Science.gov

Sample records for fatty acyl-coa synthetase

  1. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  2. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles.

    PubMed

    Nchoutmboube, Jules A; Viktorova, Ekaterina G; Scott, Alison J; Ford, Lauren A; Pei, Zhengtong; Watkins, Paul A; Ernst, Robert K; Belov, George A

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  3. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

    PubMed

    Lü, Shiyou; Song, Tao; Kosma, Dylan K; Parsons, Eugene P; Rowland, Owen; Jenks, Matthew A

    2009-08-01

    Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.

  4. Short-term exposures of fish to perfluorooctane sulfonate: acute effects on fatty acyl-coa oxidase activity, oxidative stress, and circulating sex steroids.

    PubMed

    Oakes, Ken D; Sibley, Paul K; Martin, Jon W; MacLean, Dan D; Solomon, Keith R; Mabury, Scott A; Van Der Kraak, Glen J

    2005-05-01

    This study investigated the effects of exposure to waterborne perfluorooctane sulfonate (PFOS) on oxidative stress and reproductive endpoints in fish. Exposures utilized species commonly used in toxicological testing, including the fathead minnow (Pimephales promelas) and rainbow trout (Oncorhynchus mykiss), as well as relatively insensitive taxa such as creek chub (Semotilus atromaculatus), spottail shiner (Notropis hudsonius), and white sucker (Catostomus commersoni). In all fish species, short-term (14-28 d) exposure to PFOS produced only modest mortality at concentrations consistent with environmental spill scenarios. However, PFOS consistently increased hepatic fatty acyl-CoA oxidase activity and increased oxidative damage, as quantified using the 2-thiobarbituric acid-reactive substances assay. Plasma testosterone, 11-ketotestosterone, and 17beta-estradiol titers were often elevated with PFOS exposure. Vitellogenin, the egg yolk precursor protein, was occasionally altered in the plasma with PFOS exposure, but responses varied with maturity. Oviposition frequency and egg deposition in fathead minnow were not significantly impaired with PFOS exposure, despite a trend toward progressive impairment with increasing exposure concentrations. Although short-term PFOS exposure produced significant impacts on biochemical and reproductive endpoints in fish at concentrations consistent with environmental spills, the impact of long-term exposure to environmentally relevant concentrations of PFOS is unclear.

  5. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  6. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    USDA-ARS?s Scientific Manuscript database

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  7. Saturated Fatty Acid Mutant of Saccharomyces cerevisiae with an Intact Fatty Acid Synthetase

    PubMed Central

    Meyer, Karl H.; Schweizer, Eckhart

    1974-01-01

    A Saccharomyces cerevisiae conditional mutant, LK 181, is described which grows at 37 C only when supplemented with a saturated fatty acid of 12 to 14 carbon atoms chain length. At 22 C, however, no fatty acid supplementation is required for growth. The fatty acid concentration required for optimal growth at 37 C is about four times lower for LK 181 than for fatty acid synthetase-deficient mutants. In contrast to all fatty acid synthetase mutants so far examined, mutant LK 181 cannot grow with palmitic acid. The addition of palmitic, palmitoleic, or oleic acid to the culture medium prevents LK 181 growth at temperatures between 22 and 37 C. In vivo as well as in vitro, cellular de novo fatty acid biosynthesis from acetate is unimpaired in this mutant. It is suggested that endogenously synthesized fatty acids, due to their chain lengths of 16 and more carbon atoms, cannot supplement the mutant LK 181. It is concluded that the exogeneously supplied fatty acids act as allosteric effectors for a mutationally altered cellular protein to restore its biological function at elevated temperatures, rather than as a substitute for endogenously synthesized long-chain fatty acids. PMID:4590462

  8. Functional Analysis of Leishmania Cyclopropane Fatty Acid Synthetase

    PubMed Central

    Oyola, Samuel O.; Evans, Krystal J.; Smith, Terry K.; Smith, Barbara A.; Hilley, James D.; Mottram, Jeremy C.; Kaye, Paul M.; Smith, Deborah F.

    2012-01-01

    The single gene encoding cyclopropane fatty acid synthetase (CFAS) is present in Leishmania infantum, L. mexicana and L. braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular) and host (intracellular) stages of the parasite life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type, CFAS null and complemented parasites detect a low abundance CFAS-dependent C19Δ fatty acid, characteristic of a cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19Δ fatty acid to both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of C19Δ fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism. PMID:23251490

  9. Fatty Acid Activation in Cyanobacteria Mediated by Acyl-Acyl Carrier Protein Synthetase Enables Fatty Acid Recycling1[W

    PubMed Central

    Kaczmarzyk, Danuta; Fulda, Martin

    2010-01-01

    In cyanobacteria fatty acids destined for lipid synthesis can be synthesized de novo, but also exogenous free fatty acids from the culture medium can be directly incorporated into lipids. Activation of exogenous fatty acids is likely required prior to their utilization. To identify the enzymatic activity responsible for activation we cloned candidate genes from Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 and identified the encoded proteins as acyl-acyl carrier protein synthetases (Aas). The enzymes catalyze the ATP-dependent esterification of fatty acids to the thiol of acyl carrier protein. The two protein sequences are only distantly related to known prokaryotic Aas proteins but they display strong similarity to sequences that can be found in almost all organisms that perform oxygenic photosynthesis. To investigate the biological role of Aas activity in cyanobacteria, aas knockout mutants were generated in the background of Synechocystis sp. PCC 6803 and S. elongatus PCC 7942. The mutant strains showed two phenotypes characterized by the inability to utilize exogenous fatty acids and by the secretion of endogenous fatty acids into the culture medium. The analyses of extracellular and intracellular fatty acid profiles of aas mutant strains as well as labeling experiments indicated that the detected free fatty acids are released from membrane lipids. The data suggest a considerable turnover of lipid molecules and a role for Aas activity in recycling the released fatty acids. In this model, lipid degradation represents a third supply of fatty acids for lipid synthesis in cyanobacteria. PMID:20061450

  10. Amino acid sequence around the active-site serine residue in the acyltransferase domain of goat mammary fatty acid synthetase.

    PubMed Central

    Mikkelsen, J; Højrup, P; Rasmussen, M M; Roepstorff, P; Knudsen, J

    1985-01-01

    Goat mammary fatty acid synthetase was labelled in the acyltransferase domain by formation of O-ester intermediates by incubation with [1-14C]acetyl-CoA and [2-14C]malonyl-CoA. Tryptic-digest and CNBr-cleavage peptides were isolated and purified by high-performance reverse-phase and ion-exchange liquid chromatography. The sequences of the malonyl- and acetyl-labelled peptides were shown to be identical. The results confirm the hypothesis that both acetyl and malonyl groups are transferred to the mammalian fatty acid synthetase complex by the same transferase. The sequence is compared with those of other fatty acid synthetase transferases. PMID:3922356

  11. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    PubMed

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  12. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis.

    PubMed

    Zimhony, O; Cox, J S; Welch, J T; Vilchèze, C; Jacobs, W R

    2000-09-01

    Tuberculosis treatment is shortened to six months by the indispensable addition of pyrazinamide (PZA) to the drug regimen that includes isoniazid and rifampin. PZA is a pro-drug of pyrazinoic acid (POA) (ref. 3), whose target of action has never been identified. Although PZA is active only against Mycobacterium tuberculosis, the PZA analog 5-chloro-pyrazinamide (5-Cl-PZA) displays a broader range of anti-mycobacterial activity. We have found that the eukaryotic-like fas1 gene (encoding fatty acid synthetase I, FASI) from M. avium, M. bovis BCG or M. tuberculosis confers resistance to 5-Cl-PZA when present on multi-copy vectors in M. smegmatis. 5-Cl-PZA and PZA markedly inhibited the activity of M. tuberculosis FASI, the biosynthesis of C16 to C24/C26 fatty acids from acetyl-CoA (ref. 6). Importantly, PZA inhibited FASI in M. tuberculosis in correlation with PZA susceptibility. These results indicate that FASI is a primary target of action for PZA in M. tuberculosis. Further characterization of FASI as a drug target for PZA may allow the development of new drugs to shorten the therapy against M. tuberculosis and may provide more options for treatment against M. bovis, M. avium and drug resistant M. tuberculosis.

  13. Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotin amide nucleotides into fatty acids with the Escherichia coli fatty acid synthetase system.

    PubMed

    Saito, K; Kawaguchi, A; Okuda, S; Seyama, Y; Yamakawa, T

    1980-05-28

    The mechanism of hydrogen incorporation into fatty acids was investigated with intact Escherichia coli cells, a crude enzyme preparation and purified reductases of fatty acid synthetase system. The distributions of deuterium atoms incorporated into fatty acids from 2H2O and stereospecifically deuterium-labeled NADPH or NADH were determined by mass spectrometry. When E. coli was grown in 2H2O, almost every hydrogen atom of cellular fatty acids was incorporated from the medium. When fatty acids were synthesized from acetyl-CoA, malonyl-CoA and NADPH in the presence of a crude enzyme preparation of either E. coli or Bacillus subtilis, almost every hydrogen atom was also incorporated from the medium. In contrast to these results, purified beta-ketoacyl acyl carrier reductase directly transferred the HB hydrogen of NADPH to beta-ketoacyl acyl carrier protein, and purified enoyl acyl carrier protein reductase also transferred the HB hydrogen of NADPH and NADH directly to enoyl acyl carrier protein. In the crude enzyme preparation of E. coli, we found high activities which exchanged the HB hydrogen of NADPH with the deuterium of 2h2o. the conflicting results of the origin of hydrogen atoms of fatty acids mentioned above are explained by the presence of enzymes, which catalyzed the rapid exchange of NADPH with the deterium of 2H2O prior to the reaction of fatty acid synthetase.

  14. Molecular cloning and sequencing of a cDNA encoding the thioesterase domain of the rat fatty acid synthetase.

    PubMed

    Naggert, J; Witkowski, A; Mikkelsen, J; Smith, S

    1988-01-25

    A cloned cDNA containing the entire coding sequence for the long-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase I) component as well as the 3'-noncoding region of the fatty acid synthetase has been isolated using an expression vector and domain-specific antibodies. The coding region was assigned to the thioesterase I domain by identification of sequences coding for characterized peptide fragments, amino-terminal analysis of the isolated thioesterase I domain and the presence of the serine esterase active-site sequence motif. The thioesterase I domain is 306 amino acids long with a calculated molecular mass of 33,476 daltons; its DNA is flanked at the 5'-end by a region coding for the acyl carrier protein domain and at the 3'-end by a 1,537-base pairs-long noncoding sequence with a poly(A) tail. The thioesterase I domain exhibits a low, albeit discernible, homology with the discrete medium-chain S-acyl fatty acid synthetase thioester hydrolases (thioesterase II) from rat mammary gland and duck uropygial gland, suggesting a distant but common evolutionary ancestry for these proteins.

  15. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  16. The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds1

    PubMed Central

    Ke, Jinshan; Behal, Robert H.; Back, Stephanie L.; Nikolau, Basil J.; Wurtele, Eve Syrkin; Oliver, David J.

    2000-01-01

    Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds. PMID:10859180

  17. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: An update

    PubMed Central

    Yan, Sheng; Yang, Xue-Feng; Liu, Hao-Lei; Fu, Nian; Ouyang, Yan; Qing, Kai

    2015-01-01

    Long-chain acyl-CoA synthetase (ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer membrance catalyze fatty acids with chain lengths from 12 to 20 carbon atoms to form acyl-CoAs, which are lipid metabolic intermediates and involved in fatty acid metabolism, membrane modifications and various physiological processes. Gain- or loss-of-function studies have shown that the expression of individual ACSL isoforms can alter the distribution and amount of intracellular fatty acids. Changes in the types and amounts of fatty acids, in turn, can alter the expression of intracellular ACSLs. ACSL family members affect not only the proliferation of normal cells, but the proliferation of malignant tumor cells. They also regulate cell apoptosis through different signaling pathways and molecular mechanisms. ACSL members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to liver diseases and metabolic diseases, such as fatty liver disease, obesity, atherosclerosis and diabetes. They are also linked to neurological disorders and other diseases. However, the mechanisms are unclear. This review addresses new findings in the classification and properties of ACSLs and the fatty acid metabolism-associated effects of ACSLs in diseases. PMID:25834313

  18. A Rare Case of Short-Chain Acyl-COA Dehydrogenase Deficiency: The Apparent Rarity of the Disorder Results in Under Diagnosis.

    PubMed

    Reddy, G Shilpa; Sujatha, M

    2011-07-01

    Short-chain acyl-CoA dehydrogenase (ACAD) deficiency is an extremely rare inherited mitochondrial disorder of fat metabolism. This belongs to a group of diseases known as fatty acid oxidation disorders. Screening programmes have provided evidence that all the fatty acid oxidation disorders combined are among the most common inborn errors of metabolism. Mitochondrial beta oxidation of fatty acids is an essential energy producing pathway. It is a particularly important pathway during prolonged periods of starvation and during periods of reduced caloric intake due to gastrointestinal illness or increased energy expenditure during febrile illness. The most common presentation is an acute episode of life threatening coma and hypoglycemia induced by a period of fasting due to defective hepatic ketogenesis. Here, the case of a 4 month old female patient who had seizures since the third day of her birth and persistent hypoglycemia is described. She was born to parents of second degree consanguinity after 10 years of infertility treatment. There was history of delayed cry after birth. Metabolic screening for TSH, galactosemia, 17-OHP, G6PD, cystic fibrosis, biotinidase were normal. Tandem mass spectrometric (TMS) screening for blood amino acids, organic acids, fatty acids showed elevated butyryl carnitine (C4) as 3.40 μmol/L (normal <2.00 μmol/L), hexanoyl carnitine (C6) as 0.92 μmol/L (normal <0.72 μmol/L), C4/C3 as 2.93 μmol/L (normal <1.18 μmol/L). The child was started immediately on carnitor syrup (carnitine) 1/2 ml twice daily. Limitation of fasting stress and dietary fat was advised. Baby responded well by gaining weight and seizures were controlled. Until now, less than 25 patients have been reported worldwide. The limited number of patients diagnosed until now is due to the rarity of the disorder resulting in under diagnosis.

  19. Giardia fatty acyl-CoA synthetases as potential drug targets

    PubMed Central

    Guo, Fengguang; Ortega-Pierres, Guadalupe; Argüello-García, Raúl; Zhang, Haili; Zhu, Guan

    2015-01-01

    Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis) is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids (FA) de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5) to activate FA scavenged from the host. ACS is an essential enzyme because FA need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference toward palmitic acid (C16:0) and myristic acid (C14:0), and allosteric or Michaelis–Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 μM, Ki = 0.18 μM for GiACS1, and IC50 = 2.28 μM, Ki = 0.23 μM for GiACS2, respectively) and the growth of G. intestinalis in vitro (IC50 = 0.8 μM). As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite. PMID:26257723

  20. POTENTIAL OF MEAN FORCE CALCULATION FOR THE PROTON AND HYDRIDE TRANSFER REACTIONS CATALYZED BY MEDIUM CHAIN ACYL-COA DEHYDROGENASE: THE EFFECT OF MUTATIONS ON ENZYME CATALYSISa

    PubMed Central

    Bhattacharyya, Sudeep; Ma, Shuhua; Stankovich, Marian T.; Truhlar, Donald G.; Gao, Jiali

    2008-01-01

    Potential of mean force calculations have been performed on the wild-type medium chain acyl-CoA dehydrogenase (MCAD) and two of its mutant forms. Initial simulation and analysis of the active site of the enzyme reveals that an arginine residue (Arg256), conserved in the substrate binding domain of this group of enzymes, exists in two alternate conformations, only one of which makes the enzyme active. This active conformation was used in subsequent computations of the enzymatic reactions. It is known that the catalytic α,β-dehydrogenation of fatty acyl-CoAs consists of two C-H bond dissociation processes: a proton abstraction and a hydride transfer. Energy profiles of the two reaction steps in the wild-type MCAD demonstrate that the reaction proceeds by a stepwise mechanism with a transient species. The activation barriers of the two steps differ by only ∼2 kcal/mol, indicating that both may contribute to the rate-limiting process. Thus this may be a stepwise dissociation mechanism whose relative barriers can be tuned by suitable alterations of the substrate and/or enzyme. Analysis of the structures along the reaction path reveals that Arg256 plays a key role in maintaining the reaction-center hydrogen-bonding network involving the thioester carbonyl group, which stabilizes transition states as well as the intervening transient species. Mutation of this arginine residue to glutamine increases the activation barrier of the hydride transfer reaction by ∼5 kcal/mol, and the present simulations predict a substantial loss of catalytic activity for this mutant. Structural analysis of this mutant reveals that the orientation of the thioester moiety of the substrate has been changed significantly as compared to that in the wild-type enzyme. In contrast, simulation of the active site of the Thr168Ala mutant shows no significant change in the relative orientation of the substrate and the cofactor in the active site; as a result, this mutation has very little effect on

  1. Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis.

    PubMed

    Padanad, Mahesh S; Konstantinidou, Georgia; Venkateswaran, Niranjan; Melegari, Margherita; Rindhe, Smita; Mitsche, Matthew; Yang, Chendong; Batten, Kimberly; Huffman, Kenneth E; Liu, Jingwen; Tang, Ximing; Rodriguez-Canales, Jaime; Kalhor, Neda; Shay, Jerry W; Minna, John D; McDonald, Jeffrey; Wistuba, Ignacio I; DeBerardinis, Ralph J; Scaglioni, Pier Paolo

    2016-08-09

    KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and β-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and β-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain.

  2. Isolation of a Saccharomyces cerevisiae long chain fatty acyl:CoA synthetase gene (FAA1) and assessment of its role in protein N- myristoylation

    PubMed Central

    1992-01-01

    Regulation of myristoylCoA pools in Saccharomyces cerevisiae plays an important role in modulating the activity of myristoylCoA:protein N- myristoyltransferase (NMT), an essential enzyme with an ordered Bi Bi reaction that catalyzes the transfer of myristate from myristoylCoA to greater than or equal to 12 cellular proteins. At least two pathways are available for generating myristoylCoA: de novo synthesis by the multifunctional, multisubunit fatty acid synthetase complex (FAS) and activation of exogenous myristate by acylCoA synthetase. The FAA1 (fatty acid activation) gene has been isolated by genetic complementation of a faal mutant. This single copy gene, which maps to the right arm of chromosome XV, specifies a long chain acylCoA synthetase of 700 amino acids. Analyses of strains containing NMT1 and a faal null mutation indicated that FAA1 is not essential for vegetative growth when an active de novo pathway for fatty acid synthesis is present. The role of FAA1 in cellular lipid metabolism and protein N-myristoylation was therefore assessed in strains subjected to biochemical or genetic blockade of FAS. At 36 degrees C, FAA1 is required for the utilization of exogenous myristate by NMT and for the synthesis of several phospholipid species. This requirement is not apparent at 24 or 30 degrees C, suggesting that S. cerevisiae contains another acylCoA synthetase activity whose chain length and/or temperature optima may differ from Faalp. PMID:1572893

  3. Stereospecificity of malonyl-CoA decarboxylase, acetyl-CoA carboxylase, and fatty acid synthetase from the uropygial gland of goose.

    PubMed

    Kim, Y S; Kolattukudy, P E

    1980-01-25

    Malonyl-CoA decarboxylase from the uropygial gland of goose decarboxylated (R,S)-methylmalonyl-CoA at a slow rate and introduced 3H from [3H]2O into the resulting propionyl-CoA. Carboxylation of this labeled propionyl-CoA by propionyl-CoA carboxylase from pig heart and acetyl-CoA carboxylase from the uropygial gland completely removed 3H. Repeated treatment of (R,S)-[methyl-14C]methylmalonyl-CoA with the decarboxylase converted 50% of the substrate into propionyl-CoA, whereas (S)-methylmalonyl-CoA, generated by both carboxylases, was completely decarboxylated. Radioactive (R)- (S), and (R,S)-methylmalonyl-CoA were equally incorporated into fatty acids by fatty acid synthetase from the uropygial gland. The residual methylmalonyl-CoA remaining after fatty acid synthetase reaction on (R,S)-methylmalonyl-CoA was also racemic. These results show that: (a) the decarboxylase is stereospecific, (b) replacement of the carboxyl group by hydrogen occurs with retention of configuration, (c) acetyl-CoA carboxylase of the uropygial gland generates (S)-methylmalonyl-CoA from propionyl-CoA, and (d) fatty acid synthetase is not stereospecific for methylmalonyl-CoA.

  4. One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose.

    PubMed

    Buckner, J S; Kolattukudy, P E

    1976-05-04

    Cell-free extracts from the uropygial gland of goose catalyzed the incorporation of malonyl-CoA into normal fatty acids and methylmalonyl-CoA into multimethyl branched acids with NADPH as the preferred reductant (J. S. Buckner and P.E. Kolattukudy (1975), Biochemistry 14, 1771). Purification of fatty acid synthetase from this extract was accomplished in one step by gel filtration with Sepharose 4B. Homogeneity of the fatty acid synthetase was shown by analytical ultracentrifugation, immunodiffusion assays, polyacrylamide disc gel electrophoresis, and sodium dodecyl sulfate polyacrylamide disc gel electrophoresis. At a pH of 7.0, apparent Km values of 3.6 X 10(-5) M and 1.5 X 10(-5) M were calculated for malonyl-C0A and NADPH, respectively. The major products synthesized by the enzyme from malonyl-CoA and methylmalonyl-C0A were free hexadecanoic acid and free 2, 4, 6, 8-tetramethyldecanoic acid, respectively, with acetyl-CoA as primer. A molecular weight value of 547 000 was determined for the goose fatty acid synthetase by sedimentation equilibrium centrifugation. The purified enzyme had an s20,w of 13.5S and was partially dissociated in low-ionic strength buffer into a 9.3S species, and this dissociation was accompanied by a corresponding partial inactivation of the enzymatic activity. Reassociation and reactivation of the partially dissociated fatty acid synthetase were accomplished in either 0.2 M KCl or 200 muM NADPH. These properties of the goose enzyme are similar to those of other animal fatty acid synthetases, as was the amino acid composition. Dissociation of the purified enzyme with sodium dodecyl sulfate resulted in only two equal molecular weight polypeptides (269 000), as determined by sodium dodecyl sulfate polyacrylamide disc gel electrophoresis. Injection of labeled pantothenic acid into the uropygial gland resulted in the synthesis of labeled fatty acid synthetase in which the label appeared to be located exclusively in the 4'-phosphopantotheine

  5. Nature of the Fatty Acid Synthetase Systems in Parenchymal and Epidermal Cells of Allium porrum L. Leaves 1

    PubMed Central

    Lessire, Rene; Stumpe, Paul K.

    1983-01-01

    Fatty acid synthesis was compared in cell-free extracts of epidermis and parenchyma of Allium porrum L. leaves. Parenchyma extracts had the major fatty acid synthetase (FAS) activity (70-90%) of the whole leaf; palmitic acid was also the major fatty acid synthesized when acetyl-coenzyme A (CoA) was the primer, but when acetyl-acyl carrier protein (ACP) was employed, C18:0 and C16:0 were synthesized in equal proportion. With the epidermal FAS system when either acetyl-CoA or acetyl-ACP was tested in the presence of labeled malonyl-CoA, palmitic acid was the only product synthesized. Specific activities of the FAS enzyme activities were determined in both tissue extracts. The properties of malonyl-CoA:ACP transacylase were examined from the two different tissues. The molecular weights estimated by Sephadex G-200 chromatography were 38,000 for the epidermal enzyme and 45,000 for parenchymal enzyme. The optimal pH was for both enzymes 7.8 to 8.0 and the maximal velocity 0.4 to 0.5 micromoles per milligram protein per minute. These enzymes had different affinities for malonyl-CoA and ACP. For the malonyl-CoA:ACP transacylase of epidermis, the Km values were 5.6 and 13.7 micromolar for malonyl-CoA and ACP, respectively, and 4.2 and 21.7 micromolar for the parenchymal enzyme. These results suggest that the FAS system in both tissues are nonassociated, that the malonyl-CoA:ACP transacylases are isozymes, and that both in epidermis and in parenchyma tissue two independent FAS system occur. Evidence would suggest that β-ketoacyl-ACP synthase II is present in the parenchymal cells but missing in the epidermal cell. PMID:16663268

  6. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake

    PubMed Central

    Poppelreuther, Margarete; Rudolph, Berenice; Du, Chen; Großmann, Regina; Becker, Melanie; Thiele, Christoph; Ehehalt, Robert; Füllekrug, Joachim

    2012-01-01

    Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids. PMID:22357706

  7. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases.

    PubMed

    Tong, Fumin; Black, Paul N; Coleman, Rosalind A; DiRusso, Concetta C

    2006-03-01

    Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation.

  8. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake.

    PubMed

    Poppelreuther, Margarete; Rudolph, Berenice; Du, Chen; Großmann, Regina; Becker, Melanie; Thiele, Christoph; Ehehalt, Robert; Füllekrug, Joachim

    2012-05-01

    Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.

  9. Intraperoxisomal localization of very-long-chain fatty acyl-CoA synthetase: implication in X-adrenoleukodystrophy.

    PubMed

    Smith, B T; Sengupta, T K; Singh, I

    2000-02-01

    X-adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain (VLC) fatty acids (>C(22:0)) due to the impaired activity of VLC acyl-CoA synthetase (VLCAS). The gene responsible for X-ALD was found to code for a peroxisomal integral membrane protein (ALDP) that belongs to the ATP binding cassette superfamily of transporters. To understand the function of ALDP and how ALDP and VLCAS interrelate in the peroxisomal beta-oxidation of VLC fatty acids we investigated the peroxisomal topology of VLCAS protein. Antibodies raised against a peptide toward the C-terminus of VLCAS as well as against the N-terminus were used to define the intraperoxisomal localization and orientation of VLCAS in peroxisomes. Indirect immunofluorescent and electron microscopic studies show that peroxisomal VLCAS is localized on the matrix side. This finding was supported by protease protection assays and Western blot analysis of isolated peroxisomes. To further address the membrane topology of VLCAS, Western blot analysis of total membranes or integral membranes prepared from microsomes and peroxisomes indicates that VLCAS is a peripheral membrane-associated protein in peroxisomes, but an integral membrane in microsomes. Moreover, peroxisomes isolated from cultured skin fibroblasts from X-ALD patients with a mutation as well as a deletion in ALDP showed a normal amount of VLCAS. The consequence of VLCAS being localized to the luminal side of peroxisomes suggests that ALDP may be involved in stabilizing VLCAS activity, possibly through protein-protein interactions, and that loss or alterations in these interactions may account for the observed loss of peroxisomal VLCAS activity in X-ALD. Copyright 2000 Academic Press.

  10. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    SciTech Connect

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  11. Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity.

    PubMed

    Bu, So Young; Mashek, Mara T; Mashek, Douglas G

    2009-10-30

    Long chain acyl-CoA synthetases (ACSL) and fatty acid transport proteins (FATP) activate fatty acids to acyl-CoAs in the initial step of fatty acid metabolism. Numerous isoforms of ACSL and FATP exist with different tissue distribution patterns, intracellular locations, and substrate preferences, suggesting that each isoform has distinct functions in channeling fatty acids into different metabolic pathways. Because fatty acids, acyl-CoAs, and downstream lipid metabolites regulate various transcription factors that control hepatic energy metabolism, we hypothesized that ACSL or FATP isoforms differentially regulate hepatic gene expression. Using small interference RNA (siRNA), we knocked down each liver-specific ACSL and FATP isoform in rat primary hepatocyte cultures and subsequently analyzed reporter gene activity of numerous transcription factors and performed quantitative mRNA analysis of their target genes. Compared with control cells, which were transfected with control siRNA, knockdown of acyl-CoA synthetase 3 (ACSL3) significantly decreased reporter gene activity of several lipogenic transcription factors such as peroxisome proliferator activation receptor-gamma, carbohydrate-responsive element-binding protein, sterol regulatory element-binding protein-1c, and liver X receptor-alpha and the expression of their target genes. These findings were further supported by metabolic labeling studies that showed [1-(14)C]acetate incorporation into lipid extracts was decreased in cells treated with ACSL3 siRNAs and that ACSL3 expression is up-regulated in ob/ob mice and mice fed a high sucrose diet. ACSL3 knockdown decreased total acyl-CoA synthetase activity without substantially altering the expression of other ACSL isoforms. In summary, these results identify a novel role for ACSL3 in mediating transcriptional control of hepatic lipogenesis.

  12. Multiple erythroid isoforms of human long-chain acyl-CoA synthetases are produced by switch of the fatty acid gate domains.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2006-07-11

    The formation of acyl-CoA by the action of acyl-CoA synthetases plays a crucial role in membrane lipid turnover, including the plasma membrane of erythrocytes. In human, five Acyl-CoA Synthetase Long-chain (ACSL) genes have been identified with as many as 3 different transcript variants for each. Acyl-CoA Synthetase Long-chain member 6 (ACSL6) is responsible for activation of long-chain fatty acids in erythrocytes. Two additional transcript variants were also isolated from brain and testis. We report the expression in reticulocytes of two new variants and of the one isolated from brain. All three represented different spliced variants of a mutually exclusive exon pair. They encode a slightly different short motif which contains a conserved structural domain, the fatty acid Gate domain. The motifs differ in the presence of either the aromatic residue phenylalanine (Phe) or tyrosine (Tyr). Based on homology, two new isoforms for the closely related ACSL1 were predicted and characterized. One represented a switch of the Phe- to the Tyr-Gate domain motif, the other resulted from the exclusion of both. Swapping of this motif also appears to be common in all mammalian ACSL member 1 and 6 homologs. We propose that a Phe to Tyr substitution or deletion of the Gate domain, is the structural reason for the conserved alternative splicing that affects these motifs. Our findings support our hypothesis that this region is structurally important to define the activity of these enzymes.

  13. Stereochemical studies of hydrogen incorporation from nucleotides with fatty acid synthetase from Brevibacterium ammoniagenes.

    PubMed

    Seyama, Y; Kasama, T; Yamakawa, T; Kawaguchi, A; Okuda, S

    1977-04-01

    The biosynthesis of fatty acids from malonyl-CoA and acetyl-CoA was investigated with an enzyme preparation which was purified 100-fold from Brevibacterium ammoniagenes. Fatty acids synthesized in the presence of D2O and stereospecifically deuterated NADPH and NADH were isolated and analyzed by mass chromatography to examine the localization of deuterium in the molecule. The following results were obtained: 1) HB hydrogen of NADPH was used for beta-ketoacyl reductase. 2) HB hydrogen of NADH was used for enoyl reductase. 3) Hydrogen atoms from water were found on the even-numbered methylene carbon atoms (2-hydrogen atoms per carbon atom) and some were also found on the odd-numbered methylene carbon atoms. 4) Hydrogen atoms from NADPH was found on the odd-numbered methylene carbon atoms (1 hydrogen per carbon). 5) Hydrogen atoms from NADH was also found on the odd-numbered methylene carbon atoms, but the number of incorporated hydrogen atoms was less than expected. The exchange of HB hydrogen of NADH with water catalyzed by enoyl reductase was suspected. 6) The exchange of methylene hydrogen atoms of malonyl-CoA with protons of water was suggested by 13C NMR analysis.

  14. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica.

    PubMed

    Tenagy; Park, Jun Seok; Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-06-01

    Here, we investigated the roles of YAL1 (FAA1) and FAT1 encoding acyl-CoA synthetases (ACSs) and three additional orthologs of ACS genes FAT2-FAT4 of the yeast Yarrowia lipolytica in the assimilation or utilization of n-alkanes and fatty acids. ACS deletion mutants were generated to characterize their function. The FAT1 deletion mutant exhibited decreased growth on n-alkanes of 10-18 carbons, whereas the FAA1 mutant showed growth reduction on n-alkane of 16 carbons. However, FAT2-FAT4 deletion mutants did not show any growth defects, suggesting that FAT1 and FAA1 are involved in the activation of fatty acids produced during the metabolism of n-alkanes. In contrast, deletions of FAA1 and FAT1-FAT4 conferred no defect in growth on fatty acids. The wild-type strain grew in the presence of cerulenin, an inhibitor of fatty acid synthesis, by utilizing exogenously added fatty acid or fatty acid derived from n-alkane when oleic acid or n-alkane of 18 carbons was supplemented. However, the FAA1 deletion mutant did not grow, indicating a critical role for FAA1 in the utilization of fatty acids. Fluorescent microscopic observation and biochemical analyses suggested that Fat1p is present in the peroxisome and Faa1p is localized in the cytosol and to membranes.

  15. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1.

    PubMed Central

    Kim, J B; Sarraf, P; Wright, M; Yao, K M; Mueller, E; Solanes, G; Lowell, B B; Spiegelman, B M

    1998-01-01

    The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism. PMID:9421459

  16. Human Fatty Acid Transport Protein 2a/Very Long Chain Acyl-CoA Synthetase 1 (FATP2a/Acsvl1) Has a Preference in Mediating the Channeling of Exogenous n-3 Fatty Acids into Phosphatidylinositol*

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; Watkins, Paul A.; DiRusso, Concetta C.; Black, Paul N.

    2011-01-01

    The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. We have expressed two naturally occurring splice variants of human FATP2 (Acsvl1) in yeast and 293T-REx cells and addressed their roles in fatty acid transport, activation, and intracellular trafficking. Although both forms (FATP2a (Mr 70,000) and FATP2b (Mr 65,000 and lacking exon3, which encodes part of the ATP binding site)) were functional in fatty acid import, only FATP2a had acyl-CoA synthetase activity, with an apparent preference toward very long chain fatty acids. To further address the roles of FATP2a or FATP2b in fatty acid uptake and activation, LC-MS/MS was used to separate and quantify different acyl-CoA species (C14–C24) and to monitor the trafficking of different classes of exogenous fatty acids into intracellular acyl-CoA pools in 293T-REx cells expressing either isoform. The use of stable isotopically labeled fatty acids demonstrated FATP2a is involved in the uptake and activation of exogenous fatty acids, with a preference toward n-3 fatty acids (C18:3 and C22:6). Using the same cells expressing FATP2a or FATP2b, electrospray ionization/MS was used to follow the trafficking of stable isotopically labeled n-3 fatty acids into phosphatidylcholine and phosphatidylinositol. The expression of FATP2a resulted in the trafficking of C18:3-CoA and C22:6-CoA into both phosphatidylcholine and phosphatidylinositol but with a distinct preference for phosphatidylinositol. Collectively these data demonstrate FATP2a functions in fatty acid transport and activation and provides specificity toward n-3 fatty acids in which the corresponding n-3 acyl-CoAs are preferentially trafficked into acyl-CoA pools

  17. Cloning and sequencing of the medium-chain S-acyl fatty acid synthetase thioester hydrolase cDNA from rat mammary gland.

    PubMed Central

    Naggert, J; Williams, B; Cashman, D P; Smith, S

    1987-01-01

    cDNA clones coding for the medium-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase II) from rat mammary gland were identified in a bacteriophage lambda gt11 library and their nucleotide sequences were determined. The predicted coding region spans 263 amino acid residues and includes a sequence identical with that of a peptide derived from the enzyme active site. The rat thioesterase II cDNA sequence exhibits homology with that of a thioesterase found in duck uropygial glands. Images Fig. 3. PMID:3632637

  18. A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the β-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum

    PubMed Central

    Mareš, Jan; Hájek, Jan; Urajová, Petra; Kopecký, Jiří; Hrouzek, Pavel

    2014-01-01

    A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa) or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea). Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln) show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides. PMID:25369527

  19. Multiple erythroid isoforms of human long-chain acyl-CoA synthetases are produced by switch of the fatty acid gate domains

    PubMed Central

    Soupene, Eric; Kuypers, Frans A

    2006-01-01

    Background The formation of acyl-CoA by the action of acyl-CoA synthetases plays a crucial role in membrane lipid turnover, including the plasma membrane of erythrocytes. In human, five Acyl-CoA Synthetase Long-chain (ACSL) genes have been identified with as many as 3 different transcript variants for each. Results Acyl-CoA Synthetase Long-chain member 6 (ACSL6) is responsible for activation of long-chain fatty acids in erythrocytes. Two additional transcript variants were also isolated from brain and testis. We report the expression in reticulocytes of two new variants and of the one isolated from brain. All three represented different spliced variants of a mutually exclusive exon pair. They encode a slightly different short motif which contains a conserved structural domain, the fatty acid Gate domain. The motifs differ in the presence of either the aromatic residue phenylalanine (Phe) or tyrosine (Tyr). Based on homology, two new isoforms for the closely related ACSL1 were predicted and characterized. One represented a switch of the Phe- to the Tyr-Gate domain motif, the other resulted from the exclusion of both. Swapping of this motif also appears to be common in all mammalian ACSL member 1 and 6 homologs. Conclusion We propose that a Phe to Tyr substitution or deletion of the Gate domain, is the structural reason for the conserved alternative splicing that affects these motifs. Our findings support our hypothesis that this region is structurally important to define the activity of these enzymes. PMID:16834775

  20. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  1. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  2. Overexpression of Human Fatty Acid Transport Protein 2/Very Long Chain Acyl-CoA Synthetase 1 (FATP2/Acsvl1) Reveals Distinct Patterns of Trafficking of Exogenous Fatty Acids

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2014-01-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  3. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; Klett, Eric L; De Paula, Iron F; Ramos, Isabela B; Coleman, Rosalind A; Gondim, Katia C

    2016-07-01

    Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction.

  4. The Acyl-Acyl Carrier Protein Synthetase from Synechocystis sp. PCC 6803 Mediates Fatty Acid Import1[C][W][OA

    PubMed Central

    von Berlepsch, Simon; Kunz, Hans-Henning; Brodesser, Susanne; Fink, Patrick; Marin, Kay; Flügge, Ulf-Ingo; Gierth, Markus

    2012-01-01

    The transfer of fatty acids across biological membranes is a largely uncharacterized process, although it is essential at membranes of several higher plant organelles like chloroplasts, peroxisomes, or the endoplasmic reticulum. Here, we analyzed loss-of-function mutants of the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a model system to circumvent redundancy problems encountered in eukaryotic organisms. Cells deficient in the only cytoplasmic Synechocystis acyl-acyl carrier protein synthetase (SynAas) were highly resistant to externally provided α-linolenic acid, whereas wild-type cells bleached upon this treatment. Bleaching of wild-type cells was accompanied by a continuous increase of α-linolenic acid in total lipids, whereas no such accumulation could be observed in SynAas-deficient cells (Δsynaas). When SynAas was disrupted in the tocopherol-deficient, α-linolenic acid-hypersensitive Synechocystis mutant Δslr1736, double mutant cells displayed the same resistance phenotype as Δsynaas. Moreover, heterologous expression of SynAas in yeast (Saccharomyces cerevisiae) mutants lacking the major yeast fatty acid import protein Fat1p (Δfat1) led to the restoration of wild-type sensitivity against exogenous α-linolenic acid of the otherwise resistant Δfat1 mutant, indicating that SynAas is functionally equivalent to Fat1p. In addition, liposome assays provided direct evidence for the ability of purified SynAas protein to mediate α-[14C]linolenic acid retrieval from preloaded liposome membranes via the synthesis of [14C]linolenoyl-acyl carrier protein. Taken together, our data show that an acyl-activating enzyme like SynAas is necessary and sufficient to mediate the transfer of fatty acids across a biological membrane. PMID:22535424

  5. Reduction of serum free fatty acids and triglycerides by liver-targeted expression of long chain acyl-CoA synthetase 3.

    PubMed

    Wu, Minhao; Cao, Aiqin; Dong, Bin; Liu, Jingwen

    2011-05-01

    ACSL3 is a member of the long chain acyl-CoA synthetase (ACSL) family that consists of 5 isozymes responsible for cellular fatty acid metabolism in various tissues in an isozyme-specific manner. Our previous studies have demonstrated that expression of ACSL3 mRNA and protein in liver was specifically increased after feeding hamsters with a fat- and cholesterol-enriched diet, providing the first in vivo evidence for the regulated expression of ACSL3 in liver tissue. The aim of the current study was to further investigate the role of ACSL3 in regulating hepatic lipid metabolism in vitro and in vivo. We utilized an adenoviral-mediated gene delivery approach to exogenously express hamster ACSL3 in hamster liver as well as in HepG2 cells. Transduction of HepG2 cells with Ad-hamACSL3 adenovirus elevated total cellular ACSL enzyme activity, which was accompanied by a significant reduction of cellular contents of triglycerides and total phospholipids. Immunostaining and confocal microscopy studies revealed that ACSL3 was localized to endoplasmic reticulum and mitochondria. In vivo, infection of hamsters with Ad-hamACSL3 led to sustained expression of ACSL3 mRNA and protein in liver two weeks after infection. Importantly, compared with Ad-GFP control virus infected hamsters, we observed significantly lower free fatty acids and triglycerides plus modest reduction of phospholipids in the serum of Ad-hamACSL3 infected animals. Furthermore, triglyceride levels were significantly reduced in Ad-hamACSL3 infected hamster liver. Altogether, these results provide important and physiologically relevant evidence that strengthens the link between ACSL3 expression and hepatic reduction of triglycerides and fatty acids.

  6. A Novel Fatty Acyl-CoA Synthetase Is Required for Pollen Development and Sporopollenin Biosynthesis in Arabidopsis[C][W

    PubMed Central

    de Azevedo Souza, Clarice; Kim, Sung Soo; Koch, Stefanie; Kienow, Lucie; Schneider, Katja; McKim, Sarah M.; Haughn, George W.; Kombrink, Erich; Douglas, Carl J.

    2009-01-01

    Acyl-CoA Synthetase (ACOS) genes are related to 4-coumarate:CoA ligase (4CL) but have distinct functions. The Arabidopsis thaliana ACOS5 protein is in clade A of Arabidopsis ACOS proteins, the clade most closely related to 4CL proteins. This clade contains putative nonperoxisomal ACOS enzymes conserved in several angiosperm lineages and in the moss Physcomitrella patens. Although its function is unknown, ACOS5 is preferentially expressed in the flowers of all angiosperms examined. Here, we show that an acos5 mutant produced no pollen in mature anthers and no seeds by self-fertilization and was severely compromised in pollen wall formation apparently lacking sporopollenin or exine. The phenotype was first evident at stage 8 of anther development and correlated with maximum ACOS5 mRNA accumulation in tapetal cells at stages 7 to 8. Green fluorescent protein–ACOS5 fusions showed that ACOS5 is located in the cytoplasm. Recombinant ACOS5 enzyme was active against oleic acid, allowing kinetic constants for ACOS5 substrates to be established. Substrate competition assays indicated broad in vitro preference of the enzyme for medium-chain fatty acids. We propose that ACOS5 encodes an enzyme that participates in a conserved and ancient biochemical pathway required for sporopollenin monomer biosynthesis that may also include the Arabidopsis CYP703A2 and MS2 enzymes. PMID:19218397

  7. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice.

    PubMed

    Goldenberg, Joseph R; Wang, Xuerong; Lewandowski, E Douglas

    2016-05-01

    Acyl CoA synthetase-1 (ACSL1) is localized at intracellular membranes, notably the mitochondrial membrane. ACSL1 and female sex are suggested to indirectly facilitate lipid availability to the heart and other organs. However, such mechanisms in intact, functioning myocardium remain unexplored, and roles of ACSL1 and sex in the uptake and trafficking of fats are poorly understood. To determine the potential for ACSL1 and sex-dependent differences in metabolic trapping and trafficking effects of long-chain fatty acids (LCFA) within cardiomyocytes of intact hearts. (13)C NMR of intact, beating mouse hearts, supplied (13)C palmitate, revealed 44% faster trans-sarcolemmal uptake of LCFA in male hearts overexpressing ACSL1 (MHC-ACSL1) than in non-transgenic (NTG) males (p<0.05). Acyl CoA content was elevated by ACSL1 overexpression, 404% in males and 164% in female, relative to NTG. Despite similar ACSL1 content, NTG females displayed faster LCFA uptake kinetics compared to NTG males, which was reversed by ovariectomy. NTG female LCFA uptake rates were similar to those in ACSL1 males and ACSL1 females. ACSL1 and female sex hormones both accelerated LCFA uptake without affecting triglyceride content or turnover. ACSL1 hearts contained elevated ceramide, particularly C22 ceramide in both sexes and specifically, C24 in males. ACSL1 also induced lower content of fatty acid transporter-6 (FATP6) indicating cooperative regulation with ACSL1. Surprisingly, ACSL1 overexpression did not increase mitochondrial oxidation of exogenous palmitate, which actually dropped in female ACSL1 hearts. ACSL1-mediated metabolic trapping of exogenous LCFA accelerates LCFA uptake rates, albeit to a lesser extent in females, which distinctly affects LCFA trafficking to acyl intermediates but not triglyceride storage or mitochondrial oxidation and is affected by female sex hormones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice

    PubMed Central

    Goldenberg, Joseph R.; Wang, Xuerong; Lewandowski, E. Douglas

    2016-01-01

    Rationale Acyl CoA synthetase-1 (ACSL1) is localized at intracellular membranes, notably the mitochondrial membrane. ACSL1 and female sex are suggested to indirectly facilitate lipid availability to the heart and other organs. However, such mechanisms in intact, functioning myocardium remain unexplored, and roles of ACSL1 and sex in the uptake and trafficking of fats are poorly understood. Objective To determine the potential for ACSL1 and sex-dependent differences in metabolic trapping and trafficking effects of long-chain fatty acids (LCFA) within cardiomyocytes of intact hearts. Methods and Results 13C NMR of intact, beating mouse hearts, supplied 13C palmitate, revealed 44% faster trans-sarcolemmal uptake of LCFA in male hearts overexpressing ACSL1 (MHC-ACSL1) than in non-transgenic (NTG) males (P<0.05). Acyl CoA content was elevated by ACSL1 overexpression, 404% in males and 164% in female, relative to NTG. Despite similar ACSL1 content, NTG females displayed faster LCFA uptake kinetics compared to NTG males, which was reversed by ovariectomy. NTG female LCFA uptake rates were similar to those in ACSL1 males and ACSL1 females. ACSL1 and female sex hormones both accelerated LCFA uptake without affecting triglyceride content or turnover. ACSL1 hearts contained elevated ceramide, particularly C22 ceramide in both sexes and specifically, C24 in males. ACSL1 also induced lower content of fatty acid transporter-6 (FATP6) indicating cooperative regulation with ACSL1. Surprisingly, ACSL1 overexpression did not increase mitochondrial oxidation of exogenous palmitate, which actually dropped in female ACSL1 hearts. Conclusions ACSL1-mediated metabolic trapping of exogenous LCFA accelerates LCFA uptake rates, albeit to a lesser extent in females, which distinctly affects LCFA trafficking to acyl intermediates but not triglyceride storage or mitochondrial oxidation and is affected by female sex hormones. PMID:26995156

  9. Characterization of long-chain acyl-CoA synthetases which stimulate secretion of fatty acids in green algae Chlamydomonas reinhardtii.

