Sample records for faucets water

  1. Should electronic faucets be used in intensive care and hematology units?

    PubMed

    Merrer, Jacques; Girou, Emmanuelle; Ducellier, David; Clavreul, Nicole; Cizeau, Florence; Legrand, Patrick; Leneveu, Michel

    2005-12-01

    To compare bacterial contamination associated with electronic faucets and manual faucets in wards admitting patients highly susceptible to infection. Water samples from electronic faucets and manual faucets were taken according to the French recommendations on water surveillance in healthcare settings. Hematology and intensive care units (ICUs) of a 900-bed university hospital and a 500-bed general hospital. Overall 227 water samples were collected, 92 from electronic faucets and 135 from manual faucets. Thirty-six (39%) of the water samples from electronic faucets and 2 (1%) from manual faucets yielded pathogenic bacteria. In hematology wards 17 (30%) samples from electronic faucets and 2 (2%) from manual faucets were contaminated. In ICUs 19 (53%) samples from electronic faucets and none of 48 from manual faucets were contaminated. All samples were contaminated with various strains of Pseudomonas aeruginosa (8 to >100 CFU/100 ml). Despite hyperchlorination the electronic faucets remained contaminated. Replacing the contaminated electronic faucets by manual faucets led to a complete and sustained elimination of bacterial contamination. Contamination was not associated with a particular brand of electronic faucets. Our findings demonstrate that electronic faucets are significantly more frequently contaminated than manual faucets and could be a major reservoir for P. aeruginosa. Wards admitting patients highly susceptible to infection and using electronic faucets should be aware of this potential threat. Moreover, units already equipped with these devices, should check water quality periodically.

  2. Manual faucets induce more biofilms than electronic faucets.

    PubMed

    Mäkinen, Riika; Miettinen, Ilkka T; Pitkänen, Tarja; Kusnetsov, Jaana; Pursiainen, Anna; Kovanen, Sara; Riihinen, Kalle; Keinänen-Toivola, Minna M

    2013-06-01

    Electronic faucets (types E1 and E2) and manual (M) faucets were studied for microbial quality, i.e., biomass and pathogenic microbes of biofilms in the faucet aerator, the water, and the outer surface of faucet in a hospital in Finland. Heterotrophic plate count content reflecting culturable microbial biomass and adenosine triphosphate content representing viable microbial biomass were smaller in the biofilms of E1-type electronic faucets than E2-type electronic faucets or M faucets. The likely explanation is the mixing point of cold and hot water (E1 and M: in the faucet; E2: in a separate box 50 cm before the actual faucet part). The highest amounts of Legionella (serogroups 2-15 of Legionella pneumophila) in a water sample (5000 cfu/L) and in biofilm samples (May-June 2008 sampling: 240 cfu/mL; November 2008: 1100 cfu/mL) were found in one E1-type faucet, which was lacking a back pressure valve due to faulty installation. This study reveals that certain types of electronic faucets seem to promote hospital hygiene, as they were associated with less microbial growth in biofilms in the faucet aerator, than some other types of electronic faucets or manual faucets, likely owing to the mixing point of cold and hot water. However, the faucet type had no direct effect on the presence of Legionella spp. Also correct installation is crucial.

  3. Faucets Specification and Certification

    EPA Pesticide Factsheets

    Faucets and faucet accessories—products that can be attached easily to existing faucets to save water—that obtain the WaterSense label have demonstrated both water efficiency and the ability to provide ample flow.

  4. 76 FR 52644 - Faucets, Showerheads, Water Closets and Urinals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ...-0053] Faucets, Showerheads, Water Closets and Urinals AGENCY: Office of Energy Efficiency and Renewable... concerning the water use or water efficiency of faucets, showerheads, water closets and urinals that is: (1) More stringent than Federal regulation concerning the water use or water efficiency for that same type...

  5. 10 CFR 430.70 - Enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... writing concerning the energy performance or water performance (in the case of faucets, showerheads, water... standard or water performance standard (in the case of faucets, showerheads, water closets, and urinals... standard (in the case of faucets, showerheads, water closets, and urinals) shall be based on the testing...

  6. 16 CFR 305.4 - Prohibited acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... advertisement, with respect to the energy use or efficiency or, in the case of showerheads, faucets, water... showerheads, faucets, water closets and urinals, water use of such product, or cost of energy consumed by such... conditioners, pulse combustion and condensing furnaces, fluorescent lamp ballasts, showerheads, faucets, water...

  7. 10 CFR 429.28 - Faucets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... faucets, the maximum water use in gallons per cycle (gal/cycle) rounded to the nearest 0.01 gallon; and for all faucet types, the flow water pressure in pounds per square inch (psi). [76 FR 12451, Mar. 7... 10 Energy 3 2014-01-01 2014-01-01 false Faucets. 429.28 Section 429.28 Energy DEPARTMENT OF ENERGY...

  8. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.

    PubMed

    van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian

    2017-11-01

    Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. 16 CFR 305.16 - Labeling and marking for plumbing products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CONGRESS ENERGY AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY POLICY AND CONSERVATION ACT... estimated annual operating costs of covered showerheads, faucets, water closets, and urinals or ranges of...) Showerheads and faucets. Showerheads and faucets shall be marked and labeled as follows: (1) Each showerhead...

  10. 10 CFR 430.41 - Prescriptions of a rule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... prescribed an energy conservation standard, water conservation standard (in the case of faucets, showerheads... Federal energy conservation standard or water conservation standard is applicable, the Secretary shall... water conservation standard (in the case of faucets, showerheads, water closets, and urinals) or other...

  11. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, Rebecca A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50°C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  12. 10 CFR 429.28 - Faucets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... faucet and the flow water pressure in pounds per square inch (psi). [76 FR 12451, Mar. 7, 2011; 76 FR... 10 Energy 3 2013-01-01 2013-01-01 false Faucets. 429.28 Section 429.28 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND...

  13. A LABORATORY STUDY OF LEAD LEACHING FROM DRINKING WATER FAUCETS

    EPA Science Inventory

    A test pilot system was constructed to evaluate lead leaching from 12 different kitchen faucets. torage tank, pressure pump, and manifold System was operated to simulate, as closely as possible, the use of the faucets In a household plumbing system. eaching of lead from the fauce...

  14. 10 CFR 430.62 - Submission of data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... product subject to the applicable energy conservation standard or water conservation standard (in the case of faucets, showerheads, water closets, and urinals) set forth in subpart C of this part shall... applicable energy conservation standard or water conservation standard (in the case of faucets, showerheads...

  15. Post-Outbreak Investigation of Pseudomonas aeruginosa Faucet Contamination by Quantitative Polymerase Chain Reaction and Environmental Factors Affecting Positivity.

    PubMed

    Bédard, Emilie; Laferrière, Céline; Charron, Dominique; Lalancette, Cindy; Renaud, Christian; Desmarais, Nadia; Déziel, Eric; Prévost, Michèle

    2015-11-01

    To perform a post-outbreak prospective study of the Pseudomonas aeruginosa contamination at the faucets (water, aerator and drain) by culture and quantitative polymerase chain reaction (qPCR) and to assess environmental factors influencing occurrence A 450-bed pediatric university hospital in Montreal, Canada Water, aerator swab, and drain swab samples were collected from faucets and analyzed by culture and qPCR for the post-outbreak investigation. Water microbial and physicochemical parameters were measured, and a detailed characterization of the sink environmental and design parameters was performed. The outbreak genotyping investigation identified drains and aerators as the source of infection. The implementation of corrective measures was effective, but post-outbreak sampling using qPCR revealed 50% positivity for P. aeruginosa remaining in the water compared with 7% by culture. P. aeruginosa was recovered in the water, the aerator, and the drain in 21% of sinks. Drain alignment vs the faucet and water microbial quality were significant factors associated with water positivity, whereas P. aeruginosa load in the water was an average of 2 log higher for faucets with a positive aerator. P. aeruginosa contamination in various components of sink environments was still detected several years after the resolution of an outbreak in a pediatric university hospital. Although contamination is often not detectable in water samples by culture, P. aeruginosa is present and can recover its culturability under favorable conditions. The importance of having clear maintenance protocols for water systems, including the drainage components, is highlighted.

  16. 16 CFR 305.19 - Promotional material displayed or distributed at point of sale.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., general service lamps, showerheads, faucets, water closets or urinals) shall clearly and conspicuously... distribution at point-of-sale concerning a covered product that is a showerhead, faucet, water closet, or... UNDER SPECIFIC ACTS OF CONGRESS ENERGY AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY...

  17. 78 FR 20832 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... ``leak significantly'' to mean the visible emergence of water from parts of the showerhead other than the... Procedures for Showerheads, Faucets, Water Closets, Urinals, and Commercial Prerinse Spray Valves AGENCY... notice of proposed rulemaking related to DOE test procedures for showerheads, faucets, water closets...

  18. Impact of water treatment on the contribution of faucets to dissolved and particulate lead release at the tap.

    PubMed

    Cartier, Clément; Nour, Shokoufeh; Richer, Benoit; Deshommes, Elise; Prévost, Michèle

    2012-10-15

    A field study was performed in a building complex to investigate the extent and sources of lead (Pb) release in tap water and brass material was found to be the main contributor in the very first draw (250 mL). Based on these results, a pilot installation was built to study Pb leaching from old and new faucets in the presence and absence of a connection to Cu piping. Four water quality conditions were tested: i) no treatment; ii) addition of 0.8 mg P/L of orthophosphate; iii) pH adjustment to 8.4; and iv) adjustment to a higher chloride to sulfate mass ratio (CSMR; ratio from 0.3 to 2.9). Pb concentrations in samples taken from the faucets without treatment ranged from 1 to 52 μg/L, with a mean of 11 μg/L. The addition of orthophosphate @ 0.8 mg P/L (OrthoP) was the most effective treatment for all types of faucets tested. On average, OrthoP reduced mean Pb leaching by 41%, and was especially effective for new double faucets (70%). In the presence of orthophosphates, the relative proportion of particulate Pb (Pbpart) (>0.45 μm) increased from 31% to 54%. However, OrthoP was not efficient to reduce Zn release. The higher CSMR condition was associated with greater dezincification of yellow brass but not of red brass. Corrosion control treatment influenced Pb concentration equilibrium, directly impacting maximal exposure. Significantly higher Pb release (3 fold) was observed for 1 of the 8 faucets connected to Cu exposed to high CSMR water, suggesting the presence of galvanic corrosion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Experimental comparison of point-of-use filters for drinking water ultrafiltration.

    PubMed

    Totaro, M; Valentini, P; Casini, B; Miccoli, M; Costa, A L; Baggiani, A

    2017-06-01

    Waterborne pathogens such as Pseudomonas spp. and Legionella spp. may persist in hospital water networks despite chemical disinfection. Point-of-use filtration represents a physical control measure that can be applied in high-risk areas to contain the exposure to such pathogens. New technologies have enabled an extension of filters' lifetimes and have made available faucet hollow-fibre filters for water ultrafiltration. To compare point-of-use filters applied to cold water within their period of validity. Faucet hollow-fibre filters (filter A), shower hollow-fibre filters (filter B) and faucet membrane filters (filter C) were contaminated in two different sets of tests with standard bacterial strains (Pseudomonas aeruginosa DSM 939 and Brevundimonas diminuta ATCC 19146) and installed at points-of-use. Every day, from each faucet, 100 L of water was flushed. Before and after flushing, 250 mL of water was collected and analysed for microbiology. There was a high capacity of microbial retention from filter C; filter B released only low Brevundimonas spp. counts; filter A showed poor retention of both micro-organisms. Hollow-fibre filters did not show good micro-organism retention. All point-of-use filters require an appropriate maintenance of structural parameters to ensure their efficiency. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads S Appendix S to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. S...

  1. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads S Appendix S to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. S...

  2. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads S Appendix S to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. S...

  3. A New Calorimetry Design for Assessing Proposed Technologies in Low Energy Power Production

    DTIC Science & Technology

    2012-12-01

    an induction coil, some connectors, switches, insulation materials, and stainless steel and plastic tubing. Water from a common faucet was used as...5. First version of the calorimeter The water exits the faucet and splits via two switches to two tubing structures, which finally both end in the...3 1. Conservation of Mass ..........................................................................3 2

  4. A Principle for Network Science

    DTIC Science & Technology

    2011-02-01

    we consider is the sound of splashing water from a leaky faucet . This sequence of water drops can set your teeth on edge and leads to tossing and...intermittent sequence of water drops from a leaky faucet is described by a Lévy stable distribution that is an asymptotically inverse power-law with index...universality of physics: the conservation of energy, symmetry principles, and the laws of thermodynamics have no analogs in the soft sciences. This

  5. Spin Cycle

    ERIC Educational Resources Information Center

    Casey, Dick

    2005-01-01

    Laundry equipment is an investment, and the investment should be protected. To keep laundry equipment working at an optimum level, schools must maintain their machines. This article offers preventive-maintenance tips for washing machines and dryers. To prevent faucets from binding up, close and reopen the water faucets. This also is a great way to…

  6. Sphingomonas Infections Arising from Hospital Plumbing Fixtures

    PubMed Central

    Zellmer, Caroline J; Michelin, Angela V; Johnson, Ryan C; Dekker, John P; Frank, Karen M; Henderson, David K; Lau, Anna F; Segre, Julia A; Palmore, Tara N

    2017-01-01

    Abstract Background Following a rise in nosocomial infections due to Sphingomonas, a waterborne Gram-negative organism, we undertook an epidemiological investigation to identify possible sources and develop a remediation strategy. Methods We analyzed Sphingomonas isolates from 30 inpatients in the past 11 years, and we reviewed each patient’s chart. We collected swabs of faucets, water samples, and free and total chlorine levels from rooms of Sphingomonas patients from 2016, using unrelated rooms as controls. Water samples and chlorine levels were collected from hospital pipes. Swabs were placed into 1 mL TSB and cultured to sheep blood agar. Isolates were identified by MALDI-TOF MS. Water samples were tested via membrane filtration (500 mL) and spread plate method (1 mL). Patient and environmental Sphingomonas isolates underwent whole genome sequencing, and were analyzed with Mash and Snippy for overall genomic sequence and single-nucleotide polymorphisms comparisons, respectively, to assess relatedness. Results Of 27 faucets examined, 59% grew Sphingomonas spp., and 33% grew highly-resistant S. koreensis. Of 21 water samples, 76% grew Sphingomonas spp., and 48% grew S. koreensis. Sequence analysis demonstrated strong genetic similarity among S. koreensis clinical isolates from the past 11 years and recent faucet and water isolates. One patient’s S. koreensis isolate was genetically related to isolates from faucets in his room. Sphingomonas did not grow from samples collected from municipal water or some of the far upstream water pipes within the hospital. Free chlorine levels were extremely low in hot water, leading to a program of flushing in order to restore and maintain adequate levels. Among 7 contaminated faucets that were replaced, 3 became recolonized within 4 weeks, and continued to grow Sphingomonas from water. Conclusion Investigation and genome sequencing suggest long-standing S. koreensis colonization within the hospital plumbing system that has served as a reservoir for sporadic infections among immunosuppressed patients. Remediation of Sphingomonas plumbing contamination is an ongoing challenge guided by few published data. Hospital water must be rendered safe for even the most immunosuppressed patients. Disclosures All authors: No reported disclosures.

  7. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads S Appendix S to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. S Appendix S to Subpart B of Part 430—Uniform...

  8. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads S Appendix S to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. S Appendix S to Subpart B of Part 430—Uniform...

  9. Impact of improvement of water supply on household economy in a squatter area of Manila.

    PubMed

    Aiga, Hirotsugu; Umenai, Takusei

    2002-08-01

    To estimate the impact of the improvement of water supply. a comparative study on water collection and household expenditure on water was conducted between a former squatter community with an improved water supply (Leveriza: LE) and a typical squatter community with public water faucets (Maestranza: MA) in Manila, the Philippines. Data were collected from 201 structured household interviews and a focus group discussion among housewives in each community. To measure the time spent collecting water, observations of private and public water faucets were conducted. The residents in LE enjoyed significantly larger quantities of water from private water connections than in MA, where only three public water faucets were available as a water source. Conversely, the unit price of water in LE was much lower than in MA. In LE, 72.1% of the households started working for more income using time saved through the improvement of water supply and the proportion of the households under the poverty threshold was reduced from 55.6% to 29.9%. In MA, 68.6% of the households expressed their willingness to work for more income when time spent collecting water was saved. It would be possible for MA to reduce the proportion of the households under the poverty threshold through the improvement of the water supply. The results of the study indicated that the improvement of water supply would possibly encourage urban slum residents to increase their household incomes through reallocating time saved to income-generating activities. The underserved residents spent more money for less water compared to those with access to private water connections. In MA, it took 3-4 h, on average, to complete one water collecting task, even though the nearest public water faucet was within 100 m of any housing unit. This suggests that the definition of accessibility to safe water be reconsidered when discussing the urban poor.

  10. New analytical solutions to the two-phase water faucet problem

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-06-17

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  11. [INDICES OF THE OXIDATIVE STATUS IN CHRONIC ADMINISTRATION OF COLLOID CARBONATE CALCIUM PRAPARATION WITH FAUCET AND LOW-MINERALIZED DRINKING WATER IN RATS].

    PubMed

    Khripach, L V; Mikhaylova, R I; Koganova, Z I; Knyazeva, T D; Alekseeva, A V; Savostikova, O N; Ryzhova, I N; Kruglova, E V; Revzova, T L

    2015-01-01

    There are discussed the changes of an array of indices of the oxidative status in chronic administration of colloidal calcium carbonate preparation with faucet and low-mineralized drinking water to rats. Slight differences between significant effects of administration of 3 and 30 mg/L of preparation permit to suggest that the process of its incoming delivery into organism of rats has a bottleneck in the nature of total capacity of macrophages of intestinal lymphoid tissue to absorption of particles.

  12. 24 CFR 1003.202 - Eligible rehabilitation and preservation activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the efficient use of water through such means as water saving faucets and shower heads and repair of water leaks; (6) Connection of residential structures to water distribution lines or local sewer...

  13. 24 CFR 570.202 - Eligible rehabilitation and preservation activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... increase the efficient use of water through such means as water savings faucets and shower heads and repair of water leaks; (6) Connection of residential structures to water distribution lines or local sewer...

  14. Multi-family Buildings

    EPA Pesticide Factsheets

    Apartments and condos that have earned the label will have WaterSense labeled toilets, faucets, and showerheads that have been independently certified to be high-performing and water-efficient, saving 20 percent more water than standard models.

  15. Field evaluation of a new point-of-use faucet filter for preventing exposure to Legionella and other waterborne pathogens in health care facilities.

    PubMed

    Baron, Julianne L; Peters, Tammy; Shafer, Raymond; MacMurray, Brian; Stout, Janet E

    2014-11-01

    Opportunistic waterborne pathogens (eg, Legionella, Pseudomonas) may persist in water distribution systems despite municipal chlorination and secondary disinfection and can cause health care-acquired infections. Point-of-use (POU) filtration can limit exposure to pathogens; however, their short maximum lifetime and membrane clogging have limited their use. A new faucet filter rated at 62 days was evaluated at a cancer center in Northwestern Pennsylvania. Five sinks were equipped with filters, and 5 sinks served as controls. Hot water was collected weekly for 17 weeks and cultured for Legionella, Pseudomonas, and total bacteria. Legionella was removed from all filtered samples for 12 weeks. One colony was recovered from 1 site at 13 weeks; however, subsequent tests were negative through 17 weeks of testing. Total bacteria were excluded for the first 2 weeks, followed by an average of 1.86 log reduction in total bacteria compared with controls. No Pseudomonas was recovered from filtered or control faucets. This next generation faucet filter eliminated Legionella beyond the 62 day manufacturers' recommended maximum duration of use. These new POU filters will require fewer change-outs than standard filters and could be a cost-effective method for preventing exposure to Legionella and other opportunistic waterborne pathogens in hospitals with high-risk patients. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  17. 10 CFR 430.50 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... standards or water conservation standards (in the case of faucets, showerheads, water closets, and urinals... exemptions from applicable energy conservation standards or water conservation standards (in the case of... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Small Business...

  18. 10 CFR 430.31 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.31 Purpose and scope. This subpart contains energy conservation standards and water conservation standards (in the case of faucets, showerheads, water closets, and urinals) for...

  19. 10 CFR 430.31 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water... water conservation standards (in the case of faucets, showerheads, water closets, and urinals) for... the Energy Conservation Program for Consumer Products Other Than Automobiles under the Energy Policy...

  20. 10 CFR 430.31 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water... water conservation standards (in the case of faucets, showerheads, water closets, and urinals) for... the Energy Conservation Program for Consumer Products Other Than Automobiles under the Energy Policy...

  1. 10 CFR 430.31 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water... water conservation standards (in the case of faucets, showerheads, water closets, and urinals) for... the Energy Conservation Program for Consumer Products Other Than Automobiles under the Energy Policy...

  2. 10 CFR 430.50 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Small Business... standards or water conservation standards (in the case of faucets, showerheads, water closets, and urinals... exemptions from applicable energy conservation standards or water conservation standards (in the case of...

  3. 10 CFR 430.50 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Small Business... standards or water conservation standards (in the case of faucets, showerheads, water closets, and urinals... exemptions from applicable energy conservation standards or water conservation standards (in the case of...

  4. 10 CFR 430.50 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Small Business... standards or water conservation standards (in the case of faucets, showerheads, water closets, and urinals... exemptions from applicable energy conservation standards or water conservation standards (in the case of...

  5. 10 CFR 430.50 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Small Business... standards or water conservation standards (in the case of faucets, showerheads, water closets, and urinals... exemptions from applicable energy conservation standards or water conservation standards (in the case of...

  6. 10 CFR 430.60 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and... applicable energy conservation standard or water conservation standard (in the case of faucets, showerheads, water closets, and urinals) set forth in subpart C of this part. Energy conservation standards and water...

  7. 10 CFR 430.60 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and... applicable energy conservation standard or water conservation standard (in the case of faucets, showerheads, water closets, and urinals) set forth in subpart C of this part. Energy conservation standards and water...

  8. 24 CFR 3280.602 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... access thereto, but which may require removal of an access panel or opening of a door. Air gap (water... opening from any pipe or faucet supplying water to a tank, plumbing fixture, water supplied appliances, or... manufactured home. Backflow means the flow of water or other liquids, mixtures, or substances into the...

  9. 16 CFR 305.4 - Prohibited acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... closets, and urinals, water use of a covered product to which a test procedure is applicable under section... showerheads, faucets, water closets and urinals, water use of such product, or cost of energy consumed by such...

  10. 16 CFR 305.4 - Prohibited acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... closets, and urinals, water use of a covered product to which a test procedure is applicable under section... showerheads, faucets, water closets and urinals, water use of such product, or cost of energy consumed by such...

  11. 16 CFR 305.4 - Prohibited acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... closets, and urinals, water use of a covered product to which a test procedure is applicable under section... showerheads, faucets, water closets and urinals, water use of such product, or cost of energy consumed by such...

  12. 10 CFR 430.40 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... energy efficiency, energy use, or water use (in the case of faucets, showerheads, water closets, and..., water closets, and urinals), or other requirement respecting energy efficiency, energy use, or water use... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and scope. 430.40 Section 430.40 Energy DEPARTMENT...

  13. KNOWING CHEMISTRY CAN HELP GET THE LEAD OUT

    EPA Science Inventory

    Lead in tap water comes from the materials used in plumbing such as from leaded solder, lead pipe, and lead-containing brass found in fittings and faucets. Fortunately, the surface of brass eventually becomes passivated when in contact with most waters. Oxidants in water (usually...

  14. 24 CFR 3280.602 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... opening of a door. Air gap (water distribution system) means the unobstructed vertical distance through the free atmosphere between the lowest opening from any pipe or faucet supplying water to a tank, plumbing fixture, water supplied appliances, or other device and the flood level rim of the receptacle...

  15. 24 CFR 3280.602 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... opening of a door. Air gap (water distribution system) means the unobstructed vertical distance through the free atmosphere between the lowest opening from any pipe or faucet supplying water to a tank, plumbing fixture, water supplied appliances, or other device and the flood level rim of the receptacle...

  16. 75 FR 80289 - Energy Efficiency Program for Consumer Products: Waiver of Federal Preemption of State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... Program for Consumer Products: Waiver of Federal Preemption of State Regulations Concerning the Water Use or Water Efficiency of Showerheads, Faucets, Water Closets and Urinals AGENCY: Office of Energy....C. 6297(c) with respect to any State regulation concerning the water use or water efficiency of...

  17. 24 CFR 3280.602 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the free atmosphere between the lowest opening from any pipe or faucet supplying water to a tank, plumbing fixture, water supplied appliances, or other device and the flood level rim of the receptacle... other liquids, mixtures, or substances into the distributing pipes of a potable supply of water from any...

  18. 10 CFR 430.40 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requesting a rule that a State regulation prescribing an energy conservation standard, water conservation... prescribing an energy conservation standard, water conservation standard (in the case of faucets, showerheads... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To Exempt...

  19. 10 CFR 430.40 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To Exempt... requesting a rule that a State regulation prescribing an energy conservation standard, water conservation... prescribing an energy conservation standard, water conservation standard (in the case of faucets, showerheads...

  20. 10 CFR 430.40 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To Exempt... requesting a rule that a State regulation prescribing an energy conservation standard, water conservation... prescribing an energy conservation standard, water conservation standard (in the case of faucets, showerheads...

