopher J; Tovar, Sulay; Kimber, Wendy; Gallego, Rosalía; Virtue, Sam; Blount, Margaret; Vázquez, Maria J; Finer, Nick; Powles, Trevor J; O'Rahilly, Stephen; Saha, Asish K; Diéguez, Carlos; Vidal-Puig, Antonio J
2006-05-01
Fatty acid metabolism in the hypothalamus has recently been shown to regulate feeding. The selective estrogen receptor modulator tamoxifen (TMX) exerts a potent anorectic effect. Here, we show that the anorectic effect of TMX is associated with the accumulation of malonyl-CoA in the hypothalamus and inhibition of fatty acid synthase (FAS) expression specifically in the ventromedial nucleus of the hypothalamus (VMN). Furthermore, we demonstrate that FAS mRNA expression is physiologically regulated by fasting and refeeding in the VMN but not in other hypothalamic nuclei. Thus, the VMN appears to be the hypothalamic site where regulation of FAS and feeding converge. Supporting the potential clinical relevance of these observations, reanalysis of a primary breast cancer prevention study showed that obese women treated with TMX gained significantly less body weight over a 6-year period than obese women given placebo. The finding that TMX can modulate appetite through alterations in FAS expression and malonyl-CoA levels suggests a link between hypothalamic sex steroid receptors, fatty acid metabolism, and feeding behavior.
Lovley, D.R.; Giovannoni, S.J.; White, D.C.; Champine, J.E.; Phillips, E.J.P.; Gorby, Y.A.; Goodwin, S.
1993-01-01
The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn(IV), U(VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.
[Skeletal muscles, physical activity and health].
Saltin, B; Helge, J W
2000-11-01
The metabolic capacity of skeletal muscle plays a significant role for insulin sensitivity and the blood lipid profile. The metabolic capacity of the muscle is a function of the individual's physical activity level. This is also true for the content of type IIa muscle fibres, which is reduced, and the number of capillaries, which is elevated with muscle usage. Several of these skeletal muscle features are risk factors for or linked with life-style induced diseases such as type II diabetes, hypertension, hyperlipemia and obesity. The central role of the skeletal muscle and its functional metabolic capacity for life style diseases highlights the importance of people maintaining daily physical activity. This article focuses on the link between the metabolic capacity of skeletal muscle and the metabolic syndrome and briefly discusses the explanations for this relationship. As one important aspect if skeletal muscle has a high capacity for lipid oxidation, then more saturated fatty acids are oxidised and more unsaturated fatty acids are built in the phospholipid fraction of the plasma membrane, giving it more fluidity and improved insulin sensitivity. Moreover, the article points at the role of these fatty acids in activating genes via the PPAR-receptor system essential for enzyme and transport proteins in the lipid metabolism.
Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.
Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G
2003-11-01
Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.
USDA-ARS?s Scientific Manuscript database
Excessive secretion of angiotensinogen (Agt) and other adipokines such as Interleukin-6 (IL-6) and Monocyte chemotactic protein-1 (MCP-1) have been linked to obesity and associated metabolic disorders, with a common feature being inflammation. We have previously shown that n-3 polyunsaturated fatty ...
Melville, D F; Johnston, S D; Miller, R R
2012-12-01
The very large acrosome of Pteropus species spermatozoa is prone to damage during cooling procedures. Cryogenic succuss has been linked to membrane composition, therefore the lipid composition of five Pteropus species sperm acrosomal and plasma membranes were investigated to provide insight into reasons for cold shock susceptibility. Rapid chilling and re-warming of spermatozoa from three Pteropus species resulted in a decrease (P<0.05) in acrosomal integrity. Biochemical analysis of lipids revealed that stearic acid (18:0) was the predominant saturated fatty acid and oleic acid (18:1, n-9) the predominant unsaturated fatty acid in both acrosomal and plasma membranes. Linolenic acid (18:3, n-3) was only detected in plasma membranes of Pteropus hypomelanus and was detected in acrosomal membranes of all Pteropus spp. studied (except Pteropus giganteus). Although detected in both plasma and acrosomal membranes of Pteropus vampyrus, docosahexaenoic acid (22:6) was not detected at all in Pteropus poliocephalus, only in trace levels in the acrosomal and plasma membranes of P. giganteus and P. hypomelanus and not in acrosomal membranes of Pteropus rodricensis. No difference was seen in the levels of polyunsaturated fatty acids (PUFAs) within plasma membranes, however PUFAs were lower (P<0.05) in acrosomal membranes of P. giganteus compared with P. vampyrus. Pteropus spp. spermatozoa have a very low ratio of unsaturated/saturated membrane fatty acids (<0.5). Membranes containing more PUFAs are more fluid, so the use of cryogenic media which improves membrane fluidity should improve Pteropus spp. spermatozoal viability post-thaw. Copyright © 2012 Elsevier Inc. All rights reserved.
Homocysteine regulates fatty acid and lipid metabolism in yeast.
Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana
2018-04-13
S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
Bovine and caprine caseins were cross-linked with microbial transglutaminase (mTG). The mTG-cross-linked bovine or caprine casein dispersion, mixed with 14.5% maltodextrin (DE = 40), was used to prepare emulsions with 10.5% algae oil. Oxidative stability of emulsions was evaluated by peroxide valu...
Christian, Lisa M.; Blair, Lisa M.; Porter, Kyle; Lower, Mary; Cole, Rachel M.; Belury, Martha A.
2016-01-01
Mechanistic pathways linking maternal polyunsaturated fatty acid (PUFA) status with gestational length are poorly delineated. This study examined whether inflammation and sleep quality serve as mediators, focusing on the antiinflammatory ω-3 docosahexaenoic acid (DHA; 22:6n3) and proinflammatory ω-6 arachidonic acid (AA; 20:4n6). Pregnant women (n = 135) provided a blood sample and completed the Pittsburgh Sleep Quality Index (PSQI) at 20–27 weeks gestation. Red blood cell (RBC) fatty acid levels were determined by gas chromatography and serum inflammatory markers [interleukin (IL)-6, IL-8, tumor necrosis factor-α, IL-1β, and C-reactive protein] by electrochemiluminescence using high sensitivity kits. Both higher serum IL-8 (95% CI = 0.10,3.84) and poor sleep (95% CI = 0.03,0.28) served as significant mediators linking lower DHA:AA ratios with shorter gestation. Further, a serial mediation model moving from the DHA:AA ratio → sleep → IL-8 → length of gestation was statistically significant (95% CI = 0.02, 0.79). These relationships remained after adjusting for depressive symptoms, age, BMI, income, race, and smoking. No interactions with race were observed in relation to length of gestation as a continuous variable. However, a significant interaction between race and the DHA:AA ratio in predicting preterm birth was observed (p = 0.049); among African Americans only, odds of preterm birth decreased as DHA:AA increased (p = 0.048). These data support a role for both inflammatory pathways and sleep quality in linking less optimal RBC PUFA status with shorter gestation in African American and European American women and suggest that African-Americans have greater risk for preterm birth in the context of a low DHA:AA ratio. PMID:26859301
A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440.
Fonseca, Pilar; de la Peña, Fernando; Prieto, María Auxiliadora
2014-11-01
Pseudomonas putida KT2440 is a Gram-negative bacterium capable of producing medium-chain-length-polyhydroxyalkanoates (mcl-PHA). When fatty acids are used as growth and polymer precursors, the biosynthesis is linked to fatty acid metabolism via ß-oxidation route. In the close-related Pseudomonas aeruginosa, the transcriptional repressor PsrA regulates the ß-oxidation, but little is known about the regulatory system in P. putida. To analyze the effect of the absence of psrA gene on the growth and PHA production in P. putida, a set of different carbon sources were assayed in the wild type strain and in a generated psrA deficient strain (KT40P). The growth rates were in all cases, lower for the mutant. The amount of PHA produced by the mutant strain is lower than the wild type. Moreover, the monomeric composition seems to be different among the strains, as there is enrichment in monomers with shorter carbon length in the mutant strain. To understand the role of the psrA gene on the metabolism of fatty acids, we have determined the expression profile of several genes related to fatty acid metabolism in the wild type and in the mutant strain. The results indicated that PsrA mostly negatively regulate genes related to fatty acid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Does proximity to urban centres affect the dietary regime of marine benthic filter feeders?
NASA Astrophysics Data System (ADS)
Puccinelli, Eleonora; Noyon, Margaux; McQuaid, Christopher D.
2016-02-01
Threats to marine ecosystems include habitat destruction and degradation of water quality, resulting from land- and ocean-based human activities. Anthropogenic input causing modification of water quality, can affect primary productivity and thus food availability and quality for higher trophic levels. This is especially important for sedentary benthic intertidal communities, which rely on local food availability. We investigated the effect of urbanization on the dietary regime of four species of intertidal filter feeders (three barnacles and one mussel) at sites close to high-density cities and at sites far from heavily urbanized areas using fatty acid and stable isotope techniques. δ15N was significantly higher at urbanized sites compared to their corresponding control sites for all species with few exceptions, while no effect on δ13C was recorded. Barnacle fatty acid profiles were not affected by cities, while mussels from sites close to cities had fatty acid signatures with a higher proportion of polyunsaturated fatty acids (PUFA). We suggest that the enrichment in δ15N at urbanised sites reflects the influence of anthropogenically derived nitrogen directly linked to wastewater input from domestic and industrial sewage. Linked to this, the high proportion of PUFA in mussels at urbanized sites may reflect the influence of increased nitrogen concentrations on primary production and enhanced growth of large phytoplankton cells. The results indicate that anthropogenic effects can strongly influence the diets of benthic organisms, but these effects differ among taxa. Changes in the diet of such habitat forming species can affect their fitness and survival with potential effects on the populations associated with them.
Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells.
Zhou, Weibo; Simpson, P Jeanette; McFadden, Jill M; Townsend, Craig A; Medghalchi, Susan M; Vadlamudi, Aravinda; Pinn, Michael L; Ronnett, Gabriele V; Kuhajda, Francis P
2003-11-01
C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the cytotoxic response. The continued ability of TOFA to rescue cancer cells from C75 cytotoxicity implies a proapoptotic role for malonyl-CoA independent of CPT-1 that selectively targets cancer cells as they progress into S phase.
Li, Lumin; Wang, Baogui; Yu, Ping; Wen, Xuefang; Gong, Deming; Zeng, Zheling
2016-06-01
Medium chain fatty acids (MCFA) can be more easily absorbed and supply energy more rapidly than long chain fatty acids (LCFA). However, little is known about the inflammatory response by the treatment of MCFA in human liver cells. Thus this study used human liver cells (LO2) to evaluate the effects of MCFA on apoptosis and inflammatory response. Tetrazolim-based colorimetric assay and lactate dehydrogenase assay were used to measure the viability of LO2 cells, isolated spleens and liver cells from BALB/C mice. Inverted fluorescence microscopy and flow cytometry were used to assess the cell apoptosis. Activity of superoxide dismutase and malondialdehyde level were measured to determine the oxidative damage. mRNA or protein levels of classical pro-inflammatory cytokines were analyzed by quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay and western blotting. The results showed that the liver cells treated with the fatty acids at 200 μM for 24 h exhibited good viability. Fatty acids induced inflammatory cytokines at transcriptional and translational levels to a lesser extent than lipopolysaccharide. LCFA (oleic acid) up-regulated tumor necrosis fator-α, monocyte chemoattractant-1 and interleukin-1β while down-regulated IL-6 and IL-8 secretion to a higher extent than MCFA in mRNA and protein levels. These findings suggested that MCFA may induce apoptosis to a less extent and exert more gentle inflammation than LCFA in human liver cells. © 2016 Institute of Food Technologists®
Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma
Bhatt, Aadra P.; Jacobs, Sarah R.; Freemerman, Alex J.; Makowski, Liza; Rathmell, Jeffrey C.; Dittmer, Dirk P.; Damania, Blossom
2012-01-01
The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL. PMID:22752304
Conformational Flexibility of Metazoan Fatty Acid Synthase Enables Catalysis
Brignole, Edward J.; Smith, Stuart; Asturias, Francisco J.
2008-01-01
The metazoan cytosolic fatty acid synthase (FAS) contains all of the enzymes required for de novo fatty acid biosynthesis covalently linked around two reaction chambers. While the 3D architecture of FAS has been mostly defined, it is unclear how reaction intermediates can transfer between distant catalytic domains. Using single-particle electron microscopy we have identified a near continuum of conformations consistent with remarkable flexibility of FAS. The distribution of conformations was influenced by the presence of substrates and altered by different catalytic mutations suggesting a direct correlation between conformation and specific enzymatic activities. 3D reconstructions were interpreted by docking high-resolution structures of individual domains and illustrate that the substrate loading and condensation domains dramatically swing and swivel to access substrates within either reaction chamber. Concomitant rearrangement of the β-carbon processing domains synchronizes acyl-chain reduction in one chamber with acyl-chain elongation in the other. PMID:19151726
Gut microbiota and host metabolism in liver cirrhosis
Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato
2015-01-01
The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics, synbiotics, and prebiotics, with sufficient nutrition could aid the development of treatments and prevention for liver cirrhosis patients. PMID:26556989
Gut microbiota and host metabolism in liver cirrhosis.
Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato
2015-11-07
The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics, synbiotics, and prebiotics, with sufficient nutrition could aid the development of treatments and prevention for liver cirrhosis patients.
Bi, Hongkai; Yu, Yonghong; Dong, Huijuan; Wang, Haihong; Cronan, John E.
2014-01-01
SUMMARY In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signaling factor (DSF, 2(Z)-11-methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl-CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl-CoA ligase, Escherichia coli FadD, in the E. coli β-oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3-hydroxyacyl-acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl-ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalyzing uptake and activation of the free fatty acids to give acyl-CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl-ACP synthetase, replaced RpfB in counteracting the effects of high level RpfF thioesterase activity indicating that the essential role of RpfB is uptake and activation of free fatty acids. PMID:24866092
Serrato, Rodrigo V; Balsanelli, Eduardo; Sassaki, Guilherme L; Carlson, Russell W; Muszynski, Artur; Monteiro, Rose A; Pedrosa, Fábio O; Souza, Emanuel M; Iacomini, Marcello
2012-11-01
Lipid-A was isolated by mild acid hydrolysis from lipopolysaccharides extracted from cells of Herbaspirillum seropedicae, strain SMR1, and from two mutants deficient in the biosynthesis of rhamnose (rmlB⁻ and rmlC⁻). Structural analyzes were carried out using MALDI-TOF and derivatization by per-O-trimethylsilylation followed by GC-MS in order to determine monosaccharide and fatty acid composition. De-O-acylation was also performed to determine the presence of N-linked fatty acids. Lipid-A from H. seropedicae SMR1 showed a major structure comprising 2-amino-2-deoxy-glucopyranose-(1→6)-2-amino-2-deoxy-glucopyranose phosphorylated at C4' and C1 positions, each carrying a unit of 4-amino-4-deoxy-arabinose. C2 and C2' positions were substituted by amide-linked 3-hydroxy-dodecanoic acids. Both rhamnose-defective mutants showed similar structure for their lipid-A moieties, except for the lack of 4-amino-4-deoxy-arabinose units attached to phosphoryl groups. Copyright © 2012 Elsevier B.V. All rights reserved.
Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
Thapa, Dharendra; Zhang, Manling; Manning, Janet R; Guimarães, Danielle A; Stoner, Michael W; O'Doherty, Robert M; Shiva, Sruti; Scott, Iain
2017-08-01
Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1. NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice. Copyright © 2017 the American Physiological Society.
A self-contained 48-well fatty acid oxidation assay.
Wang, Xiaojun; Wang, Rose; Nemcek, Thomas A; Cao, Ning; Pan, Jeffrey Y; Frevert, Ernst U
2004-02-01
The modulation of fatty acid metabolism and especially the stimulation of fatty acid oxidation in liver or skeletal muscle are attractive therapeutic approaches for the treatment of obesity and the associated insulin resistance. However, current beta-oxidation assays are run in very low throughput, which represents an obstacle for drug discovery in this area. Here we describe results for a 48-well beta-oxidation assay using a new instrument design. A connecting chamber links two adjacent wells to form an experimental unit, in which one well contains the beta-oxidation reaction and the other captures CO(2). The experimental units are sealed from each other and from the outside to prevent release of radioactivity from the labeled substrate. CO(2) capture in this instrument is linear with time and over the relevant experimental range of substrate concentration. Cellular viability is maintained in the sealed environment, and cells show the expected responses to modulators of beta-oxidation, such as the AMP kinase activator 5-aminoimidazole carboxamide riboside. Data are presented for different lipid substrates and cell lines. The increased throughput of this procedure compared with previously described methods should facilitate the evaluation of compounds that modulate fatty acid metabolism.
Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages[S
L'homme, Laurent; Esser, Nathalie; Riva, Laura; Scheen, André; Paquot, Nicolas; Piette, Jacques; Legrand-Poels, Sylvie
2013-01-01
The NLRP3 inflammasome is involved in many obesity-associated diseases, such as type 2 diabetes, atherosclerosis, and gouty arthritis, through its ability to induce interleukin (IL)-1β release. The molecular link between obesity and inflammasome activation is still unclear, but free fatty acids have been proposed as one triggering event. Here we reported opposite effects of saturated fatty acids (SFAs) compared with unsaturated fatty acids (UFAs) on NLRP3 inflammasome in human monocytes/macrophages. Palmitate and stearate, both SFAs, triggered IL-1β secretion in a caspase-1/ASC/NLRP3-dependent pathway. Unlike SFAs, the UFAs oleate and linoleate did not lead to IL-1β secretion. In addition, they totally prevented the IL-1β release induced by SFAs and, with less efficiency, by a broad range of NLRP3 inducers, including nigericin, alum, and monosodium urate. UFAs did not affect the transcriptional effect of SFAs, suggesting a specific effect on the NLRP3 activation. These results provide a new anti-inflammatory mechanism of UFAs by preventing the activation of the NLRP3 inflammasome and, therefore, IL-1β processing. By this way, UFAs might play a protective role in NLRP3-associated diseases. PMID:24006511
Liu, Tie Fu; Vachharajani, Vidula T; Yoza, Barbara K; McCall, Charles E
2012-07-27
The early initiation phase of acute inflammation is anabolic and primarily requires glycolysis with reduced mitochondrial glucose oxidation for energy, whereas the later adaptation phase is catabolic and primarily requires fatty acid oxidation for energy. We reported previously that switching from the early to the late acute inflammatory response following TLR4 stimulation depends on NAD(+) activation of deacetylase sirtuin 1 (SirT1). Here, we tested whether NAD(+) sensing by sirtuins couples metabolic polarity with the acute inflammatory response. We found in TLR4-stimulated THP-1 promonocytes that SirT1 and SirT 6 support a switch from increased glycolysis to increased fatty acid oxidation as early inflammation converts to late inflammation. Glycolysis enhancement required hypoxia-inducing factor-1α to up-regulate glucose transporter Glut1, phospho-fructose kinase, and pyruvate dehydrogenase kinase 1, which interrupted pyruvate dehydrogenase and reduced mitochondrial glucose oxidation. The shift to late acute inflammation and elevated fatty acid oxidation required peroxisome proliferator-activated receptor γ coactivators PGC-1α and β to increase external membrane CD36 and fatty acid mitochondrial transporter carnitine palmitoyl transferase 1. Metabolic coupling between early and late responses also required NAD(+) production from nicotinamide phosphoryltransferase (Nampt) and activation of SirT6 to reduce glycolysis and SirT1 to increase fatty oxidation. We confirmed similar shifts in metabolic polarity during the late immunosuppressed stage of human sepsis blood leukocytes and murine sepsis splenocytes. We conclude that NAD(+)-dependent bioenergy shifts link metabolism with the early and late stages of acute inflammation.
Joffre, C; Dinel, A L; Aubert, A; Fressange-Mazda, C; Le Ruyet, P; Layé, S
2016-12-01
The aim of the study was to determine the effect of maternal diets administered since day 1 of gestation and containing dairy lipids or vegetable oils differing in the supply of n-3 polyunsaturated fatty acids (n-3 PUFAs) (equilibrated or deficient) and of Lactobacillus fermentum (L. fermentum) on the docosahexaenoic acid (DHA) accretion in the pups at postnatal day 14 in the prefrontal cortex (PFC) and hippocampus (HC) for brain structures and in the liver and adipose tissue for peripheral tissues. Maternal milk fatty acid composition was also assessed by analyzing the fatty acid composition of the gastric content of the pups. DHA was higher in mice supplemented with L. fermentum than in mice in the deficient group in HC and PFC and also in liver and adipose tissue. This increase could be linked to the slight but significant increase in C18:3n-3 in the maternal milk. This proportion was comparable in the dairy lipid group for which the brain DHA level was the highest. L. fermentum may have a key role in the protection of the brain during the perinatal period via the neuronal accretion of n-3 PUFAs, especially during n-3 PUFA deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metabolomic Discovery of Novel Urinary Galabiosylceramide Analogs as Fabry Disease Biomarkers
NASA Astrophysics Data System (ADS)
Boutin, Michel; Auray-Blais, Christiane
2015-03-01
Fabry disease is an X-linked, complex, multisystemic lysosomal storage disorder presenting marked phenotypic and genotypic variability among affected male and female patients. Glycosphingolipids, mainly globotriaosylceramide (Gb3) isoforms/analogs, globotriaosylsphingosine (lyso-Gb3) and analogs, as well as galabiosylceramide (Ga2) isoforms/analogs accumulate in the vascular endothelium, nerves, cardiomyocytes, renal glomerular and tubular epithelial cells, and biological fluids. The search for biomarkers reflecting disease severity and progression is still on-going. A metabolomic study using quadrupole time-of-flight mass spectrometry has revealed 22 galabiosylceramide isoforms/analogs in urine of untreated Fabry patients classified in seven groups according to their chemical structure: (1) Saturated fatty acid; (2) one extra double bond; (3) two extra double bonds; (4) hydroxylated saturated fatty acid; (5) hydroxylated fatty acid and one extra double bond; (6) hydrated sphingosine and hydroxylated fatty acid; (7) methylated amide linkage. Relative quantification of both Ga2 and Gb3 isoforms/analogs was performed. All these biomarkers are significantly more abundant in urine samples from untreated Fabry males compared with healthy male controls. A significant amount of Ga2 isoforms/analogs, accounting for 18% of all glycosphingolipids analyzed (Ga2 + Gb3 and respective isoforms/analogs), were present in urine of Fabry patients. Gb3 isoforms containing saturated fatty acids are the most abundant (60.9%) compared with 26.3% for Ga2. A comparison between Ga2 isoforms/analogs and their Gb3 counterparts also showed that the proportion of analogs with hydroxylated fatty acids is significantly greater for Ga2 (35.8%) compared with Gb3 (1.9%). These results suggest different biological pathways involved in the synthesis and/or degradation of Gb3 and Ga2 metabolites.
Jing, Fuyuan; Cantu, David C; Tvaruzkova, Jarmila; Chipman, Jay P; Nikolau, Basil J; Yandeau-Nelson, Marna D; Reilly, Peter J
2011-08-10
Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.
2011-01-01
Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316
Zaalberg, Ap; Wielders, Jos; Bulten, Erik; van der Staak, Cees; Wouters, Anouk; Nijman, Henk
2016-07-01
Earlier studies have suggested associations between diet-related blood parameters and both aggression and psychopathological symptoms, but little is known about this in forensic psychiatric inpatients. This article aims to explore the levels of diet-related blood parameters and their relationship to aggressive behaviour and/or psychopathology among Dutch forensic psychiatric inpatients. Minerals, vitamins, lead and fatty acid levels were measured in blood samples from 51 inpatients, well enough to consent and participate in the study, from a possible total of 99. Levels of aggression and psychopathology were assessed using questionnaires, observation instruments and clinical data. Associations between blood parameters and behavioural measures were calculated. Low average levels of vitamin D3 and omega (ω)-3 fatty acids were found, with nearly two-thirds of the patients having below recommended levels of D3 , while vitamin B6 levels were high. Magnesium, iron, zinc, copper and lead were overall within reference values, but copper/zinc ratios were high. Several significant associations between levels of fatty acid measures and both aggression and psychopathology were observed. In our sample of forensic psychiatric inpatients, fatty acids - but not mineral or vitamin levels - were associated with aggression and psychopathology. A potentially causal link between fatty acids and aggression could be tested in a randomised, placebo-controlled trial of fish oil supplements. General health of such patients might be improved by better vitamin D status (increased sun exposure and/or supplement use) and better ω-3 fatty acid status (oily fish or fish oil consumption), but discouraging unnecessary self-prescription of B vitamins where necessary. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne
Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting thatmore » fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated palmitate/ CsA induced toxicity. ► Palmitate sensitizes cells to the toxicity induced by CsA at therapeutic exposure. ► Elevated free fatty acids may predispose the patients to CsA-induced toxicity.« less
APOC3 Protein Is Not a Predisposing Factor for Fat-induced Nonalcoholic Fatty Liver Disease in Mice.
Cheng, Xiaoyun; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Gong, Zhenwei; Muzumdar, Radhika; Qu, Shen; Dong, H Henry
2017-03-03
Nonalcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in liver, is prevalent in obesity. Genetic factors that link obesity to NAFLD remain obscure. Apolipoprotein C3 (APOC3) is a lipid-binding protein with a pivotal role in triglyceride metabolism. Humans with APOC3 gain-of-function mutations and mice with APOC3 overproduction are associated with hypertriglyceridemia. Nonetheless, it remains controversial whether APOC3 is culpable for diet-induced NAFLD. To address this fundamental issue, we fed APOC3-transgenic and wild-type littermates a high fructose diet or high fat diet, followed by determination of the effect of APOC3 on hepatic lipid metabolism and inflammation and the progression of NAFLD. To gain mechanistic insight into NAFLD, we determined the impact of APOC3 on hepatic triglyceride synthesis and secretion versus fatty acid oxidation. APOC3-transgenic mice were hypertriglyceridemic, culminating in marked elevation of triglycerides, cholesterols, and non-esterified fatty acids in plasma. Despite the prevailing hypertriglyceridemia, APOC3-transgenic mice, relative to wild-type littermates, had similar weight gain and hepatic lipid content without alterations in hepatic expression of key genes involved in triglyceride synthesis and secretion and fatty acid oxidation. APOC3-transgenic and wild-type mice had similar Kupffer cell content without alterations in hepatic expression of pro- and anti-inflammatory cytokines. APOC3 neither exacerbated diet-induced adiposity nor aggravated the degree of steatosis in high fructose or high fat-fed APOC3-transgenic mice. These effects ensued independently of weight gain even after 10-month high fat feeding. We concluded that APOC3, whose dysregulation is liable for hypertriglyceridemia, is not a predisposing factor for linking overnutrition to NAFLD in obesity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
APOC3 Protein Is Not a Predisposing Factor for Fat-induced Nonalcoholic Fatty Liver Disease in Mice*
Cheng, Xiaoyun; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Gong, Zhenwei; Muzumdar, Radhika; Qu, Shen; Dong, H. Henry
2017-01-01
Nonalcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in liver, is prevalent in obesity. Genetic factors that link obesity to NAFLD remain obscure. Apolipoprotein C3 (APOC3) is a lipid-binding protein with a pivotal role in triglyceride metabolism. Humans with APOC3 gain-of-function mutations and mice with APOC3 overproduction are associated with hypertriglyceridemia. Nonetheless, it remains controversial whether APOC3 is culpable for diet-induced NAFLD. To address this fundamental issue, we fed APOC3-transgenic and wild-type littermates a high fructose diet or high fat diet, followed by determination of the effect of APOC3 on hepatic lipid metabolism and inflammation and the progression of NAFLD. To gain mechanistic insight into NAFLD, we determined the impact of APOC3 on hepatic triglyceride synthesis and secretion versus fatty acid oxidation. APOC3-transgenic mice were hypertriglyceridemic, culminating in marked elevation of triglycerides, cholesterols, and non-esterified fatty acids in plasma. Despite the prevailing hypertriglyceridemia, APOC3-transgenic mice, relative to wild-type littermates, had similar weight gain and hepatic lipid content without alterations in hepatic expression of key genes involved in triglyceride synthesis and secretion and fatty acid oxidation. APOC3-transgenic and wild-type mice had similar Kupffer cell content without alterations in hepatic expression of pro- and anti-inflammatory cytokines. APOC3 neither exacerbated diet-induced adiposity nor aggravated the degree of steatosis in high fructose or high fat-fed APOC3-transgenic mice. These effects ensued independently of weight gain even after 10-month high fat feeding. We concluded that APOC3, whose dysregulation is liable for hypertriglyceridemia, is not a predisposing factor for linking overnutrition to NAFLD in obesity. PMID:28115523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent
Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH wasmore » assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.« less
MacFabe, Derrick F.
2012-01-01
Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental agents that can trigger ASDs or ASD-related behaviors and deserve further exploration in basic science, agriculture, and clinical medicine. PMID:23990817
Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.
Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther
2015-07-01
Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Nutrition in brain development and aging: role of essential fatty acids.
Uauy, Ricardo; Dangour, Alan D
2006-05-01
The essential fatty acids (EFAs), particularly the n-3 long-chain polyunsaturated fatty acids (LCPs), are important for brain development during both the fetal and postnatal period. They are also increasingly seen to be of value in limiting the cognitive decline during aging. EFA deficiency was first shown over 75 years ago, but the more subtle effects of the n-3 fatty acids in terms of skin changes, a poor response to linoleic acid supplementation, abnormal visual function, and peripheral neuropathy were only discovered later. Both n-3 and n-6 LCPs play important roles in neuronal growth, development of synaptic processing of neural cell interaction, and expression of genes regulating cell differentiation and growth. The fetus and placenta are dependent on maternal EFA supply for their growth and development, with docosahexaenomic acid (DHA)-supplemented infants showing significantly greater mental and psychomotor development scores (breast-fed children do even better). Dietary DHA is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Aging is also associated with decreased brain levels of DHA: fish consumption is associated with decreased risk of dementia and Alzheimer's disease, and the reported daily use of fish-oil supplements has been linked to improved cognitive function scores, but confirmation of these effects is needed.
Fatty acids linked to cardiovascular mortality are associated with risk factors
Ebbesson, Sven O. E.; Voruganti, Venkata S.; Higgins, Paul B.; Fabsitz, Richard R.; Ebbesson, Lars O.; Laston, Sandra; Harris, William S.; Kennish, John; Umans, Benjamin D.; Wang, Hong; Devereux, Richard B.; Okin, Peter M.; Weissman, Neil J.; MacCluer, Jean W.; Umans, Jason G.; Howard, Barbara V.