    PubMed

    Jia, Bin; Song, Yanzi; Wu, Min; Lin, Baicheng; Xiao, Kang; Hu, Zhangli; Huang, Ying

    2016-01-01

    Microalgae biofuel has become the most promising renewable energy over the past few years. But limitations still exist because of its high cost. Although, efforts have been made in enhancement of lipid productivity, the major cost problem in harvesting and oil extraction is still intractable. Thus, the idea of fatty acids (FAs) secretion which can massively facilitate algae harvesting and oil extraction was investigated here. The cDNAs of two long-chain acyl-CoA synthetases (LACSs) genes were cloned from Chlamydomonas reinhardtii and named as cracs1 and cracs2. They showed different substrate adaptation in the yeast complementation experiments. Cracs2 could utilize FAs C12:0, C14:0, C16:0, C18:0, C16:1 and C18:1, while crac1 could only utilize substrate C14:0, C16:1 and C18:1. Knockdown of cracs1 and cracs2 in C. reinhardtii resulted in accumulation of intracellular lipids. The total intracellular lipids contents of transgenic algae q-15 (knockdown of cracs1) and p-13 (knockdown of cracs2) were 45 and 55 %, respectively higher than that of cc849. Furthermore, FAs secretion was discovered in both transgenic algae. Secreted FAs can reach 8.19 and 9.66 mg/10(9) cells in q-15 and p-13, respectively. These results demonstrated the possibility of FAs secretion by microalgae and may give a new strategy of low-cost oil extraction. According to our findings, we proposed that FAs secretion may also be achieved in other species besides Chlamydomonas reinhardtii by knocking-down cracs genes, which may promote the future industrial application of microalgae biofuels.

  10. FadD from Pseudomonas putida CA-3 Is a True Long-Chain Fatty Acyl Coenzyme A Synthetase That Activates Phenylalkanoic and Alkanoic Acids▿ †

    PubMed Central

    Hume, Aisling R.; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E.

    2009-01-01

    A fatty acyl coenzyme A synthetase (FadD) from Pseudomonas putida CA-3 is capable of activating a wide range of phenylalkanoic and alkanoic acids. It exhibits the highest rates of reaction and catalytic efficiency with long-chain aromatic and aliphatic substrates. FadD exhibits higher kcat and Km values for aromatic substrates than for the aliphatic equivalents (e.g., 15-phenylpentadecanoic acid versus pentadecanoic acid). FadD is inhibited noncompetitively by both acrylic acid and 2-bromooctanoic acid. The deletion of the fadD gene from P. putida CA-3 resulted in no detectable growth or polyhydroxyalkanoate (PHA) accumulation with 10-phenyldecanoic acid, decanoic acid, and longer-chain substrates. The results suggest that FadD is solely responsible for the activation of long-chain phenylalkanoic and alkanoic acids. While the CA-3ΔfadD mutant could grow on medium-chain substrates, a decrease in growth yield and PHA accumulation was observed. The PHA accumulated by CA-3ΔfadD contained a greater proportion of short-chain monomers than did wild-type PHA. Growth of CA-3ΔfadD was unaffected, but PHA accumulation decreased modestly with shorter-chain substrates. The complemented mutant regained 70% to 90% of the growth and PHA-accumulating ability of the wild-type strain depending on the substrate. The expression of an extra copy of fadD in P. putida CA-3 resulted in increased levels of PHA accumulation (up to 1.6-fold) and an increase in the incorporation of longer-monomer units into the PHA polymer. PMID:19820085

  11. Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin.

    PubMed

    Durgan, David J; Smith, Justin K; Hotze, Margaret A; Egbejimi, Oluwaseun; Cuthbert, Karalyn D; Zaha, Vlad G; Dyck, Jason R B; Abel, E Dale; Young, Martin E

    2006-06-01

    The molecular mechanism(s) responsible for channeling long-chain fatty acids (LCFAs) into oxidative versus nonoxidative pathways is (are) poorly understood in the heart. Intracellular LCFAs are converted to long-chain fatty acyl-CoAs (LCFA-CoAs) by a family of long-chain acyl-CoA synthetases (ACSLs). Cytosolic thioesterase 1 (CTE1) hydrolyzes cytosolic LCFA-CoAs to LCFAs, generating a potential futile cycle at the expense of ATP utilization. We hypothesized that ACSL isoforms and CTE1 are differentially regulated in the heart during physiological and pathophysiological conditions. Using quantitative RT-PCR, we report that the five known acsl isoforms (acsl1, acsl3, acsl4, acsl5, and acsl6) and cte1 are expressed in whole rat and mouse hearts, as well as adult rat cardiomyocytes (ARCs). Streptozotocin-induced insulin-dependent diabetes (4 wk) and fasting (

  12. Rosiglitazone Inhibits Acyl-CoA Synthetase Activity and Fatty Acid Partitioning to Diacylglycerol and Triacylglycerol via a Peroxisome Proliferator–Activated Receptor-γ–Independent Mechanism in Human Arterial Smooth Muscle Cells and Macrophages

    PubMed Central

    Askari, Bardia; Kanter, Jenny E.; Sherrid, Ashley M.; Golej, Deidre L.; Bender, Andrew T.; Liu, Joey; Hsueh, Willa A.; Beavo, Joseph A.; Coleman, Rosalind A.; Bornfeldt, Karin E.

    2010-01-01

    Rosiglitazone is an insulin-sensitizing agent that has recently been shown to exert beneficial effects on atherosclerosis. In addition to peroxisome proliferator–activated receptor (PPAR)-γ, rosiglitazone can affect other targets, such as directly inhibiting recombinant long-chain acyl-CoA synthetase (ACSL)-4 activity. Because it is unknown if ACSL4 is expressed in vascular cells involved in atherosclerosis, we investigated the ability of rosiglitazone to inhibit ACSL activity and fatty acid partitioning in human and murine arterial smooth muscle cells (SMCs) and macrophages. Human and murine SMCs and human macrophages expressed Acsl4, and rosiglitazone inhibited Acsl activity in these cells. Furthermore, rosiglitazone acutely inhibited partitioning of fatty acids into phospholipids in human SMCs and inhibited fatty acid partitioning into diacylglycerol and triacylglycerol in human SMCs and macrophages through a PPAR-γ–independent mechanism. Conversely, murine macrophages did not express ACSL4, and rosiglitazone did not inhibit ACSL activity in these cells, nor did it affect acute fatty acid partitioning into cellular lipids. Thus, rosiglitazone inhibits ACSL activity and fatty acid partitioning in human and murine SMCs and in human macrophages through a PPAR-γ–independent mechanism likely to be mediated by ACSL4 inhibition. Therefore, rosiglitazone might alter the biological effects of fatty acids in these cells and in atherosclerosis. PMID:17259370

  13. Studies on the reactivity of the essential sulfhydryl groups as a conformational probe for the fatty acid synthetase of chicken liver. Inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid) and intersubunit cross-linking of the inactivated enzyme.

    PubMed

    Tian, W X; Hsu, R Y; Wang, Y S

    1985-09-15

    Fatty acid synthetase of chicken liver is rapidly and reversibly inactivated by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) at a rate (k2 = 132 mM-1 S-1 in 3 mM EDTA, 1% (v/v) glycerol, pH 7.0, at 25 degrees C) up to 2200 times higher than the reaction of this reagent with simple thiol compounds. The inactivation is caused by the reaction of the phosphopantetheine SH group, since it is protected competitively by either acetyl- or malonyl-CoA, and since the inactivated enzyme is unreactive with the phosphopantetheine label chloroacetyl-CoA but reactive with the cysteine reagent 1,3-dibromopropanone. Moreover, chloroacetyl-CoA prevents the modification of the rapidly reacting essential SH group by DTNB. The number of SH groups involved in inactivation was determined by correlating activity loss with the extent of reaction and by stopped-flow analysis of substrate (or chloroacetyl-CoA) protection. Values between 0.91 and 1.15 SH groups/dimer were obtained, indicating the presence of substoichiometric amounts of the prosthetic group in the fatty acid synthetase preparations used in this study. Inactivation of the synthetase by DTNB is strongly inhibited by increasing salt concentration and protected noncompetitively by NADP+ and NADPH. Treatment of the enzyme inactivated at low salt by salt, NADP+, or NADPH also effectively reduced cross-linking between enzyme subunits. The parallel effects of these treatments on the reaction with DTNB and subsequent dimerization are consistent with a minimum model of two discreet conformation states for fatty acid synthetase. In the low salt conformer, the phosphopantetheine and cysteine SH groups are juxtaposed, and the DTNB reaction (k2 approximately 132 mM-1 S-1) and dimerization are both facilitated. Transition to the high salt conformer by the above treatments is accompanied by an approximately 20-fold reduction of reactivity with DTNB (k2 = 6.8 mM-1 S-1) and reduced dimerization, due to spatial separation of the SH groups

  14. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus.

    PubMed

    Tian, Juan; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Liu, Wei; Wen, Hua

    2015-02-01

    The objective of this study was to assess the effects of dietary lipids on growth performance, body composition, serum parameters, and expression of genes involved in lipid metabolism in adult genetically improved farmed tilapia (GIFT strain) of Nile tilapia, Oreochromis niloticus. We randomly assigned adult male Nile tilapia (average initial body weight = 220.00 ± 9.54 g) into six groups consisting of four replicates (20 fish per replicate). Fish in each group were hand-fed a semi-purified diets containing different lipid levels [3.3 (the control group), 28.4, 51.4, 75.4, 101.9, and 124.1 g kg(-1)] for 8 weeks. The results indicated that there was no obvious effect in feeding rate among all groups (P > 0.05). The highest weight gain, specific growth rate, and protein efficiency ratio in 75.4 g kg(-1) diet group were increased by 23.31, 16.17, and 22.02 % than that of fish in the control group (P < 0.05). Protein retention ratio was highest in 51.4 g kg(-1) diet group. The results revealed that the optimum dietary lipid level for maximum growth performance is 76.6-87.9 g kg(-1). Increasing dietary lipid levels contributed to increased tissue and whole body lipid levels. Saturated and monounsaturated fatty acids (MUFAs) decreased, and polyunsaturated fatty acids increased with increasing dietary lipid levels. With the exception of MUFAs, the fatty acid profiles of liver and muscle were similar. Dietary lipid levels were negatively correlated with low-density lipoprotein- cholesterol content and positively with triacylglycerol and glucose contents. In the lipid-fed groups, there was a significant down-regulation of fatty acid synthase (FAS) mRNA in liver, muscle, and visceral adipose tissues. There was a rapid up-regulation of lipoprotein lipase (LPL) mRNA in muscle and liver with increasing dietary lipid levels. In visceral adipose tissue, LPL mRNA was significantly down-regulated in the lipid-fed groups. Dietary lipids increased hormone-sensitive lipase (HSL) m

  15. [Anti-synthetase syndrome].

    PubMed

    Novak, Srdan

    2012-01-01

    Antysynthetase syndrome is considered as a group ofidiopathic inflammatory myositis with charcteristic serologic hallmark--antibodies which recognise the aminoacyl-tRNA synthetasses (ARS). Clinical picture of those patients contains myositis and/or intersticial lung disease (ILD) and/or arthritis and/or fever and/or Raynaud phenomenon and sometimes characteristic look of mechanic's hands. Myositis can be overt, sometimes even absent, while IBP is major cause of morbidity and determines the outcome of the disease. Untill now eight different any-synthetase autoantibodies are recognised, and most frequent are findings of anti-histidyl-tRNa synthetase antibodies. Patients with other ARS autoantibodies usually have severe ILD. Drug of choice are steroids in dosage of 1 mg/kg with immunosupresive agent (azatioprin or methotrexate) while in severe IBP cyclophosphamide is needed. Recently succsesful treatment with rituximab in combination with cyclophosphamide is reported.

  16. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  17. Homology modeling and molecular docking studies of Bacillomycin and Iturin synthetases with novel ligands for the production of therapeutic lipopeptides.

    PubMed

    Eswari, Jujjavarapu Satya; Dhagat, Swasti; Kaser, Shubham; Tiwari, Anoop

    2017-08-15

    Lipopeptide synthetases play an important role in the production of lipopeptides. Lipopeptides are molecules made up of peptides and fatty acid moieties and have shown to have a broad range of antimicrobial activity. As infectious diseases have caused severe health problems mainly resulting from the development of antibiotic resistant strains of disease causing microorganisms there is a need of alternatives to antibiotics. The lipopeptide synthetase of the corresponding lipopeptides can be used as templates to design these as drugs using computational techniques. The objective of this study was homology modeling and molecular docking of two lipopeptide synthetases, bacillomycin D synthetase and iturin A synthetase, with their ligands as a means of drug design. Schrödinger software was used for homology modeling and molecular docking. After the identification of ligands, molecular docking of these ligands with the lipopeptide (bacillomycin and iturin) synthetases was performed. The docking was tested on the parameters of docking score and glide energy. 5 out of 21 ligands were found to dock with bacillomycin D synthetase whereas 8 out of 20 ligands docked with the iturin A synthetase. The knowledge of the docking sites and docking characteristics of the lipopeptide synthetases mentioned in the paper with the ligands can provide advantages of high speed and reliability, reduced costs on chemicals and experiments and the ethical issues concerned with the use of animal models for screening of drug toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions glutathione synthetase deficiency glutathione synthetase ...

  19. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  20. Hepatocytes explanted in the spleen preferentially express carbamoylphosphate synthetase rather than glutamine synthetase.

    PubMed

    Lamers, W H; Been, W; Charles, R; Moorman, A F

    1990-10-01

    Urea cycle enzymes and glutamine synthetase are essential for NH3 detoxification and systemic pH homeostasis in mammals. Carbamoylphosphate synthetase, the first and flux-determining enzyme of the cycle, is found only in a large periportal compartment, and glutamine synthetase is found only in a small, complementary pericentral compartment. Because it is not possible to manipulate experimentally the intrahepatic distribution of carbamoylphosphate synthetase and glutamine synthetase, we looked for conditions in which explanted hepatocytes would exhibit either the carbamoylphosphate synthetase phenotype or glutamine synthetase phenotype. In the spleen hepatocytes either settle as individual cells or in small agglomerates. The dispersed cells only express the carbamoylphosphate synthetase phenotype. Within the agglomerates, sinusoids that drain on venules develop. Hepatocytes surrounding the venules stain only weakly for carbamoylphosphate synthetase but are strongly positive for glutamine synthetase. These observations were made for explanted embryonic hepatocytes (no prior expression of either carbamoylphosphate synthetase or glutamine synthetase), neonatal hepatocytes (compartments of gene expression not yet established) and adult periportal and pericentral hepatocytes.

  1. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    ... Health Conditions carbamoyl phosphate synthetase I deficiency carbamoyl phosphate synthetase I deficiency Printable PDF Open All Close ... to view the expand/collapse boxes. Description Carbamoyl phosphate synthetase I deficiency is an inherited disorder that ...

  2. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    USDA-ARS?s Scientific Manuscript database

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  3. Acyl-CoA Synthetase Is Located in the Outer Membrane and Acyl-CoA Thioesterase in the Inner Membrane of Pea Chloroplast Envelopes 1

    PubMed Central

    Andrews, Jaen; Keegstra, Kenneth

    1983-01-01

    Both acyl-CoA synthetase and acyl-CoA thioesterase activities are present in chloroplast envelope membranes. The functions of these enzymes in lipid metabolism remains unresolved, although the synthetase has been proposed to be involved in either plastid galactolipid synthesis or the export of plastid-synthesized fatty acids to the cytoplasm. We have examined the locations of both enzymes within the two envelope membranes of pea (Pisum sativum var Laxton's Progress No. 9) chloroplasts. Inner and outer envelope membranes were purified from unfractionated envelope preparations by linear density sucrose gradient centrifugation. Acyl-CoA synthetase was located in the outer envelope membrane while acyl-CoA thioesterase was located in the inner envelope membrane. Thus, it seems unlikely that the synthetase is directly involved in galactolipid assembly. Instead, its localization supports the hypothesis that it functions in the transport of plastid-synthesized fatty acids to the endoplasmic reticulum. PMID:16663076

  4. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  5. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  6. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in ...

  7. Versatility of acyl-acyl carrier protein synthetases

    DOE PAGES

    Beld, Joris; Finzel, Kara; Burkart, Michael D.

    2014-10-09

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. In this paper, we show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E.more » coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. Finally, in vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms.« less

  8. Continuous recording of long-chain acyl-coenzyme a synthetase activity using fluorescently labeled bovine serum albumin.

    PubMed

    Demant, E J; Nystrøm, B T

    2001-08-01

    The fluorescence-based long-chain fatty acid probe BSA-HCA (bovine serum albumin labeled with 7-hydroxycoumarin-4-acetic acid) is shown to respond to binding of long-chain acyl-CoA thioesters by quenching of the 450 nm fluorescence emission. As determined by spectrofluorometric titration, binding affinities for palmitoyl-, stearoyl-, and oleoyl-CoA (Kd = 0.2-0.4 microM) are 5-10 times lower than those for the corresponding nonesterified fatty acids. In the presence of detergent (Chaps, Triton X-100, n-octylglucoside) above the critical micelle concentration, acyl-CoA partitions from BSA-HCA and into the detergent micelles. This allows BSA-HCA to be used as a fluorescent probe for continuous recording of fatty acid concentrations in detergent solution with little interference from acyl-CoA. Using a calibration of the fluorescence signal with fatty acids in the C14 to C20 chain-length range, fatty acid consumption by Pseudomonas fragi and rat liver microsomal acyl-CoA synthetase activities are measured down to 0.05 microM/min with a data sampling rate of 10 points per second. This new method provides a very promising spectrofluorometric approach to the study of acyl-CoA synthetase reaction kinetics at physiologically relevant (nM) aqueous phase concentrations of fatty acid substrates and at a time resolution that cannot be obtained in isotopic sampling or enzyme-coupled assays.

  9. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases.

    PubMed

    Ibba, M; Morgan, S; Curnow, A W; Pridmore, D R; Vothknecht, U C; Gardner, W; Lin, W; Woese, C R; Söll, D

    1997-11-07

    The sequencing of euryarchaeal genomes has suggested that the essential protein lysyl-transfer RNA (tRNA) synthetase (LysRS) is absent from such organisms. However, a single 62-kilodalton protein with canonical LysRS activity was purified from Methanococcus maripaludis, and the gene that encodes this protein was cloned. The predicted amino acid sequence of M. maripaludis LysRS is similar to open reading frames of unassigned function in both Methanobacterium thermoautotrophicum and Methanococcus jannaschii but is unrelated to canonical LysRS proteins reported in eubacteria, eukaryotes, and the crenarchaeote Sulfolobus solfataricus. The presence of amino acid motifs characteristic of the Rossmann dinucleotide-binding domain identifies M. maripaludis LysRS as a class I aminoacyl-tRNA synthetase, in contrast to the known examples of this enzyme, which are class II synthetases. These data question the concept that the classification of aminoacyl-tRNA synthetases does not vary throughout living systems.

  10. Cells and methods for producing fatty alcohols

    DOEpatents

    Pfleger, Brian F.; Youngquist, Tyler J.

    2017-07-18

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  11. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  12. Molecular cloning of rat acss3 and characterization of mammalian propionyl-CoA synthetase in the liver mitochondrial matrix.

    PubMed

    Yoshimura, Yukihiro; Araki, Aya; Maruta, Hitomi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-12-21

    Among the three acyl-CoA synthetase short-chain family members (ACSS), ACSS3 is poorly characterized. To characterize ACSS3, we performed molecular cloning and protein expression of rat acss3 and determined its intracellular localization, tissue distribution, and substrate specificity. Transient expression of rat ACSS3 in HeLa cells resulted in a 10-fold increase of acetyl-CoA synthetase activity compared with that in control cells. The acss3 transcripts are expressed in a wide range of tissues, with the highest levels observed in liver tissue followed by kidney tissue. Subcellular fractionation using liver tissue showed that ACSS3 is localized into the mitochondrial matrix. Among the short-chain fatty acids examined, recombinant ACSS3, purified from Escherichia coli cells transformed with the plasmid containing rat acss3, preferentially utilized propionate with a KM value of 0.19 mM. Knockdown of acss3 in HepG2 cells resulted in a significant decrease of ACSS3 expression level and propionyl-CoA synthetase activity in cell lysates. Levels of ACSS3 in the liver and the activity of propionyl-CoA synthetase in the mitochondria were significantly increased by fasting. These results suggested that ACSS3 is a liver mitochondrial matrix enzyme with high affinity to propionic acid, and its expression level is upregulated under ketogenic conditions.

  13. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  14. Novel acyl-CoA synthetase in adrenoleukodystrophy target tissues.

    PubMed

    Moriya-Sato, A; Hida, A; Inagawa-Ogashiwa, M; Wada, M R; Sugiyama, K; Shimizu, J; Yabuki, T; Seyama, Y; Hashimoto, N

    2000-12-09

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by demyelination of white matter. The X-ALD gene product adrenoleukodystrophy protein (ALDP) is expressed broadly among various tissues. However, deficiency of functional ALDP exclusively impairs brain, adrenal gland, and testis. Thus, loss of ALDP function is assumed to involve inactivation of a putative mediating factor that functions in a tissue-specific manner. Here we cloned a mouse cDNA encoding a novel protein, Lipidosin, that possesses long-chain acyl-CoA synthetase (LCAS) activity. Lipidosin is expressed exclusively in mouse brain, adrenal gland, and testis, which are affected by X-ALD. LCAS activity of Lipidosin was diminished by mutation of conserved amino acids within the AMP-binding domain. Mutation of the Drosophila homologue of Lipidosin has been reported to cause neuronal degeneration. Thus, Lipidosin may mediate the link between ALDP dysfunction and the impairment of fatty acid metabolism in X-ALD. Copyright 2000 Academic Press.

  15. Role of very-long-chain acyl-coenzyme A synthetase in X-linked adrenoleukodystrophy.

    PubMed

    Steinberg, S J; Kemp, S; Braiterman, L T; Watkins, P A

    1999-09-01

    X-linked adrenoleukodystrophy (X-ALD) is characterized biochemically by decreased ability of cells to activate (via very-long-chain acyl-coenzyme A synthetase [VLCS]) and subsequently degrade very-long-chain fatty acids in peroxisomes. It is noteworthy that the gene defective in X-ALD encodes ALDP, a peroxisomal membrane protein unrelated to VLCS. We cloned human VLCS (hVLCS) and found that peroxisomes from X-ALD fibroblasts contained immunoreactive hVLCS, refuting the earlier hypothesis that ALDP is required to anchor VLCS to the peroxisomal membrane. Furthermore, hVLCS was topographically oriented facing the peroxisomal matrix in both control and X-ALD fibroblasts, contradicting the alternative hypothesis that ALDP is required to translocate VLCS into peroxisomes. However, overexpression of both hVLCS and ALDP in X-ALD fibroblasts synergistically increased very-long-chain fatty acid beta-oxidation, indicating that these proteins interact functionally.

  16. Purification of glutathionylspermidine and trypanothione synthetases from Crithidia fasciculata.

    PubMed Central

    Smith, K.; Nadeau, K.; Bradley, M.; Walsh, C.; Fairlamb, A. H.

    1992-01-01

    Two enzymes involved in the biosynthesis of the trypanosomatid-specific dithiol trypanothione-glutathionylspermidine (Gsp) synthetase and trypanothione (TSH) synthetase--have been identified and purified individually from Crithidia fasciculata. The Gsp synthetase has been purified 93-fold and the TSH synthetase 52-fold to apparent homogeneity from a single DEAE fraction that contained both activities. This constitutes the first indication that the enzymatic conversion of two glutathione molecules and one spermidine to the N1,N8-bis(glutathionyl)spermidine (TSH) occurs in two discrete enzymatic steps. Gsp synthetase, which has a kcat of 600/min, shows no detectable TSH synthetase activity, whereas TSH synthetase does not make any detectable Gsp and has a kcat of 75/min. The 90-kDa Gsp synthetase and 82-kDa TSH synthetase are separable on phenyl Superose and remain separated on gel filtration columns in high salt (0.8 M NaCl). Active complexes can be formed under low to moderate salt conditions (0.0-0.15 M NaCl), consistent with a functional complex in vivo. PMID:1304372

  17. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  18. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells

    PubMed Central

    Weedon-Fekjaer, M. Susanne; Dalen, Knut Tomas; Solaas, Karianne; Staff, Anne Cathrine; Duttaroy, Asim K.; Nebb, Hilde Irene

    2010-01-01

    Placental fatty acid transport and metabolism are important for proper growth and development of the feto-placental unit. The nuclear receptors, liver X receptors α and β (LXRα and LXRβ), are key regulators of lipid metabolism in many tissues, but little is known about their role in fatty acid transport and metabolism in placenta. The current study investigates the LXR-mediated regulation of long-chain acyl-CoA synthetase 3 (ACSL3) and its functions in human placental trophoblast cells. We demonstrate that activation of LXR increases ACSL3 expression, acyl-CoA synthetase activity, and fatty acid uptake in human tropholast cells. Silencing of ACSL3 in these cells attenuates the LXR-mediated increase in acyl-CoA synthetase activity. Furthermore, we show that ACSL3 is directly regulated by LXR through a conserved LXR responsive element in the ACSL3 promoter. Our results suggest that LXR plays a regulatory role in fatty acid metabolism by direct regulation of ACSL3 in human placental trophoblast cells. PMID:20219900

  19. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells.

    PubMed

    Weedon-Fekjaer, M Susanne; Dalen, Knut Tomas; Solaas, Karianne; Staff, Anne Cathrine; Duttaroy, Asim K; Nebb, Hilde Irene

    2010-07-01

    Placental fatty acid transport and metabolism are important for proper growth and development of the feto-placental unit. The nuclear receptors, liver X receptors alpha and beta (LXRalpha and LXRbeta), are key regulators of lipid metabolism in many tissues, but little is known about their role in fatty acid transport and metabolism in placenta. The current study investigates the LXR-mediated regulation of long-chain acyl-CoA synthetase 3 (ACSL3) and its functions in human placental trophoblast cells. We demonstrate that activation of LXR increases ACSL3 expression, acyl-CoA synthetase activity, and fatty acid uptake in human tropholast cells. Silencing of ACSL3 in these cells attenuates the LXR-mediated increase in acyl-CoA synthetase activity. Furthermore, we show that ACSL3 is directly regulated by LXR through a conserved LXR responsive element in the ACSL3 promoter. Our results suggest that LXR plays a regulatory role in fatty acid metabolism by direct regulation of ACSL3 in human placental trophoblast cells.

  20. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  1. Site Directed Mutagenesis of Schizosaccharomyces pombe Glutathione Synthetase Produces an Enzyme with Homoglutathione Synthetase Activity

    PubMed Central

    Dworeck, Tamara; Zimmermann, Martin

    2012-01-01

    Three different His-tagged, mutant forms of the fission yeast glutathione synthetase (GSH2) were derived by site-directed mutagenesis. The mutant and wild-type enzymes were expressed in E. coli DH5α and affinity purified in a two-step procedure. Analysis of enzyme activity showed that it was possible to shift the substrate specificity of GSH2 from Gly (km 0,19; wild-type) to β-Ala or Ser. One mutation (substitution of Ile471, Cy472 to Met and Val and Ala 485 and Thr486 to Leu and Pro) increased the affinity of GSH2 for β-Ala (km 0,07) and lowered the affinity for Gly (km 0,83), which is a characteristic of the enzyme homoglutathione synthetase found in plants. Substitution of Ala485 and Thr486 to Leu and Pro only, increased instead the affinity of GSH2 for Ser (km 0,23) as a substrate, while affinity to Gly was preserved (km 0,12). This provides a new biosynthetic pathway for hydroxymethyl glutathione, which is known to be synthesized from glutathione and Ser in a reaction catalysed by carboxypeptidase Y. The reported findings provide further insight into how specific amino acids positioned in the GSH2 active site facilitate the recognition of different amino acid substrates, furthermore they support the evolutionary theory that homoglutathione synthetase evolved from glutathione synthetase by a single gene duplication event. PMID:23091597

  2. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.

    PubMed

    Teixeira, Paulo Gonçalves; Ferreira, Raphael; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2017-03-15

    In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. We analyzed the metabolite dynamics of a faa1Δ faa4Δ strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under the control of different promoters in order to balance FFA and acyl-CoA interconversion rates and to achieve optimal levels for conversion to fatty alcohols. Expressing FAA1 under control of the HXT1 promoter led to an increased accumulation of fatty alcohols per OD600 up to 41% while FFA levels were decreased by 63% compared with the control strain. Fine-tuning and dynamic regulation of key metabolic steps can be used to improve cell factories when the rates of downstream reactions are limiting. This avoids loss of

  3. In vivo modification of Azotobacter chroococcum glutamine synthetase.

    PubMed

    Muñoz-Centeno, M C; Cejudo, F J; Paneque, A

    1994-03-15

    A monospecific anti-(glutamine synthetase) antibody raised against glutamine synthetase of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 immunoreacted with glutamine synthetase from the N2-fixing heterotrophic bacterium Azotobacter chroococcum. In Western-blotting experiments this antibody recognized a single protein of a molecular mass of 59 kDa corresponding to glutamine synthetase subunit. This protein was in vivo-labelled in response to addition of ammonium, both [3H]adenine and H(3)32PO4 preincubation of the cells being equally effective. Nevertheless, the amount of glutamine synthetase present in A. chroococcum was independent of the available nitrogen source. Modified, inactive glutamine synthetase was re-activated by treatment with snake-venom phosphodiesterase but not by alkaline phosphatase. L-Methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, prevented the enzyme from being covalently modified. We conclude that, in A. chroococcum, glutamine synthetase is adenylylated in response to ammonium and that for the modification to take place ammonium must be metabolized.

  4. In vivo modification of Azotobacter chroococcum glutamine synthetase.

    PubMed Central

    Muñoz-Centeno, M C; Cejudo, F J; Paneque, A

    1994-01-01

    A monospecific anti-(glutamine synthetase) antibody raised against glutamine synthetase of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 immunoreacted with glutamine synthetase from the N2-fixing heterotrophic bacterium Azotobacter chroococcum. In Western-blotting experiments this antibody recognized a single protein of a molecular mass of 59 kDa corresponding to glutamine synthetase subunit. This protein was in vivo-labelled in response to addition of ammonium, both [3H]adenine and H(3)32PO4 preincubation of the cells being equally effective. Nevertheless, the amount of glutamine synthetase present in A. chroococcum was independent of the available nitrogen source. Modified, inactive glutamine synthetase was re-activated by treatment with snake-venom phosphodiesterase but not by alkaline phosphatase. L-Methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, prevented the enzyme from being covalently modified. We conclude that, in A. chroococcum, glutamine synthetase is adenylylated in response to ammonium and that for the modification to take place ammonium must be metabolized. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7908189

  5. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.].

  6. Characterization of Cereulide Synthetase, a Toxin-Producing Macromolecular Machine

    PubMed Central

    Alonzo, Diego A.; Magarvey, Nathan A.; Schmeing, T. Martin

    2015-01-01

    Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride. PMID:26042597

  7. FRET monitoring of a nonribosomal peptide synthetase.

    PubMed

    Alfermann, Jonas; Sun, Xun; Mayerthaler, Florian; Morrell, Thomas E; Dehling, Eva; Volkmann, Gerrit; Komatsuzaki, Tamiki; Yang, Haw; Mootz, Henning D

    2017-09-01

    Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine-thioester and phenylalanine-AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.

  8. Aminoacyl-tRNA synthetases database.

    PubMed

    Szymanski, M; Deniziak, M A; Barciszewski, J

    2001-01-01

    Aminoacyl-tRNA synthetases (AARSs) are at the center of the question of the origin of life. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. AARSs arose early in evolution and are believed to be a group of ancient proteins. They are responsible for attaching amino acid residues to their cognate tRNA molecules, which is the first step in the protein synthesis. The role they play in a living cell is essential for the precise deciphering of the genetic code. The analysis of AARSs evolutionary history was not possible for a long time due to a lack of a sufficiently large number of their amino acid sequences. The emerging picture of synthetases' evolution is a result of recent achievements in genomics [Woese,C., Olsen,G.J., Ibba,M. and Söll,D. (2000) Microbiol. Mol. Biol. Rev., 64, 202-236]. In this paper we present a short introduction to the AARSs database. The updated database contains 1047 AARS primary structures from archaebacteria, eubacteria, mitochondria, chloroplasts and eukaryotic cells. It is the compilation of amino acid sequences of all AARSs known to date, which are available as separate entries via the WWW at http://biobases.ibch.poznan.pl/aars/.

  9. The microsomal dicarboxylyl-CoA synthetase.

    PubMed Central

    Vamecq, J; de Hoffmann, E; Van Hoof, F

    1985-01-01

    Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo. PMID:4062873

  10. Fatty acids - trans fatty acids

    USDA-ARS?s Scientific Manuscript database

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  11. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  12. Glutamine Synthetase: Role in Neurological Disorders.

    PubMed

    Jayakumar, Arumugam R; Norenberg, Michael D

    2016-01-01

    Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.

  13. Mechanistic issues in asparagine synthetase catalysis.

    PubMed

    Richards, N G; Schuster, S M

    1998-01-01

    The enzymatic synthesis of asparagine is an ATP-dependent process that utilizes the nitrogen atom derived from either glutamine or ammonia. Despite a long history of kinetic and mechanistic investigation, there is no universally accepted catalytic mechanism for this seemingly straightforward carboxyl group activating enzyme, especially as regards those steps immediately preceding amide bond formation. This chapter considers four issues dealing with the mechanism: (a) the structural organization of the active site(s) partaking in glutamine utilization and aspartate activation; (b) the relationship of asparagine synthetase to other amidotransferases; (c) the way in which ATP is used to activate the beta-carboxyl group; and (d) the detailed mechanism by which nitrogen is transferred.

  14. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 Increase the Cellular Fatty Acid Uptake of 3T3-L1 Adipocytes but Are Localized on Intracellular Membranes

    PubMed Central

    Zhan, Tianzuo; Poppelreuther, Margarete; Ehehalt, Robert; Füllekrug, Joachim

    2012-01-01

    Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake. PMID:23024797

  15. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI III.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. III. Requirements for enzyme synthesis. J. Bacteriol. 84:996–1006. 1962.—The requirements for the formation of tryptophanase and tryptophan synthetase in Escherichia coli during repression release were studied. The kinetics of the formation of tryptophan synthetase differed in the two strains examined; this was attributed to differences in the endogenous level of tryptophan in the bacterial cells. The formation of both enzymes was inhibited by chloramphenicol, and by the absence of arginine in an arginine-requiring mutant. These results are indicative of a requirement for protein synthesis for enzyme formation. Requirements for nucleic acid synthesis were examined by use of a uracil- and thymine-requiring mutant, and with purine and pyrimidine analogues. The results obtained suggest that some type of ribonucleic acid synthesis was necessary for the formation of tryptophanase and tryptophan synthetase. PMID:13959620

  16. Purification and properties of glutamine synthetase from spinach leaves.

    PubMed

    Ericson, M C

    1985-12-01

    The chloroplastic glutamine synthetase of spinach leaves has been purified to homogeneity using affinity chromatography. This involves a tandem ;reactive blue A-agarose' and ;reactive red-A-agarose' as the final step in the procedure. This procedure results in a yield of 18 milligrams of pure glutamine synthetase per kilogram of starting material. The purity of our enzyme has been demonstrated on both one- and two-dimensional polyacrylamide gels.Purified glutamine synthetase has a molecular weight of 360,000 daltons and consists of eight 44,000 dalton subunits. The K(m) is 6.7 millimolar for glutamate, 1.8 millimolar for ATP (synthetase assay), and 37.6 millimolar for glutamine (transferase assay). The isoelectric point is 6.5 and the pH optima are 7.3 in the synthetase assay and 6.4 in the transferase assay. The irreversible, competitive inhibitors methionine sulfoxamine and phosphinothricin have K(i) values of 0.1 millimolar and 6.1 micromolar, respectively. Amino acid analysis has been carried out and the results compared with published analyses for other isoforms of glutamine synthetase.

  17. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI I.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds. J. Bacteriol. 84:979–987. 1962.—The effect of tryptophan and related compounds on tryptophanase and tryptophan synthetase formation in Escherichia coli was determined. Several of these compounds stimulated the formation of tryptophanase while concomitantly decreasing the production of synthetase. A number of tryptophan analogues were found to inhibit growth. The possible mode of action of these substances was examined further. 5-Hydroxytryptophan greatly inhibited the formation of synthetase and also reduced growth. Its inhibitory action on growth was attributed, at least partially, to the false feedback inhibition of anthranilic acid formation. Tryptamine was found to be a potent inhibitor of the activity of synthetase, as well as of the enzyme(s) involved in the synthesis of anthranilic acid from shikimic acid. However, growth reduction was only partially reversed by tryptophan. Indole-3-acetic acid and indole-3-propionic acid decreased growth and increased the formation of synthetase six- to eightfold. The action of these compounds was ascribed to their ability to block the endogenous formation of tryptophan. PMID:13959621

  18. Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase.

    PubMed Central

    Sanni, A; Walter, P; Boulanger, Y; Ebel, J P; Fasiolo, F

    1991-01-01

    Phenylalanyl-tRNA synthetases [L-phenylalanine:tRNAPhe ligase (AMP-forming), EC 6.1.1.20] from Escherichia coli, yeast cytoplasm, and mammalian cytoplasm have an unusual conserved alpha 2 beta 2 quaternary structure that is shared by only one other aminoacyl-tRNA synthetase. Both subunits are required for activity. We show here that a single mitochondrial polypeptide from Saccharomyces cerevisiae is an active phenylalanyl-tRNA synthetase. This protein (the MSF1 gene product) is active as a monomer. It has all three characteristic sequence motifs of the class II aminoacyl-tRNA synthetases, and its activity may result from the recruitment of additional sequences into an alpha-subunit-like structure. Images PMID:1924298

  19. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  20. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  1. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    PubMed

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  2. Glutamine synthetase induced spinal seizures in rats.

    PubMed

    Shin, Dong Won; Yoon, Young Sul; Matsumoto, Masato; Huang, Wencheng; Ceraulo, Phil; Young, Wise

    2003-02-01

    Glutamine synthetase (GS) is a key enzyme in the regulation of glutamate neurotransmission in the central nervous system. It is responsible for converting glutamate to glutamine, consuming one ATP and NH3 in the process. Glutamate is neurotoxic when it accumulates in extracellular fluids. We investigated the effects of GS in both a spinal cord injury (SCI) model and normal rats. 0.1-ml of low (2- micro M) and high (55- micro M) concentrations of GS were applied, intrathecally, to the spinal cord of rats under pentobarbital anesthesia. Immediately after an intrathecal injection into the L1-L3 space, the rats developed convulsive movements. These movements initially consisted of myoclonic twitches of the paravertebral muscles close to the injection site, repeated tonic and clonic contractions and extensions of the hind limbs (hind limb seizures) that spread to the fore limbs, and finally rotational axial movements of the body. An EMG of the paravertebral muscles, fore and hind limbs, showed the extent of the muscle activities. GS (2- micro M) caused spinal seizures in the rats after the SCI, and GS (6- micro M) produced seizures in the uninjured anesthetized rats. Denatured GS (70 degrees C, 1 hour) also produced spinal seizures, although higher concentrations were required. We suggest that GS may be directly blocking the release of GABA, or the receptors, in the spinal cord.

  3. Chemical modification of E. coli glutamine synthetase

    SciTech Connect

    DiIanni, C.L.; Colanduoni, J.A.; Collins, R.; Villafranca, J.J.

    1986-05-01

    Thiourea trioxide partially inactivates E. coli glutamine synthetase (GS) (approx.25%) by reacting only with lysine residues, producing homoarginine. Thiourea dioxide totally inactivates GS by reacting with both lysine and histidine residues. The K/sub m/ values for thiourea trioxide modified enzyme are 0.21 mM for ATP and 10 mM for glutamate which are about threefold higher than for native GS. Using (/sup 14/C) thiourea trioxide, 2.3 +/- 0.2 moles of reagent were incorporated per monomer. The same number of homoarginine residues were found by amino acid analysis. Modification of GS with hydroxylamine results in total inactivation resulting from reaction with histidine. Fluorescence titrations indicate that substrate binding to the modified enzyme is weaker than to the native enzyme. EPR spectra of bound Mn/sup 2 +/ indicate that metal ion binding is unaffected by hydroxylamine modification. However, metal ion binding is weaker to the modified enzyme. Protection from hydroxylamine inactivation is observed with ATP + Glutamate, AMPPNP + Glutamate, and MgCl/sub 2/.

  4. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  5. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion

    PubMed Central

    Crnković, Ana; Suzuki, Tateki; Söll, Dieter; Reynolds, Noah M.

    2016-01-01

    Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme’s anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS. PMID:28239189

  6. Aminoacyl tRNA synthetases and their connections to disease.

    PubMed

    Park, Sang Gyu; Schimmel, Paul; Kim, Sunghoon

    2008-08-12

    Aminoacylation of transfer RNAs establishes the rules of the genetic code. The reactions are catalyzed by an ancient group of 20 enzymes (one for each amino acid) known as aminoacyl tRNA synthetases (AARSs). Surprisingly, the etiology of specific diseases-including cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions-is connected to specific aminoacyl tRNA synthetases. These connections include heritable mutations in the genes for tRNA synthetases that are causally linked to disease, with both dominant and recessive disease-causing mutations being annotated. Because some disease-causing mutations do not affect aminoacylation activity or apparent enzyme stability, the mutations are believed to affect functions that are distinct from aminoacylation. Examples include enzymes that are secreted as procytokines that, after activation, operate in pathways connected to the immune system or angiogenesis. In addition, within cells, synthetases form multiprotein complexes with each other or with other regulatory factors and in that way control diverse signaling pathways. Although much has been uncovered in recent years, many novel functions, disease connections, and interpathway connections of tRNA synthetases have yet to be worked out.

  7. Analysis of TETRAKETIDE α-PYRONE REDUCTASE Function in Arabidopsis thaliana Reveals a Previously Unknown, but Conserved, Biochemical Pathway in Sporopollenin Monomer Biosynthesis[C][W

    PubMed Central

    Grienenberger, Etienne; Kim, Sung Soo; Lallemand, Benjamin; Geoffroy, Pierrette; Heintz, Dimitri; Souza, Clarice de Azevedo; Heitz, Thierry; Douglas, Carl J.; Legrand, Michel

    2010-01-01

    The precise structure of the sporopollenin polymer that is the major constituent of exine, the outer pollen wall, remains poorly understood. Recently, characterization of Arabidopsis thaliana genes and corresponding enzymes involved in exine formation has demonstrated the role of fatty acid derivatives as precursors of sporopollenin building units. Fatty acyl-CoA esters synthesized by ACYL-COA SYNTHETASE5 (ACOS5) are condensed with malonyl-CoA by POLYKETIDE SYNTHASE A (PKSA) and PKSB to yield α-pyrone polyketides required for exine formation. Here, we show that two closely related genes encoding oxidoreductases are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the reductases displayed a range of pollen exine layer defects, depending on the mutant allele. Phylogenetic studies indicated that the two reductases belong to a large reductase/dehydrogenase gene family and cluster in two distinct clades with putative orthologs from several angiosperm lineages and the moss Physcomitrella patens. Recombinant proteins produced in bacteria reduced the carbonyl function of tetraketide α-pyrone compounds synthesized by PKSA/B, and the proteins were therefore named TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 (previously called DRL1 and CCRL6, respectively). TKPR activities, together with those of ACOS5 and PKSA/B, identify a conserved biosynthetic pathway leading to hydroxylated α-pyrone compounds that were previously unknown to be sporopollenin precursors. PMID:21193572

  8. Functional linkage between the glutaminase and synthetase domains of carbamoyl-phosphate synthetase. Role of serine 44 in carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (cad).

    PubMed

    Hewagama, A; Guy, H I; Vickrey, J F; Evans, D R

    1999-10-01

    Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.

  9. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  10. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  11. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    PubMed

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  12. tRNA synthetase: tRNA Aminoacylation and beyond

    PubMed Central

    Pang, Yan Ling Joy; Poruri, Kiranmai; Martinis, Susan A.

    2014-01-01

    The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases have also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases. PMID:24706556

  13. Heterogeneity of Glutamine Synthetase Polypeptides in Phaseolus vulgaris L. 1

    PubMed Central

    Lara, Miguel; Porta, Helena; Padilla, Jaime; Folch, Jorge; Sánchez, Federico

    1984-01-01

    Glutamine synthetases from roots, nodules, and leaves of Phaseolus vulgaris L. have been purified to homogeneity and their polypeptide composition determined. The leaf enzyme is composed of six polypeptides. The cytosolic fraction contains two 43,000 dalton polypeptides and the chloroplastic enzyme is formed by four 45,000 dalton polypeptides. Root glutamine synthetase consists only of the same two polypeptides of 43,000 dalton that are present in the leaf enzyme. The nodule enzyme is formed by two polypeptides of 43,000 dalton, one is common to the leaf and root enzyme but the other is specific for N2-fixing nodule tissue. The two glutamine synthetase forms of the nodule contain a different proportion of the 43,000 dalton polypeptides. Images Fig. 1 Fig. 2 Fig. 4 PMID:16663942

  14. Inhibition of Plant Glutamine Synthetases by Substituted Phosphinothricins

    PubMed Central

    Logusch, Eugene W.; Walker, Daniel M.; McDonald, John F.; Franz, John E.