  1. 10 CFR 430.40 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To Exempt... requesting a rule that a State regulation prescribing an energy conservation standard, water conservation... prescribing an energy conservation standard, water conservation standard (in the case of faucets, showerheads...

  2. 10 CFR 430.41 - Prescriptions of a rule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To... prescribed an energy conservation standard, water conservation standard (in the case of faucets, showerheads... Federal energy conservation standard or water conservation standard is applicable, the Secretary shall...

  3. 10 CFR 430.33 - Preemption of State regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.33 Preemption of State regulations. (a) Any State regulation providing for any energy conservation standard, or water conservation standard (in the case of faucets...

  4. 10 CFR 430.61 - Prohibited acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and... standard or water conservation standard (in the case of faucets, showerheads, water closets, and urinals... covered products to a test laboratory designated by the Secretary; (3) Failure of a manufacturer to permit...

  5. 10 CFR 430.33 - Preemption of State regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.33 Preemption of State regulations. (a) Any State regulation providing for any energy conservation standard, or water conservation standard (in the case of faucets...

  6. 10 CFR 430.33 - Preemption of State regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.33 Preemption of State regulations. (a) Any State regulation providing for any energy conservation standard, or water conservation standard (in the case of faucets...

  7. 10 CFR 429.28 - Faucets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND... certification report shall include the following public product-specific information: The maximum water use in... water consumption of a basic model for which consumers favor lower values shall be no less than the...

  8. 10 CFR 430.33 - Preemption of State regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.33 Preemption of State regulations. (a) Any State regulation providing for any energy conservation standard, or water conservation standard (in the case of faucets...

  9. Water in Your Community. What We Take from Our Environment. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module (recommended for grades 5 or 6) provides information on water in the community. Topics considered include: safe water (showing how clear water may be unsafe to drink); water sources; drinking water and wells; clean water underground; how water gets from the ground to the faucet inside a home; the groundwater of seaside and inland…

  10. 10 CFR 430.49 - Finality of decision.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Finality of decision. (a) A decision to prescribe a rule that a State energy conservation standard, water conservation standard (in the case of faucets, showerheads, water closets, and urinals) or other requirement... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To...

  11. 10 CFR 430.49 - Finality of decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To... Finality of decision. (a) A decision to prescribe a rule that a State energy conservation standard, water conservation standard (in the case of faucets, showerheads, water closets, and urinals) or other requirement...

  12. 10 CFR 430.49 - Finality of decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To... Finality of decision. (a) A decision to prescribe a rule that a State energy conservation standard, water conservation standard (in the case of faucets, showerheads, water closets, and urinals) or other requirement...

  13. 10 CFR 430.49 - Finality of decision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To... Finality of decision. (a) A decision to prescribe a rule that a State energy conservation standard, water conservation standard (in the case of faucets, showerheads, water closets, and urinals) or other requirement...

  14. 10 CFR 430.49 - Finality of decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Petitions To... Finality of decision. (a) A decision to prescribe a rule that a State energy conservation standard, water conservation standard (in the case of faucets, showerheads, water closets, and urinals) or other requirement...

  15. Turning Minds On and Faucets Off: Water Conservation Education in Jordanian Schools.

    ERIC Educational Resources Information Center

    Middlestadt, Susan; Grieser, Mona; Hernandez, Orlando; Tubaishat, Khulood; Sanchack, Julie; Southwell, Brian; Schwartz, Reva

    2001-01-01

    An evaluation was conducted to measure the impact of a curriculum implemented through the Jordan Water Conservation Education Project. Examines the effect of recommending water conservation at the household level and the impact of using interactive teaching methods to promote conservation behaviors among students and their families. (Author/SAH)

  16. 10 CFR Appendix A to Subpart F of... - Compliance Statement and Certification Report

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... submitted are in accordance with 10 CFR Part 430 (Energy or Water Conservation Program for Consumer Products... with the applicable energy conservation standard or water (in the case of faucets, showerheads, water... to Subpart F of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM...

  17. 10 CFR Appendix A to Subpart F of... - Compliance Statement and Certification Report

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... submitted are in accordance with 10 CFR Part 430 (Energy or Water Conservation Program for Consumer Products... with the applicable energy conservation standard or water (in the case of faucets, showerheads, water... to Subpart F of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM...

  18. Water Filtration. Grades 3-5.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    One of our most valuable and often overlooked resources is water. We can survive for a couple of weeks without food but only a few days without water. Having clean water to drink is a luxury. The water that comes out of our faucets does not always start off safe to drink. Most often it has visited a treatment plant prior to reaching our glasses.…

  19. 16 CFR 305.8 - Submission of data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Faucets Mar. 1. Water closets Mar. 1. Ceiling fans Mar. 1. Urinals Mar. 1. Metal halide lamp fixtures Sept... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS ENERGY AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY POLICY AND CONSERVATION ACT (âENERGY LABELING...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  1. 10 CFR 430.47 - Effective dates of final rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... such rule is needed to meet an “energy emergency condition or water emergency condition (in the case of faucets, showerheads, water closets, and urinals)” within the State. (2) Three years after such rule is... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS...

  2. 10 CFR 430.47 - Effective dates of final rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... such rule is needed to meet an “energy emergency condition or water emergency condition (in the case of faucets, showerheads, water closets, and urinals)” within the State. (2) Three years after such rule is... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS...

  3. 10 CFR 430.47 - Effective dates of final rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... such rule is needed to meet an “energy emergency condition or water emergency condition (in the case of faucets, showerheads, water closets, and urinals)” within the State. (2) Three years after such rule is... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS...

  4. 10 CFR 430.47 - Effective dates of final rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... such rule is needed to meet an “energy emergency condition or water emergency condition (in the case of faucets, showerheads, water closets, and urinals)” within the State. (2) Three years after such rule is... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS...

  5. 16 CFR 305.19 - Promotional material displayed or distributed at point of sale.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT... distribution at point-of-sale concerning a covered product that is a showerhead, faucet, water closet, or urinal shall clearly and conspicuously include in such printed material the product's water use...

  6. 10 CFR 430.47 - Effective dates of final rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS... such rule is needed to meet an “energy emergency condition or water emergency condition (in the case of faucets, showerheads, water closets, and urinals)” within the State. (2) Three years after such rule is...

  7. 16 CFR 305.19 - Promotional material displayed or distributed at point of sale.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT... distribution at point-of-sale concerning a covered product that is a showerhead, faucet, water closet, or urinal shall clearly and conspicuously include in such printed material the product's water use...

  8. SURVEY OF GROUND, SURFACE, AND POTABLE WATERS FOR THE PRESENCE OF LEGIONELLA SPECIES BY ENVIROAMP PCR LEGIONELLA KIT, CULTURE, AND IMMUNOFLUORESCENT STAINING

    EPA Science Inventory

    A total of 116 samples from numerous aquatic sources including water from faucets, showerheads, dental units, fire sprinklers, and surface waters were examined for the presence of Legionella by the EnviroAmp Legionella PCR kit, culture on BCYEx, or direct fluorescent antibody (DF...

  9. Farm Water Supply and Sanitation--Pipe, Plumbing, Skills and Symbols. Student Materials. V.A. III. V-D-1, V-D-2.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Designed for use by individuals enrolled in vocational agricultural classes, these student materials deal with farm water supply, sanitation, and plumbing skills. Topics covered in the unit are maintaining the farm water supply; repairing faucets and valves, leaks in pipes and storage tanks, and water closets; clearing clogged drains and traps;…

  10. Water

    MedlinePlus

    ... it is. Do you ever wonder how it flows from your faucet? And have you ever stopped to think about whether or not it is clean? For most people in the United States, this isn’t an issue. You can usually ...

  11. The faucet snail (Bithynia tentaculata) invades the St. Louis River Estuary

    EPA Science Inventory

    The European-origin faucet snail (Bithynia tentaculata) now numbers among the aquatic invasive species present in the St. Louis River Estuary. This snail has been in the lower Great Lakes since the early 20th century but is new to the Lake Superior basin. We found faucet snails...

  12. 16 CFR 305.19 - Promotional material displayed or distributed at point of sale.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT... concerning a covered product that is a showerhead, faucet, water closet, or urinal shall clearly and conspicuously include in such printed material the product's water use, expressed in gallons and liters per...

  13. Occurrence of potentially pathogenic nontuberculous mycobacteria in Mexican household potable water: a pilot study.

    PubMed

    Perez-Martinez, Iza; Aguilar-Ayala, Diana A; Fernandez-Rendon, Elizabeth; Carrillo-Sanchez, Alma K; Helguera-Repetto, Addy C; Rivera-Gutierrez, Sandra; Estrada-Garcia, Teresa; Cerna-Cortes, Jorge F; Gonzalez-Y-Merchand, Jorge A

    2013-12-11

    Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the "main house faucet" and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as "good quality" potable water. Household potable water may be a potential source of NTM infection in Mexico City.

  14. The power of water

    NASA Astrophysics Data System (ADS)

    Mavrodi, Aikaterini

    2017-04-01

    This programme has been designed to help students understand: 1. The connections between the Watershed Protection and the water they use, exploring the watersheds in the area of their residence. Students will be guided to understand a variety of concepts related to water use, efficiency, and students' own impacts on their watershed. 2. The water supply: Where does it come from? Once the students understand their home watershed the next key concept is to understand where the water they use at home comes from, from the faucet to the actual waterbody within their watershed that is the source of their drinking water. Students will understand the ways their local waterbodies are connected and the direction of the water. 3. Water efficiency. Once students understand where their water comes from, the activity moves on to the concepts of using water more efficiently by investigating how we use or waste water, where it comes from and where it goes after it goes down the drain. We will use several activities, for example to ask students to find how much water a faucet that loses 25 drips per minute would waste in one day, by using a drip calculator, or to ask students and members of their family, to complete a water use table. 4. City water company. The students also gain knowledge of how the City manages the water resources and how to manage water on personal basis.

  15. The non-native faucet snail (Bithynia tentaculata) makes the leap to Lake Superior

    EPA Science Inventory

    The European-origin faucet snail (Bithynia tentaculata) has been present in the lower Great Lakes since the late 1800s but only very recently reached Lake Superior. Surveys from 2011 through 2013 found faucet snail to be abundant and wide-spread in the St. Louis River Estuary wi...

  16. 10 CFR 430.73 - Remedies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and Enforcement § 430.73 Remedies. If DOE determines that a basic model of a covered product does not comply with an applicable energy conservation standard or water conservation standard (in the case of faucets...

  17. 10 CFR 430.73 - Remedies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and Enforcement § 430.73 Remedies. If DOE determines that a basic model of a covered product does not comply with an applicable energy conservation standard or water conservation standard (in the case of faucets...

  18. Legionella (Legionnaires' Disease and Pontiac Fever): Causes and Transmission

    MedlinePlus

    ... of Infection Legionella is a type of bacterium found naturally in freshwater environments, like lakes and streams. It can become a health concern when it grows and spreads in human-made building water systems like Showerheads and sink faucets Cooling towers ( ...

  19. Water Conservation Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  20. Water Filters

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aquaspace H2OME Guardian Water Filter, available through Western Water International, Inc., reduces lead in water supplies. The filter is mounted on the faucet and the filter cartridge is placed in the "dead space" between sink and wall. This filter is one of several new filtration devices using the Aquaspace compound filter media, which combines company developed and NASA technology. Aquaspace filters are used in industrial, commercial, residential, and recreational environments as well as by developing nations where water is highly contaminated.

  1. Turning a DoD GOLD Leaf: BRAC 133 at Mark Center

    DTIC Science & Technology

    2010-06-01

    building of the same size–a savings of 4.5 million gallons annually. • Water saving strategies include: – Low flow faucets , shower heads, and plumbing...environmentally sustainable construction and site development the team ensured the highest levels of water savings, energy efficiency, indoor...Sustainability Symposium & Exhibition “Going For GOLD” Sustainability goals: It is anticipated that the building will use 45% less water than a traditional

  2. Water Works: A Great Show on Earth. Classroom Activities for Third and Fourth Grades.

    ERIC Educational Resources Information Center

    McClure, Judy; Clark, Neil

    This curriculum guide is divided into five lessons, each containing several activities that reflect the natural path of inquiry that third or fourth grade students might take in considering the water that arrives in their bathroom sinks each morning. Starting from the familiar faucet, the students are encouraged to reflect on their own habits and…

  3. 10 CFR 429.12 - General requirements applicable to certification reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ceiling fan light kits, Residential showerheads, Residential faucets, Residential water closets, and.... 429.12 Section 429.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND... conservation standard set forth in parts 430 or 431, and annually thereafter on or before the dates provided in...

  4. 78 FR 42719 - Test Procedures for Showerheads, Faucets, Water Closets, Urinals, and Commercial Prerinse Spray...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... showerhead must be manufactured such that a pushing or pulling force of 8 lbf or more is required to remove... mechanically retained at the point of manufacture such that a pulling or pushing force of 8 lbf or more is...

  5. 10 CFR 430.62 - Submission of data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... energy factor expressed in cycles per kilowatt-hour. (vii) Faucets, the maximum water use in gpm (L/min... seasonal energy efficiency ratio and heating seasonal performance factor. For central air conditioning heat pumps whose seasonal energy efficiency ratio and heating seasonal performance factor are based on an...

  6. Private forests, housing growth, and America’s water supply: A report from the Forests on the Edge and Forests to Faucets Projects

    Treesearch

    M. H. Mockrin; R. L. Lilja; E. Weidner; S. M. Stein; M. A. Carr

    2014-01-01

    America’s private forests provide a vast array of public goods and services, including abundant, clean surface water. Forest loss and development can affect water quality and quantity when forests are removed and impervious surfaces, such as paved roads, spread across the landscape. We rank watersheds across the conterminous United States according to the contributions...

  7. Detection of Mycobacterium avium subsp. paratuberculosis in Drinking Water and Biofilms by Quantitative PCR ▿ †

    PubMed Central

    Beumer, Amy; King, Dawn; Donohue, Maura; Mistry, Jatin; Covert, Terry; Pfaller, Stacy

    2010-01-01

    It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn's disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States. PMID:20817803

  8. 10 CFR 430.63 - Sampling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Sampling. 430.63 Section 430.63 Energy DEPARTMENT OF... Enforcement § 430.63 Sampling. (a) For purposes of a certification of compliance, the determination that a... the case of faucets, showerheads, water closets, and urinals) shall be based upon the sampling...

  9. 10 CFR 430.63 - Sampling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sampling. 430.63 Section 430.63 Energy DEPARTMENT OF... Enforcement § 430.63 Sampling. (a) For purposes of a certification of compliance, the determination that a... the case of faucets, showerheads, water closets, and urinals) shall be based upon the sampling...

  10. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... particular basic model(s) for which a waiver is requested, the design characteristic(s) constituting the...

  11. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...

  12. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...

  13. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... particular basic model(s) for which a waiver is requested, the design characteristic(s) constituting the...

  14. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...

  15. Methicillin resistant Staphylococcus aureus contamination of phlebotomy tourniquets and faucets

    PubMed

    Abeywickrama, T; Amarasinghe, K; Wijerathne, S; Dharmaratne, C; Fernando, D; Senaratna, B C; Gunasekera, H A K M

    2018-03-31

    Methicillin resistant Staphylococcus aureus (MRSA) is transmitted through direct contact or fomites. The most important means of nosocomial spread is by hospital personnel. However, fomites are being increasingly recognized as sources of nosocomial infection. Our aim was to describe the MRSA contamination rate of phlebotomy tourniquets and faucets in a tertiary care hospital and to compare the contamination of plastic tourniquets with that of fabric tourniquets. A cross-sectional study was carried out in the general wards of a tertiary care hospital in the Colombo District. Two hundred tourniquets were collected and 100 faucets were swabbed and cultured on CHROMagar™ MRSA medium (CHROMagar Microbiology). Contamination rates of 50 plastic tourniquets and 50 fabric tourniquets were compared. MRSA grew in 26% of tourniquets. Majority were plastic tubes. MRSA contamination of tourniquets did not significantly differ by ward (p>0.4). MRSA was found on 26% of faucets. Contamination rate was highest in the common wards for dermatology, dental, rheumatology, and neurology (55.6%), followed by gynaecology (45.2%), cardiology (33.3%), surgery (18.8%), psychiatry (11.1%), and medicine (5.6%). There was a significant difference in rates of contamination of faucets in the different wards (p<0.01). There was no significant difference in the colony count per surface area of the two types of tourniquets after a single use. MRSA contamination rates of tourniquets and faucets were high. Single-use plastic tourniquets were much less contaminated with MRSA than reused tourniquets.

  16. Physics on Tap

    ERIC Educational Resources Information Center

    Wheeler, Andrew P. S.

    2012-01-01

    This article aims to describe how to visualize surface tension effects in liquid jets. A simple experiment is proposed using the liquid jet flow from a mains water tap/faucet. Using a modern digital camera with a high shutter speed, it is possible to visualize the instabilities (capillary waves) that form within the jet due to the action of…

  17. 18. DETAIL OF COMBINATION HANDWASH SINK/KNIFE STERILIZER ON SPLITTERS' PLATFORM; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL OF COMBINATION HANDWASH SINK/KNIFE STERILIZER ON SPLITTERS' PLATFORM; KNIVES AND CLEAVERS WERE CLEANED FREQUENTLY BY DIPPING THEM INTO STEAM-HEATED WATER IN THE RECTANGULAR TANK; NOTE FOOT-OPERATED FAUCETS - Rath Packing Company, Beef Killing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  18. 36 CFR 261.16 - Developed recreation sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Occupying any portion of the site for other than recreation purposes. (b) Building, attending, maintaining, or using a fire outside of a fire ring provided by the Forest Service for such purpose or outside of..., or bathing or washing at a hydrant or water faucet not provided for that purpose. (d) Discharging or...

  19. A systematic review of nosocomial waterborne infections in neonates and mothers.

    PubMed

    Moffa, Michelle; Guo, Wilson; Li, Trudy; Cronk, Ryan; Abebe, Lydia S; Bartram, Jamie

    2017-11-01

    Water is an important, overlooked, and controllable source of nosocomial infection. Hospitalized neonates and their mothers are particularly vulnerable to nosocomial waterborne infections. Our objectives through this systematic review were to: investigate water sources, reservoirs, and transmission routes that lead to nosocomial waterborne infections in neonates and their mothers; establish patient risk factors; compile measures for controlling outbreaks and recommended strategies for prevention; and identify information gaps to improve guidelines for reporting future outbreaks. We searched PubMed, Web of Science, Embase, and clinicaltrials.gov. Peer-reviewed studies reporting contaminated water as a route of transmission to neonates and/or their mothers were included. Twenty-five studies were included. The most common contaminated water sources in healthcare facilities associated with infection transmission were tap water, sinks, and faucets. Low birthweights, preterm or premature birth, and underlying disease increased neonatal risk of infection. Effective control measures commonly included replacing or cleaning faucets and increased or alternative methods for hand disinfection, and recommendations for prevention of future infections highlighted the need for additional surveillance. The implementation of control measures and recommended prevention strategies by healthcare workers and managing authorities of healthcare facilities and improved reporting of future outbreaks may contribute to a reduction in the incidence of nosocomial waterborne infections in neonates and their mothers. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Integration of Energy/Sustainable Practices into Standard Army MILCON Designs: Energy and Sustainability Study

    DTIC Science & Technology

    2010-11-30

    approved climate zones) ► Dual flush toilets ► 1.5 GPM flow shower heads ► 0.5 GPM flow faucets ► Rainwater harvesting ► Permeable asphalt, permeable...for system with indirect evaporative pre-cooling Sustainability Measures ► Dual flush toilets ► 1.5 GPM flow shower heads, 0.5 GPM flow faucets...daylighting controls with 500 lux setpoint ► Dual flush toilets ►Waterless urinals ► 0.5 GPM flow faucets ► Rainwater harvesting ► Enhanced Commissioning

  1. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    PubMed Central

    Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.

    2014-01-01

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635

  2. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    PubMed

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  3. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  4. Water Shortage: Lessons in Conservation From the Great California Drought, 1976-1977

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Legislation moving quickly through both houses of the U.S. Congress would establish a fund to promote and support research and development to increase the security of the nation's water infrastructure from source to faucet.The House of Representatives bill, "The Water Infrastructure Security and Research and Development Act" (HR 3178), would provide $12 million per year for fiscal years 2002-2006 for a number of research areas. These include assessing water supply systems for physical vulnerabilities, including biological, chemical, and radiological contamination; devising real-time systems to monitor water for contamination; determining mitigation options; and upgrading security technologies.

  5. 17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOWS ON SOUTH WALL OVER SINK. VIEW TO SOUTHEAST - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  6. [Preliminary survey to detect toxic substances in domestic potable water, Bogotá and Soacha, 2012].

    PubMed

    Silva, Elizabeth; Villarreal, María Elsa; Cárdenas, Omayda; Cristancho, Carlos Armando; Murillo, Carmenza; Salgado, Manuel Alberto; Nava, Gerardo

    2015-08-01

    Significant alterations may be found in the water of Bogotá´s water supply system after its purification, specifically during its distribution and storage in home reservoirs, which makes it necessary to study the final quality of the domiciliary water consumed by users. To conduct a preliminary study of toxic chemical substances in the water supplied by Bogotá´s water supply system in samples obtained from residential reservoirs and faucets. Descriptive study made in 26 homes located in Bogotá and Soacha. Two samplings were done during different seasons, each including a survey and the collection of water samples from domiciliary storage tanks and faucets. Samples were analyzed for basic physicochemical parameters, a screening test for organic and inorganic substances and the determination of heavy metals and residues of organophosphate pesticides and/or carbamates. Values obtained for conductivity, color and nitrates were acceptable, pH and turbidity were slightly high while residual chlorine levels were low; aluminum traces were found in 94% of the samples; 8% of the samples analyzed during the dry season showed organic compounds, compared to 66.7% during the rainy season, and just one positive result was obtained for inorganic compounds. Consequently, a medium risk level was observed in 11.5% of homes, low risk in 61.5% and no risk in 27.0%. The evidence showed deterioration of the domiciliary water by organic substances present in the reservoirs as well as in the water supply piping, probably caused by the formation of biofilms or organic polymers. Aluminum levels close to the top permissible limit can be explained by the presence of residual coagulants used during water treatment.

  7. Advanced Decentralized Water/Energy Network Design for ...

    EPA Pesticide Factsheets

    In order to provide a water infrastructure that is more sustainable into and beyond the 21st century, drinking water distribution systems and wastewater collection systems must account for our diminishing water supply, increasing demands, climate change, energy cost and availability. Water efficiency must be equally addressed with energy efficiency going far beyond simply adding low flow toilets and faucets in new buildings and retro-fits. Thus, it is the goal of this research project to address these water-related issues as they relate to the U.S. Environmental Protection Agency’s (EPA) mission to safeguard human health and the environment. To inform the public.

  8. Mapping New Terrain: Climate Change and America's West. Report of the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT)

    Treesearch

    Henry F. CIRMOUNT Committee (Diaz; Constance I. Millar; Daniel R. Cayan; Michael D. Dettinger; Daniel B. Fagre; Lisa J. Graumlich; Greg Greenwood; Malcolm K. Hughes; David L. Peterson; Frank L. Powell; Kelly T. Redmond; Nathan L. Stephenson; Thomas W. Swetnam; Connie) Woodhouse

    2006-01-01

    Climate variability and sustained change presage far-reaching transformations across America’s West, an expanse dominated by immense mountain ranges and interspersed with important urban centers. These mountains provide the region’s life blood—water that courses through its streams and runs out its faucets, power that fuels its industries...

  9. Pseudomonas aeruginosa in premise plumbing of large buildings.

    PubMed

    Bédard, Emilie; Prévost, Michèle; Déziel, Eric

    2016-12-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is widely occurring in the environment and is recognized for its capacity to form or join biofilms. The present review consolidates current knowledge on P. aeruginosa ecology and its implication in healthcare facilities premise plumbing. The adaptability of P. aeruginosa and its capacity to integrate the biofilm from the faucet and the drain highlight the role premise plumbing devices can play in promoting growth and persistence. A meta-analysis of P. aeruginosa prevalence in faucets (manual and electronic) and drains reveals the large variation in device positivity reported and suggest the high variability in the sampling approach and context as the main reason for this variation. The effects of the operating conditions that prevail within water distribution systems (disinfection, temperature, and hydraulic regime) on the persistence of P. aeruginosa are summarized. As a result from the review, recommendations for proactive control measures of water contamination by P. aeruginosa are presented. A better understanding of the ecology of P. aeruginosa and key influencing factors in premise plumbing are essential to identify culprit areas and implement effective control measures. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Assessment of relative potential for Legionella species or surrogates inhalation exposure from common water uses.