2015-01-01
Background Although saturated fatty acids (FAs) have been linked to cardiovascular mortality, it is not clear whether this outcome is attributable solely to their effects on low-density lipoprotein cholesterol (LDL-C) or whether other risk factors are also associated with FAs. The Western Alaskan Native population, with its rapidly changing lifestyles, shift in diet from unsaturated to saturated fatty acids and dramatic increase in cardiovascular disease (CVD), presents an opportunity to elucidate any associations between specific FAs and known CVD risk factors. Objective We tested the hypothesis that the specific FAs previously identified as related to CVD mortality are also associated with individual CVD risk factors. Methods In this community-based, cross-sectional study, relative proportions of FAs in plasma and red blood cell membranes were compared with CVD risk factors in a sample of 758 men and women aged ≥35 years. Linear regression analyses were used to analyze relations between specific FAs and CVD risk factors (LDL-C, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, systolic blood pressure, diastolic blood pressure, heart rate, body mass index, fasting glucose and fasting insulin, 2-hour glucose and 2-hour insulin). Results The specific saturated FAs previously identified as related to CVD mortality, the palmitic and myristic acids, were adversely associated with most CVD risk factors, whereas unsaturated linoleic acid (18:2n-6) and the marine n-3 FAs were not associated or were beneficially associated with CVD risk factors. Conclusions The results suggest that CVD risk factors are more extensively affected by individual FAs than hitherto recognized, and that risk for CVD, MI and stroke can be reduced by reducing the intake of palmitate, myristic acid and simple carbohydrates and improved by greater intake of linoleic acid and marine n-3 FAs. PMID:26274054
Ruxton, C H S; Derbyshire, E; Toribio-Mateas, M
2016-06-01
Ageing is a multifaceted and inevitable process involving a decline in health and well-being that could be ameliorated by dietary modification. We review and discuss the evidence for nutritional interventions that may support healthy ageing. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify randomised controlled trials investigating the role(s) of fatty acids and micronutrients in relation to markers of healthy ageing. European dietary surveys suggest that diets in elderly people are generally high in saturated fat, whereas intakes of vitamin D, magnesium, potassium, zinc and copper are below recommended levels. Thirty-four studies meeting the criteria were found, with 12 of these investigating the role of fatty acids and 22 considering intakes of micronutrients in relation to healthy ageing. Overall, these studies suggested that certain nutrients were consistent with healthy ageing; for example, omega-3 fatty acids were helpful for cognitive health, whereas combinations of calcium, vitamin D and K were linked with better bone health. Vitamin, mineral and fatty acid intakes are in need of improvement to help elderly populations achieve optimal diet quality and support healthy ageing. This could involve the judicious use of supplements alongside dietary advice. Additional research is needed to determine optimal nutrient doses, combinations and forms in relation to desired health outcomes. © 2015 The British Dietetic Association Ltd.
Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.; Rode, Karyn D.
2017-01-01
Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.
Photoperiod affects daily torpor and tissue fatty acid composition in deer mice
NASA Astrophysics Data System (ADS)
Geiser, Fritz; McAllan, B. M.; Kenagy, G. J.; Hiebert, Sara M.
2007-04-01
Photoperiod and dietary lipids both influence thermal physiology and the pattern of torpor of heterothermic mammals. The aim of the present study was to test the hypothesis that photoperiod-induced physiological changes are linked to differences in tissue fatty acid composition of deer mice, Peromyscus maniculatus (˜18-g body mass). Deer mice were acclimated for >8 weeks to one of three photoperiods (LD, light/dark): LD 8:16 (short photoperiod), LD 12:12 (equinox photoperiod), and LD 16:8 (long photoperiod). Deer mice under short and equinox photoperiods showed a greater occurrence of torpor than those under long photoperiods (71, 70, and 14%, respectively). The duration of torpor bouts was longest in deer mice under short photoperiod (9.3 ± 2.6 h), intermediate under equinox photoperiod (5.1 ± 0.3 h), and shortest under long photoperiod (3.7 ± 0.6 h). Physiological differences in torpor use were associated with significant alterations of fatty acid composition in ˜50% of the major fatty acids from leg muscle total lipids, whereas white adipose tissue fatty acid composition showed fewer changes. Our results provide the first evidence that physiological changes due to photoperiod exposure do result in changes in lipid composition in the muscle tissue of deer mice and suggest that these may play a role in survival of low body temperature and metabolic rate during torpor, thus, enhancing favourable energy balance over the course of the winter.
Oguntibeju, O O; Esterhuyse, A J; Truter, E J
2009-01-01
The link between dietary fats and cardiovascular disease has created a growing interest in dietary red palm oil research. Also, the link between nutrition and health, oxidative stress and the severity or progression of disease has stimulated further interest in the potential role of red palm oil (a natural antioxidant product) to improve oxidative status by reducing oxidative stress in patients with cardiovascular disease, cancer and other chronic diseases. In spite of its level of saturated fatty acid content (50%), red palm oil has not been found to promote atherosclerosis and/or arterial thrombosis. This is probably due to the ratio of its saturated fatty acid to unsaturated fatty acid content and its high concentration of antioxidants such as beta-carotene, tocotrienols, tocopherols and vitamin E. It has also been reported that the consumption of red palm oil reduces the level of endogenous cholesterol, and this seems to be due to the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of red palm oil to health include a reduction in the risk of arterial thrombosis and/or atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, a reduction in oxidative stress and a reduction in blood pressure. It has also been shown that dietary red palm oil, taken in moderation in animals and humans, promotes the efficient utilisation of nutrients, activates hepatic drug metabolising enzymes, facilitates the haemoglobinisation of red blood cells and improves immune function. This review provides a comprehensive overview of the nutritional, physiological and biochemical roles of red palm oil in improving wellbeing and quality of life.
A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, has been contaminated with JP-4 fuel hydrocarbons released by the crash of a tanker aircraft in October of 1988. A comprehensive analysis of the inorganic and organic geochemical constituents and geomicrobio...
Metabolic Reprogramming in Glioma
Strickland, Marie; Stoll, Elizabeth A.
2017-01-01
Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid metabolism; oxidative phosphorylation; and fatty acid metabolism, which significantly contributes to energy production in glioma cells. Secondly, we highlight processes (including the Randle Effect, AMPK signaling, mTOR activation, etc.) which are understood to link bio-energetic pathways with oncogenic signals, thereby allowing the glioma cell to achieve a pro-malignant state. PMID:28491867
N-Acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity.
Peypoux, F; Laprévote, O; Pagadoy, M; Wallach, J
2004-03-01
New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.
Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-Yu; Cooper, Thomas B; Burke, Ainsley K; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth
2015-01-01
Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention.
Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts.
Yang, Xiaohua; Haghiac, Maricela; Glazebrook, Patricia; Minium, Judi; Catalano, Patrick M; Hauguel-de Mouzon, Sylvie
2015-09-01
What are the effects of fatty acids on placental inflammatory cytokine with respect to toll-like receptor-4/nuclear factor-kappa B (TLR4/NF-kB)? Exogenous fatty acids induce a pro-inflammatory cytokine response in human placental cells in vitro via activation of TLR4 signaling pathways. The placenta is exposed to changes in circulating maternal fatty acid concentrations throughout pregnancy. Fatty acids are master regulators of innate immune pathways through recruitment of toll-like receptors and activation of cytokine synthesis. Trophoblast cells isolated from 14 normal term human placentas were incubated with long chain fatty acids (FA) of different carbon length and degree of saturation. The expression and secretion of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-alpha (TNF-α) were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Antibodies against TLR4 ligand binding domain, downstream signaling and anti-p65 NFkB-inhibitor were used to characterize the pathways of FA action. General approach used primary human term trophoblast cell culture. Methods and end-points used real-time quantitative PCR, cytokine measurements, immunohistochemistry, western blots. The long chain saturated fatty acids, stearic and palmitic (PA), stimulated the synthesis as well as the release of TNF-α, IL-6 and IL-8 by trophoblast cells (2- to 6-fold, P < 0.001). In contrast, the unsaturated (palmitoleic, oleic, linoleic) acids did not modify cytokine expression significantly. Palmitate-induced inflammatory effects were mediated via TLR4 activation, NF-kB phosphorylation and nuclear translocation. TNF-α protein level was close to the limit of detection in the culture medium even when cells were cultured with PA. These mechanisms open the way to a better understanding of how changes in maternal lipid homeostasis may regulate placental inflammatory status. X.Y. was recipient of fellowship award from West China Second University Hospital, Sichuan University (NIH HD 22965-19). The authors have nothing else to disclose. None. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Kenny, John G.; Ward, Deborah; Josefsson, Elisabet; Jonsson, Ing-Marie; Hinds, Jason; Rees, Huw H.; Lindsay, Jodi A.; Tarkowski, Andrej; Horsburgh, Malcolm J.
2009-01-01
Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed by a murine arthritis model. Differences in the prevalence and clinical importance of S. aureus strains might partly be explained by their responses to antimicrobial fatty acids. PMID:19183815
Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke
2015-12-01
Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.
Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch
Morales-Lázaro, Sara L.; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E.; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A.; Islas, León D.; Rosenbaum, Tamara
2016-01-01
The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation. PMID:27721373
Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki
2017-10-01
For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase (FAS-II) system. In this study, we reported genetic evidence demonstrating that the FAS-I system is the source of the biotin precursor in vivo in the engineered biotin-prototrophic C. glutamicum strain. This study also uncovered the important physiological role of FasB in lipoic acid biosynthesis. Here, we present an FAS-I enzyme that functions in supplying the lipoic acid precursor, although its biosynthesis has been believed to exclusively depend on FAS-II in organisms. The findings obtained here provide new insights into the metabolic engineering of this industrially important microorganism to produce these compounds effectively. Copyright © 2017 American Society for Microbiology.
Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki
2017-01-01
ABSTRACT For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI. Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA. These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum. IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis, which use an individual nonaggregating type II fatty acid synthase (FAS-II) system. In this study, we reported genetic evidence demonstrating that the FAS-I system is the source of the biotin precursor in vivo in the engineered biotin-prototrophic C. glutamicum strain. This study also uncovered the important physiological role of FasB in lipoic acid biosynthesis. Here, we present an FAS-I enzyme that functions in supplying the lipoic acid precursor, although its biosynthesis has been believed to exclusively depend on FAS-II in organisms. The findings obtained here provide new insights into the metabolic engineering of this industrially important microorganism to produce these compounds effectively. PMID:28754705
Nutritional agents with anti-inflammatory properties in chemoprevention of colorectal neoplasia.
Hull, Mark A
2013-01-01
The strong link between inflammation and colorectal carcinogenesis provides the rationale for using anti-inflammatory agents for chemoprevention of colorectal cancer (CRC). Several naturally occurring substances with anti-inflammatory properties, used in a purified 'nutraceutical' form, including omega-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and polyphenols such as curcumin and resveratrol, have been demonstrated to have anti-CRC activity in preclinical models. As expected, these agents have an excellent safety and tolerability profile in Phase II clinical trials. Phase III randomized clinical trials of these naturally occurring substances are now beginning to be reported. The omega-3 polyunsaturated fatty acid EPA, in the free fatty acid (FFA) form, has been demonstrated to reduce adenomatous polyp number and size in patients with familial adenomatous polyposis (FAP), a finding which has prompted evaluation of this formulation of EPA for prevention of 'sporadic' colorectal neoplasia. Anti-inflammatory 'nutraceuticals' require further clinical evaluation in polyp prevention trials as they exhibit many of the characteristics of the ideal cancer chemoprevention agent, including safety, tolerability and patient acceptability.
Huang, Qiaoyan; Feng, Dong; Liu, Kai; Wang, Peng; Xiao, Hongyan; Wang, Ying; Zhang, Shicui; Liu, Zhenhui
2014-08-01
Gpr84 was recently identified as a receptor for medium-chain fatty acids, but its functions remain to be clarified. We reported the identification of a zebrafish Gpr84 homologue (zGpr84), which has a higher gene expression in the tissues of intestine, heart and liver. During embryogenesis, zGpr84 is maternally expressed and a significant increase is observed at segmentation period, and it is mainly restricted to the head region, pectoral fins, branchial arches, intestine and lateral line neuromast. Fasting or treatment with lipopolysaccharide (LPS) can induce significant up-regulation of zGpr84. We further demonstrated that zGpr84 is involved in the accumulation of lipid droplets in cells. Moreover, undecanoic acid (UA) can amplify LPS induced production of the proinflammatory cytokine IL-12 p40 through zGpr84, supporting the proposal that Gpr84 may play a role in directly linking fatty acid metabolism to immunological regulation. The resulting data in fish lay a foundation for a comprehensive exploration of the functions and evolution of Gpr84. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eguchi, Kosei; Manabe, Ichiro
2014-01-01
The epidemic growth in the prevalence of obesity has made the impact of metabolic syndrome on cardiovascular events increasingly significant. Elevated visceral adiposity, the indispensable component of metabolic syndrome, is thought to play a primary role in the increasing incidence of cardiometabolic disorders. Importantly, obesity is not merely the simple expansion of adipose tissue mass; it also involves the activation of inflammatory processes within visceral adipose tissue. Adipose tissue inflammation on the one hand enhances the production of proinflammatory adipokines and on the other hand increases the release of free fatty acids via the activation of lipolysis. The adipokines and free fatty acids secreted from visceral fat then contribute to a cardiometabolic pathology. We herein summarize recent advances in our understanding of the mechanisms by which visceral obesity leads to the activation of inflammation in cardiovascular and metabolic tissues and promotes cardiometabolic disease. Our focus is on Toll-like receptor 4 signaling and free fatty acids as mediators of chronic inflammation in patients with metabolic syndrome and atherosclerosis.
Bianchi, Anna Rita; Ferreri, Carla; Ruggiero, Simona; Deplano, Simone; Sunda, Valentina; Galloro, Giuseppe; Formisano, Cesare; Mennella, Maria Rosaria Faraone
2016-01-01
Establishing by statistical analyses whether the analyses of auto-modified poly(ADP-ribose)polymerase and erythrocyte membrane fatty acid composition (Fat Profile(®)), separately or in tandem, help monitoring the physio-pathology of the cell, and correlate with diseases, if present. Ninety five subjects were interviewed and analyzed blindly. Blood lymphocytes and erythrocytes were prepared to assay poly(ADP-ribose)polymerase automodification and fatty acid based membrane lipidome, respectively. Poly(ADP-ribose)polymerase automodification levels confirmed their correlation with DNA damage extent, and allowed monitoring disease activity, upon surgical/therapeutic treatment. Membrane lipidome profiles showed lipid unbalance mainly linked to inflammatory states. Statistically both tests were separately significant, and correlated each other within some pathologies. In the laboratory routine, both tests, separately or in tandem, might be a preliminary and helpful step to investigate the occurrence of a given disease. Their combination represents a promising integrated panel for sensible, noninvasive and routine health monitoring.
Crystallization and preliminary X-ray diffraction analysis of FabG from Yersinia pestis.
Nanson, Jeffrey David; Forwood, Jade Kenneth
2014-01-01
The type II fatty-acid biosynthesis pathway of bacteria provides enormous potential for antibacterial drug development owing to the structural differences between this and the type I fatty-acid biosynthesis system found in mammals. β-Ketoacyl-ACP reductase (FabG) is responsible for the reduction of the β-ketoacyl group linked to acyl carrier protein (ACP), and is essential for the formation of fatty acids and bacterial survival. Here, the cloning, expression, purification, crystallization and diffraction of FabG from Yersinia pestis (ypFabG), the highly virulent causative agent of plague, are reported. Recombinant FabG was expressed, purified to homogeneity and crystallized via the hanging-drop vapour-diffusion technique. Diffraction data were collected at the Australian Synchrotron to 2.30 Å resolution. The crystal displayed P2(1)2(1)2(1) symmetry, with unit-cell parameters a = 68.22, b = 98.68, c = 169.84 Å, and four ypFabG molecules in the asymmetric unit.
Betaine Attenuates Alcohol-Induced Pancreatic Steatosis.
Yang, Wenjuan; Gao, Jinhang; Tai, Yang; Chen, Meng; Huang, Luming; Wen, Shilei; Huang, Zhiyin; Liu, Rui; Li, Jing; Tang, Chengwei
2016-07-01
To explore the effect of betaine on alcoholic pancreatic steatosis and its mechanism. Rats were randomly assigned to control, ethanol, or ethanol + betaine groups. Changes in pancreatic morphology; serum lipid levels; and pancreatic lipid, amylase and lipase levels were determined. The serum and adipose tissue adiponectin level was measured by an enzyme-linked immunoassay. Adiponectin receptor-1 (AdipoR1), AdipoR2, sterol regulatory element binding protein-1c (SREBP-1c), SREBP-2, and fatty acid synthetase expression levels were quantified. The SREBP-1c expression in SW1990 cells treated with various concentrations of ethanol or ethanol plus betaine and/or adiponectin was assessed. Alcohol-induced changes in pancreatic morphology were attenuated by betaine. Pancreatic triglyceride, free fatty acid and expression levels of SREBP-1c and fatty acid synthetase were elevated after ethanol feeding but remained at control levels after betaine supplementation. Alcohol-induced decreases in serum and adipose tissue adiponectin, pancreatic AdipoR1, amylase, and lipase were attenuated by betaine. Serum triglyceride and free fatty acid levels were elevated after alcohol consumption and remained higher after betaine supplementation compared with controls. Betaine and/or adiponectin suppressed alcohol-induced SREBP-1c upregulation in vitro. Betaine attenuated alcoholic-induced pancreatic steatosis most likely by suppressing pancreatic SREBP-1c both directly and through the restoration of adiponectin signaling.
Biotransformation of Flavonoid Conjugates with Fatty Acids and Evaluations of Their Functionalities
Sun, Cynthia Q.; Johnson, Keryn D.; Wong, Herbert; Foo, L. Y.
2017-01-01
Enzymatic conjugation with fatty acids including omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil to three citrus fruit-derived flavonoids: grapefruit extract, naringin, and neohesperidin dihydrochalcone were investigated. The conversions were achieved over 85% under the catalysis of lipase Novozyme 435 in acetone at 45°C at semi-preparative scale. The conjugates were purified via solvent partition and silica gel chromatography and achieved 90–98% in purity. The NMR analysis of the conjugates confirmed that the fatty acid carbon chain was linked onto the primary –OH group on the glucose moiety of the flavonoids. The purified flavonoid conjugates alongside their original flavonoids were analyzed for antioxidant activities via 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and anti-peroxidation test via peroxide values measured during a 1-week fish oil storage trial. Vascular endothelial growth factor (VEGF) assay was conducted with 1, 10, and 100 μM of naringin and grapefruits and their conjugates, respectively, and total VEGF levels were measured at 24 and 48 h, respectively, using ELISA and dot blot analysis. The results from these functionality experiments demonstrated that flavonoid FA conjugates have at least comparable (if not higher) antioxidant activity, anti-peroxidation activity, and anti-angiogenic activity. PMID:29163154
Biotransformation of Flavonoid Conjugates with Fatty Acids and Evaluations of Their Functionalities.
Sun, Cynthia Q; Johnson, Keryn D; Wong, Herbert; Foo, L Y
2017-01-01
Enzymatic conjugation with fatty acids including omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil to three citrus fruit-derived flavonoids: grapefruit extract, naringin, and neohesperidin dihydrochalcone were investigated. The conversions were achieved over 85% under the catalysis of lipase Novozyme 435 in acetone at 45°C at semi-preparative scale. The conjugates were purified via solvent partition and silica gel chromatography and achieved 90-98% in purity. The NMR analysis of the conjugates confirmed that the fatty acid carbon chain was linked onto the primary -OH group on the glucose moiety of the flavonoids. The purified flavonoid conjugates alongside their original flavonoids were analyzed for antioxidant activities via 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and anti-peroxidation test via peroxide values measured during a 1-week fish oil storage trial. Vascular endothelial growth factor (VEGF) assay was conducted with 1, 10, and 100 μM of naringin and grapefruits and their conjugates, respectively, and total VEGF levels were measured at 24 and 48 h, respectively, using ELISA and dot blot analysis. The results from these functionality experiments demonstrated that flavonoid FA conjugates have at least comparable (if not higher) antioxidant activity, anti-peroxidation activity, and anti-angiogenic activity.
Metabolism meets immunity: The role of free fatty acid receptors in the immune system.
Alvarez-Curto, Elisa; Milligan, Graeme
2016-08-15
There are significant numbers of nutrient sensing G protein-coupled receptors (GPCRs) that can be found in cells of the immune system and in tissues that are involved in metabolic function, such as the pancreas or the intestinal epithelium. The family of free fatty acid receptors (FFAR1-4, GPR84), plus a few other metabolite sensing receptors (GPR109A, GPR91, GPR35) have been for this reason the focus of studies linking the effects of nutrients with immunological responses. A number of the beneficial anti-inflammatory effects credited to dietary fats such as omega-3 fatty acids are attributed to their actions on FFAR4.This might play an important protective role in the development of obesity, insulin resistance or asthma. The role of the short-chain fatty acids resulting from fermentation of fibre by the intestinal microbiota in regulating acute inflammatory responses is also discussed. Finally we assess the therapeutic potential of this family of receptors to treat pathologies where inflammation is a major factor such as type 2 diabetes, whether by the use of novel synthetic molecules or by the modulation of the individual's diet. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra
2016-01-01
Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503
Marine omega-3 fatty acids and mood disorders--linking the sea and the soul. 'Food for Thought' I.
Hegarty, B D; Parker, G B
2011-07-01
While there has long been interest in any nutritional contribution to the onset and treatment of mood disorders, there has been increasing scientific evaluation of several candidate nutritional and dietary factors in recent years. In this inaugural study of our 'Food for Thought' series, we will overview the evidence for any role of omega-3 fatty acids (FA) in regulating mood. Relevant literature was identified through online database searches and cross-referencing. Plausible mechanisms exist by which omega-3 FA may influence neuronal function and mood. Cross-sectional studies demonstrate an association between omega-3 fatty acid deficiency and both depressive and bipolar disorders. Studies investigating the efficacy of omega-3 fatty acid supplementation for mood disorders have however provided inconsistent results. The proportion of treatment studies showing a significant advantage of omega-3 supplementation has dropped over the last 5 years. However, the vast heterogeneity of the trials in terms of constituent omega-3 FAs, dose and length of treatment makes comparisons of these studies difficult. More research is required before omega-3 supplementation can be firmly recommended as an effective treatment for mood disorders. Whereas increased omega-3 FA intake may alleviate depressive symptoms, there is little evidence of any benefit for mania. © 2011 John Wiley & Sons A/S.
The Protective Effects of Extra Virgin Olive Oil on Immune-mediated Inflammatory Responses.
Casas, Rosa; Estruch, Ramon; Sacanella, Emilio
2018-01-01
The increasing interest in the Mediterranean diet (MeDiet) hinges on the relevant role it plays in inflammatory diseases. Several clinical, epidemiological and experimental evidences suggest that consumption of the MeDiet reduces the incidence of certain pathologies related to oxidative stress, chronic inflammation and immune system diseases such as cancer, atherosclerosis and cardiovascular disease (CVD). These reductions can be partially attributed to extra virgin olive oil (EVOO) consumption which has been described as a key bioactive food because of its high nutritional quality and its particular composition of fatty acids, vitamins and polyphenols. Indeed, the beneficial effects of EVOO have been linked to its fatty acid composition, which is very rich in monounsaturated fatty acids (MUFA), and has moderate saturated and polyunsaturated fatty acids (PUFA). The current knowledge available on the beneficial effects of EVOO and its phenolic compounds, specifically its biological properties and antioxidant capacity against immune-mediated inflammatory responses (atherosclerosis, rheumatoid arthritis, diabetes, obesity, cancer, inflammatory bowel disease or neurodegenerative disease, among others) in addition to its potential clinical applications. The increasing body of studies carried out provides compelling evidence that olive polyphenols are potential candidates to combat chronic inflammatory states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1
Terzaghi, William B.
1989-01-01
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997
Le Grandois, Julie; Marchioni, Eric; Zhao, Minjie; Giuffrida, Francesca; Ennahar, Saïd; Bindler, Françoise
2009-07-22
This study is a contribution to the exploration of natural phospholipid (PL) sources rich in long-chain polyunsaturated fatty acids (LC-PUFAs) with nutritional interest. Phosphatidylcholines (PCs) were purified from total lipid extracts of different food matrices, and their molecular species were separated and identified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(2)). Fragmentation of lithiated adducts allowed for the identification of fatty acids linked to the glycerol backbone. Soy PC was particularly rich in species containing essential fatty acids, such as (18:2-18:2)PC (34.0%), (16:0-18:2)PC (20.8%), and (18:1-18:2)PC (16.3%). PC from animal sources (ox liver and egg yolk) contained major molecular species, such as (16:0-18:2)PC, (16:0-18:1)PC, (18:0-18:2)PC, or (18:0-18:1)PC. Finally, marine source (krill oil), which was particularly rich in (16:0-20:5)PC and (16:0-22:6)PC, appeared to be an interesting potential source for food supplementation with LC-PUFA-PLs, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki
2018-02-01
Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.
Czesny, Sergiusz; Dettmers, John M; Rinchard, Jacques; Dabrowski, Konrad
2009-12-01
The natural reproduction of lake trout Salvelinus namaycush in Lake Michigan is thought to be compromised by nutritional deficiency associated with inadequate levels of thiamine (vitamin B1) in their eggs. However, mortality driven by thiamine deficiency (commonly referred to as early mortality syndrome [EMS]) is not the only significant cause of low lake trout survival at early life stages. In this study, we sought to better understand the combined effects of variable levels of thiamine and fatty acids in lake trout eggs on prehatch, posthatch, and swim-up-stage mortality. We sampled the eggs of 29 lake trout females from southwestern Lake Michigan. The concentrations of free thiamine and its vitamers (e.g., thiamine monophosphate [TMP] and thiamine pyrophosphate [TPP]) as well as fatty acid profiles were determined in sampled eggs. Fertilized eggs and embryos were monitored through the advanced swim-up stage (1,000 degree-days). Three distinct periods of mortality were identified: prehatch (0-400 degree-days), immediately posthatch (401-600 degree-days), and swim-up (601-1,000 degree-days). Stepwise multiple regression analysis revealed (1) that cis-7-hexadecenoic acid in both neutral lipids (NL) and phospholipids (PL) correlated with prehatch mortality, (2) that docosapentaenoic acid in PL and docosahexaenoic acid in NL correlated with posthatch mortality, and (3) that total lipids, TPP, and palmitoleic acid in NL, linoleic acid, and palmitic acid in PL correlated with the frequency of EMS. These results indicate the complexity of early life stage mortality in lake trout and suggest that inadequate levels of key fatty acids in eggs, along with variable thiamine content, contribute to the low survival of lake trout progeny in Lake Michigan.
Acute effects of dietary fatty acids on osteclastogenesis via RANKL/RANK/OPG system.
Naranjo, M Carmen; Garcia, Indara; Bermudez, Beatriz; Lopez, Sergio; Cardelo, Magdalena P; Abia, Rocio; Muriana, Francisco J G; Montserrat-de la Paz, Sergio
2016-11-01
Postprandial state is directly linked with chronic diseases. We hypothesized that dietary fats may have acute effects on health status by modulating osteoclast differentiation and activation in a fatty acid-dependent manner. In healthy subjects, a fat-enriched meal increased plasma levels of the RANKL (receptor activator of nuclear factor κB ligand)/OPG (osteoprotegerin) ratio (SFAs > MUFAs = PUFAs) in the postprandial state. Postprandial TRL-SFAs enhanced tartrate-resistant acid phosphatase (TRAP) activity and the expression of osteoclast marker genes (TRAP, OSCAR, RANK, and CATHK) while downregulated the expression of OPG gene in human monocyte-derived osteoclasts. These effects were not observed with monounsaturated fatty acid (MUFA)-enriched postprandial triglyceride-rich lipoproteins (TRLs). Moreover, postprandial TRL-SFAs increased the release of osteoclastogenic cytokines (TNF-α, IL-1β, and IL-6) meanwhile TRL-MUFAs and TRL-PUFAs increased the release of anti-osteoclastogenic cytokines (IL-4 and IL-10) in the medium of human monocyte-derived osteoclasts. For the first time, we show that postprandial TRLs are metabolic entities with osteoclastogenic activity and that this property is related to the type of dietary fatty acid in the meal. The osteoclastogenic potency was as follows: SFAs > MUFAs = PUFAs. These exciting findings open opportunities for developing nutritional strategies with olive oil as the principal dietary source of MUFAs, notably oleic acid, to prevent development and progression of osteoclast-related diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes
Antonenkov, Vasily D.; Sormunen, Raija T.; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P.; Hiltunen, J. Kalervo
2005-01-01
The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal β-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed. PMID:16262600
Antonenkov, Vasily D; Sormunen, Raija T; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P; Hiltunen, J Kalervo
2006-03-01
The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal beta-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed.
Acylcarnitines: potential implications for skeletal muscle insulin resistance.
Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen
2015-01-01
Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance. © FASEB.
Process For The Preparation Of 3,4-Dihyd Roxybutanoic Acid And Salts Thereof
Hollingsworth, Rawle I.
1994-06-07
A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.
Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof
Hollingsworth, Rawle I.
1994-01-01
A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.
Song, Yu-Feng; Tan, Xiao-Ying; Pan, Ya-Xiong; Zhang, Li-Han; Chen, Qi-Liang
2018-05-14
Although several studies have been conducted to study leptin function, information is very scarce on the molecular mechanism of leptin in fatty acid β-oxidation and oocytes maturation in fish. In this study, we investigated the potential role of fatty acid β-oxidation in leptin-mediated oocytes maturation in Pelteobagrus fulvidraco . Exp. 1 investigated the transcriptomic profiles of ovary and the differential expression of genes involved in β-oxidation and oocytes maturation following rt-hLEP injection; rt-hLEP injection was associated with significant changes in the expression of genes, including twenty-five up-regulated genes ( CPT1 , Acsl , Acadl , Acadm , Hadhb , Echsl , Hsd17b4 , Acca , PPARα , CYP8B1 , ACOX1 , ACBP , MAPK , RINGO , Cdc2 , MEK1 , IGF-1R , APC/C, Cdk2 , GnRHR, STAG3 , SMC1 , FSHβ and C-Myc ) and ten down-regulated gene ( PPARγ , FATCD36 , UBC , PDK1 , Acads , Raf , Fizzy , C3H-4 , Raf and PKC ), involved in fatty acid β-oxidation and oocytes maturation. In Exp. 2, rt-hLEP and specific inhibitors AG490 (JAK-STAT inhibitor) were used to explore whether leptin induced oocytes maturation, and found that leptin incubation increased the diameters of oocytes and percentage of germinal vesicle breakdown (GVBD)-MII oocytes, up-regulated mRNA levels of genes involved in oocytes maturation and that leptin-induced oocyte maturation was related to activation of JAK-STAT pathway. In Exp. 3, primary oocytes of P. fulvidraco were treated with (R)-(+)-etomoxir (an inhibitor of β-oxidation) or l-carnitine (an enhancer of β-oxidation) for 48 h under rt-hLEP incubation. Exp. 3 indicated that the inhibition of fatty acid β-oxidation resulted in the down-regulation of gene expression involved in oocytes maturation, and repressed the leptin-induced up-regulation of these gene expression. Activation of fatty acid β-oxidation improved the maturation rate and mean diameter of oocytes, and up-regulated gene expression involved in oocytes maturation. Leptin is one of the main factors that links fatty acid β-oxidation with oocyte maturation; β-oxidation is essential for leptin-mediated oocyte maturation in fish.
Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D
2016-04-01
In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short precursors now gives us easy access to these extended molecules.
Devi, Amita; Khatkar, B S
2018-01-01
This study was carried out to investigate the effect of fatty acid composition and microstructure properties of fats and oils on the textural properties of cookie dough and quality attributes of cookies. Fatty acid composition and microstructure properties of six fats and oils (butter, hydrogenated fat, palm oil, coconut oil, groundnut oil, and sunflower oil) were analyzed. Sunflower oil was found to be the most unsaturated oil with 88.39% unsaturated fatty acid content. Coconut oil and palm oil differed from other fats and oils by having an appreciable amount of lauric acid (59.36%) and palmitic acid (42.14%), respectively. Microstructure size of all fats and oils ranged from 1 to 20 μm being the largest for coconut oil and the smallest for palm oil. In palm oil, small rod-shaped and randomly arranged microstructures were observed, whereas sunflower oil and groundnut oil possessed large, scattered ovule shaped microstructures. It was reported that sunflower oil produced the softest dough, the largest cookie spread and the hardest cookie texture, whereas hydrogenated fat produced the stiffest dough, the lowest spread and most tender cookies. Statistical analysis depicted that palmitic acid and oleic acid demonstrated a positive correlation with dough hardness. Linoleic acid exhibited positive link with cookie spread ratio (r = 0.836**) and breaking strength (r = 0.792**). Microstructure size showed a significant positive relationship with dough density (r = 0.792**), cookie density (r = 0.386*), spread ratio (r = 0.312*), and breaking strength (r = 0.303*).
Murumalla, Ravi Kumar; Gunasekaran, Manoj Kumar; Padhan, Jibesh Kumar; Bencharif, Karima; Gence, Lydie; Festy, Franck; Césari, Maya; Roche, Régis; Hoareau, Laurence
2012-12-21
On the basis that high fat diet induces inflammation in adipose tissue, we wanted to test the effect of dietary saturated and polysunsaturated fatty acids on human adipose tissue and adipocytes inflammation. Moreover we wanted to determine if TLR2 and TLR4 are involved in this pathway. Human adipose tissue and adipocytes primary cultures were treated with endotoxin-free BSA conjugated with SFA (lauric acid and palmitic acid--LA and PA) and PUFA (eicosapentaeneic acid, docosahexaenoic acid and oleic acid--EPA, DHA and OA) with or without LPS. Cytokines were then assayed by ELISA (TNF-alpha, IL-6 and MCP-1). In order to determine if TLR2 and TLR4 are activated by fatty acid (FA), we used HEK-Blue cells transfected by genes from TLR2 or TLR4 pathways associated with secreted alkaline phosphatase reporter gene. None of the FA tested in HEK-Blue cells were able to activate TLR2 or TLR4, which is concordant with the fact that after FA treatment, adipose tissue and adipocytes cytokines levels remain the same as controls. However, all the PUFA tested: DHA, EPA and to a lesser extent OA down-regulated TNF-alpha, IL-6 and MCP-1 secretion in human adipose tissue and adipocytes cultures. This study first confirms that FA do not activate TLR2 and TLR4. Moreover by using endotoxin-free BSA, both SFA and PUFA tested were not proinflammatory in human adipose tissue and adipocytes model. More interestingly we showed that some PUFA exert an anti-inflammatory action in human adipose tissue and adipocytes model. These results are important since they clarify the relationship between dietary fatty acids and inflammation linked to obesity.
2012-01-01
Background On the basis that high fat diet induces inflammation in adipose tissue, we wanted to test the effect of dietary saturated and polysunsaturated fatty acids on human adipose tissue and adipocytes inflammation. Moreover we wanted to determine if TLR2 and TLR4 are involved in this pathway. Methods Human adipose tissue and adipocytes primary cultures were treated with endotoxin-free BSA conjugated with SFA (lauric acid and palmitic acid - LA and PA) and PUFA (eicosapentaeneic acid, docosahexaenoic acid and oleic acid - EPA, DHA and OA) with or without LPS. Cytokines were then assayed by ELISA (TNF-alpha, IL-6 and MCP-1). In order to determine if TLR2 and TLR4 are activated by fatty acid (FA), we used HEK-Blue cells transfected by genes from TLR2 or TLR4 pathways associated with secreted alkaline phosphatase reporter gene. Results None of the FA tested in HEK-Blue cells were able to activate TLR2 or TLR4, which is concordant with the fact that after FA treatment, adipose tissue and adipocytes cytokines levels remain the same as controls. However, all the PUFA tested: DHA, EPA and to a lesser extent OA down-regulated TNF-alpha, IL-6 and MCP-1 secretion in human adipose tissue and adipocytes cultures. Conclusions This study first confirms that FA do not activate TLR2 and TLR4. Moreover by using endotoxin-free BSA, both SFA and PUFA tested were not proinflammatory in human adipose tissue and adipocytes model. More interestingly we showed that some PUFA exert an anti-inflammatory action in human adipose tissue and adipocytes model. These results are important since they clarify the relationship between dietary fatty acids and inflammation linked to obesity. PMID:23259689
Pethybridge, Heidi R.; Parrish, Christopher C.; Bruce, Barry D.; Young, Jock W.; Nichols, Peter D.
2014-01-01
Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5–3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51–81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g−1 dm) and liver (34.1±3.2 kJ g−1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species. PMID:24871223
Pethybridge, Heidi R; Parrish, Christopher C; Bruce, Barry D; Young, Jock W; Nichols, Peter D
2014-01-01
Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.
Yeckel, Catherine W; Dziura, James; DiPietro, Loretta
2008-04-01
Excess abdominal adiposity is a primary factor for insulin resistance in older age. Our objectives were to examine the role of abdominal obesity on adipose tissue, hepatic, and peripheral insulin resistance in aging, and to examine impaired free fatty acid metabolism as a mechanism in these relations. This was a cross-sectional study. The study was performed at a General Clinical Research Center. Healthy, inactive older (>60 yr) women (n = 25) who were not on hormone replacement therapy or glucose-lowering medication were included in the study. Women with abdominal circumference values above the median (>97.5 cm) were considered abdominally obese. Whole-body peripheral glucose utilization, adipose tissue lipolysis, and hepatic glucose production were measured using in vivo techniques according to a priori hypotheses. In the simple analysis, glucose utilization at the 40 mU insulin dose (6.3 +/- 2.8 vs. 9.1 +/- 3.4; P < 0.05), the index of the insulin resistance of basal hepatic glucose production (23.6 +/- 13.0 vs. 15.1 +/- 6.0; P < 0.05), and insulin-stimulated suppression of lipolysis (35 vs. 54%; P < 0.05) were significantly different between women with and without abdominal obesity, respectively. Using the glycerol appearance rate to free fatty acid ratio as an index of fatty acid reesterification revealed markedly blunted reesterification in the women with abdominal adiposity under all conditions: basal (0.95 +/- 0.29 vs. 1.35 +/- 0.47; P < 0.02); low- (2.58 +/- 2.76 vs. 6.95 +/- 5.56; P < 0.02); and high-dose (4.46 +/- 3.70 vs. 12.22 +/- 7.13; P < 0.01) hyperinsulinemia. Importantly, fatty acid reesterification was significantly (P < 0.01) associated with abdominal circumference and hepatic and peripheral insulin resistance, regardless of total body fat. These findings support the premise of dysregulated fatty acid reesterification with abdominal obesity as a pathophysiological link to perturbed glucose metabolism across multiple tissues in aging.
Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela
2016-01-01
This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.
EDC-mediated DNA attachment to nanocrystalline CVD diamond films.
Christiaens, P; Vermeeren, V; Wenmackers, S; Daenen, M; Haenen, K; Nesládek, M; vandeVen, M; Ameloot, M; Michiels, L; Wagner, P
2006-08-15
Chemical vapour deposited (CVD) diamond is a very promising material for biosensor fabrication owing both to its chemical inertness and the ability to make it electrical semiconducting that allows for connection with integrated circuits. For biosensor construction, a biochemical method to immobilize nucleic acids to a diamond surface has been developed. Nanocrystalline diamond is grown using microwave plasma-enhanced chemical vapour deposition (MPECVD). After hydrogenation of the surface, 10-undecenoic acid, an omega-unsaturated fatty acid, is tethered by 254 nm photochemical attachment. This is followed by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC)-mediated attachment of amino (NH(2))-modified dsDNA. The functionality of the covalently bound dsDNA molecules is confirmed by fluorescence measurements, PCR and gel electrophoresis during 35 denaturation and rehybridisation steps. The linking method after the fatty acid attachment can easily be applied to other biomolecules like antibodies and enzymes.
[The clinical value of measuring plasma level of very long chain fatty acids in Addison disease].
Chen, Jun; Zhang, Jian; Wang, De-Xin
2007-09-01
To determine the level of very long chain fatty acids (VLCFA) in plasma to find out X-linked adrenoleukodystrophy (X-ALD) in patients with Addison disease. By using gas chromatography measurement of plasma levels of C(26:0), ratios of C(26:0)/C(22:0) and C(24:0)/C(22:0) was carried out in 36 patients with Addison disease. Among the 36 cases, 6 had elevated plasma VLCFA levels; thus the presence of X-ALD was confirmed. Misdiagnosis of X-ALD can be reduced by measuring plasma level of VLCFA early in male patients with Addison disease, especially in young ones.
Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins
2005-05-01
fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer
Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles
Elshorbagy, Amany K.; Jernerén, Fredrik; Scudamore, Cheryl L.; McMurray, Fiona; Cater, Heather; Hough, Tertius; Cox, Roger; Refsum, Helga
2016-01-01
Background Although reduced glutathione (rGSH) is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO) results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys) is positively associated with stearoyl-coenzyme A desaturase (SCD) activity and adiposity in humans and animal models. Objective To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice. Design Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L) for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis). Results Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001), and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH) and rGSH (by ~70%), and liver tGSH (by 82%). Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23–45%, P<0.001 for all), but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27–38%, P <0.001 for all). Conclusion Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism. PMID:27788147
Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind
2015-09-01
Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.
Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind
2015-01-01
Background Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. Materials and Methods In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. Results The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme’s application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. Conclusions These promising results offer scope for further investigation and process scale up, permitting the enzyme’s commercial application in a practically feasible and economically agreeable manner. PMID:28959298
[CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].
Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón
2015-09-01
trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Fatty Acid Compositions of Six Wild Edible Mushroom Species
Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent
2013-01-01
The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377
The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.
Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I
2017-12-18
Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p < .01) and saturated fatty acids arachidic, behenic, and lignoceric acid (p < .05) also increased. These brain fatty acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.
Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru
2015-06-01
In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.
Kumar, S Naresh
2011-12-28
Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.
Bendsen, Nathalie T; Haugaard, Steen B; Larsen, Thomas M; Chabanova, Elizaveta; Stender, Steen; Astrup, Arne
2011-07-01
Intake of industrially produced trans-fatty acids (TFA) has been linked to increased risk of type 2 diabetes mellitus in observational studies. We investigated the causality of this association by examining if a high intake of TFA impairs measures of glucose homeostasis and induces intramuscular lipid deposition in abdominally obese women. In a double-blind, parallel dietary intervention study, 52 healthy but overweight postmenopausal women were randomized to receive either partially hydrogenated soybean oil (15 g/d TFA) or a control oil (mainly oleic and palmitic acid) for 16 weeks. Three markers of glucose homeostasis and 4 markers of lipolysis were derived from glucose, insulin, C-peptide, nonesterified fatty acid, and glycerol concentrations during a 3-hour frequent sampling oral glucose tolerance test. Intramuscular lipids were assessed by magnetic resonance spectroscopy. Forty-nine women completed the study. Insulin sensitivity (assessed by ISI(composite)), β-cell function (the disposition index), and the metabolic clearance rate of insulin were not significantly affected by the dietary intervention. Neither was the ability of insulin to suppress plasma nonesterified fatty acid and glycerol during oral glucose ingestion nor the intramuscular lipid deposition. In conclusion, high TFA intake did not affect glucose metabolism over 16 weeks in postmenopausal overweight women. A study population with a stronger predisposition to insulin resistance and/or a longer duration of exposure may be required for insulin sensitivity to be affected by intake of industrial TFA. Copyright © 2011 Elsevier Inc. All rights reserved.
Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A
2017-04-01
Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less influence on the fatty acid profile of buffalo milk than that of cow milk, probably due to a shorter and less severe period of negative energy balance. Parity affected the profiles of a few traits and had the most significant effects on branched-chain fatty acids. This work provided a detailed overview of the fatty acid profile in buffalo milk including also those fatty acids present in small concentrations, which may have beneficial effects for human health. Our results contributed also to increase the knowledge about the effects of some of the major factors affecting buffalo production traits and fatty acid concentrations in milk, and consequently its technological and nutritional properties. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Acylcarnitines: potential implications for skeletal muscle insulin resistance
USDA-ARS?s Scientific Manuscript database
Insulin resistance is linked to increased acylcarnitine species in a number of tissues including skeletal muscle, due to incomplete fatty acid oxidation (FAO). It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aim of this stud...
Komatsu, Motoaki; Kanda, Takeshi; Urai, Hidenori; Kurokochi, Arata; Kitahama, Rina; Shigaki, Shuhei; Ono, Takashi; Yukioka, Hideo; Hasegawa, Kazuhiro; Tokuyama, Hirobumi; Kawabe, Hiroshi; Wakino, Shu; Itoh, Hiroshi
2018-06-05
Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD) + , these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD + content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD + -dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD + and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.
Benskin, Jonathan P; Ikonomou, Michael G; Liu, Jun; Veldhoen, Nik; Dubetz, Cory; Helbing, Caren C; Cosgrove, John R
2014-10-07
The health of Skeena River Sockeye salmon (Onchorhychus nerka) has been of increasing concern due to declining stock returns over the past decade. In the present work, in-migrating Sockeye from the 2008 run were evaluated using a mass spectrometry-based, targeted metabolomics platform. Our objectives were to (a) investigate natural changes in a subset of the hepatic metabolome arising from migration-associated changes in osmoregulation, locomotion, and gametogenesis, and (b) compare the resultant profiles with animals displaying altered hepatic vitellogenin A (vtg) expression at the spawning grounds, which was previously hypothesized as a marker of xenobiotic exposure. Of 203 metabolites monitored, 95 were consistently observed in Sockeye salmon livers and over half of these changed significantly during in-migration. Among the most dramatic changes in both sexes were a decrease in concentrations of taurine (a major organic osmolyte), carnitine (involved in fatty acid transport), and two major polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In females, an increase in amino acids was attributed to protein catabolism associated with vitellogenesis. Animals with atypical vtg mRNA expression demonstrated unusual hepatic amino acid, fatty acid, taurine, and carnitine profiles. The cause of these molecular perturbations remains unclear, but may include xenobiotic exposure, natural senescence, and/or interindividual variability. These data provide a benchmark for further investigation into the long-term health of migrating Skeena Sockeye.
Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D
2018-03-26
Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the clinical utility of targeting bacterial fatty acid synthesis is debated. Moreover, the fatty acid reservoir(s) exploited by S. aureus are not well understood. Human low-density lipoprotein particles represent a particularly abundant in vivo source of fatty acids and are present in tissues S. aureus colonizes. Herein, we establish that S. aureus is capable of utilizing the fatty acids present in low-density lipoproteins to bypass both chemical and genetic inhibition of fatty acid synthesis. These findings imply that S. aureus targets LDLs as a source of fatty acids during pathogenesis. Copyright © 2018 American Society for Microbiology.
Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali
2011-11-11
Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.
Catalano, Jaclyn; Murphy, Anna; Yao, Yao; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil
2018-02-01
Many oil paintings, dating from the 15th century to the present, are affected by the formation of heavy-metal carboxylates (soaps) that alter the structural integrity and appearance of the works. Through transport phenomena not yet understood, free fatty acids formed from oils used as binders migrate through the paint film and react with heavy-metal ions that are constituents of pigments and/or driers, forming metal carboxylates. The local molecular dynamics of fatty acids and metal carboxylates are factors influencing material transport in these systems. We report temperature-dependent 2 H NMR spectra of palmitic acid and lead palmitate as pure materials, in cross-linked linseed oil films, and in a lead white linseed oil paint film as part of our broader research into metal soap formation. Local dynamics at the α carbon, at the terminal methyl group, and at the middle of the fatty acid chain were observed in specifically deuterated materials. Changes in the dynamic behavior with temperature were observed by the appearance of two species, a solid-like material and a liquid-like material. The relative amounts of the two phases and their deuterium NMR parameters indicate that the amount of liquid-like material and the local dynamics at that site increase with temperature. At the three locations along the chain and at all temperatures, there is a larger percentage of acyl chains of both palmitic acid and lead palmitate that are "mobile" or liquid-like in linseed oil films than there are in the pure materials. However, the percentage of liquid-like species is decreased in a lead white paint film, as compared to a linseed oil matrix. In addition, these experiments indicate that there is a larger percentage of liquid-like acyl chains of palmitic acid than of lead palmitate under identical conditions in these model paint systems. Copyright © 2017 Elsevier Inc. All rights reserved.
[Effect of Gram-negative bacteria on fatty acids].
Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J
1981-01-01
The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.
Fischer, Andrew M; Ryan, John P; Levesque, Christian; Welschmeyer, Nicholas
2014-08-01
The transformation of estuaries by human activities continues to alter the biogeochemical balance of the coastal ocean. The disruption of this balance can negatively impact the provision of goods and services, including fisheries, commerce and transportation, recreation and esthetic enjoyment. Here we examine a link, between the Elkhorn Slough and the coastal ocean in Monterey Bay, California (USA) using a novel application of fatty acid and pigment analysis. Fatty acid analysis of filtered water samples showed biologically distinct water types between the Elkhorn Slough plume and the receiving waters of the coastal ocean. A remarkable feature of the biological content of the plume entering the coastal ocean was the abundance of bacteria-specific fatty acids, which correlated well with concentrations of colored dissolved organic matter (CDOM). Pigment analysis showed that plume waters contained higher concentrations of diatoms and cryptophytes, while the coastal ocean waters showed higher relative concentrations of dinoflagellates. Bacteria and cryptophytes can provide a source of labile, energy-rich organic matter that may be locally important as a source of food for pelagic and benthic communities. Surface and depth surveys of the plume show that the biogeochemical constituents of the slough waters are injected into the coastal waters and become entrained in the northward flowing, nearshore current of Monterey Bay. Transport of these materials to the northern portion of the bay can fuel a bloom incubator, which exists in this region. This study shows that fatty acid markers can reveal the biogeochemical interactions between estuaries and the coastal ocean and highlights how man-made changes have the potential to influence coastal ecological change. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qian, Shuguang; Fujii, Takeshi; Ito, Katsuhiko; Nakano, Ryo; Ishikawa, Yukio
2011-01-01
Sex pheromones of moths are largely classified into two types based on the presence (Type I) or absence (Type II) of a terminal functional group. While Type-I sex pheromones are synthesized from common fatty acids in the pheromone gland (PG), Type-II sex pheromones are derived from hydrocarbons produced presumably in the oenocytes and transported to the PG via the hemolymph. Recently, a fatty acid transport protein (BmFATP) was identified from the PG of the silkworm Bombyx mori, which produces a Type-I sex pheromone (bombykol). BmFATP was shown to facilitate the uptake of extracellular fatty acids into PG cells for the synthesis of bombykol. To elucidate the presence and function of FATP in the PG of moths that produce Type-II sex pheromones, we explored fatp homologues expressed in the PG of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone (Type II). A fatp homologue cloned from E. japonica (Ejfatp) was predominantly expressed in the PG, and its expression is upregulated shortly after eclosion. Functional expression of EjFATP in Escherichia coli enhanced the uptake of long chain fatty acids (C₁₈ and C₂₀), but not pheromone precursor hydrocarbons. To the best of our knowledge, this is the first report of the cloning and functional characterization of a FATP in the PG of a moth producing a Type-II sex pheromone. Although EjFATP is not likely to be involved in the uptake of pheromone precursors in E. japonica, the expression pattern of Ejfatp suggests a role for EjFATP in the PG not directly linked to pheromone biosynthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nanson, Jeffrey D; Forwood, Jade K
2015-01-01
Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.
Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage
Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.
2015-01-01
Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286
Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.
Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A
2015-01-01
Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.
Dietary fatty acid metabolism in prediabetes.
Noll, Christophe; Carpentier, André C
2017-02-01
Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.
Bakrania, Bhavisha; Granger, Joey P.; Harmancey, Romain
2016-01-01
The mammalian heart is a major consumer of ATP and requires a constant supply of energy substrates for contraction. Not surprisingly, alterations of myocardial metabolism have been linked to the development of contractile dysfunction and heart failure. Therefore, unraveling the link between metabolism and contraction should shed light on some of the mechanisms governing cardiac adaptation or maladaptation in disease states. The isolated working rat heart preparation can be used to follow, simultaneously and in real time, cardiac contractile function and flux of energy providing substrates into oxidative metabolic pathways. The present protocol aims to provide a detailed description of the methods used in the preparation and utilization of buffers for the quantitative measurement of the rates of oxidation for glucose and fatty acids, the main energy providing substrates of the heart. The methods used for sample analysis and data interpretation are also discussed. In brief, the technique is based on the supply of 14C- radiolabeled glucose and a 3H- radiolabeled long-chain fatty acid to an ex vivo beating heart via normothermic crystalloid perfusion. 14CO2 and 3H2O, end byproducts of the enzymatic reactions involved in the utilization of these energy providing substrates, are then quantitatively recovered from the coronary effluent. With knowledge of the specific activity of the radiolabeled substrates used, it is then possible to individually quantitate the flux of glucose and fatty acid in the oxidation pathways. Contractile function of the isolated heart can be determined in parallel with the appropriate recording equipment and directly correlated to metabolic flux values. The technique is extremely useful to study the metabolism/contraction relationship in response to various stress conditions such as alterations in pre and after load and ischemia, a drug or a circulating factor, or following the alteration in the expression of a gene product. PMID:27768055
McGuinness, M C; Zhang, H P; Smith, K D
2001-01-01
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder associated with elevated levels of saturated unbranched very-long-chain fatty acids (VLCFA; C > 22:0) in plasma and tissues, and reduced VLCFA beta-oxidation in fibroblasts, white blood cells, and amniocytes from X-ALD patients. The X-ALD gene (ABCD1) at Xq28 encodes the adrenoleukodystrophy protein (ALDP) that is related to the peroxisomal ATP-binding cassette (ABCD) transmembrane half-transporter proteins. The function of ALDP is unknown and its role in VLCFA accumulation unresolved. Previously, our laboratory has shown that sodium 4-phenylbutyrate (4PBA) treatment of X-ALD fibroblasts results in increased peroxisomal VLCFA beta-oxidation activity and increased expression of the X-ALD-related protein, ALDRP, encoded by the ABCD2 gene. In this study, the effect of various pharmacological agents on VLCFA beta-oxidation in ALD mouse fibroblasts is tested. 4PBA, styrylacetate and benzyloxyacetate (structurally related to 4PBA), and trichostatin A (functionally related to 4PBA) increase both VLCFA (peroxisomal) and long-chain fatty acid [LCFA (peroxisomal and mitochondrial)] beta-oxidation. Isobutyrate, zaprinast, hydroxyurea, and 5-azacytidine had no effect on VLCFA or LCFA beta-oxidation. Lovastatin had no effect on fatty acid beta-oxidation under normal tissue culture conditions but did result in an increase in both VLCFA and LCFA beta-oxidation when ALD mouse fibroblasts were cultured in the absence of cholesterol. The effect of trichostatin A on peroxisomal VLCFA beta-oxidation is shown to be independent of an increase in ALDRP expression, suggesting that correction of the biochemical abnormality in X-ALD is not dependent on pharmacological induction of a redundant gene (ABCD2). These studies contribute to a better understanding of the role of ALDP in VLCFA accumulation and may lead to the development of more effective pharmacological therapies. Copyright 2001 Academic Press.
Vessby, B; Ahrén, B; Warensjö, E; Lindgärde, F
2012-03-01
Two Amerindian populations--Shuar women living in the Amazonian rain forest under traditional conditions and urbanized women in a suburb of Lima were studied. The fatty acid composition in plasma lipids and the relationships between fatty acid composition and metabolic variables were studied, as well as in a reference group of Swedish women. Fasting plasma was used for analyses of glucose, insulin, leptin and fatty acid composition. Women in Lima had more body fat, higher fasting insulin and leptin and lower insulin sensitivity than the Shuar women, who had insulin sensitivity similar to Swedish women. Shuar women had very high proportions (mean; SD) of palmitoleic (13.2; 3.9%) and oleic (33.9; 3.7%) acids in the plasma cholesteryl esters with very low levels of linoleic acid (29.1; 6.1 3%), as expected on a low fat, high carbohydrate diet. The estimated activity of delta 9 (SCD-1) desaturase was about twice as high in the Shuar compared with Lima women, suggesting neo lipogenesis, while the delta 5 desaturase activity did not differ. The Lima women, as well as the Swedish, showed strong positive correlations between SCD-1 activity on the one hand and fasting insulin and HOMA index on the other. These associations were absent in the Shuar women. The high SCD-1 activity in the Shuar women may reflect increased lipogenesis in adipose tissue. It also illustrates how a low fat diet rich in non-refined carbohydrates can be linked to a good metabolic situation. Copyright © 2010. Published by Elsevier B.V.
Flock, Michael R; Kris-Etherton, Penny M
2013-03-01
The purpose of this review is to discuss the metabolism of long-chain saturated fatty acids and the ensuing effects on an array of metabolic events. Individual long-chain saturated fatty acids exhibit unique biological properties. Dietary saturated fat absorption varies depending on chain-length and the associated food matrix. The in-vivo metabolism of saturated fatty acids varies depending on the individual fatty acid and the nutritional state of the individual. A variety of fatty acid metabolites are formed, each with their own unique structure and properties that warrant further research. Replacing saturated fatty acids with unsaturated fatty acids improves the blood lipid profile and reduces cardiovascular disease risk, although the benefits depend on the specific saturated fatty acid(s) being replaced. Acknowledging the complexity of saturated fatty acid metabolism and associated metabolic events is important when assessing their effects on cardiovascular disease risk. Investigating the biological effects of saturated fatty acids will advance our understanding of how they affect cardiovascular disease risk.
Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.
Papina, M; Meziane, T; van Woesik, R
2003-07-01
We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.
Carballeira, N M; Sostre, A; Stefanov, K; Popov, S; Kujumgiev, A; Dimitrova-Konaklieva, S; Tosteson, C G; Tosteson, T R
1997-12-01
The fatty acid composition of a new strain of Vibrio alginolyticus, found in the alga Cladophora coelothrix, was studied. Among 38 different fatty acids, a new fatty acid, 9-methyl-10-hexadecenoic acid and the unusual 11-methyl-12-octadecenoic acid, were identified. Linear alkylbenzene fatty acids, such as 10-phenyldecanoic acid, 12-phenyldodecanoic acid and 14-phenyltetradecanoic acid, were also found in V. alginolyticus. The alga contained 43% saturated fatty acids, and 28% C16-C20 polyunsaturated fatty acids of the n-3 and n-6 families.
NASA Astrophysics Data System (ADS)
Mert, Ramazan; Bulut, Sait; Konuk, Muhsin
2015-01-01
In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.
21 CFR 186.1551 - Hydrogenated fish oil.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (reapproved 1973) or equivalent. The product has an approximate fatty acid composition of 30 to 45 percent saturated fatty acids, 40 to 55 percent monoenoic fatty acids, 7 to 15 percent dienoic fatty acids, 3 to 10 percent trienoic fatty acids, and less than 2 percent tetraenoic or higher polyenoic fatty acids. The...
21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...
21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...
McLean, Stuart; Davies, Noel W; Nichols, David S; Mcleod, Bernie J
2015-06-01
The paracloacal glands are the most prevalent scent glands in marsupials, and previous investigation of their secretions in the brushtail possum (Trichosurus vulpecula) has identified many odorous compounds together with large amounts of neutral lipids. We have examined the lipids by LC-MS, generating ammonium adducts of acylglycerols by electrospray ionisation. Chromatograms showed a complex mixture of coeluting acylglycerols, with m/z from about 404 to 1048. Plots of single [M + NH4](+) ions showed three groups of lipids clearly separated by retention time. MS-MS enabled triacylglycerols and diacylglycerol ethers to be identified from neutral losses and formation of diacylglycerols and other product ions. The earliest-eluting lipids were found to be triacylglycerol estolides, in which a fourth fatty acid forms an ester link with a hydroxy fatty acid attached to the glycerol chain. This is the first report of triacylglycerol estolides in animals. They form a complex mixture with the triacylglycerols and diacylglycerol ethers of lipids with short- and long-chain fatty acids with varying degrees of unsaturation. This complexity suggests a functional role, possibly in social communication.
NASA Astrophysics Data System (ADS)
Pitter, S.; Evershed, R. P.; Hodder, I.
2012-12-01
Compound specific δ13C stable isotope analysis via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C- IRMS) of C16:0 and C18:0 fatty acids from archaeological pottery has been used previously to probe the organic residue record to identify specific animal origins of fats. By following previously established methods (Evershed et al. 2008) a more comprehensive record of the domestic animal-based subsistence practices of the Neolithic site Çatalhöyük has now been established. Furthermore, a new palaeoenvironmental proxy was also established through δD analysis of C16:0 and C18:0 fatty acids using GC-thermal conversion-IRMS (GC-TC-IRMS). This novel approach has demonstrated a means of observing changes in relative humidity associated with specific pottery types at archaeological sites, creating a proxy that may address several limitations in the field of archaeology with regards to understanding links between humans and their changing environments.
Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.
Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei
2006-11-10
Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.
Holland, William L; Bikman, Benjamin T; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M; Bulchand, Sarada; Knotts, Trina A; Shui, Guanghou; Clegg, Deborah J; Wenk, Markus R; Pagliassotti, Michael J; Scherer, Philipp E; Summers, Scott A
2011-05-01
Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.
Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.
Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q
2015-04-03
Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk. Copyright © 2015 Elsevier Inc. All rights reserved.
Vasiurenko, Z P; Siniak, K M
1977-04-01
The gasochromatic method was applied to the study of the cellular fatty acids composition in diphtheria and nonpathogenic corynebacteria (diphtheroids and psendo diptheria bacillus). Marked differences in the content of unsaturated fatty acids were revealed in them. Thus, palmito leic acid served the preponderant unsaturated fatty acid in Corynebacteria diphtheriae, and unsaturated fatty acids with 18 carbon atoms (octadeconoic and linoleic)--in nonpathogenic corynebacteria. The mentioned changes permit use this sign as differential. When grown on Loeffler's medium all the corynebacteria under study had a similar fatty acid composition characterized by the prevalence of unsaturated fatty acids with 18 carbon atoms. On the basis of studying the fatty acid spectrum of the nutrient media used it is supposed that one of the factors determining the revealed dependence of the corynebacterial fatty acid composition on the culture medium was the fatty acid composition of the latter.
Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice
Cotter, David G.; Ercal, Baris; André d'Avignon, D.; Dietzen, Dennis J.
2014-01-01
Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [13C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period. PMID:24865983
Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.
Cotter, David G; Ercal, Baris; d'Avignon, D André; Dietzen, Dennis J; Crawford, Peter A
2014-07-15
Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [(13)C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period. Copyright © 2014 the American Physiological Society.
Moleres, Adriana; Ochoa, M Carmen; Rendo-Urteaga, Tara; Martínez-González, M Angel; Azcona San Julián, M Cristina; Martínez, J Alfredo; Marti, Amelia
2012-02-01
The rs9939609 polymorphism of the fat mass and obesity-associated (FTO) gene has been widely associated with childhood obesity in several European cohorts. This association appears to be dependent on dietary macronutrients. Therefore, the aim of the present study was to evaluate whether dietary fatty acid intake distribution could interact with this FTO genetic variation and obesity in a Spanish case-control study of children and adolescents. A total of 354 Spanish children and adolescents aged 6-18 years (49 % males) were genotyped for the rs9939609 variant of the FTO gene. Anthropometric parameters were taken and energy intake was measured. We observed an interaction between the consumption of SFA (percentage of total energy) and PUFA:SFA ratio and obesity risk linked to the rs9939609 SNP of the FTO gene. In the study population of the present study, the risk allele carriers consuming more than 12·6 % SFA (of total energy) had an increased obesity risk compared with TT carriers. In a similar way, A allele carriers with an intake ratio lower than 0·43 PUFA:SFA presented a higher obesity risk than TT subjects. In summary, the present study reports for the first time the influence of dietary fatty acid distribution on the effect of the rs9939609 polymorphism of the FTO gene on children and adolescents' obesity risk.
NASA Technical Reports Server (NTRS)
Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; Cady, Sherry L.; DesMarais, David J.; Hope, Janet M.; Summons, Roger E.
2001-01-01
Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarker and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber, Thermocrinis sp. HI, Hydrogenobacter thermophilus, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyl moieties. The fatty acids of all cultured organisms were dominated by very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as C-18:0 monoethers with the exception of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known "pink-streamer community" (PSC), siliceous filaments of a microbial consortia growing in the outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono- and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic. Additional information is contained in the original extended abstract.
Tripathy, Sasmita; Torres-Gonzalez, Moises; Jump, Donald B.
2010-01-01
Elevated hepatic fatty acid elongase-5 (Elovl5) activity lowers blood glucose in fasted chow-fed C57BL/6J mice. As high-fat diets induce hyperglycemia and suppress hepatic Elovl5 activity, we tested the hypothesis that elevated hepatic Elovl5 expression attenuates hyperglycemia in high-fat-diet-induced obese mice. Increasing hepatic Elovl5 activity by a recombinant adenoviral approach restored blood glucose and insulin, HOMA-IR, and glucose tolerance to normal values in obese mice. Elevated Elovl5 activity increased hepatic content of Elovl5 products (20:3,n-6, 22:4,n-6) and suppressed levels of enzymes (Pck1, G6Pc) and transcription factors (FoxO1 and PGC1α, but not CRTC2) involved in gluconeogenesis. Effects of Elovl5 on FoxO1 nuclear abundance correlated with increased phosphorylation of FoxO1, Akt, and the catalytic unit of PP2A, as well as a decline in cellular abundance of TRB3. Such changes are mechanistically linked to the regulation of FoxO1 nuclear abundance and gluconeogenesis. These results show that Elovl5 activity impacts the hepatic abundance and phosphorylation status of multiple proteins involved in gluconeogenesis. Our findings establish a link between fatty acid elongation and hepatic glucose metabolism and suggest a role for regulators of Elovl5 activity in the treatment of diet-induced hyperglycemia. PMID:20488798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laureti, S.; Casucci, G.; Santeusanio, F.
1996-02-01
X-Linked adrenoleukodystrophy (ALD) is a genetic disease associated with demyelination of the central nervous system, adrenal insufficiency, and accumulation of very long chain fatty acids in tissue and body fluids. ALD is due to mutation of a gene located in Xq28 that encodes a peroxisomal transporter protein of unknown function. The most common phenotype of ALD is the cerebral form (45%) that develops in boys between 5-12 yr. Adrenomyeloneuropathy (AMN) involves the spinal cord and peripheral nerves in young adults (35%). Adrenal insufficiency (Addison`s disease) is frequently associated with AMN or cerebral ALD and may remain the only clinical expressionmore » of ALD (8% of cases). The prevalence of ALD among adults with Addison`s disease remains unknown. To evaluate this prevalence, we performed biochemical analysis of very long chain fatty acids in 14 male patients (age ranging from 12-45 yr at diagnosis) previously diagnosed as having primary idiopathic adrenocortical insufficiency. In 5 of 14 patients (35%), elevated plasma concentrations of very long chain fatty acids were detected. None of these patients had adrenocortical antibodies. By electrophysiological tests and magnetic resonance imaging it was determined that two patients had cerebral ALD, one had adrenomyeloneuropathy with cerebral involvement, and two had preclinical AMN. Our data support the hypothesis that ALD is a frequent cause of idiopathic Addison`s disease in children and adults. 30 refs., 5 tabs.« less
Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.
You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok
2017-12-20
Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.
Parsons, Joshua B.; Broussard, Tyler C.; Bose, Jeffrey L.; Rosch, Jason W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.
2014-01-01
Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus. PMID:25002480
2017-01-01
ABSTRACT Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis. The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection. IMPORTANCE Enterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage. PMID:29079613
PCB126 modulates fecal microbial fermentation of the dietary fiber inulin
USDA-ARS?s Scientific Manuscript database
Exposure to environmental pollutants can alter gut microbial populations. Short-chain fatty acids (SCFAs), produced from gut microbial fermentation of dietary fibers such as inulin, exert numerous effects on host energy metabolism. SCFAs are also linked to health promoting effects, including a red...
What causes high fat diet-induced postprandial inflammation: endotoxin or free fatty acids?
USDA-ARS?s Scientific Manuscript database
Introduction High fat (saturated fat) diet has been generally used to induce tissue inflammation, insulin resistance and obesity in animal models. High fat diet can also induce postprandial inflammation in humans. Importantly, postprandial inflammation is linked to elevated cardiovascular and metabo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.
2012-07-11
Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, themore » covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.« less
Daphnia HR96 is a Promiscuous Xenobiotic and Endobiotic Nuclear Receptor
Karimullina, Elina; Li, Yangchun; Ginjupalli, Gautam; Baldwin, William S.
2012-01-01
Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics. PMID:22466357
Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).
Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G
2016-01-01
Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.
Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro
2014-01-01
Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production.
Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1)
Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; Allen, Eric E.; Kalyuzhnaya, Marina G.
2017-01-01
Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph. PMID:28119683
The influence of placental metabolism on fatty acid transfer to the fetus[S
Perazzolo, Simone; Hirschmugl, Birgit; Wadsack, Christian; Desoye, Gernot; Lewis, Rohan M.; Sengers, Bram G.
2017-01-01
The factors determining fatty acid transfer across the placenta are not fully understood. This study used a combined experimental and computational modeling approach to explore placental transfer of nonesterified fatty acids and identify the rate-determining processes. Isolated perfused human placenta was used to study the uptake and transfer of 13C-fatty acids and the release of endogenous fatty acids. Only 6.2 ± 0.8% of the maternal 13C-fatty acids taken up by the placenta was delivered to the fetal circulation. Of the unlabeled fatty acids released from endogenous lipid pools, 78 ± 5% was recovered in the maternal circulation and 22 ± 5% in the fetal circulation. Computational modeling indicated that fatty acid metabolism was necessary to explain the discrepancy between uptake and delivery of 13C-fatty acids. Without metabolism, the model overpredicts the fetal delivery of 13C-fatty acids 15-fold. Metabolic rate was predicted to be the main determinant of uptake from the maternal circulation. The microvillous membrane had a greater fatty acid transport capacity than the basal membrane. This study suggests that incorporation of fatty acids into placental lipid pools may modulate their transfer to the fetus. Future work needs to focus on the factors regulating fatty acid incorporation into lipid pools. PMID:27913585
Albishri, Hassan M; Almaghrabi, Omar A; Moussa, Tarek A A
2013-01-01
The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.
pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.
Kamp, F; Hamilton, J A
1992-01-01
A central, unresolved question in cell physiology is how fatty acids move across cell membranes and whether protein(s) are required to facilitate transbilayer movement. We have developed a method for monitoring movement of fatty acids across protein-free model membranes (phospholipid bilayers). Pyranin, a water-soluble, pH-sensitive fluorescent molecule, was trapped inside well-sealed phosphatidylcholine vesicles (with or without cholesterol) in Hepes buffer (pH 7.4). Upon addition of a long-chain fatty acid (e.g., oleic acid) to the external buffer (also Hepes, pH 7.4), a decrease in fluorescence of pyranin was observed immediately (within 10 sec). This acidification of the internal volume was the result of the "flip" of un-ionized fatty acids to the inner leaflet, followed by a release of protons from approximately 50% of these fatty acid molecules (apparent pKa in the bilayer = 7.6). The proton gradient thus generated dissipated slowly because of slow cyclic proton transfer by fatty acids. Addition of bovine serum albumin to vesicles with fatty acids instantly removed the pH gradient, indicating complete removal of fatty acids, which requires rapid "flop" of fatty acids from the inner to the outer monolayer layer. Using a four-state kinetic diagram of fatty acids in membranes, we conclude that un-ionized fatty acid flip-flops rapidly (t1/2 < or = 2 sec) whereas ionized fatty acid flip-flops slowly (t1/2 of minutes). Since fatty acids move across phosphatidylcholine bilayers spontaneously and rapidly, complex mechanisms (e.g., transport proteins) may not be required for translocation of fatty acids in biological membranes. The proton movement accompanying fatty acid flip-flop is an important consideration for fatty acid metabolism in normal physiology and in disease states such as cardiac ischemia. Images PMID:1454821
Discovery of essential fatty acids
Spector, Arthur A.; Kim, Hee-Yong
2015-01-01
Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684
New insights into the molecular mechanism of intestinal fatty acid absorption
Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.
2013-01-01
Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389
Aspirin increases mitochondrial fatty acid oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uppala, Radha; Dudiak, Brianne; Beck, Megan E.
The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less
Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1
Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana
2016-01-01
Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518
Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.
Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana
2016-01-01
Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.
Fattahi, Amir; Darabi, Masoud; Farzadi, Laya; Salmassi, Ali; Latifi, Zeinab; Mehdizadeh, Amir; Shaaker, Maghsood; Ghasemnejad, Tohid; Roshangar, Leila; Nouri, Mohammad
2018-03-01
Since fatty acid composition of uterus phospholipids is likely to influence embryo implantation, this study was conducted to investigate the effects of dietary omega-3 and -6 fatty acids on implantation rate as well as uterine phospholipid fatty acids composition during mice pre-implantation period. Sixty female mice were randomly distributed into:1) control (standard pellet), 2) omega-3 (standard pellet + 10% w/w of omega-3 fatty acids) and 3) omega-6 (standard pellet + 10% w/w of omega-6 fatty acids). Uterine phospholipid fatty acid composition during the pre-implantation window (days 1-5 of pregnancy) was analyzed using gas-chromatography. The implantation rate on the fifth day of pregnancy was also determined. Our results showed that on days 1, 2 and 3 of pregnancy, the levels of arachidonic acid (ARA) as well as total omega-6 fatty acids were significantly higher and the levels of linolenic acid and total omega-3 fatty acids were statistically lower in the omega-6 group compared to the omega-3 group (p < 0.05). On the fourth day of pregnancy, only the ARA, total omega-6 fatty acids, and poly-unsaturated fatty acids levels were significantly different between the two dietary supplemented groups (p < 0.05). There were positive correlations between the levels of omega-6 fatty acids, especially ARA, with the implantation rate. The present study showed that diets rich in omega-3 and -6 fatty acids could differently modify uterine phospholipid fatty acid composition and uterine levels of phospholipid ARA, and that the total omega-6 fatty acids had a positive association with the implantation rate. Copyright © 2017 Elsevier Inc. All rights reserved.
Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids12
Pfeuffer, Maria; Jaudszus, Anke
2016-01-01
The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507
Chatgilialoglu, Alexandros; Rossi, Martina; Alviano, Francesco; Poggi, Paola; Zannini, Chiara; Marchionni, Cosetta; Ricci, Francesca; Tazzari, Pier Luigi; Taglioli, Valentina; Calder, Philip C; Bonsi, Laura
2017-02-07
The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (Refeed®). Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored Refeed® lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored Refeed® lipid supplement were investigated. A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, Refeed®-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. Culturing hFM-MSCs alters their fatty acid composition. A tailored lipid supplement is able to improve in vitro hFM-MSC functional properties by recreating a membrane environment more similar to the physiological counterpart. This approach should be considered in cell therapy applications in order to maintain a higher cell quality during in vitro passaging and to influence the outcome of cell-based therapeutic approaches when cells are administered to patients.
USDA-ARS?s Scientific Manuscript database
Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...
Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice.
Harauma, Akiko; Saito, Junpei; Watanabe, Yoshitake; Moriguchi, Toru
2014-06-01
The purpose of this study was to determine the change in tear volume, as a predominant symptom of dry eye syndrome, in dietary n-3 fatty acid deficient mice compared with n-3 fatty acid adequate mice. The tear volume in n-3 fatty acid deficient mice was significantly lower than that in n-3 fatty acid adequate mice. In addition, the concentration of n-3 fatty acid in the lacrimal and meibomian glands, which affects the production of tears, was markedly decreased compared with n-3 fatty acid adequate mice. However, the tear volume recovered almost completely after one week of continuous administration of fish oil containing EPA and DHA in n-3 fatty acid deficient mice. Also, the concentration of DHA in the meibomian gland of n-3 fatty acid deficient group recovered to approximately 80% more than that of n-3 fatty acid adequate group. These results suggested that dietary n-3 fatty acids deficiency showed reversible dry eye syndrome, and that n-3 fatty acids have an important role in the production of tears. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.
2016-01-01
Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338
Visualizing the chain-flipping mechanism in fatty-acid biosynthesis
Beld, Joris; Cang, Hu; Burkart, Michael D.
2014-10-29
The acyl carrier protein (ACP) from fatty acid synthases sequesters elongating products within its hydrophobic core, but this dynamic mechanism remains poorly understood. In this paper, we exploited solvatochromic pantetheine probes attached to ACP that fluoresce when sequestered. The addition of a catalytic partner lures the cargo out of the ACP and into the active site of the enzyme, thus enhancing fluorescence to reveal the elusive chain-flipping mechanism. This activity was confirmed by the use of a dual solvatochromic cross-linking probe and solution-phase NMR spectroscopy. Finally, the chain-flipping mechanism was visualized by single-molecule fluorescence techniques, thus demonstrating specificity between themore » Escherichia coli ACP and its ketoacyl synthase catalytic partner KASII.« less
El-Haggar, Sahar Mohamed; Mostafa, Tarek Mohamed
2015-07-01
Non-alcoholic fatty liver disease is a common health problem associated with increased liver and vascular specific complications. The purpose of this study was to assess and compare the effect of fenofibrate alone or in combination with pentoxifylline on the measured biochemical parameters, inflammatory pathway and liver stiffness in patients with non-alcoholic fatty liver disease. The study design was randomized controlled trial. From July 2013 to June 2014, we recruited 90 non-alcoholic fatty liver patients from the Internal Medicine Department at Tanta University Hospital, Egypt. They were classified randomly into two groups to receive fenofibrate 300 mg daily or fenofibrate 300 mg daily plus pentoxifylline 1200 mg/day in three divided doses for 24 weeks. Fasting blood sample was obtained before and 24 weeks after treatment for biochemical analysis of liver and lipid panels, tumor necrosis factor-alpha, hyaluronic acid, transforming growth factor beta 1, fasting plasma insulin and fasting glucose. Liver stiffness measurement was carried out using fibro-scan. Data were statistically analyzed by paired and unpaired Student's t test. The data obtained suggests that adding pentoxifylline to fenofibrate does not provide a beneficial effect on lipid panel, but has a beneficial effect on indirect biochemical markers of hepatic fibrosis, a direct marker linked to matrix deposition (hyaluronic acid), a cytokine/growth factor linked to liver fibrosis (transforming growth factor beta 1), the inflammatory pathway, insulin resistance and liver stiffness as compared to fenofibrate alone. The combination pentoxifylline plus fenofibrate may represent a new therapeutic strategy for non-alcoholic fatty liver disease as it resulted in more beneficial effects on direct and indirect markers of liver fibrosis, liver stiffness, insulin resistance and inflammatory pathway implicated in NAFLD.
Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.
2014-01-01
Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884
Hvozdiak, R I; Dankevych, L A; Votselko, S K; Holubets', O V
2005-01-01
Fatty acid composition of cellular lipids of 23 Pseudomonas lupini strains (Beltjukova et Koroljova 1968) has been investigated. Cellular fatty acids which contained from C10 to C19 carbon atoms have been identified. Basic fatty acid of those Pseudomonas cells are hexadecanoic, hexadecenoic and octadecanoic acids. The 3-hydroxydecanoic (C10:0 3OH), 3-hydroxydodecanoic (C12:0 3OH), 2-hydroxydodecanoic (C12:0 2OH) and cyclopropane fatty acids which contain 17 and 19 carbon atoms have been detected in cellular lipids. The cellular fatty acids spectra of 22 P. lupini strains are similar to cellular fatty acids spectrum of the type strain Pseudomonas syringae pv. syringae 8511. Pathogenic isolate 2, which fatty acid content of cell lipids significantly differ from lipids of cell fatty acids from P. lupini strains and cell lipids of fatty acids of typical strains Pseudomonas syringae pv. syringae 8511 and Pseudomonas savastanoi pv. phaseolicola 9066 is the exception.
Seifert, Erin L; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R; Wohlgemuth, Gert; Adams, Sean H; Harper, Mary-Ellen
2010-03-24
Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates) and 9 microM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle.
Seifert, Erin L.; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R.; Wohlgemuth, Gert; Adams, Sean H.; Harper, Mary-Ellen
2010-01-01
Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle. PMID:20352092
Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.
2013-01-01
Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995
(n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights
USDA-ARS?s Scientific Manuscript database
Obesity is associated with the metabolic syndrome, a significant risk factor for developing type-2 diabetes and cardiovascular diseases. A chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metaboli...
The Peroxisome Proliferator Activated Receptors (PPARs), a class of nuclear receptors that modulate both transcription and metabolic processes, are implicated in a variety of metabolic disorders linked to lipidogenesis, adipose tissue accumulation, fatty-acid oxidation pathways, ...
21 CFR 172.848 - Lactylic esters of fatty acids.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...
Screening for X-linked adrenoleukodystrophy among adult men with Addison's disease.
Horn, Morten A; Erichsen, Martina M; Wolff, Anette S B; Månsson, Jan-Eric; Husebye, Eystein S; Tallaksen, Chantal M E; Skjeldal, Ola H
2013-09-01
X-linked adrenoleukodystrophy is an important cause of Addison's disease in boys, but less is known about its contribution to Addison's disease in adult men. After surveying all known cases of X-linked adrenoleukodystrophy in Norway in a separate study, we aimed to look for any missed cases among the population of adult men with nonautoimmune Addison's disease. Among 153 adult men identified in a National Registry for Addison's Disease (75% of identified male cases of Addison's disease in Norway), those with negative indices for 21-hydroxylase autoantibodies were selected. Additionally, cases with low autoantibody indices (48-200) were selected. Sera from subjects included were analysed for levels of very long-chain fatty acids, which are diagnostic for X-linked adrenoleukodystrophy in men. Eighteen subjects had negative indices and 17 had low indices for 21-hydroxylase autoantibodies. None of those with low indices and only one of those with negative indices were found to have X-linked adrenoleukodystrophy; this subject had already been diagnosed because of the neurological symptoms. Cases of Addison's disease proved to be caused by X-linked adrenoleukodystrophy constitute 1·5% of all adult male cases in Norway; the proportion among nonautoimmune cases was 15%. We found X-linked adrenoleukodystrophy to be an uncommon cause of Addison's disease in adult men. However, this aetiological diagnosis has far-reaching consequences both for the patient and for his extended family. We therefore recommend that all adult men with nonautoimmune Addison's disease be analysed for levels of very long-chain fatty acids. © 2013 John Wiley & Sons Ltd.
New insights into the molecular mechanism of intestinal fatty acid absorption.
Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H
2013-11-01
Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.
Kuda, Ondrej; Brezinova, Marie; Silhavy, Jan; Landa, Vladimir; Zidek, Vaclav; Dodia, Chandra; Kreuchwig, Franziska; Vrbacky, Marek; Balas, Laurence; Durand, Thierry; Hübner, Norbert; Fisher, Aron B; Kopecky, Jan; Pravenec, Michal
2018-06-01
Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 ( Nrf2 )-mediated antioxidant defense system ( Prdx6, Mgst1, Mgst3 ), lipid-handling proteins ( Cd36, Scd6, Acnat1, Acnat2, Baat ), and the family of flavin containing monooxygenases ( Fmo ) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues. © 2018 by the American Diabetes Association.
Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria
Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso
2016-01-01
The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485
USDA-ARS?s Scientific Manuscript database
Emerging evidence indicates that the fatty acid composition of obesogenic diets influences physiologic outcomes. There are scant data regarding how the content of non-essential fatty acids like monounsaturated fatty acids (MUFA) and saturated fatty acids (SFAs) impact the metabolism of polyunsaturat...
Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.
Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K
1984-11-10
A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used.
Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.
Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz
2018-03-01
Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.
Chen, Guan-yuan; Chiu, Huai-hsuan; Lin, Shu-wen; Tseng, Yufeng Jane; Tsai, Sung-jeng; Kuo, Ching-hua
2015-01-01
As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Davidson, Michael H
2013-12-01
Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.
21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.
Code of Federal Regulations, 2014 CFR
2014-04-01
... § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid... conditions: (a) They are manufactured from glycerin, lactic acid, and fatty acids conforming with § 172.860...
Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.
Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J
2016-08-01
In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.
Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids.
Kris-Etherton, Penny M; Innis, Sheila; Ammerican Dietetic Assocition; Dietitians of Canada
2007-09-01
It is the position of the American Dietetic Association (ADA) and Dietitians of Canada (DC) that dietary fat for the adult population should provide 20% to 35% of energy and emphasize a reduction in saturated fatty acids and trans-fatty acids and an increase in n-3 polyunsaturated fatty acids. ADA and DC recommend a food-based approach for achieving these fatty acid recommendations; that is, a dietary pattern high in fruits and vegetables, whole grains, legumes, nuts and seeds, lean protein (ie, lean meats, poultry, and low-fat dairy products), fish (especially fatty fish high in n-3 fatty acids), and use of nonhydrogenated margarines and oils. Implicit to these recommendations for dietary fatty acids is that unsaturated fatty acids are the predominant fat source in the diet. These fatty acid recommendations are made in the context of a diet consistent with energy needs (ie, to promote a healthful body weight). ADA and DC recognize that scientific knowledge about the effects of dietary fats on human health is incomplete and take a prudent approach in recommending a reduction in those fatty acids that increase risk of disease, while promoting intake of those fatty acids that benefit health. Registered dietitians play a pivotal role in translating dietary recommendations for fat and fatty acids into healthful dietary patterns for different population groups.
Garmasheva, I; Vasyliuk, O; Kovalenko, N; Ostapchuk, A; Oleschenko, L
2015-09-01
The intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains isolated from Ukrainian traditional fermented foods was examined. Seven cellular fatty acids were identified. All Lact. plantarum strains investigated contained C16:0 (from 7·54 to 49·83% of total fatty acids), cC18:1 (3·23-38·67% of total fatty acids) and cycC19:0 acids (9·03-67·68% of total fatty acids) as the major fatty acids. The tC18:1 acid made up 1·47-22·0% of the total fatty acids. The C14:0 and C16:1 acids were present in small amounts (0·22-6·96% and 0·66-7·42% respectively) in most Lact. plantarum strains. Differences in relative contents of some fatty acids between Lact. plantarum strains depending on the source isolation were found. Isolates of dairy origin contained slightly greater levels of the C16:0 and tC18:1 fatty acids and lower levels of the cC18:1 than strains obtained from fermented vegetables. The origin of Lact. plantarum strains affects their fatty acids composition, which in turn, appears to be related to their ability to growth under stress factors. Cellular fatty acids composition is an important chemotaxonomic characteristic of bacterial cells. At the same time cellular fatty acids play a key role in maintaining the viability of micro-organisms in different environmental conditions. In this study, intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains was examined. This work provides novel and important information about a relationship between cellular fatty acids composition of Lact. plantarum strains and source of isolation or stress resistance profile. Our results showed that cellular fatty acids composition is quite diverse among Lact. plantarum strains derived from different sources and may reflect previous cell's history. Our findings should be considered in chemotaxonomic studies of lactic acid bacteria and its ecology. © 2015 The Society for Applied Microbiology.
Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions.
Gramlich, Leah; Meddings, Liisa; Alberda, Cathy; Wichansawakun, Sanit; Robbins, Sarah; Driscoll, David; Bistrian, Bruce
2015-09-01
The fatty acids, linoleic acid (18:2ω-6) and α-linolenic acid (18:3ω-3), are essential to the human diet. When these essential fatty acids are not provided in sufficient quantities, essential fatty acid deficiency (EFAD) develops. This can be suggested clinically by abnormal liver function tests or biochemically by an elevated Mead acid and reduced linoleic acid and arachidonic acid level, which is manifested as an elevated triene/tetraene ratio of Mead acid/arachidonic acid. Clinical features of EFAD may present later. With the introduction of novel intravenous (IV) lipid emulsions in North America, the proportion of fatty acids provided, particularly the essential fatty acids, varies substantially. We describe a case series of 3 complicated obese patients who were administered parenteral nutrition (PN), primarily using ClinOleic 20%, an olive oil-based lipid emulsion with reduced amounts of the essential fatty acids, linoleic and α-linolenic, compared with more conventional soybean oil emulsions throughout their hospital admission. Essential fatty acid profiles were obtained for each of these patients to investigate EFAD as a potential cause of abnormal liver enzymes. Although the profiles revealed reduced linoleic acid and elevated Mead acid levels, this was not indicative of the development of essential fatty acid deficiency, as reflected in the more definitive measure of triene/tetraene ratio. Instead, although the serum fatty acid panel reflected the markedly lower but still adequate dietary linoleic acid content and greatly increased oleic acid content in the parenteral lipid emulsion, the triene/tetraene ratio remained well below the level, indicating EFAD in each of these patients. The availability and use of new IV lipid emulsions in PN should encourage the clinician to review lipid metabolism based on the quantity of fatty acids provided in specific parenteral lipid emulsions and the expected impact of these lipid emulsions (with quite different fatty acid composition) on measured fatty acid profiles. © 2015 American Society for Parenteral and Enteral Nutrition.
Fatty acids bound to recombinant tear lipocalin and their role in structural stabilization.
Tsukamoto, Seiichi; Fujiwara, Kazuo; Ikeguchi, Masamichi
2009-09-01
A variant of human tear lipocalin was expressed in Escherichia coli, and the bound fatty acids were analysed by gas chromatography, mass spectroscopy and nuclear magnetic resonance spectroscopy. Five major fatty acids were identified as hexadecanoic acid (palmitic acid, PA), cis-9-hexadecenoic acid (palmitoleic acid), 9,10-methylenehexadecanoic acid, cis-11-octadecenoic acid (vaccenic acid) and 11,12-methyleneoctadecanoic acid (lactobacillic acid). The composition of the bound fatty acids was similar to the fatty acid composition of E. coli extract, suggesting that the binding affinities are similar for these fatty acids. The urea-induced and thermal-unfolding transitions of the holoprotein (nondelipidated), apoprotein (delipidated) and PA-bound protein were observed by circular dichroism. Holoproteins and PA-bound proteins showed the same stability against urea and heat, and were more stable than apoprotein. These results show that each bound fatty acid stabilizes recombinant tear lipocalin to a similar extent.
Xu, Hongliang; Hertzel, Ann V.; Steen, Kaylee A.; Wang, Qigui; Suttles, Jill
2015-01-01
Chronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3. Silencing of UCP2 mRNA in FABP4/aP2-deficient macrophages negated the protective effect of FABP loss and increased ER stress in response to palmitate or lipopolysaccharide (LPS). Pharmacologic inhibition of FABP4/aP2 with the FABP inhibitor HTS01037 also upregulated UCP2 and reduced expression of BiP, CHOP, and XBP-1s. Expression of native FABP4/aP2 (but not the non-fatty acid binding mutant R126Q) into FABP4/aP2 null cells reduced UCP2 expression, suggesting that the FABP-FFA equilibrium controls UCP2 expression. FABP4/aP2-deficient macrophages are resistant to LPS-induced mitochondrial dysfunction and exhibit decreased mitochondrial protein carbonylation and UCP2-dependent reduction in intracellular reactive oxygen species. These data demonstrate that FABP4/aP2 directly regulates intracellular FFA levels and indirectly controls macrophage inflammation and ER stress by regulating the expression of UCP2. PMID:25582199
Pediatric Age Palm Oil Consumption.
Di Genova, Lorenza; Cerquiglini, Laura; Penta, Laura; Biscarini, Anna; Esposito, Susanna
2018-04-01
Palm oil is widely used in the food industry for its chemical/physical properties, low cost and wide availability. Its widespread use has provoked an intense debate about whether it is a potential danger to human health. In a careful review of the scientific literature, we focused on nutritional characteristics and health effects of the use of palm oil with regards to children, seeking to determine whether there is evidence that justifies fears about the health effects of palm oil. Our review showed that palm oil represents a significant source of saturated fatty acids, to which scientific evidence attributes negative health effects when used in excess, especially with regards to cardiovascular diseases. However, to date, there is no evidence about the harmful effects of palm oil on the health of children. Nevertheless, palm oil has possible ill health effects linked to its composition of fatty acids: its consumption is not correlated to risk factors for cardiovascular diseases in young people with a normal weight and cholesterol level; the elderly and patients with dyslipidaemia or previous cardiovascular events or hypertension are at a greater risk. Therefore, the matter is not palm oil itself but the fatty-acid-rich food group to which it belongs. The most important thing is to consume no more than 10% of saturated fatty acids, regardless of their origin and regardless of one's age. Correct information based on a careful analysis of the scientific evidence, rather than a focus on a singular presumed culprit substance, should encourage better lifestyles.