    1991-01-01

    Glutamine synthetase (GS) utilizes various substituted glutamic acids as substrates. We have used this information to design herbicidal α- and γ-substituted analogs of phosphinothricin (l-2-amino-4-(hydroxymethylphosphinyl)butanoic acid, PPT), a naturally occurring GS inhibitor and a potent herbicide. The substituted phosphinothricins inhibit cytosolic sorghum GS1 and chloroplastic GS2 competitively versusl-glutamate, with Ki values in the low micromolar range. At higher concentrations, these inhibitors inactivate glutamine synthetase, while dilution restores activity through enzyme-inhibitor dissociation. Herbicidal phosphinothricins exhibit low Ki values and slow enzyme turnover, as described by reactivation characteristics. Both the GS1 and GS2 isoforms of plant glutamine synthetase are similarly inhibited by the phosphinothricins, consistent with the broad-spectrum herbicidal activity observed for PPT itself as well as other active compounds in this series. PMID:16668090

  15. Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Chao, Y F; Weng, S F

    1996-11-21

    Nucleotide sequence of the luxE gene GenBank Accession No. U66407 from Photobacterium leiognathi PL741 has been determined, and the amino acid sequence of acyl-protein synthetase encoded by the luxE gene is deduced. Nucleotide sequence reveals that the luxE gene encodes acyl-protein synthetase, which is a component of the fatty acid reductase complex that is responsible for converting fatty acid to aldehyde as substrate in the luciferase-catalyzed bioluminescence reaction. The acyl-protein synthetase encoded by the luxE gene has a calculated M, 43,128 and comprises 373 amino acid residues. Alignment and comparison of acyl-protein synthetases from P. leiognathi, P. phosphoreum, Vibrio fischeri, V. harveyi and Xenorhabdus luminescens shows that they are homologous; there is 75.5% homologous (44.2% identity and 31.3% similarity) among these species. Functional analysis illustrates that the specific segment sequence lying before or in the luxE gene might from potential loops omega o omega e1, omega e2 as mRNA stability loop and/or for sub-regulation by alternative modulation in the lux operon. The gene order of the luxE gene in the lux and the lum operons is<--ter-lumQ-lumP-R&R-luxC-luxD-luxA-luxB -luxN-luxE-->(R&R: regulatory region; ter; transcriptional terminator), whereas the R&R is the regulatory region for the lum and the lux operons, and ter is the transcriptional terminator for the lum operon.

  16. Malonyl-CoA Synthetase, Encoded by ACYL ACTIVATING ENZYME13, Is Essential for Growth and Development of Arabidopsis[C][W][OA

    PubMed Central

    Chen, Hui; Kim, Hyun Uk; Weng, Hua; Browse, John

    2011-01-01

    Malonyl-CoA is the precursor for fatty acid synthesis and elongation. It is also one of the building blocks for the biosynthesis of some phytoalexins, flavonoids, and many malonylated compounds. In plants as well as in animals, malonyl-CoA is almost exclusively derived from acetyl-CoA by acetyl-CoA carboxylase (EC 6.4.1.2). However, previous studies have suggested that malonyl-CoA may also be made directly from malonic acid by malonyl-CoA synthetase (EC 6.2.1.14). Here, we report the cloning of a eukaryotic malonyl-CoA synthetase gene, Acyl Activating Enzyme13 (AAE13; At3g16170), from Arabidopsis thaliana. Recombinant AAE13 protein showed high activity against malonic acid (Km = 529.4 ± 98.5 μM; Vm = 24.0 ± 2.7 μmol/mg/min) but little or no activity against other dicarboxylic or fatty acids tested. Exogenous malonic acid was toxic to Arabidopsis seedlings and caused accumulation of malonic and succinic acids in the seedlings. aae13 null mutants also grew poorly and accumulated malonic and succinic acids. These defects were complemented by an AAE13 transgene or by a bacterial malonyl-CoA synthetase gene under control of the AAE13 promoter. Our results demonstrate that the malonyl-CoA synthetase encoded by AAE13 is essential for healthy growth and development, probably because it is required for the detoxification of malonate. PMID:21642549

  17. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. Copyright © 2016 by the American Academy of Pediatrics.

  18. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely.

  19. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed Central

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely. PMID:14516277

  20. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B Encode Hydroxyalkyl α-Pyrone Synthases Required for Pollen Development and Sporopollenin Biosynthesis in Arabidopsis thaliana[C][W][OA

    PubMed Central

    Kim, Sung Soo; Grienenberger, Etienne; Lallemand, Benjamin; Colpitts, Che C.; Kim, Sun Young; Souza, Clarice de Azevedo; Geoffroy, Pierrette; Heintz, Dimitri; Krahn, Daniel; Kaiser, Markus; Kombrink, Erich; Heitz, Thierry; Suh, Dae-Yeon; Legrand, Michel; Douglas, Carl J.

    2010-01-01

    Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors. PMID:21193570

  1. The Puzzle of Ligand Binding to Corynebacterium ammoniagenes FAD Synthetase*

    PubMed Central

    Frago, Susana; Velázquez-Campoy, Adrián; Medina, Milagros

    2009-01-01

    In bacteria, riboflavin phosphorylation and subsequent conversion of FMN into FAD are carried out by FAD synthetase, a single bifunctional enzyme. Both reactions require ATP and Mg2+. The N-terminal domain of FAD synthetase appears to be responsible for the adenylyltransferase activity, whereas the C-terminal domain would be in charge of the kinase activity. Binding to Corynebacterium ammoniagenes FAD synthetase of its products and substrates, as well as of several analogues, is analyzed. Binding parameters for adenine nucleotides to each one of the two adenine nucleotide sites are reported. In addition, it is demonstrated for the first time that the enzyme presents two independent flavin sites, each one related with one of the enzymatic activities. The binding parameters of flavins to these sites are also provided. The presence of Mg2+ and of both adenine nucleotides and flavins cooperatively modulates the interaction parameters for the other ligands. Our data also suggest that during its double catalytic cycle FAD synthetase must suffer conformational changes induced by adenine nucleotide-Mg2+ or flavin binding. They might include not only rearrangement of the different protein loops but also alternative conformations between domains. PMID:19136717

  2. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  3. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  4. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling.

    PubMed

    Bernard, Stéphanie M; Habash, Dimah Z

    2009-01-01

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  5. Decreased Red Cell Uroporphyrinogen I Synthetase Activity in Intermittent Acute Porphyria

    PubMed Central

    Strand, L. James; Meyer, Urs A.; Felsher, Bertram F.; Redeker, Allan G.; Marver, Harvey S.

    1972-01-01

    Intermittent acute porphyria has recently been distinguished biochemically from other genetic hepatic porphyrias by the observation of diminished hepatic uroporphyrinogen I synthetase activity and increased δ-aminolevulinic acid synthetase activity. Since deficient uroporphyrinogen I synthetase may be reflected in nonhepatic tissues, we have assayed this enzyme in red cell hemolysates from nonporphyric subjects and from patients with genetic hepatic porphyria. Only patients with intermittent acute porphyria had decreased erythrocyte uroporphyrinogen I synthetase activity which was approximately 50% of normal. The apparent Km of partially purified uroporphyrinogen I synthetase was 6 × 10−6m in both nonporphyrics and patients with intermittent acute porphyria. These data provide further evidence for a primary mutation affecting uroporphyrinogen I synthetase in intermittent acute porphyria. Further-more, results of assay of red cell uroporphyrinogen I synthetase activity in a large family with intermittent acute porphyria suggest that this test may be a reliable indicator of the heterozygous state. PMID:5056653

  6. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  7. Sporopollenin Biosynthetic Enzymes Interact and Constitute a Metabolon Localized to the Endoplasmic Reticulum of Tapetum Cells[W

    PubMed Central

    Lallemand, Benjamin; Erhardt, Mathieu; Heitz, Thierry; Legrand, Michel

    2013-01-01

    The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thaliana). Here all these sporopollenin biosynthetic enzymes but TKPR2 have been immunolocalized to endoplasmic reticulum of anther tapetal cells. Pull-down experiments demonstrated that tagged recombinant proteins interacted to form complexes whose constituents were characterized by immunoblotting. In vivo protein interactions were evidenced by yeast (Saccharomyces cerevisiae) two-hybrid analysis and by fluorescence lifetime imaging microscopy/Förster resonance energy transfer studies in transgenic Nicotiana benthamiana, which were used to test the possibility that the enzymes interact to form a biosynthetic metabolon. Various pairs of proteins fused to two distinct fluorochromes were coexpressed in N. benthamiana leaf tissues and fluorescence lifetime imaging microscopy/Förster resonance energy transfer measurements demonstrated that proteins interacted pairwise in planta. Taken together, these results suggest the existence of a sporopollenin metabolon. PMID:23632852

  8. Biosynthesis of amphi-enterobactin siderophores by Vibrio harveyi BAA-1116: identification of a bifunctional nonribosomal peptide synthetase condensation domain.

    PubMed

    Zane, Hannah K; Naka, Hiroaki; Rosconi, Federico; Sandy, Moriah; Haygood, Margo G; Butler, Alison

    2014-04-16

    The genome of Vibrio harveyi BAA-1116 contains a nonribosomal peptide synthetase (NRPS) gene cluster (aebA-F) resembling that for enterobactin, yet enterobactin is not produced. A gene predicted to encode a long-chain fatty acid CoA ligase (FACL), similar to enzymes involved in the biosynthesis of acyl peptides, resides 15 kb away from the putative enterobactin-like biosynthetic gene cluster (aebG). The proximity of this FACL gene to the enterobactin-like synthetase suggested that V. harveyi may produce amphiphilic enterobactin-like siderophores. Extraction of the bacterial cell pellet of V. harveyi led to the isolation and structure determination of a suite of eight amphi-enterobactin siderophores composed of the cyclic lactone of tris-2,3-dihydroxybenzoyl-L-serine and acyl-L-serine. The FACL knockout mutant, ΔaebG V. harveyi, and the NRPS knockout mutant, ΔaebF V. harveyi, do not produce amphi-enterobactins. The amphi-enterobactin biosynthetic machinery was heterologously expressed in Escherichia coli and reconstituted in vitro, demonstrating the condensation domain of AebF has unique activity, catalyzing two distinct condensation reactions.

  9. Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases.

    PubMed

    Blaise, Mickaël; Fréchin, Mathieu; Oliéric, Vincent; Charron, Christophe; Sauter, Claude; Lorber, Bernard; Roy, Hervé; Kern, Daniel

    2011-09-23

    Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the β-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the α-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the α-carboxylate group into an enzyme that is able to activate the β-carboxylate group of aspartate, which can react with ammonia instead of tRNA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori.

    PubMed

    Hu, Jingsheng; Tian, Jianghai; Li, Fanchi; Xue, Bin; Hu, Jiahuan; Cheng, Xiaoyu; Li, Jinxin; Shen, Weide; Li, Bing

    2017-01-30

    Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein synthesis possibly by increasing the activity of fibroin synthase in silkworm.

  11. Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori

    PubMed Central

    Hu, Jingsheng; Tian, Jianghai; Li, Fanchi; Xue, Bin; Hu, Jiahuan; Cheng, Xiaoyu; Li, Jinxin; Shen, Weide; Li, Bing

    2017-01-01

    Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein synthesis possibly by increasing the activity of fibroin synthase in silkworm. PMID:28134300

  12. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Swetha, Rayapadi G.; Anbarasu, Anand; Ramaiah, Sudha; Sambandamurthy, Vasan K.

    2016-01-01

    Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis. PMID:26794499

  13. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse).

    PubMed

    Takahashi, Tetsuyuki; Nishida, Takeshi; Baba, Hayato; Hatta, Hideki; Imura, Johji; Sutoh, Mitsuko; Toyohara, Syunji; Hokao, Ryoji; Watanabe, Syunsuke; Ogawa, Hirohisa; Uehara, Hisanori; Tsuneyama, Koichi

    2016-08-01

    We previously reported that Tsumura-Suzuki obese diabetic (TSOD) mice, a polygenic model of spontaneous type 2 diabetes, is a valuable model of hepatic carcinogenesis via non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). One of the characteristics of tumors in these mice is the diffuse expression of glutamine synthetase (GS), which is a diagnostic marker for hepatocellular carcinoma (HCC). In this study, we performed detailed histopathological examinations and found that GS expression was diffusely positive in >70% of the hepatic tumors from 15-month-old male TSOD mice. Translocation of β-catenin into nuclei with enhanced membranous expression also occurred in GS-positive tumors. Small lesions (<1 mm) in GS-positive cases exhibited dysplastic nodules, with severe nuclear atypia, whereas large lesions (>3 mm) bore the characteristics of human HCC, exhibiting nuclear and structural atypia with invasive growth. By contrast, the majority of GS-negative tumors were hepatocellular adenomas with advanced fatty change and low nuclear grade. In GS-negative tumors, loss of liver fatty acid-binding protein expression was observed. These results suggest that the histological characteristics of GS-positive hepatic tumors in TSOD mice resemble human HCC; thus, this model may be a useful tool in translational research targeting the NAFLD/NASH-HCC sequence.

  14. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse)

    PubMed Central

    Takahashi, Tetsuyuki; Nishida, Takeshi; Baba, Hayato; Hatta, Hideki; Imura, Johji; Sutoh, Mitsuko; Toyohara, Syunji; Hokao, Ryoji; Watanabe, Syunsuke; Ogawa, Hirohisa; Uehara, Hisanori; Tsuneyama, Koichi

    2016-01-01

    We previously reported that Tsumura-Suzuki obese diabetic (TSOD) mice, a polygenic model of spontaneous type 2 diabetes, is a valuable model of hepatic carcinogenesis via non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). One of the characteristics of tumors in these mice is the diffuse expression of glutamine synthetase (GS), which is a diagnostic marker for hepatocellular carcinoma (HCC). In this study, we performed detailed histopathological examinations and found that GS expression was diffusely positive in >70% of the hepatic tumors from 15-month-old male TSOD mice. Translocation of β-catenin into nuclei with enhanced membranous expression also occurred in GS-positive tumors. Small lesions (<1 mm) in GS-positive cases exhibited dysplastic nodules, with severe nuclear atypia, whereas large lesions (>3 mm) bore the characteristics of human HCC, exhibiting nuclear and structural atypia with invasive growth. By contrast, the majority of GS-negative tumors were hepatocellular adenomas with advanced fatty change and low nuclear grade. In GS-negative tumors, loss of liver fatty acid-binding protein expression was observed. These results suggest that the histological characteristics of GS-positive hepatic tumors in TSOD mice resemble human HCC; thus, this model may be a useful tool in translational research targeting the NAFLD/NASH-HCC sequence. PMID:27446562

  15. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    PubMed

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis.

  16. A simple method for isolation and construction of markerless cyanobacterial mutants defective in acyl-acyl carrier protein synthetase.

    PubMed

    Kojima, Kouji; Keta, Sumie; Uesaka, Kazuma; Kato, Akihiro; Takatani, Nobuyuki; Ihara, Kunio; Omata, Tatsuo; Aichi, Makiko

    2016-12-01

    Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) secrete free fatty acids (FFAs) into the external medium and hence have been used for the studies aimed at photosynthetic production of biofuels. While the wild-type strain of Synechocystis sp. PCC 6803 is highly sensitive to exogenously added linolenic acid, mutants defective in the aas gene are known to be resistant to the externally provided fatty acid. In this study, the wild-type Synechocystis cells were shown to be sensitive to lauric, oleic, and linoleic acids as well, and the resistance to these fatty acids was shown to be enhanced by inactivation of the aas gene. On the basis of these observations, we developed an efficient method to isolate aas-deficient mutants from cultures of Synechocystis cells by counter selection using linoleic acid or linolenic acid as the selective agent. A variety of aas mutations were found in about 70 % of the FFA-resistant mutants thus selected. Various aas mutants were isolated also from Synechococcus sp. PCC 7002, using lauric acid as a selective agent. Selection using FFAs was useful also for construction of markerless aas knockout mutants from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002. Thus, genetic engineering of FFA-producing cyanobacterial strains would be greatly facilitated by the use of the FFAs for counter selection.

  17. Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress

    PubMed Central

    Schug, Zachary T.; Peck, Barrie; Jones, Dylan T.; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S.; Goodwin, Louise M.; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E.; Jiang, Ming; Howell, Michael; Lassailly, Francois; Thin, May Zaw; Spencer-Dene, Bradley; Stamp, Gordon; van den Broek, Niels J.F.; Mackay, Gillian; Bulusu, Vinay; Kamphorst, Jurre J.; Tardito, Saverio; Strachan, David; Harris, Adrian L.; Aboagye, Eric O.; Critchlow, Susan E.; Wakelam, Michael J.O.; Schulze, Almut; Gottlieb, Eyal

    2015-01-01

    Summary A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment. PMID:25584894

  18. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-08-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia.

  19. Aminoacyl-tRNA Synthetase Complexes in Evolution

    PubMed Central

    Havrylenko, Svitlana; Mirande, Marc

    2015-01-01

    Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis. PMID:25807264

  20. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  1. Biochemical and inhibition studies of glutamine synthetase from Leishmania donovani.

    PubMed

    Kumar, Vinay; Yadav, Shailendra; Soumya, Neelagiri; Kumar, Rohit; Babu, Neerupudi Kishore; Singh, Sushma

    2017-03-25

    Leishmaniasis is a group of tropical diseases caused by protozoan parasites of the genus Leishmania. Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, a fatal disease if left untreated. Chemotherapy for leishmaniasis is problematic as the available drugs are toxic, costly and shows drug resistance, hence, there is a necessity to look out for the novel drug targets, chemical entities and vaccine. Glutamine synthetase (GS) catalyzes the synthesis of glutamine from glutamate and ammonia. In the present study, we have identified and characterized GS from L. donovani. The nucleotide sequence encoding putative glutamine synthetase like sequence from L. donovani (LdGS, LDBPK_060370) was cloned. A 43.5 kDa protein with 6X-His tag at the C-terminal end was obtained by overexpression of LdGS in Escherichia coli BL21 (DE3) strain. Expression of native LdGS in promastigotes and recombinant L. donovani glutamine synthetase (rLdGS) was confirmed by western blot analysis. An increase in expression of GS was observed at different phases of growth of the parasite. Expression of LdGS in promastigote and amastigote was confirmed by western blot analysis. Immunofluorescence studies of both the promastigote and amastigote stages of the parasite revealed the presence of LdGS in cytoplasm. GS exists as a single copy gene in parasite genome. Kinetic analysis of GS enzyme revealed Km value of 26.3 ± 0.4 mM for l- glutamate and Vmax value of 2.15 ± 0.07 U mg(-1). Present study confirms the presence of glutamine synthetase in L. donovani and provides comprehensive overview of LdGS for further validating it as a potential drug target.

  2. Positional isotope exchange analysis of the pantothenate synthetase reaction.

    PubMed

    Williams, LaKenya; Zheng, Renjian; Blanchard, John S; Raushel, Frank M

    2003-05-06

    Pantothenate synthetase from Mycobacterium tuberculosis catalyzes the formation of pantothenate from ATP, D-pantoate, and beta-alanine. The formation of a kinetically competent pantoyl-adenylate intermediate was established by the observation of a positional isotope exchange (PIX) reaction within (18)O-labeled ATP in the presence of d-pantoate. When [betagamma-(18)O(6)]-ATP was incubated with pantothenate synthetase in the presence of d-pantoate, an (18)O label gradually appeared in the alphabeta-bridge position from both the beta- and the gamma-nonbridge positions. The rates of these two PIX reactions were followed by (31)P NMR spectroscopy and found to be identical. These results are consistent with the formation of enzyme-bound pantoyl-adenylate and pyrophosphate upon the mixing of ATP, D-pantoate, and enzyme. In addition, these results require the complete torsional scrambling of the two phosphoryl groups of the labeled pyrophosphate product. The rate of the PIX reaction increased as the D-pantoate concentration was elevated and then decreased to zero at saturating levels of D-pantoate. These inhibition results support the ordered binding of ATP and D-pantoate to the enzyme active site. The PIX reaction was abolished with the addition of pyrophosphatase; thus, PP(i) must be free to dissociate from the active site upon formation of the pantoyl-adenylate intermediate. The PIX reaction rate diminished when the concentrations of ATP and D-pantoate were held constant and the concentration of the third substrate, beta-alanine, was increased. This observation is consistent with a kinetic mechanism that requires the binding of beta-alanine after the release of pyrophosphate from the active site of pantothenate synthetase. Positional isotope exchange reactions have therefore demonstrated that pantothenate synthetase catalyzes the formation of a pantoyl-adenylate intermediate upon the ordered addition of ATP and pantoate.

  3. A Rationally Engineered Misacylating Aminoacyl-Trna Synthetase

    SciTech Connect

    Bullock, T.L.; Rodriguez-Hernandez, A.; Corigliano, E.M.; Perona, J.J.

    2009-05-12

    Information transfer from nucleic acid to protein is mediated by aminoacyl-tRNA synthetases, which catalyze the specific pairings of amino acids with transfer RNAs. Despite copious sequence and structural information on the 22 tRNA synthetase families, little is known of the enzyme signatures that specify amino acid selectivities. Here, we show that transplanting a conserved arginine residue from glutamyl-tRNA synthetase (GluRS) to glutaminyl-tRNA synthetase (GlnRS) improves the K{sub M} of GlnRS for noncognate glutamate. Two crystal structures of this C229R GlnRS mutant reveal that a conserved twin-arginine GluRS amino acid identity signature cannot be incorporated into GlnRS without disrupting surrounding protein structural elements that interact with the tRNA. Consistent with these findings, we show that cumulative replacement of other primary binding site residues in GlnRS, with those of GluRS, only slightly improves the ability of the GlnRS active site to accommodate glutamate. However, introduction of 22 amino acid replacements and one deletion, including substitution of the entire primary binding site and two surface loops adjacent to the region disrupted in C229R, improves the capacity of Escherichia coli GlnRS to synthesize misacylated Glu-tRNA{sup Gln} by 16,000-fold. This hybrid enzyme recapitulates the function of misacylating GluRS enzymes found in organisms that synthesize Gln-tRNA{sup Gln} by an alternative pathway. These findings implicate the RNA component of the contemporary GlnRS-tRNA{sup Gln} complex in mediating amino acid specificity. This role for tRNA may persist as a relic of primordial cells in which the evolution of the genetic code was driven by RNA-catalyzed amino acid-RNA pairing.

  4. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  5. Effect of cholesterol feeding and estrogen treatment on synthesis of fatty acids in liver.

    PubMed

    Srinivasan, K; Pynadath, T I

    1977-08-01

    The effect of cholesterol feeding and estrogen administration on synthesis of fatty acids in liver mitochondria, microsomes and cytoplasm of male rabbits has been investigated. The synthesis was measured by the incorporation of [1(-14)C] acetyl CoA or [2(-14)C]malonyl CoA into long chain fatty acids under optimal conditions. It was found that atherogenesis markedly decreased the fatty acid synthesis in cytoplasm. The mitochondrial fatty acid synthesis was not affected by the disease. There was a small but measurable decrease in the synthesis of fatty acids in microsomes. Estrogen had no effect on the synthesis of fatty acids in mitochondria or microsomes. But if effectively counteracted, after a short lag period, the decreased synthesis of cytoplasmic fatty acids observed in atherosclerosis. It is possible that liver fatty acid synthetase is one of the enzyme systems through which estrogens exert their atherosclerosis-retarding effect. The decreased cytoplasmic fatty acid synthesis observed in atherosclerosis might account for the low levels of saturated fatty acids reported in liver and plasma lipids of atherosclerotic animals.

  6. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.

    PubMed

    Van Dommelen, Anne; Spaepen, Stijn; Vanderleyden, Jozef

    2009-04-01

    Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.

  7. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  8. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed Central

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-01-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover. Images PMID:6113590

  9. Mitochondrial aminoacyl-tRNA synthetases in human disease.

    PubMed

    Konovalova, Svetlana; Tyynismaa, Henna

    2013-04-01

    Mitochondrial aminoacyl-tRNA synthetases (mtARSs) are essential in the process of transferring genetic information from mitochondrial DNA to the complexes of the oxidative phosphorylation system. These synthetases perform an integral step in the initiation of mitochondrial protein synthesis by charging tRNAs with their cognate amino acids. All mtARSs are encoded by nuclear genes, nine of which have recently been described as disease genes for mitochondrial disorders. Unexpectedly, the clinical presentations of these diseases are highly specific to the affected synthetase. Encephalopathy is the most common manifestation but again with gene-specific outcomes. Other clinical presentations include myopathy with anemia, cardiomyopathy, tubulopathy and hearing loss with female ovarian dysgenesis. Here we review the described mutation types and the associated patient phenotypes. The identified mutation spectrum suggests that only mutation types that allow some residual tRNA-charging activity can result in the described mtARS diseases but the molecular mechanisms behind the selective tissue involvement are not currently understood.

  10. Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy.

    PubMed

    Heinzer, Ann K; Kemp, Stephan; Lu, Jyh-Feng; Watkins, Paul A; Smith, Kirby D

    2002-08-09

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.

  11. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains

    PubMed Central

    Kassan, Adam; Herms, Albert; Fernández-Vidal, Andrea; Bosch, Marta; Schieber, Nicole L.; Reddy, Babu J.N.; Fajardo, Alba; Gelabert-Baldrich, Mariona; Tebar, Francesc; Enrich, Carlos; Gross, Steven P.

    2013-01-01

    Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage. PMID:24368806

  12. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization.

    PubMed

    León-Del-Río, Alfonso; Valadez-Graham, Viviana; Gravel, Roy A

    2017-08-21

    The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.

  13. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster

    PubMed Central

    Cordonier, Elizabeth L.; Adjam, Riem; Camara Teixeira, Daniel; Onur, Simone; Zbasnik, Richard; Read, Paul E.; Döring, Frank; Schlegel, Vicki L.; Zempleni, Janos

    2015-01-01

    Holocarboxylase synthetase (HLCS) is the sole protein-biotin ligase in the human proteome. HLCS has key regulatory functions in intermediary metabolism, including fatty acid metabolism, and in gene repression through epigenetic mechanisms. The objective of this study was to identify foodborne inhibitors of HLCS that alter HLCS-dependent pathways in metabolism and gene regulation. When libraries of extracts from natural products and chemically pure compounds were screened for HLCS inhibitor activity, resveratrol compounds in grape materials caused an HLCS inhibition of >98% in vitro. The potency of these compounds was piceatannol > resveratrol > piceid. Grape-borne compounds other than resveratrol metabolites also contributed toward HLCS inhibition, e.g., p-coumaric acid and cyanidin chloride. HLCS inhibitors had meaningful effects on body fat mass. When Drosophila melanogaster brummer mutants, which are genetically predisposed to storing excess amounts of lipids, were fed diets enriched with grape leaf extracts and piceid, body fat mass decreased by more than 30% in males and females. However, Drosophila responded to inhibitor treatment with an increase in the expression of HLCS, which elicited an increase in the abundance of biotinylated carboxylases in vivo. We conclude that mechanisms other than inhibition of HLCS cause body fat loss in flies. We propose that the primary candidate is the inhibition of the insulin receptor/Akt signaling pathway. PMID:26303405

  14. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes.

    PubMed Central

    de Crécy-Lagard, V; Blanc, V; Gil, P; Naudin, L; Lorenzon, S; Famechon, A; Bamas-Jacques, N; Crouzet, J; Thibaut, D

    1997-01-01

    Two genes involved in the biosynthesis of the depsipeptide antibiotics pristinamycins I (PI) produced by Streptomyces pristinaespiralis were cloned and sequenced. The 1.7-kb snbA gene encodes a 3-hydroxypicolinic acid:AMP ligase, and the 7.7-kb snbC gene encodes PI synthetase 2, responsible for incorporating L-threonine and L-aminobutyric acid in the PI macrocycle. snbA and snbC, which encode the two first structural enzymes of PI synthesis, are not contiguous. Both genes are located in PI-specific transcriptional units, as disruption of one gene or the other led to PI-deficient strains producing normal levels of the polyunsaturated macrolactone antibiotic pristinamycin II, also produced by S. pristinaespiralis. Analysis of the deduced amino acid sequences showed that the SnbA protein is a member of the adenylate-forming enzyme superfamily and that the SnbC protein contains two amino acid-incorporating modules and a C-terminal epimerization domain. A model for the initiation of PI synthesis analogous to the established model of initiation of fatty acid synthesis is proposed. PMID:9006024

  15. Characterization of a Bacillus subtilis surfactin synthetase knockout and antimicrobial activity analysis.

    PubMed

    Liu, Hongxia; Qu, Xiaoxu; Gao, Ling; Zhao, Shengming; Lu, Zhaoxin; Zhang, Chong; Bie, Xiaomei

    2016-11-10

    Gene knockout is an important approach to improve the production of antimicrobial compounds. B. subtilis PB2-LS10, derived from B. subtilis PB2-L by a surfactin synthetase (srf) genes knockout, exhibits stronger inhibitory action than its parental strain against all tested pathogenic bacteria and fungi. The antimicrobial extracts produced by B. subtilis PB2-L and B. subtilis PB2-LS10 respectively were characterized by the high-resolution LC-ESI-MS. To provide further insight into the distinct antimicrobial activities, we investigated the impact of the srf genes deletion on the growth and gene transcriptional profile of the strains. The mutant strain grew quickly and reached stationary phase 2h earlier than the wild-type. Prominent expression changes in the modified strain involved genes that were essential to metabolic pathways and processes. Genes related to amino acid transport, ATP-binding cassette (ABC) transporters and protein export were up-regulated in strain PB2-LS10. However, amino acid metabolism, carbohydrate metabolism and fatty acid metabolism were repressed. Because of its excellent antimicrobial activity, strain PB2-LS10 has potential for use in food preservation.

  16. Acyl-CoA synthetase 1 deficiency alters cardiolipin species and impairs mitochondrial function

    PubMed Central

    Grevengoed, Trisha J.; Martin, Sarah A.; Katunga, Lalage; Cooper, Daniel E.; Anderson, Ethan J.; Murphy, Robert C.; Coleman, Rosalind A.

    2015-01-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL activity, but its role in phospholipid synthesis has not been determined. Mice with an inducible knockout of ACSL1 (Acsl1T−/−) have impaired cardiac fatty acid oxidation and rely on glucose for ATP production. Because ACSL1 exhibited a strong substrate preference for linoleate, we investigated the composition of heart phospholipids. Acsl1T−/− hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control hearts. A stable knockdown of ACSL1 in H9c2 rat cardiomyocytes resulted in low incorporation of linoleate into CL and in diminished incorporation of palmitate and oleate into other phospholipids. Overexpression of ACSL1 in H9c2 and HEK-293 cells increased incorporation of linoleate into CL and other phospholipids. To determine whether increasing the content of linoleate in CL would improve mitochondrial respiratory function in Acsl1T−/− hearts, control and Acsl1T−/− mice were fed a high-linoleate diet; this diet normalized the amount of tetralinoleoyl-CL but did not improve respiratory function. Thus, ACSL1 is required for the normal composition of several phospholipid species in heart. Although ACSL1 determines the acyl-chain composition of heart CL, a high tetralinoleoyl-CL content may not be required for normal function. PMID:26136511

  17. Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase.

    PubMed

    Tseng, Claire C; Bruner, Steven D; Kohli, Rahul M; Marahiel, Mohamed A; Walsh, Christopher T; Sieber, Stephan A

    2002-11-12

    The C-terminal thioesterase domain of the nonribosomal peptide synthetase producing the lipopetide surfactin (Srf TE) retains autonomous ability to generate the cyclic peptidolactone skeleton of surfactin when provided with a soluble beta-hydroxy-butyryl-heptapeptidyl thioester substrate. Utilizing the recently solved crystal structure [Bruner, S. D., et al. (2002) Structure 10, 301-310], the active-site nucleophile, Ser80, was changed to Cys, and the other members of the catalytic triad, Asp107 and His207, were changed to Ala, with the resulting mutants lacking detectable activity. Two cationic side chains in the active site, Lys111 and Arg120, were changed to Ala, causing an increased partitioning of the product to hydrolysis, as did a P26G mutant, mimicking the behavior of lipases. To evaluate recognition elements in substrates used by Srf TE, alterations to the fatty acyl group, the heptapeptide, and the thioester leaving group were made, and the resulting substrates were characterized for kinetic competency and flux of product to cyclization or hydrolysis. Alterations that could be accepted for cyclization were identified in all three parts of the substrate, although tolerance limits for changes varied. In addition, cocrystal structures of Srf TE with dipeptidyl boronate inhibitors were solved, illustrating the critical binding determinants of the substrate. On the basis of the structures and biochemical data, the cyclizing conformation of the surfactin peptide was modeled into the enzyme active site.

  18. Expression of glutamine synthetase in balloon cells: a basis of their antiepileptic role?

    PubMed

    Buccoliero, Anna Maria; Barba, Carmen; Giordano, Flavio; Baroni, Gianna; Genitori, Lorenzo; Guerrini, Renzo; Taddei, Gian Luigi

    2015-01-01

    Glutamine synthetase is an enzyme involved in the clearance of glutamate, the most potent excitatory neurotransmitter. We studied the immunohistochemical expression of glutamine synthetase in neocortical samples from 5 children who underwent surgery for pharmacoresistant epilepsy and a histological diagnosis of focal cortical dysplasia IIb. In all cases, balloon cells, but not dysmorphic neurons, were immunopositive for glutamine synthetase. This finding suggests that balloon cells can be involved in the neutralization of glutamate and play a protective anti-seizure role.

  19. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    SciTech Connect

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard Rudinger-Thirion, Joëlle; Sauter, Claude

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  20. Two Activities of Long-Chain Acyl-Coenzyme A Synthetase Are Involved in Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in Arabidopsis1

    PubMed Central

    Jessen, Dirk; Roth, Charlotte; Wiermer, Marcel

    2015-01-01

    In plants, fatty acids are synthesized within the plastid and need to be distributed to the different sites of lipid biosynthesis within the cell. Free fatty acids released from the plastid need to be converted to their corresponding coenzyme A thioesters to become metabolically available. This activation is mediated by long-chain acyl-coenzyme A synthetases (LACSs), which are encoded by a family of nine genes in Arabidopsis (Arabidopsis thaliana). So far, it has remained unclear which of the individual LACS activities are involved in making plastid-derived fatty acids available to cytoplasmic glycerolipid biosynthesis. Because of its unique localization at the outer envelope of plastids, LACS9 was regarded as a candidate for linking plastidial fatty export and cytoplasmic use. However, data presented in this study show that LACS9 is involved in fatty acid import into the plastid. The analyses of mutant lines revealed strongly overlapping functions of LACS4 and LACS9 in lipid trafficking from the endoplasmic reticulum to the plastid. In vivo labeling experiments with lacs4 lacs9 double mutants suggest strongly reduced synthesis of endoplasmic reticulum-derived lipid precursors, which are required for the biosynthesis of glycolipids in the plastids. In conjunction with this defect, double-mutant plants accumulate significant amounts of linoleic acid in leaf tissue. PMID:25540329

  1. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation

    PubMed Central

    Grevengoed, Trisha J.; Cooper, Daniel E.; Young, Pamela A.; Ellis, Jessica M.; Coleman, Rosalind A.

    2015-01-01

    Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1T−/−) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1T−/− hearts contained 3 times more mitochondria with abnormal structure and displayed a 35–43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1T−/− and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1T−/− hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33–51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1T−/− hearts. The turnover of microtubule associated protein light chain 3b in Acsl1T−/− hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria.—Grevengoed, T. J., Cooper, D. E., Young, P. A., Ellis, J. M., Coleman, R. A. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. PMID:26220174

  2. Functional expansion of human tRNA synthetases achieved by structural inventions.

    PubMed

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-21

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.

  3. Acyl-CoA synthetase and the peroxisomal enzymes of beta-oxidation in human liver. Quantitative analysis of their subcellular localization.

    PubMed Central

    Bronfman, M; Inestrosa, N C; Nervi, F O; Leighton, F

    1984-01-01

    The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate. PMID:6240978

  4. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism.

    PubMed

    Chen, Liwei; Zhang, Jianhua; Lee, Jaslyn; Chen, Wei Ning

    2014-08-01

    Production of biofuels derived from microbial fatty acids has attracted great attention in recent years owing to their potential to replace petroleum-derived fuels. To be cost competitive with current petroleum fuel, flux toward the direct precursor fatty acids needs to be enhanced to approach high yields. Herein, fatty acyl-CoA metabolism in Saccharomyces cerevisiae was engineered to accumulate more free fatty acids (FFA). For this purpose, firstly, haploid S. cerevisiae double deletion strain △faa1△faa4 was constructed, in which the genes FAA1 and FAA4 encoding two acyl-CoA synthetases were deleted. Then the truncated version of acyl-CoA thioesterase ACOT5 (Acot5s) encoding Mus musculus peroxisomal acyl-CoA thioesterase 5 was expressed in the cytoplasm of the strain △faa1△faa4. The resulting strain △faa1△faa4 [Acot5s] accumulated more extracellular FFA with higher unsaturated fatty acid (UFA) ratio as compared to the wild-type strain and double deletion strain △faa1△faa4. The extracellular total fatty acids (TFA) in the strain △faa1△faa4 [Acot5s] increased to 6.43-fold as compared to the wild-type strain during the stationary phase. UFA accounted for 42 % of TFA in the strain △faa1△faa4 [Acot5s], while no UFA was detected in the wild-type strain. In addition, the expression of Acot5s in △faa1△faa4 restored the growth, which indicates that FFA may not be the reason for growth inhibition in the strain △faa1△faa4. RT-PCR results demonstrated that the de-repression of fatty acid synthesis genes led to the increase of extracellular fatty acids. The study presented here showed that through control of the acyl-CoA metabolism by deleting acyl-CoA synthetase and expressing thioesterase, more FFA could be produced in S. cerevisiae, demonstrating great potential for exploitation in the platform of microbial fatty acid-derived biofuels.

  5. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes.

    PubMed

    Fulks, R M; Stadtman, E R

    1985-12-13

    When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but

  6. Assignment of the cysteinyl-tRNA synthetase gene (CARS) to 11p15. 5

    SciTech Connect

    Cruzen, M.E.; Bengtsson, U.; McMahon, J.; Wasmuth, J.J.; Arfin, S.M. )

    1993-03-01

    The attachment of each of the 20 naturally occurring amino acids to their cognate tRNA isoaccepting families is catalyzed by a specific aminoacyl-tRNA synthetase. The structural genes encoding 10 of these enzymes have been assigned to specific human chromosomes. The HARS, LARS, RARS, and TARS genes, encoding histidyl-, leucyl-, arginyl-, and threonyl-tRNA synthetases, respectively, are all located on chromosome 5( 1, 5, 7, 9, 14). The MARS (methionyl-tRNA synthetase), NARS (asparaginyl-tRNA synthetase), VARS (valyl-tRNA synthetase), and WARS (tryptophanyl-tRNA synthetase) genes have been assigned to chromosomes 12, 18, 6, and 14, respectively (3, 4, 6, 8). A gene originally identified as encoding glutaminyl-tRNA synthetase was mapped to chromosome 1q32-q42 (10). However, a recent study suggests that the product of this gene is, in fact, a multifunctional enzyme with both glutamyl- and prolyl-tRNA synthetase activities (2). The fact that 4 of the 10 aminoacyl-tRNA synthetase genes already mapped are located on chromosome 5 may be fortuitous but might also indicate an evolutionary or regulatory relatedness. It is therefore, of interest to map genes encoding other aminoacyl-tRNA synthetases to determine if additional examples of synteny exist. The recent isolation of cDNA and genomic DNA clones for human cysteinyl-tRNA synthetase has now enabled us to map the CARS gene to segment p15.5 on chromosome 11 by fluorescence in situ hybridization.

  7. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity

    PubMed Central

    2015-01-01

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870

  8. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  9. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  10. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    PubMed Central

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  11. Inactivation and covalent modification of CTP synthetase by thiourea dioxide.

    PubMed Central

    Robertson, J. G.; Sparvero, L. J.; Villafranca, J. J.

    1992-01-01

    Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues. PMID:1303749

  12. Phosphinothricin Tripeptide Synthetases in Streptomyces viridochromogenes Tü494

    PubMed Central

    Schwartz, Dirk; Grammel, Nicolas; Heinzelmann, Eva; Keller, Ullrich; Wohlleben, Wolfgang

    2005-01-01

    The tripeptide backbone of phosphinothricin (PT) tripeptide (PTT), a compound with herbicidal activity from Streptomyces viridochromogenes, is assembled by three stand-alone peptide synthetase modules. The enzyme PhsA (66 kDa) recruits the PT-precursor N-acetyl-demethylphosphinothricin (N-Ac-DMPT), whereas the two alanine residues of PTT are assembled by the enzymes PhsB and PhsC (129 and 119 kDa, respectively). During or after assembly, the N-Ac-DMPT residue in the peptide is converted to PT by methylation and deacetylation. Both phsB and phsC appear to be cotranscribed together with two other genes from a single promoter and they are located at a distance of 20 kb from the gene phsA, encoding PhsA, in the PTT biosynthesis gene cluster of S. viridochromogenes. PhsB and PhsC represent single nonribosomal peptide synthetase elongation modules lacking a thioesterase domain. Gene inactivations, genetic complementations, determinations of substrate specificity of the heterologously produced proteins, and comparison of PhsC sequence with the amino terminus of the alanine-activating nonribosomal peptide synthetase PTTSII from S. viridochromogenes confirmed the role of the two genes in the bialanylation of Ac-DMPT. The lack of an integral thioesterase domain in the PTT assembly system points to product release possibly involving two type II thioesterase genes (the1 and the2) located in the PTT gene cluster alone or in conjunction with an as yet unknown mechanism of product release. PMID:16251301

  13. Glutamine versus Ammonia Utilization in the NAD Synthetase Family

    PubMed Central

    Shatalin, Konstantin; Gelfand, Mikhail S.; Osterman, Andrei L.; Sorci, Leonardo

    2012-01-01

    NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural

  14. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes

    PubMed Central

    Frago, Susana; Martínez-Júlvez, Marta; Serrano, Ana; Medina, Milagros

    2008-01-01

    Background The prokaryotic FAD synthetase family – a group of bifunctional enzymes that catalyse riboflavin phosphorylation and FMN adenylylation within a single polypeptide chain- was analysed in terms of sequence and structure. Results Sequences of nearly 800 prokaryotic species were aligned. Those related with bifunctional FAD synthetase activities showed conservation of several consensus regions and highly conserved residues. A 3D model for the FAD synthetase from Corynebacterium ammoniagenes (CaFADS) was generated. This model confirms that the N-terminal and C-terminal domains are related to nucleotydyltransferases and riboflavin kinases, respectively. Models for the interaction of CaFADS with its substrates were also produced, allowing location of all the protein substrates in their putative binding pockets. These include two independent flavin binding sites for each CaFADS activity. Conclusion For the first time, the putative presence of a flavin binding site for the adenylylation activity, independent from that related with the phosphorylation activity, is shown. Additionally, these models suggest the functional relevance of some residues putatively involved in the catalytic processes. Their relevant roles were analysed by site-directed mutagenesis. A role was confirmed for H28, H31, S164 and T165 in the stabilisation of the P groups and the adenine moiety of ATP and, the P of FMN for the adenylylation. Similarly, T208, N210 and E268 appear critical for accommodation of the P groups of ATP and the ribityl end of RF in the active site for the phosphorylation process. Finally, the C-terminal domain was shown to catalyse the phosphorylation process on its own, but no reaction at all was observed with the individually expressed N-terminal domain. PMID:18811972

  15. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes.

    PubMed

    Frago, Susana; Martínez-Júlvez, Marta; Serrano, Ana; Medina, Milagros

    2008-09-23

    The prokaryotic FAD synthetase family - a group of bifunctional enzymes that catalyse riboflavin phosphorylation and FMN adenylylation within a single polypeptide chain- was analysed in terms of sequence and structure. Sequences of nearly 800 prokaryotic species were aligned. Those related with bifunctional FAD synthetase activities showed conservation of several consensus regions and highly conserved residues. A 3D model for the FAD synthetase from Corynebacterium ammoniagenes (CaFADS) was generated. This model confirms that the N-terminal and C-terminal domains are related to nucleotydyltransferases and riboflavin kinases, respectively. Models for the interaction of CaFADS with its substrates were also produced, allowing location of all the protein substrates in their putative binding pockets. These include two independent flavin binding sites for each CaFADS activity. For the first time, the putative presence of a flavin binding site for the adenylylation activity, independent from that related with the phosphorylation activity, is shown. Additionally, these models suggest the functional relevance of some residues putatively involved in the catalytic processes. Their relevant roles were analysed by site-directed mutagenesis. A role was confirmed for H28, H31, S164 and T165 in the stabilisation of the P groups and the adenine moiety of ATP and, the P of FMN for the adenylylation. Similarly, T208, N210 and E268 appear critical for accommodation of the P groups of ATP and the ribityl end of RF in the active site for the phosphorylation process. Finally, the C-terminal domain was shown to catalyse the phosphorylation process on its own, but no reaction at all was observed with the individually expressed N-terminal domain.

  16. Stability of Rat Brain Glutamine Synthetase to Oxygen Toxicity (Oxygen at High Pressure).

    DTIC Science & Technology

    1983-07-01

    Enzyme assays using the gamma-glutamyl transferase method provided estimates of glutamine synthetase activity in rat brain homogenates subjected to a...supports the lack of any connection between convulsions caused by in vivo inhibition of glutamine synthetase and convulsions caused by oxygen toxicity (oxygen at high pressure). (Author)

  17. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  18. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  19. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  20. Functional domains of the fatty acid transport proteins: studies using protein chimeras.

    PubMed

    DiRusso, Concetta C; Darwis, Dina; Obermeyer, Thomas; Black, Paul N

    2008-03-01

    Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.

  1. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases

    PubMed Central

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  2. Hepatic expression of long-chain acyl-CoA synthetase 3 is upregulated in hyperlipidemic hamsters.