    PubMed

    Hines, Stephanie A; Chappie, Daniel J; Lordo, Robert A; Miller, Brian D; Janke, Robert J; Lindquist, H Alan; Fox, Kim R; Ernst, Hiba S; Taft, Sarah C

    2014-06-01

    The Legionella species have been identified as important waterborne pathogens in terms of disease morbidity and mortality. Microbial exposure assessment is a tool that can be utilized to assess the potential of Legionella species inhalation exposure from common water uses. The screening-level exposure assessment presented in this paper developed emission factors to model aerosolization, quantitatively assessed inhalation exposures of aerosolized Legionella species or Legionella species surrogates while evaluating two generalized levels of assumed water concentrations, and developed a relative ranking of six common in-home uses of water for potential Legionella species inhalation exposure. Considerable variability in the calculated exposure dose was identified between the six identified exposure pathways, with the doses differing by over five orders of magnitude in each of the evaluated exposure scenarios. The assessment of exposure pathways that have been epidemiologically associated with legionellosis transmission (ultrasonic and cool mist humidifiers) produced higher estimated inhalation exposure doses than pathways where epidemiological evidence of transmission has been less strong (faucet and shower) or absent (toilets and therapy pool). With consideration of the large uncertainties inherent in the exposure assessment process used, a relative ranking of exposure pathways from highest to lowest exposure doses was produced using culture-based measurement data and the assumption of constant water concentration across exposure pathways. In this ranking, the ultrasonic and cool mist humidifier exposure pathways were estimated to produce the highest exposure doses, followed by the shower and faucet exposure pathways, and then the toilet and therapy pool exposure pathways. Published by Elsevier Ltd.

  11. An assessment of drinking water contamination with Helicobacter pylori in Lima, Peru.

    PubMed

    Boehnke, Kevin F; Brewster, Rebecca K; Sánchez, Brisa N; Valdivieso, Manuel; Bussalleu, Alejandro; Guevara, Magaly; Saenz, Claudia Gonzales; Alva, Soledad Osorio; Gil, Elena; Xi, Chuanwu

    2018-04-01

    Helicobacter pylori is a gut bacterium that is the primary cause of gastric cancer. H. pylori infection has been consistently associated with lack of access to sanitation and clean drinking water. In this study, we conducted time-series sampling of drinking water in Lima, Peru, to examine trends of H. pylori contamination and other water characteristics. Drinking water samples were collected from a single faucet in Lima's Lince district 5 days per week from June 2015 to May 2016, and pH, temperature, free available chlorine, and conductivity were measured. Quantities of H. pylori in all water samples were measured using quantitative polymerase chain reaction. Relationships between the presence/absence and quantity of H. pylori and water characteristics in the 2015-2016 period were examined using regression methods accounting for the time-series design. Forty-nine of 241 (20.3%) of drinking water samples were contaminated with H. pylori. Statistical analyses identified no associations between sampling date and the likelihood of contamination with H. pylori. Statistically significant relationships were found between lower temperatures and a lower likelihood of the presence of H. pylori (P < .05), as well as between higher pH and higher quantities of H. pylori (P < .05). This study has provided evidence of the presence of H. pylori DNA in the drinking water of a single drinking water faucet in the Lince district of Lima. However, no seasonal trends were observed. Further studies are needed to determine the presence of H. pylori in other drinking water sources in other districts in Lima, as well as to determine the viability of H. pylori in these water sources. Such studies would potentially allow for better understanding and estimates of the risk of infection due to exposure to H. pylori in drinking water. © 2018 John Wiley & Sons Ltd.

  12. Sustainability of portable water services in the Philippines

    NASA Astrophysics Data System (ADS)

    Bohm, Robert A.; Essenburg, Timothy J.; Fox, William F.

    1993-07-01

    Financial sustainability of rural water systems in the Philippines is evaluated based on a comparison of willingness to pay for improved water and the costs of service delivery. Willingness to pay estimates indicate that user fees are unlikely to be sufficient to cover the full cost of service and subsidies are necessary, at least for a major portion of capital costs, or the water systems will become unsustainable because of insufficient resources. Sustainability is more probable when care is exercised in selecting villages for improved water services. Economies of scale lead to lower unit costs in larger villages. Willingness to pay is greater for household connections than for public faucets. Willingness to pay increases with income and wealth, family size, education, and dissatisfaction with traditional water sources.

  13. 75 FR 33765 - Foreign-Trade Zone 77-Memphis, TN, Application for Subzone, Delta Faucet Company (Faucets...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 42-2010] Foreign-Trade Zone 77--Memphis... submitted to the Foreign-Trade Zones Board (the Board) by the City of Memphis, grantee of FTZ 77, requesting...- Trade Zones Act, as amended (19 U.S.C. 81a-81u), and the regulations of the Board (15 CFR part 400). It...

  14. Introspective Reasoning Models for Multistrategy Case-Based and Explanation

    DTIC Science & Technology

    1997-03-10

    symptoms and diseases to causal 30 principles about diseases and first-principle analysis grounded in basic science. Based on research in process...the symptoms of the failure to conclusion that the process which posts learning goals a causal explanation of the failure. Secondl,,. the learner...the vernacular, a "jones" is a drug habit accompanied the faucet for water. Therefore, the story can end with by withdrawal symptoms . The verb "to jones

  15. USACE Takes Going Green to New Heights

    DTIC Science & Technology

    2010-08-01

    building of the same size—a savings of 4.5 mil- lion gallons of drinking water annually. To accomplish this, low-flow faucets , urinals, and showerheads... conserved with the help of room occupancy sensors that will automatically turn lights on and off, depending on whether a room is being occupied. Natural...round for the personnel. To conserve this air, large windows in the complex will be highly insulated to prevent air from leak- ing outside the

  16. Computing Science and Statistics. Volume 24. Graphics and Visualization

    DTIC Science & Technology

    1993-03-01

    the dough , turbulent fluid flow, the time between drips of behavior changes radically when the population growth water from a faucet, Brownian motion... cookie which clearly is the discrete parameter analogue of continuous param- appropriate as after dinner fun. eter time series analysis". I strongly...methods. Your fortune cookie of the night reads: One problem that statisticians traditionally seem to "uYou have good friends who will come to your aid in

  17. Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. intracellulare, and M. avium subspecies paratuberculosis in drinking water biofilms.

    PubMed

    Chern, Eunice C; King, Dawn; Haugland, Richard; Pfaller, Stacy

    2015-03-01

    Mycobacterium avium (MA), Mycobacterium intracellulare (MI), and Mycobacterium avium subsp. paratuberculosis (MAP) are difficult to culture due to their slow growing nature. A quantitative polymerase chain reaction (qPCR) method for the rapid detection of MA, MI, and MAP can be used to provide data supporting drinking water biofilms as potential sources of human exposure. The aim of this study was to characterize two qPCR assays targeting partial 16S rRNA gene sequences of MA and MI and use these assays, along with two previously reported MAP qPCR assays (IS900 and Target 251), to investigate Mycobacterium occurrence in kitchen faucet biofilms. MA and MI qPCR assays demonstrated 100% specificity and sensitivity when evaluated against 18 non-MA complex, 76 MA, and 17 MI isolates. Both assays detected approximately 1,000 cells from a diluted cell stock inoculated on a sampling swab 100% of the time. DNA analysis by qPCR indicated that 35.3, 56.9 and 11.8% of the 51 kitchen faucet biofilm samples collected contained MA, MI, and MAP, respectively. This study introduces novel qPCR assays designed to specifically detect MA and MI in biofilm. Results support the use of qPCR as an alternative to culture for detection and enumeration of MA, MI, and MAP in microbiologically complex samples.

  18. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Alison; Dunham Whitehead, Camilla; Lutz, James

    2011-12-02

    Reducing the water use of plumbing products—toilets, urinals, faucets, and showerheads —has been a popular conservation measure. Improved technologies have created opportunities for additional conservation in this area. However, plumbing products do not operate in a vacuum. This paper reviews the literature related to plumbing products to determine a systems framework for evaluating future conservation measures using these products. The main framework comprises the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing/sewer infrastructure. This framework for analysis provides a starting point for professionals considering future water conservation measures to evaluate the need for additionalmore » research, collaboration with other standards or codes committees, and attachment of additional metrics to water use efficiency (such as performance).« less

  19. Detection of Cryptosporidium sp. Oocyst and Giardia sp. cyst in faucet water samples from cattle and goat farms in Taiwan.

    PubMed

    Watanabe, Yuko; Kimura, Kenji; Yang, Cheng-Hsiung; Ooi, Hong-Kean

    2005-12-01

    A survey on the presence of Cryptosporidium oocyst and Giardia cyst in livestock drinking water as well as the urban tap water throughout Taiwan was carried out. Water examination for the presence of the protozoa was conducted by filtering through a PTFE membrane followed by immunomagnetic separation (IMS) and immunostaining the sediment with commercially available monoclonal antibody against Cryptosporidium and Giardia. Of the 55 different water samples from various sources examined, 2 were found to contain both of Cryptosporidium oocyst and Giardia cyst, 1 was found to contain Cryptosporidium oocyst only. These protozoa-positive water samples, originating from underground well and from the mountain spring, were also used as drinking water for livestock. However, no Cryptosporidium oocyst was found in the city tap water. This is the first report of Cryptosporidium oocyst and Giardia cyst being found in the drinking water for livestock.

  20. Recreational Vehicle Water Tanks as a Possible Source for Legionella Infections

    PubMed Central

    Litwin, Christine M.; Asebiomo, Bankole; Wilson, Katherine; Hafez, Michael; Stevens, Valerie; Fliermans, Carl B.; Fields, Barry S.; Fisher, John F.

    2013-01-01

    We investigated recreational vehicle (RV) water reservoirs in response to a case of pneumonia in which Legionella pneumophila was cultured both from the patient and a RV reservoir in which he travelled. Water samples processed and cultured at the CDC according to standard protocol were positive for Legionella spp. in 4/17 (24%) faucets, 1/11 (9%) water tanks from 4/20 (20%) RVs from three different campsites. Legionella spp. that were isolated included L. pneumophila (serogroups 1 and 6), L. anisa, L. feeleii, and L. quateriensis. Environmental controls from the potable water of the three campsites were culture-negative. A survey of maintenance practices by the RV users at the campsites revealed that chlorine disinfection of the water tanks was rarely performed. To prevent the possibility of Legionella infections, RV owners should implement regular chlorine disinfection of their water tanks and follow the recommended maintenance guidelines according to their owner's manuals. PMID:24371531

  1. A hospital outbreak of Legionella from a contaminated water supply.

    PubMed

    Tercelj-Zorman, Marjeta; Seljak, Marija; Stare, Janez; Mencinger, Joze; Rakovec, Joze; Rylander, Ragnar; Strle, Franc

    2004-03-01

    The authors performed a cross-sectional epidemiological survey to investigate the source of a hospital Legionella outbreak originating in contaminated water. Water temperature and air humidity were measured around possible contamination sources. A dead-end pipe was found to contain Legionella pneumophila serogroup 1. All individuals who acquired legionellosis had spent at least 30 min within 2 m of the contamination source. Among staff, 41 of 71 were exposed, and 31 of these fell ill. All 7 patients exposed to the contaminated water acquired legionellosis. None of the 94 bed-ridden patients from the same units developed the disease. An aerosol with 60% relative air humidity was formed near the suspect water faucets, but the humidity fell rapidly farther from the water source, suggesting that desiccation decreased the risk of infection. The healthy personnel and patients closest to the source acquired legionellosis, suggesting that risk was related less to compromised patients than to exposure.

  2. [Investigation of the cleanness of drinking water in public facilities].

    PubMed

    Kobayashi, Jun; Ikeda, Keiichi; Mochizuki, Mariko

    2012-01-01

    The drinking facilities in some public spaces (such as parks, public baths, etc.) in Japan which many unspecified people often use are useful for taking moisture easily and rapidly. Sometimes it might be also accepted that it is good for the prevention of diseases and for the health. The cleaning of these facilities is sure to be done in regular. However, they have misgivings about dirt in more short time by using of many people. It would be necessary for the public health to research the safety of them. In the present study, the pollution of inorganic components, inorganic anions, general bacteria and total coliforms in the initial getting water to stay near by the faucets, on the knobs and the intakes were examined.

  3. [The water supply of a pediatric hospital as a possible source of an outbreak of diarrhea due to Microsporidium spp. in immunocompromised patients].

    PubMed

    Coria, Paulina; Urízar, Claudia; Alba, Andrea; Noemí, Isabel; Pino, Anita; Cerva, José Luis

    2016-08-01

    The hospital water supply is a reservoir of a variety of potentially pathogenic microorganisms that can particularly affect children and immunocompromised patients. Potentially pathogenic Microsporidium spp. have been identified in water. Microsporidiosis is an emerging parasitic and opportunistic infection in immunocompromised patients. to describe an outbreak of nosocomial diarrhea due to Microsporidium, species Encephalitozoon intestinalis. Seven cases of E. intestinalis associated diarrhea were reported between november 2012 and february 2013, in a unit of immunocompromised patients in L. Calvo Mackenna Children's Hospital. Microsporidium spp. was found in the hospital water supply and water reservoir tank. Secondary cases were transmitted by contact. Control measures included contact precautions, not to use faucet water for hand washing, bottled water for drinking and water reservoir tank sanitation. This research is about a nosocomial outbreak associated with water supply. Water quality in Chilean hospitals is an unresolved issue, especially in immunocompromised patient areas. Compliance of cleaning and disinfection of water supply systems in hospitals must be ensured.

  4. Alluvial and riparian soils as major sources of lead exposure in young children in the Philippines: the role of floods.

    PubMed

    Ostrea, Enrique M; Ostrea, Angelo M; Villanueva-Uy, Ma Esterlita; Chiodo, Lisa; Janisse, James

    2015-04-01

    The objective of this paper was to determine the prevalence and sources of high lead (Pb) exposure among children in Bulacan, Philippines. A total of 150 children (6-7 years old) and their caregivers were studied. Lead was analyzed in children hair and deciduous teeth. Sources of lead exposure were determined by caregiver interview and Pb analysis of house soil, drinking faucet water, air, and water from seven Bulacan rivers. Lead was positive in 91.3% of children's hair (MC or median concentration = 8.9 μg/g; range = 0-38.29), in 46.2% of the teeth (MC = 0.000 μg/mg in positive samples; range = 0.00-0.020), in 100% of soil (MC = 27.06 mg/kg; range = 3.05-1155.80), in 21.1% of air (MC = 0 μg/Ncm; range = 0-0.10), in 4% of house, faucet water (MC = 0.0 ppm; range = 0-40). There was a significant correlation (Spearman's rho) between Pb in children's hair and soil (r = 0.195; p = 0.017) and between Pb in house water and outdoor air (r = 0.616; p = 0.005). There is no significant correlation between Pb in children's hair and teeth. None of the potential sources of Pb from interview were related to lead exposure in the children. Water from seven Bulacan rivers was 100% positive for lead (MC = 70.00 ppb; range = 30-90). Widespread flooding with river overflow occurred in Bulacan in 2009 which likely caused lead contamination of the soil. There was no significant difference in the lead concentration of the soil whether near or far from the river (p = 0.205, Mann-Whitney U test). High lead exposure in children in Bulacan is likely from soil contaminated by lead-polluted rivers during flooding. In areas where flooding is common, alluvial and riparian soils from polluted rivers are important sources of lead exposure in children.

  5. Contextualising Water Use in Residential Settings: A Survey of Non-Intrusive Techniques and Approaches

    PubMed Central

    Carboni, Davide; Gluhak, Alex; McCann, Julie A.; Beach, Thomas H.

    2016-01-01

    Water monitoring in households is important to ensure the sustainability of fresh water reserves on our planet. It provides stakeholders with the statistics required to formulate optimal strategies in residential water management. However, this should not be prohibitive and appliance-level water monitoring cannot practically be achieved by deploying sensors on every faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine learning and data mining techniques are promising techniques to analyse monitored data to obtain non-intrusive water usage disaggregation. This is because they can discern water usage from the aggregated data acquired from a single point of observation. This paper provides an overview of water usage disaggregation systems and related techniques adopted for water event classification. The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a discussion on the prominent challenges and future research are also included. PMID:27213397

  6. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species.

    PubMed

    Mouchtouri, Varvara; Velonakis, Emmanuel; Hadjichristodoulou, Christos

    2007-11-01

    Legionella spp. (> or = 500 cfu liter(-1)) were detected in 92 of 497 water distribution systems (WDS) examined. Thermal disinfection was applied at 33 WDS. After the first and second application of the disinfection procedure, 15 (45.4%) and 3 (9%) positive for remedial actions WDS were found, respectively. Legionella pneumophila was more resistant to thermal disinfection than Legionella non-pneumophila spp. (relative risk [RR]=5.4, 95% confidence intervals [CI]=1-35). WDS of hotels with oil heater were more easily disinfected than those with electrical or solar heater (RR=0.4 95% CI=0.2-0.8). Thermal disinfection seems not to be efficient enough to eliminate legionellae, unless repeatedly applied and in combination with extended heat flushing, and faucets chlorine disinfection.

  7. Water-quality data collected to determine the presence, source, and concentration of lead in the drinking water supply at Pipe Spring National Monument, northern Arizona

    USGS Publications Warehouse

    Macy, Jamie P.; Sharrow, David; Unema, Joel

    2013-01-01

    Pipe Spring National Monument in northern Arizona contains historically significant springs. The groundwater source of these springs is the same aquifer that presently is an important source of drinking water for the Pipe Spring National Monument facilities, the Kaibab Paiute Tribe, and the community of Moccasin. The Kaibab Paiute Tribe monitored lead concentrations from 2004 to 2009; some of the analytical results exceeded the U.S. Environmental Protection Agency action level for treatment technique for lead of 15 parts per billion. The National Park Service and the Kaibab Paiute Tribe were concerned that the local groundwater system that provides the domestic water supply might be contaminated with lead. Lead concentrations in water samples collected by the U.S. Geological Survey from three springs, five wells, two water storage tanks, and one faucet were less than the U.S. Environmental Protection Agency action level for treatment technique. Lead concentrations of rock samples representative of the rock units in which the local groundwater resides were less than 22 parts per million.

  8. Lead poisoning

    MedlinePlus

    ... lead is still found in some modern faucets. Soil contaminated by decades of car exhaust or years ... house paint scrapings. Lead is more common in soil near highways and houses. Hobbies involving soldering, stained ...

  9. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    PubMed Central

    Lin, Huirong; Zhang, Shuting; Gong, Song; Zhang, Shenghua; Yu, Xin

    2015-01-01

    The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence. PMID:26273617

  10. 43 CFR 8365.2-1 - Sanitation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., other food, clothing or household articles at any outdoor hydrant, pump, faucet or fountain, or restroom... secured to a fixed object or under control of a person, or is otherwise physically restricted at all times. ...

  11. 43 CFR 8365.2-1 - Sanitation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., other food, clothing or household articles at any outdoor hydrant, pump, faucet or fountain, or restroom... secured to a fixed object or under control of a person, or is otherwise physically restricted at all times. ...

  12. Survey of Intraoperative Bacterial Contamination in Dogs Undergoing Elective Orthopedic Surgery.

    PubMed

    Andrade, Natalia; Schmiedt, Chad W; Cornell, Karen; Radlinsky, MaryAnn G; Heidingsfelder, Lauren; Clarke, Kevin; Hurley, David J; Hinson, Whitney D

    2016-02-01

    To investigate the frequency, source, and risk factors of intraoperative (IO) surgeon and patient bacterial contamination during clean orthopedic surgeries, and to investigate the relationship between IO contamination and surgical site infection (SSI) in dogs. Prospective clinical study. Client-owned dogs undergoing stifle surgery (n = 100). IO cultures were taken in each case from surgical foot wrap, peri-incisional skin, surgical gloves, and the surgical team's hands. The environment (operating room [OR] lights, computers, scrub sink faucet, anesthesia gurney, and radiology table) was sampled every 5 months. Bacteria were identified and the contamination of each case was categorized. All gloves from the surgical team were collected and tested for perforations using a water infusion test. Cases were followed for at least 8 weeks to determine the presence or absence of SSI. Perioperative variables were evaluated for association with IO contamination and SSI. Bacterial isolates were yielded from 81% of procedures from 1 or more sources; 58% had positive hand cultures, 46% had positive glove cultures, 23% had positive patient skin cultures, and 12% had positive foot wrap cultures. Staphylococcus spp. was the most commonly recovered bacteria. There was no apparent association between IO contamination and SSI. The highest level of environmental contamination was associated with the scrub sink faucet, followed by the radiology table, anesthesia gurney, and OR computers. The IO glove perforation rate was 18%. Clean orthopedic procedures commonly had clinically insignificant bacterial contamination. In our study, bacteria responsible for SSI did not appear to colonize the patient in the OR. © Copyright 2016 by The American College of Veterinary Surgeons.

  13. Groundwater arsenic in Chimaltenango, Guatemala.

    PubMed

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  14. Assessing water use and quality through youth participatory research in a rural Andean watershed.

    PubMed

    Roa García, C E; Brown, S

    2009-07-01

    Water availability, use and quality in a rural watershed of the Colombian Andes were investigated through participatory research involving local youth. Research included the quantification of disaggregated water use at the household level; comparison of water use with availability; monitoring water quality of streams, community water intakes and household faucets; and the determination of land use-water quality interactions. Youth were involved in all aspects of the research from design to implementation, dissemination of results and remediation options. Quantification of domestic and on-farm water use, and water availability indicated that water availability was sufficient during the study period, but that only an 8% decrease in dry season supply would result in shortages. Elevated conductivity levels in the headwaters were related to "natural" bank erosion, while downstream high conductivity and coliform levels were associated with discharges from livestock stalls and poorly maintained septic tanks in the stream buffer zone. Through the involvement of youth as co-investigators, the knowledge generated by the research was appropriated at the local level. Community workshops led by local youth promoted water conservation and water quality protection practices based on research, and resulted in broader community participation in water management. The approach involving youth in research stimulated improved management of both land and water resources, and could be applied in small rural watersheds in developed or developing countries.

  15. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-10-01

    The increased availability of end use measurement studies allows for mechanistic and detailed approaches to estimating household water demand and conservation potential. This study simulates water use in a single-family residential neighborhood using end-water-use parameter probability distributions generated from Monte Carlo sampling. This model represents existing water use conditions in 2010 and is calibrated to 2006-2011 metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in the eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost-effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  16. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-04-01

    The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  17. Staph Infections

    MedlinePlus

    ... is your best defense against germs. Wash your hands briskly for at least 20 seconds, then dry them with a disposable towel and use another towel to turn off the faucet. If your hands aren't visibly dirty, you can use a ...

  18. The myth of the tear-shaped raindrop - a classroom experiment to reveal the truth

    NASA Astrophysics Data System (ADS)

    Teschl, Franz

    2013-04-01

    Water is fundamental to life on Earth and precipitation is the primarily source of freshwater. In large part precipitation reaches the Earth in the liquid form as raindrops. In Earth Sciences there are so many aspects to water and to rain in particular: storms, floods, landslides, droughts and still, there is a general misconception on the shape of such a common thing as a raindrop. These water drops - we all have seen them a thousand times. We see them at a leaking faucet just in the moment when a drop is released; we see them when a raindrop hits a water surface and on a windscreen. But when do we normally not observe them? - Right, on their path from the cloud to the ground. And on this journey they would not look like the ones we frequently see. Probably the picture of a leaking faucet is one reason why so many people would think of raindrops as streamlined teardrops. This myth is somehow subliminally advertised every day e.g. in the daily weather forecast where - more often than not - the symbol for rain is shown as a cloud with a few streamlined drops. In fact small raindrops are spherical and the bigger they get while falling through the atmosphere, the more they get flattened on the bottom - sometimes described as the top half of a hamburger bun. What props would you need to proof this fact in a classroom course? You can start off with a shaded classroom, a pipette filled with water, and a point-and-shoot camera with a permanent flash setting: Release a couple of drops by the pipette and try to catch at least one of them with the camera. Even if the drops have already a falling velocity of several meters per second it will be the flashlight that freezes the image. On these images the drops will be anything but tear-shaped. Sure enough, if you are not working e.g. in radar meteorology or related fields you need not necessarily care about raindrop shapes but this experiment can be a vivid example that invites students to have a closer look on something that seems so trivial. It can also be a reminder what lasting impact pictures can have in our education, how hard it is to reverse them, and how easy it is to accept a wrong but on the first sight plausible explanation.

  19. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    PubMed

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (<10 to 420 μg/L) and flushed plumbing systems (<10 to 96 μg/L) and sometimes concentrations differed among faucets within each home. All waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  20. A Helping Hand.

    ERIC Educational Resources Information Center

    Renner, Jason M.

    2000-01-01

    Discusses how designing a hand washing-friendly environment can help to reduce the spread of germs in school restrooms. Use of electronic faucets, surface risk management, traffic flow, and user- friendly hand washing systems that are convenient and maximally hygienic are examined. (GR)

  1. MRSA Infection

    MedlinePlus

    ... washing remains your best defense against germs. Scrub hands briskly for at least 15 seconds, then dry them with a disposable towel and use another towel to turn off the faucet. Carry a small bottle of hand sanitizer containing at least 62 percent alcohol for ...

  2. DETAIL VIEW OF THE ROCKET TRANSFER CART. NOTE THE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE ROCKET TRANSFER CART. NOTE THE VALVE BOX IN THE FOREGROUND RIGHT WITH AN EYE WASH FAUCET PROJECTING OUT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  3. Mycobacterium avium complex--the role of potable water in disease transmission.