Benn, Kiesha; Passos, Mariana; Jayaram, Aswathi; Harris, Mary; Bongiovanni, Ann Marie; Skupski, Daniel; Witkin, Steven S
2014-11-01
The omega-3 long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and the omega-6 LCPUFA arachidonic acid (AA) are essential nervous system components that increase in concentration throughout gestation. The neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are small basic peptides crucial for fetal brain development. The DHA supplementation during pregnancy has been suggested to enhance neural development. We evaluated whether amniotic fluid DHA and AA concentrations correlated with intra-amniotic neurotrophin levels. Amniotic fluid, obtained at 15 to 19 weeks gestation from 62 women, was tested for BDNF, NGF, NT3, and NT4 by enzyme-linked immunosorbent assay. Concentrations of DHA and AA, and saturated and monounsaturated fatty acids, were determined by gas chromatography. Associations were analyzed by the Spearman rank correlation test. Median levels of AA and DHA were 2.3% and 1.3% of the total intra-amniotic fatty acids, respectively. Median neurotrophin levels (pg/mL) were 36.7 for NT3, 26.8 for BDNF, 5.2 for NT4, and 0.8 for NGF. Intra-amniotic NT4 and BDNF levels were correlated (P = .0016), while NT3 and NGF levels were unrelated to each other or to BDNF or NT4. Only NT4 was positively correlated with amniotic fluid DHA (P < .0001) and AA (P = .0003) concentrations. There were no associations between DHA, AA, or any neurotrophin and maternal age, gestational age at time of amniocentesis, amniocentesis indication, parity, or gestational age at delivery. Elevations in intra-amniotic NT4 with increasing levels of DHA and AA suggest that these LCPUFAs may specifically influence the extent of NT4-mediated fetal brain neurogenesis. © The Author(s) 2014.
Jezernik, Gregor; Potočnik, Uroš
2018-03-01
Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10 -8 ) and a locus in LRRK2 (p = 1.4 × 10 -7 ). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10 -3 ), total trans-fatty acids (p = 4.49 × 10 -3 ), palmitic acid (p = 5.85 × 10 -3 ) and arachidonic acid (p = 8.58 × 10 -3 ) as significantly associated with IBD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alves, Susana P; Santos-Silva, José; Cabrita, Ana R J; Fonseca, António J M; Bessa, Rui J B
2013-01-01
Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n-6 and 18:3n-3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n-3.
Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae.
Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira
2013-06-01
A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization.
Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae
Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira
2013-01-01
A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization. PMID:24471125
Sharp, Stephen J.; Kröger, Janine; Griffin, Julian L.; Sluijs, Ivonne; Agudo, Antonio; Ardanaz, Eva; Balkau, Beverley; Boeing, Heiner; Chajes, Veronique; Dow, Courtney; Fagherazzi, Guy; Feskens, Edith J. M.; Franks, Paul W.; Gavrila, Diana; Gunter, Marc; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay-Tee; Kühn, Tilman; Melander, Olle; Molina-Portillo, Elena; Nilsson, Peter M.; Olsen, Anja; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Rolandsson, Olov; Sieri, Sabina; Slimani, Nadia; Spijkerman, Annemieke M. W.; Tjønneland, Anne; Langenberg, Claudia; Riboli, Elio
2017-01-01
Background Combinations of multiple fatty acids may influence cardiometabolic risk more than single fatty acids. The association of a combination of fatty acids with incident type 2 diabetes (T2D) has not been evaluated. Methods and findings We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults, including 12,132 incident cases of T2D, over the follow-up period between baseline (1991–1998) and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested case-cohort study. The first principal component derived by principal component analysis of 27 individual fatty acids (mole percentage) was the main exposure (subsequently called the fatty acid pattern score [FA-pattern score]). The FA-pattern score was partly characterised by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-chain saturated fatty acids and low concentrations of γ-linolenic acid, palmitic acid, and long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and random-effects meta-analysis, the FA-pattern score was associated with lower incident T2D. Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23 (95% CI 0.19–0.29) adjusted for potential confounders and 0.37 (95% CI 0.27–0.50) further adjusted for metabolic risk factors. The association changed little after adjustment for individual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pattern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score representing insulin resistance, and dietary intakes of soft drinks and alcohol and was positively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated fat, dietary fibre, and coffee (p < 0.05 each). Limitations include potential measurement error in the fatty acids and other model covariates and possible residual confounding. Conclusions A combination of individual fatty acids, characterised by high concentrations of linoleic acid, odd-chain fatty acids, and very long-chain fatty acids, was associated with lower incidence of T2D. The specific fatty acid pattern may be influenced by metabolic, genetic, and dietary factors. PMID:29020051
Kanďár, Roman; Drábková, Petra; Andrlová, Lenka; Kostelník, Adam; Čegan, Alexander
2016-11-01
A method is described for the determination of fatty acids in dried sweat spot and plasma samples using gas chromatography with flame ionization detection. Plasma and dried sweat spot samples were obtained from a group of blood donors. The sweat was collected from each volunteer during exercise. Sweat was spotted onto collection paper containing butylated hydroxytoluene. Fatty acids were derivatized with acetyl chloride in methanol to form methyl esters of fatty acids. The fatty acids in dried sweat spot samples treated with butylated hydroxytoluene and stored at -20°C were stable for 3 months. Our results indicate that sweat contains, among fatty acids with short chain, also fatty acids with long chain and unsaturated fatty acids. Linear relationships between percentage content of selected fatty acids in dried sweat spot and plasma were observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids
Watts, Jennifer L.
2016-01-01
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. PMID:26848697
Aspirin Increases Mitochondrial Fatty Acid Oxidation
Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.
2016-01-01
The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258
Parsons, Joshua B.; Frank, Matthew W.; Subramanian, Chitra; Saenkham, Panatda; Rock, Charles O.
2011-01-01
The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements. PMID:21876172
Chen, Xi; Du, Xue; Shen, Jianliang; Wang, Weiqun
2016-01-01
Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59–81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. PMID:27510581
Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun
2017-01-01
Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. © 2016 by the Society for Experimental Biology and Medicine.
Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.
2017-01-01
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929
Kocatepe, Demet; Turan, Hülya
2012-06-01
The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series.
López-López, A; López-Sabater, M C; Campoy-Folgoso, C; Rivero-Urgell, M; Castellote-Bargalló, A I
2002-12-01
To investigate differences in fatty acid and sn-2 fatty acid composition in colostrum, transitional and mature human milk, and in term infant formulas. Departament de Nutrició i Bromatologia, University of Barcelona, Spain and University Hospital of Granada, Spain. One-hundred and twenty mothers and 11 available types of infant formulas for term infants. We analysed the fatty acid composition of colostrum (n=40), transitional milk (n=40), mature milk (n=40) and 11 infant formulas. We also analysed the fatty acid composition at sn-2 position in colostrum (n=12), transitional milk (n=12), mature milk (n=12), and the 11 infant formulas. Human milk in Spain had low saturated fatty acids, high monounsaturated fatty acids and high linolenic acid. Infant formulas and mature human milk had similar fatty acid composition. In mature milk, palmitic acid was preferentially esterified at the sn-2 position (86.25%), and oleic and linoleic acids were predominantly esterified at the sn-1,3 positions (12.22 and 22.27%, respectively, in the sn-2 position). In infant formulas, palmitic acid was preferentially esterified at the sn-1,3 positions and oleic and linoleic acids had higher percentages at the sn-2 position than they do in human milk. Fatty acid composition of human milk in Spain seems to reflect the Mediterranean dietary habits of mothers. Infant formulas resemble the fatty acid profile of human milk, but the distribution of fatty acids at the sn-2 position is markedly different.
Du, M; Ahn, D U; Sell, J L
2000-12-01
A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Xiaomang; Li, Danyang; Chen, Dilong
Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose,more » insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. - Highlights: • We investigated the anti-steatotic effect of mangiferin (MA) in fructose-fed SHR. • MA (15 mg/kg/day for 7 weeks) ameliorated fructose-induced fatty liver in SHR. • MA inhibited hepatic DGAT2 expression at the mRNA and protein levels. • MA did not affect expression of the genes responsible for fatty acid synthesis. • MA ameliorates fructose-induced fatty liver by inhibiting hepatic DGAT2 in rats.« less
Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.
Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia
2012-01-01
Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.
Kitamura, Takuya; Seki, Naoya; Kihara, Akio
2017-03-28
Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2 -deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.
Maniscalco, W M; Finkelstein, J N; Parkhurst, A B
1989-05-01
De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.
König, D; Väisänen, S B; Bouchard, C; Halle, M; Lakka, T A; Baumstark, M W; Alen, M; Berg, A; Rauramaa, R
2003-07-01
To investigate the relation between (1) cardiorespiratory fitness and plasma saturated, monounsaturated and polyunsaturated fatty acids and (2) the interactions between cardiorespiratory fitness, dietary fat intake and plasma fatty acid composition. Cross-sectional analysis. The subjects were randomly selected, 127 middle-aged Finnish men participating in the DNASCO exercise intervention study. Cardiorespiratory fitness was determined spiroergometrically, dietary intake of macro- and micronutrients by 4-day food records and plasma fatty acids by gas chromatography. The subjects were divided into tertiles of aerobic fitness. Differences between fitness tertiles were not observed for dietary intake of total fat, and saturated, monounsaturated or polyunsaturated fatty acids (percent of total energy). In contrast, plasma saturated fatty acids were significantly lower (P <0.01) and polyunsaturated fatty acids significantly higher (P <0.05) in the highest fitness tertile compared to the lowest tertile. Dietary saturated fat intake was positively associated with plasma saturated fatty acids (r=0.342; P <0.05) and inversely with plasma polyunsaturated fatty acids (r=-0.453; P <0.01) only in the lowest fitness tertile. In addition, a positive correlation between body mass index and plasma saturated fatty acids (r=0.516; P <0.01) as well as a negative correlation between body mass index and plasma polyunsaturated fatty acids (r=-0.516; P <0.01) was observed in the lowest tertile solely. Different levels in cardiorespiratory fitness are associated with different levels in plasma saturated and polyunsaturated fatty acids and lead to modifications in the association between dietary and plasma fatty acids. These findings can perhaps be explained by a reduced hepatic fatty acid and lipoprotein synthesis as well as by an enhanced muscular lipid utilization, which are commonly seen in those who are physically active and who exhibit a higher level of fitness.
McCormack, M; Brecher, P
1987-06-15
Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.
Drechsler, Robin; Chen, Shaw-Wen; Dancy, Blair C. R.; Mehrabkhani, Lena
2016-01-01
Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions. PMID:27893806
Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougan, A.H.; Lyster, D.M.; Robertson, K.A.
For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoicmore » acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging.« less
Changes in the fatty acid composition in bitter Lupinus species depend on the debittering process.
Curti, Carolina A; Curti, Ramiro N; Bonini, Norberto; Ramón, Adriana N
2018-10-15
The evaluation of changes in the fatty acid composition in Lupinus species after the debittering process is crucial to determine their nutritional implications. The aim of this study was to evaluate changes in the fatty acid composition in Lupinus albus and L. mutabilis after the debittering process. Lupinus species showed different fatty acid compositions which changed depending on the debittering process applied. The debittering process changed the monounsaturated and polyunsaturated fatty acids in L. albus, whereas in L. mutabilis it changed the w-6/w-3 ratio. However, the total saturated fatty acid content remained stable in both species after the debittering process. The changes in L. albus were associated with the fatty acid desaturation and a conversion into unsaturated fatty acids, whereas in L. mutabilis with the lipid peroxidation by decreasing the linoleic acid content. Nutritional implications of these changes in the fatty acid composition are discussed. Copyright © 2018. Published by Elsevier Ltd.
21 CFR 172.854 - Polyglycerol esters of fatty acids.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these substances...
Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction
Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.
2017-01-01
Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293
Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos
2016-12-22
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress-with an excess of radical and oxidative processes-cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.
Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos
2016-01-01
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects. PMID:28025506
Can Early Omega-3 Fatty Acid Exposure Reduce Risk of Childhood Allergic Disease?
Miles, Elizabeth A; Calder, Philip C
2017-07-21
A causal link between increased intake of omega-6 ( n -6) polyunsaturated fatty acids (PUFAs) and increased incidence of allergic disease has been suggested. This is supported by biologically plausible mechanisms, related to the roles of eicosanoid mediators produced from the n -6 PUFA arachidonic acid. Fish and fish oils are sources of long chain omega-3 ( n -3) PUFAs. These fatty acids act to oppose the actions of n -6 PUFAs particularly with regard to eicosanoid synthesis. Thus, n -3 PUFAs may protect against allergic sensitisation and allergic manifestations. Epidemiological studies investigating the association between maternal fish intake during pregnancy and allergic outcomes in infants/children of those pregnancies suggest protective associations, but the findings are inconsistent. Fish oil provision to pregnant women is associated with immunologic changes in cord blood. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitisation to common food allergens and reduce prevalence and severity of atopic eczema in the first year of life, with a possible persistence until adolescence. A recent study reported that fish oil consumption in pregnancy reduces persistent wheeze and asthma in the offspring at ages 3 to 5 years. Eating oily fish or fish oil supplementation in pregnancy may be a strategy to prevent infant and childhood allergic disease.
Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits.
Fleming, A; Schenkel, F S; Malchiodi, F; Ali, R A; Mallard, B; Sargolzaei, M; Jamrozik, J; Johnston, J; Miglior, F
2018-05-01
The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (-0.62 to -0.59) and with protein yield (-0.32 to -0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning of lactation were decreasing for long-chain and unsaturated fatty acid groups and increasing for short-chain fatty acids. Genetic correlations between fat percentage and fatty acids were increasing at the beginning of lactation for short- and medium-chain and saturated fatty acids, but slightly decreasing for long-chain and unsaturated fatty acid groups. These results can be used in defining fatty acid traits and breeding objectives. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xu, Shihao; Spencer, Cody M.
2015-01-01
ABSTRACT Oncogenesis is frequently accompanied by the activation of specific metabolic pathways. One such pathway is fatty acid biosynthesis, whose induction is observed upon transformation of a wide variety of cell types. Here, we explored how defined oncogenic alleles, specifically the simian virus 40 (SV40) T antigens and oncogenic Ras12V, affect fatty acid metabolism. Our results indicate that SV40/Ras12V-mediated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant changes in the concentration of fatty acid biosynthetic enzymes. This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target of rapamycin (mTOR) dependent, as it was attenuated by rapamycin treatment. Furthermore, SV40/Ras12V-mediated transformation induced sensitivity to treatment with fatty acid biosynthetic inhibitors. Pharmaceutical inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a key fatty acid biosynthetic enzyme, induced caspase-dependent cell death in oncogene-transduced cells. In contrast, isogenic nontransformed cells were resistant to fatty acid biosynthetic inhibition. This oncogene-induced sensitivity to fatty acid biosynthetic inhibition was independent of the cells' growth rates and could be attenuated by supplementing the medium with unsaturated fatty acids. Both the activation of fatty acid biosynthesis and the sensitivity to fatty acid biosynthetic inhibition could be conveyed to nontransformed breast epithelial cells through transduction with oncogenic Ras12V. Similar to what was observed in the transformed fibroblasts, the Ras12V-induced sensitivity to fatty acid biosynthetic inhibition was independent of the proliferative status and could be attenuated by supplementing the medium with unsaturated fatty acids. Combined, our results indicate that specific oncogenic alleles can directly confer sensitivity to inhibitors of fatty acid biosynthesis. IMPORTANCE Viral oncoproteins and cellular mutations drive the transformation of normal cells to the cancerous state. These oncogenic alterations induce metabolic changes and dependencies that can be targeted to kill cancerous cells. Here, we find that the cellular transformation resulting from combined expression of the SV40 early region with an oncogenic Ras allele is sufficient to induce cellular susceptibility to fatty acid biosynthetic inhibition. Inhibition of fatty acid biosynthesis in these cells resulted in programmed cell death, which could be rescued by supplementing the medium with nonsaturated fatty acids. Similar results were observed with the expression of oncogenic Ras in nontransformed breast epithelial cells. Combined, our results suggest that specific oncogenic alleles induce metabolic dependencies that can be exploited to selectively kill cancerous cells. PMID:25855740
40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...
Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids
USDA-ARS?s Scientific Manuscript database
Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...
40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...
Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.
Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca
2016-01-01
This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja
2011-03-01
The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.
Thurnhofer, Saskia; Vetter, Walter
2006-05-03
Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.
7 Things to Know about Omega-3 Fatty Acids
... X Y Z 7 Things To Know About Omega-3 Fatty Acids Share: Omega-3 fatty acids are a group of polyunsaturated fatty ... a number of functions in the body. The omega-3 fatty acids EPA and DHA are found in ...
Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend
2017-01-01
Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Somerville, Chris; Broun, Pierre; van de Loo, Frank
2001-01-01
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Chen, Minjian; Xu, Bin; Ji, Wenliang; Qiao, Shanlei; Hu, Nan; Hu, Yanhui; Wu, Wei; Qiu, Lianglin; Zhang, Ruyang; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru
2012-01-01
Male reproductive toxicity induced by exposure to bisphenol A (BPA) has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction. Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD) declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px) as well as catalase (CAT) also showed a decreasing trend in BPA treated group. BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity.
Kursu, V. A. Samuli; Pietikäinen, Laura P.; Fontanesi, Flavia; Aaltonen, Mari J.; Suomi, Fumi; Nair, Remya Raghavan; Schonauer, Melissa S.; Dieckmann, Carol L.; Barrientos, Antoni; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.
2014-01-01
Summary Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild heme deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a coordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. PMID:24102902
Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela
2017-01-01
Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595
Kursu, V A Samuli; Pietikäinen, Laura P; Fontanesi, Flavia; Aaltonen, Mari J; Suomi, Fumi; Raghavan Nair, Remya; Schonauer, Melissa S; Dieckmann, Carol L; Barrientos, Antoni; Hiltunen, J Kalervo; Kastaniotis, Alexander J
2013-11-01
Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. © 2013 John Wiley & Sons Ltd.
Alves, Susana P.; Santos-Silva, José; Cabrita, Ana R. J.; Fonseca, António J. M.; Bessa, Rui J. B.
2013-01-01
Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3. PMID:23484024
Frayn, K N; Langin, D; Karpe, F
2008-03-01
The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.
Klein, Wolfgang; Weber, Michael H. W.; Marahiel, Mohamed A.
1999-01-01
Bacillus subtilis has developed sophisticated mechanisms to withstand fluctuations in temperature. Membrane fatty acids are the major determinants for a sufficiently fluid membrane state to ensure the membrane’s function at all temperatures. The fatty acid profile of B. subtilis is characterized by a high content of branched fatty acids irrespective of the growth medium. Here, we report on the importance of isoleucine for B. subtilis to survive cold shock from 37 to 15°C. Cold shock experiments with strain JH642 revealed a cold-protective function for all intermediates of anteiso-branched fatty acid biosynthesis. Metabolites related to iso-branched or straight-chain fatty acid biosynthesis were not protective. Fatty acid profiles of different B. subtilis wild-type strains proved the altered branching pattern by an increase in the anteiso-branched fatty acid content and a concomitant decrease of iso-branched species during cold shock. There were no significant changes in the fatty acid saturation or acyl chain length. The cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine correlated with their inability to synthesize more anteiso-branched fatty acids, as shown by the fatty acid profile. The switch to a fatty acid profile dominated by anteiso-C15:0 and C17:0 at low temperatures and the cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine focused our attention on the critical role of anteiso-branched fatty acids in the growth of B. subtilis in the cold. PMID:10464205
Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.
Sauvat, Allan; Chen, Guo; Müller, Kevin; Tong, Mingming; Aprahamian, Fanny; Durand, Sylvère; Cerrato, Giulia; Bezu, Lucillia; Leduc, Marion; Franz, Joakim; Rockenfeller, Patrick; Sadoshima, Junichi; Madeo, Frank; Kepp, Oliver; Kroemer, Guido
2018-04-01
Depending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.
Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction
Basaranoglu, Gokcen; Bugianesi, Elisabetta
2015-01-01
Excessive accumulation of triglycerides (TG) in liver, in the absence of significant alcohol consumption is nonalcoholic fatty liver disease (NAFLD). NAFLD is a significant risk factor for developing cirrhosis and an independent predictor of cardiovascular disease. High fructose corn syrup (HFCS)-containing beverages were associated with metabolic abnormalities, and contributed to the development of NAFLD in human trials. Ingested carbohydrates are a major stimulus for hepatic de novo lipogenesis (DNL) and are more likely to directly contribute to NAFLD than dietary fat. Substrates used for the synthesis of newly made fatty acids by DNL are primarily glucose, fructose, and amino acids. Epidemiological studies linked HFCS consumption to the severity of fibrosis in patients with NAFLD. New animal studies provided additional evidence on the role of carbohydrate-induced DNL and the gut microbiome in NAFLD. The excessive consumption of HFCS-55 increased endoplasmic reticulum stress, activated the stress-related kinase, caused mitochondrial dysfunction, and increased apoptotic activity in the liver. A link between dietary fructose intake, increased hepatic glucose transporter type-5 (Glut5) (fructose transporter) gene expression and hepatic lipid peroxidation, MyD88, TNF-α levels, gut-derived endotoxemia, toll-like receptor-4, and NAFLD was reported. The lipogenic and proinflammatory effects of fructose appear to be due to transient ATP depletion by its rapid phosphorylation within the cell and from its ability to raise intracellular and serum uric acid levels. However, large prospective studies that evaluated the relationship between fructose and NAFLD were not performed yet. PMID:26005677
Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming
2015-01-01
The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun
2015-11-01
The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.
Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean
Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.
2015-01-01
The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003
Busquets, Sílvia; Almendro, Vanessa; Barreiro, Esther; Figueras, Maite; Argilés, Josep M; López-Soriano, Francisco J
2005-01-31
Implantation of a fast growing tumour to mice (Lewis lung carcinoma) resulted in a clear cachectic state characterized by a profound muscle wasting. This was accompanied by a significant increase in both UCP2 and UCP3 gene expression in skeletal muscle and heart. Interestingly, this increase in gene expression was not linked to a rise in circulating fatty acids or in a decrease in food intake, as previously reported in other pathophysiological states. These results question the concept that hyperlipaemia is the only factor controlling UCP gene expression in different pathophysiological conditions. In addition, the present work suggests that UCPs might participate in a counter-regulatory mechanism to lower the production of ROS.
Do fatty acids affect fetal programming?
Kabaran, Seray; Besler, H Tanju
2015-08-13
In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.
[Interaction of free fatty acids with mitochondria during uncoupling of oxidative phosphorylation].
Samartsev, V N; Rybakova, S R; Dubinin, M V
2013-01-01
The activity of free saturated fatty acids (caprylic, capric, lauric, myristic, palmitic and stearic) as inducers and regulators of uncoupling of oxidative phosphorylation with participation of ADP/ATP antiporter, aspartate/glutamate antiporter and cyclosporin A-sensitive structure was investigated in experiments on rat liver mitochondria. It is established that at equal uncoupling activity of fatty acids the regulatory effect is minimal for caprylic acid and raised with increasing the hydrophobicity of fatty acids reaching the maximum value for stearic acid. There exists the linear dependence of the regulatory effect value of fatty acids on fatty acids content in the hydrophobic region of the inner membrane. The model that describes the interaction of fatty acids with the hydrophobic region of the mitochondrial inner membrane preserving functional activity of organelles is developed. It is established that if molecules of various fatty acids being in the hydrophobic region of the membrane are equally effective as uncoupling regulators, their specific uncoupling activity is different. Caprylic acid, a short-chain fatty acid, possesses the highest uncoupling activity. As the acyl chain length increases, the specific uncoupling activity of fatty acids reduces exponentially. Under these conditions components of the uncoupling activity sensitive to glutamate and carboxyatractylate and glutamate and insensitive to these reagents (but sensitive to cyclosporin A) change approximately equally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.
2013-01-01
Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less
The prokarotic, endogenous storage polymer poly--hydroxybutyrate (PHB) accumulated in soil from a methane-enriched, halogenated hydrocarbon-degrading soil column. Based on phospholipid ester-linked fatty acid (PLFA) profiles, this mocrocosm has been previously reported to be sign...
Catalá, A; Avanzati, B
1983-11-01
Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.
Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi
2006-11-01
The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.
Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying
2016-06-01
In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. Copyright © 2016. Published by Elsevier B.V.
Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R
2006-07-01
Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P < 0.01). However, choline deficiency lowered fasting plasma insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P < 0.01) and improved glucose tolerance on a high-fat diet. In mice on 30% fat diet, choline deficiency increased liver mRNA levels of the rate-limiting enzyme in phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.
Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor
2016-02-01
The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.
Altered Cholesterol and Fatty Acid Metabolism in Huntington Disease
Block, Robert C.; Dorsey, E. Ray; Beck, Christopher A.; Brenna, J. Thomas; Shoulson, Ira
2010-01-01
Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease. PMID:20802793
Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beld, Joris; Lee, D. John; Burkart, Michael D.
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less
Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Matsusue, Miyuki; Mashima, Yasuo; Miyawaki, Masaaki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko
2014-12-01
To clarify the influence of the fatty acid composition of sebum in acne vulgaris, we investigated the amounts and fatty acid compositions of triglycerides (TG) and free fatty acids (FFA), and the amounts of cutaneous superficial Propionibacterium acnes in acne patients and healthy subjects. The foreheads of 18 female patients, 10 male patients, 10 healthy females and 10 healthy males were studied in a Japanese population. There were significant differences in the amounts of sebum, TG and cutaneous superficial P. acnes, as well as the fatty acid compositions of TG and FFA between acne patients and healthy subjects in females. Their fatty acid compositions were correlated with the amount of TG with or without acne. It was clarified that the fatty acid compositions of TG and FFA depended on the amount of TG, and there were no differences in the fatty acid composition in the presence and absence of acne. © 2014 Japanese Dermatological Association.
Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering
Beld, Joris; Lee, D. John; Burkart, Michael D.
2014-10-20
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less
Auestad, N; Innis, S M
2000-01-01
Growth cones are membrane-rich structures found at the distal end of growing axons and are the predecessors of the synaptic membranes of nerve endings. This study examined whether n-3 fatty acid restriction during gestation in rats alters the composition of growth cone and neuronal cell body membrane fatty acids in newborns. Female rats were fed a standard control diet containing soy oil (8% of fatty acids as 18:3n-3 by wt) or a semisynthetic n-3 fatty acid-deficient diet with safflower oil (0.3% of fatty acids as 18:3n-3 by wt) throughout normal pregnancy. Experiments were conducted on postnatal day 2 to minimize the potential for contamination from synaptic membranes and glial cells. Dietary n-3 fatty acid restriction resulted in lower docosahexaenoic acid (DHA) concentrations and a corresponding higher docosapentaenoic acid concentration in neuronal growth cones, but had no effects on neuronal cell body fatty acid concentrations. These studies suggest that accretion of DHA in growth cones, but not neuronal cell bodies, is affected by n-3 fatty acid restriction during gestation. Differences in other fatty acids or components between the semisynthetic and the standard diet, however, could have been involved in the effects on growth-cone DHA content. The results also provide evidence to suggest that the addition of new membrane fatty acids to neurons during development occurs along the shaft of the axon or at the growth cone, rather than originating at the cell body.
Georgiadi, Anastasia; Lichtenstein, Laeticia; Degenhardt, Tatjana; Boekschoten, Mark V; van Bilsen, Marc; Desvergne, Beatrice; Müller, Michael; Kersten, Sander
2010-06-11
Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.
Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo
2013-06-01
Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.
Fatty acids and breast cancer: Make them on site or have them delivered
Kinlaw, William B.; Baures, Paul W.; Lupien, Leslie E.; Davis, Wilson L.; Kuemmerle, Nancy B.
2016-01-01
Brisk fatty acid (FA) production by cancer cells is accommodated by the Warburg effect. Most breast and other cancer cell types are addicted to fatty acids (FA), which they require for membrane phospholipid synthesis, signaling purposes, and energy production. Expression of the enzymes required for FA synthesis is closely linked to each of the major classes of signaling molecules that stimulate BC cell proliferation. This review focuses on the regulation of FA synthesis in BC cells, and the impact of FA, or the lack thereof, on the tumor cell phenotype. Given growing awareness of the impact of dietary fat and obesity on BC biology, we will also examine the less-frequently considered notion that, in addition to de novo FA synthesis, the lipolytic uptake of preformed FA may also be an important mechanism of lipid acquisition. Indeed, it appears that cancer cells may exist at different points along a “lipogenic-lipolytic axis”, and FA uptake could thwart attempts to exploit the strict requirement for FA focused solely on inhibition of de novo FA synthesis. Strategies for clinically targeting FA metabolism will be discussed, and the current status of the medicinal chemistry in this area will be assessed. PMID:26844415
Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina
2015-01-01
The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the “lipolysome.” Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897
Host cells and methods for producing diacid compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.
The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.
Longmuir, K J; Resele-Tiden, C; Rossi, M E
1988-08-01
We have previously reported that fetal rabbit lung tissue in organ culture produces a lamellar body material (pulmonary surfactant) with a lower percentage of disaturated phosphatidylcholine than is typically found in rabbit lung in vivo (Longmuir, K.J., C. Resele-Tiden, and L. Sykes. 1985. Biochim. Biophys. Acta. 833: 135-143). This investigation was conducted to identify all fatty acids present in the lamellar body phosphatidylcholine, and to determine whether the low level of disaturated phosphatidylcholine is due to excessive unsaturated fatty acid at position sn-1, sn-2, or both. Fetal rabbit lung tissue, 23 days gestation, was maintained in culture for 7 days in defined (serum-free) medium. Phospholipids were labeled in culture with [1-14C]acetate or [U-14C]glycerol (to follow de novo fatty acid biosynthesis), or with [1-14C]palmitic acid (to follow incorporation of exogenously supplied fatty acid). Radiolabeled fatty acid methyl esters obtained from lamellar body phosphatidylcholine were first separated by reverse-phase thin-layer chromatography (TLC) into two fractions of 1) 14:0 + 16:1 and 2) 16:0 + 18:1. Complete separation of the individual saturated and monoenoic fatty acids was achieved by silver nitrate TLC of the two fractions. Monoenoic fatty acid double bond position was determined by permanganate-periodate oxidation followed by HPLC of the carboxylic acid phenacyl esters. Lamellar body phosphatidylcholine contained four monoenoic fatty acids: 1) palmitoleic acid, 16:1 cis-9; 2) oleic acid, 18:1 cis-9; 3) cis-vaccenic acid, 18:1 cis-11; and 4) 6-hexadecenoic acid, 16:1 cis-6. In addition, 8-octadecenoic acid, 18:1 cis-8, was found in the fatty acids of the tissue homogenate. The abnormally low disaturated phosphatidylcholine content in lamellar body material was the result of abnormally high levels of monoenoic fatty acid (principally 16:1 cis-9) found at position sn-2. Position sn-1 contained normal levels of saturated fatty acid. The biosynthesis of the unusual n-10 fatty acids was observed from the start of culture throughout the entire 7-day culture period, and was observed in incubations of tissue slices of day 23 fetal rabbit lung. This is the first report of the biosynthesis of n-10 fatty acids (16:1 cis-6 and 18:1 cis-8) in a mammalian tissue other than skin, where these fatty acids are found in the secretory product (sebum) of sebaceous glands.