    PubMed

    Wu, Minhao; Liu, Haiyan; Chen, Wei; Fujimoto, Yasuyuki; Liu, Jingwen

    2009-11-01

    Members of the mammalian long-chain acyl-CoA synthetase (ACSL) family are key enzymes for cellular fatty acid metabolism that catalyze the initial step in activation of long-chain fatty acids. However, the specificity of individual isoforms of ACSL to the lipid metabolic process is not well studied. In addition, the regulation of expression of individual ACSL isoforms under hyperlipidemic conditions is largely unknown. We cloned the hamster ACSL3 cDNA coding region and generated specific antibodies recognizing the ACSL3 protein. We next observed the changes in ACSL3 mRNA and protein expression in hamsters fed a standard chow diet or a high fat and high cholesterol (HFHC) diet. HFHC feeding significantly increased ACSL3 mRNA and protein expression in liver and to a lesser extent in muscle but not in adipose, brain, heart, or testis. Additionally, ACSL3 mRNA abundance was differentially regulated by the nutritional status in different tissues with liver, muscle, and adipose being the most sensitive tissues. Importantly, the hepatic ACSL3 mRNA expression pattern in response to fasting and refeeding in hyperlipidemic hamsters differed from that observed in normal chow-fed hamsters. Together, these results provide the first in vivo evidence of altered regulation of hepatic ACSL3 expression under hyperlipidemic conditions and suggest important regulatory roles for this enzyme in lipid metabolism.

  3. Peptide Mapping of Aminoacyl-tRNA Synthetases: Evidence for Internal Sequence Homology in Escherichia coli Leucyl-tRNA Synthetase

    PubMed Central

    Waterson, Robert M.; Konigsberg, William H.

    1974-01-01

    Most aminoacyl-tRNA synthetases contain polypeptide chains of about either 50,000 or 100,000 daltons. Peptide mapping of tryptic, chymotryptic, or Staphylococcus aureus acid protease digests of seryl-tRNA synthetase (100,000, dimer) and leucyl-tRNA synthetase (100,000, monomer) from E. coli was done after selective modification of lysine residues with [14C]succinic anhydride or of methionine residues with [14C]iodoacetate. By use of thin-layer electrophoresis and chromatography on silicagel or cellulose plates followed by radioautography it was possible, depending upon the specific activity of the reagent used, to detect radioactive peptides obtained from as little as l μg of protein. Seryl-tRNA synthetase gave the correct number of tryptic peptides expected for a dimer of identical subunits. Leucyl-tRNA synthetase, on the other hand, gave roughly half the number of radioactive tryptic, chymotryptic, and acid protease peptides expected from the lysine, arginine, and methionine content of the 100,000 monomer. We have interpreted these results as indicating that extensive internal homology exists among lysine- and methionine-containing peptides within the leucyl-tRNA synthetase. The simplest conclusion that can be drawn from these observations is that the NH2- and COOH-terminal halves of leucyl-tRNA synthetase and perhaps other synthetases of 100,000 molecular weight may have evolved through a process of gene duplication and fusion, followed by limited diversification by way of amino-acid substitutions accumulating during evolution. Images PMID:4592690

  4. Circumstantial evidence for a role of glutamine-synthetase in suicide.

    PubMed

    Kalkman, Hans O

    2011-06-01

    Suicide occurs during depression, schizophrenia, diabetes and epilepsy. A common denominator of these disorders is the presence of inflammation. Inflammatory cytokines affect function and expression of the glial enzyme glutamine synthetase and post mortem studies indicate that brain glutamine synthetase function is suppressed in mood disorders and epilepsy. In a study of schizophrenia brains, the expression of glutamine synthetase was reduced in those cases where the cause of death was suicide. The glycogen synthase kinase 3 (GSK3) inhibitor, lithium, which has a proven efficacy against suicide, increased in an animal experiment the expression of glutamine synthetase. Based on these data one could reason that suicide may be prevented by centrally acting GSK3 inhibitors. However, since inhibition of glutamine synthetase may lead to a deficit in glutamine and as consequence a GABA and glutamate deficit, even simple food supplementation with glutamine might help to reduce suicide.

  5. Myocardial aminoacyl-transfer-ribonucleic acid synthetase and aminoacyl-transferring enzyme activity

    PubMed Central

    Gibson, K.; Harris, P.

    1972-01-01

    The properties of cytoplasmic aminoacyl-tRNA synthetase and aminoacyl-transferring enzymes in the myocardium were examined and methods for the assay of the activity of these enzyme systems were developed. Aminoacyl-tRNA synthetase activity was measured from the rate of incorporation of 14C-labelled amino acid into aminoacyl-tRNA. Transferase activity was measured from the rate of incorporation of amino[14C]acyl-tRNA into protein in the presence of a standard preparation of hepatic ribosomes. Aminoacyl-tRNA synthetase activity is labile once the heart has been homogenized, whereas transferase activity is stable. The source of energy for synthetase activity is ATP; that for transferase is GTP. Transferase activity was inhibited by puromycin and stimulated by dithiothreitol, whereas synthetase activity was unaffected. PMID:5071178

  6. Inhibition of rabbit gastric glucosamine synthetase activity by Cu2+, Zn2+ and Se4+.

    PubMed

    Fujita, T; Sakuma, S; Takahashi, K; Bohtani, Y; Nishida, H; Fujimoto, Y

    1997-05-01

    The effects of Fe2+, Cu2+, Zn2+ and Se4+ on the activity of glucosamine synthetase, the rate-limiting enzyme of mucus synthesis, in rabbit gastric corporal mucosa were examined. Cu2+, Zn2+ and Se4+ inhibited the glucosamine synthetase activity at concentrations ranging from 1 to 10 microM (Cu2+, 8-98% inhibition; Zn2+, 10-99% inhibition; Se4+, 32-89% inhibition). The inhibitory effects of these three ions were much stronger than that of UDP-N-acetylglúcosamine known as a representative inhibitor of the glucosamine synthetase activity (10 microM, 52% inhibition). Fe2+ had no significant effect on the glucosamine synthetase activity up to 100 microM. These results suggest that Cu2+, Zn2+ and Se4+ can be potent inhibitors of gastric glucosamine synthetase activity.

  7. The evolution of Class II Aminoacyl-tRNA synthetases and the first code.

    PubMed

    Smith, Temple F; Hartman, Hyman

    2015-11-30

    Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and "Lysine"/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    PubMed Central

    Pyne, C; Bognar, A L

    1992-01-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products. Images PMID:1548226

  9. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver.

    PubMed

    Cabrero, C; Puerta, J; Alemany, S

    1987-12-30

    Only two S-adenosyl-L-methionine synthetase forms exist in rat liver: high-Mr S-adenosyl-L-methionine synthetase and low-Mr S-adenosyl-L-methionine synthetase, which have been purified to apparent homogeneity as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. High-Mr S-adenosyl-L-methionine synthetase had an apparent molecular mass, determined by gel filtration, of 210 kDa and was a tetramer constituted by 48.5-kDa subunits, estimated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The apparent molecular mass of low-Mr S-adenosyl-L-methionine synthetase, as estimated by gel filtration, was 110 kDa and was constituted by two subunits of 47 kDa. An antiserum against low-Mr S-adenosyl-L-methionine synthetase cross-reacted with the two forms. Reverse-phase HPLC runs of tryptic digestions of high-Mr and low-Mr S-adenosyl-L-methionine synthetase showed that the peptide maps of the two forms were very similar, if not identical. High-Mr S-adenosyl-L-methionine synthetase activity was inhibited by S-adenosyl-L-methionine and pyrophosphate. Depending on the dose used, S-adenosyl-L-methionine activated or inhibited low-Mr S-adenosyl-L-methionine synthetase and pyrophosphate had no effect on this form. The two synthetases showed a different specific activity at the physiological concentration of methionine. This report shows that even though the two forms are constructed of the same polypeptide chains, they are regulated in a different manner by methionine and by the products of the reaction.

  10. Novel insights into regulation of asparagine synthetase in conifers.

    PubMed

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed.

  11. Novel Insights into Regulation of Asparagine Synthetase in Conifers

    PubMed Central

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M.

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed. PMID:22654888

  12. Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase

    PubMed Central

    Alderwick, Luke J; Lloyd, Georgina S; Lloyd, Adrian J; Lovering, Andrew L; Eggeling, Lothar; Besra, Gurdyal S

    2011-01-01

    Mycobacterium tuberculosis arabinogalactan (AG) is an essential cell wall component. It provides a molecular framework serving to connect peptidoglycan to the outer mycolic acid layer. The biosynthesis of the arabinan domains of AG and lipoarabinomannan (LAM) occurs via a combination of membrane bound arabinofuranosyltransferases, all of which utilize decaprenol-1-monophosphorabinose as a substrate. The source of arabinose ultimately destined for deposition into cell wall AG or LAM originates exclusively from phosphoribosyl-1-pyrophosphate (pRpp), a central metabolite which is also required for other essential metabolic processes, such as de novo purine and pyrimidine biosyntheses. In M. tuberculosis, a single pRpp synthetase enzyme (Mt-PrsA) is solely responsible for the generation of pRpp, by catalyzing the transfer of pyrophosphate from ATP to the C1 hydroxyl position of ribose-5-phosphate. Here, we report a detailed biochemical and biophysical study of Mt-PrsA, which exhibits the most rapid enzyme kinetics reported for a pRpp synthetase. PMID:21045009

  13. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  14. MANAGEMENT OF A PATIENT WITH HOLOCARBOXYLASE SYNTHETASE DEFICIENCY

    PubMed Central

    Van Hove, Johan LK; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A.; Thuy, Le Phuc; Barshop, Bruce A.; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2009-01-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3′ of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100 mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid, corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required. PMID:18974016

  15. Management of a patient with holocarboxylase synthetase deficiency.

    PubMed

    Van Hove, Johan L K; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A; Thuy, Le Phuc; Barshop, Bruce A; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2008-12-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3' of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid (CSF), corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required.

  16. Purification and properties of the dihydrofolate synthetase from Serratia indica.

    PubMed

    Ikeda, M; Kazuo, I

    1976-01-01

    The dihydrofolate synthetase (EC 6.3.2.12) responsible for catalyzing the synthesis of dihydrofolic acid from dihydropteroic acid and L-glutamic acid was purified about 130-fold from extracts of Serratia indica IFO 3759 by ammonium sulfate fractionation, DEAE-Sephadex column chromatography, Sephadex G-200 gel filtration, and DEAE-cellulose column chromatography. The enzyme preparation obtained was shown to be homogeneous by DEAE-cellulose column chromatography and ultracentrifugal analysis. The sedimentation coefficient of this enzyme was 3.9 S, and the molecular weight was determined to be about 47,000 by Sephadex G-100. The optimum pH for the reaction was 9.0. The enzymatic reaction required dihydropteroate, L-glutamate and ATP as substrates, and Mg2+ and K+ as cofactors. gamma-L-Glutamyl-L-glutamic acid cannot replace L-glutamic acid as the substrate. Neither pteroic acid nor tetrahydropteroic acid can be used as the substrate. ATP was partially replaced by ITP or GTP. The enzyme reaction was inhibited by the addition of AD, but not by AMP. One mole of dihydrofolate, 1 mole of ADP and 1 mole of orthophosphate were produced from each 1 mole of dihydropteroic acid, L-glutamic acid, and ATP by the following equation: 7,8-Dihydropteroic acid ml-Glutamic acid matp Mg2+, K+ leads to Dihydrofolic acid + ADP + Pi. These results suggest that the systematic name for the dihydrofolate synthetase is 7,8-dihydropteroate: L-glutamate ligase (ADP).

  17. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro

    PubMed Central

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2017-01-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells. PMID:25645621

  18. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro.

    PubMed

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2015-05-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells.

  19. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum

    SciTech Connect

    Carey, L.M.; Rodriguez, A.; Meighen, E.

    1984-08-25

    The fatty acid reductase complex from Photobacterium phosphoreum has been discovered to have a long chain ester hydrolase activity associated with the 34K protein component of the complex. This protein has been resolved from the other components (50K and 58K) of the fatty acid reductase complex with a purity of > 95% and found to catalyze the transfer of acyl groups from acyl-CoA primarily to thiol acceptors with a low level of transfer to glycerol and water. Addition of the 50K protein of the complex caused a dramatic change in specificity increasing the transfer to oxygen acceptors. The acyl-CoA hydrolase activity increased almost 10-fold, and hence free fatty acids can be generated by the 34K protein when it is present in the fatty acid reductase complex. Hydrolysis of acyl-S-mercaptoethanol and acyl-1-glycerol and the ATP-dependent reduction of the released fatty acids to aldehyde for the luminescent reaction were also demonstrated for the reconstituted fatty acid reductase complex, raising the possibility that the immediate source of fatty acids for this reaction in vivo could be the membrane lipids and/or the fatty acid synthetase system.

  20. The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae.

    PubMed Central

    Hettema, E H; van Roermund, C W; Distel, B; van den Berg, M; Vilela, C; Rodrigues-Pousada, C; Wanders, R J; Tabak, H F

    1996-01-01

    Peroxisomes of Saccharomyces cerevisiae are the exclusive site of fatty acid beta-oxidation. We have found that fatty acids reach the peroxisomal matrix via two independent pathways. The subcellular site of fatty acid activation varies with chain length of the substrate and dictates the pathway of substrate entry into peroxisomes. Medium-chain fatty acids are activated inside peroxisomes hby the acyl-CoA synthetase Faa2p. On the other hand, long-chain fatty acids are imported from the cytosolic pool of activated long-chain fatty acids via Pat1p and Pat2p, peroxisomal membrane proteins belonging to the ATP binding cassette transporter superfamily. Pat1p and Pat2p are the first examples of membrane proteins involved in metabolite transport across the peroxisomal membrane. Images PMID:8670886

  1. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli.

    PubMed

    Cao, Yujin; Liu, Wei; Xu, Xin; Zhang, Haibo; Wang, Jiming; Xian, Mo

    2014-01-01

    Monounsaturated fatty acids (MUFAs) are the best components for biodiesel when considering the low temperature fluidity and oxidative stability. However, biodiesel derived from vegetable oils or microbial lipids always consists of significant amounts of polyunsaturated and saturated fatty acids (SFAs) alkyl esters, which hampers its practical applications. Therefore, the fatty acid composition should be modified to increase MUFA contents as well as enhancing oil and lipid production. The model microorganism Escherichia coli was engineered to produce free MUFAs. The fatty acyl-ACP thioesterase (AtFatA) and fatty acid desaturase (SSI2) from Arabidopsis thaliana were heterologously expressed in E. coli BL21 star(DE3) to specifically release free unsaturated fatty acids (UFAs) and convert SFAs to UFAs. In addition, the endogenous fadD gene (encoding acyl-CoA synthetase) was disrupted to block fatty acid catabolism while the native acetyl-CoA carboxylase (ACCase) was overexpressed to increase the malonyl coenzyme A (malonyl-CoA) pool and boost fatty acid biosynthesis. The finally engineered strain BL21ΔfadD/pE-AtFatAssi2&pA-acc produced 82.6 mg/L free fatty acids (FFAs) under shake-flask conditions and FFAs yield on glucose reached about 3.3% of the theoretical yield. Two types of MUFAs, palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) made up more than 75% of the FFA profiles. Fed-batch fermentation of this strain further enhanced FFAs production to a titer of 1.27 g/L without affecting fatty acid compositions. This study demonstrated the possibility to regulate fatty acid composition by using metabolic engineering approaches. FFAs produced by the recombinant E. coli strain consisted of high-level MUFAs and biodiesel manufactured from these fatty acids would be more suitable for current diesel engines.

  2. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli

    PubMed Central

    2014-01-01

    Background Monounsaturated fatty acids (MUFAs) are the best components for biodiesel when considering the low temperature fluidity and oxidative stability. However, biodiesel derived from vegetable oils or microbial lipids always consists of significant amounts of polyunsaturated and saturated fatty acids (SFAs) alkyl esters, which hampers its practical applications. Therefore, the fatty acid composition should be modified to increase MUFA contents as well as enhancing oil and lipid production. Results The model microorganism Escherichia coli was engineered to produce free MUFAs. The fatty acyl-ACP thioesterase (AtFatA) and fatty acid desaturase (SSI2) from Arabidopsis thaliana were heterologously expressed in E. coli BL21 star(DE3) to specifically release free unsaturated fatty acids (UFAs) and convert SFAs to UFAs. In addition, the endogenous fadD gene (encoding acyl-CoA synthetase) was disrupted to block fatty acid catabolism while the native acetyl-CoA carboxylase (ACCase) was overexpressed to increase the malonyl coenzyme A (malonyl-CoA) pool and boost fatty acid biosynthesis. The finally engineered strain BL21ΔfadD/pE-AtFatAssi2&pA-acc produced 82.6 mg/L free fatty acids (FFAs) under shake-flask conditions and FFAs yield on glucose reached about 3.3% of the theoretical yield. Two types of MUFAs, palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) made up more than 75% of the FFA profiles. Fed-batch fermentation of this strain further enhanced FFAs production to a titer of 1.27 g/L without affecting fatty acid compositions. Conclusions This study demonstrated the possibility to regulate fatty acid composition by using metabolic engineering approaches. FFAs produced by the recombinant E. coli strain consisted of high-level MUFAs and biodiesel manufactured from these fatty acids would be more suitable for current diesel engines. PMID:24716602

  3. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    PubMed Central

    Paul, David S.; Grevengoed, Trisha J.; Pascual, Florencia; Ellis, Jessica M.; Willis, Monte S.; Coleman, Rosalind A.

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1H−/−), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholambin showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1H−/− mice with rapamycin. Six to eight week old Acsl1H−/− mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10 weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1H−/− hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1H−/− hearts exhibited an 8-fold higher uptake of 2-deoxy[1-14C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-14C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1H−/− mice. PMID:24631848

  4. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin.

    PubMed

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia; Ellis, Jessica M; Willis, Monte S; Coleman, Rosalind A

    2014-06-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. X-linked adrenoleukodystrophy: role of very long-chain acyl-CoA synthetases.

    PubMed

    Jia, Zhenzhen; Pei, Zhengtong; Li, Yuanyuan; Wei, Liumei; Smith, Kirby D; Watkins, Paul A

    2004-01-01

    The principal biochemical abnormality in the neurodegenerative disorder X-linked adrenoleukodystrophy (X-ALD) is elevated plasma and tissue levels of very long-chain fatty acids (VLCFA). Enzymes with very long-chain acyl-CoA synthetase (VLACS) activity are required for VLCFA metabolism, including degradation by peroxisomal beta-oxidation or incorporation into complex lipids, and may also participate in VLCFA synthesis. Two enzymes with VLACS activity, ACSVL1 and BG1, were investigated for their potential role in X-ALD biochemical pathology. Skin fibroblast mRNA levels for ACSVL1, an enzyme previously shown to be in peroxisomes and to participate in VLCFA beta-oxidation, were not significantly different between normal controls, patients with childhood cerebral X-ALD, and patients with adrenomyeloneuropathy. Similar results were obtained with mRNA for BG1, a non-peroxisomal enzyme that is highly expressed in nervous system, adrenal gland, and testis, the principal tissues pathologically affected in X-ALD. No significant differences in the immunohistochemical staining patterns of tissues expressing either ACSVL1 or BG1 were observed when wild-type and X-ALD mice were compared. Western blot analysis of BG1 protein levels showed no differences between fibroblasts from controls, cerebral X-ALD, or adrenomyeloneuropathy patients. BG1 protein levels were similar in wild-type and X-ALD mouse brain, spinal cord, testis, and adrenal gland. We hypothesized that one function of BG1 was to direct VLCFA into the cholesterol ester synthesis pathway. However, BG1 depletion in Neuro2a cells using RNA interference did not decrease incorporation of labeled VLCFA into cholesterol esters. We conclude that the role, if any, of ACSVL1 and BG1 in X-ALD biochemical pathology is indirect.

  6. Molecular cloning and chromosomal localization of human holocarboxylase synthetase, a gene responsible for biotin dependency

    SciTech Connect

    Suzuki, Y.; Aoki, Y.; Ishida, Y.

    1994-09-01

    Holocarboxylase synthetase (HCS) catalyzes biotin incorporation into various carboxylases that require biotin as a prosthetic group. They are acetyl-CoA carboxylase, a rate-limiting enzyme of fatty acid synthesis; pyruvate carboxylase, a key enzyme of gluconeogenesis; propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase, enzymes involved in amino acid catabolism. HCS is therefore involved in various metabolic processes and is a key enzyme for biotin utilization by mammalian cells. Deficiency of HCS in man is known to cause biotin-responsive multiple carboxylase deficiency. Isolation of cDNA clones for the enzyme is essential to understand HCS and its deficiency at the molecular level. We purified bovine liver HCS and sequenced its proteolytic peptides. Degenerative oligonucleotide primers were synthesized from the two peptide sequences and used to amplify a putative HCS cDNA fragment from human liver by PCR. Using the amplified DNA fragment as a probe, we screened {lambda}gt10 human liver cDNA library and isolated 12 positive clones. The isolated cDNAs encoded a protein of 726 amino acids with molecular mass of 80,759. The protein contained several sequences identical or similar to those of peptides derived from the bovine liver HCS. The predicted protein had a homologous region with BirA which acts as both a biotin-[acetyl-CoA-carboxylase] ligase and a biotin repressor in E. coli, suggesting a functional relationship between the two proteins. We expressed the protein using pET3 a vector in E. coli (BL21 strain) and raised antiserum against the expressed protein. The antiserum immunoprecipitated HCS activities of human lymphoblasts and bovine liver. A one-base deletion and a missense mutation were found in cells from siblings with HCS deficiency. The human HCS gene was assigned to chromosome 21, region 21q22.1 by fluorescence in situ hybridization analysis.

  7. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  8. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  9. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  10. Effect of Liver Damage and Hyperbaric Oxygenation on Glutamine Synthetase of Hepatocytes.

    PubMed

    Savilov, P N; Yakovlev, V N

    2016-01-01

    Activity of glutamine synthetase in the hepatocytes of healthy animals and animals with chronic CCl4-induced hepatitis was studied on white mature female rats after liver resection (15-20% of organ weight) and hyperbaric oxygenation (3 atm, 50 min, 3 times). Surgically operated left and non-operated middle lobes of the liver were analyzed on day 3 after liver resection and exposure to hyperbaric oxygenation. On day 65 of CCl4 poisoning, activity of glutamine synthetase decreased in both lobes and did not recover on day 3 after toxin cessation. Liver resection under conditions of CCl4-induced hepatitis restored reduced activity of glutamine synthetase in both liver lobes to the normal level. In healthy rats, the increase in glutamine synthetase activity after liver resection was found only in the middle lobe of the liver. Hyperbaric oxygenation enhanced the stimulatory effect of liver resection on glutamine synthetase activity in hepatocytes during chronic CCl4-induced hepatitis. In healthy animals with liver resection, activity of glutamine synthetase did not change after hyperbaric oxygenation, while normally oxygenation inhibited glutamine synthetase activity.

  11. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification.

    PubMed

    Kosenko, Elena A; Venediktova, Natalia I; Kudryavtsev, Andrey A; Ataullakhanov, Fazoil I; Kaminsky, Yury G; Felipo, Vicente; Montoliu, Carmina

    2008-12-01

    There are a number of pathological situations in which ammonia levels increase leading to hyperammonemia, which may cause neurological alterations and can lead to coma and death. Currently, there are no efficient treatments allowing rapid and sustained decrease of ammonia levels in these situations. A way to increase ammonia detoxification would be to increase its incorporation in glutamine by glutamine synthetase. The aim of this work was to develop a procedure to encapsulate glutamine synthetase in mouse erythrocytes and to assess whether administration of these erythrocytes containing glutamine synthetase (GS) reduce ammonia levels in hyperammonemic mice. The procedure developed allowed the encapsulation of 3 +/- 0.25 IU of GS / mL of erythrocytes with a 70% cell recovery. Most metabolites, including ATP, remained unaltered in glutamine synthetase-loaded erythrocytes (named ammocytes by us) compared with native erythrocytes. The glutamine synthetase-loaded ammocytes injected in mice survived and retained essentially all of their glutamine synthetase activity for at least 48 h in vivo. Injection of these ammocytes into hyperammonemic mice reduced ammonia levels in the blood by about 50%. The results reported indicate that ammocytes are able to keep their integrity, normal energy metabolism, the inserted glutamine synthetase activity, and can be useful to reduce ammonia levels in hyperammonemic situations.

  12. Molecular structure of the human argininosuccinate synthetase gene: Occurrence of alternative mRNA splicing

    SciTech Connect

    Freytag, S.O.; Beaudet, A.L.; Bock, H.G.O.; O'Brien, W.E.

    1984-10-01

    The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.

  13. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke.

    PubMed

    Jeitner, Thomas M; Battaile, Kevin; Cooper, Arthur J L

    2015-12-01

    The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia-reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.

  14. Isolation of a cDNA clone for human threonyl-tRNA synthetase

    SciTech Connect

    Kontis, K.J.; Arfin, S.M.

    1989-05-01

    A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA /lambda/gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations.

  15. Organizing pneumonia as the first manifestation of anti-synthetase syndrome.

    PubMed

    Priyangika, S M Thanuja Nilushi; Karunarathna, W G S G; Liyanage, Isurujith; Gunawardana, Methsala; Udumalgala, Sumeda; Rosa, Chamith; Kulatunga, Aruna

    2016-06-02

    Anti-synthetase syndrome associated interstitial lung disease can occur either simultaneously, before, or after the development of polymyositis/dermatomyositis. Histology of interstitial lung disease can be nonspecific interstitial pneumonia, usual interstitial pneumonia, diffuse alveolar damage, organizing pneumonia. Organizing pneumonia associated anti-synthetase syndrome is a rare finding especially as the first manifestation. We report a 41 year old male patient who presented with organizing pneumonia and 2 years following the onset, developed polymyositis with anti-JO-1 antibody positivity. It is important to screen patients with organizing pneumonia for anti-synthetase syndrome which can be manifested later.

  16. The MTCY428.08 Gene of Mycobacterium tuberculosis Codes for NAD+ Synthetase

    PubMed Central

    Cantoni, Rita; Branzoni, Manuela; Labò, Monica; Rizzi, Menico; Riccardi, Giovanna

    1998-01-01

    The product of the MTCY428.08 gene of Mycobacterium tuberculosis shows sequence homology with several NAD+ synthetases. The MTCY428.08 gene was cloned into the expression vectors pGEX-4T-1 and pET-15b. Expression in Escherichia coli led to overproduction of glutathione S-transferase fused and His6-tagged gene products, which were enzymatically assayed for NAD synthetase activity. Our results demonstrate that the MTCY428.08 gene of M. tuberculosis is the structural gene for NAD+ synthetase. PMID:9620974

  17. Heterogeneity of holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency.

    PubMed Central

    Burri, B J; Sweetman, L; Nyhan, W L

    1985-01-01

    Holocarboxylase synthetase activity has been determined in fibroblasts of seven patients with the neonatal form of biotin-responsive multiple carboxylase deficiency. The normal Km for biotin was 15 +/- 3 nmol/l, while in the patients the values ranged from 48 to 1,062 nmol/l. The mean maximum velocity was 27% of normal. Differences among the values obtained for the Km for biotin and the heat stability of holocarboxylase synthetase suggested that the patients studied represented at least four distinct variants at the holocarboxylase synthetase locus. PMID:3920902

  18. Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.

    PubMed

    Mashek, Douglas G; Bornfeldt, Karin E; Coleman, Rosalind A; Berger, Johannes; Bernlohr, David A; Black, Paul; DiRusso, Concetta C; Farber, Steven A; Guo, Wen; Hashimoto, Naohiro; Khodiyar, Varsha; Kuypers, Frans A; Maltais, Lois J; Nebert, Daniel W; Renieri, Alessandra; Schaffer, Jean E; Stahl, Andreas; Watkins, Paul A; Vasiliou, Vasilis; Yamamoto, Tokuo T

    2004-10-01

    By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made.

  19. Overproduction of a Functional Fatty Acid Biosynthetic Enzyme Blocks Fatty Acid Synthesis in Escherichia coli

    PubMed Central

    Subrahmanyam, Satyanarayana; Cronan, John E.

    1998-01-01

    β-Ketoacyl-acyl carrier protein (ACP) synthetase II (KAS II) is one of three Escherichia coli isozymes that catalyze the elongation of growing fatty acid chains by condensation of acyl-ACP with malonyl-ACP. Overexpression of this enzyme has been found to be extremely toxic to E. coli, much more so than overproduction of either of the other KAS isozymes, KAS I or KAS III. The immediate effect of KAS II overproduction is the cessation of phospholipid synthesis, and this inhibition is specifically due to the blockage of fatty acid synthesis. To determine the cause of this inhibition, we examined the intracellular pools of ACP, coenzyme A (CoA), and their acyl thioesters. Although no significant changes were detected in the acyl-ACP pools, the CoA pools were dramatically altered by KAS II overproduction. Malonyl-CoA increased to about 40% of the total cellular CoA pool upon KAS II overproduction from a steady-state level of around 0.5% in the absence of KAS II overproduction. This finding indicated that the conversion of malonyl-CoA to fatty acids had been blocked and could be explained if either the conversion of malonyl-CoA to malonyl-ACP and/or the elongation reactions of fatty acid synthesis had been blocked. Overproduction of malonyl-CoA:ACP transacylase, the enzyme catalyzing the conversion of malonyl-CoA to malonyl-ACP, partially relieved the toxicity of KAS II overproduction, consistent with a model in which high levels of KAS II blocks access of the other KAS isozymes to malonyl-CoA:ACP transacylase. PMID:9721301

  20. Aminoacyl-tRNA synthetases in medicine and disease

    PubMed Central

    Yao, Peng; Fox, Paul L

    2013-01-01

    Aminoacyl-tRNA synthetases (ARSs) are essential and ubiquitous ‘house-keeping’ enzymes responsible for charging amino acids to their cognate tRNAs and providing the substrates for global protein synthesis. Recent studies have revealed a role of multiple ARSs in pathology, and their potential use as pharmacological targets and therapeutic reagents. The ongoing discovery of genetic mutations in human ARSs is increasing exponentially and can be considered an important determinant of disease etiology. Several chemical compounds target bacterial, fungal and human ARSs as antibiotics or disease-targeting medicines. Remarkably, ongoing exploration of noncanonical functions of ARSs has shown important contributions to control of angiogenesis, inflammation, tumourigenesis and other important physiopathological processes. Here, we summarize the roles of ARSs in human diseases and medicine, focusing on the most recent and exciting discoveries. PMID:23427196

  1. Regulation of Angiogenesis by Aminoacyl-tRNA Synthetases

    PubMed Central

    Mirando, Adam C.; Francklyn, Christopher S.; Lounsbury, Karen M.

    2014-01-01

    In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs) have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis. PMID:25535072

  2. Biochemical and structural investigations on phosphoribosylpyrophosphate synthetase from Mycobacterium smegmatis

    PubMed Central

    Donini, Stefano; Garavaglia, Silvia; Ferraris, Davide M.; Miggiano, Riccardo; Mori, Shigetarou; Shibayama, Keigo

    2017-01-01

    Mycobacterium smegmatis represents one model for studying the biology of its pathogenic relative Mycobacterium tuberculosis. The structural characterization of a M. tuberculosis ortholog protein can serve as a valid tool for the development of molecules active against the M. tuberculosis target. In this context, we report the biochemical and structural characterization of M. smegmatis phosphoribosylpyrophosphate synthetase (PrsA), the ortholog of M. tuberculosis PrsA, the unique enzyme responsible for the synthesis of phosphoribosylpyrophosphate (PRPP). PRPP is a key metabolite involved in several biosynthetic pathways including those for histidine, tryptophan, nucleotides and decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Since M. tuberculosis PrsA has been validated as a drug target for the development of antitubercular agents, the data presented here will add to the knowledge of the mycobacterial enzyme and could contribute to the development of M. tuberculosis PrsA inhibitors of potential pharmacological interest. PMID:28419153

  3. Redesigning the stereospecificity of tyrosyl-tRNA synthetase.

    PubMed

    Simonson, Thomas; Ye-Lehmann, Shixin; Palmai, Zoltan; Amara, Najette; Wydau-Dematteis, Sandra; Bigan, Erwan; Druart, Karen; Moch, Clara; Plateau, Pierre

    2016-02-01

    D-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled.

  4. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    SciTech Connect

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  5. Activity of formylphosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Jahansouz, H.; Kofron, J.L.; Smithers, G.W.; Himes, R.H.; Reed, G.H.

    1986-05-01

    Formylphosphate (FP), a putative enzyme-bound intermediate in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase, was synthesized from formylfluoride and Pi. Measurement of hydrolysis rates by /sup 31/P NMR showed that FP is very unstable with a half-life of 48 min at 20/sup 0/C and pH 7. At pH 7 hydrolysis occurs with O-P bond cleavage as shown by /sup 18/O incorporation from /sup 18/O-H/sub 2/O into Pi. The substrate activity of FP was tested in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase isolated from Clostridium cylindrosporum. MgATP + H/sub 4/folate + HCOO/sup -/ in equilibrium MgADP + Pi +N/sup 10/-formylH/sub 4/folate FP supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formylH/sub 4/folate is produced from H/sub 4/-folate and FP but only if ADP is present, and ATP is produced from FP and ADP but only if H/sub 4/folate is present. The requirements for H/sub 4/folate in the synthesis of ATP from ADP and FP and for ADP in the synthesis of N/sup 10/-formylH/sub 4/folate from FP and H/sub 4/folate, are consistent with past kinetic and isotope exchange studies which showed that the reaction proceeds by a sequential mechanism and that all three substrates must be present for any reaction to occur.

  6. Identification of pantoate kinase and phosphopantothenate synthetase from Methanospirillum hungatei.

    PubMed

    Katoh, Hiroki; Tamaki, Hideyuki; Tokutake, Yuka; Hanada, Satoshi; Chohnan, Shigeru

    2013-04-01

    Pantothenate synthetase (PanC) and pantothenate kinase which function in the canonical coenzyme A (CoA) biosynthetic pathway cannot be found in most archaea. COG1829 and COG1701 intrinsic to archaea were proposed as the candidate proteins for producing 4'-phosphopantothenate instead, and the COG1701 protein from Methanosarcina mazei was assigned as PanC. Meanwhile, the Thermococcus kodakarensis COG1829 and COG1701 proteins were biochemically identified as novel enzymes, i.e., pantoate kinase (PoK) and phosphopantothenate synthetase (PPS). In this study, the functions of Mhun_0831 (COG1829) and Mhun_0832 (COG1701) from Methanospirillum hungatei were identified, and the recombinant enzymes were partially characterized. Plasmids simultaneously possessing the two genes encoding Mhun_0831 and Mhun_0832 complemented the poor growth of the temperature-sensitive Escherichia coli pantothenate kinase mutant ts9. The recombinant Mhun_0831 and Mhun_0832 expressed in E. coli cells exhibited PoK and PPS activities, respectively, being in accord with the functions of T. kodakarensis proteins. The PoK activity was most active at pH 8.5 and 40°C, and accepted ATP and UTP as a phosphate donor. Although CoA did not affect the PoK activity, the end product considerably accelerated the PPS activity. The homologs of both proteins are widely conserved in most archaeal genomes. Taken together, our findings indicate that archaea can synthesize CoA through the unique pathway involving PoK and PPS, in addition to the canonical one that the order Thermoplasmatales employs.

  7. Identification and functional characterization of a novel bacterial type asparagine synthetase A: a tRNA synthetase paralog from Leishmania donovani.

    PubMed

    Manhas, Reetika; Tripathi, Pankaj; Khan, Sameena; Sethu Lakshmi, Bhavana; Lal, Shambhu Krishan; Gowri, Venkatraman Subramanian; Sharma, Amit; Madhubala, Rentala

    2014-04-25

    Asparagine is formed by two structurally distinct asparagine synthetases in prokaryotes. One is the ammonia-utilizing asparagine synthetase A (AsnA), and the other is asparagine synthetase B (AsnB) that uses glutamine or ammonia as a nitrogen source. In a previous investigation using sequence-based analysis, we had shown that Leishmania spp. possess asparagine-tRNA synthetase paralog asparagine synthetase A (LdASNA) that is ammonia-dependent. Here, we report the cloning, expression, and kinetic analysis of ASNA from Leishmania donovani. Interestingly, LdASNA was both ammonia- and glutamine-dependent. To study the physiological role of ASNA in Leishmania, gene deletion mutations were attempted via targeted gene replacement. Gene deletion of LdASNA showed a growth delay in mutants. However, chromosomal null mutants of LdASNA could not be obtained as the double transfectant mutants showed aneuploidy. These data suggest that LdASNA is essential for survival of the Leishmania parasite. LdASNA enzyme was recalcitrant toward crystallization so we instead crystallized and solved the atomic structure of its close homolog from Trypanosoma brucei (TbASNA) at 2.2 Å. A very significant conservation in active site residues is observed between TbASNA and Escherichia coli AsnA. It is evident that the absence of an LdASNA homolog from humans and its essentiality for the parasites make LdASNA a novel drug target.

  8. Transmembrane Movement of Exogenous Long-Chain Fatty Acids: Proteins, Enzymes, and Vectorial Esterification

    PubMed Central

    Black, Paul N.; DiRusso, Concetta C.

    2003-01-01

    The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids. PMID:12966144

  9. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification.

    PubMed

    Black, Paul N; DiRusso, Concetta C

    2003-09-01

    The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids.

  10. Altered expression of fatty acid–metabolizing enzymes in aromatase-deficient mice

    PubMed Central

    Nemoto, Yoshihisa; Toda, Katsumi; Ono, Masafumi; Fujikawa-Adachi, Kiyomi; Saibara, Toshiji; Onishi, Saburo; Enzan, Hideaki; Okada, Teruhiko; Shizuta, Yutaka

    2000-01-01

    Hepatic steatosis is a frequent complication in nonobese patients with breast cancer treated with tamoxifen, a potent antagonist of estrogen. In addition, hepatic steatosis became evident spontaneously in the aromatase-deficient (ArKO) mouse, which lacks intrinsic estrogen production. These clinical and laboratory observations suggest that estrogen helps to maintain constitutive lipid metabolism. To clarify this hypothesis, we characterized the expression and activity in ArKO mouse liver of enzymes involved in peroxisomal and mitochondrial fatty acid β-oxidation. Northern analysis showed reduced expression of mRNAs for very long fatty acyl-CoA synthetase, peroxisomal fatty acyl-CoA oxidase, and medium-chain acyl-CoA dehydrogenase, enzymes required in fatty acid β-oxidation. In vitro assays of fatty acid β-oxidation activity using very long (C24:0), long (C16:0), or medium (C12:0) chain fatty acids as the substrates confirmed that the corresponding activities are also diminished. Impaired gene expression and enzyme activities of fatty acid β-oxidation were restored to the wild-type levels, and hepatic steatosis was substantially diminished in animals treated with 17β-estradiol. Wild-type and ArKO mice showed no difference in the binding activities of the hepatic nuclear extracts to a peroxisome proliferator response element. These findings demonstrate the pivotal role of estrogen in supporting constitutive hepatic expression of genes involved in lipid β-oxidation and in maintaining hepatic lipid homeostasis. PMID:10862797

  11. The effect of dietary sulfur on the metabolism of long chain polyunsaturated fatty acids

    SciTech Connect

    Chen, M.F.

    1988-01-01

    The effect of methionine-supplemented diet on the metabolism of polyunsaturated fatty acids was studied by comparing results of control and cysteine-supplemented diets in rats. Adult Sprague-Dawley rats were fed for a period of 17 days one of the following diets: control, cysteine-supplemented, and/or methionine-supplemented. On the last day of the feeding period, the rats were administered either (1-{sup 14}C) arachidonic acid (AA) or (1-{sup 14}C) eicosapentaenoic acid (EPA) by stomach tube five hours before sacrificing. The cyclooxygenase activity in liver microsomes, the apparent Km of the fatty acyl-CoA synthetase in liver and brain homogenates, and the incorporation of polyunsaturated fatty acids into the phosphatidylinositol fraction of brain, heat, lung, spleen, and kidney tissues were analyzed.

  12. Purification and determination of glutamine synthetase by high-performance immunoaffinity chromatography.

    PubMed

    Alhama, J; López-Barea, J; Toribio, F; Roldán, J M

    1992-01-10

    High-performance immunoaffinity chromatography (HPIAC) with anti-glutamine synthetase polyclonal antibodies bound to epoxy-activated silica was used to purify and determine this enzyme from the cyanobacterium Synechocystis. A single-step HPIAC procedure with cell-free extracts yielded electroporetically homogeneous glutamine synthetase. In the determination of glutamine synthetase by HPIAC a linear response in the range 10-60 micrograms of enzyme was observed. Recoveries of 70% of the loaded enzymatic activity and 100% of protein were obtained. The determination of glutamine synthetase protein by HPIAC was compared with that obtained by rocket immunoelectrophoresis. The chromatographic method is proposed as a possible alternative to other immunochemical quantitative techniques, particularly when non-limiting amounts of samples are available.

  13. Preparation and cross-reactivity of anti-avian glutamine synthetase antibody.

    PubMed

    Smith, D D; Vorhaben, J E; Campbell, J W

    1983-04-01

    Rabbit antibody to chicken liver mitochondrial glutamine synthetase was purified by immunoaffinity chromatography for analysis of the immunological relatedness of vertebrate glutamine synthetases. The antibody cross-reacted with enzymes from representatives of all five vertebrate classes, indicating a high degree of evolutionary conservatism in the structure of the enzymes. A unique aspect of the immunological similarity of these enzymes is that it exists between cytosolic and mitochondrial enzymes which are, in general, immunologically distinct. The antibody did not cross-react with two insect glutamine synthetases. Compositional difference indices, calculated from the amino acid compositions of glutamine synthetases from several species, gave a mean estimate of over 80% sequence homology for the vertebrate enzymes. The avian mitochondrial enzyme gave a mean 78% homology with the mammalian cytosolic enzyme.

  14. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  15. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  16. Severe holocarboxylase synthetase deficiency with incomplete biotin responsiveness resulting in antenatal insult in samoan neonates.

    PubMed

    Wilson, Callum J; Myer, Michael; Darlow, Brian A; Stanley, Thorsten; Thomson, Glen; Baumgartner, E Regula; Kirby, Denise M; Thorburn, David R

    2005-07-01

    We describe 7 Polynesian babies with a unique severe form of holocarboxylase synthetase deficiency characterized by antenatal growth retardation, subependymal cysts, only partial response to biotin, and a poor outcome.

  17. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.

    PubMed Central

    Jakubowski, H; Fersht, A R

    1981-01-01

    Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed. PMID:7024910

  18. Functional expansion of human tRNA synthetases achieved by structural inventions

    PubMed Central

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions. PMID:19932696

  19. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  20. A very long-chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked adrenoleukodystrophy.

    PubMed

    Heinzer, Ann K; Watkins, Paul A; Lu, Jyh-Feng; Kemp, Stephan; Moser, Ann B; Li, Yuan Yuan; Mihalik, Stephanie; Powers, James M; Smith, Kirby D

    2003-05-15

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative and endocrine disorder resulting from mutations in ABCD1 which encodes a peroxisomal membrane protein in the ATP binding cassette superfamily. The biochemical signature of X-ALD is increased levels of saturated very long-chain fatty acids (VLCFA; carbon chains of 22 or more) in tissues and plasma that has been associated with decreased peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity and decreased peroxisomal VLCFA beta-oxidation. It has been hypothesized that ABCD1, which has no demonstrable VLCS activity itself, has an indirect effect on peroxisomal VLCS activity and VLCFA beta-oxidation by transporting fatty acid substrates, VLCS protein or some required co-factor into peroxisomes. Here we report the characterization of a Vlcs knockout mouse that exhibits decreased peroxisomal VLCS activity and VLCFA beta-oxidation but does not accumulate VLCFA. The XALD/Vlcs double knockout mouse has the biochemical abnormalities observed in the individual knockout mice but does not display a more severe X-ALD phenotype. These data lead us to conclude that (1) VLCFA levels are independent of peroxisomal fatty acid beta-oxidation, (2) there is no ABCD1/VLCS interaction and (3) the common severe forms of X-ALD cannot be modeled by decreasing peroxisomal VLCS activity in the XALD mouse.

  1. Diffuse glutamine synthetase overexpression restricted to areas of peliosis in a β-catenin-activated hepatocellular adenoma: a potential pitfall in glutamine synthetase interpretation.

    PubMed

    Berry, Ryan S; Gullapalli, Rama R; Wu, Jin; Morris, Katherine; Hanson, Joshua A

    2014-08-01

    Hepatocellular adenomas have recently been classified into four subtypes based on molecular findings: hepatocyte nuclear factor 1α (HNF1α) inactivated, inflammatory/telangiectatic, β-catenin activated, and unclassifiable. β-catenin-activated adenomas have the potential for malignant transformation and are thus important to recognize. Diffuse glutamine synthetase immunohistochemical positivity has been shown to be a reliable surrogate marker for β-catenin activation, though variations in staining patterns may be difficult to interpret. We report a case of a peliotic adenoma that was morphologically consistent with a β-catenin wild-type hepatocellular adenoma but harbored a β-catenin mutation by molecular analysis. The tumor lacked nuclear β-catenin positivity and demonstrated a hitherto undescribed pattern of glutamine synthetase overexpression restricted to areas of peliosis with mostly negative staining in non-peliotic areas. This pattern was initially interpreted as physiologic and may represent a potential pitfall in glutamine synthetase interpretation.

  2. Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low density lipoproteins in human hepatoma Huh7 cells.

    PubMed

    Yao, Hongbing; Ye, Jin

    2008-01-11

    Hepatocytes play a crucial role in regulating lipid metabolism by exporting cholesterol and triglyceride into plasma through secretion of very low density lipoproteins (VLDL). VLDL production is also required for release of hepatitis C virus (HCV) from infected hepatocytes. Here, we show that long chain acyl-CoA synthetase 3 (ACSL3) plays a crucial role in secretion of VLDL and HCV from hepatocytes. In cultured human hepatoma Huh7 cells, ACSL3 is specifically required for incorporation of fatty acids into phosphatidylcholine. In cells receiving small interfering RNA targeting ACSL3, secretion of apolipoprotein B, the major protein component of VLDL, was inhibited and the lipoprotein was rapidly degraded. This inhibition in secretion was completely eliminated when these cells were treated with phosphatidylcholine. Treatment of cells with small interfering RNA targeting ACSL3 also inhibited secretion of HCV from Huh7-derived cells. These results identify ACSL3 as a new enzymatic target to limit VLDL secretion and HCV infection.

  3. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine.

    PubMed

    Barter, J F; Marlow, D; Kamath, R K; Harbert, J; Torrisi, J R; Barnes, W A; Potkul, R K; Newsome, J T; Delgado, G

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  4. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine

    SciTech Connect

    Barter, J.F.; Marlow, D.; Kamath, R.K.; Harbert, J.; Torrisi, J.R.; Barnes, W.A.; Potkul, R.K.; Newsome, J.T.; Delgado, G. )

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  5. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    PubMed

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions.