    PubMed

    Whiley, H; Keegan, A; Giglio, S; Bentham, R

    2012-08-01

    Mycobacterium avium complex (MAC) is a group of opportunistic pathogens of major public health concern. It is responsible for a wide spectrum of disease dependent on subspecies, route of infection and patients pre-existing conditions. Presently, there is limited research on the incidence of MAC infection that considers both pulmonary and other clinical manifestations. MAC has been isolated from various terrestrial and aquatic environments including natural waters, engineered water systems and soils. Identifying the specific environmental sources responsible for human infection is essential in minimizing disease prevalence. This paper reviews current literature and case studies regarding the wide spectrum of disease caused by MAC and the role of potable water in disease transmission. Potable water was recognized as a putative pathway for MAC infection. Contaminated potable water sources associated with human infection included warm water distribution systems, showers, faucets, household drinking water, swimming pools and hot tub spas. MAC can maintain long-term contamination of potable water sources through its high resistance to disinfectants, association with biofilms and intracellular parasitism of free-living protozoa. Further research is required to investigate the efficiency of water treatment processes against MAC and into construction and maintenance of warm water distribution systems and the role they play in MAC proliferation. No claim to Australian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Memory Metals

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA during preparations for the space station, Memry Technologies Inc. investigated shape memory effect (SME). SME is a characteristic of certain metal alloys that can change shape in response to temperature variations. In the late 1980s and early 1990s, Memry used its NASA-acquired expertise to produce a line of home and industrial safety products, and refined the technology in the mid-1990s. Among the new products they developed are three MemrySafe units which prevent scalding from faucets. Each system contains a small valve that reacts to temperature, not pressure. When the water reaches dangerous temperatures, the unit reduces the flow to a trickle; when the scalding temperature subsides, the unit restores normal flow. Other products are the FIRECHEK 2 and 4, heat-activated shutoff valves for industrial process lines, which sense excessive heat and cut off pneumatic pressure. The newest of these products is Memry's Demand Management Water Heater which shifts the electricity requirement from peak to off-peak demands, conserving energy and money.

  5. Temperature diagnostic to identify high risk areas and optimize Legionella pneumophila surveillance in hot water distribution systems.

    PubMed

    Bédard, Emilie; Fey, Stéphanie; Charron, Dominique; Lalancette, Cindy; Cantin, Philippe; Dolcé, Patrick; Laferrière, Céline; Déziel, Eric; Prévost, Michèle

    2015-03-15

    Legionella pneumophila is frequently detected in hot water distribution systems and thermal control is a common measure implemented by health care facilities. A risk assessment based on water temperature profiling and temperature distribution within the network is proposed, to guide effective monitoring strategies and allow the identification of high risk areas. Temperature and heat loss at control points (water heater, recirculation, representative points-of-use) were monitored in various sections of five health care facilities hot water distribution systems and results used to develop a temperature-based risk assessment tool. Detailed investigations show that defective return valves in faucets can cause widespread temperature losses because of hot and cold water mixing. Systems in which water temperature coming out of the water heaters was kept consistently above 60 °C and maintained above 55 °C across the network were negative for Legionella by culture or qPCR. For systems not meeting these temperature criteria, risk areas for L. pneumophila were identified using temperature profiling and system's characterization; higher risk was confirmed by more frequent microbiological detection by culture and qPCR. Results confirmed that maintaining sufficiently high temperatures within hot water distribution systems suppressed L. pneumophila culturability. However, the risk remains as shown by the persistence of L. pneumophila by qPCR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Occurrence of potentially pathogenic nontuberculous mycobacteria in Mexican household potable water: a pilot study

    PubMed Central

    2013-01-01

    Background Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the “main house faucet” and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. Results AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as “good quality” potable water. Conclusion Household potable water may be a potential source of NTM infection in Mexico City. PMID:24330835

  7. Science Unlimited: Grades K-6 Competency Matrix.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Div. of Arts and Sciences.

    This competency matrix matches the primary and intermediate Science Unlimited lessons with the established competencies which appear in the Science Unlimited competency continuum. Primary lessons deal with: investigating dripping faucets; classification/sorting; smell; eyes; color; air; weather; observation and description; mystery boxes; change;…

  8. 15. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, OUNTER TOP, SINK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, OUNTER TOP, SINK, AND FAUCET, AND ORIGINAL WOOD FRAMED SLIDING-GLASS WINDOW IN NORTH WALL OVERLOOKING FRONT PORCH. VIEW TO NORTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  9. Water sanitation, access, use and self-reported diarrheal disease in rural Honduras.

    PubMed

    Halder, Gabriela E; Bearman, Gonzalo; Sanogo, Kakotan; Stevens, Michael P

    2013-01-01

    Only 79% of individuals living in rural Honduras use improved water sources. Inadequate drinking water quality is related to diarrheal illness, which in Honduras contributes to 18.6 episodes of diarrhea per child year in children under five years of age. The purpose of this study was to examine and compare access to drinking water and sanitation, as well as self-reported diarrheal disease incidence among three proximal communities in the Department of Yoro area of Honduras. An 11-item language-specific, interviewer-administered, anonymous questionnaire was administered to 263 randomly selected adults attending a June 2011 medical brigade held in the communities of Coyoles, La Hicaca, and Lomitas. Chi-square with Fisher exact tests were utilized to compare water access, sanitation, and self-reported diarrheal incidence among these communities. Coyoles and La Hicaca used private faucets as their primary water sources. Coyoles had the greatest use of bottled water. Lomitas used rivers as their primary water source, and did not use bottled water. Mostly, females were responsible for acquiring water. Usage of multiple water sanitation methods was most common in Coyoles, while no sanitation method was most common in Lomitas. In Lomitas and La Hicaca, water filters were mostly provided via donation by non-governmental organizations. Lomitas had the highest reported incidence of diarrhea among self and other household members. Critical differences in water access, sanitation, and self-reported diarrheal incidence among three geographically distinct, yet proximal, communities highlights the need for targeted interventions even in geographically proximal rural areas.

  10. 10 CFR 430.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Standards Institute. Appliance lamp means any lamp that— (1) Is specifically designed to operate in a... clothes washer which has a control system which is capable of scheduling a preselected combination of... to faucets and showerheads: Have the identical flow control mechanism attached to or installed within...

  11. Automating a High School Restroom.

    ERIC Educational Resources Information Center

    Ritner-Heir, Robbin

    1999-01-01

    Discusses how one high school transformed its restrooms into cleaner and more vandal-resistant environments by automating them. Solutions discussed include installing perforated stainless steel panel ceilings, using epoxy-based paint for walls, selecting china commode fixtures instead of stainless steel, installing electronic faucets and sensors,…

  12. Development and characterization of 17 polymorphic microsatellite loci in the faucet snail, Bithynia tentaculata (Gastroposa: Caenogastropoda; Bithyniidae)

    USGS Publications Warehouse

    Henningsen, Justin P.; Lance, Stacey L.; Jones, Kenneth L.; Hagen, Chris; Laurila, Joshua; Cole, Rebecca A.; Perez, Kathryn E.

    2010-01-01

    Bithynia tentaculata (Linnaeus, 1758), a snail native to Europe, was introduced into the US Great Lakes in the 1870's and has spread to rivers throughout the Northeastern US and Upper Mississippi River (UMR). Trematode parasites, for which B. tentaculata is a host, have also been introduced and are causing widespread waterfowl mortality in the UMR. Waterfowl mortality is caused by ingestion of trematode-infected B. tentaculata or insects infected with parasites released from the snails. We isolated and characterized 17 microsatellite loci from the invasive faucet snail, B. tentaculata (Gastropoda: Caenogastropoda: Bithyniidae). Loci were screened in 24 individuals of B. tentaculata. The number of alleles per locus ranged from 2 to 6, observed heterozygosity ranged from 0.050 to 0.783, and the probability of identity values ranged from 0.10 to 0.91. These new loci provide tools for examining the origin and spread of invasive populations in the US and management activities to prevent waterfowl mortality.

  13. Use and Abuse.

    ERIC Educational Resources Information Center

    Clement, Andy

    1999-01-01

    Explores how well-equipped and well-maintained restrooms can help prevent their being vandalized. Products such as no-touch soap systems, sensor-operated faucets, and graffiti-resistant partitions are discussed as is the use of vandal-resistant materials for the restroom's interior space. Finally, specific school policies are detailed that can…

  14. 19. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, COUNTER TOP, SINK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, COUNTER TOP, SINK, AND FAUCET, AND ORIGINAL WOODFRAMED SLIDING GLASS WINDOW IN NORTH WALL AT PHOTO LEFT CENTER OVERLOOKING FRONT PORCH. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  15. The New Generation of Thermal Mapping

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2012-01-01

    Thermal imaging was used 60+ years ago to enable the targeting of heat-seeking missiles and seeing opposing forces at night. Today thermograpy is employed for myriad uses, from turning on faucets, to tracking and attacking enemies from aerial spy drones, to identifying the scope of moisture infiltration in building envelopes. Thermography for…

  16. "No Effects" Studies Raising Eyebrows

    ERIC Educational Resources Information Center

    Viadero, Debra

    2009-01-01

    Like a steady drip from a leaky faucet, the experimental studies being released this school year by the federal Institute of Education Sciences are mostly producing the same results: "No effects," "No effects," "No effects." The disappointing yield is prompting researchers, product developers, and other experts to question the design of the…

  17. 78 FR 62970 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... of showerhead and hand-held showerhead; removal of body sprays from the proposed showerhead... standardized test method to be used when verifying the mechanical retention of a showerhead flow control insert... Faucets 1. Definitions 2. Test Procedure for Showerhead Flow Control Insert [[Page 62971

  18. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  19. [Volatile organic compounds of the tap water in the Watarase, Tone and Edo River system].

    PubMed

    Ohmichi, Kimihide; Ohmichi, Masayoshi; Machida, Kazuhiko

    2004-01-01

    The chlorination of river water in purification plants is known to produce carcinogens such as trihalomethanes (THMs). We studied the river system of the Watarase, Tone, and Edo Rivers in regard to the formation of THMs. This river system starts from the base of the Ashio copper mine and ends at Tokyo Bay. Along the rivers, there are 14 local municipalities in Gunma, Saitama, Ibaragi and Chiba Prefectures, as well as Tokyo. This area is the center of the Kanto plain and includes the main sources of water pollution from human activities. We also analyzed various chemicals in river water and tap water to clarify the status of the water environment, and we outline the problems of the water environment in the research area (Fig. 1). Water samples were taken from 18 river sites and 42 water faucets at public facilities in 14 local municipalities. We analyzed samples for volatile organic compounds such as THMs, by gas chromatography mass spectrometry (GC-MS), and evaluations of chemical oxygen demand (COD) were made with reference to Japanese drinking water quality standards. Concentrations of THMs in the downstream tap water samples were higher than those in the samples from the upperstream. This tendency was similar to the COD of the river water samples, but no correlation between the concentration of THMs in tap water and the COD in tap water sources was found. In tap water of local government C, trichloroethylene was detected. The current findings suggest that the present water filtration plant procedures are not sufficient to remove some hazardous chemicals from the source water. Moreover, it was confirmed that the water filtration produced THMs. Also, trichloroethylene was detected from the water environment in the research area, suggesting that pollution of the water environment continues.

  20. Home Mechanics for the Visually Impaired.

    ERIC Educational Resources Information Center

    Utrup, Robert G.

    The manual is intended to be used in a course on home mechanics for the visually handicapped and is organized into 17 lessons. Lessons cover the following topics: adhesives (such as Elmer's glue), cleaning drains, faucet repairs, fire extinguishers, the flush tank, the fuse box, glazing, hammers, hand sanding, handsaws, hangers, nails and wood…

  1. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda Faucet Works, Inc., Greater China Media... concerning the securities of China Wind Energy, Inc. because it has not filed any periodic reports since the...

  2. Sanitary status and incidence of methicillin-resistant Staphylococcus aureus and Clostridium difficile within Canadian hotel rooms.

    PubMed

    Xu, Changyun; Weese, Scott J; Namvar, Azadeh; Warriner, Keith

    2015-04-01

    The study described in this article aimed at establishing a baseline assessment of the sanitary status of ice and guest rooms within Canadian hotels. Collectively, 54 hotel rooms belonging to six different national chains were sampled. High-contact surfaces (comforter, alarm clock, bedside lamp, TV remote, bathroom countertop, faucet, and toilet seat) were sampled using adenosine triphosphate (ATP) swabs and replicate organism detection and counting plates. ATP swab readings ranged from 2.12 to 4.42 log relative light units. Coliforms were recovered from 36% of surfaces with high prevalence being recovered from the comforter, TV remote, bathroom countertop, faucet, and toilet seat. Oxacillin-resistant bacteria were recovered from 19% of surfaces with 46% of isolates confirmed as methicillin-resistant Staphylococcus aureus. Two toxigenic Clostridium difficile isolates were recovered in the course of the study. Collectively, 24% of the ice samples harbored coliforms with a single sample testing positive for E. coli. The authors' study demonstrates that hotel rooms represent a potential source of community-acquired infections and the need for enhanced sanitation practices.

  3. How did the fracking controversy emerge in the period 2010-2012?

    PubMed

    Mazur, Allan

    2016-02-01

    In 2010-2012, the controversy over fracking grew rapidly, first in the United States, and then internationally. An important step was the anti-fracking documentary film Gasland. With help from celebrity sources, the film was produced and won a prize at the Sundance Film Festival by early 2010 and had an Oscar nomination by early 2011, in the meantime popularizing potent images of hazard including tainted aquifers and ignitable water running from kitchen faucets. During this period, major US news organizations paid little attention to the issue. The offshore Deepwater Horizon disaster of April 2010 spurred The New York Times to prolific reporting on potential risks of the new onshore technique for extracting shale gas. With flagship news coverage, the controversy had by 2012 gained wide media attention that evoked public concern and opposition, spreading from the United States to other nations. © The Author(s) 2014.

  4. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    PubMed

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Beyond the Classroom: The Impact of Informal STEM Experiences on Student Attitudes and Interest

    NASA Astrophysics Data System (ADS)

    Scinski, Lidia

    A lack of social capital can be a critical factor impeding underrepresented minority (URM) students from obtaining the mathematical and scientific background required to achieve educational and career success in STEM fields. In this study, the effects of generating and utilizing social capital within an informal STEM outreach summer camp are examined as resources in strengthening the academic pipeline for Hispanic students towards careers in STEM. Empirical studies have shown that economically disadvantaged and minority students experience larger learning losses during "unschooled" periods of time than their middle-class and White counterparts. The "faucet theory" explains how the achievement gap widens during unschooled periods of time when the resource faucet is turned off and families of students from disadvantaged backgrounds are unable to make up for these resources. Consequently, minority and students of disadvantaged backgrounds are quickly shortcircuited in taking advantage of opportunities to pursue careers in STEM fields. To address the research questions, this study employed a qualitative research design, specifically an instrumental case study design using mixed methods within a bounded program. The methods included multiple measures to collect and analyze data from focus group interviews, electronic documents, observations, and survey administrations. The sample population included forty-nine Hispanic 7th and 8th grade students from middle schools in San Diego County. Results of the study demonstrated that the informal STEM outreach summer camp positively impacted Hispanic students and increased interest and attitudes toward STEM choices. STEM programs offered during out-of-school time need to be relationship based to support young students' social and emotional development (Goldstein, Lee, & Chung, 2010). The resource faucet continued to flow during the summer for iQUEST science camp participants because they were able to tap into social capital in the surrounding community. More specifically, participants were able to generate social capital in two key forms of institutional support: "funds of knowledge" and "emotional and moral support".

  6. Spread from the Sink to the Patient: In Situ Study Using Green Fluorescent Protein (GFP)-Expressing Escherichia coli To Model Bacterial Dispersion from Hand-Washing Sink-Trap Reservoirs

    PubMed Central

    Kotay, Shireen; Chai, Weidong; Guilford, William; Barry, Katie

    2017-01-01

    ABSTRACT There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients. PMID:28235877

  7. Spread from the Sink to the Patient: In Situ Study Using Green Fluorescent Protein (GFP)-Expressing Escherichia coli To Model Bacterial Dispersion from Hand-Washing Sink-Trap Reservoirs.

    PubMed

    Kotay, Shireen; Chai, Weidong; Guilford, William; Barry, Katie; Mathers, Amy J

    2017-04-15

    There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli -containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients. Copyright © 2017 Kotay et al.

  8. The Effects of Experiential, Service-Learning Summer Learning Programs on Youth Outcomes

    ERIC Educational Resources Information Center

    Greenman, Adam

    2014-01-01

    This study examines whether summer programming that relies on the delivery of a hands-on, experiential service learning curriculum to deliver content is able to reduce or eliminate summer learning loss in middle school students. Using Alexander, Entwisle, and Olson's (2001) faucet theory as a theoretical framework and a qualitative case study…

  9. Stereotypes for lever-tap operation.

    PubMed

    Chan, Alan H S; Tsang, Steve N H; Hoffmann, Errol R

    2016-04-15

    Lever-operated taps have become more popular and are commonly used in operating theatres, food preparation areas and where users have poor strength; however, there is very little data available for user expectations on tap operation. Thus, an experiment on dual lever-operated water tap (faucets) was conducted with the aim of for providing information for improved design. This study aims to compare different lever-tap designs and their stereotypes adopted by the end-user to operate them also to verify the stereotypes for increasing or decreasing the water flow. 240 participants were requested to rotate the lever tap to indicate direction for increasing and decreasing water flow with simulated hardware, using actual taps placed at the top of a simulated washbasin. Nine initial positions of the lever were used for increasing and decreasing flows, ranging from the ends of both levers facing outward from the bowl center to the ends of both levers facing inward. All levers operated in the horizontal plane. Strong stereotypes (greater than 80%) for several initial lever orientations were found for increasing water flow, especially when the initial lever end positions were facing outwards. However, for different initial positions at which participants were told that the water was flowing and the flow was to be decreased, no strong stereotypes existed. The stereotypes for increasing water flow of dual-lever taps were strong, whereas those for decreasing water flow were weak and hence the stereotype reversibility was also weak. In terms of user expectations, lever taps do not show any great advantage over cross-taps in terms of operator expectations for increasing and decreasing water flow.

  10. Deterministic Chaos: Proposal of an Informal Educational Activity Aimed at High School Students

    ERIC Educational Resources Information Center

    Greco, Valeria; Spagnolo, Salvatore

    2016-01-01

    Chaos theory is not present in the Italian school curricula and textbooks in spite of being present in many topics of classical physics and in everyday life. Chaotic dynamics, in fact, are involved in phenomena easily accessible to everyone or in events experienced by most people in their lives (the dripping of a faucet which keeps people awoken…

  11. Techno-ecological synergy as a path toward sustainability of a North American residential system.

    PubMed

    Urban, Robert A; Bakshi, Bhavik R

    2013-02-19

    For any human-designed system to be sustainable, ecosystem services that support it must be readily available. This work explicitly accounts for this dependence by designing synergies between technological and ecological systems. The resulting techno-ecological network mimics nature at the systems level, can stay within ecological constraints, and can identify novel designs that are economically and environmentally attractive that may not be found by the traditional design focus on technological options. This approach is showcased by designing synergies for a typical American suburban home at local and life cycle scales. The objectives considered are carbon emissions, water withdrawal, and cost savings. Systems included in the design optimization include typical ecosystems in suburban yards: lawn, trees, water reservoirs, and a vegetable garden; technological systems: heating, air conditioning, faucets, solar panels, etc.; and behavioral variables: heating and cooling set points. The ecological and behavioral design variables are found to have a significant effect on the three objectives, in some cases rivaling and exceeding the effect of traditional technological options. These results indicate the importance and benefits of explicitly including ecosystems in the design of sustainable systems, something that is rarely done in existing methods.

  12. The ironic effect of guessing: increased false memory for mediated lists in younger and older adults

    PubMed Central

    Coane, Jennifer H.; Huff, Mark J.; Hutchison, Keith A.

    2016-01-01

    Younger and older adults studied lists of words directly (e.g., creek, water) or indirectly (e.g., beaver, faucet) related to a nonpresented critical lure (CL; e.g., river). Indirect (i.e., mediated) lists presented items that were only related to CLs through nonpresented mediators (i.e., directly related items). Following study, participants completed a condition-specific task, math, a recall test with or without a warning about the CL, or tried to guess the CL. On a final recognition test, warnings (vs. math and recall without warning) decreased false recognition for direct lists, and guessing increased mediated false recognition (an ironic effect of guessing) in both age groups. The observed age-invariance of the ironic effect of guessing suggests that processes involved in mediated false memory are preserved in aging and confirms the effect is largely due to activation in semantic networks during encoding and to the strengthening of these networks during the interpolated tasks. PMID:26393390

  13. The ironic effect of guessing: increased false memory for mediated lists in younger and older adults.

    PubMed

    Coane, Jennifer H; Huff, Mark J; Hutchison, Keith A

    2016-01-01

    Younger and older adults studied lists of words directly (e.g., creek, water) or indirectly (e.g., beaver, faucet) related to a nonpresented critical lure (CL; e.g., river). Indirect (i.e., mediated) lists presented items that were only related to CLs through nonpresented mediators (i.e., directly related items). Following study, participants completed a condition-specific task, math, a recall test with or without a warning about the CL, or tried to guess the CL. On a final recognition test, warnings (vs. math and recall without warning) decreased false recognition for direct lists, and guessing increased mediated false recognition (an ironic effect of guessing) in both age groups. The observed age-invariance of the ironic effect of guessing suggests that processes involved in mediated false memory are preserved in aging and confirms the effect is largely due to activation in semantic networks during encoding and to the strengthening of these networks during the interpolated tasks.

  14. A study of DNA damage in buccal cells of consumers of well- and/or tap-water using the comet assay: Assessment of occupational exposure to genotoxicants.

    PubMed

    Vazquez Boucard, Celia; Lee-Cruz, Larisa; Mercier, Laurence; Ramírez Orozco, Martín; Serrano Pinto, Vania; Anguiano, Gerardo; Cazares, Linette; Díaz, Daniel

    2017-10-01

    Because of concerns that natural aquifers in the region of Todos Santos (Baja California Sur, Mexico) might be contaminated by organochlorine pesticides and heavy metals, a case-control study was conducted among consumers and non-consumers of well- and/or tap-water to determine risks to human health. This study was based on a genotoxic evaluation of buccal cells using the Comet assay technique. Levels of DNA damage in the consumers group were significantly higher than those of the control group. However, occupational exposure to genotoxicants showed to be the critical factor rather than water consumption. Taking into account the professions of well- and/or tap-water consumers, agricultural workers exposed directly (those who fumigated) or indirectly (those not involved in fumigating) to agrochemicals showed greater genetic damage than controls. This difference persisted even when age, and whether the person smoked or consumed alcoholic drinks were considered. These factors were not associated with the level of genetic damage observed. Chemical analyses of organochlorine pesticides and heavy metals were carried out to evaluate the water quality of wells, faucets, and surface water of canals consumed by the population and/or used for irrigation. High concentrations of α and β endosulfan were detected in water of surface canals. Although our inventory of agrochemicals employed in the region showed the use of products considered carcinogenic and/or mutagenic, they were not detected by the analytical techniques used. Heavy metals (arsenic, mercury, and lead) were detected in water of some wells used for irrigation and human consumption. Environ. Mol. Mutagen. 58:619-627, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Building America Case Study: Control Retrofits for Multifamily Domestic Hot Water Recirculation Systems, Brooklyn, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  16. Building America Case Study: Control Retrofits for Multifamily Domestic Hot Water Recirculation Systems, Brooklyn, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Dentz; E. Ansanelli, H. Henderson, Jr.; K. Varshney

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  17. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  18. The interplay of episodic and semantic memory in guiding repeated search in scenes.

    PubMed

    Võ, Melissa L-H; Wolfe, Jeremy M

    2013-02-01

    It seems intuitive to think that previous exposure or interaction with an environment should make it easier to search through it and, no doubt, this is true in many real-world situations. However, in a recent study, we demonstrated that previous exposure to a scene does not necessarily speed search within that scene. For instance, when observers performed as many as 15 searches for different objects in the same, unchanging scene, the speed of search did not decrease much over the course of these multiple searches (Võ & Wolfe, 2012). Only when observers were asked to search for the same object again did search become considerably faster. We argued that our naturalistic scenes provided such strong "semantic" guidance-e.g., knowing that a faucet is usually located near a sink-that guidance by incidental episodic memory-having seen that faucet previously-was rendered less useful. Here, we directly manipulated the availability of semantic information provided by a scene. By monitoring observers' eye movements, we found a tight coupling of semantic and episodic memory guidance: Decreasing the availability of semantic information increases the use of episodic memory to guide search. These findings have broad implications regarding the use of memory during search in general and particularly during search in naturalistic scenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The interplay of episodic and semantic memory in guiding repeated search in scenes

    PubMed Central

    Võ, Melissa L.-H.; Wolfe, Jeremy M.

    2012-01-01

    It seems intuitive to think that previous exposure or interaction with an environment should make it easier to search through it and, no doubt, this is true in many real-world situations. However, in a recent study, we demonstrated that previous exposure to a scene does not necessarily speed search within that scene. For instance, when observers performed as many as fifteen searches for different objects in the same, unchanging scene, the speed of search did not decrease much over the course of these multiple searches (Võ & Wolfe, 2012). Only when observers were asked to search for the same object again did search become considerably faster. We argued that our naturalistic scenes provided such strong “semantic” guidance — e.g., knowing that a faucet is usually located near a sink — that guidance by incidental episodic memory — having seen that faucet previously — was rendered less useful. Here, we directly manipulated the availability of semantic information provided by a scene. By monitoring observers’ eye movements, we found a tight coupling of semantic and episodic memory guidance: Decreasing the availability of semantic information increases the use of episodic memory to guide search. These findings have broad implications regarding the use of memory during search in general and particularly during search in naturalistic scenes. PMID:23177141

  20. Low Contribution of PbO 2 -Coated Lead Service Lines to Water Lead Contamination at the Tap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triantafyllidou, Simoni; Schock, Michael R.; DeSantis, Michael K.