Foseid, Lena; Devle, Hanne; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag
2017-01-01
A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n -3 fatty acids α -linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n -3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n -6/ n -3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea . The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products.
Foseid, Lena; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag
2017-01-01
A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n-3 fatty acids α-linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n-3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n-6/n-3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea. The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products. PMID:28713595
Wang, Mingxuan; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Wei; Chen, Yong Q
2013-12-01
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.
Serum concentrations of fatty acids and colorectal adenoma risk: a case-control study in Japan.
Ghadimi, Reza; Kuriki, Kiyonori; Tsuge, Shinji; Takeda, Emiru; Imaeda, Nahomi; Suzuki, Sadao; Sawai, Asuka; Takekuma, Kiyoshi; Hosono, Akihiro; Tokudome, Yuko; Goto, Chiho; Esfandiary, Imaneh; Nomura, Hisashi; Tokudome, Shinkan
2008-01-01
Epidemiologic studies of n-3 fatty acids (FAs) and risk of colorectal cancer have generated inconsistent results, and relations with precursor colorectal adenomas (CRA) have not been evaluated in detail. We here focused on possible associations of serum FAs with CRA in the Japanese population. We conducted a case-control study of 203 asymptomatic CRA cases (148 men, 55 women) and 179 healthy controls (67 men, 112 women) during 1997-2003 in Nagoya, Japan. Baseline information was obtained using a lifestyle questionnaire and serum FA levels were measured by gas chromatography. A non-significant inverse association with CRA was observed for eicosapentaenoic acid (EPA) among women. Moreover, the concentrations of docosahexaenoeic acid (DHA), a major component of n-3 highly-unsaturated FAs (HUFAs), were significantly lower in cases in both sexes. In addition, serum concentrations of total FAs, saturated FAs (SFAs) and mono-unsaturated FAs (MUFAs) had strong positive links with CRA risk. In contrast, arachidonic acid (AA) and DHA were inversely related, with 66% and 59% risk reduction, respectively. Ratios of SFAs/n-3 PUFAs and SFAs/n-3 HUFAs exhibited significant positive relations with CRA risk but there was no clear link with n-6 PUFAs/n-3 PUFAs. Our findings suggest a promoting influence of SFAs and MUFAs along with a protective effect of DHA on CRA risk. However, further research is needed to investigate the observed discrepancy with the generally accepted roles of the AA cascade in carcinogenesis.
Kikalishvili, B Iu; Zurabashvili, D Z; Zurabashvili, Z A; Turabelidze, D G; Shanidze, L A
2012-11-01
The aim of the study is individual qualitively and quantitatively identification of fatty acids in Pkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seed oil and prediction of its biological activity. Using high-effective liquid chromatogramphy fatty acids were franctionated. Their relative concentrations are expressed as percentages of the total fatty acid component. Identification of the fatty acids consituents is based on comparison of their retention time with that of known standards. The predominant fatty acids in the oils were palmitic, oleic and stearic acids. The investigation demonstrated that fatty acids composition takes marked part in lipid metabolism of biological necessary components. The most interesting result of the investigation was the detection of unusual for the essentain oil begenic acid.
Foliar Fatty Acids and Sterols of Soybean Field Fumigated with SO2
Grunwald, Claus
1981-01-01
Sixty-day-old soybean plants were exposed in the field to 78.7 parts per one-hundred million of SO2 in an open-air fumigation system for 20 days. Leaves from the top one-fourth and bottom one-fourth of the plants were analyzed for chlorophyll, free fatty acids, fatty acid esters, polar lipid fatty acids, and sterols. Fumigated plants had a lower chlorophyll, free fatty acid, and polar lipid content, but a higher fatty acid ester content. Of the individual fatty acids, linoleic and linolenic acid increased with SO2 fumigation while palmitic acid decreased. SO2 fumigations had only a minor effect on leaf sterols. In general, the lower, more mature leaves showed a greater response to SO2 exposure. PMID:16662015
Vasyurenko, Z P; Opanasenko, L S; Koval', G M; Turyanitsa, A I; Ruban, N M
2001-01-01
The cellular and lipopolysaccharide (LPS) fatty acid compositions of the type strains of Klebsiella pneumoniae, K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" were studied. The cellular fatty acids of klebsiellae were presented by straight-chain saturated and monounsaturated, cyclopropane, and hydroxy fatty acids. Hexadecanoic, methylenehexadecanoic, octadecenoic and hexadecenoic acids prevailed. The K. pneumoniae strain mainly differed from the strains of other species by two and more times lower level of dodecanoic acid in cells. Variations of cyclopropane and unsaturated fatty acid contents in cells were observed. LPS fatty acids profiles of klebsiellae mainly consisted of straight-chain saturated and hydroxy fatty acids with predominance of tetradecanoic and 3-hydroxytetradecanoic acids. LPS fatty acids profiles of K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" strains were very similar and differed from that of the K. pneumoniae strain by higher levels of dodecanoic acid (approximately 5-6 times) and absence of 2-hydroxytetradecanoic acid. The obtained data indicated more close relatedness of K. oxytoca, K. terrigena, and K. planticola and some their remoteness from K. pneumoniae.
Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios
NASA Astrophysics Data System (ADS)
Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet
2011-04-01
Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).
Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)
NASA Astrophysics Data System (ADS)
Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.
1995-12-01
Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.
21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...
21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...
USDA-ARS?s Scientific Manuscript database
Walnuts contain polyunsaturated fatty acids (PUFAs), specifically the omega-6 fatty acid linoleic acid (LA) as well as the omega-3 fatty acid, alpha-linolenic acid (ALA), which can be metabolized to generate eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Previous research from our lab h...
Honeyfield, Dale C.; Maloney, Kelly O.
2015-01-01
Fatty acids are integral components of periphyton and differ among algal taxa. We examined seasonal patterns in periphyton fatty acids in six minimally disturbed headwater streams in Pennsylvania’s Appalachian Mountains, USA. Environmental data and periphyton were collected across four seasons for fatty acid and algal taxa content. Non-metric multidimensional scaling ordination suggested significant seasonal differences in fatty acids; an ordination on algal composition revealed similar seasonal patterns, but with slightly weaker separation of summer and fall. Summer and fall fatty acid profiles were driven by temperature, overstory cover, and conductivity and winter profiles by measures of stream size. Ordination on algal composition suggested that summer and fall communities were driven by overstory and temperature, whereas winter communities were driven by velocity. The physiologically important fatty acid 18:3ω6 was highest in summer and fall. Winter samples had the highest 20:3ω3. Six saturated fatty acids differed among the seasons. Periphyton fatty acids profiles appeared to reflect benthic algal species composition. This suggests that periphyton fatty acid composition can be useful in characterizing basal food resources and stream water quality.
Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie
2014-09-01
Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.
6-methyl-8-hexadecenoic acid: A novel fatty acid from the marine spongeDesmapsama anchorata.
Carballeira, N M; Maldonado, M E
1988-07-01
The novel fatty acid 7-methyl-8-hexadecenoic (1) was identified in the marine spongeDesmapsama anchorata. Other interesting fatty acids identified were 14-methyl-8-hexadecenoic (2), better known through its methyl ester as one of the components of the sex attractant of the female dermestid beetle, and the saturated fatty acid 3-methylheptadecanoic (3), known to possess larvicidal activity. The main phospholipid fatty acids encountered inD. anchorata were palmitic (16∶0), behenic (22∶0) and 5,9-hexacosadienoic acid (26∶2), which together accounted for 50% of the total phospholipid fatty acid mixture.
Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.
2016-01-01
Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820
Exogenous fatty acid metabolism in bacteria.
Yao, Jiangwei; Rock, Charles O
2017-10-01
Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Treatment of Fatty Acid Oxidation Disorders
... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...
Hira, Tohru; Ogasawara, Shono; Yahagi, Asuka; Kamachi, Minami; Li, Jiaxin; Nishimura, Saki; Sakaino, Masayoshi; Yamashita, Takatoshi; Kishino, Shigenobu; Ogawa, Jun; Hara, Hiroshi
2018-06-25
The secretion of gut hormones, such as cholecystokinin (CCK) is stimulated by fatty acids. Although a chain length-dependent mechanism has been proposed, other structural relationships to releasing activity remain unclear. We aimed to elucidate specific structures in fatty acids that are responsible for their CCK-releasing activity, and related sensing mechanisms in enteroendocrine cells. We examined CCK secretory activities in a murine CCK-producing cell line STC-1 by exposing the cells to various modified fatty acids produced by gut lactic acid bacteria. The effects of fatty acids on gastric emptying rate as a CCK-mediated function were examined using acetaminophen- and phenol red-methods in rats. Out of more than thirty octadecanoic (C18)-derived fatty acids tested, five oxo-fatty acids potently stimulated CCK secretion without cytotoxic effects in STC-1 cells. Three fatty acids had a distinct specific structure containing one double-bond, whereas the other two had two double-bonds, nearby an oxo residue. CCK secretion induced by representative fatty acids (10-oxo-trans-11-18:1 and 13-oxo-cis-9,cis-15-18:2) was attenuated by a fatty acid-receptor GPR40 antagonist. Oral administration of 13-oxo-cis-9,cis-15-18:2 lowered the gastric emptying rate in rats in a dose- and structure-dependent manner. These results revealed a novel fatty acid-sensing mechanism in enteroendocrine cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris [Portola Valley, CA; Broun, Pierre [Burlingame, CA; van de Loo, Frank [Weston, AU; Boddupalli, Sekhar S [Manchester, MI
2011-08-23
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.
2005-08-30
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Ting, Ngoot-Chin; Yaakub, Zulkifli; Kamaruddin, Katialisa; Mayes, Sean; Massawe, Festo; Sambanthamurthi, Ravigadevi; Jansen, Johannes; Low, Leslie Eng Ti; Ithnin, Maizura; Kushairi, Ahmad; Arulandoo, Xaviar; Rosli, Rozana; Chan, Kuang-Lim; Amiruddin, Nadzirah; Sritharan, Kandha; Lim, Chin Ching; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Singh, Rajinder
2016-04-14
The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil. In this study, a segregating E. oleifera x E. guineensis (OxG) hybrid population for FAC is used to identify quantitative trait loci (QTLs) linked to IV and various FAs. QTL analysis revealed 10 major and two putative QTLs for IV and six FAs, C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2 distributed across six linkage groups (LGs), OT1, T2, T3, OT4, OT6 and T9. The major QTLs for IV and C16:0 on LGOT1 explained 60.0 - 69.0 % of the phenotypic trait variation and were validated in two independent BC2 populations. The genomic interval contains several key structural genes in the FA and oil biosynthesis pathways such as PATE/FATB, HIBCH, BASS2, LACS4 and DGAT1 and also a relevant transcription factor (TF), WRI1. The literature suggests that some of these genes can exhibit pleiotropic effects in the regulatory networks of these traits. Using the whole genome sequence data, markers tightly linked to the candidate genes were also developed. Clustering trait values according to the allelic forms of these candidate markers revealed significant differences in the IV and FAs of the palms in the mapping and validation crosses. The candidate gene approach described and exploited here is useful to identify the potential causal genes linked to FAC and can be adopted for marker-assisted selection (MAS) in oil palm.
The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.
Catalá, A
1984-10-01
Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.
Effects of oral sea buckthorn oil on tear film Fatty acids in individuals with dry eye.
Järvinen, Riikka L; Larmo, Petra S; Setälä, Niko L; Yang, Baoru; Engblom, Janne Rk; Viitanen, Matti H; Kallio, Heikki P
2011-09-01
Evaporative dry eye is associated with meibomian gland dysfunction and abnormalities of the tear film lipids. Dry eye is known to be affected positively by intake of linoleic and γ-linolenic acids and n-3 fatty acids. Oral sea buckthorn (Hippophaë rhamnoides) (SB) oil, which contains linoleic and α-linolenic acids and antioxidants, has shown beneficial effects on dry eye. The objective was to investigate whether supplementation with SB oil affects the composition of the tear film fatty acids in individuals reporting dry eye. One hundred participants were randomized to this parallel, double-blind, placebo-controlled study, which 86 of them completed. The participants daily consumed 2 g of SB or placebo oil for 3 months. Tear film samples were collected at the beginning, during, and at the end of the intervention and 1 to 2 months later. Tear film fatty acids were analyzed as methyl esters by gas chromatography. There were no group differences in the changes in fatty acid proportions during the intervention (branched-chain fatty acids: P = 0.49, saturated fatty acids: P = 0.59, monounsaturated fatty acids: P = 0.53, and polyunsaturated fatty acids: P = 0.16). The results indicate that the positive effects of SB oil on dry eye are not mediated through direct effects on the tear film fatty acids. Carotenoids and tocopherols in the oil or eicosanoids produced from the fatty acids of the oil may have a positive effect on inflammation and differentiation of the meibomian gland cells.
Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane
2013-01-01
The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies. PMID:24124573
Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane
2013-01-01
The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.
Dai, Weiwei; Panserat, Stéphane; Kaushik, Sadasivam; Terrier, Frédéric; Plagnes-Juan, Elisabeth; Seiliez, Iban; Skiba-Cassy, Sandrine
2016-01-01
The link between dietary carbohydrate/protein and de novo lipogenesis (DNL) remains debatable in carnivorous fish. We aimed to evaluate and compare the response of hepatic lipogenic gene expression to dietary carbohydrate intake/glucose and dietary protein intake/amino acids (AAs) during acute stimulations using both in vivo and in vitro approaches. For the in vivo trial, three different diets and a controlled-feeding method were employed to supply fixed amount of dietary protein or carbohydrate in a single meal; for the in vitro trial, primary hepatocytes were stimulated with a low or high level of glucose (3 mM or 20 mM) and a low or high level of AAs (one-fold or four-fold concentrated AAs). In vitro data showed that a high level of AAs upregulated the expression of enzymes involved in DNL [fatty acid synthase (FAS) and ATP citrate lyase (ACLY)], lipid bioconversion [elongation of very long chain fatty acids like-5 (Elovl5), Elovl2, Δ6 fatty acyl desaturase (D6D) and stearoyl-CoA desaturase-1 (SCD1)], NADPH production [glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME)], and transcriptional factor sterol regulatory element binding protein 1-like, while a high level of glucose only elevated the expression of ME. Data in trout liver also showed that high dietary protein intake induced higher lipogenic gene expression (FAS, ACLY, and Elovl2) regardless of dietary carbohydrate intake, while high carbohydrate intake markedly suppressed the expression of acetyl-CoA carboxylase (ACC) and Elovl5. Overall, we conclude that, unlike rodents or humans, hepatic fatty acid biosynthetic gene expression in rainbow trout is more responsive to dietary protein intake/AAs than dietary carbohydrate intake/glucose during acute stimulations. This discrepancy probably represents one important physiological and metabolic difference between carnivores and omnivores. Copyright © 2016 the American Physiological Society.
40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...
40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...
Alencar, Daniel B DE; Diniz, Jaécio C; Rocha, Simone A S; Pires-Cavalcante, Kelma M S; Lima, Rebeca L DE; Sousa, Karolina C DE; Freitas, Jefferson O; Bezerra, Rayssa M; Baracho, Bárbara M; Sampaio, Alexandre H; Viana, Francisco A; Saker-Sampaio, Silvana
2018-01-01
This study evaluated the chemical composition and antioxidant activity of fatty acids from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991. The gas chromatography mass spectrometry (GC-MS) identified nine fatty acids in the two species. The major fatty acids of P. capillacea and O. obtusiloba were palmitic acid, oleic acid, arachidonic acid and eicosapentaenoic acid. The DPPH radical scavenging capacity of fatty acids was moderate ranging from 25.90% to 29.97%. Fatty acids from P. capillacea (31.18%) had a moderate ferrous ions chelating activity (FIC), while in O. obtusiloba (17.17%), was weak. The ferric reducing antioxidant power (FRAP) of fatty acids from P. capillacea and O. obtusiloba was low. As for β-carotene bleaching (BCB), P. capillacea and O. obtusiloba showed a good activity. This is the first report of the antioxidant activities of fatty acids from the marine red algae P. capillacea and O. obtusiloba.
Solomons, Noel W; Bailey, Eileen; Soto Méndéz, María José; Campos, Raquel; Kraemer, Klaus; Salem, Norman
2015-07-01
We report the fatty acid composition, and in particular, the n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), in erythrocytes from a convenience sample of 158 women and 135 schoolchildren residing in the southern Pacific Coast of Guatemala. Erythrocyte fatty acids were analyzed by gas-liquid chromatography with flame ionization detection and the profiles were expressed as a weight percent; the Omega-3 Index values were also determined. Schoolchildren had significantly higher mean ARA and total n-6 fatty acid levels than the women. Women had significantly higher EPA fatty acid levels than schoolchildren, but the reverse was true for DHA. For mean total n-3 fatty acid concentration, women and schoolchildren had similar values. The red cell weight percentages of selected fatty acids were also similar in women and schoolchildren. As compared with erythrocyte fatty acid data from developed countries, Guatemalan women and schoolchildren had consistently lower LCPUFA values. The traditional diet of Guatemalans living in the Pacific coastal region provided a worse erythrocyte fatty acid profile than that typically obtained from a Western diet. Additional fatty acid composition studies with associated dietary intake data in other inland locations may be useful for the interpretation of the nutritional status of Guatemalan children and adults. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I
2013-12-01
The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.
Trans-fatty acids in cooking oils in Bogota, Colombia: changes in the food supply from 2008 to 2013.
Moynihan, Meghan; Villamor, Eduardo; Marin, Constanza; Mora-Plazas, Mercedes; Campos, Hannia; Baylin, Ana
2015-12-01
Long-chain n-3 fatty acid intake in Colombia is low because fish consumption is limited. Vegetable oils with high n-3 fatty acid content are recommended, but their concentrations of trans fats were high in previous studies. Thus, regular monitoring of the fatty acid composition of vegetable oils is required. Our objective was to quantify the fatty acid composition in commercially available oils in Bogota, Colombia and determine if composition changed from 2008 to 2013. Cross-sectional study. We obtained samples of all commercially available oils reported in a survey of low- and middle-income families with a child participating in the Bogota School Children Cohort. Bogota, Colombia. Not applicable. Sunflower oil had the highest trans-fatty acid content (2.18%). Canola oil had the lowest proportion of trans-fatty acids (0.40%) and the highest n-3 fatty acid content (9.37%). In terms of percentage reduction from 2008 to 2013 in 18:1 and 18:2 trans-fatty acids, canola oil had 89% and 65% reduction, mixed oils had 44% and 48% reduction, and sunflower oil had 25% and 51 % reduction, respectively. Soyabean oil became widely available in 2013. The content of trans-fatty acids decreased in all oils from 2008 to 2013, suggesting a voluntary reduction by industry. We believe that regular monitoring of the fatty acid composition of oils is warranted.
Cod liver oil contains certain "fatty acids" that prevent the blood from clotting easily. These fatty acids also reduce pain and swelling. ... Morue, Huile de Poisson, Liver Oil, N-3 Fatty Acids, Omega 3, Oméga 3, Omega 3 Fatty Acids, ...
Effects of Fatty Acid Addition to Oil-in-water Emulsions Stabilized with Sucrose Fatty Acid Ester.
Watanabe, Takamasa; Kawai, Takahiro; Nonomura, Yoshimune
2018-03-01
Adding fatty acids to an oil-in-water (O/W) emulsion changes the stability of the emulsion. In this study, we prepared a series of O/W emulsions consisting of oil (triolein/fatty acid mixture), water and a range of surfactants (sucrose fatty acid esters) with varying hydrophilic-lipophilic balance (HLB) in order to determine the effects of alkyl chain length and the degree of unsaturation of the fatty acid molecules on the stability of the emulsions. As a result, sucrose fatty acid esters with HLB = 5-7 were suitable for obtaining O/W emulsions. In addition, the creaming phenomenon was inhibited for 30 days or more when fatty acids having a linear saturated alkyl chain with 14 or more carbon atoms were added. These findings are useful for designing stable O/W emulsions for food and cosmetic products.
Knudsen, J
1979-01-01
The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue. PMID:574008
APPLICATION OF RADIOISOTOPES TO THE QUANTITATIVE CHROMATOGRAPHY OF FATTY ACIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzynski, A.Z.; Zubrzycki, Z.J.; Campbell, I.G.
1959-10-31
The paper reports work done on the use of I/sup 131/, Zn/sup 65/, Sr/sup 90/, Zr/sup 95/, Ce/sup 144/ for the quantitative estimation of fatty acids on paper chromatograms, and for determination of the degree of usaturation of components of resolved fatty acid mixtures. I/sup 131/ is used to iodinate unsaturated fatty acids, and the amount of such acids is determined from the radiochromatogram. The degree of unsaturation of fatty acids is determined by estimation of the specific activiiy of spots. The other isotopes have been examined from the point of view of their suitability for estimation of total amountsmore » of fatty acids by formation of insoluble radioactive soaps held on the chromatogram. In particular, work is reported on the quantitative estimation of saturated fatty acids by measurement of the activity of their insoluble soaps with radioactive metals. Various quantitative relationships are described between amount of fatty acid in spot and such parameters as radiometrically estimated spot length, width, maximum intensity, and integrated spot activity. A convenient detection apparatus for taking radiochromatograms is also described. In conjunction with conventional chromatographic methods for resolving fatty acids the method permits the estimation of composition of fatty acid mixtures obtained from biological material. (auth)« less
Young, Andrew J; Marriott, Bernadette P; Champagne, Catherine M; Hawes, Michael R; Montain, Scott J; Johannsen, Neil M; Berry, Kevin; Hibbeln, Joseph R
2017-05-01
Military personnel generally under-consume n-3 fatty acids and overconsume n-6 fatty acids. In a placebo-controlled, double-blinded study, we investigated whether a diet suitable for implementation in military dining facilities and civilian cafeterias could benefit n-3/n-6 fatty acid status of consumers. Three volunteer groups were provided different diets for 10 weeks. Control (CON) participants consumed meals from the US Military's Standard Garrison Dining Facility Menu. Experimental, moderate (EXP-Mod) and experimental-high (EXP-High) participants consumed the same meals, but high n-6 fatty acid and low n-3 fatty acid containing chicken, egg, oils and food ingredients were replaced with products having less n-6 fatty acids and more n-3 fatty acids. The EXP-High participants also consumed smoothies containing 1000 mg n-3 fatty acids per serving, whereas other participants received placebo smoothies. Plasma and erythrocyte EPA and DHA in CON group remained unchanged throughout, whereas EPA, DHA and Omega-3 Index increased in EXP-Mod and EXP-High groups, and were higher than in CON group after 5 weeks. After 10 weeks, Omega-3 Index in EXP-High group had increased further. No participants exhibited changes in fasting plasma TAG, total cholesterol, LDL, HDL, mood or emotional reactivity. Replacing high linoleic acid (LA) containing foods in dining facility menus with similar high oleic acid/low LA and high n-3 fatty acid foods can improve n-6/n-3 blood fatty acid status after 5 weeks. The diets were well accepted and suitable for implementation in group feeding settings like military dining facilities and civilian cafeterias.
Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R
2013-10-01
The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.
Kanoh, H.; Lindsay, D. B.
1972-01-01
1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-14C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C18 and C20 fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Δ11:12 isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Δ11:12 isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C16 and C18 monoenoic acids; synthesis of C20 acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction. PMID:4638795
NASA Astrophysics Data System (ADS)
Connelly, Tara L.; Businski, Tara N.; Deibel, Don; Parrish, Christopher C.; Trela, Piotr
2016-11-01
Fatty acid profiles of suspended particulate organic matter (POM) were determined over an annual cycle (September 2003 to August 2004) on the Beaufort Sea shelf, Canadian Arctic. Special emphasis was placed on the nutritional quality of the fatty acid pool available to zooplankton by examining spatial and temporal patterns in the proportions of total polyunsaturated fatty acids (PUFA) and the essential fatty acids 22:6n-3 (DHA) and 20:5n-3 (EPA). EPA and DHA were the two most abundant PUFA throughout the study period. A log-ratio multivariate (LRA) analysis revealed strong structure in fatty acid profiles related to season and depth. Dominant fatty acids accounting for the observed trend included 18:5n-3, 18:4n-3, 16:1n-7, 20:5n-3, 18:0 and 20:3n-3. We observed a shift in fatty acid profiles from summer to autumn (e.g., from 16:1n-7 and EPA to 18:5n-3 and 18:4n-3) that likely corresponded to a shift in the relative importance of diatoms versus dinoflagellates, prymnesiophytes and/or prasinophytes to the POM pool. Fatty acid composition during winter was dominated by more refractory saturated fatty acids. A surprising finding was the depth and seasonal trend of 20:3n-3, which was higher in winter, aligned with 18:0 in the LRA, but behaved differently than other n-3 PUFA. We interpret fatty acid profiles during summer to be predominantly driven by phytoplankton inputs, whereas fatty acid profiles in winter were dominated by fatty acids that were left over after consumption and/or were generated by heterotrophs. The highest diatom inputs (EPA, the diatom fatty acid marker), n-3/n-6 ratios, and C16 PUFA index were located in an upwelling region off Cape Bathurst. This study is the first annual time series of fatty acid profiles of POM in Arctic seas, expanding our knowledge of the composition of POM throughout the dark season.
Inhibition of hepatic lipogenesis by 2-tetradecylglycidic acid.
McCune, S A; Nomura, T; Harris, R A
1979-10-01
2-Tetradecylglycidic acid (TDGA), a hypoglycemic agent, has been found to be a very effective inhibitor of de novo fatty acid synthesis by isolated hepatocytes. A comparison was made between the effectiveness of TDGA and 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, on the metabolic processes of isolated hepatocytes. These compounds are structurally related and both inhibit fatty acid synthesis; however, they have opposite effects from each other on the oxidation and esterification of fatty acids. TDGA inhibits whereas TOFA stimulates fatty acid oxidation. TDGA stimulates whereas TOFA inhibits fatty acid esterification.
Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids
Lyu, Shan-Wu
2017-01-01
Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants. PMID:28316988
Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids.
Amjad Khan, Waleed; Chun-Mei, Hu; Khan, Nadeem; Iqbal, Amjad; Lyu, Shan-Wu; Shah, Farooq
2017-01-01
Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.
Griffith, James F; Yeung, David K W; Ahuja, Anil T; Choy, Carol W Y; Mei, Wong Yin; Lam, Sherlock S L; Lam, T P; Chen, Zhen-Yu; Leung, Ping C
2009-06-01
Osteoporosis is associated with an increase in marrow fat. Fats, particularly polyunsaturated fats, either in co-cultures or diet, have been shown to significantly influence bone remodeling. Whether the increase in marrow fat seen in osteoporosis is also associated with a change in fatty acid composition is not known. This study was undertaken to investigate the fatty acid composition in subjects of varying bone mineral density (BMD). Samples of marrow fat and subcutaneous fat from 126 subjects (98 females, 34 males, mean age 69.7+/-10.5 years) undergoing orthopedic surgery were analyzed for fatty acid composition by gas chromatography. These results were correlated with BMD assessed by DXA. A total of 22 fatty acids were identified in marrow and subcutaneous fat. Significant differences in fatty acid composition existed between marrow and subcutaneous fat as well as between marrow fat samples obtained from the proximal femur and proximal tibia. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subject groups of varying BMD (normal, low bone mass, and osteoporosis). In conclusion, there exists a wide range of individual fatty acids in marrow fat. Marrow fatty acid composition differs from that of subcutaneous fat and varies between predominantly erythropoetic and fatty marrow sites. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subjects of varying BMD.
The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.
Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R
2014-01-01
Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.
Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Pujol, François M.; Brooks, Carrie F.; van Dooren, Giel G.; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.; McConville, Malcolm J.; Striepen, Boris
2012-01-01
Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [13C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0–26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host. PMID:22179608
FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †
Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.
2011-01-01
FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226
Jiang, D W; Englund, P T
2001-01-01
As part of our investigation of fatty acid metabolism in Trypanosoma brucei, we have expressed four acyl-CoA synthetase (TbACS) genes in Esherichia coli. The recombinant proteins, with His-tags on their C-termini, were purified to near homogeneity using nickel-chelate affinity chromatography. Although these enzymes are highly homologous, they have distinct specificities for fatty acid chain length. TbACS1 prefers saturated fatty acids in the range C(11:0) to C(14:0) and TbACS2 prefers shorter fatty acids, mainly C(10:0). TbACS3 and 4, which have 95% sequence identity, have similar specificities, favouring fatty acids between C(14:0) and C(17:0). In addition, TbACS1, 3 and 4 function well with a variety of unsaturated fatty acids. PMID:11535136
Connor, W E; Neuringer, M
1988-01-01
It is now apparent that both n-6 and n-3 fatty acids are essential for normal development in mammals, and that each has specific functions in the body. N-6 fatty acids are necessary primarily for growth, reproduction, and the maintenance of skin integrity, whereas n-3 fatty acids are involved in the development and function of the retina and cerebral cortex and perhaps other organs such as the testes. Fetal life and infancy are particularly critical for the nervous tissue development. Therefore, with respect to human nutrition, adequate amounts of omega-3 fatty acids should be provided during pregnancy, lactation and infancy, but probably throughout life. We estimate that adequate levels are provided by diets containing 6-8% kcals from linoleic acid and 1% from n-3 fatty acids (alpha-linolenic acid, EPA and DHA), resulting in a ratio of n-6 to n-3 fatty acids of 4:1 to 10:1. The essentiality of n-3 fatty acids resides in their presence as DHA in vital membranes of the photoreceptors of the retina and the synaptosomes and other subcellular membranes of the brain. The replacement of DHA in deficient animals by the n-6 fatty acid, 22:5, results in abnormal functioning of the membranes for reasons as yet to be ascertained. Most significant is the lability of fatty acid composition in the retinal and brain of deficient animals. Dietary fish oil, which contains EPA and DHA, will readily lead to a change in the composition of the membrane of retina and brain, fatty acids, with DHA replacing the n-6 fatty acid, 22:5. The interrelationships between the chemistry of neural and retinal membranes as affected by diet and their biological functioning provides an exciting prospect for future investigations.
Parsons, Joshua B.; Frank, Matthew W.; Eleveld, Marc J.; Schalkwijk, Joost; Broussard, Tyler C.; de Jonge, Marien I.; Rock, Charles O.
2015-01-01
Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae. PMID:25534847
Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).