  6. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats.

    PubMed

    Eid, Tore; Ghosh, Arko; Wang, Yue; Beckström, Henning; Zaveri, Hitten P; Lee, Tih-Shih W; Lai, James C K; Malthankar-Phatak, Gauri H; de Lanerolle, Nihal C

    2008-08-01

    An excess of extracellular glutamate in the hippocampus has been linked to the generation of recurrent seizures and brain pathology in patients with medically intractable mesial temporal lobe epilepsy (MTLE). However, the mechanism which results in glutamate excess in MTLE remains unknown. We recently reported that the glutamate-metabolizing enzyme glutamine synthetase is deficient in the hippocampus in patients with MTLE, and we postulated that this deficiency is critically involved in the pathophysiology of the disease. To further explore the role of glutamine synthetase in MTLE we created a novel animal model of hippocampal glutamine synthetase deficiency by continuous (approximately 28 days) microinfusion of methionine sulfoximine (MSO: 0.625 to 2.5 microg/h) unilaterally into the hippocampus in rats. This treatment led to a deficiency in hippocampal glutamine synthetase activity by 82-97% versus saline. The majority (>95%) of the MSO-treated animals exhibited recurrent seizures that continued for several weeks. Some of the MSO-treated animals exhibited neuropathological features that were similar to mesial temporal sclerosis, such as hippocampal atrophy and patterned loss of hippocampal neurons. However, many MSO-treated animals displayed only minimal injury to the hippocampus, with no clear evidence of mesial temporal sclerosis. These findings support the hypothesis that a deficiency in hippocampal glutamine synthetase causes recurrent seizures, even in the absence of classical mesial temporal sclerosis, and that restoration of glutamine synthetase may represent a novel approach to therapeutic intervention in this disease.

  7. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae

    PubMed Central

    Chang, Yu-Fang; Carman, George M.

    2008-01-01

    CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C. PMID:18439916

  8. Gain-Of-Function Mutational Activation of Human TRNA Synthetase Procytokine

    SciTech Connect

    Yang, X.L.; Kapoor, M.; Otero, F.J.; Slike, B.M.; Tsuruta, H.; Frausto, R.; Bates, A.; Ewalt, K.L.; Cheresh, D.A.; Schimmel, P.; /Scripps Res. Inst. /SLAC, SSRL

    2009-04-30

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.

  9. Adrenoleukodystrophy protein enhances association of very long-chain acyl-coenzyme A synthetase with the peroxisome.

    PubMed

    Yamada, T; Taniwaki, T; Shinnoh, N; Uchiyama, A; Shimozawa, N; Ohyagi, Y; Asahara, H; Kira, J

    1999-02-01

    To clarify the function of adrenoleukodystrophy protein (ALDP) using our ALDP-deficient mice established by gene targeting. X-linked adrenoleukodystrophy (ALD) is characterized biochemically by the accumulation of very long-chain fatty acids (VLCFA) in tissues and body fluids, and is caused by impairment of peroxisomal beta-oxidation. In ALD, very long-chain acyl-coenzyme A synthetase (VLACS), which is necessary for peroxisomal beta-oxidation, does not function. The ALDP-deficient mice and C57BL/6J mice were used. VLACS or ALDP were transiently expressed by lipofection in murine fibroblasts, and VLCFA beta-oxidation was assayed. Liver peroxisomes were purified by sequential centrifugations and a Nycodenz gradient centrifugation. The peroxisomal localization of VLACS was compared between the mutant and control mice using a Western blot analysis. Impairment of VLCFA beta-oxidation in ALDP-deficient fibroblasts was not corrected by the additional expression of VLACS alone but was by the coexpression of VLACS and ALDP. Although the tissue-specific expression of VLACS was similar in ALDP-deficient and normal mice, peroxisomal VLACS was clearly lower in ALDP-deficient than in normal mice. ALDP plays a role in the peroxisomal localization of VLACS, and VLACS does not function unless localized in the peroxisome.

  10. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  11. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  12. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases

    PubMed Central

    Sivachenko, Anna; Gordon, Hannah B.; Kimball, Suzanne S.; Gavin, Erin J.; Bonkowsky, Joshua L.; Letsou, Anthea

    2016-01-01

    ABSTRACT Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum (bgm) and double bubble (dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivo is causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6 (encoding a very-long-chain ACS), a human homolog of bgm and dbb. PMID:26893370

  13. Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates.

    PubMed

    Lopes-Marques, Mónica; Cunha, Isabel; Reis-Henriques, Maria Armanda; Santos, Miguel M; Castro, L Filipe C

    2013-12-12

    Fatty acids, a considerable fraction of lipid molecules, participate in fundamental physiological processes. They undergo activation into their corresponding CoA esters for oxidation or esterification into complex lipids (e.g. triglycerides, phospholipids and cholesterol esters), a process that is carried out by acyl-CoA synthases (ACS). Here we analyze the evolution of the gene family encoding for the long-chain acyl-CoA synthetases (Acsl) in vertebrates. By means of phylogenetics and comparative genomics we show that genome duplications (2R) generated the diversity of Acsl genes in extant vertebrate lineages. In the vertebrate ancestor two separate genes originated the current Acsl1/5/6 and the Acsl3/4 gene families, and the extra gene duplicates in teleosts are a consequence of the teleost specific third round of genome duplication (3R). Moreover, the diversity of Acsl family members is broader than anticipated. Our strategy uncovered a novel uncharacterized Acsl-like gene found in teleosts, spotted gar, coelacanth and possibly lamprey, which we designate Acsl2. The detailed analysis of the Acsl2 teleost gene locus strongly supports the conclusion that it corresponds to a retained 2R paralogue, lost in tetrapods. We provide here the first evolutionary analysis of the Acsl gene family in vertebrates, showing the specific contribution of 2R/3R to the diversity of this gene family. We find also that the division of ACSL enzymes into two groups predates at least the emergence of deuterostomes. Our study indicates that genome duplications significantly contributed to the elaboration of fatty acid activation metabolism in vertebrates.

  14. Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates

    PubMed Central

    2013-01-01

    Background Fatty acids, a considerable fraction of lipid molecules, participate in fundamental physiological processes. They undergo activation into their corresponding CoA esters for oxidation or esterification into complex lipids (e.g. triglycerides, phospholipids and cholesterol esters), a process that is carried out by acyl-CoA synthases (ACS). Here we analyze the evolution of the gene family encoding for the long-chain acyl-CoA synthetases (Acsl) in vertebrates. Results By means of phylogenetics and comparative genomics we show that genome duplications (2R) generated the diversity of Acsl genes in extant vertebrate lineages. In the vertebrate ancestor two separate genes originated the current Acsl1/5/6 and the Acsl3/4 gene families, and the extra gene duplicates in teleosts are a consequence of the teleost specific third round of genome duplication (3R). Moreover, the diversity of Acsl family members is broader than anticipated. Our strategy uncovered a novel uncharacterized Acsl-like gene found in teleosts, spotted gar, coelacanth and possibly lamprey, which we designate Acsl2. The detailed analysis of the Acsl2 teleost gene locus strongly supports the conclusion that it corresponds to a retained 2R paralogue, lost in tetrapods. Conclusions We provide here the first evolutionary analysis of the Acsl gene family in vertebrates, showing the specific contribution of 2R/3R to the diversity of this gene family. We find also that the division of ACSL enzymes into two groups predates at least the emergence of deuterostomes. Our study indicates that genome duplications significantly contributed to the elaboration of fatty acid activation metabolism in vertebrates. PMID:24330521

  15. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases.

    PubMed

    Sivachenko, Anna; Gordon, Hannah B; Kimball, Suzanne S; Gavin, Erin J; Bonkowsky, Joshua L; Letsou, Anthea

    2016-04-01

    Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum(bgm) and double bubble(dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivois causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6(encoding a very-long-chain ACS), a human homolog of bgm and dbb. © 2016. Published by The Company of Biologists Ltd.

  16. Pivotal role of glutamine synthetase in ammonia detoxification.

    PubMed

    Hakvoort, Theodorus B M; He, Youji; Kulik, Wim; Vermeulen, Jacqueline L M; Duijst, Suzanne; Ruijter, Jan M; Runge, Jurgen H; Deutz, Nicolaas E P; Koehler, S Eleonore; Lamers, Wouter H

    2017-01-01

    Glutamine synthetase (GS) catalyzes condensation of ammonia with glutamate to glutamine. Glutamine serves, with alanine, as a major nontoxic interorgan ammonia carrier. Elimination of hepatic GS expression in mice causes only mild hyperammonemia and hypoglutaminemia but a pronounced decrease in the whole-body muscle-to-fat ratio with increased myostatin expression in muscle. Using GS-knockout/liver and control mice and stepwise increments of enterally infused ammonia, we show that ∼35% of this ammonia is detoxified by hepatic GS and ∼35% by urea-cycle enzymes, while ∼30% is not cleared by the liver, independent of portal ammonia concentrations ≤2 mmol/L. Using both genetic (GS-knockout/liver and GS-knockout/muscle) and pharmacological (methionine sulfoximine and dexamethasone) approaches to modulate GS activity, we further show that detoxification of stepwise increments of intravenously (jugular vein) infused ammonia is almost totally dependent on GS activity. Maximal ammonia-detoxifying capacity through either the enteral or the intravenous route is ∼160 μmol/hour in control mice. Using stable isotopes, we show that disposal of glutamine-bound ammonia to urea (through mitochondrial glutaminase and carbamoylphosphate synthetase) depends on the rate of glutamine synthesis and increases from ∼7% in methionine sulfoximine-treated mice to ∼500% in dexamethasone-treated mice (control mice, 100%), without difference in total urea synthesis. Hepatic GS contributes to both enteral and systemic ammonia detoxification. Glutamine synthesis in the periphery (including that in pericentral hepatocytes) and glutamine catabolism in (periportal) hepatocytes represents the high-affinity ammonia-detoxifying system of the body. The dependence of glutamine-bound ammonia disposal to urea on the rate of glutamine synthesis suggests that enhancing peripheral glutamine synthesis is a promising strategy to treat hyperammonemia. Because total urea synthesis does not depend on

  17. Spectrophotometric studies of acyl-coenzyme A synthetases of rat liver mitochondria

    PubMed Central

    Garland, P. B.; Yates, D. W.; Haddock, B. A.

    1970-01-01

    1. Deca-2,4,6,8-tetraenoic acid is a substrate for both ATP-specific (EC 6.2.1.2 or 3) and GTP-specific (EC 6.2.1.–) acyl-CoA synthetases of rat liver mitochondria. The enzymic synthesis of decatetraenoyl-CoA results in new spectral characteristics. The difference spectrum for the acyl-CoA minus free acid has a maximum at 376nm with εmM 34. Isosbestic points are at 345nm and 440nm. 2. The acylation of CoA by decatetraenoate in mitochondrial suspensions can be continuously measured with a dual-wavelength spectrophotometer. 3. By using this technique, three distinct types of acyl-CoA synthetase activity were demonstrated in rat liver mitochondria. One of these utilized added CoA and ATP, required added Mg2+ and corresponded to a previously described `external' acyl-CoA synthetase. The other two acyl-CoA synthetase activities utilized intramitochondrial CoA and did not require added Mg2+. Of these two `internal' acyl-CoA synthetases, one was insensitive to uncoupling agents, was inhibited by phosphate or arsenate, and corresponded to the GTP-specific enzyme. The other corresponded to the ATP-specific enzyme. 4. Atractylate inhibited the activity of the two internal acyl-CoA synthetases only when the energy source was added ATP. 5. The amount of intramitochondrial CoA acylated by decatetraenoate was independent of whether the internal ATP-specific or GTP-specific acyl-CoA synthetase was active. It is concluded that these two internal acyl-CoA synthetases have access to the same intramitochondrial pool of CoA. 6. The amount of intramitochondrial CoA that could be acylated with decatetraenoate was decreased by the addition of palmitoyl-dl-carnitine, 2-oxoglutarate, or pyruvate. These observations indicated that pyruvate dehydrogenase (EC 1.2.4.1), oxoglutarate dehydrogenase (EC 1.2.4.2), carnitine palmitoyltransferase (EC 2.3.1.–), citrate synthase (EC 4.1.3.7), and succinyl-CoA synthetase (EC 6.2.1.4) all have access to the same intramitochondrial pool of CoA as do

  18. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  19. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

    PubMed

    Verlander, Jill W; Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E; Weiner, I David

    2013-09-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.

  20. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia

    PubMed Central

    Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E.; Weiner, I. David

    2013-01-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+-free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism. PMID:23804452

  1. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    PubMed

    Theron, A; Roth, R L; Hoppe, H; Parkinson, C; van der Westhuyzen, C W; Stoychev, S; Wiid, I; Pietersen, R D; Baker, B; Kenyon, C P

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  2. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    SciTech Connect

    Webb, G.C.; Vaska, V.L.; Ford, J.H.

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  3. Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae.

    PubMed

    van Roermund, Carlo W T; Ijlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R; Folkerts, Hendrik; Wanders, Ronald J A; Hellingwerf, Klaas J

    2012-06-08

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.

  4. Peroxisomal Fatty Acid Uptake Mechanism in Saccharomyces cerevisiae*

    PubMed Central

    van Roermund, Carlo W. T.; IJlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R.; Folkerts, Hendrik; Wanders, Ronald J. A.; Hellingwerf, Klaas J.

    2012-01-01

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2. PMID:22493507

  5. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes.

    PubMed Central

    Bender, R A; Janssen, K A; Resnick, A D; Blumenberg, M; Foor, F; Magasanik, B

    1977-01-01

    The glutamine synthetase (GS) from Klebsiella aerogenes is similar to that from Escherichia coli in several respects: (i) it is repressed by high levels of ammonia in the growth medium; (ii) its biosynthetic activity is greatly reduced by adenylylation; and (iii) adenylylation lowers the pH optimum and alters the response of the enzymes to various inhibitors in the gamma-glutamyl transferase (gammaGT) assay. There are, however, several important differences: (i) the isoactivity point for the adenylylated and non-adenylylated forms in the gammaGT assay occurs at pH 7.55 in K. aerogenes and at pH 7.15 in E. coli; (ii) the non-adenylylated form of the GS from K. aerogenes is stimulated by 60 mM MgCl2 in the gammaGT assay at pH 7.15. A biosynthetic reaction assay that correlates well with number of non-adenylylated enzyme subunits, as determined by the method of Mg2+ inhibition of the gammaGT assay, is described. Finally, we have found that it is necessary to use special methods to harvest growing cells to prevent changes in the adenylylation state of GS from occurring during harvesting. PMID:14104

  6. Insights into an Unusual Nonribosomal Peptide Synthetase Biosynthesis

    PubMed Central

    Binz, Tina M.; Maffioli, Sonia I.; Sosio, Margherita; Donadio, Stefano; Müller, Rolf

    2010-01-01

    The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering. PMID:20710026

  7. Nucleotide triphosphate promiscuity in Mycobacterium tuberculosis dethiobiotin synthetase.

    PubMed

    Salaemae, Wanisa; Yap, Min Y; Wegener, Kate L; Booker, Grant W; Wilce, Matthew C J; Polyak, Steven W

    2015-05-01

    Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue.

  8. Structural Biology of Non-Ribosomal Peptide Synthetases

    PubMed Central

    Miller, Bradley R.; Gulick, Andrew M.

    2016-01-01

    Summary The non-ribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains. PMID:26831698

  9. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  10. In situ autoradiographic detection of folylpolyglutamate synthetase activity

    SciTech Connect

    Sussman, D.J.; Milman, G.; Osborne, C.; Shane, B.

    1986-11-01

    The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of (6-/sup 3/H)deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of (6-/sup 3/H)deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which functions in mammalian cells.

  11. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    SciTech Connect

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  12. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    PubMed Central

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  13. Cloning, expression, and purification of glutamine synthetase from Clostridum acetobutylicum

    SciTech Connect

    Usdin, K.P.; Zappe, H.; Jones, D.T.; Woods, D.R.

    1986-09-01

    A glutamine synthetase (GS) gene, glnA, from the gram-positive obligate anaerobe Clostridium acetobutylicum was cloned on recombinant plasmid pHZ200 and enabled Escherichia coli glnA deletion mutants to utilize (NH/sub 4/)/sub 2/ as a sole source of nitrogen. The cloned C. acetobutylicum gene was expressed from a regulatory region contained within the cloned DNA fragment. glnA expression was subject to nitrogen regulation in E. coli. This cloned glnA DNA did not enable an E. coli glnA ntrB ntrC deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the Klebsiella aerogenes hut operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned C. acetobutylicum glnA gene and GS and the corresponding gene and GS from E. coli. The C. acetobutylicum GS was inhibited by Mg/sup 2 +/ in the ..gamma..-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.

  14. The complex evolutionary history of aminoacyl-tRNA synthetases

    PubMed Central

    Chaliotis, Anargyros; Vlastaridis, Panayotis; Mossialos, Dimitris; Ibba, Michael; Becker, Hubert D.

    2017-01-01

    Abstract Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent from many genomes. In the course of this analysis, highly conserved protein motifs and domains within each of the AARS loci were identified and used to build a web-based computational tool for the genome-wide detection of AARS coding sequences. This is based on hidden Markov models (HMMs) and is available together with a cognate database that may be used for specific analyses. The bioinformatics tools that we have developed may also help to identify new antibiotic agents and targets using these essential enzymes. These tools also may help to identify organisms with alternative pathways that are involved in maintaining the fidelity of the genetic code. PMID:28180287

  15. Regulation of Acetyl Coenzyme A Synthetase in Escherichia coli

    PubMed Central

    Kumari, Suman; Beatty, Christine M.; Browning, Douglas F.; Busby, Stephen J. W.; Simel, Erica J.; Hovel-Miner, Galadriel; Wolfe, Alan J.

    2000-01-01

    Cells of Escherichia coli growing on sugars that result in catabolite repression or amino acids that feed into glycolysis undergo a metabolic switch associated with the production and utilization of acetate. As they divide exponentially, these cells excrete acetate via the phosphotransacetylase-acetate kinase pathway. As they begin the transition to stationary phase, they instead resorb acetate, activate it to acetyl coenzyme A (acetyl-CoA) by means of the enzyme acetyl-CoA synthetase (Acs) and utilize it to generate energy and biosynthetic components via the tricarboxylic acid cycle and the glyoxylate shunt, respectively. Here, we present evidence that this switch occurs primarily through the induction of acs and that the timing and magnitude of this induction depend, in part, on the direct action of the carbon regulator cyclic AMP receptor protein (CRP) and the oxygen regulator FNR. It also depends, probably indirectly, upon the glyoxylate shunt repressor IclR, its activator FadR, and many enzymes involved in acetate metabolism. On the basis of these results, we propose that cells induce acs, and thus their ability to assimilate acetate, in response to rising cyclic AMP levels, falling oxygen partial pressure, and the flux of carbon through acetate-associated pathways. PMID:10894724

  16. Small Alarmone Synthetases as novel bacterial RNA-binding proteins.

    PubMed

    Hauryliuk, Vasili; Atkinson, Gemma C

    2017-08-18

    The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, antibiotic tolerance and pathogenicity. We have recently shown that the Small Alarmone Synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis has an RNA-binding activity (Beljantseva et al. 2017). RelQ's activities as an enzyme and as a RNA-binding protein are mutually incompatible: binding of single-stranded RNA potently inhibits (p)ppGpp synthesis in a sequence-specific manner, and RelQ's enzymatic activity destabilizes the RNA:RelQ complex. RelQ's allosteric regulator, pppGpp, destabilizes RNA binding and activates RelQ's enzymatic activity. Since SAS enzymes are widely distributed in bacteria, and, as it has been discovered recently, are also mobilized by phages (Dedrick et al. 2017), RNA binding to SAS is could be a wide-spread mechanism. The initial discovery raises numerous questions regarding RNA-binding function of the SAS enzymes: What is the molecular mechanism underlying the incompatibility of RNA:SAS complex formation with pppGpp binding and (p)ppGpp synthesis? What are the RNA targets in living cells? What is the regulatory output of the system - (p)ppGpp synthesis, modulation of RNA structure and function, or both?

  17. Holocarboxylase synthetase: correlation of protein localisation with biological function.

    PubMed

    Bailey, L M; Wallace, J C; Polyak, S W

    2010-04-01

    Holocarboxylase synthetase (HCS) governs the cellular fate of the essential micronutrient biotin (Vitamin H or B7). HCS is responsible for attaching biotin onto the biotin-dependent enzymes that reside in the cytoplasm and mitochondria. Evidence for an alternative role, viz the regulation of gene expression, has also been reported. Recent immunohistochemical studies reported HCS is primarily nuclear, inconsistent with the location of HCS activity. Improved understanding of biotin biology demands greater knowledge about HCS. Here, we investigated the localisation of HCS and its isoforms. Three variants were observed that differ at the N-terminus. All HCS isoforms were predominantly non-nuclear, consistent with the distribution of biotin protein ligase activity. Unlike the longer constructs, the Met(58) isoform was also detected in the nucleus--a novel observation suggesting shuttling activity between nucleus and cytoplasm. We resolved that the previous controversies in the literature are due to specificity and detection limitations that arise when using partially purified antibodies. 2010. Published by Elsevier Inc. All rights reserved.

  18. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  19. The plastidial folylpolyglutamate synthetase and root apical meristem maintenance

    PubMed Central

    Srivastava, Avinash C; Tang, Yuhong; Díaz de la Garza, Rocío I

    2011-01-01

    Folylpolyglutamate synthetase (FPGS) catalyzes the attachment of glutamate residues to the folate molecule in plants. Three isoforms of FPGS have been identified in Arabidopsis and these are localized in the plastid (AtDFB), mitochondria (AtDFC) and cytosol (AtDFD). We recently determined that mutants in the AtDFB (At5G05980) gene disrupt primary root development in Arabidopsis thaliana seedlings. Transient expression of AtDFB-green fluorescent protein (GFP) fusion under the control of the native AtDFB promoter in Nicotiana tabacum leaf epidermal cells verified the plastid localization of AtDFB. Furthermore, low concentrations of methotrexate (MTX), a compound commonly used as a folate antagonist in plant and mammalian cells induced primary root defects in wild type seedlings that were similar to atdfb. In addition, atdfb seedlings were more sensitive to MTX when compared to wild type. Quantitative (q) RT-PCR showed lower transcript levels of the mitochondrial and cytosolic FPGS in roots of 7-day-old atdfb seedling suggesting feedback regulation of AtDFB on the expression of other FPGS isoforms during early seedling development. The primary root defects of atdfb, which can be traced in part to altered quiescent center (QC) identity, pave the way for future studies that could link cell type specific folate and FPGS isoform requirements to whole organ development. PMID:21502816

  20. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold.

    PubMed

    Dong, Shi-Hui; Tang, Weixin; Lukk, Tiit; Yu, Yi; Nair, Satish K; van der Donk, Wilfred A

    2015-07-30

    The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit. We present here the 2.2 Å resolution structure of CylM, the first structural information on a LanM. Unexpectedly, the structure reveals that the dehydratase domain of CylM resembles the catalytic core of eukaryotic lipid kinases, despite the absence of clear sequence homology. The kinase and phosphate elimination active sites that affect net dehydration are immediately adjacent to each other. Characterization of mutants provided insights into the mechanism of the dehydration process. The structure is also of interest because of the interactions of human homologs of lanthipeptide cyclases with kinases such as mammalian target of rapamycin.

  1. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium.

    PubMed Central

    Wada, M; Fukunaga, N; Sasaki, S

    1989-01-01

    Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. [1-14C]palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. [1-14C]stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. [1-14C]lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from [1-14C]acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released 14CO2, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium. PMID:2753856

  2. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  3. History of fatty acids

    USDA-ARS?s Scientific Manuscript database

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  4. Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: Gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion.

    PubMed

    Ansari, Israr-Ul H; Longacre, Melissa J; Stoker, Scott W; Kendrick, Mindy A; O'Neill, Lucas M; Zitur, Laura J; Fernandez, Luis A; Ntambi, James M; MacDonald, Michael J

    2017-03-15

    Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles. ACSL1 and ACSL6 proteins were not seen in INS-1 832/13 cells or pancreatic islets. ACSL5 protein was seen only in INS-1 832/13 cells. With shRNA-mediated gene silencing we developed stable ACSL knockdown cell lines from INS-1 832/13 cells. Glucose-stimulated insulin release was inhibited ∼50% with ACSL4 and ACSL3 knockdown and unaffected in cell lines with knockdown of ACSL5, ACLS6 and ACSL1. Lentivirus shRNA-mediated gene silencing of ACSL4 and ACSL3 in human pancreatic islets inhibited glucose-stimulated insulin release. ACSL4 and ACSL3 knockdown cells showed inhibition of ACSL enzyme activity more with arachidonate than with palmitate as a substrate, consistent with their preference for unsaturated fatty acids as substrates. ACSL4 knockdown changed the patterns of fatty acids in phosphatidylserines and phosphatidylethanolamines. The results show the involvement of ACLS4 and ACLS3 in insulin secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation.

    PubMed

    Smith, Brennan K; Jain, Swati S; Rimbaud, Stéphanie; Dam, Aaron; Quadrilatero, Joe; Ventura-Clapier, Renée; Bonen, Arend; Holloway, Graham P

    2011-07-01

    FAT/CD36 (fatty acid translocase/Cluster of Differentiation 36), a plasma membrane fatty-acid transport protein, has been found on mitochondrial membranes; however, it remains unclear where FAT/CD36 resides on this organelle or its functional role within mitochondria. In the present study, we demonstrate, using several different approaches, that in skeletal muscle FAT/CD36 resides on the OMM (outer mitochondrial membrane). To determine the functional role of mitochondrial FAT/CD36 in this tissue, we determined oxygen consumption rates in permeabilized muscle fibres in WT (wild-type) and FAT/CD36-KO (knockout) mice using a variety of substrates. Despite comparable muscle mitochondrial content, as assessed by unaltered mtDNA (mitochondrial DNA), citrate synthase, β-hydroxyacyl-CoA dehydrogenase, cytochrome c oxidase complex IV and respiratory capacities [maximal OXPHOS (oxidative phosphorylation) respiration] in WT and KO mice, palmitate-supported respiration was 34% lower in KO animals. In contrast, palmitoyl-CoA-supported respiration was unchanged. These results indicate that FAT/CD36 is key for palmitate-supported respiration. Therefore we propose a working model of mitochondrial fatty-acid transport, in which FAT/CD36 is positioned on the OMM, upstream of long-chain acyl-CoA synthetase, thereby contributing to the regulation of mitochondrial fatty-acid transport. We further support this model by providing evidence that FAT/CD36 is not located in mitochondrial contact sites, and therefore does not directly interact with carnitine palmitoyltransferase-I as original proposed.

  6. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  7. Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms

    PubMed Central

    Pateman, J. A.

    1969-01-01

    1. Aspergillus nidulans, Neurospora crassa and Escherichia coli were grown on media containing a range of concentrations of nitrate, or ammonia, or urea, or l-glutamate, or l-glutamine as the sole source of nitrogen and the glutamate dehydrogenate and glutamine synthetase of the cells measured. 2. Aspergillus, Neurospora and Escherichia coli cells, grown on l-glutamate or on high concentrations of ammonia or on high concentrations of urea, possessed low glutamate dehydrogenase activity compared with cells grown on other nitrogen sources. 3. Aspergillus, Neurospora and Escherichia coli cells grown on l-glutamate possessed high glutamine synthetase activity compared with cells grown on other nitrogen sources. 4. The hypothesis is proposed that in Aspergillus, Neurospora and Escherichia coli l-glutamate represses the synthesis of glutamate dehydrogenase and l-glutamine represses the synthesis of glutamine synthetase. 5. A comparison of the glutamine-synthesizing activity and the γ-glutamyltransferase activity of glutamine synthetase in Aspergillus and Neurospora gave no indication that these fungi produce different forms of glutamine synthetase when grown on ammonia or l-glutamate as nitrogen sources. PMID:4901826

  8. Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms.

    PubMed

    Pateman, J A

    1969-12-01

    1. Aspergillus nidulans, Neurospora crassa and Escherichia coli were grown on media containing a range of concentrations of nitrate, or ammonia, or urea, or l-glutamate, or l-glutamine as the sole source of nitrogen and the glutamate dehydrogenate and glutamine synthetase of the cells measured. 2. Aspergillus, Neurospora and Escherichia coli cells, grown on l-glutamate or on high concentrations of ammonia or on high concentrations of urea, possessed low glutamate dehydrogenase activity compared with cells grown on other nitrogen sources. 3. Aspergillus, Neurospora and Escherichia coli cells grown on l-glutamate possessed high glutamine synthetase activity compared with cells grown on other nitrogen sources. 4. The hypothesis is proposed that in Aspergillus, Neurospora and Escherichia colil-glutamate represses the synthesis of glutamate dehydrogenase and l-glutamine represses the synthesis of glutamine synthetase. 5. A comparison of the glutamine-synthesizing activity and the gamma-glutamyltransferase activity of glutamine synthetase in Aspergillus and Neurospora gave no indication that these fungi produce different forms of glutamine synthetase when grown on ammonia or l-glutamate as nitrogen sources.

  9. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases.

    PubMed

    Chatton, B; Walter, P; Ebel, J P; Lacroute, F; Fasiolo, F

    1988-01-05

    S1 mapping on the VAS1 structural gene indicates the existence of two classes of transcripts initiating at distinct in-frame translation start codons. The longer class of VAS1 transcripts initiates upstream of both ATG codons located 138 base pairs away and the shorter class downstream of the first ATG. A mutation that destroys the first AUG on the long message results in respiratory deficiency but does not affect viability. Mutation of the ATG at position 139 leads to lethality because the initiating methionine codon of the essential cytoplasmic valyl-tRNA synthetase has been destroyed. N-terminal protein sequence data further confirm translation initiation at ATG-139 for the cytoplasmic valyl-tRNA synthetase. From these results, we conclude that the VAS1 single gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The presequence of the mitochondrial valyl-tRNA synthetase shows amino acid composition but not the amphiphilic character of imported mitochondrial proteins. From mutagenesis of the ATG-139 we conclude that the presequence specifically targets the cytoplasmically synthesized mitochondrial valyl-tRNA synthetase to the mitochondrial outer membrane and prevents binding of the enzyme core to cytoplasmic tRNAVal.

  10. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  11. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.

    PubMed

    Chen, Wei-Hung; Li, Kunhua; Guntaka, Naga Sandhya; Bruner, Steven D

    2016-08-19

    Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules.

  12. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511

    PubMed Central

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P.; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  13. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis

    PubMed Central

    Stathopoulos, Constantinos; Kim, Wonduck; Li, Tong; Anderson, Iain; Deutsch, Britta; Palioura, Sotiria; Whitman, William; Söll, Dieter

    2001-01-01

    The methanogenic archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus contain a dual-specificity prolyl-tRNA synthetase (ProCysRS) that accurately forms both prolyl-tRNA (Pro-tRNA) and cysteinyl-tRNA (Cys-tRNA) suitable for in vivo translation. This intriguing enzyme may even perform its dual role in organisms that possess a canonical single-specificity cysteinyl-tRNA synthetase (CysRS), raising the question as to whether this latter aminoacyl-tRNA synthetase is indeed required for cell viability. To test the postulate that all synthetase genes are essential, we disrupted the cysS gene (encoding CysRS) of Methanococcus maripaludis. The knockout strain was viable under normal growth conditions. Biochemical analysis showed that the pure M. maripaludis ProCysRS was capable of forming Cys-tRNA, implying that the dual-specificity enzyme compensates in vivo for the loss of CysRS. The canonical CysRS has a higher affinity for cysteine than ProCysRS, a reason why M. maripaludis may have acquired cysS by a late lateral gene transfer. These data challenge the notion that all twenty aminoacyl-tRNA synthetases are essential for the viability of a cell. PMID:11717392

  14. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    PubMed

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

  15. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.

    PubMed

    Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo

    2017-09-05

    Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

  16. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism

    PubMed Central

    Roy, Hervé; Becker, Hubert Dominique; Reinbolt, Joseph; Kern, Daniel

    2003-01-01

    Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism. PMID:12874385

  17. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase

    PubMed Central

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S.; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M. R. K.; Freund, Yvonne R.; DeRisi, Joseph; Cusack, Stephen

    2016-01-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum. Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [14C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  18. Functional interactions between a glutamine synthetase promoter and MYB proteins.

    PubMed

    Gómez-Maldonado, Josefa; Avila, Concepción; Torre, Fernando; Cañas, Rafael; Cánovas, Francisco M; Campbell, Malcolm M

    2004-08-01

    In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.

  19. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens.

    PubMed

    Gulick, Andrew M

    2017-08-02

    Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.

  20. [2'-5' olygoadenylate synthetase activity in peripheral facial paralysis].

    PubMed

    Nakazato, H; Ikeda, M

    1995-03-01

    Interferons are produced in response to viral infection and play an important part in defense by their antiviral effects. An interferon-induced enzyme, 2'-5' oligoadenylate synthetase (2-5AS) also takes an important part of the system of defense against viral infections, and its activity elevates in nonspecific viral infections. This study was designed to evaluate the usefulness of examining serum 2-5AS activity and peripheral blood WBC 2-5AS (WBC 2-5AS) as diagnostic aids of viral infections that cause facial paralysis. Samples were obtained from 83 patients with Bell's palsy, 20 with Ramsay Hunt syndrome, 74 healthy individuals, and a total of 177 subjects. In 177, we measured serum 2-5AS level in 123 subjects, WBC 2-5AS level in 57, and both in 25. Serum 2-5AS levels in Bell's palsy (60 cases) ranged from 20 to 146 pmol/dl (average: 38.5). The range in Ramsay Hunt syndrome (13) was 20-333 (average: 59.0), and in healthy controls (50), it was 20-128 (average: 41.4). WBC 2-5AS level ranged from 20 to 5900 pmol/dl (average: 733.2) in Bell's palsy (23 cases), from 20-4540 (average: 1371.4) in Ramsay Hunt syndrome (7), and from 20-903 (average: 294.5) in healthy individuals (24). There were no statistically significant differences in serum 2-5AS activities. Otherwise, there was significant difference (p < 0.01) between healthy individuals and Patients with Ramsay Hunt syndrome in WBC 2-5AS activity. In Bell's palsy, 3 cases (13.0%) with markedly high WBC 2-5AS levels existed.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. How does glutamine synthetase activity determine plant tolerance to ammonium?

    PubMed

    Cruz, C; Bio, A F M; Domínguez-Valdivia, M D; Aparicio-Tejo, P M; Lamsfus, C; Martins-Loução, M A

    2006-04-01

    The wide range of plant responses to ammonium nutrition can be used to study the way ammonium interferes with plant metabolism and to assess some characteristics related with ammonium tolerance by plants. In this work we investigated the hypothesis of plant tolerance to ammonium being related with the plants' capacity to maintain high levels of inorganic nitrogen assimilation in the roots. Plants of several species (Spinacia oleracea L., Lycopersicon esculentum L., Lactuca sativa L., Pisum sativum L. and Lupinus albus L.) were grown in the presence of distinct concentrations (0.5, 1.5, 3 and 6 mM) of nitrate and ammonium. The relative contributions of the activity of the key enzymes glutamine synthetase (GS; under light and dark conditions) and glutamate dehydrogenase (GDH) were determined. The main plant organs of nitrogen assimilation (root or shoot) to plant tolerance to ammonium were assessed. The results show that only plants that are able to maintain high levels of GS activity in the dark (either in leaves or in roots) and high root GDH activities accumulate equal amounts of biomass independently of the nitrogen source available to the root medium and thus are ammonium tolerant. Plant species with high GS activities in the dark coincide with those displaying a high capacity for nitrogen metabolism in the roots. Therefore, the main location of nitrogen metabolism (shoots or roots) and the levels of GS activity in the dark are an important strategy for plant ammonium tolerance. The relative contribution of each of these parameters to species tolerance to ammonium is assessed. The efficient sequestration of ammonium in roots, presumably in the vacuoles, is considered as an additional mechanism contributing to plant tolerance to ammonium nutrition.

  2. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells

    PubMed Central

    Palmieri, Erika M.; Menga, Alessio; Lebrun, Aurore; Hooper, Douglas C.; Butterfield, D. Allan

    2017-01-01

    Abstract Aims: Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia. Results: GS inhibition enhances release of inflammatory mediators of LPS-activated microglia in vitro, leading to perturbation of the redox balance and decreased viability of cocultured neurons. GS inhibition also decreases insulin-mediated glucose uptake in microglia. In vivo, microglia-specific GS ablation enhances expression of inflammatory markers upon LPS treatment. In the spinal cords from experimental autoimmune encephalomyelitis (EAE), GS expression levels and glutamine/glutamate ratios are reduced. Innovation: Recently, metabolism has been highlighted as mediator of immune cell function through the discovery of mechanisms that (behind these metabolic changes) modulate the inflammatory response. The present study shows for the first time a metabolic mechanism mediating microglial response to a proinflammatory stimulus, pointing to GS activity as a master modulator of immune cell function and thus unraveling a potential therapeutic target. Conclusions: Our study highlights a new role of GS in modulating immune response in microglia, providing insights into the pathogenic mechanisms associated with inflammation and new strategies of therapeutic intervention. Antioxid. Redox Signal. 26, 351–363. PMID:27758118

  3. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  4. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  5. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  6. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Treesearch

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  7. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  8. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    SciTech Connect

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  9. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis.

    PubMed

    Fedorova, Ksenia; Kayumov, Airat; Woyda, Kathrin; Ilinskaja, Olga; Forchhammer, Karl

    2013-05-02

    The Bacillus subtilis glutamine synthetase (GS) plays a dual role in cell metabolism by functioning as catalyst and regulator. GS catalyses the ATP-dependent synthesis of glutamine from glutamate and ammonium. Under nitrogen-rich conditions, GS becomes feedback-inhibited by high intracellular glutamine levels and then binds transcription factors GlnR and TnrA, which control the genes of nitrogen assimilation. While GS-bound TnrA is no longer able to interact with DNA, GlnR-DNA binding is shown to be stimulated by GS complex formation. In this paper we show a new physiological feature of the interaction between glutamine synthetase and TnrA. The transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in vivo and in vitro, while the GlnR protein does not affect the activity of the enzyme.

  10. Cloning and characterization of the C. elegans histidyl-tRNA synthetase gene.

    PubMed Central

    Amaar, Y G; Baillie, D L

    1993-01-01

    In this paper, we report the cloning and sequencing of the C. elegans histidyl-tRNA synthetase gene. The complete genomic sequence, and most of the cDNA sequence, of this gene is now determined. The gene size including flanking and coding regions is 2230 nucleotides long. Three small introns (45-50 bp long) are found to interrupt the open reading frame. The open reading frame translates to 523 amino acids. This putative protein sequence shows extensive homology with the human and yeast histidyl-tRNA the histidyl-tRNA synthetase gene is a single copy gene. Hence, it is very likely that it encodes both the cytoplasmic and the mitochondrial histidyl-tRNA synthetases. It is likely to be trans-spliced since it contains a trans-splice site in its 5' untranslated region. PMID:8414990

  11. Structure of a tryptophanyl-tRNA synthetase containing an iron–sulfur cluster

    PubMed Central

    Han, Gye Won; Yang, Xiang-Lei; McMullan, Daniel; Chong, Yeeting E.; Krishna, S. Sri; Rife, Christopher L.; Weekes, Dana; Brittain, Scott M.; Abdubek, Polat; Ambing, Eileen; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Slawomir K.; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; van den Bedem, Henry; White, Aprilfawn; Wolf, Guenter; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Schimmel, Paul; Wilson, Ian A.

    2010-01-01

    A novel aminoacyl-tRNA synthetase that contains an iron–sulfur cluster in the tRNA anticodon-binding region and efficiently charges tRNA with tryptophan has been found in Thermotoga maritima. The crystal structure of TmTrpRS (tryptophanyl-tRNA synthetase; TrpRS; EC 6.1.1.2) reveals an iron–sulfur [4Fe–­4S] cluster bound to the tRNA anticodon-binding (TAB) domain and an l-­tryptophan ligand in the active site. None of the other T. maritima aminoacyl-tRNA synthetases (AARSs) contain this [4Fe–4S] cluster-binding motif (C-x 22-C-x 6-C-x 2-C). It is speculated that the iron–sulfur cluster contributes to the stability of TmTrpRS and could play a role in the recognition of the anticodon. PMID:20944229

  12. SOLUBLE HEPATIC δ-AMINOLEVULINIC ACID SYNTHETASE: END-PRODUCT INHIBITION OF THE PARTIALLY PURIFIED ENZYME*

    PubMed Central

    Scholnick, Perry L.; Hammaker, Lydia E.; Marver, Harvey S.

    1969-01-01

    The present study confirms the existence of hepatic δ-aminolevulinic acid synthetase in the cytosol of the liver, suggests that this enzyme may be in transit to the mitochondria, and defines some of the characteristics of the partially purified enzyme. The substrate and cofactor requirements are similar to those of mitochondrial δ-aminolevulinic acid synthetase. Heme strongly inhibits the partially purified enzyme. A number of proteins that bind heme block this inhibition, which explains previous failures to demonstrate heme inhibition in crude systems. End-product inhibition of δ-aminolevulinic acid synthetase in the mitochondria may play an important role in the regulation of heme biosynthesis in eukaryotic cells. PMID:5257968

  13. Pyrrolysyl-tRNA Synthetase: an ordinary enzyme but an outstanding genetic code expansion tool

    PubMed Central

    Wan, Wei; Tharp, Jeffery M.; Liu, Wenshe R.

    2014-01-01

    The genetic incorporation of the 22nd proteinogenic amino acid, pyrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNAPyl. Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNAPyl. These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs. PMID:24631543

  14. In vitro reactivation of in vivo ammonium-inactivated glutamine synthetase from Synechocystis sp. PCC 6803.

    PubMed

    Mérida, A; Candau, P; Florencio, F J

    1991-12-16

    Glutamine synthetase from Synechocystis sp. strain PCC 6803 is inactivated by ammonium addition to cells growing with nitrate as the nitrogen source. The enzyme can be reactivated in vitro by different methods such as alkaline phosphatase treatment, but not phosphodiesterase, by raising the pH of the crude extract to values higher than 8, by increasing the ionic strength of the cell-free extract, or by preincubation with organic solvents, such as 2-propanol and ethanol. These results suggest that the loss of glutamine synthetase activity promoted by ammonium involves the non-covalent binding of a phosphorylated compound to the enzyme and support previous results that rule out the existence of an adenylylation/deadenylylation system functioning in the regulation of cyanobacterial glutamine synthetase.

  15. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    PubMed Central

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.

    2011-01-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  16. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers1[OPEN

    PubMed Central

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K.; Dyer, John M.; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Jenks, Matthew A.

    2017-01-01

    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4’s principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation’s effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. PMID:28069670

  17. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers.

    PubMed

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K; Tomasi, Pernell; Dyer, John M; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Parsons, Eugene P; Jenks, Matthew A; Lü, Shiyou

    2017-02-01

    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem.

  18. Molecular cloning and nutrient regulation analysis of long chain acyl-CoA synthetase 1 gene in grass carp, Ctenopharyngodon idella L.

    PubMed

    Cheng, Han-Liang; Chen, Shuai; Xu, Jian-He; Yi, Le-Fei; Peng, Yong-Xing; Pan, Qian; Shen, Xin; Dong, Zhi-Guo; Zhang, Xia-Qing; Wang, Wen-Xiang

    2017-02-01

    Long chain acyl-CoA synthetase 1 (ACSL1), a key regulatory enzyme of fatty acid metabolism, catalyzes the conversion of long-chain fatty acids to acyl-coenzyme A. The full-length cDNAs of ACSL1a and ACSL1b were cloned from the liver of a grass carp. Both cDNAs contained a 2094bp open reading frame encoding 697 amino acids. Amino acid sequence alignment showed that ACSL1a shared 73.5% sequence identity with ACSL1b. Each of the two ACSL1s proteins had a transmembrane domain, a P-loop domain, and L-, A-, and G-motifs, which were relatively conserved in comparison to other vertebrates. Relative expression profile of ACSL1 mRNAs in different tissues indicated that ACSL1a is highly expressed in heart, mesenteric adipose, and brain tissues, whereas ACSL1b is highly expressed in heart, white muscle, foregut, and liver tissues. Nutrient regulation research showed that the expression levels of ACSL1a and ACSL1b were significantly down-regulated when 3, 6, and 9% fish oil were added in diet of grass carp as compared to the control group. However, no significant difference in the levels of ACSL1 mRNA was observed between the experimental groups. This study demonstrated the relationship between ACSL1a and ACSL1b genes in grass carp and laid a foundation for further research on ACSL family members in other species.

  19. Archaeal RibL: a new FAD synthetase that is air sensitive.

    PubMed

    Mashhadi, Zahra; Xu, Huimin; Grochowski, Laura L; White, Robert H

    2010-10-12

    FAD synthetases catalyze the transfer of the AMP portion of ATP to FMN to produce FAD and pyrophosphate (PP(i)). Monofunctional FAD synthetases exist in eukaryotes, while bacteria have bifunctional enzymes that catalyze both the phosphorylation of riboflavin and adenylation of FMN to produce FAD. Analyses of archaeal genomes did not reveal the presence of genes encoding either group, yet the archaea contain FAD. Our recent identification of a CTP-dependent archaeal riboflavin kinase strongly indicated the presence of a monofunctional FAD synthetase. Here we report the identification and characterization of an archaeal FAD synthetase. Methanocaldococcus jannaschii gene MJ1179 encodes a protein that is classified in the nucleotidyl transferase protein family and was previously annotated as glycerol-3-phosphate cytidylyltransferase (GCT). The MJ1179 gene was cloned and its protein product heterologously expressed in Escherichia coli. The resulting enzyme catalyzes the adenylation of FMN with ATP to produce FAD and PP(i). The MJ1179-derived protein has been designated RibL to indicate that it follows the riboflavin kinase (RibK) step in the archaeal FAD biosynthetic pathway. Aerobically isolated RibL is active only under reducing conditions. RibL was found to require divalent metals for activity, the best activity being observed with Co(2+), where the activity was 4 times greater than that with Mg(2+). Alkylation of the two conserved cysteines in the C-terminus of the protein resulted in complete inactivation. RibL was also found to catalyze cytidylation of FMN with CTP, making the modified FAD, flavin cytidine dinucleotide (FCD). Unlike other FAD synthetases, RibL does not catalyze the reverse reaction to produce FMN and ATP from FAD and PP(i). Also in contrast to other FAD synthetases, PP(i) inhibits the activity of RibL.