    2015-02-24

    To determine if residential water sampling corroborates the expectation that formation of stable PbO2 coatings on lead service lines (LSLs) provides an effective lead release control strategy, lead profile sampling was evaluated for eight home kitchen taps in three U.S. cities with observed PbO2-coated LSLs (Newport, Rhode Island; Cincinnati and Oakwood, Ohio). After various water standing times, these LSLs typically released similar or lower peak lead levels (1 to 18 μg/L) than the lead levels from the respective kitchen faucets (1 to 130 μg/L), and frequently 50–80% lower than the lead levels typically reported from Pb(II)-coated LSLs in comparable publishedmore » sampling studies. Prolonged stagnation (10–101 h) at the Cincinnati sites produced varying results. One site showed minimal (0–4 μg/L) increase in lead release from the PbO2-coated LSL, and persistence of free chlorine residual. However, the other site showed up to a 3-fold increase proportional to standing time, with essentially full depletion of the chlorine residual. Overall, lead release was consistently much lower than that reported in studies of Pb(II)-coated LSL scales, suggesting that natural formation of PbO2 in LSLs is an effective lead “corrosion” control strategy.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  2. When the School "Faucet" Turns Off, the Sociocultural "Sprinklers" Turn On: Observing Funds of Knowledge among First and Second Grade English Learners Who Experienced Summer Gains in Reading

    ERIC Educational Resources Information Center

    Cannon, Shannon Kay

    2010-01-01

    Based on a mixed methods research design that included an examination of the impact of summer, case study analyses, and survey findings, English learners appear to have an advantage over their non-English learner peers in resisting summer loss and developing social competence. This study examined the effect of summer vacation on the oral reading…

  3. Fixitup Faucet Company's Overseas Move. 12th Grade Lesson. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Harris, Judy; Jacobson, Edy

    This lesson asks 12th grade students to imagine that they are special assistants to the Undersecretary of Commerce for a foreign country who must answer a letter from a U.S. company planning to move its manufacturing operations overseas. The lesson also asks them to design a business brochure that will convince the company to come to their…

  4. On-tap passive enrichment, a new way to investigate off-flavor episodes in drinking water.

    PubMed

    Tondelier, Christophe; Thouvenot, Thomas; Genin, Arnaud; Benanou, David

    2009-04-03

    Because taste and odor events in drinking water are often fleeting and unpredictable phenomena, an innovative enrichment sampler has been developed to trap off-flavor compounds directly at the consumer's tap. The ARISTOT (Advanced Relevant Investigation Sampler for Taste & Odor at Tap) consists of a tap adapter in which seven polydimethylsiloxane (PDMS) coated stir bars are placed, allowing the stir bar sorptive extraction (SBSE) of organic compounds during each tap opening. In order to study the efficiency of ARISTOT, a private network pilot unit has been constructed in our laboratory, equipped with four faucets in parallel, solenoid valves for an automation of the system and a mixing chamber to spike drinking water with odorous compounds in order to have homogenously smelling water at each tap. After enrichment, the stir bars are taken out, in-line thermo-desorbed and analyzed by gas chromatography coupled with a mass spectrometer. The results showed the high sensitivity of ARISTOT, which was able to quickly monitor odorous compounds at the sub ng/L level. A "multishot" method was developed to analyze chemicals concentrated on the seven stir bars in only one chromatographic run, thereby increasing the sensitivity of the system. Higher enrichment factors were obtained under low water flow rates or by using longer stir bars and/or stir bars with a higher PDMS film thickness. No significant loss of extracted compounds was reported for flow rates between 2 and 4L/min. This allowed us to spike the stir bars with an internal standard prior to sampling in order to monitor the analytical variations. It was also observed that hot water increases the loss of enriched solutes but the quantification can be corrected by internal standard addition.

  5. Microbiological Values of Rainwater Harvested in Adelaide

    PubMed Central

    Edwards, John W.

    2018-01-01

    In Australia, rainwater is an important source of water for many households. Unlike municipal water, rainwater is often consumed untreated. This study investigated the potential contamination of rainwater by microorganisms. Samples from 53 rainwater tanks across the Adelaide region were collected and tested using Colilert™ IDEXX Quanti-Tray*/2000. Twenty-eight out of the 53 tanks (53%) contained Escherichia coli. Samples collected from ten tanks contained E. coli at concentrations exceeding the limit of 150 MPN/100 mL for recreational water quality. A decline in E. coli was observed in samples collected after prolonged dry periods. Rainwater microbiological values depended on the harvesting environment conditions. A relationship was found between mounted TV antenna on rooftops and hanging canopies; and E. coli abundance. Conversely, there was no relationship between seasonality and E. coli or roof and tank structure materials and E. coli. In several tanks used for drinking water, samples collected prior to and after filtration showed that the filtration systems were not always successful at completely removing E. coli. These results differed from a study undertaken in the laboratory that found that a commercially available in-bench 0.45 µm filter cartridge successfully reduced E. coli in rainwater to 0 MPN/100 mL. After running a total of 265 L of rainwater which contained high levels of E. coli through the filter (half of the advertised filter lifespan), the filter cartridge became blocked, although E. coli remained undetected in filtered water. The difference between the laboratory study and field samples could be due to improper maintenance or installation of filters or recontamination of the faucet after filtration. The presence of E. coli in water that is currently used for drinking poses a potential health concern and indicates the potential for contamination with other waterborne pathogens. PMID:29419793

  6. Serotypes of Vibrio cholerae non-O1 isolated from water supplies for human consumption in Campeche, México and their antibiotic susceptibility pattern.

    PubMed

    Isaac-Márquez, A P; Lezama-Dávila, C M; Eslava-Campos, C; Navarro-Ocaña, A; Cravioto-Quintana, A

    1998-01-01

    The presence of Vibrio cholerae non-O1 in water supplies for human consumption in the city of Campeche and rural locality of Bécal was investigated. V. cholerae non-O1 was detected in 5.9% of the samples obtained in deep pools of Campeche. Studies conducted in Bécal and neighbourhood of Morelos in Campeche indicated that collected samples harbored V. cholerae non-O1 in 31.5% and 8.7% respectively. There was a particular pattern of distribution of V. cholerae non-O1 serotypes among different studied regions. Accordingly, V. cholerae non-O1 serotype O14 predominated in the deep pools of Campeche and together with V. cholerae non-O1, O155 were preferentially founds in samples taken from intradomiciliary faucets in the neighbourhood of Morelos. Samples from Bécal predominantly presented the serotype O112. 60% and 53.8% of all studied strains of V. cholerae non-O1 proved to be resistant to ampicillin and carbenicillin. 3.1%, 7.7% and 6.2% presented resistant to doxycycline, trimethoprim-sulfamethoxazole and erythromycin respectively. The study showed the necessity of performing a strong epidemiologic surveillance for emergence and distribution of V. cholerae non-O1.

  7. Monel Machining

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Castle Industries, Inc. is a small machine shop manufacturing replacement plumbing repair parts, such as faucet, tub and ballcock seats. Therese Castley, president of Castle decided to introduce Monel because it offered a chance to improve competitiveness and expand the product line. Before expanding, Castley sought NERAC assistance on Monel technology. NERAC (New England Research Application Center) provided an information package which proved very helpful. The NASA database was included in NERAC's search and yielded a wealth of information on machining Monel.

  8. Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom.

    PubMed

    Lu, Jingrang; Buse, Helen; Struewing, Ian; Zhao, Amy; Lytle, Darren; Ashbolt, Nicholas

    2017-01-01

    Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cold  = 26, N hot  = 26) and shower (N shower  = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L -1 ) of Mycobacterium spp. were highest (100 %, 1.4 × 10 5 ), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP's occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential pathogens.

  9. Ten Questions Concerning the Aerosolization and Transmission of Legionella in the Built Environment.

    PubMed

    Prussin, Aaron J; Schwake, David Otto; Marr, Linsey C

    2017-10-01

    Legionella is a genus of pathogenic Gram-negative bacteria responsible for a serious disease known as legionellosis, which is transmitted via inhalation of this pathogen in aerosol form. There are two forms of legionellosis: Legionnaires' disease, which causes pneumonia-like symptoms, and Pontiac fever, which causes influenza-like symptoms. Legionella can be aerosolized from various water sources in the built environment including showers, faucets, hot tubs/swimming pools, cooling towers, and fountains. Incidence of the disease is higher in the summertime, possibly because of increased use of cooling towers for air conditioning systems and differences in water chemistry when outdoor temperatures are higher. Although there have been decades of research related to Legionella transmission, many knowledge gaps remain. While conventional wisdom suggests that showering is an important source of exposure in buildings, existing measurements do not provide strong support for this idea. There has been limited research on the potential for Legionella transmission through heating, ventilation, and air conditioning (HVAC) systems. Epidemiological data suggest a large proportion of legionellosis cases go unreported, as most people who are infected do not seek medical attention. Additionally, controlled laboratory studies examining water-to-air transfer and source tracking are still needed. Herein, we discuss ten questions that spotlight current knowledge about Legionella transmission in the built environment, engineering controls that might prevent future disease outbreaks, and future research that is needed to advance understanding of transmission and control of legionellosis.

  10. On the Fundamental Cause of River Meanders

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Diplas, P.

    2017-12-01

    River meandering has been attributed to the erosion and deposition of sediments along river banks, yet the fundamental cause of the instability has not been heretofore identified. In this conceptual study, we address the conditions that lead to the meander instability, in effect "upstream" of the many previous and thorough analyses of hydraulics and the alternating erosional/depositional pattern that ensues once such conditions exist. Rivers are only one of many fluid systems that exhibit meandering behavior, and no other involves sediments at all. Other examples include the gulf stream, glacial meltwater, the jet stream, channels in submarine fans, water falling directly down from a faucet, derailed trains and even tractor trailer trucks. As such, a universal criterion is needed to explain meandering in general. We show that meandering in all systems is driven by the existence of an adverse pressure gradient, such that the resulting deceleration imposed upon the fluid causes it to be energetically favorable to divert the flow to either side of its original direction. This universal framework makes it possible to determine under what conditions the meandering instability will be manifest in altered flow/channel morphology.

  11. Genetic structure of faucet snail, Bithynia tentaculata populations in North Americal based on microsattelite markers

    USGS Publications Warehouse

    Perez, Kathryn E.; Werren, Rebecca L.; Lynum, Christopher A.; Hartman, Levi A.; Majoros, Gabor; Cole, Rebecca A.

    2016-01-01

    Bithynia tentaculata is believed to have been extirpated from North America during the last glacial maximum. It was reintroduced into North America via the Great Lakes basin in the 1800’s and has recently been expanding its geographic range. This snail serves as intermediate host for three trematodes that cause extensive recurring morbidity and mortality events in migratory water birds along the Mississippi River. Using twelve microsatellite loci for ~200 individual snails from 11 populations in North America and Europe, we examined one of the three major geographic regions from which founding populations into the Great Lakes typically originate. Our data supports a single recolonization of North America into the Great Lakes Basin followed by subsequent introduction events from the Great Lakes to other large watersheds in North America. However, additional watersheds in Europe require sampling to confirm this result. No populations with genetic signatures indicative of North American glacial relics were found. The initial invasion of North America was likely not from the Ponto-Caspian basin, the usual source of freshwater invasive species to the Laurentian Great Lakes.

  12. Role of water-saving devices in reducing urban water consumption in the mega-city of Tehran, case study: a residential complex.

    PubMed

    Bidhendi, Gholamreza Nabi; Nasrabadi, Touraj; Vaghefi, Hamid Reza Sharif; Hoveidi, Hassan; Jafari, Hamid Reza

    2008-04-01

    Iran is one of 27 countries that are likely to face increasing water shortage crises between now and 2025 unless action is taken to reduce currently high-per-capita urban water consumption. Accordingly, consumption control in the mega-city of Tehran will be an invaluable achievement. A study of Tehran water consumers has determined that household consumers are responsible for 70 percent of the total consumption. Keeping that figure in mind, the authors set out to assess rates of consumption by water fixtures, with an emphasis on household users, and to examine the effects of installing subcounters and reducers. They selected an apartment complex in which it was possible to install water subcounters for each unit. The first step was to evaluate resident attitudes. Block 3, which had 10 units, was selected to cooperate with the project. The second step was to install counters for all 10 units to determine consumption by different fixtures. (The counters were installed in kitchens, in bathrooms, on toilets, on washing machines, and on flash tanks). In the next step, data entry forms for fixture consumption were completed for a period of 10 days. Then single-handle faucets and reducers were installed, and the outcomes were logged for a period of 10 days. Counter readings were performed by the volunteer residents or by educated personnel every 24 hours, and the total volume of inside consumption was compared with the consumption registered by a base counter placed outside each unit. In the course of the project, the consumption per capita was calculated every 24 hours to yield a real and unbiased model that is applicable to city of Tehran. The results showed a total reduction in water consumption of about 20 percent. Thus, with suitable planning and application of cultural and technical methods, it is possible to optimize consumption in Tehran in the near future.

  13. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L -1 Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  14. Do investments in wildfire risk reduction lead to downstream watershed service outcomes? An integrated wildfire-erosion-economic analysis of return on investment from fuel treatments in Colorado

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Jones, K.; Addington, R.; Cannon, J.; Cheng, T.; Gannon, B.; Kampf, S. K.; Saavedra, F.; Wei, Y.; Wolk, B.

    2016-12-01

    Large, severe wildfires negatively impact forested watersheds in the Western United States and jeopardize critical ecosystem services. Specifically, severe wildfires increase overland flow and runoff that contains sediment and debris, and cause other natural hazards such as floods. High erosion from burned watersheds can fill water supply reservoirs and clog water filtration systems, which has direct costs to water utilities in the form of increased water treatment costs and damage to infrastructure. With increasing wildfire risk due to global climate change and other factors, municipal water providers and users have been investing in management practices to reduce high-severity wildfire risk and increase source water security. In this research we integrate wildfire and erosion prediction models to estimate the return on investment from wildfire fuel treatments in the Upper South Platte watershed, southwest of Denver, Colorado. Denver Water and the U.S. Forest Service created the Forest-To-Faucets Partnership, one of the first payments for watershed services (PWS) programs in the United States. To date they have spent more than $30 million in the Upper South Platte to restore forests and conduct fuel reduction work across landownerships. However, due to the lack of appropriate analytical tools, it is still unclear what returns are being achieved with these investments, aside from the total number of acres treated. In this analysis we consider three treatment scenarios - current fuel treatment investments, a series of investments based on prioritization criteria, and investments based on accessibility - and model potential burn probability, fire severity and erosion. We then estimate the economic benefits of avoiding runoff using past expenditures by Denver Water and compare these to treatment costs. This research directly informs management practices in the Upper South Platte watershed and provides a framework that can inform decisions to optimize location, size, and type of wildfire treatments that maximize financial returns on investments, enhancing the resilience of forested watersheds to fire risk. More broadly, this project illustrates the evolution of PWS programs towards a more intensive analytical approach to estimating return on investments by linking ecological and economic outcomes.

  15. An integrated approach to control a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit.

    PubMed

    Knoester, M; de Boer, M G J; Maarleveld, J J; Claas, E C J; Bernards, A T; de Jonge, E; van Dissel, J T; Veldkamp, K E

    2014-04-01

    In this paper we aim to provide insight into the complexity of outbreak management in an intensive care unit (ICU) setting. In October 2010 four patients on the ICU of our tertiary care centre were colonized or infected with a multidrug-resistant strain of Pseudomonas aeruginosa (MDR-PA). An outbreak investigation was carried out and infection control measures were taken in an attempt to identify a potential source and stop transmission. The outbreak investigation included descriptive epidemiology, comprising retrospective case finding by reviewing the laboratory information system back to 2004 and prospective case finding by patient screening for MDR-PA. Furthermore, microbiological analysis, environmental screening and a case-control study were carried out. Infection control measures consisted of re-education of healthcare personnel on basic hygiene measures, auditing of hygiene procedures used in daily practice by infection control practitioners, and stepwise up-regulation of isolation measures. From February 2009 to January 2012, 44 patients on our ICU were found to be MDR-PA positive. MDR-PA isolates of the 44 patients showed two distinct AFLP patterns, with homology within each of the AFLP clusters of more than 93%. The VIM metallo-β-lactamase gene was detected in 20 of 21 tested isolates. A descriptive epidemiology investigation identified the rooms with the highest numbers of MDR-PA positive patients. The case-control study showed three factors to be independently associated with MDR-PA positivity: admission to ICU subunit 1 (OR, 6.1; 95% CI, 1.7, 22), surgery prior to or during admission (OR, 5.7; 95% CI, 1.6, 20) and being warmed-up with the warm-air blanket (OR, 3.6; 95% CI, 1.2, 11). After three environmental screening rounds, with sampling of sinks, furniture and devices in the ICU, without revealing a clear common source, a fourth environmental investigation included culturing of faucet aerators. Two faucets were found to be positive for MDR-PA and were replaced. The occurrence of new cases decreased with the strengthening of infection control measures and declined further with the removal of the common source. With this integrated approach a prolonged outbreak of P. aeruginosa was controlled. Contaminated faucet aerators on the ICU probably served as a persisting source, while interpatient transmission by medical staff was a likely way of spread. Seven months after the last case (January 2012) and 3 months after cessation of extended isolation measures (May 2012), single cases started to occur on the ICU, with a total of seven patients in the past year. No common source has yet been found. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  16. Comprehensive leak detection survey and benefit/cost analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholze, R.J. Jr.; Maloney, S.W.

    1995-06-01

    Fort Carson, Colorado was the site of a comprehensive leak detection investigation of the potable water system with the express purpose of quantifying the benefits to be derived by a military installation from use of leak detection and repair technology. Military bases are often the size of a small city and one Directorate or Department has responsibility for all real estate (buildings, roads, grounds, etc.) unlike a municipal public works department. The investigation used state of the art noise correlation and computer correlation technology to survey the distribution system mains. This was complemented by a building to building survey coveringmore » office and commercial buildings along with family and barracks housing where investigators entered buildings and quantified visible leaks in faucets and water closets, etc. Following repairs and a year`s time, a follow-on survey is performed to again examine all aspects of the system. The result was a complete economic evaluation and benefit/cost analysis of the installation. Representative findings include: the majority of distribution system leaks were at hydrants or similar appurtenances; and family housing was found to be the other major concentration of leaks. However, where the first survey found 80 percent of housing units had leaks, findings from the second round on the order of 20 percent. Office buildings were found from the first survey to not merit follow-on attention due to limited numbers of leaks. Water-consciousness was raised for both the responsible directorate and individuals in family housing and leak repair was given a higher priority for repairs. This paper will outline the leak detection methodology used, characterize the types and patterns of leaks found, introduce an economic analysis for the entire leak detection process, and finally, provide lessons learned with practical results and implications.« less

  17. [Legionelloses].

    PubMed

    Widmer, A F

    2001-10-01

    Legionnaire's disease is a life-threatening disease, observed in up to 15% of patients with pneumonia. Legionella pneumophila serogroup 1 is the most frequently implicated species among the genus Legionella. Legionella can cause two clinical pictures: Legionnaire's disease, a severe pneumonia, or Pontiac fever, a self-limiting disease. The attributable mortality of Legionnaire's disease is between 5-30%. Patients with typical Legionnaire's disease present with fever > 39 degrees C, cough and flu-like symptoms that do not respond to betalactam antibiotics. Neurological disorders may accompany severe cases. Laboratory findings include non-purulent sputum, increased liver enzymes and hyponatriemia. However, most patients do not fulfill all of these signs, symptoms and laboratory finding. Patients present with Legionella are frequently missed in the microbiology laboratory because clinicians do not ask for the specimen to be tested for Legionella. Established risk factors for Legionnaire's disease are chronic obstructive pulmonary disease (COPD), smoking and immunosuppressive therapy. New diagnostics tools such as the Legionella antigen in the urine, as well as PCR of a sputum sample allow rapid and accurate diagnosis. Such investigations are recommended for patients with severe pneumonia and those requiring hospitalization. State-of-the-art treatment includes a second generation macrolide, or alternatively, newer quinolones which are recommended as first-line drug for transplant patients. Prevention of Legionella requires a multi-faceted approach: The warm water should be kept at 60 degrees C in the boiler; the warm water should reach 50 degrees C at the faucet two minutes of opening the handle and the shower heads should be preferably made of stainless steel. In the hospital, the warm water supply should be free of Legionella at least for severely immunocompromised patients.

  18. Multi-Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment

    PubMed Central

    Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao

    2017-01-01

    The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi’an, Yan’an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F−, Cl−, NO3−, HCO3−, SO42−), cations (NH4+, K+, Na+, Ca2+, Mg2+), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl−, SO42−, Na+, K+, Ca2+, Mg2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F−, NO3−, NH4+ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F−, Cl−, NO3−, SO42− were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan’an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run. PMID:28974043

  19. Multi-Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment.

    PubMed

    Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Mielke, Howard W; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao

    2017-10-02

    The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi'an, Yan'an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F - , Cl - , NO₃ - ,HCO₃ - , SO₄ 2- ), cations (NH₄⁺, K⁺, Na⁺, Ca 2+ ,Mg 2+ ), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl - , SO₄ 2- , Na⁺, K⁺, Ca 2+ , Mg 2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F - , NO₃ - , NH₄⁺ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F - , Cl - , NO₃ - , SO₄ 2- were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan'an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run.

  20. Scientific Outreach for K-6 Students: The LTER Schoolyard Children's Book Series

    NASA Astrophysics Data System (ADS)

    Williams, M.; McKnight, D.

    2009-04-01

    Here we present information on the many steps involved in writing and publishing a science book for children. This talk builds on the success of the children's' book: My Water Comes from the Mountains, written by Tiffany Fourment and illustrated by Dorothy Emerling, and sponsored by the NWT LTER outreach program. The narrative of the book takes children of ages 7-10 on an illustrative journey from glacial and snowpack sources high on the Continental Divide to the plains and water in their faucet tap, introducing them to the distinctive wildlife and ecosystems along the way, including the diverse uses and human impact of water in Boulder Creek and St. Vrain watersheds. We then talk about developing and distributing a teachers guide and materials packet developed for instructional use in the classroom and based on the children's book: MY H2O: My Water Comes from the Mountains Teacher's Curriculum Guide and Kit; edited by Colleen Flanagan, organizational authors Colleen Flanagan, Kenneth Nova, and Tiffany Fourment. The Teacher's Guide adds accompanying lessons, incorporation of water-wise sustainability in the classroom and community, and improvement of environmental education teaching skills with exemplary projects and practical edification. Direct feedback from the teachers was incorporated into the Guide, and their questions about the water cycle in the Front Range were addressed thoroughly. Utilizing local expertise and resources, the Guide encompassed four themes: 1) Water cycle, 2) Watershed, 3) Flora/Fauna/Life Zones, and 4) Human Interaction/Impact with Water. Each section includes a thorough explanation of 7-8 interactive projects, along with corresponding background information, suggested approaches and the book's parallel page number(s) for supplementary purposes. We end by showing how this model was used to develop the children's book "The Lost Seal (http://www.mcmlter.org/lostseal/) as the next stage in a national program. The Lost Seal children's story, written by Antarctic scientist Diane McKnight, describes the first documented encounter with a live seal in the remote McMurdo Dry Valleys of Antarctica. Additional website information on the children's book "My Water Comes from the Mountains" is available at http://intranet.lternet.edu/archives/documents/Newsletters/NetworkNews/fall04/fall04_pg15.htm. All 433 pieces of orginal artwork for My Water Comes from the Mountains can be viewed at http://culter.colorado.edu/exec/Mywater/mywater_search_page.cgi.

  1. A primer on water

    USGS Publications Warehouse

    Leopold, Luna Bergere; Langbein, Walter Basil

    1960-01-01

    When you open the faucet you expect water to flow. And you expect it to flow night or day, summer or winter, whether you want to fill a glass or water the lawn. It should be clean and pure, without any odor.You have seen or read about places where the water doesn't have these qualities. You may have lived in a city where you were allowed to water the lawn only during a few hours of certain days. We know a large town where the water turns brown after every big rainstorm.Beginning shortly after World War II, large areas in the Southwestern United States had a 10-year drought, and newspapers published a lot of information about its effects. Some people say that the growing demand for water will cause serious shortages over much of the country in the next 10 to 40 years. But it has always been true that while water wells and springs dry up in some places, floods may be occurring in other places at the same time.Nearly every month news stories are published describing floods somewhere in the country. In fact, every year, on the average, 75,000 persons are forced from their homes by floods. In some years, as in 1951 when the lower Kansas River experienced a great flood, half a million people are affected. To understand the reasons for such recurring distress, it is necessary to know something about rivers and about the flat land or flood plain that borders the river.Interest in water and related problems is growing as our population increases and as the use of water becomes steadily greater. To help meet this heightened interest in general information about water and its use and control is the reason this primer was written. The primer is in two parts. The first part tells about hydrology, or the science that concerns the relation of water to our earth, and the second part describes the development of water supplies and the use of water. The Geological Survey is publishing this primer in nontechnical language in the hope that it will enable the general reader to understand the facts about water as a part of nature, and that by having this understanding the people can solve their water problems.We, as representatives of the Geological Survey, acknowledge with thanks the helpful suggestions made on an early draft by Marion Loizeaux, Maria Lord Converse, Constance Foley, Laura R. Langbein, and Bruce C. Leopold. We are also indebted to various geologists and engineers of the Survey for their discerning critical reviews.