Ushigome, F; Takanaga, H; Matsuo, H; Tsukimori, K; Nakano, H; Ohtani, H; Sawada, Y
2001-04-13
Valproic acid is an anticonvulsant widely used for the treatment of epilepsy. However, valproic acid is known to show fetal toxicity, including teratogenicity. In the present study, to elucidate the mechanisms of valproic acid transport across the blood-placental barrier, we carried out transcellular transport and uptake experiments with human placental choriocarcinoma epithelial cells (BeWo cells) in culture. The permeability coefficient of [3H]valproic acid in BeWo cells for the apical-to-basolateral flux was greater than that for the opposite flux, suggesting a higher unidirectional transport in the fetal direction. The uptake of [3H]valproic acid from the apical side was temperature-dependent and enhanced under acidic pH. In the presence of 50 microM carbonyl cyanide p-trifluoromethoxylhydrazone, the uptake of [3H]valproic acid was significantly reduced. A metabolic inhibitor, 10 mM sodium azide, also significantly reduced the uptake of [3H]valproic acid. Therefore, valproic acid is actively transported in a pH-dependent manner on the brush-border membrane of BeWo cells. Kinetic analysis of valproic acid uptake revealed the involvement of a non-saturable component and a saturable component. The Michaelis constant for the saturable transport (K(t)) was smaller under acidic pH, suggesting a proton-linked active transport mechanism for valproic acid in BeWo cells. In the inhibitory experiments, some short-chain fatty acids, such as acetic acid, lactic acid, propanoic acid and butyric acid, and medium-chain fatty acids, such as hexanoic acid and octanoic acid, inhibited the uptake of [3H]valproic acid. The uptake of [3H]valproic acid was also significantly decreased in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, salicylic acid and furosemide, which are well-known inhibitors of the anion exchange system. Moreover, p-aminohippuric acid significantly reduced the uptake of [3H]valproic acid. These results suggest that an active transport mechanism for valproic acid exists on the brush-border membrane of placental trophoblast cells and operates in a proton-linked manner.
The influence of major dietary fatty acids on insulin secretion and action.
López, Sergio; Bermúdez, Beatriz; Abia, Rocío; Muriana, Francisco J G
2010-02-01
To briefly summarize recent advances towards understanding the influence of major dietary fatty acids on beta-cell function and evaluate their implications for insulin resistance. Studies in humans have shown that beta-cell function and insulin sensitivity improve progressively in the postprandial period as the proportion of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SFAs) in dietary fats increases. However, cell-culture experiments have revealed a dichotomy in the ability of fatty acids to moderate hyperactivity of, and induce lipotoxicity in, beta-cells. There are also some novel findings regarding the ability of HDL to protect beta-cells against oxidized LDL-induced apoptosis in vitro and of reconstituted HDL to attenuate insulin resistance in vivo. These findings raise new questions regarding the contribution of dietary fatty acids to insulin secretion and action. These new findings point to a critical role for major dietary fatty acids in the etiology and pathogenesis of diabetes, which appears to be of particular relevance during postprandial periods and mainly depends on the fatty acid type. This underscores the importance of dietary fatty acids in standard diabetes management.
Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.
Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene
2015-05-15
Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope
NASA Technical Reports Server (NTRS)
Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1993-01-01
Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.
Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin
2015-01-01
In order to understand feeding ecology, habitat use and migration of coral reef fish, fatty acid composition was examined in damselfish species Abudefduf bengalensis and A. sexfasciatus collected in the Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged from 49.5% to 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 47.4% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 3.1% to 6.0%. Palmitic acid (16:0) was the most common in SAFA, oleic acid (C18:1ω9c) was the dominant in MUFA and linolenic acid (C18:3n3) showed the highest proportion in PUFA. Fatty acid concentrations, especially in SAFA and MUFA, could be related to physiological condition, sexual development, and recent feeding events. The diet shift revealed by the fatty acid composition suggests changes in habitat use and migration scale in coral reef environment of genus Abudefduf.
ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.
Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A
2014-08-13
Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.
Takeuchi, M; Kishino, S; Park, S-B; Hirata, A; Kitamura, N; Saika, A; Ogawa, J
2016-05-01
This study aims to produce hydroxy fatty acids efficiently. Escherichia coli overexpressing linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a was employed to produce hydroxy fatty acids with industrial potential. We found that 280 g l(-1) of linoleic acid (1 mol l(-1)) was converted into (S)-10-hydoxy-cis-12-octadecenoic acid (HYA) with a high conversion rate of 98% (mol/mol) and more than 99·9% enantiomeric excess (e.e.) by recombinant E. coli cells in the presence of FAD and NADH. In the same way, many kinds of C18 unsaturated fatty acids with Δ9 carbon double bond (280 g l(-1)) were converted into corresponding 10-hydroxy fatty acids with the conversion rates over 95% (mol/mol). We also produced HYA at a high rate of accumulation (289 g l(-1) ) with a high yield (97 mol%) in a reaction mixture that contained glucose instead of NADH. We developed a process for producing several types of hydroxy fatty acids with high accumulation rates and high yields. Hydroxy fatty acids are important materials for the chemical, food, cosmetic and pharmaceutical industries, and thus they have recently attracted much interest in a variety of research fields. However, the mass production of hydroxy fatty acids has been limited. This method of hydroxy fatty acids production will facilitate the widespread application of hydroxy fatty acids in various industries. © 2016 The Society for Applied Microbiology.
Effect of fatty acids on self-assembly of soybean lecithin systems.
Godoy, C A; Valiente, M; Pons, R; Montalvo, G
2015-07-01
With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015 Elsevier B.V. All rights reserved.
Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF
Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A.
2016-01-01
The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform, methanol 2:1(v/v). Fatty acids composition of the extracted total lipids were converted to their corresponding methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry (GCMS-QTOF) using both electron ionization (EI) and chemical ionization (CI) techniques. 28 fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to 17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso-17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids using chemical ionization compared to electron ionization which produced fragmentations of the fatty acids methyl esters (FAMEs). PMID:27166662
Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos
2006-10-01
Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.
Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)
Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; ...
2017-01-10
Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less
Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco
Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less
Bilal, G; Cue, R I; Mustafa, A F; Hayes, J F
2012-12-01
The objectives of the present study were to estimate genetic parameters of milk fatty acid unsaturation indices in Canadian Holsteins. Data were available on milk fatty acid composition of 2,573 Canadian Holstein cows from 46 commercial herds enrolled in the Québec Dairy Production Centre of Expertise, Valacta (Sainte-Anne-de-Bellevue, Quebec, Canada). Individual fatty acid percentages (g/100 g of total fatty acids) were determined for each milk sample by gas chromatography. The unsaturation indices were calculated as the ratio of an unsaturated fatty acid to the sum of that unsaturated fatty acid and its corresponding substrate fatty acid, multiplied by 100. A mixed linear model was fitted under REML for the statistical analysis of milk fatty acid unsaturation indices. The statistical model included the fixed effects of parity, age at calving, and stage of lactation, each nested within parity, and the random effects of herd-year-season of calving, animal, and residual. Estimates of heritabilities for the C14, C16, C18, conjugated linoleic acid, and total unsaturation indices were 0.48, 0.25, 0.29, 0.14, and 0.19, respectively. Phenotypic and genetic correlation estimates among unsaturation indices were all positive and ranged from 0.20 to 0.65 and 0.23 to 0.81, respectively. The estimates of heritabilities and genetic correlations for milk fatty acid unsaturation indices suggest that genetic variation exists among cows in milk fatty acid unsaturation, and the proportions of desirable unsaturated fatty acids from a human health point of view may be increased in bovine milk through genetic selection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nutritional Ingredients Modulate Adipokine Secretion and Inflammation in Human Primary Adipocytes
Romacho, Tania; Glosse, Philipp; Richter, Isabel; Elsen, Manuela; Schoemaker, Marieke H.; van Tol, Eric A.; Eckel, Jürgen
2015-01-01
Nutritional factors such as casein hydrolysates and long chain polyunsaturated fatty acids have been proposed to exert beneficial metabolic effects. We aimed to investigate how a casein hydrolysate (eCH) and long chain polyunsaturated fatty acids could affect human primary adipocyte function in vitro. Incubation conditions with the different nutritional factors were validated by assessing cell vitality with lactate dehydrogenase (LDH) release and neutral red incorporation. Intracellular triglyceride content was assessed with Oil Red O staining. The effect of eCH, a non-peptidic amino acid mixture (AA), and long-chain polyunsaturated fatty acids (LC-PUFAs) on adiponectin and leptin secretion was determined by enzyme-linked immunosorbent assay (ELISA). Intracellular adiponectin expression and nuclear factor-κB (NF-κB) activation were analyzed by Western blot, while monocyte chemoattractant protein-1 (MCP-1) release was explored by ELISA. The eCH concentration dependently increased adiponectin secretion in human primary adipocytes through its intrinsic peptide bioactivity, since the non-peptidic mixture, AA, could not mimic eCH’s effects on adiponectin secretion. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and DHA combined with arachidonic acid (ARA) upregulated adiponectin secretion. However, only DHA and DHA/ARA exerted a potentanti-inflammatory effect reflected by prevention of tumor necrosis factor-α (TNF-α) induced NF-κB activation and MCP-1 secretion in human adipocytes. eCH and DHA alone or in combination with ARA, may hold the key for nutritional programming through their anti-inflammatory action to prevent diseases with low-grade chronic inflammation such as obesity or diabetes. PMID:25629558
The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis.
Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M; Angueira, Anthony R; Brodsky, Michael; Hayes, M Geoffrey; Kovatcheva-Datchary, Petia; Bäckhed, Fredrik; Gilbert, Jack A; Lowe, William L; Layden, Brian T
2015-11-15
The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.
Hegedüs, Rózsa; Manea, Marilena; Orbán, Erika; Szabó, Ildikó; Kiss, Eva; Sipos, Eva; Halmos, Gábor; Mező, Gábor
2012-10-01
Here we report on the synthesis and biochemical characterization (enzymatic stability, cellular uptake, in vitro antitumor activity, membrane interaction and GnRH-receptor binding affinity) of novel short-chain fatty acid (SCFA) acylated daunorubicin-GnRH-III bioconjugates, which may serve as drug delivery systems for targeted cancer chemotherapy. Ser in position 4 of GnRH-III was replaced by Lys, followed by the acylation of its ε-amino group with various fatty acids. SCFAs are potentially chemoprotective agents by suppressing the growth of cancer cells and therefore may enhance the antitumor activity of the bioconjugates. We found that all synthesized bioconjugates had high cytostatic effect in vitro, were stable in cell culture medium for 6 h and degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked daunorubicin-Lys as the smallest active metabolite. In the presence of α-chymotrypsin, all compounds were digested, the degradation rate strongly depending on the type of fatty acid. The bioconjugate containing Lys(nBu) in position 4 was taken up most efficiently by the cancer cells and exerted higher in vitro cytostatic effect than the previously developed GnRH-III((4)Lys(Ac), (8)Lys(Dau = Aoa)) or the parent GnRH-III(Dau = Aoa) bioconjugate. Our results could be explained by the increased binding affinity of the newly developed compound containing Lys(nBu) to the GnRH receptors. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.
Baati, Narjes; Feillet-Coudray, Christine; Fouret, Gilles; Vernus, Barbara; Goustard, Bénédicte; Coudray, Charles; Lecomte, Jérome; Blanquet, Véronique; Magnol, Laetitia; Bonnieu, Anne; Koechlin-Ramonatxo, Christelle
2017-10-01
Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle. Copyright © 2017 Elsevier B.V. All rights reserved.
Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii
Russa, R.; Lorkiewicz, Z.
1974-01-01
Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il
2015-04-17
Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less
Fatty acid composition of spermatozoa is associated with BMI and with semen quality.
Andersen, J M; Rønning, P O; Herning, H; Bekken, S D; Haugen, T B; Witczak, O
2016-09-01
High body mass index (BMI) is negatively associated with semen quality. In addition, the composition of fatty acids of spermatozoa has been shown to be important for their function. The aim of the study was to examine the association between BMI and the composition of spermatozoa fatty acids in men spanning a broad BMI range. We also analysed the relation between fatty acid composition of spermatozoa and semen characteristics, and the relationship between serum fatty acids and spermatozoa fatty acids. One hundred forty-four men with unknown fertility status were recruited from the general population, from couples with identified female infertility and from morbid obesity centres. Standard semen analysis (WHO) and sperm DNA integrity (DFI) analysis were performed. Fatty acid compositions were assessed by gas chromatography. When adjusted for possible confounders, BMI was negatively associated with levels of sperm docosahexaenoic acid (DHA) (p < 0.001) and palmitic acid (p < 0.001). The amount of sperm DHA correlated positively with total sperm count (r = 0.482), sperm concentration (r = 0.469), sperm vitality (r = 0.354), progressive sperm motility (r = 0.431) and normal sperm morphology (r = 0.265). A negative association was seen between DHA levels and DNA fragmentation index (r = -0.247). Levels of spermatozoa palmitic acid correlated positively with total sperm count (r = 0.227), while levels of linoleic acid correlated negatively (r = -0.254). When adjusted for possible confounders, only the levels of arachidonic acid showed positive correlation between spermatozoa and serum phospholipids (r = 0.262). Changes in the fatty acid composition of spermatozoa could be one of the mechanisms underlying the negative association between BMI and semen quality. The relationship between fatty acids of spermatozoa and serum phospholipids was minor, which indicates that BMI affects fatty acid composition of spermatozoa through regulation of fatty acid metabolism in the testis. The role of dietary intake of fatty acids on the spermatozoa fatty acid composition remains to be elucidated. © 2016 American Society of Andrology and European Academy of Andrology.
Leng, Shan; Winter, Tanja; Aukema, Harold M
2018-04-18
There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations. Copyright © 2018 Elsevier Inc. All rights reserved.
Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.
Alexandrino, M; Knief, C; Lipski, A
2001-10-01
Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.
Pyridoxine and its relation to lipids. Studies with pyridoxineless mutants of Aspergillus nidulans.
Mohana, K; Shanmugasundaram, E R
1978-01-01
The effect of pyridoxine deficiency on fat metabolism was studied using mutant strains of Aspergillus nidulans requiring pyridoxine for growth. Under pyridoxine deficiency the mutants exhibited increased levels of total lipid, sterols, phospholipids, and triacylglycerols. Total fatty acids were found to decrease with pyridoxine deficiency. An increase in saturated fatty acids and decrease in unsaturated fatty acids were seen with deficiency. Pyridoxine deficiency also increased lower carbon chain fatty acids. A possible involvement of pyridoxine in the elongation of fatty acid chain and in the desaturation of fatty acids in Aspergillus nidulans is suggested.
Pork as a Source of Omega-3 (n-3) Fatty Acids
Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.
2015-01-01
Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475
[Effect of pregnancy and lactation on the nutritional status of essential fatty acids in rat].
Araya, J; Barriga, C
1996-08-01
Pregnancy and lactation could be high risk situations for the development of essential fatty acid deficiencies. To study the effect of pregnancy and lactation on red blood cell phospholipids percentual fatty acid composition of virgin, pregnant and lactating rats. Twenty four pregnant rats of 50 +/- 1 days of age were supplement with soy and 24 with fish oil during 21 days. Twelve rats of each group were sacrificed after 18 days of lactation, twenty four non pregnant rats received soy oil and acted as controls of pregnant and lactating rats. Red blood cell phospholipid fatty acid composition was analyzed by gas chromatography. The percentage of total omega-6 fatty acids of red blood cell phospholipid was 37.8 +/- 5.9, 32.6 +/- 0.6 and 38.3 +/- 3.5% in non pregnant, pregnant and lactating rats respectively (p < 0.001). The figures for total omega-3 fatty acids were 6.33 +/- 1.52, 4.31 +/- 0.39 and 2.7 +/- 0.46 respectively (p < 0.001). There was no change in eicosatrienoic fatty acid percentage. Supplementation with fish oil reverted the decrease in omega-6 and omega-3 fatty acid percentage of pregnant and lactating rats. Pregnancy and lactation decrease the capacity to transform precursors of essential fatty acids in long chain polyunsaturated fatty acids.
Pork as a Source of Omega-3 (n-3) Fatty Acids.
Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L
2015-12-16
Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.
Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria
Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi
2010-01-01
Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325
Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.
Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.
2009-01-01
We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.
Mortensen, Lotte Maxild; Lundbye-Christensen, Søren; Schmidt, Erik Berg; Calder, Philip C; Schierup, Mikkel Heide; Tjønneland, Anne; Parner, Erik T; Overvad, Kim
2017-01-01
Studies of the relation between polyunsaturated fatty acids and risk of atrial fibrillation have been inconclusive. The risk of atrial fibrillation may depend on the interaction between n-3 and n-6 polyunsaturated fatty acids as both types of fatty acids are involved in the regulation of systemic inflammation. We investigated the association between dietary intake of long chain polyunsaturated fatty acids (individually and in combination) and the risk of atrial fibrillation with focus on potential interaction between the two types of polyunsaturated fatty acids. The risk of atrial fibrillation in the Diet, Cancer and Health Cohort was analyzed using the pseudo-observation method to explore cumulative risks on an additive scale providing risk differences. Dietary intake of long chain polyunsaturated fatty acids was assessed by food frequency questionnaires. The main analyses were adjusted for the dietary intake of n-3 α-linolenic acid and n-6 linoleic acid to account for endogenous synthesis of long chain polyunsaturated fatty acids. Interaction was assessed as deviation from additivity of absolute association measures (risk differences). Cumulative risks in 15-year age periods were estimated in three strata of the cohort (N = 54,737). No associations between intake of n-3 or n-6 long chain polyunsaturated fatty acids and atrial fibrillation were found, neither when analyzed separately as primary exposures nor when interaction between n-3 and n-6 long chain polyunsaturated fatty acids was explored. This study suggests no association between intake of long chain polyunsaturated fatty acids and risk of atrial fibrillation.
NASA Astrophysics Data System (ADS)
Russell, Marie; Hartgers, Walter A.; Grimalt, Joan O.
2000-11-01
The presence of free sulphurized fatty acids in various sediment types (carbonates, marls, organic-rich shales) of the Messinian of the Lorca Basin, SE Spain, is reported. These compounds are found in the majority, but not all, of the samples from this basin which also contain sulphur-bound hydrocarbons. They constitute mixtures of C 16-C 26 linear fatty acids predominated by the C 18 homologues with thiophene, thiolane, and thiane rings attached at various chain positions, with the most abundant isomers being those with ring substitution at position C-9. The dominance of these isomers points to an early sulphurization process involving octadec-9,12-dienoic acid and/or octadeca-9-enoic acid, major lipid constituents of algae. In general, the alkylthiophene fatty acids are more abundant than the alkylthiolane or alkylthiane fatty acids. The presence of the sulphur moiety and structural identification was confirmed by GC-HRMS and by desulphurization of the fatty acid fraction. Desulphurization also showed that a portion of the sulphur containing fatty acids is intermolecularly bound to the polymeric organic matter. The samples exhibiting higher proportions of macromolecularly bound fatty acids were also those showing higher abundances of alkylthiolane or alkylthiane fatty acids. The identification of these compounds shows that the original algal lipids, including the fatty acid pool, can be effectively preserved in sedimentary samples by sulphurization. However, sulphur-bonding only occurs by addition to the unsaturated carbons. Thus, only unsaturated fatty acids are preserved, constituting a major bias in terms of the original sedimentary distributions.
Wahlen, Bradley D.; Oswald, Whitney S.; Seefeldt, Lance C.; Barney, Brett M.
2009-01-01
Wax esters, ester-linked fatty acids and long-chain alcohols, are important energy storage compounds in select bacteria. The synthesis of wax esters from fatty acids is proposed to require the action of a four-enzyme pathway. An essential step in the pathway is the reduction of a fatty aldehyde to the corresponding fatty alcohol, although the enzyme responsible for catalyzing this reaction has yet to be identified in bacteria. We report here the purification and characterization of an enzyme from the wax ester-accumulating bacterium Marinobacter aquaeolei VT8, which is a proposed fatty aldehyde reductase in this pathway. The enzyme, a 57-kDa monomer, was expressed in Escherichia coli as a fusion protein with the maltose binding protein on the N terminus and was purified to near homogeneity by using amylose affinity chromatography. The purified enzyme was found to reduce a number of long-chain aldehydes to the corresponding alcohols coupled to the oxidation of NADPH. The highest specific activity was observed for the reduction of decanal (85 nmol decanal reduced/min/mg). Short-chain and aromatic aldehydes were not substrates. The enzyme showed no detectable catalysis of the reverse reaction, the oxidation of decanol by NADP+. The mechanism of the enzyme was probed with several site-specific chemical probes. The possible uses of this enzyme in the production of wax esters are discussed. PMID:19270127
Omega-3 fatty acids in baked freshwater fish from south of Brazil.
Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E
1997-03-01
Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.
Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna
2015-01-01
The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.
Yi, Da-Hye; Sathiyanarayanan, Ganesan; Seo, Hyung Min; Kim, Jung-Ho; Bhatia, Shashi Kant; Kim, Yun-Gon; Park, Sung-Hee; Jung, Ji-Young; Lee, Yoo Kyung; Yang, Yung-Hun
2016-01-01
In this study, the environmental adaptive metabolic processes were investigated using a psychrotrophic polar bacterium Bacillus pumilus PAMC 23174 in response to various temperatures and nutrients, especially in regard to the synthesis of fatty acids. Fatty acid methyl ester analysis was performed using gas chromatography-mass spectrometry and we found that a sensitive changes in iso-branched fatty acid (iso-15:0) synthesis occurred when adjusting the nutritional ratio of branched chain fatty acids (anteiso/iso) with different temperatures, resulting in a change in the balance of anteiso- and iso-form fatty acids. We also observed that this Arctic bacterium preferred amino acid leucine for the synthesis of fatty acids. The increased and decreased synthesis of iso-form fatty acids in response to different temperatures and leucine preference, changes the fatty acid ratio in bacteria, which further affects the membrane fluidity and it is also directly correlated with survival of bacteria in an extreme environment. Hence, this study suggests that B. pumilus PAMC 23174 is a potential model organism for the analysis of the unique ecological adaptations of polar bacteria in changing and the extreme environments.
Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J
2015-10-01
Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. Copyright © 2015 Elsevier B.V. All rights reserved.
López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio
2017-11-10
The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.
Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation
Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl
2010-01-01
Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748
Skeie, Eli; Strand, Elin; Pedersen, Eva R; Bjørndal, Bodil; Bohov, Pavol; Berge, Rolf K; Svingen, Gard F T; Seifert, Reinhard; Ueland, Per M; Midttun, Øivind; Ulvik, Arve; Hustad, Steinar; Drevon, Christian A; Gregory, Jesse F; Nygård, Ottar
2015-01-01
The long-chain polyunsaturated fatty acids are considered to be of major health importance, and recent studies indicate that their endogenous metabolism is influenced by B-vitamin status and smoking habits. We investigated the associations of circulating B-vitamins and smoking habits with serum polyunsaturated fatty acids among 1,366 patients who underwent coronary angiography due to suspected coronary heart disease at Haukeland University Hospital, Norway. Of these, 52% provided information on dietary habits by a food frequency questionnaire. Associations were assessed using partial correlation (Spearman's rho). In the total population, the concentrations of most circulating B-vitamins were positively associated with serum n-3 polyunsaturated fatty acids, but negatively with serum n-6 polyunsaturated fatty acids. However, the associations between B-vitamins and polyunsaturated fatty acids tended to be weaker in smokers. This could not be solely explained by differences in dietary intake. Furthermore, plasma cotinine, a marker of recent nicotine exposure, showed a negative relationship with serum n-3 polyunsaturated fatty acids, but a positive relationship with serum n-6 polyunsaturated fatty acids. In conclusion, circulating B-vitamins are, in contrast to plasma cotinine, generally positively associated with serum n-3 polyunsaturated fatty acids and negatively with serum n-6 polyunsaturated fatty acids in patients with suspected coronary heart disease. Further studies should investigate whether B-vitamin status and smoking habits may modify the clinical effects of polyunsaturated fatty acid intake.
Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
Feng, Yanbin; Zhang, Yunxiu; Wang, Yayue; Liu, Jiao; Liu, Yinghui; Cao, Xupeng; Xue, Song
2018-04-01
Medium-chain fatty acids have attracted significant attention as sources of biofuels in recent years. Acyl-ACP thioesterase, which is considered as the key enzyme to determine the carbon chain length, catalyzes the termination of de novo fatty acid synthesis. Although recombinant medium-chain acyl-ACP thioesterase (TE) affects the fatty acid profile in heterologous cells, tailoring of the fatty acid composition merely by engineering a specific TE is still intractable. In this study, the activity of a C8-C10-specific thioesterase FatB2 from Cuphea hookeriana on C10-ACP was quantified twice as high as that on C8-ACP based on a synthetic C8-C16 acyl-ACP pool in vitro. Whereas in vivo, it was demonstrated that ChFatB2 preferred to accumulate C8 fatty acids with 84.9% composition in the ChFatB2-engineered E. coli strain. To achieve C10 fatty acid production, ChFatB2 was rationally tuned based on structural investigation and enzymatic analysis. An I198E mutant was identified to redistribute the C8-ACP flow, resulting in C10 fatty acid being produced as the principal component at 57.6% of total fatty acids in vivo. It was demonstrated that the activity of TE relative to β-ketoacyl-ACP synthases (KAS) directly determined the fatty acid composition. Our results provide a prospective strategy in tailoring fatty acid synthesis by tuning of TE activities based on TE-ACP interaction.
Deerberg, S; von Twickel, J; Förster, H H; Cole, T; Fuhrmann, J; Heise, K P
1990-02-01
During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40-50 mg·d(-1)·(g fresh weight)(-1)) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-(14)C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2-3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60-80% in this lipid fraction.
Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan
2017-05-01
Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d 2 acid and glyceryl tri(hexadecanoate-2,2-d 2 ) as surrogate analytes and tridecanoic-2,2-d 2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d 2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults.
Raatz, Susan K; Conrad, Zach; Johnson, LuAnn K; Picklo, Matthew J; Jahns, Lisa
2017-04-28
Dietary fat composition may modulate energy expenditure and body weight. Little is known about the relationship between fatty acid intake and body weight at a population level. The purposes of this study were to compare intakes of energy, macronutrients, and individual fatty acids across BMI categories (1) for the US adult population and, (2) by sociodemographic groups. Reported dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and What We Eat in America (WWEIA) surveys in the years 2005-2012 were analyzed. Overall, we found that the reported intake of carbohydrate, protein, total fat, total saturated fat (as well as long-chain saturated fatty acids 14:0-18:0), and monounsaturated fatty acids (MUFAs) were positively associated with BMI; while lauric acid (a medium-chain saturated fatty acid, 12:0) and total polyunsaturated fatty acids (PUFAs) (as well as all individual PUFAs) were not associated with BMI. Non-Hispanic black individuals demonstrated a negative association between BMI and energy intake and a positive association between total PUFAs, linoleic acid (LA), α-linolenic acid (ALA) and BMI. Individuals with less than a high school education showed a negative association between BMI and DHA. Mexican-Americans reported intakes with no association between BMI and energy, any macronutrient, or individual fatty acids. These findings support those of experimental studies demonstrating fatty acid-dependent associations between dietary fatty acid composition and body weight. Notably, we observed divergent results for some sociodemographic groups which warrant further investigation.
USDA-ARS?s Scientific Manuscript database
There is current interest in reducing the trans fatty acids (TFA) in hydrogenated vegetable oils because consumption of foods high in TFA has been linked to increased serum cholesterol content. In this work, hydrogenation was carried out on soybean oil and cottonseed oil at two pressures (2 and 5 b...
2005-05-01
Maximum 200 Words) Stark differences in the actions of lenoleic acid (LAA), an omega-6 fatty acid , and eicosapentaenoic acid (EPA), an omega-3 fatty acid ...AD_ Award Number: W81XWH-04-1-0532 TITLE: Defining the Molecular Actions of Dietary Fatty acids in Breast Cancer: Selective Modulation of Peroxisome...TITLE AND SUBTITLE 5. FUNDING NUMBERS Defining the Molecular Actions of Dietary Fatty acids in W81XWH-04-1-0532 Breast Cancer: Selective Modulation of
USDA-ARS?s Scientific Manuscript database
One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...
High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.
Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan
2017-01-01
Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.
Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances
Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung
2016-01-01
Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061
Fatty acid constituents of Peganum harmala plant using Gas Chromatography-Mass Spectroscopy.
Moussa, Tarek A A; Almaghrabi, Omar A
2016-05-01
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC-MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.
Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy
Moussa, Tarek A.A.; Almaghrabi, Omar A.
2015-01-01
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol. PMID:27081366
Mann, S; Nydam, D V; Lock, A L; Overton, T R; McArt, J A A
2016-07-01
The objective of our study was to extend the limited research available on the association between concentrations of milk fatty acids and elevated nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations in early lactation dairy cattle. Measurement of milk fatty acids for detection of cows in excessive negative energy balance has the potential to be incorporated in routine in-line monitoring systems. Blood samples were taken from 84 cows in second or greater lactation 3 times per week between 3 to 14 d in milk. Cows were characterized as hyperketonemic (HYK) if blood BHB concentration was ≥1.2mmol/L at least once and characterized as having elevated concentrations of NEFA (NEFAH) if serum NEFA concentration was ≥1mmol/L at least once. Composition of colostrum and milk fatty acids at wk 2 postpartum was used to investigate the potential diagnostic value of individual fatty acids and fatty acid ratios for the correct classification of cows with NEFA and BHB concentrations above these thresholds, respectively. Receiver operating characteristic (ROC) curves were used to identify thresholds of fatty acid concentration and fatty acid ratios when ROC area under the curve was ≥0.70. Correct classification rate (CCR, %) was calculated as {[(number of true positives + number of true negatives)/total number tested] × 100}. None of the colostrum fatty acids yielded a sufficiently high area under the curve in ROC analysis for the association with HYK and NEFAH. The following fatty acids and fatty acid ratios were identified for an association with NEFAH (threshold, CCR): C15:0 (≤0.65g/100g, 68.3%); cis-9 C16:1 (≥1.85g/100g, 70.7%); cis-9 C18:1 (≥26g/100g, 69.5%), cis-9 C18:1 to C15:0 ratio (≥45, 69.5%); cis-9 C16:1 to C15:0 (≥2.50, 73.2%). Several fatty acids were associated with HYK (threshold, CCR): C6:0 (≤1.68g/100g, 80.5%), C8:0 (≤0.80g/100g, 80.5%), C10:0 (≤1.6g/100g, 79.3%); C12:0 (≤1.42g/100g, 82.9%); C14:0 (≤6.10g/100g, 84.1%); C15:0 (≤0.50g/100g, 82.9%), cis-9 C18:1 (≥30g/100g, 81.7%). The use of fatty acid ratios did not improve CCR over using individual fatty acids for the classification of HYK. Colostrum fatty acid composition was not useful in predicting NEFAH or HYK between 3 to 14 d in milk. Accuracy of milk fatty acids and fatty acid ratios to correctly classify cows with elevated concentrations of NEFA and BHB between 3 to 14 d in milk was moderate and overall higher for HYK. Determining changes in the fatty acid composition of milk fat from milk samples at wk 2 postpartum for the detection of cows with elevated concentrations of BHB and NEFA can currently not be recommended to replace direct measurement. Future applications should target repeated milk sampling between 3 to 14 d in milk to identify the best sampling for determination of milk fatty acid composition within the first 2 wk postpartum. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Araujo, Pedro; Bjørkkjær, Tormod; Frøyland, Livar; Waagbø, Rune
2018-02-01
It studies on the factors that affect the stability of fatty acid profiles from human blood specimens are generally performed by evaluating the effect of a single factor on an individual fatty acid and excluding a considerable amount of data from the total fatty acid profiles. The stability of fatty acids from plasma, serum and red blood cells (RBC) was evaluated in terms of time, temperature, antioxidant and thawing. The fatty acids were methylated and analyzed by gas chromatography. The large volume of data is evaluated simultaneously and automatically by observing an Excel-based colour scale that indicates whether the fatty acid profiles have changed significantly as a result of the storage time (0-52weeks), temperature (-20°C/-80°C), butylated hydroxytoluene (BHT) antioxidant (presence/absence) or thawing (single/multiple). Fatty acids from plasma were stable at both temperatures (-20°C/-80°C) regardless of BHT. Fatty acids from serum without BHT degrades faster at -80°C than -20°C and fatty acids from RBC without BHT degrades faster at -20°C than -80°C. Addition of BHT inhibits this effect in serum and RBC. Multiple thawing of RBC without BHT demonstrated that polyunsaturated fatty acids were generally more susceptible for changes at -80°C than at -20°C while BHT prevents partially this effect. This study draws attention to the importance of pre-analytical considerations when storing blood samples in biobanks and the need of careful judgments when analyzing fatty acids profiles. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Zhu, Bo; Niu, Hong; Zhang, Wengang; Wang, Zezhao; Liang, Yonghu; Guan, Long; Guo, Peng; Chen, Yan; Zhang, Lupei; Guo, Yong; Ni, Heming; Gao, Xue; Gao, Huijiang; Xu, Lingyang; Li, Junya
2017-06-14
Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.