  20. Is hydrogen peroxide involved in the benzyl viologen-mediated in-vivo inactivation of rat liver glutamine synthetase?

    PubMed Central

    Muriana, F. J.; Ruiz-Gutierrez, V.; Relimpio, A. M.

    1993-01-01

    After benzyl viologen administration to rats, a decrease in the rat liver glutamine synthetase activity was observed. An increase in the rat liver catalase activity was found concomitantly. In combination with the catalase inhibitor aminotriazole, benzyl viologen again diminished, but markedly, the rat liver glutamine synthetase activity. Moreover, partially purified glutamine synthetase from rat liver underwent rapid inactivation upon aerobic incubation with NAD(P)H and benzyl viologen. This inactivation was prevented by catalase, which suggests that the NAD(P)H/BV2+/O2-dependent system has a role in H2O2 production. Our results suggest that H2O2 is involved in the benzyl viologen-mediated in-vivo inactivation of the rat liver glutamine synthetase. In contrast, benzyl viologen alone or in combination with aminotriazole produced a significant increase of brain glutamine synthetase. PMID:8098954

  1. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.

    PubMed

    Jonsson, Anders; Nordlund, Stefan; Teixeira, Pedro Filipe

    2009-10-01

    In the nitrogen-fixing bacterium Rhodospirillum rubrum, the GlnE adenylyltransferase (encoded by glnE) catalyzes reversible adenylylation of glutamine synthetase, thereby regulating nitrogen assimilation. We have generated glnE mutant strains that are unable to adenylylate glutamine synthetase (GS). Surprisingly, the activity of GS was lower in the mutants than in the wild type, even when grown in nitrogen-fixing conditions. Our results support the proposal that R. rubrum can only cope with the absence of an adenylylation system in the presence of lowered GS expression or activity. In general terms, this report also provides further support for the central role of GS in bacterial metabolism.

  2. The binding of tyrosinyl-5'-AMP to tyrosyl-tRNA synthetase (E.coli).

    PubMed Central

    Grosse, F; Krauss, G; Kownatzki, R; Maass, G

    1979-01-01

    The binding between tyrosyl-tRNA synthetase (E.coli) and the alkylanalogue of the aminoacyladenylate, tyrosinyl-5'-AMP, has been investigated by fluorescence titrations and rapid mixing experiments. Tyrosyl-tRNA synthetase has two equivalent and independent binding sites for tyrosinyl-5'-AMP. The intrinsic binding constant is 4 x 10(7)M-1. The binding sites for tRNATyr and tyrosinyl-5'-AMP are independent of each other, the anticooperative mode of tRNA binding being preserved in the presence of tyrosinyl-5-AMP. PMID:377229

  3. Time course of the uridylylation and adenylylation states in the glutamine synthetase bicyclic cascade.

    PubMed Central

    Varón-Castellanos, R; Havsteen, B H; García-Moreno, M; Valero-Ruiz, E; Molina-Alarcón, M; García-Cánovas, F

    1993-01-01

    A kinetic analysis of the glutamine synthetase bicyclic cascade is presented. It includes the dependence on time from the onset of the reaction of both the uridylylation of Shapiro's regulatory protein and the adenylylation of the glutamine synthetase. The transient phase equations obtained allow an estimation of the time elapsed until the states of uridylylation and adenylylation reach their steady-states, and therefore an evaluation of the effective sensitivity of the system. The contribution of the uridylylation cycle to the adenylylation cycle has been studied, and an equation relating the state of adenylylation at any time to the state of uridylylation at the same instant has been derived. PMID:8104399

  4. A Survey of Glutamine Synthetase Activities in Tissues from Three Classes of Fish.

    DTIC Science & Technology

    1980-09-01

    USA-TR-88-1 NL jj 1-5II!11111112.° MCROCOPY RESOLUTION TEST CHART NATIONAL HIJ|AL) OF STANPARL AL 61 A - USAFA-TR-4O A SURVEY OF GLUTAMINE SYNTHETASE...glutamine synthetase activity is defined as the production of one pmole of y-glutamyl hydroxamate per min at 25°C. Protein was determined by the biuret method...content. P. is listed as at progein per g tissue ( biuret method); nm ± standard deviation.’ Number of specimens examined is listed in parenthesis. 3 body

  5. Correlation of exon 3 β-catenin mutations with glutamine synthetase staining patterns in hepatocellular adenoma and hepatocellular carcinoma.

    PubMed

    Hale, Gillian; Liu, Xinxin; Hu, Junjie; Xu, Zhong; Che, Li; Solomon, David; Tsokos, Christos; Shafizadeh, Nafis; Chen, Xin; Gill, Ryan; Kakar, Sanjay

    2016-11-01

    The current clinical practice is based on the assumption of strong correlation between diffuse glutamine synthetase expression and β-catenin activation in hepatocellular adenoma and hepatocellular carcinoma. This high correlation is based on limited data and may represent an oversimplification as glutamine synthetase staining patterns show wide variability in clinical practice. Standardized criteria for interpreting diverse glutamine synthetase patterns, and the association between each pattern and β-catenin mutations is not clearly established. This study examines the correlation between glutamine synthetase staining patterns and β-catenin mutations in 15 typical hepatocellular adenomas, 5 atypical hepatocellular neoplasms and 60 hepatocellular carcinomas. Glutamine synthetase staining was classified into one of the three patterns: (a) diffuse homogeneous: moderate-to-strong cytoplasmic staining in >90% of lesional cells, without a map-like pattern, (b) diffuse heterogeneous: moderate-to-strong staining in 50-90% of lesional cells, without a map-like pattern, and (c) patchy: moderate-to-strong staining in <50% of lesional cells (often perivascular), or weak staining irrespective of the extent, and all other staining patterns (including negative cases). Sanger sequencing of CTNNB1 exon 3 was performed in all cases. Of hepatocellular tumors with diffuse glutamine synthetase staining (homogeneous or heterogeneous), an exon 3 β-catenin mutation was detected in 33% (2/6) of typical hepatocellular adenoma, 75% (3/4) of atypical hepatocellular neoplasm and 17% (8/47) of hepatocellular carcinomas. An exon 3 mutation was also observed in 15% (2/13) of hepatocellular carcinomas with patchy glutamine synthetase staining. The results show a modest correlation between diffuse glutamine synthetase immunostaining and exon 3 β-catenin mutations in hepatocellular adenoma and hepatocellular carcinoma with discrepancy rates >50% in both hepatocellular adenoma and hepatocellular

  6. Correlation of Exon 3 β-catenin Mutations with Glutamine Synthetase Staining Patterns in Hepatocellular Adenoma and Hepatocellular Carcinoma

    PubMed Central

    Hale, Gillian; Liu, Xinxin; Hu, Junjie; Xu, Zhong; Che, Li; Solomon, David; Tsokos, Christos; Shafizadeh, Nafis; Chen, Xin; Gill, Ryan; Kakar, Sanjay

    2016-01-01

    The current clinical practice is based on the assumption of strong correlation between diffuse glutamine synthetase expression and β-catenin activation in hepatocellular adenoma and hepatocellular carcinoma. This high correlation is based on limited data, and may represent an oversimplification as glutamine synthetase staining patterns show wide variability in clinical practice. Standardized criteria for interpreting diverse glutamine synthetase patterns, and the association between each pattern and β-catenin mutations is not clearly established. This study examines the correlation between glutamine synthetase staining patterns and β-catenin mutations in 15 typical hepatocellular adenomas, 5 atypical hepatocellular neoplasms and 60 hepatocellular carcinomas. Glutamine synthetase staining was classified into one of three patterns: (a) diffuse homogeneous: moderate to strong cytoplasmic staining in more than 90% of lesional cells, without a map-like pattern, (b) diffuse heterogeneous: moderate to strong staining in 50–90% of lesional cells, without a map-like pattern, and (c) patchy: moderate to strong staining in <50% of lesional cells (often perivascular), or weak staining irrespective of extent, and all other staining patterns (including negative cases). Sanger sequencing of CTNNB1 exon 3 was performed in all cases. Of hepatocellular tumors with diffuse glutamine synthetase staining (homogeneous or heterogeneous), an exon 3 β-catenin mutation was detected in 33% (2/6) of typical hepatocellular adenoma, 75% (3/4) of atypical hepatocellular neoplasm and 17% (8/47) of hepatocellular carcinomas. An exon 3 mutation was also observed in 15% (2/13) of hepatocellular carcinomas with patchy glutamine synthetase staining. The results show a modest correlation between diffuse glutamine synthetase immunostaining and exon 3 β-catenin mutations in hepatocellular adenoma and hepatocellular carcinoma with discrepancy rates exceeding 50% in both hepatocellular adenoma and

  7. Is acetylcarnitine a substrate for fatty acid synthesis in plants

    SciTech Connect

    Roughan, G. ); Post-Beittenmiller, D.; Ohlrogge, J. ); Browse, J. )

    1993-04-01

    Long-chain fatty acid synthesis from [1-[sup 14]C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-[sup 14]C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-[sup 14]C]Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-[sup 14]C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-[sup 14]C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-[sup 14]C]acetylcarnitine and 47 to 57% of the [1-[sup 14]C]acetate taken up was incorporated into lipids. Most (78--82%) of the [1-[sup 14]C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants. 29 refs., 5 tabs.

  8. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    PubMed

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  9. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases.

    PubMed Central

    Smith, D J; Earl, A J; Turner, G

    1990-01-01

    The nucleotide sequence of the Penicillium chrysogenum Oli13 acvA gene encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, which performs the first step in penicillin biosynthesis, has been determined. The acvA gene contains an open reading frame of 11,238 bp encoding a protein of 3746 amino acids with a predicted mol. wt of 421,073 dalton. Three domains within the protein of approximately 570 amino acids have between 38% and 43% identity with each other and share similarity with two antibiotic peptide synthetases from Bacillus brevis as well as two other enzymes capable of performing ATP-pyrophosphate exchange reactions. The acvA gene is located close to the pcbC gene encoding isopenicillin N synthetase, the enzyme for the second step of beta-lactam biosynthesis, and is transcribed in the opposite orientation to it. The intergenic region of 1107 bp from which the acvA and pcbC genes are divergently transcribed has also been sequenced. PMID:2118102

  10. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.

    PubMed

    Boyarshin, Konstantin S; Priss, Anastasia E; Rayevskiy, Alexsey V; Ilchenko, Mykola M; Dubey, Igor Ya; Kriklivyi, Ivan A; Yaremchuk, Anna D; Tukalo, Michael A

    2017-02-01

    Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNA(Pro). The most important functional element of this catalytic mechanism is the 2'-OH group of the terminal adenosine 76 of Ala-tRNA(Pro), which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3'-O atom of A76.

  11. Leucyl-tRNA synthetase: double duty in amino acid sensing.

    PubMed

    Durán, Raúl V; Hall, Michael N

    2012-08-01

    The cellular response to amino acids is controlled at the molecular level by TORC1. While many of the elements that participate in TORC1 signaling are known, we still have no clear idea how cells sense amino acids. Two recent studies found that leucyl-tRNA synthetase (LRS) is a leucine sensor for TORC1, in both yeast and mammalian cells.

  12. Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains*

    PubMed Central

    Cho, Ha Yeon; Maeng, Seo Jin; Cho, Hyo Je; Choi, Yoon Seo; Chung, Jeong Min; Lee, Sangmin; Kim, Hoi Kyoung; Kim, Jong Hyun; Eom, Chi-Yong; Kim, Yeon-Gil; Guo, Min; Jung, Hyun Suk; Kang, Beom Sik; Kim, Sunghoon

    2015-01-01

    Many multicomponent protein complexes mediating diverse cellular processes are assembled through scaffolds with specialized protein interaction modules. The multi-tRNA synthetase complex (MSC), consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors (AIMP1–3), serves as a hub for many signaling pathways in addition to its role in protein synthesis. However, the assembly process and structural arrangement of the MSC components are not well understood. Here we show the heterotetrameric complex structure of the glutathione transferase (GST) domains shared among the four MSC components, methionyl-tRNA synthetase (MRS), glutaminyl-prolyl-tRNA synthetase (EPRS), AIMP2 and AIMP3. The MRS-AIMP3 and EPRS-AIMP2 using interface 1 are bridged via interface 2 of AIMP3 and EPRS to generate a unique linear complex of MRS-AIMP3:EPRS-AIMP2 at the molar ratio of (1:1):(1:1). Interestingly, the affinity at interface 2 of AIMP3:EPRS can be varied depending on the occupancy of interface 1, suggesting the dynamic nature of the linear GST tetramer. The four components are optimally arranged for maximal accommodation of additional domains and proteins. These characteristics suggest the GST tetramer as a unique and dynamic structural platform from which the MSC components are assembled. Considering prevalence of the GST-like domains, this tetramer can also provide a tool for the communication of the MSC with other GST-containing cellular factors. PMID:26472928

  13. Sponge OAS has a distinct genomic structure within the 2-5A synthetase family.

    PubMed

    Reintamm, Tõnu; Kuusksalu, Anne; Metsis, Madis; Päri, Mailis; Vallmann, Kerli; Lopp, Annika; Justesen, Just; Kelve, Merike

    2008-11-01

    2',5'-Oligoadenylate synthetases (2-5A synthetases, OAS) are enzymes that play an important role in the interferon-induced antiviral defense mechanisms in mammals. Sponges, the evolutionarily lowest multicellular animals, also possess OAS; however, their function is presently unclear. Low homology between primary structures of 2-5A synthetases from vertebrates and sponges renders their evolutionary relationship obscure. The genomic structure of vertebrate OASs has been thoroughly examined, making it possible to elucidate molecular evolution and expansion of this gene family. Until now, no OAS gene structure was available from sponges to compare it with the corresponding genes from higher organisms. In the present work, we determined the exon/intron structure of the OAS gene from the marine sponge Geodia cydonium and found it to be completely different from the strictly conserved exon/intron pattern of the OAS genes from vertebrates. This finding was corroborated by the analysis of OAS genes from another sponge, Amphimedon queenslandica, whose genome was recently sequenced. Our data suggest that vertebrate and sponge OAS genes have no direct common intron-containing ancestor and two (sub)types of OAS may be discriminated. This study opens new perspectives for understanding the phylogenesis and evolution of 2-5A synthetases as well as functional aspects of this multigene family.

  14. A decrease in S-adenosylmethionine synthetase activity increases the probability of spontaneous sporulation.

    PubMed Central

    Ochi, K; Freese, E

    1982-01-01

    Starting with a relaxed (relA) strain, mutants with reduced activity of adenosine triphosphate:L-methionine S-adenosyl transferase (EC 2.5.1.6; SAM synthetase) were isolated in Bacillus subtilis. One such mutant (gene symbol metE1) had only 3% of the normal SAM synthetase activity but grew almost as well as the parent strain. Another mutant was isolated (gene symbol spdC1) as being able to sporulate continually at a high frequency; it had one-half the normal SAM synthetase activity at 33 degrees C. Both mutants continually and spontaneously entered spore development at a higher frequency than the parent strain in a medium containing excess glucose, ammonium ions, and phosphate. Sporulation was prevented by a high concentration of SAM (1 mM or more) or by the combination of adenosine and methionine (0.5 mM or more each), both of which are precursors of SAM. In contrast to this continual increase in the spore titer, addition of decoyinine, an inhibitor of GMP synthetase, rapidly initiated massive sporulation. Various amino acid analogs also induced sporulation in the relA strain, the methionine analogs ethionine and selenomethionine being most effective. PMID:6811558

  15. Activation of chitin synthetase in permeabilized cells of a Saccharomyces cerevisiae mutant lacking proteinase B.

    PubMed Central

    Fernandez, M P; Correa, J U; Cabib, E

    1982-01-01

    Digitonin treatment at 30 degrees C of a Saccharomyces cerevisiae mutant lacking proteinase B permeabilized the cells and caused rapid and extensive activation of chitin synthetase in situ. The same result was obtained with a mutant generally defective in vacuolar proteases. By lowering the temperature and using different permeabilization procedures, we showed that increases in permeability and activation are distinct processes. Activation was inhibited by the protease inhibitors antipain and leupeptin, but by pepstatin or chymostatin. Metal chelators were also inhibitory, and their effect was reversed by the addition of Ca2+ but not by Mg2+. Antipain added together with Ca2+ after incubation of the cells in the presence of a chelating agent prevented reversal of inhibition, a result that was interpreted as indicating that antipain acts either on the same step affected by Ca2+ or on a subsequent step. Efforts to obtain activation in cell-free extracts were unsuccessful, but it was possible to extract the synthetase, once activated, by breaking permeabilized cells with glass beads. Treatment of the cell-free extracts with trypsin led not only to increased activity of chitin synthetase, but also to a change in the pH-activity curve and a diminished requirement by the enzyme for free N-acetylglucosamine. These observations suggest that the modification undergone by the synthetase during endogenous activation is different from that brought about by trypsin treatment. Images PMID:6216245

  16. A novel therapeutic target for peripheral nerve injury-related diseases: aminoacyl-tRNA synthetases

    PubMed Central

    Park, Byung Sun; Yeo, Seung Geun; Jung, Junyang; Jeong, Na Young

    2015-01-01

    Aminoacyl-tRNA synthetases (AminoARSs) are essential enzymes that perform the first step of protein synthesis. Beyond their original roles, AminoARSs possess non-canonical functions, such as cell cycle regulation and signal transduction. Therefore, AminoARSs represent a powerful pharmaceutical target if their non-canonical functions can be controlled. Using AminoARSs-specific primers, we screened mRNA expression in the spinal cord dorsal horn of rats with peripheral nerve injury created by sciatic nerve axotomy. Of 20 AminoARSs, we found that phenylalanyl-tRNA synthetase beta chain (FARSB), isoleucyl-tRNA synthetase (IARS) and methionyl-tRNA synthetase (MARS) mRNA expression was increased in spinal dorsal horn neurons on the injured side, but not in glial cells. These findings suggest the possibility that FARSB, IARS and MARS, as a neurotransmitter, may transfer abnormal sensory signals after peripheral nerve damage and become a new target for drug treatment. PMID:26692865

  17. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii.

    PubMed Central

    Jetten, M S; Stams, A J; Zehnder, A J

    1989-01-01

    In Methanothrix soehngenii, acetate is activated to acetyl-coenzyme A (acetyl-CoA) by an acetyl-CoA synthetase. Cell extracts contained high activities of adenylate kinase and pyrophosphatase, but no activities of a pyrophosphate:AMP and pyrophosphate:ADP phosphotransferase, indicating that the activation of 1 acetate in Methanothrix requires 2 ATP. Acetyl-CoA synthetase was purified 22-fold in four steps to apparent homogeneity. The native molecular mass of the enzyme from M. soehngenii estimated by gel filtration was 148 kilodaltons (kDa). The enzyme was composed of two subunits with a molecular mass of 73 kDa in an alpha 2 oligomeric structure. The acetyl-CoA synthetase constituted up to 4% of the soluble cell protein. At the optimum pH of 8.5, the Vmax was 55 mumol of acetyl-CoA formed per min per mg of protein. Analysis of enzyme kinetic properties revealed a Km of 0.86 mM for acetate and 48 microM for coenzyme A. With varying amounts of ATP, weak sigmoidal kinetic was observed. The Hill plot gave a slope of 1.58 +/- 0.12, suggesting two interacting substrate sites for the ATP. The kinetic properties of the acetyl-CoA synthetase can explain the high affinity for acetate of Methanothrix soehngenii. Images PMID:2571608

  18. Ammonia Fixation via Glutamine Synthetase and Glutamate Synthase in the CAM Plant Cissus quadrangularis L. 1

    PubMed Central

    Berger, Michael G.; Sprengart, Michael L.; Kusnan, Misri; Fock, Heinrich P.

    1986-01-01

    Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO2 and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, 15NH4Cl was injected into the central pith of stem sections. The kinetics of 15N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of 15N derived from 15NH4Cl was almost completely inhibited. Injections of amido-15N glutamine demonstrated a potential for 15N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism. PMID:16664820

  19. Ammonia Fixation via Glutamine Synthetase and Glutamate Synthase in the CAM Plant Cissus quadrangularis L.

    PubMed

    Berger, M G; Sprengart, M L; Kusnan, M; Fock, H P

    1986-06-01

    Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO(2) and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, (15)NH(4)Cl was injected into the central pith of stem sections. The kinetics of (15)N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of (15)N derived from (15)NH(4)Cl was almost completely inhibited. Injections of amido-(15)N glutamine demonstrated a potential for (15)N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism.

  20. Nucleotide synthetase ribozymes may have emerged first in the RNA world

    PubMed Central

    Ma, Wentao; Yu, Chunwu; Zhang, Wentao; Hu, Jiming

    2007-01-01

    Though the “RNA world” hypothesis has gained a central role in ideas concerning the origin of life, the scenario concerning its emergence remains uncertain. It has been speculated that the first scene may have been the emergence of a template-dependent RNA synthetase ribozyme, which catalyzed its own replication: thus, “RNA replicase.” However, the speculation remains uncertain, primarily because of the large sequence length requirement of such a replicase and the lack of a convincing mechanism to ensure its self-favoring features. Instead, we propose a nucleotide synthetase ribozyme as an alternative candidate, especially considering recent experimental evidence suggesting the possibility of effective nonenzymatic template-directed synthesis of RNA. A computer simulation was conducted to support our proposal. The conditions for the emergence of the nucleotide synthetase ribozyme are discussed, based on dynamic analysis on a computer. We suggest the template-dependent RNA synthetase ribozyme emerged later, perhaps after the emergence of protocells. PMID:17878321

  1. Acetyl-CoA synthetase is a conserved regulator of autophagy and lifespan

    PubMed Central

    Mirzaei, Hamed; Longo, Valter D.

    2014-01-01

    Autophagy is essential for the maintenance of cellular homeostasis during periods of stress. Eisenberg and colleagues (Eisenberg et al., 2014) now describe the central and conserved role for acetyl-CoA synthetase in regulating lifespan in yeast and flies by a mechanism involving autophagy. PMID:24703691

  2. CDC64 Encodes Cytoplasmic Alanyl-tRNA Synthetase, Ala1p, of Saccharomyces cerevisiae

    PubMed Central

    Wrobel, Carolyn; Schmidt, Emmett V.; Polymenis, Michael

    1999-01-01

    The cdc64-1 mutation causes G1 arrest in Saccharomyces cerevisiae corresponding to a type II Start phenotype. We report that CDC64 encodes Ala1p, an alanyl-tRNA synthetase. Thus, cdc64-1 might affect charging of tRNAAla and thereby initiation of cell division. PMID:10601222

  3. Aminoacyl tRNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway

    PubMed Central

    Castranova, Daniel; Davis, Andrew E.; Lo, Brigid D.; Miller, Mayumi F.; Paukstelis, Paul J.; Swift, Matthew R.; Pham, Van N.; Torres-Vázquez, Jesús; Bell, Kameha; Shaw, Kenna M.; Kamei, Makoto; Weinstein, Brant M.

    2016-01-01

    Objective Understanding the mechanisms regulating normal and pathologic angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in two different aminoacyl tRNA synthetases, threonyl tRNA synthetase (tarsy58) or isoleucyl tRNA synthetase (iarsy68), lead to similar increased branching angiogenesis in developing zebrafish. Approach and Results The Unfolded Protein Response (UPR) pathway is activated by aminoacyl tRNA synthetase deficiencies, and we show that UPR genes atf4, atf6, and xbp1, as well as the key pro-angiogenic ligand vascular endothelial growth factor (vegfaa), are all up-regulated in tarsy58 and iarsy68 mutants. Finally, we show that the PERK-ATF4 arm of the UPR pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tarsy58 mutants. Conclusions Our results suggest that endoplasmic reticulum (ER) stress acts as a pro-angiogenic signal via UPR pathway-dependent up-regulation of vegfaa. PMID:26821951

  4. S-Adenosylmethionine synthetase 3 is important for pollen tube growth

    USDA-ARS?s Scientific Manuscript database

    S-Adenosylmethionine is widely used in a variety of biological reactions and participates in the methionine (Met) metabolic pathway. In Arabidopsis (Arabidopsis thaliana), one of the four S-adenosylmethionine synthetase genes, METHIONINE ADENOSYLTRANSFERASE3 (MAT3), is highly expressed in pollen. He...

  5. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms.

    PubMed

    Moen, Spencer O; Edwards, Thomas E; Dranow, David M; Clifton, Matthew C; Sankaran, Banumathi; Van Voorhis, Wesley C; Sharma, Amit; Manoil, Colin; Staker, Bart L; Myler, Peter J; Lorimer, Donald D

    2017-03-16

    Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.

  6. Positive newborn screen in the biochemically normal infant of a mother with treated holocarboxylase synthetase deficiency.

    PubMed

    Nyhan, W L; Willis, M; Barshop, B A; Gangoiti, J

    2009-12-01

    Expanded programmes of newborn screening permit early diagnosis in time to prevent serious complications. These programmes have begun to detect patients who might otherwise remain asymptomatic. An additional confounding variable is the positive screen that results from maternal rather than neonatal disease. This was the case in an infant in whom elevated hydroxyisovalerylcarnitine (C(5)OH) in his newborn screen was the result of placental transfer from his mother, whose holocarboxylase synthetase deficiency was being successfully treated with biotin. The mother had been diagnosed and treated with biotin prenatally. She had no phenotypic feature of holocarboxylase synthetase deficiency, most importantly no episodes ever of acute metabolic acidosis. In the infant a repeat screen was also positive. On day 28 the infant's plasma C(5)OH carnitine was 0.05 mumol/L (normal) and urinary organic acids on day 39 were normal. The mother's excretion of 3-hydroxyisovaleric acid was 109 mmol/mol creatinine. These observations indicate that holocarboxylase synthetase deficiency is one more maternal metabolic disease which may lead to a positive screen in her unaffected newborn infant. They also make the point that holocarboxylase synthetase deficiency in an infant should be detectable in programmes of neonatal screening, which was not clear previously.

  7. Erythrocyte glutathione synthetase in 5-oxoprolinuria: kinetic studies of the mutant enzyme and detection of heterozygotes.

    PubMed

    Larsson, A; Zetterström, R; Hörnell, H; Porath, U

    1976-11-15

    The primary metabolic defect in 5-oxoprolinuria is a generalized deficiency of glutathione synthetase. The activity of this enzyme was determined in cell-free extracts of erythrocytes from patients with 5-oxoprolinuria, their parents and a sibling as well as from normal control individuals. The following activities (pkat/mg of hemoglobin) for glutathione synthetase were obtained: homozygotes mean 0.10 (range 0.07-0.12), heterozygotes mean 3.1 (range 2.8-3.7) and control individuals mean 6.1 (range 5.4-6.7). These results indicate that 5-oxoprolinuria, i.e. the defective gluthione synthetase gene(s), is transmitted by autosomal recessive inheritance. Studies of the kinetics of the low remaining activity of erythrocyte glutathione synthetase in patients with 5-oxoprolinuria failed to reveal defective affinity for glycine, gamma-glutamyl-alpha-aminobutyrate, ATP and Mg2+ ions. Furthermore, the pH optimum, time curves and temperature dependence for the mutant enzyme activity did not significantly differ from the corresponding parameters observed with normal enzyme.

  8. Brain and Liver Glutamine Synthetase of Rana catesbeiana and Rana cancrivora.

    DTIC Science & Technology

    1983-07-01

    glutamine synthetase in the liver is clear for most groups. The lungfishes (Dipnoids) do not retain urea except to avoid ammonia toxicity during...York. 11. Janssens, P.A. and Cohen, P.P. 1968. Nitrogen meta- bolism in the African lungfish . Comp. Biochem. Physiol. 24, 879-886. 9 12. Pickford, G.E

  9. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  10. Salmonella typhimurium nit Is nadE: Defective Nitrogen Utilization and Ammonia-Dependent NAD Synthetase

    PubMed Central

    Schneider, Barbara L.; Reitzer, Lawrence J.

    1998-01-01

    S. typhimurium nit mutants are defective in nitrogen assimilation, despite having normal levels of assimilatory enzymes. Complementation, enzyme assays, and genetic mapping show that nit is nadE. We present evidence that ammonia, not glutamine, is the physiological substrate for eubacterial NAD synthetases and that low activity completely accounts for the mutant phenotype. PMID:9721319

  11. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase

    PubMed Central

    Lipman, Richard S. A.; Hou, Ya-Ming

    1998-01-01

    Aminoacyl-tRNA synthetases catalyze aminoacylation of tRNAs by joining an amino acid to its cognate tRNA. The selection of the cognate tRNA is jointly determined by separate structural domains that examine different regions of the tRNA. The cysteine-tRNA synthetase of Escherichia coli has domains that select for tRNAs containing U73, the GCA anticodon, and a specific tertiary structure at the corner of the tRNA L shape. The E. coli enzyme does not efficiently recognize the yeast or human tRNACys, indicating the evolution of determinants for tRNA aminoacylation from E. coli to yeast to human and the coevolution of synthetase domains that interact with these determinants. By successively modifying the yeast and human tRNACys to ones that are efficiently aminoacylated by the E. coli enzyme, we have identified determinants of the tRNA that are important for aminoacylation but that have diverged in the course of evolution. These determinants provide clues to the divergence of synthetase domains. We propose that the domain for selecting U73 is conserved in evolution. In contrast, we propose that the domain for selecting the corner of the tRNA L shape diverged early, after the separation between E. coli and yeast, while that for selecting the GCA-containing anticodon loop diverged late, after the separation between yeast and human. PMID:9811828

  12. A NONSTEADY STATE MODEL FOR THE TIGHT-BINDING INHIBITION OF THYMIDYLATE SYNTHETASE BY 5-FLUOROURACIL

    EPA Science Inventory

    5-Fluorouracil (5_FU) is a widely used chemotherapeutic drug and tratogen that was chosen as a prototypic toxicant to contruct a biologically based dose-resonse (BBDR) model (Setzer et. al., 2001). Part of the BBDR model simulates the inhibition of thymidylate synthetase (TS), a...

  13. The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes.

    PubMed

    da Silva, Robin; Levillain, Oliver; Brosnan, John T; Araneda, Silvia; Brosnan, Margaret E

    2013-05-01

    There is functional zonation of metabolism across the liver acinus, with glutamine synthetase restricted to a narrow band of cells around the terminal hepatic venules. Portacaval anastomosis, where there is a major rerouting of portal blood flow from the portal vein directly to the vena cava bypassing the liver, has been reported to result in a marked decrease in the activity of glutamine synthetase. It is not known whether this represents a loss of perivenous hepatocytes or whether there is a specific loss of glutamine synthetase. To answer this question, we have determined the activity of glutamine synthetase and another enzyme from the perivenous compartment, ornithine aminotransferase, as well as the immunochemical localization of both glutamine synthetase and ornithine aminotransferase in rats with a portacaval shunt. The portacaval shunt caused a marked decrease in glutamine synthetase activity and an increase in ornithine aminotransferase activity. Immunohistochemical analysis showed that the glutamine synthetase and ornithine aminotransferase proteins maintained their location in the perivenous cells. These results indicate that there is no generalized loss of perivenous hepatocytes, but rather, there is a significant alteration in the expression of these proteins and hence metabolism in this cell population.

  14. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  15. The effect of glial glutamine synthetase inhibition on recognition and temporal memories in the rat.

    PubMed

    Kant, Deepika; Tripathi, Shweta; Qureshi, Munazah F; Tripathi, Shweta; Pandey, Swati; Singh, Gunjan; Kumar, Tankesh; Mir, Fayaz A; Jha, Sushil K

    2014-02-07

    The glutamate neurotransmitter is intrinsically involved in learning and memory. Glial glutamine synthetase enzyme synthesizes glutamine, which helps maintain the optimal neuronal glutamate level. However, the role of glutamine synthetase in learning and memory remains unclear. Using associative trace learning task, we investigated the effects of methionine sulfoximine (MSO) (glutamine synthetase inhibitor) on recognition and temporal memories. MSO and vehicle were injected (i.p.) three hours before training in separate groups of male Wistar rats (n=11). Animals were trained to obtain fruit juice after following a set of sequential events. Initially, house-light was presented for 15s followed by 5s trace interval. Thereafter, juice was given for 20s followed by 20s inter-presentation interval. A total of 75 presentations were made over five sessions during the training and testing periods. The average number of head entries to obtain juice per session and during individual phases at different time intervals was accounted as an outcome measure of recognition and temporal memories. The total head entries in MSO and vehicle treated animals were comparable on training and testing days. However, it was 174.90% (p=0.08), 270.61% (p<0.05), 143.20% (p<0.05) more on training day and 270.33% (p<0.05), 157.94% (p<0.05), 170.42% (p<0.05) more on testing day, during the house-light, trace-interval and inter-presentation interval phases in MSO animals. Glutamine synthetase inhibition did not induce recognition memory deficit, while temporal memory was altered, suggesting that glutamine synthetase modulates some aspects of mnemonic processes.

  16. Molecular cloning and characterization of glutamine synthetase, a tegumental protein from Schistosoma japonicum.

    PubMed

    Qiu, Chunhui; Hong, Yang; Cao, Yan; Wang, Fei; Fu, Zhiqiang; Shi, Yaojun; Wei, Meimei; Liu, Shengfa; Lin, Jiaojiao

    2012-12-01

    Glutamine synthetase catalyzes the synthesis of glutamine, providing nitrogen for the production of purines, pyrimidines, amino acids, and other compounds required in many pivotal cellular events. Herein, a full-length cDNA encoding Schistosoma japonicum glutamine synthetase (SjGS) was isolated from 21-day schistosomes. The entire open reading frame of SjGS contains a 1,095-bp coding region corresponding to 364 amino acids with a calculated molecular weight of 40.7 kDa. NCBIP blast shows that the putative amino acid of SjGS contains a classic β-grasp domain and a catalytic domain of glutamine synthetase. The relative mRNA expression of SjGS was evaluated in 7-, 13-, 21-, 28-, 35-, and 42-day worms of S. japonicum in the final host and higher expression at day 21, and 42 worms were observed. This protein was also detected in worm extracts using Western blot. Immunofluorescence studies indicated that the SjGS protein was mainly distributed on tegument and parenchyma in 28-day adult worms. The recombinant glutamine synthetase with a molecular weight of 45 kDa was expressed in Escherichia coli and purified in its active form. The enzyme activity of the recombinant protein was 3.30 ± 0.67 U.μg-1. The enzyme activity was highly stable over a wide range of pH (6-9) and temperature (25-40 °C) under physiological conditions. The transcription of SjGS was upregulated in praziquantel-treated worms at 2-, 4-, and 24-h posttreatment compared with the untreated control. As a first step towards the clarification of the role of glutamine synthetase in schistosome species, we have cloned and characterized cDNAs encoding SjGS in S. japonicum, and the data presented suggest that SjGS is an important molecule in the development of the schistosome.

  17. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  18. Structural analysis of the active site geometry of N5-carboxyaminoimidazole ribonucleotide synthetase from Escherichia coli.

    PubMed

    Thoden, James B; Holden, Hazel M; Firestine, Steven M

    2008-12-16

    N(5)-Carboxyaminoimidazole ribonucleotide synthetase (N(5)-CAIR synthetase) converts 5-aminoimidazole ribonucleotide (AIR), MgATP, and bicarbonate into N(5)-CAIR, MgADP, and P(i). The enzyme is required for de novo purine biosynthesis in microbes yet is not found in humans suggesting that it represents an ideal and unexplored target for antimicrobial drug design. Here we report the X-ray structures of N(5)-CAIR synthetase from Escherichia coli with either MgATP or MgADP/P(i) bound in the active site cleft. These structures, determined to 1.6-A resolution, provide detailed information regarding the active site geometry before and after ATP hydrolysis. In both structures, two magnesium ions are observed. Each of these is octahedrally coordinated, and the carboxylate side chain of Glu238 bridges them. For the structure of the MgADP/P(i) complex, crystals were grown in the presence of AIR and MgATP. No electron density was observed for AIR, and the electron density corresponding to the nucleotide clearly revealed the presence of ADP and P(i) rather than ATP. The bound P(i) shifts by approximately 3 A relative to the gamma-phosphoryl group of ATP and forms electrostatic interactions with the side chains of Arg242 and His244. Since the reaction mechanism of N(5)-CAIR synthetase is believed to proceed via a carboxyphosphate intermediate, we propose that the location of the inorganic phosphate represents the binding site for stabilization of this reactive species. Using the information derived from the two structures reported here, coupled with molecular modeling, we propose a catalytic mechanism for N(5)-CAIR synthetase.

  19. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Polson, Brian; Fernandez-Moya, Ruben; Da Silva, Nancy A

    2015-03-01

    The production of fuels and chemicals from biorenewable resources is important to alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Fatty acids are attractive biomolecules due to the flexibility of their iterative biosynthetic pathway, high energy content, and suitability for conversion into other secondary chemicals. Free fatty acids (FFAs) that can be secreted from the cell are particularly appealing due to their lower harvest costs and straightforward conversion into a broad range of biofuel and biochemical products. Saccharomyces cerevisiae was engineered to overproduce extracellular FFAs by targeting three native intracellular processes. β-oxidation was disrupted by gene knockouts in FAA2, PXA1 and POX1, increasing intracellular fatty acids levels up to 55%. Disruptions in the acyl-CoA synthetase genes FAA1, FAA4 and FAT1 allowed the extracellular detection of free fatty acids up to 490mg/L. Combining these two disrupted pathways, a sextuple mutant (Δfaa1 Δfaa4 Δfat1 Δfaa2 Δpxa1 Δpox1) was able to produce 1.3g/L extracellular free fatty acids. Further diversion of carbon flux into neutral lipid droplet formation was investigated by the overexpression of DGA1 or ARE1 and by the co-overexpression of a compatible lipase, TGL1, TGL3 or TGL5. The sextuple mutant overexpressing the diacylglycerol acyltransferase, DGA1, and the triacylglycerol lipase, TGL3, yielded 2.2g/L extracellular free fatty acids. This novel combination of pathway interventions led to 4.2-fold higher extracellular free fatty acid levels than previously reported for S. cerevisiae. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. [Omega-3 fatty acids].

    PubMed

    Huyghebaert, C

    2007-01-01

    Omega-3 fatty acids have been drawing the interest of researchers for quite a number of years. The study of the impact of fish consumption on health and particularly on a cardiovascular level is the subject of much research. Some encouraging results have led to the study of omega-3 fatty acids in various other diseases. The interest in 'omega-3' has been widely relayed by the media and a huge market has developed with several allegations in its favour. This article is an attempt to shed light on these health claims, based on currently available scientific data.

  1. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle.

    PubMed

    Teodoro, Bruno G; Sampaio, Igor H; Bomfim, Lucas H M; Queiroz, André L; Silveira, Leonardo R; Souza, Anderson O; Fernandes, Anna M A P; Eberlin, Marcos N; Huang, Tai-Yu; Zheng, Donghai; Neufer, P Darrell; Cortright, Ronald N; Alberici, Luciane C

    2017-02-01

    Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or β-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid

  2. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  3. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  4. New Bioactive Fatty Acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  5. New bioactive fatty acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  6. Hypoxia and fatty liver.

    PubMed

    Suzuki, Tomohiro; Shinjo, Satoko; Arai, Takatomo; Kanai, Mai; Goda, Nobuhito

    2014-11-07

    The liver is a central organ that metabolizes excessive nutrients for storage in the form of glycogen and lipids and supplies energy-producing substrates to the peripheral tissues to maintain their function, even under starved conditions. These processes require a considerable amount of oxygen, which causes a steep oxygen gradient throughout the hepatic lobules. Alcohol consumption and/or excessive food intake can alter the hepatic metabolic balance drastically, which can precipitate fatty liver disease, a major cause of chronic liver diseases worldwide, ranging from simple steatosis, through steatohepatitis and hepatic fibrosis, to liver cirrhosis. Altered hepatic metabolism and tissue remodeling in fatty liver disease further disrupt hepatic oxygen homeostasis, resulting in severe liver hypoxia. As master regulators of adaptive responses to hypoxic stress, hypoxia-inducible factors (HIFs) modulate various cellular and organ functions, including erythropoiesis, angiogenesis, metabolic demand, and cell survival, by activating their target genes during fetal development and also in many disease conditions such as cancer, heart failure, and diabetes. In the past decade, it has become clear that HIFs serve as key factors in the regulation of lipid metabolism and fatty liver formation. This review discusses the molecular mechanisms by which hypoxia and HIFs regulate lipid metabolism in the development and progression of fatty liver disease.

  7. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.

    PubMed

    Hara, Ryotaro; Suzuki, Ryohei; Kino, Kuniki

    2015-05-15

    We demonstrated the usefulness of a hydroxamate-based colorimetric assay for predicting amide bond formation (through an aminoacyl-AMP intermediate) by the adenylation domain of nonribosomal peptide synthetases. By using a typical adenylation domain of tyrocidine synthetase (involved in tyrocidine biosynthesis), we confirmed the correlation between the absorbance at 490 nm of the l-Trp-hydroxamate-Fe(3+) complex and the formation of l-Trp-l-Pro, where l-Pro was used instead of hydroxylamine. Furthermore, this assay was adapted to the adenylation domains of surfactin synthetase (involved in surfactin biosynthesis) and bacitracin synthetase (involved in bacitracin biosynthesis). Consequently, the formation of various aminoacyl l-Pro formations was observed.

  8. Molecular cloning and regulation of expression of the genes for initiation factor 3 and two aminoacyl-tRNA synthetases.

    PubMed Central

    Elseviers, D; Gallagher, P; Hoffman, A; Weinberg, B; Schwartz, I

    1982-01-01

    A 22-kilobase fragment of the Escherichia coli chromosome which contains the genes for translation initiation factor 3, phenylalanyl-tRNA synthetase, and threonyl-tRNA synthetase was cloned into plasmid pACYC184. The hybrid plasmid (designated pID1) complements a temperature-sensitive pheS lesion in E. coli NP37. pID1-transformed NP37 overproduce initiation factor 3 and phenylalanyl-tRNA synthetase. Gene expression from pID1 was studied in vitro in a coupled transcription-translation system and in minicells. The results suggest that the genes for initiation factor 3 and phenylalanyl- and threonyl-tRNA synthetase are regulated by different mechanisms. Images PMID:6749810

  9. Molecular cloning and regulation of expression of the genes for initiation factor 3 and two aminoacyl-tRNA synthetases.

    PubMed

    Elseviers, D; Gallagher, P; Hoffman, A; Weinberg, B; Schwartz, I

    1982-10-01

    A 22-kilobase fragment of the Escherichia coli chromosome which contains the genes for translation initiation factor 3, phenylalanyl-tRNA synthetase, and threonyl-tRNA synthetase was cloned into plasmid pACYC184. The hybrid plasmid (designated pID1) complements a temperature-sensitive pheS lesion in E. coli NP37. pID1-transformed NP37 overproduce initiation factor 3 and phenylalanyl-tRNA synthetase. Gene expression from pID1 was studied in vitro in a coupled transcription-translation system and in minicells. The results suggest that the genes for initiation factor 3 and phenylalanyl- and threonyl-tRNA synthetase are regulated by different mechanisms.

  10. Effect of single base substitutions at glycine-870 codon of gramicidin S synthetase 2 gene on proline activation.

    PubMed

    Tokita, K; Hori, K; Kurotsu, T; Kanda, M; Saito, Y

    1993-10-01

    The mutant gene coding for a proline-activating domain (grs2-pro) was cloned and sequenced from Bacillus brevis Nagano, BII-3 strain, which produces gramicidin S synthetase 2 defective in proline-activation. By comparison of the nucleotide sequence with the wild-type sequence, a single point mutation was found at the 2609th guanine, which was replaced with adenine, resulting in the change of the 870th glycine to glutamic acid. Homology search for the deduced amino acid sequence of grs2-pro gene revealed that the 870th glycine was conserved in adenylate-forming enzymes, and its flanking sequence was highly conserved among the aminoacyl adenylate-forming enzymes, such as antibiotic peptide synthetases: gramicidin S synthetase 1 and 2 (GS1, GS2), tyrocidine synthetase 1 (TS1), and delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS); and other aminoacyl adenylation enzymes: alpha-aminoadipate reductase (LYS2), EntF, and AngR. On the other hand, this flanking sequence was not conserved in the other adenylate-forming enzymes lacking amino acid activation, such as acetyl-CoA synthetase, long-chain acyl-CoA synthetase, luciferase, and 4-coumarate CoA ligase. Single base substitutions at the 870th GGG codon were carried out by oligonucleotide site-directed mutagenesis. Four mutagenized clones were isolated, containing grs2-pro genes which exchange 870-Gly for alanine, valine, arginine, and tryptophan. The translated products from these clones could scarcely catalyze proline-dependent ATP-32PPi exchange reaction. The coil structure of 870-Gly region was lost in the mutants. These results suggest that the 870-Gly residue of grs2-pro protein is essential for aminoacyl-adenylation in the antibiotic peptide synthetase family.

  11. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G

    2014-03-11

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  12. Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase.

    PubMed

    Wray, Lewis V; Fisher, Susan H

    2008-04-01

    The Bacillus subtilis GlnR transcription factor regulates gene expression in response to changes in nitrogen availability. Glutamine synthetase transmits the nitrogen regulatory signal to GlnR. The DNA-binding activity of GlnR is activated by a transient protein-protein interaction with feedback-inhibited glutamine synthetase that stabilizes GlnR-DNA complexes. This signal transduction mechanism was analysed by creating mutant GlnR proteins with partial or complete truncations of their C-terminal domains. The truncated GlnR proteins were found to constitutively repress gene expression in vivo. This constitutive repression did not require glutamine synthetase. Purified mutant GlnR proteins bound DNA in vitro more tightly than wild-type GlnR protein and this binding was not activated by feedback-inhibited glutamine synthetase. While full-length GlnR is monomeric, the truncated GlnR proteins contained significant levels of dimers. These results indicate that the C-terminal region of GlnR acts as an autoinhibitory domain that prevents GlnR dimerization and thus impedes DNA binding. The GlnR C-terminal domain is also required for the interaction between GlnR and feedback-inhibited glutamine synthetase. Compared with the full-length GlnR protein, the truncated GlnR proteins were defective in their interaction with feedback-inhibited glutamine synthetase in cross-linking experiments.