  2. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    NASA Astrophysics Data System (ADS)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water and energy use, potential savings, and payback periods to install efficient water end-use appliances and fixtures. Stochastic model results show the distributions among households for (i) water end-use, (ii) energy consumed to use water, and (iii) financial payback periods. Compared to deterministic analysis, stochastic modeling results show that hot water fractions for appliances follow normal distributions with high standard deviation and reveal pronounced variations among households that significantly affect energy savings and payback period estimates. These distributions provide an important tool to select and size water conservation programs to simultaneously meet both water and energy conservation goals. They also provide a way to identify and target a small fraction of customers with potential to save large water volumes and energy from appliance retrofits. Future work will embed this household scale stochastic model in city-scale models to identify win-win water management opportunities where households save money by conserving water and energy while cities avoid costs, downsize, or delay infrastructure development.

  3. Tips and traps in the 14C bio-AMS preparation laboratory

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Freeman, Stewart P. H. T.; Haack, Kurt W.; Vogel, John S.

    2000-10-01

    Maintaining a contamination free sample preparation lab for biological 14C AMS requires the same or more diligence as a radiocarbon dating prep lab. Isotope ratios of materials routinely range over 4-8 orders of magnitude in a single experiment, dosing solutions contain thousands of DPM and gels used to separate proteins possess 14C ratios of 1 amol 14C/mg C. Radiocarbon contamination is a legacy of earlier tracer work in most biological laboratories, even if they were never hot labs. Removable surface contamination can be found and monitored using swipes. Contamination can be found on any surface routinely touched: door knobs, light switches, drawer handles, water faucets. In general, all surfaces routinely touched need to be covered with paper, foil or plastic that can be changed frequently. Shared air supplies can also present problems by distributing hot aerosols throughout a building. Aerosols can be monitored for 14C content using graphitized coal or fullerene soot mixed with metal powder as an absorber. The monitors can be set out in work spaces for 1-2 weeks and measured by AMS with regular samples. Frequent air changes help minimize aerosol contamination in many cases. Cross-contamination of samples can be minimized by using disposable plastic or glassware in the prep lab, isolating samples from the air when possible and using positive displacement pipettors.

  4. Quantitative microbial risk assessment model for Legionnaires' disease: assessment of human exposures for selected spa outbreaks.

    PubMed

    Armstrong, Thomas W; Haas, Charles N

    2007-08-01

    Evaluation of a quantitative microbial risk assessment (QMRA) model for Legionnaires' disease (LD) required Legionella exposure estimates for several well-documented LD outbreaks. Reports for a whirlpool spa and two natural spring spa outbreaks provided data for the exposure assessment, as well as rates of infection and mortality. Exposure estimates for the whirlpool spa outbreak employed aerosol generation, water composition, exposure duration data, and building ventilation parameters with a two-zone model. Estimates for the natural hot springs outbreaks used bacterial water to air partitioning coefficients and exposure duration information. The air concentration and dose calculations used input parameter distributions with Monte Carlo simulations to estimate exposures as probability distributions. The assessment considered two sets of assumptions about the transfer of Legionella from the water phase to the aerosol emitted from the whirlpool spa. The estimated air concentration near the whirlpool spa was 5 to 18 colony forming units per cubic meter (CFU/m(3)) and 50 to 180 CFU/m(3) for each of the alternate assumptions. The estimated 95th percentile ranges of Legionella dose for workers within 15 m of the whirlpool spa were 0.13-3.4 CFU and 1.3-34.5 CFU, respectively. The modeling for hot springs Spas 1 and 2 resulted in estimated arithmetic mean air concentrations of 360 and 17 CFU/m(3), respectively, and 95 percentile ranges for Legionella dose of 28 to 67 CFU and 1.1 to 3.7 CFU, respectively. The Legionella air concentration estimates fall in the range of limited reports on air concentrations of Legionella (0.33 to 190 CFU/m(3)) near showers, aerated faucets, and baths during filling with Legionella-contaminated water. These measurements may provide some indication that the estimates are of a reasonable magnitude, but they do not clarify the exposure estimates accuracy, since they were not obtained during LD outbreaks. Further research to improve the data used for the Legionella exposure assessment would strengthen the results. Several of the primary additional data needs include improved data for bacterial water to air partitioning coefficients, better accounting of time-activity-distance patterns and exposure potential in outbreak reports, and data for Legionella-containing aerosol viability decay instead of loss of capability for growth in culture.

  5. Analysis of risk factors for central venous catheter-related complications: a prospective observational study in pediatric patients with bone sarcomas.

    PubMed

    Abate, Massimo Eraldo; Sánchez, Olga Escobosa; Boschi, Rita; Raspanti, Cinzia; Loro, Loretta; Affinito, Domenico; Cesari, Marilena; Paioli, Anna; Palmerini, Emanuela; Ferrari, Stefano

    2014-01-01

    The incidence of central venous catheter (CVC)-related complications reported in pediatric sarcoma patients is not established as reports in available literature are limited. The analysis of risk factors is part of the strategy to reduce the incidence of CVC complications. The objective of this study was to determine the incidence of CVC complications in children with bone sarcomas and if defined clinical variables represent a risk factor. During an 8-year period, 155 pediatric patients with bone sarcomas were prospectively followed up for CVC complications. Incidence and correlation with clinical features including gender, age, body mass index, histology, disease stage, and use of thromboprophylaxis with low-molecular-weight heparin were analyzed. Thirty-three CVC complications were recorded among 42 687 CVC-days (0.77 per 1000 CVC-days). No correlation between the specific clinical variables and the CVC complications was found. A high incidence of CVC-related sepsis secondary to gram-negative bacteria was observed. The analysis of CVC complications and their potential risk factors in this sizable and relatively homogeneous pediatric population with bone sarcomas has led to the implementation of a multimodal approach by doctors and nurses to reduce the incidence and morbidity of the CVC-related infections, particularly those related to gram-negative bacteria. As a result of this joint medical and nursing study, a multimodal approach that included equipping faucets with water filters, the reeducation of doctors and nurses, and the systematic review of CVC protocol was implemented.

  6. Outbreak of Serratia marcescens Bloodstream Infections in Patients Receiving Parenteral Nutrition Prepared by a Compounding Pharmacy

    PubMed Central

    Gupta, Neil; Hocevar, Susan N.; Moulton-Meissner, Heather A.; Stevens, Kelly M.; McIntyre, Mary G.; Jensen, Bette; Kuhar, David T.; Noble-Wang, Judith A.; Schnatz, Rick G.; Becker, Shawn C.; Kastango, Eric S.; Shehab, Nadine; Kallen, Alexander J.

    2014-01-01

    Background. Compounding pharmacies often prepare parenteral nutrition (PN) and must adhere to rigorous standards to avoid contamination of the sterile preparation. In March 2011, Serratia marcescens bloodstream infections (BSIs) were identified in 5 patients receiving PN from a single compounding pharmacy. An investigation was conducted to identify potential sources of contamination and prevent further infections. Methods. Cases were defined as S. marcescens BSIs in patients receiving PN from the pharmacy between January and March 2011. We reviewed case patients’ clinical records, evaluated pharmacy compounding practices, and obtained epidemiologically directed environmental cultures. Molecular relatedness of available Serratia isolates was determined by pulsed-field gel electrophoresis (PFGE). Results. Nineteen case patients were identified; 9 died. The attack rate for patients receiving PN in March was 35%. No case patients were younger than 18 years. In October 2010, the pharmacy began compounding and filter-sterilizing amino acid solution for adult PN using nonsterile amino acids due to a national manufacturer shortage. Review of this process identified breaches in mixing, filtration, and sterility testing practices. S. marcescens was identified from a pharmacy water faucet, mixing container, and opened amino acid powder. These isolates were indistinguishable from the outbreak strain by PFGE. Conclusions. Compounding of nonsterile amino acid components of PN was initiated due to a manufacturer shortage. Failure to follow recommended compounding standards contributed to an outbreak of S. marcescens BSIs. Improved adherence to sterile compounding standards, critical examination of standards for sterile compounding from nonsterile ingredients, and more rigorous oversight of compounding pharmacies is needed to prevent future outbreaks. PMID:24729502

  7. Microfluidic manipulation of magnetic flux domains in type-I superconductors: droplet formation, fusion and fission.

    PubMed

    Berdiyorov, G R; Milošević, M V; Hernández-Nieves, A D; Peeters, F M; Domínguez, D

    2017-09-21

    The magnetic flux domains in the intermediate state of type-I superconductors are known to resemble fluid droplets, and their dynamics in applied electric current is often cartooned as a "dripping faucet". Here we show, using the time-depended Ginzburg-Landau simulations, that microfluidic principles hold also for the determination of the size of the magnetic flux-droplet as a function of the applied current, as well as for the merger or splitting of those droplets in the presence of the nanoengineered obstacles for droplet motion. Differently from fluids, the flux-droplets in superconductors are quantized and dissipative objects, and their pinning/depinning, nucleation, and splitting occur in a discretized form, all traceable in the voltage measured across the sample. At larger applied currents, we demonstrate how obstacles can cause branching of laminar flux streams or their transformation into mobile droplets, as readily observed in experiments.

  8. Trapped modes in a non-axisymmetric cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Lyapina, A. A.; Pilipchuk, A. S.; Sadreev, A. F.

    2018-05-01

    We consider acoustic wave transmission in a non-axisymmetric waveguide which consists of a cylindrical resonator and two cylindrical waveguides whose axes are shifted relatively to each other by an azimuthal angle Δϕ. Under variation of the resonator's length L and fixed Δϕ we find bound states in the continuum (trapped modes) due to full destructive interference of resonant modes leaking into the waveguides. Rotation of the waveguide adds complex phases to the coupling strengths of the resonator eigenmodes with the propagating modes of the waveguides tuning Fano resonances to give rise to a wave faucet. Under variation of Δϕ with fixed resonator's length we find symmetry protected trapped modes. For Δϕ ≠ 0 these trapped modes contribute to the scattering function supporting high vortical acoustic intensity spinning inside the resonator. The waveguide rotation brings an important feature to the scattering and provides an instrument for control of acoustic transmittance and wave trapping.

  9. Outbreak of Mycobacterium chelonae infection associated with tattoo ink.

    PubMed

    Kennedy, Byron S; Bedard, Brenden; Younge, Mary; Tuttle, Deborah; Ammerman, Eric; Ricci, John; Doniger, Andrew S; Escuyer, Vincent E; Mitchell, Kara; Noble-Wang, Judith A; O'Connell, Heather A; Lanier, William A; Katz, Linda M; Betts, Robert F; Mercurio, Mary Gail; Scott, Glynis A; Lewis, Matthew A; Goldgeier, Mark H

    2012-09-13

    In January 2012, on the basis of an initial report from a dermatologist, we began to investigate an outbreak of tattoo-associated Mycobacterium chelonae skin and soft-tissue infections in Rochester, New York. The main goals were to identify the extent, cause, and form of transmission of the outbreak and to prevent further cases of infection. We analyzed data from structured interviews with the patients, histopathological testing of skin-biopsy specimens, acid-fast bacilli smears, and microbial cultures and antimicrobial susceptibility testing. We also performed DNA sequencing, pulsed-field gel electrophoresis (PFGE), cultures of the ink and ingredients used in the preparation and packaging of the ink, assessment of source water and faucets at tattoo parlors, and investigation of the ink manufacturer. Between October and December 2011, a persistent, raised, erythematous rash in the tattoo area developed in 19 persons (13 men and 6 women) within 3 weeks after they received a tattoo from a single artist who used premixed gray ink; the highest occurrence of tattooing and rash onset was in November (accounting for 15 and 12 patients, respectively). The average age of the patients was 35 years (range, 18 to 48). Skin-biopsy specimens, obtained from 17 patients, showed abnormalities in all 17, with M. chelonae isolated from 14 and confirmed by means of DNA sequencing. PFGE analysis showed indistinguishable patterns in 11 clinical isolates and one of three unopened bottles of premixed ink. Eighteen of the 19 patients were treated with appropriate antibiotics, and their condition improved. The premixed ink was the common source of infection in this outbreak. These findings led to a recall by the manufacturer.

  10. Outbreak of Serratia marcescens bloodstream infections in patients receiving parenteral nutrition prepared by a compounding pharmacy.

    PubMed

    Gupta, Neil; Hocevar, Susan N; Moulton-Meissner, Heather A; Stevens, Kelly M; McIntyre, Mary G; Jensen, Bette; Kuhar, David T; Noble-Wang, Judith A; Schnatz, Rick G; Becker, Shawn C; Kastango, Eric S; Shehab, Nadine; Kallen, Alexander J

    2014-07-01

    Compounding pharmacies often prepare parenteral nutrition (PN) and must adhere to rigorous standards to avoid contamination of the sterile preparation. In March 2011, Serratia marcescens bloodstream infections (BSIs) were identified in 5 patients receiving PN from a single compounding pharmacy. An investigation was conducted to identify potential sources of contamination and prevent further infections. Cases were defined as S. marcescens BSIs in patients receiving PN from the pharmacy between January and March 2011. We reviewed case patients' clinical records, evaluated pharmacy compounding practices, and obtained epidemiologically directed environmental cultures. Molecular relatedness of available Serratia isolates was determined by pulsed-field gel electrophoresis (PFGE). Nineteen case patients were identified; 9 died. The attack rate for patients receiving PN in March was 35%. No case patients were younger than 18 years. In October 2010, the pharmacy began compounding and filter-sterilizing amino acid solution for adult PN using nonsterile amino acids due to a national manufacturer shortage. Review of this process identified breaches in mixing, filtration, and sterility testing practices. S. marcescens was identified from a pharmacy water faucet, mixing container, and opened amino acid powder. These isolates were indistinguishable from the outbreak strain by PFGE. Compounding of nonsterile amino acid components of PN was initiated due to a manufacturer shortage. Failure to follow recommended compounding standards contributed to an outbreak of S. marcescens BSIs. Improved adherence to sterile compounding standards, critical examination of standards for sterile compounding from nonsterile ingredients, and more rigorous oversight of compounding pharmacies is needed to prevent future outbreaks. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. A nonlinear dynamical analogue model of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.

    1992-01-01

    Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.

  12. Universal Design: A Step toward Successful Aging

    PubMed Central

    Carr, Kelly; Weir, Patricia L.; Azar, Dory; Azar, Nadia R.

    2013-01-01

    The concept of aging successfully has become increasingly important as demographics shift towards an aging population. Successful aging has been defined to include (1) a low probability of disease and disease-related disability; (2) a high level of physical and cognitive functioning; and (3) an active engagement in life. The built environment can create opportunities or constraints for seniors to participate in social and productive activities. Universally designed spaces are more easily accessed and used by a spectrum of people without specialized adaptations. Thus, a universally designed environment creates opportunities for older adults to participate in these activities without the stigmatization associated with adapted or accessible designs. Providing older adults with specific universal design options (e.g., lever handle faucets) has the potential to increase the ease of completing activities of daily living, which promotes a continual engagement in life. Literature regarding universal design is promising; however, its theory requires further attention from professionals designing the built environment, evidence of the significance of its application from academics, and the embracement of its core principles from society. Overall, universal design has the potential to provide a stepping stone toward successful aging. PMID:23431446

  13. Study of sporadical properties of crosslinked polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Balu, Deebika

    Polyelectrolyte multilayers (PEM) have become a highly studied class of materials due to the range of their applicability in many areas of research, including biology, chemistry and materials science. Recent advances in surface coatings have enabled modification of PEM surfaces to provide desirable properties such as controlled release, super-hydrophobicity, biocompatibility, antifouling and antibacterial properties. In the past decade, antimicrobial PEM coatings have been investigated as a safer alternative to the traditional disinfection methods that usually involve application of hazardous chemicals onto the surface to be cleaned. These antimicrobial coatings could be applied to common surfaces prone to colonization of bacteria (such as bench tops, faucet handles, etc) to supplement routine sanitization protocols by providing sustained antimicrobial activity. Vegetative bacteria (such as Escherichia coli) are more susceptible to antimicrobial agents than bacterial species that form spores. Hence, the antimicrobial activity of PEM coatings fabricated using Layer by Layer (LbL) technique were assayed using Bacillus anthracis spores (Sterne strain). In this thesis, the sporicidal effect of various polyelectrolyte multilayer coatings containing cross-linked polymers immersed in bleach have been evaluated as potential augmentation to existing disinfection methods.

  14. Evaluation of hygiene practices and microbiological status of ready-to-eat vegetable salads in Spanish school canteens.

    PubMed

    Rodríguez-Caturla, Magdevis Y; Valero, Antonio; Carrasco, Elena; Posada, Guiomar D; García-Gimeno, Rosa M; Zurera, Gonzalo

    2012-08-30

    This study was conducted in eight Spanish school canteens during the period 2008-2009. Food handlers' practices, kitchen equipment, hygiene/sanitation conditions and handling practices were evaluated using checklists. In parallel, the microbiological quality and safety of ready-to-eat (RTE) vegetable salads were assessed. In addition, food contact surfaces and environmental air quality of different areas were analysed. The study determined the relationship between the microbiological quality of RTE foods and food handling practices, together with the degree of contamination of working surfaces and environmental contamination of processing and distribution areas. Some deficiencies were found regarding the use and change of gloves, hand-washing and cleanliness of working surfaces. The microbial levels detected in the foods examined indicated the absence of pathogens in the samples analysed. Surface counts were higher on cutting boards and faucets, showing insufficient cleanliness procedures. This study constitutes a descriptive analysis of the hygiene/sanitation conditions implemented in food service systems in eight Spanish school canteens. The results should help risk managers to better define control measures to be adopted in order to prevent foodborne infections. Copyright © 2012 Society of Chemical Industry.

  15. Break-up dynamics of fluctuating liquid threads

    PubMed Central

    Petit, Julien; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2012-01-01

    The thinning dynamics of a liquid neck before break-up, as may happen when a drop detaches from a faucet or a capillary, follows different rules and dynamic scaling laws depending on the importance of inertia, viscous stresses, or capillary forces. If now the thinning neck reaches dimensions comparable to the thermally excited interfacial fluctuations, as for nanojet break-up or the fragmentation of thermally annealed nanowires, these fluctuations should play a dominant role according to recent theory and observations. Using near-critical interfaces, we here fully characterize the universal dynamics of this thermal fluctuation-dominated regime and demonstrate that the cross-over from the classical two-fluid pinch-off scenario of a liquid thread to the fluctuation-dominated regime occurs at a well-defined neck radius proportional to the thermal length scale. Investigating satellite drop formation, we also show that at the level of the cross-over between these two regimes it is more probable to produce monodisperse droplets because fluctuation-dominated pinch-off may allow the unique situation where satellite drop formation can be inhibited. Nonetheless, the interplay between the evolution of the neck profiles from the classical to the fluctuation-dominated regime and the satellites’ production remains to be clarified. PMID:23090994

  16. Inquiry-based Science Activities Using The Infrared Zoo and Infrared Yellowstone Resources at Cool Cosmos

    NASA Astrophysics Data System (ADS)

    Daou, D.; Gauthier, A.

    2003-12-01

    Inquiry-based activities that utilize the Cool Cosmos image galleries have been designed and developed by K12 teachers enrolled in The Invisible Universe Online for Teachers course. The exploration activities integrate the Our Infrared World Gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/our_ir_world_gallery.html) with either the Infrared Zoo gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/ir_zoo/index.html) or the Infrared Yellowstone image http://coolcosmos.ipac.caltech.edu/image_galleries/ir_yellowstone/index.html) and video (http://coolcosmos.ipac.caltech.edu/videos/ir_yellowstone/index.html) galleries. Complete instructor guides have been developed for the activities and will be presented by the authors in poster and CD form. Although the activities are written for middle and highschool learners, they can easily be adapted for college audiences. The Our Infrared World Gallery exploration helps learners think critically about visible light and infrared light as they compare sets of images (IR and visible light) of known objects. For example: by taking a regular photograph of a running faucet, can you tell if it is running hot or cold water? What new information does the IR image give you? The Infrared Zoo activities encourage learners to investigate the differences between warm and cold blooded animals by comparing sets of IR and visible images. In one activity, learners take on the role of a pit viper seeking prey in various desert and woodland settings. The main activities are extended into the real world by discussing and researching industrial, medical, and societal applications of infrared technologies. The Infrared Yellowstone lessons give learners a unique perspective on Yellowstone National Park and it's spectacular geologic and geothermal features. Infrared video technology is highlighted as learners make detailed observations about the visible and infrared views of the natural phenomena. The "Cool Cosmos" EPO activities are coordinated and managed by the SIRTF Science Center, based at the Infrared Processing and Analysis Center on the campus of the California Institute of Technology in Pasadena. You can find Cool Cosmos at http://coolcosmos.ipac.caltech.edu/

  17. Occurrence and characterization of livestock-associated methicillin-resistant Staphylococcus aureus in pig industries of northern Thailand.

    PubMed

    Patchanee, Prapas; Tadee, Pakpoom; Arjkumpa, Orapun; Love, David; Chanachai, Karoon; Alter, Thomas; Hinjoy, Soawapak; Tharavichitkul, Prasit

    2014-12-01

    This study was conducted to determine the prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs, farm workers, and the environment in northern Thailand, and to assess LA-MRSA isolate phenotypic characteristics. One hundred and four pig farms were randomly selected from the 21,152 in Chiang Mai and Lamphun provinces in 2012. Nasal and skin swab samples were collected from pigs and farm workers. Environmental swabs (pig stable floor, faucet, and feeder) were also collected. MRSA was identified by conventional bacterial culture technique, with results confirmed by multiplex PCR and multi locus sequence typing (MLST). Herd prevalence of MRSA was 9.61% (10 of 104 farms). Among pigs, workers, and farm environments, prevalence was 0.68% (two of 292 samples), 2.53% (seven of 276 samples), and 1.28% (four of 312 samples), respectively. Thirteen MRSA isolates (seven from workers, four from environmental samples, and two from pigs) were identified as Staphylococcal chromosomal cassette mec IV sequences type 9. Antimicrobial sensitivity tests found 100% of the MRSA isolates resistant to clindamycin, oxytetracycline, and tetracycline, while 100% were susceptible to cloxacillin and vancomycin. All possessed a multidrug-resistant phenotype. This is the first evidence of an LA-MRSA interrelationship among pigs, workers, and the farm environment in Thailand.

  18. Occurrence and characterization of livestock-associated methicillin-resistant Staphylococcus aureus in pig industries of northern Thailand

    PubMed Central

    Tadee, Pakpoom; Arjkumpa, Orapun; Love, David; Chanachai, Karoon; Alter, Thomas; Hinjoy, Soawapak; Tharavichitkul, Prasit

    2014-01-01

    This study was conducted to determine the prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs, farm workers, and the environment in northern Thailand, and to assess LA-MRSA isolate phenotypic characteristics. One hundred and four pig farms were randomly selected from the 21,152 in Chiang Mai and Lamphun provinces in 2012. Nasal and skin swab samples were collected from pigs and farm workers. Environmental swabs (pig stable floor, faucet, and feeder) were also collected. MRSA was identified by conventional bacterial culture technique, with results confirmed by multiplex PCR and multi locus sequence typing (MLST). Herd prevalence of MRSA was 9.61% (10 of 104 farms). Among pigs, workers, and farm environments, prevalence was 0.68% (two of 292 samples), 2.53% (seven of 276 samples), and 1.28% (four of 312 samples), respectively. Thirteen MRSA isolates (seven from workers, four from environmental samples, and two from pigs) were identified as Staphylococcal chromosomal cassette mec IV sequences type 9. Antimicrobial sensitivity tests found 100% of the MRSA isolates resistant to clindamycin, oxytetracycline, and tetracycline, while 100% were susceptible to cloxacillin and vancomycin. All possessed a multidrug-resistant phenotype. This is the first evidence of an LA-MRSA interrelationship among pigs, workers, and the farm environment in Thailand. PMID:25530702

  19. A multicentre randomised controlled trial and economic evaluation of ion-exchange water softeners for the treatment of eczema in children: the Softened Water Eczema Trial (SWET).