Chemotaxonomy of heterocystous cyanobacteria using FAME profiling as species markers.
Shukla, Ekta; Singh, Satya Shila; Singh, Prashant; Mishra, Arun Kumar
2012-07-01
The fatty acid methyl ester (FAME) analysis of the 12 heterocystous cyanobacterial strains showed different fatty acid profiling based on the presence/absence and the percentage of 13 different types of fatty acids. The major fatty acids viz. palmitic acid (16:0), hexadecadienoic acid (16:2), stearic acid (18:0), oleic acid (18:1), linoleic (18:2), and linolenic acid (18:3) were present among all the strains except Cylindrospermum musicola where oleic acid (18:1) was absent. All the strains showed high levels of polyunsaturated fatty acid (PUFAs; 41-68.35%) followed by saturated fatty acid (SAFAs; 1.82-40.66%) and monounsaturated fatty acid (0.85-24.98%). Highest percentage of PUFAs and essential fatty acid (linolenic acid; 18:3) was reported in Scytonema bohnerii which can be used as fatty acid supplement in medical and biotechnological purpose. The cluster analysis based on FAME profiling suggests the presence of two distinct clusters with Euclidean distance ranging from 0 to 25. S. bohnerii of cluster I was distantly related to the other strains of cluster II. The genotypes of cluster II were further divided into two subclusters, i.e., IIa with C. musicola showing great divergence with the other genotypes of IIb which was further subdivided into two groups. Subsubcluster IIb(1) was represented by a genotype, Anabaena sp. whereas subsubcluster IIb(2) was distinguished by two groups, i.e., one group having significant similarity among their three genotypes showed distant relation with the other group having closely related six genotypes. To test the validity of the fatty acid profiles as a marker, cluster analysis has also been generated on the basis of morphological attributes. Our results suggest that FAME profiling might be used as species markers in the study of polyphasic approach based taxonomy and phylogenetic relationship.
Fukuda, N; Ontko, J A
1984-08-01
In a series of experiments with male rat livers perfused with or without 5-tetradecyloxy-2-furoic acid (TOFA) in the presence and absence of oleate, the relationships between fatty acid synthesis, oxidation, and esterification from newly synthesized and exogenous fatty acid substrates have been examined. When livers from fed rats were perfused without exogenous fatty acid substrate, 20% of the triglyceride secreted was derived from de novo fatty acid synthesis. Addition of TOFA caused immediate and nearly complete inhibition of fatty acid synthesis, measured by incorporation of 3H2O into fatty acids. Concurrently, ketone body production increased 140% and triglyceride secretion decreased 84%. These marked reciprocal alterations in fatty acid synthesis and oxidation in the liver almost completely abolished the production of very low density lipoproteins (VLDL). Cholesterol synthesis was also depressed by TOFA, suggesting that this drug also inhibited lipid synthesis at a site other than acetyl-CoA carboxylase. When livers from fed rats were supplied with a continuous infusion of [1-14C]oleate as exogenous substrate, similar proportions, about 45-47%, of both ketone bodies and triglyceride in the perfusate were derived from the infused [1-14C]oleate. The production of ketone bodies was markedly increased by TOFA; the secretion of triglyceride and cholesterol were decreased. Altered conversion of [1-14C]oleate into these products occurred in parallel. While TOFA decreased esterification of oleate into triglyceride, incorporation of [1-14C]oleate into liver phospholipid was increased, indicating that TOFA also affected glycerolipid synthesis at the stage of diglyceride processing. The decreased secretion of triglyceride and cholesterol following TOFA treatment was localized almost exclusively in VLDL. The specific activities of 3H and of 14C fatty acids in triglyceride of the perfusate were greater than those of liver triglyceride, indicating preferential secretion of triglyceride produced from both de novo fatty acid synthesis and from infused free fatty acid substrate. These observations suggest the following chain of events in the liver following TOFA treatment: inhibition of fatty acid and cholesterol synthesis; increased fatty acid oxidation and ketogenesis; decreased triglyceride synthesis as a result of inhibition of fatty acid synthesis, stimulation of fatty acid oxidation, and altered partition of diglyceride between triglyceride and phospholipid synthesis; and decreased production of VLDL. These comparative rat liver perfusion experiments indicate that free fatty acids provide the major source of substrate for the hepatic production of triglyceri
NASA Technical Reports Server (NTRS)
Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available CO2 from the source water inorganic carbon pool with lipids further depleted by 6.3% relative to biomass The C-20-21 Aquificales fatty acids of the PSC were somewhat heavier than the iso-branched fatty acids. The carbon isotopic signatures of lipid biomarkers were also explored using a pure culture, T ruber, previously isolated from the PSC. Cells grown on C02 with O2 and both H2 and thiosulfate as electron donors were only slightly depleted (3.3%) relative to the C-source while cells grown on formate with O2 showed a major discrimination (19.7%), possibly the result of a metabolic branch point involving the assimilation of C-formate to biomass and the dissimilation to CO2 associated with energy production. T. ruber lipids were slightly heavier than biomass (+1.3%) whether cells were grown using CO2 or formate. Fatty acids from CO2 grown T. ruber cells were a so slightly heavier (average +2.1%) than biomass. The relatively depleted PSC C-20-21 fatty acids suggest that any associated Thermocrinis biomass would also be similarly depleted and much too light to be explained by growth on CO2. The C-fractionations determined with the pure culture suggest that growth of Thermocrinis in the PSC is more likely to occur on formate, presumably generated by geothermal activity. This study points to the value of the analysis of the structural and isotopic composition of lipid blomarkers both in pure culture studies, and in establishing community structure and physiology, as a complement to genomic profiles of microbial diversity. This is especially so when the members of the microbial community are novel and difficult to cultivate in the laboratory.
Experimental study on thermal storage performance of binary mixtures of fatty acids
NASA Astrophysics Data System (ADS)
Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu
2018-02-01
We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.
Lee, Sunhee; Jung, Yeontae; Lee, Seunghan; Lee, Jinwon
2013-03-01
Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD(+)/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.
Klir, Z; Castro-Montoya, J M; Novoselec, J; Molkentin, J; Domacinovic, M; Mioc, B; Dickhoefer, U; Antunovic, Z
2017-10-01
The aim was to determine the effect of substituting pumpkin seed cake (PSC) or extruded linseed (ELS) for soya bean meal in goats' diets on milk yield, milk composition and fatty acids profile of milk fat. In total, 28 dairy goats were divided into three groups. They were fed with concentrate mixtures containing soya bean meal (Control; n=9), ELS (n=10) or PSC (n=9) as main protein sources in the trial lasting 75 days. Addition of ELS or PSC did not influence milk yield and milk gross composition in contrast to fatty acid profile compared with Control. Supplementation of ELS resulted in greater branched-chain fatty acids (BCFA) and total n-3 fatty acids compared with Control and PSC (P<0.05). Total n-3 fatty acids were accompanied by increased α-linolenic acid (ALA, C18:3n-3; 0.56 g/100 g fatty acids) and EPA (C20:5n-3; 0.12 g/100 g fatty acids) proportions in milk of the ELS group. In contrast, ELS and PSC resulted in lower linoleic acid (LA, C18:2n-6; 2.10 and 2.28 g/100 g fatty acids, respectively) proportions compared with Control (2.80 g/100 g fatty acids; P<0.05). Abovementioned resulted in lower LA/ALA ratio (3.81 v. 7.44 or 6.92, respectively; P<0.05) with supplementation of ELS compared with Control or PSC. The PSC diet decreased total n-6 fatty acids compared with the Control (2.96 v. 3.54 g/100 g fatty acids, P<0.05). Oleic acid (c9-C18:1), CLA (c9,t11-18:2) and t10-,t11-C18:1 did not differ between treatments (P⩾0.08), although stearic acid (C18:0) increased in ELS diets compared with Control (12.7 v. 10.2 g/100 g fatty acids, P<0.05). Partially substituted soya bean meal with ELS in hay-based diets may increase beneficial n-3 fatty acids and BCFA accompanied by lowering LA/ALA ratio and increased C18:0. Pumpkin seed cake completely substituted soya bean meal in the diet of dairy goats without any decrease in milk production or sharp changes in fatty acid profile that may have a commercial or a human health relevancy.
Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents
Saito, Holly E.; Harp, John R.
2014-01-01
Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance. PMID:25128342
De Koninck, Anne-Sophie; Nys, Karen; Vandenheede, Brent; Van Biervliet, Stephanie; Speeckaert, Marijn M; Delanghe, Joris R
2016-11-01
Fourier transform infrared (FTIR) spectroscopic determination of faecal fat is a simple and elegant alternative for the classical Van De Kamer approach. Besides quantification of the total amount of fat, analysis of the lipase hydrolysis efficiency (fatty acid/triglyceride ratio), fatty acid chain length and trans-unsaturated fatty acids could provide a better monitoring of dietary treatment. Stool samples (26 routine samples and 36 cystic fibrosis patients) were analysed with the Perkin Elmer Spectrum Two® spectrometer (3500-450cm -1 ). Fatty acid/triglyceride ratio was calculated using the absorbance ratio at 2855:1746cm -1 . To estimate lipase hydrolysis efficiency, sample ratios were compared with the ratio of butter and pure free fatty acids. Mean fatty acid chain length was calculated using the absorbance ratio at 2855:1709cm -1 . The absorbance at 966cm -1 was used to trace the presence of trans-type unsaturated fatty acids. Butter showed a low fatty acid/triglyceride ratio (1.21) and pure free fatty acids a high fatty acid/triglyceride ratio (6.76). Mean fatty acid/triglyceride ratio of routine stool samples was 4.16±1.01. The applicability of fatty acid/triglyceride ratios was also tested in cystic fibrosis patients under treatment with a mean of 4.92±0.98. Relative absorbance contribution per carbon atom was 0.06 (ratio 1.06 for C18 standard, 0.91 for C16 standard). The mean ratio of the stool samples was 1.12 (mean acyl chain length of C19), with values ranging from 0.73 (C12) to 1.68 (C28). The presence of traceable amounts of trans-unsaturated fatty acids was also demonstrated. For the analysis of faecal material, FTIR provides unique information, difficult to obtain using other techniques. These findings offer perspectives for diet monitoring in patients with (non-)pancreatic malabsorption. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP).
Grimm, Marcus O W; Rothhaar, Tatjana L; Grösgen, Sven; Burg, Verena K; Hundsdörfer, Benjamin; Haupenthal, Viola J; Friess, Petra; Kins, Stefan; Grimm, Heike S; Hartmann, Tobias
2012-10-01
Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aβ) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aβ are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease. Copyright © 2012 Elsevier Inc. All rights reserved.
Clinical Relevance of Type II Fatty Acid Synthesis Bypass in Staphylococcus aureus
Guillemet, Mélanie; Soler, Charles; Morvan, Claire; Halpern, David; Pourcel, Christine; Vu Thien, Hoang; Lamberet, Gilles
2017-01-01
ABSTRACT The need for new antimicrobials to treat bacterial infections has led to the use of type II fatty acid synthesis (FASII) enzymes as front-line targets. However, recent studies suggest that FASII inhibitors may not work against the opportunist pathogen Staphylococcus aureus, as environmental fatty acids favor emergence of multi-anti-FASII resistance. As fatty acids are abundant in the host and one FASII inhibitor, triclosan, is widespread, we investigated whether fatty acid pools impact resistance in clinical and veterinary S. aureus isolates. Simple addition of fatty acids to the screening medium led to a 50% increase in triclosan resistance, as tested in 700 isolates. Moreover, nonculturable triclosan-resistant fatty acid auxotrophs, which escape detection under routine conditions, were uncovered in primary patient samples. FASII bypass in selected isolates correlated with polymorphisms in the acc and fabD loci. We conclude that fatty-acid-dependent strategies to escape FASII inhibition are common among S. aureus isolates and correlate with anti-FASII resistance and emergence of nonculturable variants. PMID:28193654
Fatty acid transport and transporters in muscle are critically regulated by Akt2.
Jain, Swati S; Luiken, Joost J F P; Snook, Laelie A; Han, Xiao Xia; Holloway, Graham P; Glatz, Jan F C; Bonen, Arend
2015-09-14
Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana
2015-04-15
Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Morvan, Claire; Halpern, David; Kénanian, Gérald; Hays, Constantin; Anba-Mondoloni, Jamila; Brinster, Sophie; Kennedy, Sean; Trieu-Cuot, Patrick; Poyart, Claire; Lamberet, Gilles; Gloux, Karine; Gruss, Alexandra
2016-01-01
The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. PMID:27703138
Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin
2015-02-22
In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.
Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP
Korinek, Michal; Tsai, Yi-Hong; El-Shazly, Mohamed; Lai, Kuei-Hung; Backlund, Anders; Wu, Shou-Fang; Lai, Wan-Chun; Wu, Tung-Ying; Chen, Shu-Li; Wu, Yang-Chang; Cheng, Yuan-Bin; Hwang, Tsong-Long; Chen, Bing-Hung; Chang, Fang-Rong
2017-01-01
Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R*-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14–3.73 μM) and elastase release (IC50 1.26–4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from clinically used drugs. The bioactivity of T. blumei, which is historically utilized in folk medicine, might be related to the content of fatty acids and their metabolites. PMID:28674495
Synthesis and release of fatty acids by human trophoblast cells in culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, R.A.; Haynes, E.B.
1987-11-01
In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from (/sup 14/C)acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from (/sup 14/C)acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. (/sup 14/C)acetate was also incorporated into cellular triacylglycerol,more » phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with (1-/sup 14/C)oleate; trophoblast cells then released /sup 14/C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the /sup 14/C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release.« less
Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease.
Harbige, L S
1998-11-01
Clearly there is much evidence to show that under well-controlled laboratory and dietary conditions fatty acid intake can have profound effects on animal models of autoimmune disease. Studies in human autoimmune disease have been less dramatic; however, human trials have been subject to uncontrolled dietary and genetic backgrounds, infection and other environmental influences, and basic trial designs have been inadequate. The impact of dietary fatty acids on animal autoimmune disease models appears to depend on the animal model and the type and amount of fatty acids fed. Diets low in fat, essential fatty acid-deficient, or high in n-3 fatty acids from fish oils increase the survival and reduce disease severity in spontaneous autoantibody-mediated disease, whilst linoleic acid-rich diets appear to increase disease severity. In experimentally-induced T-cell-mediated autoimmune disease, essential fatty acid-deficient diets or diets supplemented with n-3 fatty acids appear to augment disease, whereas n-6 fatty acids prevent or reduce the severity. In contrast, in both T-cell and antibody-mediated auto-immune disease the desaturated and elongated metabolites of linoleic acid are protective. Suppression of autoantibody and T lymphocyte proliferation, apoptosis of autoreactive lymphocytes, and reduced pro-inflammatory cytokine production by high-dose fish oils are all likely mechanisms by which n-3 fatty acids ameliorate autoimmune disease. However, these could be undesirable long-term effects of high-dose fish oil which may compromise host immunity. The protective mechanism(s) of n-6 fatty acids in T-cell- mediated autoimmune disease are less clear, but may include dihomo-gamma-linolenic acid- and arachidonic acid-sensitive immunoregulatory circuits such as Th1 responses, TGF beta 1-mediated effects and Th3-like responses. It is often claimed that n-6 fatty acids promote autoimmune and inflammatory disease based on results obtained with linoleic acid only. It should be appreciated that linoleic acid does not reflect the functions of dihomo-gamma-linolenic and arachidonic acid, and that the endogenous rate of conversion of linoleic to arachidonic acid is slow (Hassam et al. 1975, 1977; Phylactos et al. 1994; Harbige et al. 1995). In addition to effects of dietary fatty acids on immunoregulation, inflammation as a consequence of immune activation in autoimmune disease may also be an important mechanism of action whereby dietary fatty acids modulate disease activity. In conclusion, regulation of gene expression, signal transduction pathways, production of eicosanoids and cytokines, and the action of antioxidant enzymes are all mechanisms by which dietary n-6 and n-3 fatty acids may exert effects on the immune system and autoimmune disease. Probably the most significant of these mechanisms in relation to our current understanding of immunoregulation and inflammation would appear to be via fatty acid effects on cytokines. The amount, type and balance of dietary fatty acids and associated antioxidant nutrients appear to impact on the immune system to produce immune-deviation or immunosuppressive effects, and to reduce immune-mediated inflammation which will in turn affect the susceptibility to, or severity of, autoimmune disease.
Nantapo, C T W; Muchenje, V; Hugo, A
2014-03-01
The objective of the study was to investigate the effect of stage of lactation on the fatty acid profiles of milk from Friesian, Jersey and Friesian×Jersey cows. Linoleic acid in pastures was highest in the second phase which coincided with mid-lactation days (p<0.05). Highest milk moisture content and lowest fat free dry matter content was seen in early lactation (p<0.05). Higher fat content was observed in late lactation than early lactation. Highest butyric, caproic, linoleic, omega-6 and polyunsaturated fatty acids were observed for milk from Friesian cows. Highest conjugated fatty acids, α-linolenic acid, linoleic acid, saturated fatty acids, polyunsaturated fatty acids, omega-6, and omega-3 were observed in early lactation. Atherogenicity index and desaturase activity indices were highest in late lactation. In conclusion, stage of lactation and genotype affected milk health-related fatty acid profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mezni, F; Khouja, M L; Gregoire, S; Martine, L; Khaldi, A; Berdeaux, O
2014-01-01
In this investigation, we aim to study, for the first time, the effect of the growing area on tocopherols, carotenoids and fatty acid content of Pistacia lentiscus fixed oil. Fruits were harvested from eight different sites located in the north and the centre of Tunisia. Tocopherols, carotenoids and fatty acid content of the fixed oils were determined. The highest carotenoid content was exhibited by Feija oil (10.57 mg/kg of oil). Oueslatia and Tabarka oils displayed the highest α-tocopherol content (96.79 and 92.79 mg/kg of oil, respectively). Three major fatty acids were determined: oleic, palmitic and linoleic acids. Oleic acid was the main fatty acid presenting more than 50% of the total fatty acid content. Kebouche oil presented the highest oleic acid content (55.66%). All these results highlight the richness of carotenoids, tocopherols and unsaturated fatty acids in P. lentiscus seed oil and underscore the nutritional value of this natural product.
Liin, S I; Karlsson, U; Bentzen, B H; Schmitt, N; Elinder, F
2016-09-01
Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μm) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μm). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Yao, Jiangwei; Rock, Charles O.
2015-01-01
Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors. PMID:25648887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca; Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca; Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca
Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231)more » and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare utilization of fatty acids produced by FASN to those derived exogenously. • Cancer cells do not have a specific requirement for fatty acids produced by FASN. • Fatty acids produced by FASN are in excess of cell requirements and are excreted. • Increased FASN activity is not required to sustain elevations in glycolysis.« less
Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers.
Takaishi, Naoki; Yoshida, Kazutaka; Satsu, Hideo; Shimizu, Makoto
2007-06-27
Alpha-lipoic acid (LA) is used in dietary supplements or food with antioxidative functions. The mechanism for the intestinal absorption of alpha-lipoic acid was investigated in this study by using human intestinal Caco-2 cell monolayers. LA was rapidly transported across the Caco-2 cell monolayers, this transport being energy-dependent, suggesting transporter-mediated transport to be the mechanism involved. The LA transport was strongly dependent on the pH value, being accelerated in the acidic pH range. Furthermore, such monocarboxylic acids as benzoic acid and medium-chain fatty acids significantly inhibited LA transport, suggesting that a proton-linked monocarboxylic acid transporter (MCT) was involved in the intestinal transport of LA. The conversion of LA to the more antioxidative dihydrolipoic acid was also apparent during the transport process.
Elliott, Brian
2010-09-14
Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.
Dimitrijevic, Marija V; Mitic, Violeta D; Jovanovic, Olga P; Stankov Jovanovic, Vesna P; Nikolic, Jelena S; Petrovic, Goran M; Stojanovic, Gordana S
2018-01-01
Eleven species of wild mushrooms which belong to Boletaceae and Russulaceae families were examined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS) analysis for the presence of fatty acids. As far as we know, the fatty acid profiles of B. purpureus and B. rhodoxanthus were described for the first time. Twenty-six fatty acids were determined. Linoleic (19.5 - 72%), oleic (0.11 - 64%), palmitic (5.9 - 22%) and stearic acids (0.81 - 57%) were present in the highest contents. In all samples, unsaturated fatty acids dominate. Agglomerative hierarchical clustering was used to display the correlation between the fatty acids and their relationships with the mushroom species. Based on the fatty acids profile in the samples, the mushrooms can be divided into two families: Boletaceae and Russulaceae families, using cluster analysis. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase.
Lim, Min-Cheol; Park, Kyu-Hwan; Choi, Jong-Hyun; Lee, Da-Hee; Letona, Carlos Andres Morales; Baik, Moo-Yeol; Park, Cheon-Seok; Kim, Young-Rok
2016-10-20
Amylose microparticles can be produced by self-assembly of amylose molecules through an amylosucrase-mediated synthesis. Here we investigated the role of short-chain fatty acids in the formation of amylose microparticles and the fate of these fatty acids at the end of the reaction. The rate of self-assembly and production yields of amylose microparticles were significantly enhanced in the presence of fatty acids. The effect was dependent on the length of the fatty acid carbon tail; butanoic acid (C4) was the most effective, followed by hexanoic acid (C6) and octanoic acid (C8). The amylose microparticles were investigated by carrying out SEM, XRD, Raman, NMR, FT-IR and DSC analysis. The size, morphology and crystal structure of the resulting amylose microparticles were comparable with those of amylose microparticles produced without fatty acids. The results indicated the carboxyl group of the fatty acid to be responsible for promoting the self-assembly of amylose chains to form microparticles. The fatty acids were eventually removed from the microstructure through the tight association of amylose double helices to form the amylose microparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.
21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in...
Qiao, Shanlei; Hu, Nan; Hu, Yanhui; Wu, Wei; Qiu, Lianglin; Zhang, Ruyang; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru
2012-01-01
Background Male reproductive toxicity induced by exposure to bisphenol A (BPA) has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction. Methodology/Principal Findings Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD) declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px) as well as catalase (CAT) also showed a decreasing trend in BPA treated group. Conclusions/Significance BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity. PMID:23024759
Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela
2017-02-01
Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
40 CFR 721.3627 - Branched synthetic fatty acid.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...
Drought and heat stress effects on soybean fatty acid composition and oil stability
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that oil concentration and fatty acid profile (composition) change with genotype, environment (mainly heat and drought), and geographical location. The changes in fatty acid composition under these conditions affect fatty acid stability, creating a challenge to oil proces...
Naturally occurring fatty acids: Source, chemistry, and uses
USDA-ARS?s Scientific Manuscript database
Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...
Code of Federal Regulations, 2010 CFR
2010-07-01
... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...
40 CFR 721.3627 - Branched synthetic fatty acid.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...
Potential Approach of Microbial Conversion to Develop New Antifungal Products of Omega-3 Fatty Acids
USDA-ARS?s Scientific Manuscript database
Omega-3/('-3) or n-3 fatty acids are a family of unsaturated fatty acids that have in common a final carbon-carbon double bond in the n-3 position. n-3 Fatty acids which are important in human nutrition are: a-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaen...
Tang, Christine; Naassan, Anthony E; Chamson-Reig, Astrid; Koulajian, Khajag; Goh, Tracy T; Yoon, Frederick; Oprescu, Andrei I; Ghanim, Husam; Lewis, Gary F; Dandona, Paresh; Donath, Marc Y; Ehses, Jan A; Arany, Edith; Giacca, Adria
2013-01-01
β-Cell lipotoxicity is thought to play an important role in the development of type 2 diabetes. However, no study has examined its role in type 1 diabetes, which could be clinically relevant for slow-onset type 1 diabetes. Reports of enhanced cytokine toxicity in fat-laden islets are consistent with the hypothesis that lipid and cytokine toxicity may be synergistic. Thus, β-cell lipotoxicity could be enhanced in models of autoimmune diabetes. To determine this, we examined the effects of prolonged free fatty acids elevation on β-cell secretory function in the prediabetic diabetes-prone BioBreeding (dp-BB) rat, its diabetes-resistant BioBreeding (dr-BB) control, and normal Wistar-Furth (WF) rats. Rats received a 48-h iv infusion of saline or Intralipid plus heparin (IH) (to elevate free fatty acid levels ~2-fold) followed by hyperglycemic clamp or islet secretion studies ex vivo. IH significantly decreased β-cell function, assessed both by the disposition index (insulin secretion corrected for IH-induced insulin resistance) and in isolated islets, in dp-BB, but not in dr-BB or WF, rats, and the effect of IH was inhibited by the antioxidant N-acetylcysteine. Furthermore, IH significantly increased islet cytokine mRNA and plasma cytokine levels (monocyte chemoattractant protein-1 and IL-10) in dp-BB, but not in dr-BB or WF, rats. All dp-BB rats had mononuclear infiltration of islets, which was absent in dr-BB and WF rats. In conclusion, the presence of insulitis was permissive for IH-induced β-cell dysfunction in the BB rat, which suggests a link between β-cell lipotoxicity and islet inflammation.
Lee, Min-Chul; Puthumana, Jayesh; Lee, Seung-Hwi; Kang, Hye-Min; Park, Jun Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Seo, Jung Soo; Park, Heum Gi; Om, Ae-Son; Lee, Jae-Seong
2016-12-01
Brominated flame retardant, 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), has received grave concerns as a persistent organic pollutant, which is toxic to marine organisms, and a suspected link to endocrine abnormalities. Despite the wide distribution in the marine ecosystem, very little is known about the toxic impairments on marine organisms, particularly on invertebrates. Thus, we examined the adverse effects of BDE-47 on life history trait (development), oxidative markers, fatty acid composition, and lipid accumulation in response to BDE-47-induced stress in the marine copepod Paracyclopina nana. Also, activation level of mitogen-activated protein kinase (MAPK) signaling pathways along with the gene expression profile of de novo lipogenesis (DNL) pathways were addressed. As a result, BDE-47 induced oxidative stress (e.g. reactive oxygen species, ROS) mediated activation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) signaling cascades in MAPK pathways. Activated MAPK pathways, in turn, induced signal molecules that bind to the transcription factors (TFs) responsible for lipogenesis to EcR, SREBP, ChREBP promoters. Also, the stress stimulated the conversion of saturated fatty acids (SFAs) to polyunsaturated fatty acids (PUFAs), a preparedness of the organism to adapt the observed stress, which could be correlated with the elongase and desaturase gene (e.g. ELO3, Δ5-DES, Δ9-DES) expressions, and then extended to the delayed early post-embryonic development and increased accumulation of lipid droplets in P. nana. This study will provide a better understanding of how BDE-47 effects on marine invertebrates particularly on the copepods, an important link in the marine food chain. Copyright © 2016 Elsevier B.V. All rights reserved.
Le Croizier, Gaël; Schaal, Gauthier; Gallon, Régis; Fall, Massal; Le Grand, Fabienne; Munaron, Jean-Marie; Rouget, Marie-Laure; Machu, Eric; Le Loc'h, François; Laë, Raymond; De Morais, Luis Tito
2016-12-15
The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology. Copyright © 2016 Elsevier B.V. All rights reserved.
Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás
2007-05-01
Several observational studies indicate that trans isomeric fatty acids may interfere with the metabolism of essential fatty acids in the human organism. The objective was to investigate the relation between trans fatty acids and long-chain polyunsaturates in mature human milk. Human milk samples (n=769) were obtained at the 6th week of lactation from mothers participating in a birth cohort study in Germany. The fatty acid composition of the milk samples was measured by high-resolution capillary gas-liquid chromatography. trans Octadecenoic and trans octadecadienoic acids were inversely correlated with linoleic acid (r=-0.32 and -0.33, P<0.0001 for both), alpha-linolenic acid (r=-0.35 and -0.27, P<0.0001), arachidonic acid (r=-0.60 and -0.47, P<0.0001), and docosahexaenoic acid (r=-0.51 and -0.33, P<0.0001). In contrast, no inverse correlations were observed between trans hexadecenoic acid and polyunsaturated fatty acids. The data obtained in the present study suggest that the availability of 18-carbon trans isomeric fatty acids may be inversely related to the availability of long-chain polyunsaturated fatty acids in mature human milk.
Vu, Chi B; Bridges, Robert J; Pena-Rasgado, Cecilia; Lacerda, Antonio E; Bordwell, Curtis; Sewell, Abby; Nichols, Andrew J; Chandran, Sachin; Lonkar, Pallavi; Picarella, Dominic; Ting, Amal; Wensley, Allison; Yeager, Maisy; Liu, Feng
2017-01-12
A depressed autophagy has previously been reported in cystic fibrosis patients with the common F508del-CFTR mutation. This report describes the synthesis and preliminary biological characterization of a novel series of autophagy activators involving fatty acid cysteamine conjugates. These molecular entities were synthesized by first covalently linking cysteamine to docosahexaenoic acid. The resulting conjugate 1 synergistically activated autophagy in primary homozygous F508del-CFTR human bronchial epithelial (hBE) cells at submicromolar concentrations. When conjugate 1 was used in combination with the corrector lumacaftor and the potentiator ivacaftor, it showed an additive effect, as measured by the increase in the chloride current in a functional assay. In order to obtain a more stable form for oral dosing, the sulfhydryl group in conjugate 1 was converted into a functionalized disulfide moiety. The resulting conjugate 5 is orally bioavailable in the mouse, rat, and dog and allows a sustained delivery of the biologically active conjugate 1.