  13. A CMP-N-acetylneuraminic acid synthetase purified from a marine bacterium, Photobacterium leiognathi JT-SHIZ-145.

    PubMed

    Kajiwara, Hitomi; Mine, Toshiki; Miyazaki, Tatsuo; Yamamoto, Takeshi

    2011-01-01

    A cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase was found in a crude extract prepared from Photobacterium leiognathi JT-SHIZ-145, a marine bacterium that also produces a β-galactoside α2,6-sialyltransferase. The CMP-Neu5Ac synthetase was purified from the crude extract of the cells by a combination of anion-exchange and gel filtration column chromatography. The purified enzyme migrated as a single band (60 kDa) on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The activity of the enzyme was maximal at 35 °C at pH 9.0, and the synthetase required Mg(2+) for activity. Although these properties are similar to those of other CMP-Neu5Ac synthetases isolated from bacteria, this synthetase produced not only CMP-Neu5Ac from cytidine triphosphate and Neu5Ac, but also CMP-N-glycolylneuraminic acid from cytidine triphosphate and N-glycolylneuraminic acid, unlike CMP-Neu5Ac synthetase purified from Escherichia coli.

  14. The purification and properties of the glutamine synthetase from the cytosol of Soya-bean root nodules.

    PubMed Central

    McParland, R H; Guevara, J G; Becker, R R; Evans, H J

    1976-01-01

    The major portion of glutamine synthetase activity in root nodules of soya-bean plants is associated with the cytosol rather than with Rhizobium japonicum bacteroids. Glutamine synthetase accounts for about 2% of the total soluble protein in nodule cytosol. Glutamine synthetase from nodule cytosol has been purified by a procedure involving fractionation with protamine sulphate, ammonium sulphate and polypropylene glycol, chromatography on DEAE-Bio-Gel A and Bio-Gel A-5m and affinity chromatography on glutamate-agarose columns. The purified preparation appeared to be homogeneous in the analytical ultracentrifuge. From sedimentation-equilibrium experiments a mol. wt. of about 376000 was determined for the native enzyme and 47300 for the enzyme in guanidinium chloride. From these data and measurements of electron micrographs, we have concluded that glutamine synthetase from nodule cytosol consists of eight subunits arranged in two sets of planar tetramers which form a cubical configuration with dimensions of about 10 nm (100 A) across each side. Glutamine synthetase from nodule cytosol has a higher glycine and proline content and a lower content of phenylalanine than the glutamine synthetase that has been prepared from pea seed. The cytosol enzyme contains four half-cystine molecules per subunit, which is in contrast with two reported for the enzyme from pea seed. Enzyme activity is striking influenced by the relative proportion of Mg2+ and Mn2+ in the assay medium. Activity is inhibited by feedback inhibitors and is influenced by energy charge. Images PLATE 1 PLATE 2 PMID:8035

  15. Microbial production of fatty alcohols.

    PubMed

    Fillet, Sandy; Adrio, José L

    2016-09-01

    Fatty alcohols have numerous commercial applications, including their use as lubricants, surfactants, solvents, emulsifiers, plasticizers, emollients, thickeners, and even fuels. Fatty alcohols are currently produced by catalytic hydrogenation of fatty acids from plant oils or animal fats. Microbial production of fatty alcohols may be a more direct and environmentally-friendly strategy since production is carried out by heterologous enzymes, called fatty acyl-CoA reductases, able to reduce different acyl-CoA molecules to their corresponding primary alcohols. Successful examples of metabolic engineering have been reported in Saccharomyces cerevisiae and Escherichia coli in which the production of fatty alcohols ranged from 1.2 to 1.9 g/L, respectively. Due to their metabolic advantages, oleaginous yeasts are considered the best hosts for production of fatty acid-derived chemicals. Some of these species can naturally produce, under specific growth conditions, lipids at high titers (>50 g/L) and therefore provide large amounts of fatty acyl-CoAs or fatty acids as precursors. Very recently, taking advantage of such features, over 8 g/L of C16-C18 fatty alcohols have been produced in Rhodosporidium toruloides. In this review we summarize the different metabolic engineering strategies, hosts and cultivation conditions used to date. We also point out some future trends and challenges for the microbial production of fatty alcohols.

  16. Proofreading in vivo: Editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli

    SciTech Connect

    Jakubowski, H. )

    1990-06-01

    Previous in vitro studies have established a pre-transfer proofreading mechanism for editing of homocysteine by bacterial methionyl-, isoleucyl-, and valyl-tRNA synthetases. The unusual feature of the editing is the formation of a distinct compound, homocysteine thiolactone. Now, two-dimensional TLC analysis of 35S-labeled amino acids extracted from cultures of the bacterium Escherichia coli reveals that the thiolactone is also synthesized in vivo. In E. coli, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 109 molecules of methionine incorporated into protein in vivo. These results not only directly demonstrate that the adenylate proofreading pathway for rejection of misactivated homocysteine operates in vivo in E. coli but, in general, establish the importance of error-editing mechanisms in living cells.

  17. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    PubMed

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  18. Aminoacyl transfer ribonucleic acid synthetases from cell-free extract of Plasmodium berghei.

    PubMed

    Ilan, J; Ilan, J

    1969-05-02

    Aminoacyl transfer ribonucleic acid synthetases for leucine tyrosine, histidine, valine, proline, threonine, and lysine were obtainnned from cell-free extract of Plasmodium berghei. The leucyl-tRNA synthetase cane charge tRNA from liver or Escherichia coli with leucine-c(14), liver tRNA being a better substrate. The amount of aminoacylation increses linerly with respect to the quantity of tRNA added from either source and is dependent on the amount of enzyme added. The rate of aminoacylation is constant for 10 minutes and then decreases. It is enhanced by polyvinylsulfate. One-tenth millimoler pyrimethamine, hydroxystilbamidine, quinacrine, and acriflavine inhibited the formation of C(14)-valyl-tRNA. Species specificity between tRNA and its charging enzyme with respect to the recognition site is discussed.

  19. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response

    PubMed Central

    Park, Sang Gyu; Kim, Hye Jin; Min, You Hong; Choi, Eung-Chil; Shin, Young Kee; Park, Bum-Joon; Lee, Sang Won; Kim, Sunghoon

    2005-01-01

    Although aminoacyl-tRNA synthetases (ARSs) are essential for protein synthesis, they also function as regulators and signaling molecules in diverse biological processes. Here, we screened 11 different human ARSs to identify the enzyme that is secreted as a signaling molecule. Among them, we found that lysyl-tRNA synthetase (KRS) was secreted from intact human cells, and its secretion was induced by TNF-α. The secreted KRS bound to macrophages and peripheral blood mononuclear cells to enhance the TNF-α production and their migration. The mitogen-activated protein kinases, extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, and Gαi were determined to be involved in the signal transduction triggered by KRS. All of these activities demonstrate that human KRS may work as a previously uncharacterized signaling molecule, inducing immune response through the activation of monocyte/macrophages. PMID:15851690

  20. let-65 is cytoplasmic methionyl tRNA synthetase in C. elegans

    PubMed Central

    Alriyami, Maha Z.; Jones, Martin R.; Johnsen, Robert C.; Banerjee, Yajnavalka; Baillie, David L.

    2014-01-01

    Cytoplasmic methionyl tRNA synthetase (MetRS) is one of more than 20 cytoplasmic aminoacyl tRNA synthetase enzymes (ARS). This family of enzymes catalyzes a process fundamental for protein translation. Using a combination of genetic mapping, oligonucleotide array comparative genomic hybridization, and phenotypic correlation, we show that mutations in the essential gene, let-65, reside within the predicted Caenorhabditis elegans homologue of MetRS, which we have named mars-1. We demonstrate that the lethality associated with alleles of let-65 is fully rescued by a transgenic array that spans the mars-1 genomic region. Furthermore, sequence analysis reveals that six let-65 alleles lead to the alteration of highly conserved amino acids. PMID:25606464

  1. Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase.

    PubMed

    Xiao, Han; Peters, Francis B; Yang, Peng-Yu; Reed, Sean; Chittuluru, Johnathan R; Schultz, Peter G

    2014-05-16

    A polyspecific amber suppressor aminoacyl-tRNA synthetase/tRNA pair was evolved that genetically encodes a series of histidine analogues in both Escherichia coli and mammalian cells. In combination with tRNACUA(Pyl), a pyrrolysyl-tRNA synthetase mutant was able to site-specifically incorporate 3-methyl-histidine, 3-pyridyl-alanine, 2-furyl-alanine, and 3-(2-thienyl)-alanine into proteins in response to an amber codon. Substitution of His66 in the blue fluorescent protein (BFP) with these histidine analogues created mutant proteins with distinct spectral properties. This work further expands the structural and chemical diversity of unnatural amino acids (UAAs) that can be genetically encoded in prokaryotic and eukaryotic organisms and affords new probes of protein structure and function.

  2. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli.

    PubMed Central

    Jakubowski, H

    1990-01-01

    Previous in vitro studies have established a pre-transfer proofreading mechanism for editing of homocysteine by bacterial methionyl-, isoleucyl-, and valyl-tRNA synthetases. The unusual feature of the editing is the formation of a distinct compound, homocysteine thiolactone. Now, two-dimensional TLC analysis of 35S-labeled amino acids extracted from cultures of the bacterium Escherichia coli reveals that the thiolactone is also synthesized in vivo. In E. coli, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 109 molecules of methionine incorporated into protein in vivo. These results not only directly demonstrate that the adenylate proofreading pathway for rejection of misactivated homocysteine operates in vivo in E. coli but, in general, establish the importance of error-editing mechanisms in living cells. Images PMID:2191291

  3. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  4. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  5. Assessing the effects of threonyl-tRNA synthetase on angiogenesis-related responses.

    PubMed

    Mirando, Adam C; Abdi, Khadar; Wo, Peibin; Lounsbury, Karen M

    2017-01-15

    Several recent reports have found a connection between specific aminoacyl-tRNA synthetases and the regulation of angiogenesis. As this new area of research is explored, it is important to have reliable assays to assess the specific angiogenesis functions of these enzymes. This review provides information about specific in vitro and in vivo methods that were used to assess the angiogenic functions of threonyl-tRNA synthetase including endothelial cell migration and tube assays as well as chorioallantoic membrane and tumor vascularization assays. The theory and discussion include best methods of analysis and quantification along with the advantages and limitations of each type of assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  7. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation.

    PubMed Central

    Francklyn, Christopher; Perona, John J; Puetz, Joern; Hou, Ya-Ming

    2002-01-01

    Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code. PMID:12458790

  8. Structure of Human Phosphopantothenoylcysteine Synthetase at 2.3 Å Resolution

    SciTech Connect

    Manoj, N.; Strauss, E.; Begley, T.P.; Ealick, S.E.

    2010-12-01

    The structure of human phosphopantothenoylcysteine (PPC) synthetase was determined at 2.3 {angstrom} resolution. PPC synthetase is a dimer with identical monomers. Some features of the monomer fold resemble a group of NAD-dependent enzymes, while other features resemble the ribokinase fold. The ATP, phosphopantothenate, and cysteine binding sites were deduced from modeling studies. Highly conserved ATP binding residues include Gly43, Ser61, Gly63, Gly66, Phe230, and Asn258. Highly conserved phosphopantothenate binding residues include Asn59, Ala179, Ala180, and Asp183 from one monomer and Arg55 from the adjacent monomer. The structure predicts a ping pong mechanism with initial formation of an acyladenylate intermediate, followed by release of pyrophosphate and attack by cysteine to form the final products PPC and AMP.

  9. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  10. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor

    PubMed Central

    Mirando, Adam C.; Fang, Pengfei; Williams, Tamara F.; Baldor, Linda C.; Howe, Alan K.; Ebert, Alicia M.; Wilkinson, Barrie; Lounsbury, Karen M.; Guo, Min; Francklyn, Christopher S.

    2015-01-01

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans. PMID:26271225

  11. Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase

    PubMed Central

    Seetharamappa, Jaldappagari; Oke, Muse; Liu, Huanting; McMahon, Stephen A.; Johnson, Kenneth A.; Carter, Lester; Dorward, Mark; Zawadzki, Michal; Overton, Ian M.; van Niekirk, C. A. Johannes; Graham, Shirley; Botting, Catherine H.; Taylor, Garry L.; White, Malcolm F.; Barton, Geoffrey J.; Coote, Peter J.; Naismith, James H.

    2007-01-01

    Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K. The protein crystallizes in a primitive triclinic lattice, with unit-cell parameters a = 45.3, b = 60.5, c = 117.6 Å, α = 87.2, β = 81.2, γ = 68.4°. A complete data set has been collected to 2.3 Å resolution at the ESRF. Consideration of the likely solvent content suggested the asymmetric unit to contain four molecules. This has been confirmed by molecular-replacement phasing calculations, which give a solution with four monomers using a monomer of pantothenate synthetase from Escherichia coli (PDB code 1iho), which is 41% identical to Sar2676, as a search model. PMID:17554169

  12. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin.

    PubMed

    van der Sluis, Rencia; Erasmus, Elardus

    2016-10-01

    Activation of fatty acids by the acyl-CoA synthetases (ACSs) is the vital first step in fatty acid metabolism. The enzymatic and physiological characterization of the human xenobiotic/medium chain fatty acid: CoA ligases (ACSMs) has been severely neglected even though xenobiotics, such as benzoate and salicylate, are detoxified through this pathway. This review will focus on the nomenclature and substrate specificity of the human ACSM ligases; the biochemical and enzymatic characterization of ACSM1 and ACSM2B; the high sequence homology of the ACSM2 genes (ACSM2A and ACSM2B) as well as what is currently known regarding disease association studies. Several discrepancies exist in the current literature that should be taken note of. For example, the single nucleotide polymorphisms (SNPs) reported to be associated with aspirin metabolism and multiple risk factors of metabolic syndrome are incorrect. Kinetic data on the substrate specificity of the human ACSM ligases are non-existent and currently no data exist on the influence of SNPs on the enzyme activity of these ligases. One of the biggest obstacles currently in the field is that glycine conjugation is continuously studied as a one-step process, which means that key regulatory factors of the two individual steps remain unknown.

  13. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase.

    PubMed

    Pérez-Delgado, Carmen M; García-Calderón, Margarita; Márquez, Antonio J; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4(+) accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4(+) when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4(+). Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4(+) when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.

  14. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    PubMed

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  15. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones

    PubMed Central

    Clemente, Maria R.; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K.; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-01-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1–48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24–48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses. PMID:22442424

  16. Quality Control by Isoleucyl-tRNA Synthetase of Bacillus subtilis Is Required for Efficient Sporulation

    PubMed Central

    Kermgard, Elizabeth; Yang, Zhou; Michel, Annika-Marisa; Simari, Rachel; Wong, Jacqueline; Ibba, Michael; Lazazzera, Beth A.

    2017-01-01

    Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential function is to aminoacylate tRNAIle with isoleucine. Like some other aminoacyl-tRNA synthetases, IleRS can mischarge tRNAIle and correct this misacylation through a separate post-transfer editing function. To explore the biological significance of this editing function, we created a ileS(T233P) mutant of Bacillus subtilis that allows tRNAIle mischarging while retaining wild-type Ile-tRNAIle synthesis activity. As seen in other species defective for aminoacylation quality control, the growth rate of the ileS(T233P) strain was not significantly different from wild-type. When the ileS(T233P) strain was assessed for its ability to promote distinct phenotypes in response to starvation, the ileS(T233P) strain was observed to exhibit a significant defect in formation of environmentally resistant spores. The sporulation defect ranged from 3-fold to 30-fold and was due to a delay in activation of early sporulation genes. The loss of aminoacylation quality control in the ileS(T233P) strain resulted in the inability to compete with a wild-type strain under selective conditions that required sporulation. These data show that the quality control function of IleRS is required in B. subtilis for efficient sporulation and suggests that editing by aminoacyl-tRNA synthetases may be important for survival under starvation/nutrient limitation conditions. PMID:28139725

  17. Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  18. A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors.

    PubMed

    Esposito, Marta; Szadocka, Sára; Degiacomi, Giulia; Orena, Beatrice S; Mori, Giorgia; Piano, Valentina; Boldrin, Francesca; Zemanová, Júlia; Huszár, Stanislav; Barros, David; Ekins, Sean; Lelièvre, Joel; Manganelli, Riccardo; Mattevi, Andrea; Pasca, Maria Rosalia; Riccardi, Giovanna; Ballell, Lluis; Mikušová, Katarína; Chiarelli, Laurent R

    2017-06-09

    Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.

  19. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  20. Co-operation between Polymerases and Nucleotide Synthetases in the RNA World

    PubMed Central

    Kim, Ye Eun; Higgs, Paul G.

    2016-01-01

    It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve. PMID:27820829

  1. What is the oligoadenylate synthetases-like protein and does it have therapeutic potential for influenza?

    PubMed

    Alcorn, John F; Sarkar, Saumendra N

    2015-02-01

    Besides its pandemic potential, seasonal influenza infection is associated with an estimated 250,000 to 500,000 deaths worldwide every year. Part of this virulence of influenza virus can be attributed to its ability to evade the host innate immune response. Here, we discuss the possibility of using a recently described mechanism of boosting the innate immunity by oligoadenylate synthetase-like protein, to combat influenza infections.

  2. Glutamine synthetase gene expression and glutamate transporters in C6-glioma cells.

    PubMed

    Baber, Zafeer; Haghighat, Nasrin

    2010-12-01

    Glutamine synthetase (GS) is the major glutamate-forming enzyme of vertebrae and is accepted to be a marker of astroglial cells. Maturation of astroglial cells is characterized by an increase in GS activity, and the regulation of this enzyme is the topic of many publications. The amino acid glutamate is the major excitatory neurotransmitter in the brain and mediates normal excitatory synaptic transmission by interaction with postsynaptic receptors. Glutamate also acts as a potent neurotoxin when present at high concentration. Glutamate neurotoxicity plays an important role in the pathophysiology of many neurological disorders, such as Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. In the normal condition, L-glutamate is predominantly taken up, metabolized and recycled by astrocytes through the glutamate transporters (GLAST/GLT1) and glutamine synthetase (GS) catalytic activity. Because of the fundamental role of these glutamate transporters and the glutamine synthetase enzyme in controlling cerebral glutamate level, regulation of GS and studying of the glutamate transporters in glial cells is important. Astrocytes are supportive cells and act as the site of detoxification of glutamate in the brain. However, their isolation from the brain is a tedious, costly and time consuming procedure. On the other hand, the C6-glioma cells are readily available on the market. They are well characterized and have been a useful model for CNS glia in many laboratories. For this study, we used the C6-glioma cell line as a model system. We examined the presence or absence of glial specific glutamate transporters (GLTI and GLAST) in C6-glioma cells, which was done by immunocytochemistry. We also examined glutamine synthetase gene expression in these cells by treatment of the C6-glioma cells with estrogen (17ß estradiol). The findings from this study provide useful information about C6-glioma cells which makes the study of the CNS tremendously inexpensive.

  3. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy.

    PubMed

    Elo, Jenni M; Yadavalli, Srujana S; Euro, Liliya; Isohanni, Pirjo; Götz, Alexandra; Carroll, Christopher J; Valanne, Leena; Alkuraya, Fowzan S; Uusimaa, Johanna; Paetau, Anders; Caruso, Eric M; Pihko, Helena; Ibba, Michael; Tyynismaa, Henna; Suomalainen, Anu

    2012-10-15

    Next-generation sequencing has turned out to be a powerful tool to uncover genetic basis of childhood mitochondrial disorders. We utilized whole-exome analysis and discovered novel compound heterozygous mutations in FARS2 (mitochondrial phenylalanyl transfer RNA synthetase), encoding the mitochondrial phenylalanyl transfer RNA (tRNA) synthetase (mtPheRS) in two patients with fatal epileptic mitochondrial encephalopathy. The mutations affected highly conserved amino acids, p.I329T and p.D391V. Recently, a homozygous FARS2 variant p.Y144C was reported in a Saudi girl with mitochondrial encephalopathy, but the pathogenic role of the variant remained open. Clinical features, including postnatal onset, catastrophic epilepsy, lactic acidemia, early lethality and neuroimaging findings of the patients with FARS2 variants, resembled each other closely, and neuropathology was consistent with Alpers syndrome. Our structural analysis of mtPheRS predicted that p.I329T weakened ATP binding in the aminoacylation domain, and in vitro studies with recombinant mutant protein showed decreased affinity of this variant to ATP. Furthermore, p.D391V and p.Y144C were predicted to disrupt synthetase function by interrupting the rotation of the tRNA anticodon stem-binding domain from a closed to an open form. In vitro characterization indicated reduced affinity of p.D391V mutant protein to phenylalanine, whereas p.Y144C disrupted tRNA binding. The stability of p.I329T and p.D391V mutants in a refolding assay was impaired. Our results imply that the three FARS2 mutations directly impair aminoacylation function and stability of mtPheRS, leading to a decrease in overall tRNA charging capacity. This study establishes a new genetic cause of infantile mitochondrial Alpers encephalopathy and reports a new mitochondrial aminoacyl-tRNA synthetase as a cause of mitochondrial disease.

  4. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  5. What is the oligoadenylate synthetases-like protein and does it have therapeutic potential for influenza?

    PubMed Central

    Alcorn, John F.; Sarkar, Saumendra N.

    2015-01-01

    Besides its pandemic potential, seasonal influenza infection is associated with an estimated 250,000 to 500,000 deaths worldwide every year. Part of this virulence of influenza virus can be attributed to its ability to evade the host innate immune response. Here we discuss the possibility of using a recently described mechanism of boosting the innate immunity by oligoadenylate synthetase-like protein, to combat influenza infections. PMID:25544107

  6. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase

    PubMed Central

    Pérez-Delgado, Carmen M.; García-Calderón, Margarita; Márquez, Antonio J.; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity. PMID:26091523

  7. [Isolation of tyrosyl-tRNA-synthetase from Thermus thermophilus HB-27].

    PubMed

    Iaremchuk, A D; Tukalo, M A; Egorova, S P; Konovalenko, A V; Matsuka, G Kh

    1990-01-01

    A method for isolating tyrosyl-tRNA synthetase from Thermus thermophilus is described, including ammonium sulfate fractionation, chromatography on DEAE-sepharose, hydroxyapatite, heparin-sepharose and hydrophobic chromatography on Toyopearl HW-65. The yield of the purified enzyme was 1.6 mg per 1 kg of T. thermophilus cells. The enzyme is a dimer protein of the alpha 2 type with molecular weight of 100 kDa.

  8. Site-specific fatty acid-conjugation to prolong protein half-life in vivo

    PubMed Central

    Lim, Sung In; Mizuta, Yukina; Takasu, Akinori; Hahn, Young S.; Kim, Yong Hwan; Kwon, Inchan

    2015-01-01

    Therapeutic proteins are indispensable in treating numerous human diseases. However, therapeutic proteins often suffer short serum half-life. In order to extend the serum half-life, a natural albumin ligand (a fatty acid) has been conjugated to small therapeutic peptides resulting in a prolonged serum half-life via binding to patients' serum albumin in vivo. However, fatty acid-conjugation has limited applicability due to lack of site-specificity resulting in the heterogeneity of conjugated proteins and a significant loss in pharmaceutical activity. In order to address these issues, we exploited the site-specific fatty acid-conjugation to a permissive site of a protein, using copper-catalyzed alkyne-azide cycloaddition, by linking a fatty acid derivative to p-ethynylphenylalanine incorporated into a protein using an engineered pair of yeast tRNA/aminoacyl tRNA synthetase. As a proof-of-concept, we show that single palmitic acid conjugated to superfolder green fluorescent protein (sfGFP) in a site-specific manner enhanced a protein's albumin-binding in vitro about 20 times and the serum half-life in vivo 5 times when compared to those of the unmodified sfGFP. Furthermore, the fatty acid conjugation did not cause a significant reduction in the fluorescence of sfGFP. Therefore, these results clearly indicate that the site-specific fatty acid-conjugation is a very promising strategy to prolong protein serum half-life in vivo without compromising its folded structure and activity. PMID:23735573

  9. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  10. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    PubMed

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Food safety: Structure and expression of the asparagine synthetase gene family of wheat

    PubMed Central

    Gao, Runhong; Curtis, Tanya Y.; Powers, Stephen J.; Xu, Hongwei; Huang, Jianhua; Halford, Nigel G.

    2016-01-01

    Asparagine is an important nitrogen storage and transport molecule, but its accumulation as a free amino acid in crops has implications for food safety because free asparagine is a precursor for acrylamide formation during cooking and processing. Asparagine synthesis occurs by the amidation of aspartate, catalysed by asparagine synthetase, and this study concerned the expression of asparagine synthetase (TaASN) genes in wheat. The expression of three genes, TaASN1-3, was studied in different tissues and in response to nitrogen and sulphur supply. The expression of TaASN2 in the embryo and endosperm during mid to late grain development was the highest of any of the genes in any tissue. Both TaASN1 and TaASN2 increased in expression through grain development, and in the grain of field-grown plants during mid-development in response to sulphur deprivation. However, only TaASN1 was affected by nitrogen or sulphur supply in pot-based experiments, showing complex tissue-specific and developmentally-changing responses. A putative N-motif or GCN4-like regulatory motif was found in the promoter of TaASN1 genes from several cereal species. As the study was completed, a fourth gene, TaASN4, was identified from recently available genome data. Phylogenetic analysis showed that other cereal species have similar asparagine synthetase gene families to wheat. PMID:27110058

  12. Food safety: Structure and expression of the asparagine synthetase gene family of wheat.

    PubMed

    Gao, Runhong; Curtis, Tanya Y; Powers, Stephen J; Xu, Hongwei; Huang, Jianhua; Halford, Nigel G

    2016-03-01

    Asparagine is an important nitrogen storage and transport molecule, but its accumulation as a free amino acid in crops has implications for food safety because free asparagine is a precursor for acrylamide formation during cooking and processing. Asparagine synthesis occurs by the amidation of aspartate, catalysed by asparagine synthetase, and this study concerned the expression of asparagine synthetase (TaASN) genes in wheat. The expression of three genes, TaASN1-3, was studied in different tissues and in response to nitrogen and sulphur supply. The expression of TaASN2 in the embryo and endosperm during mid to late grain development was the highest of any of the genes in any tissue. Both TaASN1 and TaASN2 increased in expression through grain development, and in the grain of field-grown plants during mid-development in response to sulphur deprivation. However, only TaASN1 was affected by nitrogen or sulphur supply in pot-based experiments, showing complex tissue-specific and developmentally-changing responses. A putative N-motif or GCN4-like regulatory motif was found in the promoter of TaASN1 genes from several cereal species. As the study was completed, a fourth gene, TaASN4, was identified from recently available genome data. Phylogenetic analysis showed that other cereal species have similar asparagine synthetase gene families to wheat.

  13. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue.

    PubMed

    Levine, R L

    1983-10-10

    Intracellular proteolytic degradation of glutamine synthetase occurs in two distinct steps in Escherichia coli (Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2120-2124). In the first step, a mixed function oxidation modifies the glutamine synthetase. The modified enzyme, which is catalytically inactive, becomes susceptible to proteolytic attack. In the second step, a protease specific for the modified enzyme catalyzes the actual proteolytic degradation. The oxidatively modified glutamine synthetase was studied to determine the chemical differences between it and the native enzyme. Only a single alteration was found; one of sixteen histidine residues/subunit was altered by the oxidative modification. The modification introduced a carbonyl group into the protein, permitting isolation of a stable dinitrophenylhydrazone. No other differences were detected between the native and modified proteins. Specifically, the cysteine, methionine, phenylalanine, tyrosine, and tryptophan contents were not altered. A number of other prokaryotic and eukaryotic enzymes are also susceptible to oxidative modification. This covalent modification may be important in intracellular proteolysis, in mammalian host defense systems, in prevention of autolysis, in aging processes, and in oxygen toxicity.

  14. Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase.

    PubMed

    Pai, Chien-Hua; Chiang, Bing-Yu; Ko, Tzu-Ping; Chou, Chia-Cheng; Chong, Cheong-Meng; Yen, Fang-Jiun; Chen, Shoujun; Coward, James K; Wang, Andrew H-J; Lin, Chun-Hung

    2006-12-13

    Most organisms use glutathione to regulate intracellular thiol redox balance and protect against oxidative stress; protozoa, however, utilize trypanothione for this purpose. Trypanothione biosynthesis requires ATP-dependent conjugation of glutathione (GSH) to the two terminal amino groups of spermidine by glutathionylspermidine synthetase (GspS) and trypanothione synthetase (TryS), which are considered as drug targets. GspS catalyzes the penultimate step of the biosynthesis-amide bond formation between spermidine and the glycine carboxylate of GSH. We report herein five crystal structures of Escherichia coli GspS in complex with substrate, product or inhibitor. The C-terminal of GspS belongs to the ATP-grasp superfamily with a similar fold to the human glutathione synthetase. GSH is likely phosphorylated at one of two GSH-binding sites to form an acylphosphate intermediate that then translocates to the other site for subsequent nucleophilic addition of spermidine. We also identify essential amino acids involved in the catalysis. Our results constitute the first structural information on the biochemical features of parasite homologs (including TryS) that underlie their broad specificity for polyamines.

  15. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis

    PubMed Central

    Ranade, Ranae M.; Zhang, Zhongsheng; Dranow, David M.; Myers, Janette B.; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E.; Davies, Douglas R.; Lorimer, Donald; Boyle, Stephen M.; Barrett, Lynn K.; Buckner, Frederick S.; Fan, Erkang; Van Voorhis, Wesley C.

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  16. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis.

    PubMed

    Ojo, Kayode K; Ranade, Ranae M; Zhang, Zhongsheng; Dranow, David M; Myers, Janette B; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E; Davies, Douglas R; Lorimer, Donald; Boyle, Stephen M; Barrett, Lynn K; Buckner, Frederick S; Fan, Erkang; Van Voorhis, Wesley C

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment.

  17. Lactose synthetase activity in mouse mammary glands is controlled by thyroid hormones

    PubMed Central

    1979-01-01

    Epithelial cells in explants from the mammary glands of euthyroid mature virgin mice are proliferatively dormant. They must undergo DNA synthesis and traverse the cell cycle in vitro before they are able to differentiate fully in response to insulin, hydrocortisone, and prolactin, and synthesize enzymatically active alpha-lactalbumin (measured as lactose synthetase activity). In contrast, glands from hyperthyroid mature virgin mice do not require DNA synthesis in vitro to differentiate. Explants from the euthyroid virgin tissue overcome their dependence on DNA synthesis when 10(-9) M 3,5,3'-triiodo-L- thyronine is added directly to the cultures in addition to the other three hormones. Explants from involuted mammary glands from euthyroid primiparous mice do not require DNA synthesis in vitro to make the milk protein even though they, like explants from mature euthyroid virgin tissue, are proliferatively dormant and do not contain detectable lactose synthetase activity in vivo. Glands from primiparous animals made mildly hypothyroid by ingestion of 0.1% thiouracil in drinking water during 7 wk of involution remain morphologically indistinguishable from glands of their euthyroid counterparts. However, explants from the glands of these hypothyroid animals revert to a state of dependence on DNA synthesis to differentiate functionally. These observations suggest that the dependence on DNA synthesis and cell cycle traversal for hormonal induction of lactose synthetase activity in the mouse mammary gland is controlled by thyroid hormones. PMID:117014

  18. Beneficial consequences of a selective glutamine synthetase inhibitor in oats and legumes

    SciTech Connect

    Langston-Unkefer, P.J.; Knight, T.J.; Sengupta-Gopalan, C.

    1988-01-01

    We report on the effects of administering a unique glutamine synthetase inhibitor to cereals and N/sub 2/-fixing legumes. A bacterium (Pseudomonas syringae pv. tabaci) delivers this inhibitor to provide extended treatment periods; we inoculated the root systems of oat and legume plants with pv. tabaci to provide for delivery of this inhibitor to their root or root/nodule systems. Inoculation of legumes is accompanied by increased plant growth, total plant nitrogen, nodulation, and nitrogen fixation activity. Inoculation of the oats is accompanied by either of two results depending upon the genotype of the oat plant. One result is inhibition of plant growth followed by plant death as consequences of the loss of all of the glutamine synthetase activities in the plant and the subsequent accumulation of ammonia and cessation of nitrate uptake. The second and opposite result is observed in a small population of oats screened from a commercial cultivar and includes increased plant growth and leaf protein. The effects of this inhibitor can be beneficial when applied to appropriate plant material. In an attempt to effectively communicate these findings to the reader, we first introduce the inhibitor (a novel amino acid) and its bacterial delivery systems, the target of the inhibitor (glutamine synthetase-catalyzed ammonia assimilation), and the two different nitrogen economics in the legume and cereal plants used experimentally. The physiological, biochemical, and molecular genetic consequences of the inhibitor action in cereals and legumes, as we presently understand them, are then presented. 18 refs., 4 figs., 3 tabs.,

  19. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.

    PubMed

    Wang, Xiaoyue; Wang, Guanglu; Li, Xinli; Fu, Jing; Chen, Tao; Wang, Zhiwen; Zhao, Xueming

    2016-08-10

    Adenylosuccinate synthetase (EC. 6.3.4.4) encoded by purA in Bacillus subtilis, catalyzing the first step of the conversion of IMP to AMP, plays an important role in flux distribution in the purine biosynthetic pathway. In this study, we described the use of site saturation mutagenesis to obtain a desired enzyme activity of adenylosuccinate synthetase and its application in flux regulation. Based on sequence alignment and structural modeling, a library of enzyme variants was created by a semi-rational evolution strategy in position Thr238 and Pro242. Other than purA deletion, the leaky mutation purA(P242N) partially reduced the flux towards AMP derived from IMP and increased the riboflavin synthesis precursor GTP, while also kept the requirement of ATP synthesis for cell growth. PurA(P242N) was introduced into an inosine-producing strain and resulted in an approximately 4.66-fold increase in inosine production, from 0.088±0.009g/L to 0.41±0.051g/L, in minimal medium without hypoxanthine accumulation. These results underline that the directed evolution of adenylosuccinate synthetase could tailor its activities and adjust metabolic flux. This mutation may provide a promising application in purine-based product accumulation, like inosine, guanosine and folate which are directly stemming from purine pathway in B. subtilis.

  20. Comparison of effects of aspirin and indomethacin on human platelet prostaglandin synthetase.

    PubMed Central

    Crook, D; Collins, A J

    1977-01-01

    Human platelets were incubated in vitro with either aspirin or indomethacin and the prostaglandin synthetase activity of the resultant microsomal fraction from each incubation measured using a radiometric technique. Whereas aspirin produced a dose-related inhibition of the enzyme, indomethacin produced little or no inhibition over the same concentration range (10(-6) mol/l--10(-3) mol/l). Furthermore, administration of aspirin (600 mg) to volunteers produced a highly significant, prolonged inhibition of platelet microsomal prostaglandin synthetase whereas no inhibition was found with indomethacin (50 mg). As indomethacin is considerably more potent than aspirin as an inhibitor of human platelet prostaglandin synthetase in vitro, the results suggest a fundamental difference in the nature of the inhibition produced by each drug, aspirin being an essentially irreversible inhibitor whereas the inhibition produced by indomethacin is reversible. Studies with [3H-acetyl] aspirin have confirmed previous findings (Roth and Majerus, 1975) that aspirin produces an irreversible acetylation of a particulate fraction protein from human platelets. PMID:411427

  1. Regulation of 2', 5'-oligoadenylate synthetase gene expression by interferons and platelet-derived growth factor

    SciTech Connect

    Garcia-Blanco, M.A. ); Lengyel, P. . Dept. of Molecular Biophysics and Biochemistry); Morrison, E.; BrownLee, C.; Stiles, C.D. ); Williams, B.R.G. )

    1989-03-01

    In murine BALB/c 3T3 cell cultures, either beta interferon or platelet-derived growth factor (PDGF) enhanced expression of the 2', 5-oligoadenylate synthetase mRNA and protein. The time course of induction in response to beta inteferon was similar to that in response to PDGF. Of several growth factors known to be present in clotted blood serum (i.e., epidermal growth factor, transforming growth factor beta, and PDGF), only PDGF enhanced expression of 2', 5-oligoadenylate synthetase. The linkage of an interferon response element-containing segment from the 5'-flanking region of a human or murine 2'-5'-oligoadenylate synthetase gene made a heterologous gene responsive to interferon. The expression of such a gene construct in transfected cells was also induced by PDGF. Induction by PDGF was inhibited by mono- or polyclonal antibodies to murine interferon, which suggested that induction by PDGF requires interferon. Both PDGF and interferon induced nuclear factors that bound to this interferon response element-containing segment in vitro.

  2. Gene organization around the phenylalanyl-transfer ribonucleic acid synthetase locus in Escherichia coli.

    PubMed Central

    Comer, M M

    1981-01-01

    The organization of seven genes located at about 38 min on the genetic map of Escherichia coli was examined; these genes included pheS and pheT, which code for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid synthetase, and thrS, the structural gene for threonyl-transfer ribonucleic acid synthetase. Deletion mutants were isolated from an F-prime-containing merodiploid strain and were characterized genetically. Seventeen different kinds of deletions extending into pheS of pheT were identified. These deletions unambiguously defined the gene order as aroD pps himA pheT pheS thrS pfkB. Mutants with deletions covering either pheS or pheT, but not both, were analyzed further by assay of phenylalanyl-transfer ribonucleic acid synthetase. The phenotype of the mutants with a deletion from pfkB through pheS was anomalous; although the pheT gene was apparently still present, its product, the beta subunit, was much reduced in activity. PMID:7012115

  3. Cloning and functional characterization of a homoglutathione synthetase from pea nodules.

    PubMed

    Iturbe-Ormaetxe, Iñaki; Heras, Begoña; Matamoros, Manuel A; Ramos, Javier; Moran, Jose F; Becana, Manuel

    2002-05-01

    The thiol tripeptide glutathione (GSH; gammaGlu-Cys-Gly) is very abundant in legume nodules where it performs multiple functions that are critical for optimal nitrogen fixation. Some legume nodules contain another tripeptide, homoglutathione (hGSH; gammaGlu-Cys-betaAla), in addition to or instead of GSH. We have isolated from a pea (Pisum sativum L.) nodule library a cDNA, GSHS2, that is expressed in nodules but not in leaves. This cDNA was overexpressed in insect cells and its protein product was identified as a highly active and specific hGSH synthetase. The enzyme, the first of this type to be completely purified, is predicted to be a homodimeric cytosolic protein. It shows a specific activity of 3400 nmol hGSH min-1 mg-1 protein with a standard substrate concentration (5 mM beta-alanine) and Km values of 1.9 mM for beta-alanine and 104 mM for glycine. The specificity constant (Vmax/Km) shows that the pure enzyme is 57.3-fold more specific for beta-alanine than for glycine. Southern blot analysis revealed that the gene is present as a single copy in the pea genome and that there are homologous genes in other legumes. We conclude that the synthesis of hGSH in pea nodules is catalysed by a specific hGSH synthetase and not by a GSH synthetase with broad substrate specificity.

  4. Unique domain appended to vertebrate tRNA synthetase is essential for vascular development

    PubMed Central

    Xu, Xiaoling; Shi, Yi; Zhang, Hui-Min; Swindell, Eric C.; Marshall, Alan G.; Guo, Min; Kishi, Shuji; Yang, Xiang-Lei

    2012-01-01

    New domains were progressively added to cytoplasmic aminoacyl transfer RNA (tRNA) synthetases during evolution. One example is the UNE-S domain, appended to seryl-tRNA synthetase (SerRS) in species that developed closed circulatory systems. Here we show using solution and crystal structure analyses and in vitro and in vivo functional studies that UNE-S harbours a robust nuclear localization signal (NLS) directing SerRS to the nucleus where it attenuates vascular endothelial growth factor A expression. We also show that SerRS mutants previously linked to vasculature abnormalities either deleted the NLS or have the NLS sequestered in an alternative conformation. A structure-based second-site mutation, designed to release the sequestered NLS, restored normal vasculature. Thus, the essential function of SerRS in vascular development depends on UNE-S. These results are the first to show an essential role for a tRNA synthetase-associated appended domain at the organism level, and suggest that acquisition of UNE-S has a role in the establishment of the closed circulatory systems of vertebrates. PMID:22353712

  5. Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase.

    PubMed Central

    Friedrich, B; Magasanik, B

    1977-01-01

    Urease was purified 24-fold from extracts of Klebsiella aerogenes. The enzyme has a molecular weight of 230,000 as determined by gel filtration, is highly substrate specific, and has a Km for urea of 0.7 mM. A mutant strain lacking urease was isolated; it failed to grow with urea as the sole source of nitrogen but did grow on media containing other nitrogen sources such as ammonia, histidine, or arginine. Urease was present at a high level when the cells were starved for nitrogen; its synthesis was repressed when the external ammonia concentration was high. Formation of urease did not require induction by urea and was not subject to catabolite repression. Its synthesis was controlled by glutamine synthetase. Mutants lacking glutamine synthetase failed to produce urease, and mutants forming glutamine synthetase at a high constitutive level also formed urease constitutively. Thus, the formation of urease is regulated like that of other enzymes of K. aerogenes capable of supplying the cell with ammonia or glutamate. PMID:18438

  6. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    PubMed

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  7. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.

    PubMed Central

    Arnez, J G; Harris, D C; Mitschler, A; Rees, B; Francklyn, C S; Moras, D

    1995-01-01

    The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules. Images PMID:7556055

  8. A fluorescence-based coupling reaction for monitoring the activity of recombinant human NAD synthetase.

    PubMed

    Bembenek, Michael E; Kuhn, Eric; Mallender, William D; Pullen, Lester; Li, Ping; Parsons, Thomas

    2005-10-01

    NAD synthetase is responsible for the conversion of nicotinic acid adenine dinucleotide to nicotinamide adenine dinucleotide. This reaction provides a biosynthetic route of the coenzyme and, thus, a source of cellular reducing equivalents. Alterations in the oxidative reductive potential of the cell have been implicated as a contributing factor in many disease states. Thus, this enzyme represents a new class of potential drug targets, and, hence, our efforts were focused upon developing a robust assay for utilization in a high throughput screen. Toward that end, we describe a coupled enzyme assay format for the measurement of recombinant human NAD synthetase by employing lactate dehydrogenase in a cycling/amplification reaction linked ultimately to the fluorescence generation of resorufin from resazurin via diaphorase. We present kinetics of the reaction of NAD synthetase in the coupled assay format, optimization conditions, and inhibition of the reaction by gossypol [1,1',6,6',7,7'-hexahydroxy-3,3'-dimethyl-5,5'-bis(1-methylethyl)-[2,2'- binaphthalene]-8,8'-dicarboxaldehyde] and illustrate the robustness of the assay by demonstrating 384-well microtiter plate uniformity statistics. Collectively, our results show that the assay method is both robust and well suited for this class of enzymes involved in the NAD+ biosynthetic pathway.

  9. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  10. Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart

    PubMed Central

    de Jong, Hendrik; Neal, Andrea C.; Coleman, Rosalind A.; Lewin, Tal M.

    2007-01-01

    Summary Long-chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for virtually every metabolic pathway that catabolizes FA or synthesizes complex lipids. We have hypothesized that each of the five cloned ACSL isoforms partitions FA towards specific downstream pathways. Adult heart expresses all five cloned ACSL isoforms, but their independent functional roles have not been elucidated. Studies implicate ACSL1 in both oxidative and lipid synthetic pathways. To clarify the functional role of ACSL1 and the other ACSL isoforms (3–6), we examined ACS specific activity and Acsl mRNA expression in the developing mouse heart which increases FA oxidative pathways for energy production after birth. Compared to the embryonic heart, ACS specific activity was 14-fold higher on post-natal day 1 (P1). On P1, as compared to the fetus, only Acsl1 mRNA increased, whereas transcripts for the other Acsl isoforms remained the same, suggesting that ACSL1 is the major isoform responsible for activating long-chain FA for myocardial oxidation after birth. In contrast, the mRNA abundance of Acsl3 was highest on E16, and decreased dramatically by P7, suggesting that ACSL3 may play a critical role during the development of the fetal heart. Our data support the hypothesis that each ACSL has a specific role in the channeling of FA towards distinct metabolic fates. PMID:17197235

  11. Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart.

    PubMed

    de Jong, Hendrik; Neal, Andrea C; Coleman, Rosalind A; Lewin, Tal M

    2007-01-01

    Long-chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for virtually every metabolic pathway that catabolizes FA or synthesizes complex lipids. We have hypothesized that each of the five cloned ACSL isoforms partitions FA towards specific downstream pathways. Adult heart expresses all five cloned ACSL isoforms, but their independent functional roles have not been elucidated. Studies implicate ACSL1 in both oxidative and lipid synthetic pathways. To clarify the functional role of ACSL1 and the other ACSL isoforms (3-6), we examined ACS specific activity and Acsl mRNA expression in the developing mouse heart which increases FA oxidative pathways for energy production after birth. Compared to the embryonic heart, ACS specific activity was 14-fold higher on post-natal day 1 (P1). On P1, as compared to the fetus, only Acsl1 mRNA increased, whereas transcripts for the other Acsl isoforms remained the same, suggesting that ACSL1 is the major isoform responsible for activating long-chain FA for myocardial oxidation after birth. In contrast, the mRNA abundance of Acsl3 was highest on E16, and decreased dramatically by P7, suggesting that ACSL3 may play a critical role during the development of the fetal heart. Our data support the hypothesis that each ACSL has a specific role in the channeling of FA towards distinct metabolic fates.

  12. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet.

    PubMed

    Mashek, Douglas G; Li, Lei O; Coleman, Rosalind A

    2006-09-01

    Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms.

  13. Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis[S

    PubMed Central

    Manichaikul, Ani; Wang, Xin-Qun; Zhao, Wei; Wojczynski, Mary K.; Siebenthall, Kyle; Stamatoyannopoulos, John A.; Saleheen, Danish; Borecki, Ingrid B.; Reilly, Muredach P.; Rich, Stephen S.; Bornfeldt, Karin E.