    PubMed

    Thomas, K S; Koller, K; Dean, T; O'Leary, C J; Sach, T H; Frost, A; Pallett, I; Crook, A M; Meredith, S; Nunn, A J; Burrows, N; Pollock, I; Graham-Brown, R; O'Toole, E; Potter, D; Williams, H C

    2011-02-01

    To determine whether installation of an ion-exchange water softener in the home could improve atopic eczema in children and, if so, to establish its likely cost and cost-effectiveness. An observer-blind, parallel-group randomised controlled trial of 12 weeks duration followed by a 4-week observational period. Eczema was assessed by research nurses blinded to intervention at baseline, 4 weeks, 12 weeks and 16 weeks. The primary outcome was analysed as intent-to-treat, using the randomised allocation rather than actual treatment received. A secondary per-protocol analysis excluded participants who failed to receive their allocated treatment and who were deemed to be protocol violators. Secondary and primary care referral centres in England (UK) serving a variety of ethnic and social groups and including children living in both urban and periurban homes. Three hundred and thirty-six children (aged 6 months to 16 years) with moderate/severe atopic eczema, living in homes in England supplied by hard water (≥ 200 mg/l calcium carbonate). Participants were randomised to either installation of an ion-exchange water softener plus usual eczema care (group A) for 12 weeks or usual eczema care alone (group B) for 12 weeks. This was followed by a 4-week observational period, during which water softeners were switched off/removed from group A homes and installed in group B homes. Standard procedure was to soften all water in the home, but to provide mains (hard) water at a faucet-style tap in the kitchen for drinking and cooking. Participants were therefore exposed to softened water for bathing and washing of clothes, but continued to drink mains (hard) water. Usual care was defined as any treatment that the child was currently using in order to control his or her eczema. New treatment regimens used during the trial period were documented. Primary outcome was the difference between group A and group B in mean change in disease severity at 12 weeks compared with baseline, as measured using the Six Area, Six Sign Atopic Dermatitis (SASSAD) score. This is an objective severity scale completed by blinded observers (research nurses) unaware of the allocated intervention. Secondary outcomes included use of topical medications, night-time movement, patient-reported eczema severity and a number of quality of life measures. A planned subgroup analysis was conducted, based on participants with at least one mutation in the gene encoding filaggrin (a protein in the skin thought to be important for normal skin barrier function). Target recruitment was achieved (n = 336). The analysed population included 323 children who had complete data. The mean change in primary outcome (SASSAD) at 12 weeks was -5.0 [standard deviation (SD) 8.8] for the water softener group (group A) and -5.7 (SD 9.8) for the usual care group (group B) [mean difference 0.66, 95% confidence interval (CI) -1.37 to 2.69, p = 0.53]. The per-protocol analysis supported the main analysis, and there was no evidence that the treatment effect varied between children with and without mutations in the filaggrin gene. No between-group differences were found in the three secondary outcomes that were assessed blindly (use of topical medications; night-time movement; proportion showing reasonable, good or excellent improvement). Small, but statistically significant, differences in favour of the water softener were found in three of the secondary outcomes that were assessed by participants [Patient-Oriented Eczema Measure (POEM); well-controlled weeks (WCWs); Dermatitis Family Index (DFI)]. The results of the economic evaluation, and the uncertainty surrounding them, suggest that ion-exchange water softeners are unlikely to be a cost-effective intervention for children with atopic eczema from an NHS perspective. Water softeners provided no additional benefit to usual care in this study population. Small, but statistically significant, differences were found in some secondary outcomes as reported by parents, but it is likely that such improvements were the result of response bias. Whether or not the wider benefits of installing a water softener in the home are sufficient to justify the purchase of a softener is something for individual householders to consider on a case-by-case basis. This trial demonstrated overwhelming demand for non-pharmacological interventions for the treatment of eczema, and this is something that should be considered when prioritising future research in the field. Current Controlled Trials ISRCTN71423189. This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 15, No. 8. See the HTA programme website for further project information. Results of this trial are also published at www.plosmedicine.org.

  20. Associations of intestinal helminth infections with health parameters of spring-migrating female lesser scaup (Aythya affinis) in the upper Midwest, USA.

    PubMed

    Conner England, J; Levengood, Jeffrey M; Osborn, Josh M; Yetter, Aaron P; Suski, Cory D; Cole, Rebecca A; Hagy, Heath M

    2018-06-01

    Thousands of lesser scaup (Aythya affinis) die during spring and fall migrations through the upper Midwest, USA, from infections with Cyathocotyle bushiensis and Sphaeridiotrema spp. (Class: Trematoda) after ingesting infected intermediate hosts, such as non-native faucet snails (Bithynia tentaculata). The lesser scaup is a species of conservation concern and is highly susceptible to these infections. We collected female lesser scaup from spring migratory stopover locations throughout Illinois and Wisconsin and assessed biochemical and morphological indicators of health in relation to intestinal helminth loads. Helminth species diversity, total trematode abundance, and the infection intensities of the trematodes C. bushiensis and Sphaeridiotrema spp. were associated with percent body fat, blood metabolites, hematological measures, and an index of foraging habitat quality. Helminth diversity was negatively associated with percent body fat, albumin concentrations, and monocytes, whereas glucose concentrations displayed a slight, positive association. Total trematode abundance was negatively associated with blood concentrations of non-esterified fatty acids and albumin. Infections of C. bushiensis were positively related to basophil levels, whereas Sphaeridiotrema spp. infection intensity was negatively associated with packed cell volume and foraging habitat quality. Thus, commonly measured health metrics may indicate intestinal parasite infections and help waterfowl managers understand overall habitat quality. Intestinal parasitic loads offer another plausible mechanism underlying the spring condition hypothesis.

  1. The importance of fluctuations in fluid mixing.

    PubMed

    Kadau, Kai; Rosenblatt, Charles; Barber, John L; Germann, Timothy C; Huang, Zhibin; Carlès, Pierre; Alder, Berni J

    2007-05-08

    A ubiquitous example of fluid mixing is the Rayleigh-Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations.

  2. Environmental contamination with rhinovirus and transfer to fingers of healthy individuals by daily life activity.

    PubMed

    Winther, Birgit; McCue, Karen; Ashe, Kathleen; Rubino, Joseph R; Hendley, J Owen

    2007-10-01

    Rhinovirus infection may be acquired by inoculation of virus on fingertips to conjunctiva or nose (self-inoculation). The virus contaminating the fingertips may come from hand contact with someone with a cold or from virus in mucus on environmental surfaces. This study was designed to assess rhinovirus contamination of surfaces by adults with colds and rhinovirus transfer from surfaces to fingertips during normal daily activities. Fifteen adults with natural rhinovirus colds stayed overnight in a local hotel. Ten touched sites in each room were tested for rhinovirus RNA using RT-PCR. Transfer to fingertips of five subjects was examined by drying 10 microl of virus-containing mucus from each subject onto light switches, telephone dial buttons and telephone handsets. After an interval of 1 or 18 hr the subject flipped the light switch, pressed the button, held the handset. Fingertip rinses were tested for virus. Thirty five percent of the 150 environmental sites in the rooms were contaminated. Common virus-positive sites were door handles, pens, light switches, TV remote controls, faucets, and telephones. Rhinovirus was transferred from surfaces to fingertips in 18/30 (60%) trials 1 hr after contamination and in 10/30 (33%) of trials 18 hr (overnight) after contamination. Adults with colds commonly contaminate environmental surfaces with rhinovirus; virus on surfaces can be transferred to a fingertip during normal daily activities. (c) 2007 Wiley-Liss, Inc.

  3. Plethora of transitions during breakup of liquid filaments

    DOE PAGES

    Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; ...

    2015-03-30

    Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forcesmore » in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial–viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. In this paper, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial–viscous regime. Finally, the new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities.« less

  4. Plethora of transitions during breakup of liquid filaments

    PubMed Central

    Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; Sambath, Krishnaraj; Hutchings, Ian M.; Hinch, John; Lister, John R.; Basaran, Osman A.

    2015-01-01

    Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forces in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial–viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. Here, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial–viscous regime. The new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities. PMID:25825761

  5. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also enhances its growth. The organism is usually found in whirlpools when the chlorine concentrations are low, but it has been isolated even in the presence of 3.00 ppm residual free chlorine (Price and Ahearn 1988). Many outbreaks of folliculitis and ear infections have been reportedly associated with the use of whirlpools and hot tubs that contain P. aeruginosa (Ratnam et al. 1986). Outbreaks have also been reported from exposure to P. aeruginosa in swimming pools and water slides. Although P. aeruginosa has a reputation for being resistant to disinfection, most studies show that it does not exhibit any marked resistance to the disinfectants used to treat drinking water such as chlorine, chloramines, ozone, or iodine. One author, however, did find it to be slightly more resistant to UV disinfection than most other bacteria (Wolfe 1990). Although much has been written about biofilms in the drinking water industry, very little has been reported regarding the role of P. aeruginosa in biofilms. Tap water appears to be a significant route of transmission in hospitals, from colonization of plumbing fixtures. It is still not clear if the colonization results from the water in the distribution system, or personnel use within the hospital. Infections and colonization can be significantly reduced by placement of filters on the water taps. The oral dose of P. aeruginosa required to establish colonization in a healthy subject is high (George et al. 1989a). During dose-response studies, even when subjects (mice or humans) were colonized via ingestion, there was no evidence of disease. P. aeruginosa administered by the aerosol route at levels of 10(7) cells did cause disease symptoms in mice, and was lethal in aerosolized doses of 10(9) cells. Aerosol dose-response studies have not been undertaken with human subjects. Human health risks associated with exposure to P. aeruginosa via drinking water ingestion were estimated using a four-step risk assessment approach. The risk of colonization from ingesting P. aeruginosa in drinking water is low. The risk is slightly higher if the subject is taking an antibiotic resisted by P. aeruginosa. The fact that individuals on ampicillin are more susceptible to Pseudomonas gastrointestinal infection probably results from suppression of normal intestinal flora, which would allow Pseudomonas to colonize. The process of estimating risk was significantly constrained because of the absence of specific (quantitative) occurrence data for Pseudomonas. Sensitivity analysis shows that the greatest source of variability/uncertainty in the risk assessment is from the density distribution in the exposure rather than the dose-response or water consumption distributions. In summary, two routes appear to carry the greatest health risks from contacting water contaminated with P. aeruginosa (1) skin exposure in hot tubs and (2) lung exposure from inhaling aerosols.

  6. Two nursing home outbreaks of respiratory infection with Legionella sainthelensi.

    PubMed

    Loeb, M; Simor, A E; Mandell, L; Krueger, P; McArthur, M; James, M; Walter, S; Richardson, E; Lingley, M; Stout, J; Stronach, D; McGeer, A

    1999-05-01

    To describe outbreaks of infection caused by Legionella sainthelensi occurring in older residents of two nursing homes and to determine risk factors for the development of infection. Descriptive epidemiology and a case-control study. Two nursing homes (140 beds and 254 beds in nursing homes A and B, respectively) located in southern Ontario, Canada, experiencing outbreaks of respiratory tract infection in July and August 1994. Case-residents of the two nursing homes who met clinical and laboratory criteria for Legionella infection. Control-residents were defined as those who were in the homes during the outbreaks and were asymptomatic. Active surveillance was conducted in both nursing homes to identify symptomatic residents. Residents with fever or respiratory tract symptoms had nasopharyngeal swabs taken for viral antigen detection and culture, urine for Legionella antigen detection, and acute and convalescent serology for viruses, Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella. Chest X-rays were performed, and an attempt was made to obtain blood and sputum cultures. Water samples from shower heads, faucets, and air conditioning units were collected for Legionella culture and polymerase chain reaction (PCR) assay. A case-control study was done to assess possible risk factors for legionellosis. Twenty-nine cases -- 17 in nursing home A; 12 in nursing home B - were identified. Four (14%) case-residents had documented pneumonia and four case-residents died. Univariate analysis revealed that a history of stroke (odds ratio (OR) 2.3 (95% CI, 1.0-5.3)), eating pureed food (OR 4.6 (95% CI, 1.6-12.7)), and having fluids administered with medication (OR 2.5 (95% CI, 1.0-5.9)) were significant risk factors. Cases were less likely to wear dentures (OR .4 (95% CI, .2-.9)) or to eat solid food (OR .3, (95% CI, .1-.6)). Only eating pureed food remained significant in a multivariable analysis (OR 4.6 (95% CI, 1.6-13.0, P = .01)). This report describes outbreaks of legionellosis in two nursing homes, representing the first reported outbreaks of infection caused by Legionella sainthelensi. The association with illness of dietary characteristics indicative of swallowing disorders suggests that aspiration was the most likely mode of infection. The diagnosis of legionellosis should be considered during outbreaks of respiratory infection in nursing homes.

  7. The importance of fluctuations in fluid mixing

    PubMed Central

    Kadau, Kai; Rosenblatt, Charles; Barber, John L.; Germann, Timothy C.; Huang, Zhibin; Carlès, Pierre; Alder, Berni J.

    2007-01-01

    A ubiquitous example of fluid mixing is the Rayleigh–Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations. PMID:17470811

  8. Knowledge Acquisition and Management for the NASA Earth Exchange (NEX)

    NASA Astrophysics Data System (ADS)

    Votava, P.; Michaelis, A.; Nemani, R. R.

    2013-12-01

    NASA Earth Exchange (NEX) is a data, computing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform with access to large supercomputing resources. As more and more projects are being executed on NEX, we are increasingly focusing on capturing the knowledge of the NEX users and provide mechanisms for sharing it with the community in order to facilitate reuse and accelerate research. There are many possible knowledge contributions to NEX, it can be a wiki entry on the NEX portal contributed by a developer, information extracted from a publication in an automated way, or a workflow captured during code execution on the supercomputing platform. The goal of the NEX knowledge platform is to capture and organize this information and make it easily accessible to the NEX community and beyond. The knowledge acquisition process consists of three main faucets - data and metadata, workflows and processes, and web-based information. Once the knowledge is acquired, it is processed in a number of ways ranging from custom metadata parsers to entity extraction using natural language processing techniques. The processed information is linked with existing taxonomies and aligned with internal ontology (which heavily reuses number of external ontologies). This forms a knowledge graph that can then be used to improve users' search query results as well as provide additional analytics capabilities to the NEX system. Such a knowledge graph will be an important building block in creating a dynamic knowledge base for the NEX community where knowledge is both generated and easily shared.

  9. Early morning awakening and nonrestorative sleep are associated with increased minor non-fatal accidents during work and leisure time.

    PubMed

    Chiu, Hsiao-Yean; Wang, Mei-Yeh; Chang, Cheng-Kuei; Chen, Ching-Min; Chou, Kuei-Ru; Tsai, Jen-Chen; Tsai, Pei-Shan

    2014-10-01

    The relationship between a composite measure of insomnia and occupational or fatal accidents has been investigated previously; however, little is known regarding the effect of various insomnia symptoms on minor non-fatal accidents during work and leisure time. We investigated the predicting role of insomnia symptoms on minor non-fatal accidents during work and leisure time. Data from the 2005 Taiwan Social Development Trend Survey of 36,473 Taiwanese aged ≥18 years were analyzed in 2013. Insomnia symptoms, including difficulty in initiating sleep (DIS), difficulty in maintaining sleep (DMS), early morning awakening (EMA), and nonrestorative sleep (NRS) were investigated. A minor non-fatal accident was defined as any mishap such as forgetting to turn off the gas or faucets, accidental falls, and abrasions or cuts occurring during work and leisure time in the past month that do not require immediate medical attention. Multivariable logistic regression was performed to assess the odds ratios (ORs) and associated 95% confidence interval (CI) of minor non-fatal accidents (as a binary variable) for each insomnia symptom compared with those of people presenting no symptoms, while controlling for possible confounders. EMA and NRS increased the odds of minor non-fatal accidents occurring during work and leisure time (adjusted OR=1.19, 95% CI=1.08-1.32 and adjusted OR=1.27, 95% CI=1.17-1.37, respectively). EMA and NRS are two symptoms that are significantly associated with an increased likelihood of minor non-fatal accidents during work and leisure time after adjusting for of a range of covariates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Nectary structure and nectar secretion in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge (Orchidaceae).

    PubMed

    Stpiczynska, M; Davies, K L; Gregg, A

    2004-01-01

    It had previously been assumed that Maxillaria spp. produce no nectar. However, nectar has recently been observed in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge amongst other species. Furthermore, it is speculated that M. coccinea may be pollinated by hummingbirds. The aim of this paper is to investigate these claims further. Light microscopy, histochemistry, scanning and transmission electron microscopy. This is the first detailed account of nectar secretion in Maxillaria Ruiz & Pav. A 'faucet and sink' arrangement occurs in M. coccinea. Here, the nectary is represented by a small protuberance upon the ventral surface of the column and nectar collects in a semi-saccate reservoir formed by the fusion of the labellum and the base of the column-foot. The nectary comprises a single-layered epidermis and three or four layers of small subepidermal cells. Beneath these occur several layers of larger parenchyma cells. Epidermal cells lack ectodesmata and have a thin, permeable, reticulate cuticle with associated swellings that coincide with the middle lamella between adjoining epidermal cells. Nectar is thought to pass both along the apoplast and symplast and eventually through the stretched and distended cuticle. The secretory cells are collenchymatous, nucleated and have numerous pits with plasmodesmata, mitochondria, rough ER and plastids with many plastoglobuli but few lamellae. Subsecretory cells have fewer plastids than secretory cells. Nectary cells also contain large intravacuolar protein bodies. The floral morphology of M. coccinea is considered in relation to ornithophily and its nectary compared with a similar protuberance found in the entomophilous species M. parviflora (Poepp. & Endl.) Garay. Flowers of M. coccinea produce copious amounts of nectar and, despite the absence of field data, their morphology and the exact configuration of their parts argue strongly in favour of ornithophily.

  11. Supplementation of fish oil and olive oil in patients with rheumatoid arthritis.

    PubMed

    Berbert, Alair Alfredo; Kondo, Cacilda Rosa Mitiko; Almendra, Cecília Lisete; Matsuo, Tiemi; Dichi, Isaias

    2005-02-01

    This study evaluated whether supplementation with olive oil could improve clinical and laboratory parameters of disease activity in patients who had rheumatoid arthritis and were using fish oil supplements. Forty-three patients (34 female, 9 male; mean age = 49 +/- 19y) were investigated in a parallel randomized design. Patients were assigned to one of three groups. In addition to their usual medication, the first group (G1) received placebo (soy oil), the second group (G2) received fish oil omega-3 fatty acids (3 g/d), and the third group (G3) received fish oil omega-3 fatty acids (3 g/d) and 9.6 mL of olive oil. Disease activity was measured by clinical and laboratory indicators at the beginning of the study and after 12 and 24 wk. Patients' satisfaction in activities of daily living was also measured. There was a statistically significant improvement (P < 0.05) in G2 and G3 in relation to G1 with respect to joint pain intensity, right and left handgrip strength after 12 and 24 wk, duration of morning stiffness, onset of fatigue, Ritchie's articular index for pain joints after 24 wk, ability to bend down to pick up clothing from the floor, and getting in and out of a car after 24 wk. G3, but not G2, in relation to G1 showed additional improvements with respect to duration of morning stiffness after 12 wk, patient global assessment after 12 and 24 wk, ability to turn faucets on and off after 24 wk, and rheumatoid factor after 24 wk. In addition, G3 showed a significant improvement in patient global assessment in relation to G2 after 12 wk. Ingestion of fish oil omega-3 fatty acids relieved several clinical parameters used in the present study. However, patients showed a more precocious and accentuated improvement when fish oil supplements were used in combination with olive oil.

  12. Nectary Structure and Nectar Secretion in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge (Orchidaceae)

    PubMed Central

    STPICZYŃSKA, M.; DAVIES, K. L.; GREGG, A.

    2004-01-01

    • Background and Aims It had previously been assumed that Maxillaria spp. produce no nectar. However, nectar has recently been observed in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge amongst other species. Furthermore, it is speculated that M. coccinea may be pollinated by hummingbirds. The aim of this paper is to investigate these claims further. • Methods Light microscopy, histochemistry, scanning and transmission electron microscopy. • Key Results This is the first detailed account of nectar secretion in Maxillaria Ruiz & Pav. A ‘faucet and sink’ arrangement occurs in M. coccinea. Here, the nectary is represented by a small protuberance upon the ventral surface of the column and nectar collects in a semi‐saccate reservoir formed by the fusion of the labellum and the base of the column‐foot. The nectary comprises a single‐layered epidermis and three or four layers of small subepidermal cells. Beneath these occur several layers of larger parenchyma cells. Epidermal cells lack ectodesmata and have a thin, permeable, reticulate cuticle with associated swellings that coincide with the middle lamella between adjoining epidermal cells. Nectar is thought to pass both along the apoplast and symplast and eventually through the stretched and distended cuticle. The secretory cells are collenchymatous, nucleated and have numerous pits with plasmodesmata, mitochondria, rough ER and plastids with many plastoglobuli but few lamellae. Subsecretory cells have fewer plastids than secretory cells. Nectary cells also contain large intravacuolar protein bodies. The floral morphology of M. coccinea is considered in relation to ornithophily and its nectary compared with a similar protuberance found in the entomophilous species M. parviflora (Poepp. & Endl.) Garay. • Conclusions Flowers of M. coccinea produce copious amounts of nectar and, despite the absence of field data, their morphology and the exact configuration of their parts argue strongly in favour of ornithophily. PMID:14630692

  13. Cle Elum and Supplementation Research Facility : Monthly Progress Report October 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cle Elum Supplementation and Research Facility

    FISH PRODUCTION: On October 7th the 2008 spawning season was completed. 823 adults were transferred to the facility for the 2008 season. The overall adult mortality was 6.9% (1.3% pre-spawning mortality and 5.6% encountered after sorting). Wild/natural salmon collected included 278 females, 173 males, and 29 jacks for a total 480 fish for the 2008 brood. Supplemented brood stock collected included 149 adults (85 females, 35 males and 29 jacks). Hatchery control brood collected for research included 194 adults (91 females, 68 males and 35 jacks). Eggs will be inventoried in November with an actual summary of eggs numbers tomore » be submitted for the November report. The estimated egg takes (production) for the 2008 season was 1,375,146 eggs with 1,006,063 comprising of W x W crosses and 250,755 eggs of H x H crosses with 118,328 supplement crosses. Total fish on hand for the 2007 brood is 768,751 with an average fish per pound of 30.6 f/lb. FISH CULTURE: The marking and pit-tagging operation started on October 13th. The pit-tagging portion was completed on October 23rd. A total 40,000 juveniles were pit-tagged (2,000 from each of the production ponds and 4,000 each for the hatchery juvenile ponds 9 & 10). Cle Elum staff began shocking, sorting, counting and splitting eggs in incubation. Shocking eggs will separate live eggs from dead eggs. Eggs are treated with formalin three times a week to control fungus. The focus for the culturists during the month of October entail completing the final spawn (egg take) on the 7th, pond cleaning, keeping the marking trailers supplied with fish and end of month sampling. The adult holding ponds were power washed and winterized for the shut down period. Facility crew members Greg Strom and Mike Whitefoot assisted Joe Blodgett and his crew with fish brood collection on the 22nd of October. Fall Chinook and Coho salmon were seined up and put in tanker trucks from Chandler canal and transported to holding ponds for later spawning. Charlie, Simon and Vernon assisted with sorting and spawning Summer Chinook at the Wells hatchery for the Summer Chinook reintroduction program on the lower Yakima River. WATER PRODUCTION: The current combined well and river water supply to the complex is 12,909 gallons/min. Four river pumps (12,400gpm) and one well pump No.2 (509gpm) are supplying water to the facility main head box and the egg incubation building. ACCLIMATION SITES: Easton had much activity in October, the electrical power panel that's switches commercial power operation to generator power (transfer switch) malfunctioned. Charlie called Wallace Electric as well as ASCO Services to trouble shoot the problem which has yet to be determined. Heaters have been turned on in all service buildings at the acclimation sites. Pacific States Marine Fisheries Commission traveled to Easton to install a pole to mount a satellite and a new ups backup system with new monitors and computers for pit tag data recording and transmitting. Brown and Jackson pumped out the septic tanks at Easton and Clark Flat. AMB Tools performed maintenance on the compressors at the acclimation sites as well as Cle Elum (5 total). VEHICLE MAINTENANCE: Day Wireless performed maintenance on all handheld and vehicle radios. Day Wireless repaired radio communications (static noise) on the 6th also. All vehicles mileages and conditions are reported monthly to Toppenish. Cle Elum staff continues to clean and maintain all facility vehicles weekly. MAINTENANCE BUILDING MAINTENANCE: Kevin of Raincountry was called in response to repairs needed to the water chiller system. Cle Elum staff winterized all irrigation as well as shop grounds. Brown and Jackson pumped out the septic tank at the hatchery on the 22nd. HATCHERY BUILDING MAINTENANCE: The incubation room has been set up for transfer of eggs from isolation buckets to vertical stacks, temperature units are recorded daily. RESENTDENTIAL HOUSING: Residents irrigation has been winterized and fall fertilizer was applied to all grass on facility. Four Seasons performed maintenance on all heating systems and replaced a thermostat on resident house No.391. Alden Plumbing replaced a water faucet in a sink at resident house No.1001. Shaw's Furniture & Appliance replaced three faulty microwaves in residents No.391, 411 and 871. RIVER PUMP STATION MAINTENANCE: All river pumps are in operation and supply river water to the main facility. Approximately 12,400 gallons per minute are being pumped to eighteen raceways. Weekly cleaning and upkeep is performed by Cle Elum staff. WELL FIELD MAINTENANCE: Weekly test holes are measured, recorded and sent to CH2MHILL. Pump No.1 is in operation and the flow meter is recorded weekly. On the 3rd well pumps 5 and 6 were shut down and winterized for the season. Well pump No.2 had fence damage repaired on the 16th. SAFETY AND TRAINING: A safety meeting was held on the 21st. On the 15th ABC Fire Prevention did maintenance on all fire extinguishers.« less

  14. Neo-angiogenesis metabolic biomarker of tumor-genesis tracking by infrared joystick contact imaging in personalized homecare system

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hoekstra, Philip; Landa, Joseph; Vydelingum, Nadarajen A.