    2016-01-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) converts free fatty acids into acyl-CoAs. Mouse studies have revealed that ACSL1 channels acyl-CoAs to β-oxidation, thereby reducing glucose utilization, and is required for diabetes-accelerated atherosclerosis. The role of ACSL1 in humans is unknown. We therefore examined common variants in the human ACSL1 locus by genetic association studies for fasting glucose, diabetes status, and preclinical atherosclerosis by using the MAGIC and DIAGRAM consortia; followed by analyses in participants from the Multi-Ethnic Study of Atherosclerosis, the Penn-T2D consortium, and a meta-analysis of subclinical atherosclerosis in African Americans; and finally, expression quantitative trait locus analysis and identification of DNase I hypersensitive sites (DHS). The results show that three SNPs in ACSL1 (rs7681334, rs735949, and rs4862423) are associated with fasting glucose or diabetes status in these large (>200,000 subjects) data sets. Furthermore, rs4862423 is associated with subclinical atherosclerosis and coincides with a DHS highly accessible in human heart. SNP rs735949 is in strong linkage disequilibrium with rs745805, significantly associated with ACSL1 levels in skin, suggesting tissue-specific regulatory mechanisms. This study provides evidence in humans of ACSL1 SNPs associated with fasting glucose, diabetes, and subclinical atherosclerosis and suggests links among these traits and acyl-CoA synthesis. PMID:26711138

  14. Nonalcoholic Fatty Liver Disease.

    PubMed

    Thrasher, Tyler; Abdelmalek, Manal F

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, is the leading cause of chronic liver disease. Treatments target lifestyle modification and improvement of underlying risk factors. Noninvasive biomarkers for diagnosis and staging of NAFLD and safe, cost-effective treatments for patients with nonalcoholic steatohepatitis (NASH) and/or NASH-related cirrhosis are currently under investigation. ©2016 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.

  15. Testing Models of Fatty Acid Transfer and Lipid Synthesis in Spinach Leaf Using in Vivo Oxygen-18 Labeling1

    PubMed Central

    Pollard, Mike; Ohlrogge, John

    1999-01-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [13C218O2]Acetate was incubated with spinach (Spinacia oleracea) leaves and the 18O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an 18O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the 18O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of 18O or, less likely, complete loss of 18O, but not a 50% loss of 18O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of “prokaryotic” and “eukaryotic” lipids have both been confirmed. PMID:10594108

  16. Cysteine-286 as the site of acylation of the Lux-specific fatty acyl-CoA reductase.

    PubMed

    Lee, C Y; Meighen, E A

    1997-04-04

    The channelling of fatty acids into the fatty aldehyde substrate for the bacterial bioluminescence reaction is catalyzed by a fatty acid reductase multienzyme complex, which channels fatty acids through the thioesterase (LuxD), synthetase (LuxE) and reductase (LuxC) components. Although all three components can be readily acylated in extracts of different luminescent bacteria, this complex has been successfully purified only from Photobacterium phosphoreum and the sites of acylation identified on LuxD and LuxE. To identify the acylation site on LuxC, the nucleotide sequence of P. phosphoreum luxC has been determined and the gene expressed in a mutant Escherichia coli strain. Even in crude extracts, the acylated reductase intermediate as well as acyl-CoA reductase activity could be readily detected, providing the basis for analysis of mutant reductases. Comparison of the amino-acid sequences of LuxC from P. phosphoreum, P. leiognathi and other luminescent bacteria, showed that only three cysteine residues (C171, C279, and C286) were conserved. As a cysteine residue on LuxC has been implicated in fatty acyl transfer, each of the conserved cysteine residues of the P. phosphoreum and P. leiognathi reductases was converted to a serine residue, and the properties of the mutant proteins examined. Only mutation of C286-blocked reductase activity and prevented formation of the acylated reductase intermediate, showing that C286 is the site of acylation on LuxC.

  17. Effects of Fatty Acid Quality and Quantity in the Japanese Diet on the Suppression of Lipid Accumulation.

    PubMed

    Sakamoto, Yu; Yamamoto, Kazushi; Hatakeyama, Yu; Tsuduki, Tsuyoshi

    2016-01-01

    Japan has been known as a healthy country since its life expectancy became among the highest in the world in the 1980s. The influence of the Japanese diet is one of the factors explaining Japan's high life expectancy. Our recent study that fed representative freeze-dried and powdered Japanese diets from 1960, 1975, 1990, and 2005 based on National Health and Nutrition Research to mice showed the 1975 Japanese diet exhibited the strongest visceral fat accumulation suppression and overall health benefits. However, it is unclear why. We investigated the effects of the fatty acid composition in Japanese diets on visceral fat accumulation in mice. ICR mice were fed diets replicating the fatty acid composition and macronutrient ratios of Japanese diets from 1960, 1975, 1990, and 2005 for four weeks. The 1975 diet suppressed visceral fat accumulation and adipocyte hypertrophy. DNA microarray analysis showed the 1975 diet suppressed Acyl-CoA synthetase and prostaglandin D2 synthase mRNA expressions in white adipose tissue. As the effects of the 1975 diet are likely due to differences in fatty acid intake and/or composition, we investigated test diets that replicated only the fatty acid composition of Japanese diets. There were no significant differences in visceral fat mass. Therefore, both the quality and quantity of fatty acids are involved in the anti-obesity effects of the 1975 Japanese diet.

  18. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling

    SciTech Connect

    Pollard, M.; Ohlrogge, J.

    1999-12-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [{sup 13}C{sub 2}{sup 18}O{sub 2}]Acetate was incubated with spinach (Spinacia oleracea) leaves and the {sup 18}O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectrometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an {sup 18}O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the {sup 18}O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of {sup 18}O or, less likely, complete loss of {sup 18}O, but not a 50% loss of {sup 18}O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of prokaryotic and eukaryotic lipids have both been confirmed.

  19. Diaphragmatic function is enhanced in fatty and diabetic fatty rats

    PubMed Central

    Carreira, Serge; Na, Na; Carillion, Aude; Jiang, Cheng; Beuvin, Maud; Lacorte, Jean-Marc; Bonnefont-Rousselot, Dominique; Riou, Bruno; Coirault, Catherine

    2017-01-01

    Background Obesity is associated with a decrease in mortality in the intensive care unit (ICU) (the "obesity paradox"). We hypothesized that obesity may paradoxically improve diaphragmatic function. Methods Diaphragm contractility was prospectively recorded in vitro in adult male Zucker lean (control), fatty, and diabetic fatty rats, at rest, after 12h mechanical ventilation and after fatigue. We analyzed diaphragm morphology, cytokines, and protein expression of the protein kinase signaling pathways. Results Diaphragm active-force (AF) was higher in fatty (96±7mN.mm-2,P = 0.02) but not in diabetic fatty rats (90±17mN.mm-2) when compared with controls (84±8mN.mm-2). Recovery from fatigue was improved in fatty and diabetic fatty groups compared with controls. Ventilator-induced diaphragmatic dysfunction was observed in each group, but AF remained higher in fatty (82±8mN.mm-2,P = 0.03) compared with controls (70±8mN.mm-2). There was neutral lipid droplet accumulation in fatty and diabetic fatty. There were shifts towards a higher cross-sectional-area (CSA) of myosin heavy chain isoforms (MyHC)-2A fibers in fatty and diabetic fatty compared with control rats (P = 0.002 and P<0.001, respectively) and a smaller CSA of MyHC-2X in fatty compared with diabetic fatty and control rats (P<0.001 and P<0.001, respectively). The phosphorylated total-protein-kinase-B (pAKT)/AKT ratio was higher in fatty (182±58%,P = 0.03), but not in diabetic fatty when compared with controls and monocarboxylate-transporter-1 was higher in diabetic fatty (147±36%,P = 0.04), but not in fatty. Conclusions Diaphragmatic force is increased in Zucker obese rats before and after mechanical ventilation, and is associated with activation of AKT pathway signaling and complex changes in morphology. PMID:28328996

  20. Phosphorylation of human CTP synthetase 1 by protein kinase C: identification of Ser(462) and Thr(455) as major sites of phosphorylation.

    PubMed

    Chang, Yu-Fang; Martin, Shelley S; Baldwin, Enoch P; Carman, George M

    2007-06-15

    Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coli-expressed CTP synthetase 1 as a substrate, protein kinase C activity was time- and dose-dependent and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase 1 activity. Phosphopeptide mapping and phosphoamino acid analyses showed that CTP synthetase 1 was phosphorylated on multiple serine and threonine residues. The induction of PKC1(R398A)-encoded protein kinase C resulted in a 50% increase for human CTP synthetase 1 phosphorylation in the Saccharomyces cerevisiae ura7Delta ura8Delta mutant lacking yeast CTP synthetase activity. Synthetic peptides that contain the protein kinase C motif for Ser(462) and Thr(455) were substrates for mammalian protein kinase C, and S462A and T455A mutations resulted in decreases in the extent of CTP synthetase 1 phosphorylation that occurred in vivo. Phosphopeptide mapping analysis of S. cerevisiae-expressed CTP synthetase 1 mutant enzymes phosphorylated with mammalian protein kinase C confirmed that Ser(462) and Thr(455) were phosphorylation sites. The S. cerevisiae-expressed and purified S462A mutant enzyme exhibited a 2-fold reduction in CTP synthetase 1 activity, whereas the purified T455A mutant enzyme exhibited a 2-fold elevation in CTP synthetase 1 activity (Choi, M.-G., and Carman, G.M. (2006) J. Biol. Chem. 282, 5367-5377). These data indicated that protein kinase C phosphorylation at Ser(462) stimulates human CTP synthetase 1 activity, whereas phosphorylation at Thr(455) inhibits activity.

  1. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase C IDENTIFICATION OF Ser462 AND Thr455 AS MAJOR SITES OF PHOSPHORYLATION*

    PubMed Central

    Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2007-01-01

    Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coli-expressed CTP synthetase 1 as a substrate, protein kinase C activity was time-and dose-dependent, and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase 1 activity. Phosphopeptide mapping and phosphoamino acid analyses showed that CTP synthetase 1 was phosphorylated on multiple serine and threonine residues. The induction of PKC1R398A-encoded protein kinase C resulted in a 50% increase for human CTP synthetase 1 phosphorylation in the Saccharomyces cerevisiae ura7Δ ura8Δ mutant lacking yeast CTP synthetase activity. Synthetic peptides that contain the protein kinase C motif for Ser462 and Thr455 were substrates for mammalian protein kinase C, and S462A and T455A mutations resulted in decreases in the extent of CTP synthetase 1 phosphorylation that occurred in vivo. Phosphopeptide mapping analysis of S. cerevisiae-expressed CTP synthetase 1 mutant enzymes phosphorylated with mammalian protein kinase C confirmed that Ser462 and Thr455 were phosphorylation sites. The S. cerevisiae-expressed and purified S462A mutant enzyme exhibited a 2-fold reduction in CTP synthetase 1 activity, whereas the purified T455A mutant enzyme exhibits a 2-fold elevation in CTP synthetase 1 activity (Choi, M.-G., and Carman, G.M. (2006) J. Biol. Chem. 282, 5367–5377). These data indicated that protein kinase C phosphorylation at Ser462 stimulates human CTP synthetase 1 activity, whereas phosphorylation at Thr455 inhibits activity. PMID:17463002

  2. Nonalcoholic fatty liver disease.

    PubMed

    Krawczyk, Marcin; Bonfrate, Leonilde; Portincasa, Piero

    2010-10-01

    Non-alcoholic fatty liver disease (NAFLD), the most common liver disorder in the Western world, is a clinico-histopathological entity in which excessive triglyceride accumulation in the liver occurs. Non-alcoholic steatohepatitis (NASH) represents the necroinflammatory form, which can lead to advanced liver fibrosis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of NAFLD/NASH is complex but increased visceral adiposity plus insulin resistance with increased free fatty acids release play an initial key role for the onset and perpetuation of liver steatosis. Further events in the liver include oxidative stress and lipid peroxidation, decreased antioxidant defences, early mitochondrial dysfunction, iron accumulation, unbalance of adipose-derived adipokines with a chronic proinflammatory status, and gut-derived microbial adducts. New gene polymorphisms increasing the risk of fatty liver, namely APOC3 and PNPLA3, have been lately identified allowing further insights into the pathogenesis of this condition. In our review pathophysiological, genetic, and essential diagnostic and therapeutic aspects of NAFLD are examined with future trends in this field highlighted. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Activation of 2',5'-oligoadenylate synthetase activity on induction of HL-60 leukemia cell differentiation.

    PubMed Central

    Schwartz, E L; Nilson, L A

    1989-01-01

    A 27-fold increase in 2',5'-oligoadenylate synthetase activity, an enzyme associated with the antiproliferative actions of interferon (IFN), was observed after treatment of HL-60 human leukemia cells with dimethyl sulfoxide (DMSO), an inducer of granulocytic differentiation of the cells. Enzyme activity was elevated after 24 h of exposure to DMSO, was maximal at 48 hours, and declined thereafter. A comparable increase was observed after treatment with 1 U of alpha interferon (IFN-alpha) per ml or 8 U of beta interferon (IFN-beta) per ml. Elevated levels of expression of other IFN-inducible genes, including type I histocompatibility antigen (HLA-B) mRNA and 2',5'-oligoadenylate phosphodiesterase activity, were also observed with DMSO treatment. DMSO-treated HL-60 cells had an increased amount of a 1.8-kilobase mRNA for oligoadenylate [oligo(A)] synthetase when compared with that of control cells; both DMSO- and IFN-treated HL-60 cells also expressed 1.6-, 3.4-, and 4.3-kilobase mRNA. The increase in both oligo(A) synthetase activity and mRNA levels was inhibited by polyclonal antiserum to human IFN-alpha; however, no IFN-alpha mRNA could be detected in the cells. Antiserum to IFN-beta or gamma interferon (IFN-gamma) had no effect on oligo(A) synthetase expression or activity nor was there any detectable IFN-beta 1 or IFN-beta 2 mRNA in the cells. The anti-IFN-alpha serum did not block the elevation of HLA-B mRNA in DMSO-treated cells. These observations suggest that the increased expression of oligo(A) synthetase in DMSO-treated cells may be mediated by the release of an IFN-alpha-like factor; however, the levels of any IFN-alpha mRNA produced in the cells were extremely low. Images PMID:2476665

  4. Biosynthesis of Polymyxins B, E, and P Using Genetically Engineered Polymyxin Synthetases in the Surrogate Host Bacillus subtilis.

    PubMed

    Kim, Se-Yu; Park, Soo-Young; Choi, Soo-Keun; Park, Seung-Hwan

    2015-07-01

    The development of diverse polymyxin derivatives is needed to solve the toxicity and resistance problems of polymyxins. However, no platform has generated polymyxin derivatives by genetically engineering a polymyxin synthetase, which is a nonribosomal peptide synthetase. In this study, we present a two-step approach for the construction of engineered polymyxin synthetases by substituting the adenylation (A) domains of polymyxin A synthetase, which is encoded by the pmxABCDE gene cluster of Paenibacillus polymyxa E681. First, the seventh L-threonine-specific A-domain region in pmxA was substituted with the Lleucine- specific A-domain region obtained from P. polymyxa ATCC21830 to make polymyxin E synthetase, and then the sixth D-leucine-specific A-domain region (A6-D-Leu-domain) was substituted with the D-phenylalanine-specific A-domain region (A6-D-Phe-domain) obtained from P. polymyxa F4 to make polymyxin B synthetase. This step was performed in Escherichia coli on a pmxA-containing fosmid, using the lambda Red recombination system and the sacB gene as a counter-selectable marker. Next, the modified pmxA gene was fused to pmxBCDE on the chromosome of Bacillus subtilis BSK4dA, and the resulting recombinant strains BSK4-PB and BSK4-PE were confirmed to produce polymyxins B and E, respectively. We also succeeded in constructing the B. subtilis BSK4-PP strain, which produces polymyxin P, by singly substituting the A6-D-Leu-domain with the A6-D-Phe-domain. This is the first report in which polymyxin derivatives were generated by genetically engineering polymyxin synthetases. The two recombinant B. subtilis strains will be useful for improving the commercial production of polymyxins B and E, and they will facilitate the generation of novel polymyxin derivatives.

  5. In vitro effects of metal pollution on Mediterranean sponges: species-specific inhibition of 2',5'-oligoadenylate synthetase.

    PubMed

    Saby, Emilie; Justesen, Just; Kelve, Merike; Uriz, Maria J

    2009-09-14

    Heavy metals are among the main pollutants of the Mediterranean coastal waters where they can harm sublittoral biota. Filter-feeder, long-living invertebrates that remain fixed to the rocky bottom, such as sponges, are good targets to metal contamination studies since they may be exposed to potential low levels of contamination for years. Several molecular and biochemical mechanisms are developed by sponges to counteract the effects of noxious metals. As a result, some of the normal cell functions can be altered. Here we show that the main heavy metals that can be found in marine sublittoral waters (i.e. copper, iron, zinc and manganese) may alter the immune system of sponges by inhibiting the activity of the sponge 2',5'-oligoadenylate synthetase (2-5A synthetase), which is an enzyme involved in the immune system of vertebrates. We selected the widespread Mediterranean sponges Geodia cydonium, Crella elegans and Chondrosia reniformis for the study. They exerted a high 2-5A synthetase activity and gave a unique profile of 2',5'-oligoadenylate product production. Several metals alter the 2-5A synthetase activity differently, in a species-specific manner. 2-5A synthetases from G. cydonium and C. elegans were inhibited by all the metal ions assayed. However, in C. reniformis, 2-5A synthetase was either activated or inhibited by the same ions depending on their final concentrations. Like in humans, metal contamination may have an effect on the OAS activity and thus it might alter the sponge immune system. However, since the effects are species-specific, 2-5A synthetase cannot be used as general biomarker of metal pollutions.

  6. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.

    PubMed

    Brown, J R; Doolittle, W F

    1995-03-28

    Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an

  7. Elevated levels of interferon-induced 2'-5' oligoadenylate synthetase in generalized persistent lymphadenopathy and the acquired immunodeficiency syndrome.

    PubMed

    Read, S E; Williams, B R; Coates, R A; Evans, W K; Fanning, M M; Garvey, M B; Shepherd, F A

    1985-09-01

    The levels of the 2'-5' oligoadenylate enzyme synthetase in extracts of peripheral blood mononuclear cells from individuals with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex (ARC) were measured and compared with synthetase levels in peripheral blood mononuclear cells (PBMs) from healthy heterosexual and homosexual controls. The mean basal synthetase level in heterosexual and homosexual controls was 14 +/- 13 and 12 +/- 9 pmol per hr/10(5) PBMs, respectively. Thirteen individuals with AIDS had a mean basal level of 129 +/- 75 pmol. Serial levels were persistently elevated in six of these individuals over a one- to 10-month period. Twelve of the 13 individuals had antibodies to human T cell lymphotrophic virus-III/lymphadenopathy-associated virus (HTLV-III/LAV). Thirty-three individuals with ARC had a mean basal synthetase level of 68 +/- 84 pmol. Thirty-two of the 33 had antibodies to HTLV-III/LAV. Eleven (33%) have had consistently normal synthetase levels (less than 2 SD above the mean for the homosexual controls, i.e., 30 pmol) over a three- to nine-month follow-up period. Fourteen (42%) had persistently elevated levels over the same period; four (29%) of these developed AIDS during the follow-up period. Eight have had fluctuating levels but have remained clinically well. These studies suggest that persistently elevated synthetase levels in individuals with ARC and antibodies to HTLV-III/LAV indicate progressive virus-induced disease activity. Elevated synthetase levels may be an important prognostic indicator of increased risk of progression to AIDS.

  8. Acyl Coenzyme A Synthetase from Pseudomonas fragi Catalyzes the Synthesis of Adenosine 5′-Polyphosphates and Dinucleoside Polyphosphates†

    PubMed Central

    Fontes, Rui; Günther Sillero, Maria A.; Sillero, Antonio

    1998-01-01

    Acyl coenzyme A (CoA) synthetase (EC 6.2.1.8) from Pseudomonas fragi catalyzes the synthesis of adenosine 5′-tetraphosphate (p4A) and adenosine 5′-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate, respectively. dATP, adenosine-5′-O-[γ-thiotriphosphate] (ATPγS), adenosine(5′)tetraphospho(5′)adenosine (Ap4A), and adenosine(5′)pentaphospho(5′)adenosine (Ap5A) are also substrates of the reaction yielding p4(d)A in the presence of tripolyphosphate (P3). UTP, CTP, and AMP are not substrates of the reaction. The Km values for ATP and P3 are 0.015 and 1.3 mM, respectively. Maximum velocity was obtained in the presence of MgCl2 or CoCl2 equimolecular with the sum of ATP and P3. The relative rates of synthesis of p4A with divalent cations were Mg = Co > Mn = Zn >> Ca. In the pH range used, maximum and minimum activities were measured at pH values of 5.5 and 8.2, respectively; the opposite was observed for the synthesis of palmitoyl-CoA, with maximum activity in the alkaline range. The relative rates of synthesis of palmitoyl-CoA and p4A are around 10 (at pH 5.5) and around 200 (at pH 8.2). The synthesis of p4A is inhibited by CoA, and the inhibitory effect of CoA can be counteracted by fatty acids. To a lesser extent, the enzyme catalyzes the synthesis also of Ap4A (from ATP), Ap5A (from p4A), and adenosine(5′)tetraphospho(5′)nucleoside (Ap4N) from adequate adenylyl donors (ATP, ATPγS, or octanoyl-AMP) and adequate adenylyl acceptors (nucleoside triphosphates). PMID:9620965

  9. Congenital Visual Impairment and Progressive Microcephaly Due to Lysyl-Transfer Ribonucleic Acid (RNA) Synthetase (KARS) Mutations: The Expanding Phenotype of Aminoacyl-Transfer RNA Synthetase Mutations in Human Disease.

    PubMed

    McMillan, Hugh J; Humphreys, Peter; Smith, Amanda; Schwartzentruber, Jeremy; Chakraborty, Pranesh; Bulman, Dennis E; Beaulieu, Chandree L; Majewski, Jacek; Boycott, Kym M; Geraghty, Michael T

    2015-07-01

    Aminoacyl-transfer ribonucleic acid (RNA) synthetases (ARSs) are a group of enzymes required for the first step of protein translation. Each aminoacyl-transfer RNA synthetase links a specific amino acid to its corresponding transfer RNA component within the cytoplasm, mitochondria, or both. Mutations in ARSs have been linked to a growing number of diseases. Lysyl-transfer RNA synthetase (KARS) links the amino acid lysine to its cognate transfer RNA. We report 2 siblings with severe infantile visual loss, progressive microcephaly, developmental delay, seizures, and abnormal subcortical white matter. Exome sequencing identified mutations within the KARS gene (NM_005548.2):c.1312C>T; p.Arg438Trp and c.1573G>A; p.Glu525Lys occurring within a highly conserved region of the catalytic domain. Our patients' phenotype is remarkably similar to a phenotype recently reported in glutaminyl-transfer RNA synthetase (QARS), another bifunctional ARS gene. This finding expands the phenotypic spectrum associated with mutations in KARS and draws attention to aminoacyl-transfer RNA synthetase as a group of enzymes that are increasingly being implicated in human disease.

  10. Hepatocyte-specific interplay of transcription factors at the far-upstream enhancer of the carbamoylphosphate synthetase gene upon glucocorticoid induction.

    PubMed

    Hoogenkamp, Maarten; Gaemers, Ingrid C; Schoneveld, Onard J L M; Das, Atze T; Grange, Thierry; Lamers, Wouter H

    2007-01-01

    Carbamoylphosphate synthetase-I is the flux-determining enzyme of the ornithine cycle, and neutralizes toxic ammonia by converting it to urea. An 80 bp glucocorticoid response unit located 6.3 kb upstream of the transcription start site mediates hormone responsiveness and liver-specific expression of carbamoylphosphate synthetase-I. The glucocorticoid response unit consists of response elements for the glucocorticoid receptor, forkhead box A, CCAAT/enhancer-binding protein, and an unidentified protein. With only four transcription factor response elements, the carbamoylphosphate synthetase-I glucocorticoid response unit is a relatively simple unit. The relationship between carbamoylphosphate synthetase-I expression and in vivo occupancy of the response elements was examined by comparing a carbamoylphosphate synthetase-I-expressing hepatoma cell line with a carbamoylphosphate synthetase-I-negative fibroblast cell line. DNaseI hypersensitivity assays revealed an open chromatin configuration of the carbamoylphosphate synthetase-I enhancer in hepatoma cells only. In vivo footprinting assays showed that the accessory transcription factors of the glucocorticoid response unit bound to their response elements in carbamoylphosphate synthetase-I-positive cells, irrespective of whether carbamoylphosphate synthetase-I expression was induced with hormones. In contrast, the binding of glucocorticoid receptor to the carbamoylphosphate synthetase-I glucocorticoid response unit was dependent on treatment of the cells with glucocorticoids. Only forkhead box A was exclusively present in hepatoma cells, and therefore appears to be an important determinant of the observed tissue specificity of carbamoylphosphate synthetase-I expression. As the glucocorticoid receptor is the only DNA-binding protein specifically recruited to the glucocorticoid response unit upon stimulation by glucocorticoids, it is likely to be directly responsible for the transcriptional activation mediated by the

  11. Insulin Signaling Regulates Fatty Acid Catabolism at the Level of CoA Activation

    PubMed Central

    Xu, Xiaojun; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Ruskeepää, Anna-Liisa; Aye, Cho Cho; Carson, Brian P.; Mora, Silvia; Orešič, Matej; Teleman, Aurelio A.

    2012-01-01

    The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG) catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS). We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis. PMID:22275878

  12. Free fatty acids enhance the oxidative damage induced by ethanol metabolism in an in vitro model.

    PubMed

    Hernández, Ileana; Domínguez-Pérez, Mayra; Bucio, Leticia; Souza, Verónica; Miranda, Roxana U; Clemens, Dahn L; Gomez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María Concepción

    2015-02-01

    In recent years, there has been a growing interest to explore the responsiveness to injury in steatotic hepatocyte. VL-17A cells, which express ADH and Cyp2E1 overloaded with free fatty acids (1 mM of oleic and palmitic acid 2:1) showed an increased oxidative damaged after 24 h free fatty acids treatment when exposed to ethanol (100 mM) for 48 h as a second injury. An increment in reactive oxygen species, determined by DCFH-DA, protein oxidation, and apoptosis were observed although an increase in main antioxidant proteins such as superoxide dismutase 1 and glutathione peroxidase were observed, but failed in gamma-glutamylcysteine synthetase, suggesting a decreased capacity of synthesis of glutathione compared with cells treated only with free fatty acids or ethanol. The increased oxidative stress and toxicity in lipid overloaded VL-17A cells subjected to ethanol exposure were accompanied by increases in Cyp2E1 protein expression. Our data show that lipid loaded in an in vitro model, VL-17A cells, is more susceptible to cell damage and oxidative stress when treated with ethanol.

  13. Fibrates modify rat hepatic fatty acid chain elongation and desaturation in vitro.

    PubMed

    Sánchez, R M; Viñals, M; Alegret, M; Vázquez, M; Adzet, T; Merlos, M; Laguna, J C

    1993-11-17

    Three fibric acid derivatives, clofibric acid (CFB), bezafibrate (BFB), and gemfibrozil (GFB), mainly used in the treatment of hypertriglyceridaemic or mixed hyperlipidaemic states, have been tested for their ability to modify fatty acid chain elongation and desaturation in vitro. Both endogenous and exogenous (saturated, monounsaturated and polyunsaturated) fatty acid elongations were inhibited by fibrates at concentrations well within the physiological range (IC50 values for GFB were between 0.1 and 0.3 mM). The potency order was GFB > BFB > CFB. Inhibition was not due to an impairment of the activation step from free fatty acids to acyl-CoAs, as palmitoyl-CoA synthetase was only slightly inhibited (IC50 value for GFB = 2.8 mM). Fibrates (GFB) appeared to behave as mixed non-competitive inhibitors with respect to malonyl-CoA when the rate limiting step of elongation, the condensing enzyme, is assayed. Further, delta 6 and delta 5 desaturates were inhibited by the three drugs (GFB > BFB > CFB), although not to the same extent as the elongation system. In contrast, delta 9 desaturase activity was not affected by fibrates.

  14. Acute Testosterone Deficiency Alters Adipose Tissue Fatty Acid Storage.

    PubMed

    Santosa, Sylvia; Bush, Nikki C; Jensen, Michael D

    2017-08-01

    Although the long-term effects of testosterone on adipose tissue lipid metabolism in men have been defined, the short-term regulation of these effects is not well understood. We examined the effects of acute testosterone withdrawal on subcutaneous abdominal and femoral adipose tissue fatty acid (FA) storage and cellular mechanisms. This was a prospective, randomized trial. Mayo Clinic Clinical Research Unit. Thirty-two male volunteers ages 18 to 50 participated in these studies. Volunteers were randomized to receive (1) no treatment (control), (2) injections (7.5 mg) of Lupron®, or (3) Lupron and testosterone (L+T) replacement for 49 days, resulting in 4 weeks of sex steroid suppression in the Lupron group. We measured body composition, fat cell size, adipose tissue meal FA and direct free FA storage, lipoprotein lipase (LPL), acyl coenzyme A synthetase (ACS), diacylglycerol acyltransferase activities, and CD36 content. Compared with control and L+T groups, acute testosterone deficiency resulted in greater femoral adipose tissue meal FA storage rates, fasting and fed LPL activity, and ACS activity. These results suggest that in men, testosterone plays a tonic role in restraining FA storage in femoral adipose tissue via suppression of LPL and ACS activities. FA storage mechanisms in men appear sensitive to short-term changes in testosterone concentrations.

  15. Independent transcription of glutamine synthetase (glnA2) and glutamine synthetase adenylyltransferase (glnE) in Mycobacterium bovis and Mycobacterium tuberculosis.

    PubMed

    Hotter, Grant S; Mouat, Pania; Collins, Desmond M

    2008-09-01

    Mycobacterium bovis and Mycobacterium tuberculosis possess four glutamine synthetase homologues, two of which, glnA1 and glnA2, are required for virulence and are located on the bacterial chromosome on either side of glutamine synthetase adenylyltransferase (glnE). While glnA1 is encoded on the complementary strand, glnA2 is located 48bp upstream from glnE, raising the possibility that glnA2 and glnE may be co-transcribed. However, previous studies in M. bovis and M. tuberculosis have painted a contradictory picture of the (co)transcriptional status of glnA2 and glnE. Given the importance of the genes at the glnA1-glnE-glnA2 locus, we sought to clarify the transcriptional status of glnA2 and glnE in both M. bovis and M. tuberculosis. Reverse transcription-PCR demonstrated that glnA2 and glnE were independently transcribed in all six M. bovis and M. tuberculosis strains examined. Northern analysis of the glnA2 transcript in M. bovis AF2122/97 and M. tuberculosis H37Rv showed that it was monocistronic. These results predicted the presence of a glnE transcriptional start site in the glnA2-glnE intergenic region. An identical start site was confirmed in M. bovis AF2122/97 and M. tuberculosis H37Rv using 5' rapid amplification of cDNA ends. Typical mycobacterial -10 and -35 sequences are associated with this start site.

  16. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties.

    PubMed

    Li, Yajun; Wang, Meiling; Zhang, Fengxia; Xu, Yadong; Chen, Xiaohong; Qin, Xiaoliang; Wen, Xiaoxia

    2016-05-01

    Glutamine synthetase (GS) and asparagine synthetase (AS) are proposed to have important function in plant nitrogen (N) remobilization, but their roles under drought stress are not well defined. In this study, the expression dynamics of GS and AS genes were analyzed in two maize varieties (ZD958 and NH101) in relation to post-silking drought stress induced nitrogen partitioning. ZD958 was a 'stay-green' variety with 5% nitrogen harvest index (NHI) lower than NH101. From silking to maturity, the amount of nitrogen remobilized from ear-leaves in ZD958 was evidently lower than NH101, and post-silking drought stress increased the nitrogen remobilization for both varieties. In ear-leaves, the expression of ZmGln1-3 was enhanced under drought stress. Three AS genes (ZmAS1, ZmAS2 and ZmAS3) were differentially regulated by post-silking drought treatment, of which the expression of ZmAS3 was stimulated at late stage of leaf senescence. In NH101, the expression level of ZmAS3 was markedly higher than that in ZD958. In developing grains, there were no significant differences in expression patterns of GS and AS genes between well water and drought treated plants. Drought stress altered maize N partitioning at the whole-plant level, and the up-regulation of GS and AS genes may contribute to the higher leaf nitrogen remobilization when exposed to drought treatments. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.

    PubMed

    Dong, Xianchi; Zhou, Minyun; Zhong, Chen; Yang, Bei; Shen, Ning; Ding, Jianping

    2010-03-01

    The ancient and ubiquitous aminoacyl-tRNA synthetases constitute a valuable model system for studying early evolutionary events. So far, the evolutionary relationship of tryptophanyl- and tyrosyl-tRNA synthetase (TrpRS and TyrRS) remains controversial. As TrpRS and TyrRS share low sequence homology but high structural similarity, a structure-based method would be advantageous for phylogenetic analysis of the enzymes. Here, we present the first crystal structure of an archaeal TrpRS, the structure of Pyrococcus horikoshii TrpRS (pTrpRS) in complex with tryptophanyl-5' AMP (TrpAMP) at 3.0 A resolution which demonstrates more similarities to its eukaryotic counterparts. With the pTrpRS structure, we perform a more complete structure-based phylogenetic study of TrpRS and TyrRS, which for the first time includes representatives from all three domains of life. Individually, each enzyme shows a similar evolutionary profile as observed in the sequence-based phylogenetic studies. However, TyrRSs from Archaea/Eucarya cluster with TrpRSs rather than their bacterial counterparts, and the root of TrpRS locates in the archaeal branch of TyrRS, indicating the archaeal origin of TrpRS. Moreover, the short distance between TrpRS and archaeal TyrRS and that between bacterial and archaeal TrpRS, together with the wide distribution of TrpRS, suggest that the emergence of TrpRS and subsequent acquisition by Bacteria occurred at early stages of evolution.

  18. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    PubMed

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae.

  19. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  20. Formation and Interrelationships of Tryptophanase and Tryptophan Synthetases in Escherichia coli

    PubMed Central

    Newton, W. Austin; Snell, Esmond E.

    1965-01-01

    Newton, W. Austin (University of California, Berkeley), and Esmond E. Snell. Formation and interrelationships of tryptophanase and tryptophan synthetases in Escherichia coli. J. Bacteriol. 89:355–364. 1965.—In addition to the classical tryptophan-repressible tryptophan synthetase (TSase-tr), tryptophan auxotrophs of Escherichia coli contain another distinct tryptophan synthetase (TSase-ti) which is induced by tryptophan and is identical with tryptophanase (TPase). Escherichia coli B (wild type) forms only TSase-tr when the growth medium lacks tryptophan. When tryptophan is supplied, parallel induction of TPase and TSase-ti occurs while TSase-tr is repressed. Antiserum prepared against purified TPase neutralized TPase and TSase-ti equally, but not TSase-tr. TPase-negative strains of E. coli do not form TSase-ti. Unlike TSase-tr, TSase-ti is not readily detected by whole-cell assays. In the tryptophan auxotroph, E. coli B/1t7, a direct correlation exists between the effectiveness of 4-, 5-, and 6-methyl-tryptophan in inducing TPase and in promoting growth in the presence of indole. In a mutant of this organism, E. coli B/1t7-A, which is constitutive for TPase, 5-methyl-tryptophan and other substrates of TPase increased the rate of growth on limiting indole, a result ascribed to their ability to inhibit degradation of tryptophan and to supply the 3-carbon side chain for synthesis of tryptophan by TPase. This organism produced maximal amounts of TPase when inocula from log-phase cells grown in tryptophan-supplemented minimal medium were allowed to undergo two cell generations in an enriched broth medium. PMID:14255701

  1. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.

    PubMed

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G; Grøtli, Morten; Torres-Larios, Alfredo

    2016-07-08

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.

  2. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  3. Structural insights into the polyphyletic origins of glycyl tRNA synthetases

    DOE PAGES

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; ...

    2016-05-23

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifexmore » aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. Furthermore, a structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.« less

  4. Targeted disruption of nonribosomal peptide synthetase pes3 augments the virulence of Aspergillus fumigatus.

    PubMed

    O'Hanlon, Karen A; Cairns, Timothy; Stack, Deirdre; Schrettl, Markus; Bignell, Elaine M; Kavanagh, Kevin; Miggin, Sinéad M; O'Keeffe, Grainne; Larsen, Thomas O; Doyle, Sean

    2011-10-01

    Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricrocin. No structural or immunologically relevant NRP products have been identified in the organism. We investigated the function of the largest gene in A. fumigatus, which encodes the NRP synthetase Pes3 (AFUA_5G12730), by targeted gene deletion and extensive phenotypic analysis. It was observed that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P < 0.001) and increased fungal burden (P = 0.008) in a corticosteroid model of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P < 0.01), shorter germlings, and significantly reduced surface β-glucan (P = 0.0325). Extensive metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus. Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase.

  5. Magnesium dependence of the measured equilibrium constants of aminoacyl-tRNA synthetases.

    PubMed

    Airas, R Kalervo

    2007-12-01

    The apparent equilibrium constants (K') for six reactions catalyzed by aminoacyl-tRNA synthetases from Escherichia coli were measured, the equations for the magnesium dependence of the equilibrium constants were derived, and best-fit analyses between the measured and calculated values were used. The K' values at 1 mM Mg(2+) ranged from 0.49 to 1.13. The apparent equilibrium constants increased with increasing Mg(2+) concentrations. The values were 2-3 times higher at 20 mM Mg(2+) than at 1 mM Mg(2+), and the dependence was similar in the class I and class II synthetases. The main reason for the Mg(2+) dependence is the existence of PP(i) as two magnesium complexes, but only one of them is the real product. AMP exists either as free AMP or as MgAMP, and therefore also has some effect on the measured equilibrium constant. However, these dependences alone cannot explain the measured results. The measured dependence of the K' on the Mg(2+) concentration is weaker than that caused by PP(i) and AMP. Different bindings of the Mg(2+) ions to the substrate tRNA and product aminoacyl-tRNA can explain this observation. The best-fit analysis suggests that tRNA reacts as a magnesium complex in the forward aminoacylation direction but this given Mg(2+) ion is not bound to aminoacyl-tRNA at the start of the reverse reaction. Thus Mg(2+) ions seem to have an active catalytic role, not only in the activation of the amino acid, but in the posttransfer steps of the aminoacyl-tRNA synthetase reaction, too.

  6. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  7. Structural insights into the polyphyletic origins of glycyl tRNA synthetases

    SciTech Connect

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G.; Grøtli, Morten; Torres-Larios, Alfredo

    2016-05-23

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. Furthermore, a structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.

  8. Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus).

    PubMed

    Dalessandro, G; Northcote, D H

    1981-01-01

    Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-(14)C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-(14)C]xylose released all the radioactivity as xylose. β-1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4-β xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[(14)C]xylose and tri-O-methyl-[(14)C]xylose, suggesting a 1→4-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg(2+) and Mn(2+) ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.

  9. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  10. Targeted Disruption of Nonribosomal Peptide Synthetase pes3 Augments the Virulence of Aspergillus fumigatus ▿ †

    PubMed Central

    O'Hanlon, Karen A.; Cairns, Timothy; Stack, Deirdre; Schrettl, Markus; Bignell, Elaine M.; Kavanagh, Kevin; Miggin, Sinéad M.; O'Keeffe, Grainne; Larsen, Thomas O.; Doyle, Sean

    2011-01-01

    Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricrocin. No structural or immunologically relevant NRP products have been identified in the organism. We investigated the function of the largest gene in A. fumigatus, which encodes the NRP synthetase Pes3 (AFUA_5G12730), by targeted gene deletion and extensive phenotypic analysis. It was observed that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P < 0.001) and increased fungal burden (P = 0.008) in a corticosteroid model of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P < 0.01), shorter germlings, and significantly reduced surface β-glucan (P = 0.0325). Extensive metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus. Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase. PMID:21746855

  11. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization.

    PubMed

    Bernstein, Hans-Gert; Bannier, Jana; Meyer-Lotz, Gabriela; Steiner, Johann; Keilhoff, Gerburg; Dobrowolny, Henrik; Walter, Martin; Bogerts, Bernhard

    2014-11-01

    Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.

  12. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium.

    PubMed Central

    Mérida, A; Candau, P; Florencio, F J

    1991-01-01

    Glutamine synthetase activity from Synechocystis sp. strain PCC 6803 is regulated as a function of the nitrogen source available in the medium. Addition of 0.25 mM NH4Cl to nitrate-grown cells promotes a clear short-term inactivation of glutamine synthetase, whose enzyme activity decreases to 5 to 10% of the initial value in 25 min. The intracellular levels of glutamine, determined under various conditions, taken together with the results obtained with azaserine (an inhibitor of transamidases), rule out the possibility that glutamine per se is responsible for glutamine synthetase inactivation. Nitrogen starvation attenuates the ammonium-mediated glutamine synthetase inactivation, indicating that glutamine synthetase regulation is modulated through the internal balance between carbon-nitrogen compounds and carbon compounds. The parallelism observed between the glutamine synthetase activity and the internal concentration of alpha-ketoglutarate suggests that this metabolite could play a role as a positive effector of glutamine synthetase activity in Synechocystis sp. Despite the similarities of this physiological system to that described for enterobacteria, the lack of in vivo 32P labeling of glutamine synthetase during the inactivation process excludes the existence of an adenylylation-deadenylylation system in this cyanobacterium. Images PMID:1676397

  13. Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens)

    Treesearch

    Michelle J. Serapiglia; Rakesh Minocha; Subhash C. Minocha

    2008-01-01

    We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount...

  14. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium.

    PubMed

    Mérida, A; Candau, P; Florencio, F J

    1991-07-01

    Glutamine synthetase activity from Synechocystis sp. strain PCC 6803 is regulated as a function of the nitrogen source available in the medium. Addition of 0.25 mM NH4Cl to nitrate-grown cells promotes a clear short-term inactivation of glutamine synthetase, whose enzyme activity decreases to 5 to 10% of the initial value in 25 min. The intracellular levels of glutamine, determined under various conditions, taken together with the results obtained with azaserine (an inhibitor of transamidases), rule out the possibility that glutamine per se is responsible for glutamine synthetase inactivation. Nitrogen starvation attenuates the ammonium-mediated glutamine synthetase inactivation, indicating that glutamine synthetase regulation is modulated through the internal balance between carbon-nitrogen compounds and carbon compounds. The parallelism observed between the glutamine synthetase activity and the internal concentration of alpha-ketoglutarate suggests that this metabolite could play a role as a positive effector of glutamine synthetase activity in Synechocystis sp. Despite the similarities of this physiological system to that described for enterobacteria, the lack of in vivo 32P labeling of glutamine synthetase during the inactivation process excludes the existence of an adenylylation-deadenylylation system in this cyanobacterium.

  15. Probing the substrate-binding sites of aminoacyl-tRNA synthetases with the procion dye green HE-4BD.

    PubMed Central

    McArdell, J E; Duffield, M; Atkinson, T

    1989-01-01

    A reactive bis-dichloro derivative of the Procion dye Green HE-4BD was shown to inactivate irreversibly methionyl-tRNA synthetase (MTS) from Escherichia coli and also tryptophyl-tRNA synthetase (WTS) and tyrosyl-tRNA synthetase (YTS) from Bacillus stearothermophilus at pH 8.5 and 37 degrees C. At a 5-fold excess of reactive dye over enzyme subunit concentration MTS was quantitatively inactivated within 20 min in the ATP/pyrophosphate exchange assay, whereas WTS and YTS show an 80% loss of activity over the same time period. The inactivation is affected by the addition of substrates, which either protect (WTS and YTS) or promote (YTS with tyrosine) the dye-mediated enzyme inactivation. Green HE-4BD-OH was shown to be a competitive inhibitor of MTS with respect to MgATP, methionine and tRNA substrates. PMID:2658972

  16. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases.

    PubMed

    Jeitner, Thomas M; Cooper, Arthur J L

    2014-12-01

    At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine (MSO) is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase by MSO is shown to be biphasic-an initial reversible competitive inhibition (K i 1.19 mM) is followed by rapid irreversible inactivation. This K i value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans.

  17. Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger.

    PubMed

    Sealy-Lewis, H M; Fairhurst, V

    1998-07-01

    Acetate-non-utilizing mutants in Aspergillus niger were selected by resistance to 1.2% propionate in the presence of 0.1% glucose. Mutants showing normal morphology fell into two complementation groups. One class of mutant lacked acetyl-CoA synthetase but had high levels of isocitrate lyase, while the second class showed reduced levels of both acetyl-CoA synthetase and isocitrate lyase compared to the wild-type strain. By analogy with mutants selected by resistance to 1.2% propionate in Aspergillus nidulans, the properties of the mutants in A. niger suggest that the mutations are either in the structural gene for acetyl-CoA synthetase (acuA) or in a possible regulatory gene of acetate induction (acuB). A third class of mutant in a different complementation group was obtained which had abnormal morphology (yellow mycelium and few conidia); the specific lesion in these mutants has not been determined.

  18. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    SciTech Connect

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  19. Total glutamine synthetase levels in cerebrospinal fluid of Alzheimer's disease patients are unchanged.

    PubMed

    Timmer, Nienke M; Herbert, Megan K; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2015-03-01

    Decreased cerebral protein and activity levels of glutamine synthetase (GS) have been reported for Alzheimer's disease (AD) patients. Using a recently established method, we quantified total GS levels in cerebrospinal fluid (CSF) from AD patients and control subjects. Furthermore, we investigated if total GS levels in CSF could differentiate AD from frontotemperal dementia and dementia with Lewy bodies patients. As we found no significantly altered total GS levels in any of the patient groups compared with control subjects, we conclude that levels of total GS in CSF have no diagnostic value for AD, dementia with Lewy bodies, or frontotemperal dementia.

  20. Inhibitors of Methionyl-tRNA Synthetase Have Potent Activity against Giardia intestinalis Trophozoites

    PubMed Central

    Ranade, Ranae M.; Zhang, Zhongsheng; Gillespie, J. Robert; Shibata, Sayaka; Verlinde, Christophe L. M. J