    2014-05-01

    We describe an affordable, harmless, and administrative (AHA) metabolic biomarker (MBM) for homecare cancer screening. It may save hundreds of thousands of women's and thousands of men's lives every year from breast cancer and melanoma. The goal is to increase the specificity of infrared (IR) imagery to reduce the false alarm rate (FAR). The patient's hands are immersed in icy cold water, about 11oC, for 30 seconds. We then compare two IR images, taken before and after the cold stimulus, and the difference reveals an enhanced signal and noise ratio (SNR) at tumorigenesis sites since the contraction of capillaries under cold challenge is natural to healthy capillaries, except those newly built capillaries during angiogenesis (Folkman, Nature 1995). Concomitant with the genome and the phenome (molecular signaling by phosphor-mediate protein causing inflammation by platelet activating factor (PAF) that transform cells from benign to malignant is the amplification of nitric oxide (NO) syntheses, a short-lived reactive oxygen species (ROS) that dilates regional blood vessels; superseding normal autonomic nervous system regulation. A rapidly growing tumor site might implicate accumulation of ROS, for which NO can rapidly stretch the capillary bed system usually having thinning muscular lining known as Neo-Angiogenesis (NA) that could behave like Leaky In-situ Faucet Effect (LIFE) in response to cold challenge. To emphasize the state of art knowledge of NA, we mentioned in passing the first generation of an anticapillary growth drug, Avastin by Genetech; it is an antibody protein that is injected for metastasis, while the second generation drug; Sorafenib by Bayers (2001) and Sutent by Pfizer (2000) both target molecular signaling loci to block receptor associated tyrosine kinase induced protein phosphorylation in order to reverse the angiogenesis. Differentiating benign from malignant in a straightforward manner is required to achieve the wellness protocol, yet would become prohibitively expensive and impossible to follow through. For example, given the probability of detection (PD) about 0.1% over unspecified number of years (e.g. menopause years for breast cancer), one might need hundred thousand volunteers. We suggested a Time Reversal Invariant Paradigm (TRIP) (a private communication with Vatican) for gathering equivalent cancer symptom imagery from recovery histories of dozens of patients. We further mixed it with few % of recovered/non-sick cases for negative controls. Creating Virtual images and running videos of these, frame by frame, in two directions (forward and backward in time) resulted in identical Receiver Operation Characteristics (ROC) for both the computer Aided Target Recognition (AiTR) algorithm and the human radiological experts; namely PD versus FAR within the standard deviation; even though the physiology could be entirely different. Such a TRIP would be true taken by any memory-less instantaneous imagery devices (IR, ultrasound, X-rays, MRI excluding magnetic hysteresis memory). In summary, such an affordable, harmless, and administrative, neo-angiogenesis metabolic biomarker can help monitor the transitioning from benign to malignant states of high-risk home alone seniors and also monitor the progress of home alone seniors treatment at home. Therefore, Smartphone equipped with a day camera having IR spectral filtering for a contact self imaging called joystick, when augmented with AHA NA MBM, may be suited for HAS homecare.

  15. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic constituents (trace elements, nutrients, major and minor ions, silica, total dissolved solids, and alkalinity) were collected at all 170 sites. In addition to these constituents, the samples from grid wells were analyzed for organic constituents (volatile organic compounds, pesticides and pesticide degradates), constituents of special interest (perchlorate and N-nitrosodimethylamine, or NDMA), radioactive constituents (radon-222 and gross-alpha and gross-beta radioactivity), and geochemical and age-dating tracers (stable isotopes of carbon in dissolved inorganic carbon, carbon-14 abundances, stable isotopes of hydrogen and oxygen in water, and tritium activities).Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 11 percent of the wells in the Monterey–Salinas Shallow Aquifer study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. With the exception of trace elements, blanks rarely contained detectable concentrations of any constituent, indicating that contamination from sample-collection procedures was not a significant source of bias in the data for the groundwater samples. Low concentrations of some trace elements were detected in blanks; therefore, the data were re-censored at higher reporting levels. Replicate samples generally were within the limits of acceptable analytical reproducibility. The median values of matrix-spike recoveries were within the acceptable range (70 to 130 percent) for the volatile organic compounds (VOCs) and N-nitrosodimethylamine (NDMA), but were only approximately 64 percent for pesticides and pesticide degradates.The sample-collection protocols used in this study were designed to obtain representative samples of groundwater. The quality of groundwater can differ from the quality of drinking water because water chemistry can change as a result of contact with plumbing systems or the atmosphere; because of treatment, disinfection, or blending with water from other sources; or some combination of these. Water quality in domestic wells is not regulated in California, however, to provide context for the water-quality data presented in this report, results were compared to benchmarks established for drinking-water quality. The primary comparison benchmarks were maximum contaminant levels established by the U.S. Environmental Protection Agency and the State of California (MCL-US and MCL-CA, respectively). Non-regulatory benchmarks were used for constituents without maximum contaminant levels (MCLs), including Health Based Screening Levels (HBSLs) developed by the USGS and State of California secondary maximum contaminant levels (SMCL-CA) and notification levels. Most constituents detected in samples from the Monterey–Salinas Shallow Aquifer study unit had concentrations less than their respective benchmarks.Of the 148 organic constituents analyzed in the 100 grid-well samples, 38 were detected, and all concentrations were less than the benchmarks. Volatile organic compounds were detected in 26 of the grid wells, and pesticides and pesticide degradates were detected in 28 grid wells. The special-interest constituent NDMA was detected above the HBSL in three samples, one of which also had a perchlorate concentration greater than the MCL-CA.Of the inorganic constituents, 6 were detected at concentrations above their respective MCL benchmarks in grid-well samples: arsenic (5 grid wells above the MCL of 10 micrograms per liter, μg/L), selenium (3 grid wells, MCL of 50 μg/L), uranium (4 grid wells, MCL of 30 μg/L), nitrate (16 grid wells, MCL of 10 milligrams per liter, mg/L), adjusted gross alpha particle activity (10 grid wells, MCL of 15 picocuries per liter, pCi/L), and gross beta particle activity (1 grid well, MCL of 50 pCi/L). An additional 4 inorganic constituents were detected at concentrations above their respective HBSL benchmarks in grid-well samples: boron (1 grid well above the HBSL of 6,000 μg/L), manganese (8 grid wells, HBSL of 300 μg/L), molybdenum (6 grid wells, HBSL of 40 μg/L), and strontium (6 grid wells, HBSL of 4,000 μg/L). Of the inorganic constituents, 4 were detected at concentrations above their non-health based SMCL benchmarks in grid-well samples: iron (9 grid wells above the SMCL of 300 μg/L), chloride (7 grid wells, SMCL of 500 mg/L), sulfate (14 grid wells, SMCL of 500 mg/L), and total dissolved solids (27 grid wells, SMCL of 1,000 mg/L).Of the inorganic constituents analyzed in the 70 shallow-well tap sites, 10 were detected at concentrations above the benchmarks. Of the inorganic constituents, 3 were detected at concentrations above their respective MCL benchmarks in shallow-well tap sites: arsenic (2 shallow-well tap sites above the MCL of 10 μg/L), uranium (2 shallow-well tap sites, MCL of 30 μg/L), and nitrate (24 shallow-well tap sites, MCL of 10 mg/L). An additional 3 inorganic constituents were detected above their respective HBSL benchmarks in shallow-well tap sites: manganese (4 shallow-well tap sites above the HBSL of 300 μg/L), molybdenum (4 shallow-well tap sites, HBSL of 40 μg/L), and zinc (2 shallow-well tap sites, HBSL of 2,000 μg/L). Of the inorganic constituents, 4 were detected at concentrations above their non-health based SMCL benchmarks in shallow-well tap sites: iron (6 shallow-well tap sites above the SMCL of 300 μg/L), chloride (1 shallow-well tap site, SMCL of 500 mg/L), sulfate (9 shallow-well tap sites, SMCL of 500 mg/L), and total dissolved solids (15 shallow-well tap sites, SMCL of 1,000 mg/L).

  16. Who rules the roost?

    PubMed

    Zuckerman, Barry; Sanoff, Margot Kaplan; Augustyn, Marilyn

    2010-01-01

    Adam's mother was concerned about her 3-year-old son's hyperactivity, violence, and activity level. Adam and his mom had recently moved into a shelter for pregnant women. The rest of the residents are primarily in their early 20s, whereas Adam's mom is 42. She had found about 3 months ago that she was pregnant. This was her fourth pregnancy, second with this father, and he had recently left her when she refused an abortion. Her other children are 22 and 24 and live out of state. She has a history of opioid addiction. She had been on methadone during Adam's gestation and had recently started on buprenorphine to treat her addiction during this pregnancy as well. Adam is here today for his 3-year-old checkup and you had not seen him for a year. Mom states that he has been healthy but has become progressively active over the last year. He is very angry about his dad leaving, and according to Adam's mother "blames her" for sending him away. They are living in 1 room at the shelter, and mom is finding it increasingly difficult to keep him busy all day. When she goes out looking for a job, he is very challenging at the shelter, and she constantly receives complaints that he is "too loud" in the common rooms. She feels like she is at the end of her rope with him, he is constantly climbing, bolting from her, and taking risks.When you examine Adam, you find a robust, healthy young boy. His eye contact is good, and he is socially related but does actively explore your office. When he begins taking the instruments off your wall, his mother sits passively watching him. When he begins playing with the faucet, she half heartedly tells him to "stop" but he looks at her and continues splashing. He then begins flicking the light switch on and off in the room with no response from mom. When you ask about discipline, mom states "nothing works." When you ask about supports, she states "I have nobody except Adam and the new baby now."Adam was born after an uneventful full-term pregnancy with his mother on 100 mg methadone daily. She denies cigarette smoking, drugs, alcohol, or other medications. Urine testing throughout was positive only for opioids. Motor milestones were achieved at the appropriate time. Language milestones at the 2-year-old visit consisted of 10 single words. Now, he has a 50 single-word vocabulary but no 2-word combinations. He primarily takes whatever he wants and has a tantrum if mom cannot figure out what he desires. Adam's medical history is unremarkable. Family history is significant for drug abuse by her father and mother; mental illness in the father's family consisting of bipolar disorder in several uncles. Where do you go from here?

  17. Florida Thunderstorms: A Faucet of Reactive Nitrogen to the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ridley, B.; Ott, L.; Emmons, L.; Montzka, D.; Weinheimer, A.; Knapp, D.; Grahek, F.; Li, L.; Heymsfield, G.; McGill, M.

    2004-01-01

    During the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) enhanced mixing ratios of nitric oxide were measured in the anvils of thunderstorms and in clear air downwind of storm systems on flights of a Wl3-57F high-altitude aircraft. Mixing ratios greater than l0 - 20 times background were readily observed over distances of 25-120 km due to lightning activity. In many of the Florida storms deposition of NO occurred up to near the tropopause but major deposition usually occurred 1 - 2 km below the tropopause, or mostly within the visible anvil volume formed prior to storm decay. Observations from two storms of very different anvil size and electrical activity allowed estimates of the total mass of NO, vented to the middle and upper troposphere. Using the cloud-to ground (CG) flash accumulations from the National Lightning Detection Network, climatological intra-cloud (IC) to CG ratios, and assuming that CG and IC flashes were of equivalent efficiency for NO production, the ranges of production per flash for a moderate-sized and a large storm were (0.51 - 1.0) x l0(exp 26) and (2.3 - 3.1) x 10(exp 26) molecules NO/flash, respectively. Using the recently determined average global flash rate of 44 8, a gross extrapolation of these two storms to represent possible global annual production rates yield 1.6 - 3.2 and 7.3 - 9.9 Tg(N)/yr, respectively. If the more usual assumption is made that IC efficiency is l/l0th that of CG activity, the ranges of production for the moderate-sized and large storm were (1.3 - 2.7) x l0(exp 26) and (6.0 - 8.1) x l0(exp 26) molecules NO/CG flash, respectively. The estimates from the large storm may be high because there is indirect evidence that the IC/CG ratio was larger than would be derived from climatology. These two storms and others studied did not have flash rates that scaled as approx. H(sup 5) where H is the cloud top altitude. The observed CG flash accumulations and NO(x) mass production estimate for the month of July over the Florida area were compared with a representative 3D global Chemistry-Transport Model (CTMJ that uses the Price et al. lightning parameterization. For two land grid points representing the Florida peninsula the model compared well with the observations: CG flash rates were low by only a factor of approx. 2. When the model grid points included the coastal regions of Florida the flash accumulations were lower than observed by a factor of 3.4 - 4.6. It is recommended that models using the Price et al. parameterization allow any global coastal grid point to maintain the land rather than the marine flash rate parameterization. The convection in this CTM underestimated the actual cloud top heights over Florida by 1 - 2 km and thus the total lightning flash rates and the altitude range of reactive nitrogen deposition. Broad scale (20 - 120 km) median mixing ratios of NO within anvils over Florida were significantly larger than in storms previously investigated over Colorado and New Mexico.

  18. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    PubMed

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption of urban and environment, and the unbalance between water supply and demand could be filled by virtual water import in water scarce regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Virtual scarce water in China.

    PubMed

    Feng, Kuishuang; Hubacek, Klaus; Pfister, Stephan; Yu, Yang; Sun, Laixiang

    2014-07-15

    Water footprints and virtual water flows have been promoted as important indicators to characterize human-induced water consumption. However, environmental impacts associated with water consumption are largely neglected in these analyses. Incorporating water scarcity into water consumption allows better understanding of what is causing water scarcity and which regions are suffering from it. In this study, we incorporate water scarcity and ecosystem impacts into multiregional input-output analysis to assess virtual water flows and associated impacts among 30 provinces in China. China, in particular its water-scarce regions, are facing a serious water crisis driven by rapid economic growth. Our findings show that inter-regional flows of virtual water reveal additional insights when water scarcity is taken into account. Consumption in highly developed coastal provinces is largely relying on water resources in the water-scarce northern provinces, such as Xinjiang, Hebei, and Inner Mongolia, thus significantly contributing to the water scarcity in these regions. In addition, many highly developed but water scarce regions, such as Shanghai, Beijing, and Tianjin, are already large importers of net virtual water at the expense of water resource depletion in other water scarce provinces. Thus, increasingly importing water-intensive goods from other water-scarce regions may just shift the pressure to other regions, but the overall water problems may still remain. Using the water footprint as a policy tool to alleviate water shortage may only work when water scarcity is taken into account and virtual water flows from water-poor regions are identified.

  20. Worse than imagined: Unidentified virtual water flows in China.

    PubMed

    Cai, Beiming; Wang, Chencheng; Zhang, Bing

    2017-07-01

    The impact of virtual water flows on regional water scarcity in China had been deeply discussed in previous research. However, these studies only focused on water quantity, the impact of virtual water flows on water quality has been largely neglected. In this study, we incorporate the blue water footprint related with water quantity and grey water footprint related with water quality into virtual water flow analysis based on the multiregional input-output model of 2007. The results find that the interprovincial virtual flows accounts for 23.4% of China's water footprint. The virtual grey water flows are 8.65 times greater than the virtual blue water flows; the virtual blue water and grey water flows are 91.8 and 794.6 Gm 3 /y, respectively. The use of the indicators related with water quantity to represent virtual water flows in previous studies will underestimate their impact on water resources. In addition, the virtual water flows are mainly derived from agriculture, chemical industry and petroleum processing and the coking industry, which account for 66.8%, 7.1% and 6.2% of the total virtual water flows, respectively. Virtual water flows have intensified both quantity- and quality-induced water scarcity of export regions, where low-value-added but water-intensive and high-pollution goods are produced. Our study on virtual water flows can inform effective water use policy for both water resources and water pollution in China. Our methodology about virtual water flows also can be used in global scale or other countries if data available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Welcome - TampaBay.WaterAtlas.org

    Science.gov Websites

    An edition of: WaterAtlas.orgPresented By: USF Water Institute Choose a Water Atlas Charlotte Harbor NEP Water Atlas Hillsborough County Water Atlas Lake County Water Atlas Manatee County Water Atlas Orange County Water Atlas Pinellas County Water Atlas Polk County Water Atlas Sarasota County Water Atlas

  2. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity, water treatment and nutrient management. Our analysis by sector highlights that the economic cost of water scarcity due to pollution in this region is largely borne by the public.

  3. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  4. Measuring scarce water saving from interregional virtual water flows in China

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  5. Estimating household water demand using revealed and contingent behaviors: Evidence from Vietnam

    NASA Astrophysics Data System (ADS)

    Cheesman, Jeremy; Bennett, Jeff; Son, Tran Vo Hung

    2008-11-01

    This article estimates the water demand of households using (1) municipal water exclusively and (2) municipal water and household well water in the capital city of Dak Lak Province in Vietnam. Household water demands are estimated using a panel data set formed by pooling household records of metered municipal water consumption and their stated preferences for water consumption contingent on hypothetical water prices. Estimates show that households using municipal water exclusively have very price inelastic demand. Households using municipal and household well water have more price elastic, but still inelastic, simultaneous water demand and treat municipal water and household well water as substitutes. Household water consumption is influenced by household water storage and supply infrastructure, income, and socioeconomic attributes. The demand estimates are used to forecast municipal water consumption by households in Buon Ma Thuot following an increase to the municipal water tariff to forecast the municipal water supply company's revenue stream following a tariff increase and to estimate the consumer surplus loss resulting from municipal water supply shortages.

  6. Sector-wise midpoint characterization factors for impact assessment of regional consumptive and degradative water use.

    PubMed

    Lin, Chia-Chun; Lin, Jia-Yu; Lee, Mengshan; Chiueh, Pei-Te

    2017-12-31

    Water availability, resulting from either a lack of water or poor water quality is a key factor contributing to regional water stress. This study proposes a set of sector-wise characterization factors (CFs), namely consumptive and degradative water stresses, to assess the impact of water withdrawals with a life cycle assessment approach. These CFs consider water availability, water quality, and competition for water between domestic, agricultural and industrial sectors and ecosystem at the watershed level. CFs were applied to a case study of regional water management of industrial water withdrawals in Taiwan to show that both regional or seasonal decrease in water availability contributes to a high consumptive water stress, whereas water scarcity due to degraded water quality not meeting sector standards has little influence on increased degradative water stress. Degradative water stress was observed more in the agricultural sector than in the industrial sector, which implies that the agriculture sector may have water quality concerns. Reducing water intensity and alleviating regional scale water stresses of watersheds are suggested as approaches to decrease the impact of both consumptive and degradative water use. The results from this study may enable a more detailed sector-wise analysis of water stress and influence water resource management policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.

    PubMed

    Dodemaide, David T; Matthews, Ty G; Iervasi, Dion; Lester, Rebecca E

    2018-03-01

    Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in macrophyte assemblages between raw-water storages and natural water bodies. These similarities illustrate that anthropogenic water storages support representative populations of some aquatic biota across the landscape, and thus, may provide important refuge following disturbance where dispersal capabilities allow. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  9. Water footprint as a tool for integrated water resources management

    NASA Astrophysics Data System (ADS)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade together with the water footprint concept could thus provide an appropriate framework to support more optimal water management practices by informing production and trade decisions and the development and adoption of water efficient technology. In order to move towards better water governance however a further integration of water-related concerns into water-related sectoral policies is paramount. This will require a concerted effort by all stakeholders, the willingness to adopt a total resource view where water is seen as a key, cross-sectoral input for development and growth, a mix of technical approaches, and the courage to undertake and fund water sector reforms. We are convinced that the water footprint analysis can provide a sufficiently robust fact base for meaningful stakeholder dialogue and action towards solutions.

  10. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea.

    PubMed

    Houri, Daisuke; Koo, Chung Mo

    2015-09-01

    The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the "Prerequisites for Tasty Water" and the "Standards for Tasty Water" devised for city water. The PET Bottled water varieties analyzed in this study-Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND-showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health < 5.2. The South Korean PET bottled water studied here fulfills the "Water Index of Taste," "Water Index of Health," "Standard for Tasty Water" and "Prerequisites for Tasty Water" that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people.

  11. [Investigation on contamination of Cryptosporidium and Giardia in drinking water and environmental water in Shanghai].

    PubMed

    Zhang, Xiao-Ping; He, Yan-Yan; Zhu, Qian; Ma, Xiao-Jiang; Cai, Li

    2010-12-30

    To understand the contamination status of Cryptosporidium sp. and Giardia lamblia in drinking water, source water and environmental water in Shanghai. All water samples collected from drinking water, source water and environmental water were detected by a procedure of micromembrane filtration, immune magnetic separation (IMS), and immunofluorescent assay (IFA). Cryptosporidium oocysts and Giardia cysts were not found in 156 samples of the drinking water including finished water, tap water, or pipe water for directly drinking in communities. Among 70 samples either source water of water plants (15 samples), environmental water from Huangpu River(25), canal water around animal sheds(15), exit water from waste-water treatment plants(9), or waste water due to daily life(6), Cryptosporidium oocysts were detected in 1(6.7%), 2(8.0%), 7(46.7%), 1(11.1%), and 1(16.7%) samples, respectively; and Giardia cysts were detected in 1(6.7%), 3(12.0%), 6 (40.0%), 2(22.2%), and 2(33.3%), respectively. The positive rate of Cryptosporidium oocysts and Giardia cysts was 17.1% (12/70) and 20.0% (14/70), respectively. No Cryptosporidium oocysts and Giardia cysts have been detected in drinking water, but found in source water and environmental water samples in Shanghai.

  12. Safety of packaged water distribution limited by household recontamination in rural Cambodia.

    PubMed

    Holman, Emily J; Brown, Joe

    2014-06-01

    Packaged water treatment schemes represent a growing model for providing safer water in low-income settings, yet post-distribution recontamination of treated water may limit this approach. This study evaluates drinking water quality and household water handling practices in a floating village in Tonlé Sap Lake, Cambodia, through a pilot cross-sectional study of 108 households, approximately half of which used packaged water as the main household drinking water source. We hypothesized that households purchasing drinking water from local packaged water treatment plants would have microbiologically improved drinking water at the point of consumption. We found no meaningful difference in microbiological drinking water quality between households using packaged, treated water and those collecting water from other sources, including untreated surface water, however. Households' water storage and handling practices and home hygiene may have contributed to recontamination of drinking water. Further measures to protect water quality at the point-of-use may be required even if water is treated and packaged in narrow-mouthed containers.

  13. The virtual water content of major grain crops and virtual water flows between regions in China.

    PubMed

    Sun, Shi-Kun; Wu, Pu-Te; Wang, Yu-Bao; Zhao, Xi-Ning

    2013-04-01

    The disproportionate distribution of arable land and water resources has become a bottleneck for guaranteeing food security in China. Virtual water and virtual water trade theory have provided a potential solution to improve water resources management in agriculture and alleviate water crises in water-scarce regions. The present study evaluates the green and blue virtual water content of wheat, maize and rice at the regional scale in China. It then assesses the water-saving benefits of virtual water flows related to the transfer of the three crops between regions. The national average virtual water content of wheat, maize and rice were 1071 m(3) per ton (50.98% green water, 49.02% blue water ), 830 m(3) per ton (76.27% green water, 23.73% blue water) and 1294 m(3) per ton (61.90% green water, 38.10% blue water), respectively. With the regional transfer of wheat, maize and rice, virtual water flows reached 30.08 Gm(3) (59.91% green water, 40.09% blue water). Meanwhile, China saved 11.47 Gm(3) green water, while it consumed 7.84 Gm(3) more blue water than with a no-grain transfer scenario in 2009. In order to guarantee food security in China, the government should improve water productivity (reduce virtual water content of crops) during the grain production process. Meanwhile, under the preconditions of economic feasibility and land-water resources availability, China should guarantee the grain-sown area in southern regions for taking full advantage of green water resources and to alleviate the pressure on water resources. © 2012 Society of Chemical Industry.

  14. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  15. Physical and virtual water transfers for regional water stress alleviation in China

    PubMed Central

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R.; Guan, Dabo; Hubacek, Klaus

    2015-01-01

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management. PMID:25583516

  16. Assess water scarcity integrating water quantity and quality

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  17. Physical and virtual water transfers for regional water stress alleviation in China.

    PubMed

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R; Guan, Dabo; Hubacek, Klaus

    2015-01-27

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management.

  18. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  19. The water supply-water environment nexus in salt Intrusion area under the climate change

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Water resources are critical problems in in salt Intrusion area for the increasing water supply and water quality deterioration. And the climate change exacerbates these problems. In order to balance the relationship between water supply and water environment requirements, the water supply-water environment nexus should be understood well. Based on the de Saint-Venant system of equations and the convection diffusion equation, which can be used to reflect the laws of water quality, the water supply- water environment nexus equation has be determined. And the nexus is dynamic with the climate change factors. The methods of determined the nexus have then been applied to a case study of the water supply-water environment nexus for the Pearl River Delta in China. The results indicate that the water supply-water environment nexus is trade off each other and are mainly affected by the fresh water flow from the upstream, salt water intrusion will reduce the resilience of the water supply system in this area. Our methods provides a useful framework to quantify the nexus according to the mechanisms of the water quantity and water quality, which will useful freshwater allocation and management in this saltwater intrusion area.

  20. Water resources data for Texas, water year 1993. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1993-11-01

    Water-resources data for the 1993 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 771 observation wells and water-quality data for 226 monitoring wells.

  1. Water resources data for Texas, water year 1996. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1995-30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1996-11-22

    Water-resources data for the 1996 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 845 observation wells and 187 water-quality data for monitoring wells.

  2. Water resources data for Texas, water year 1994. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1994-12-12

    Water-resources data for the 1994 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 698 observation wells and water-quality data for 97 monitoring wells.

  3. Water resources data for Texas, water year 1997. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1996-30 September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1997-12-03

    Water-resources data for the 1997 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 790 observation wells and 245 water-quality data for monitoring wells.

  4. Water resources data for Texas, water year 1995. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1994-30 September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1995-12-18

    Water-resources data for the 1995 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 919 observation wells and 226 water-quality data for monitoring wells.

  5. 33 CFR 2.34 - Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters subject to tidal influence....34 Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water. (a) Waters subject to tidal influence and waters subject to the ebb and flow of the tide are waters...

  6. 33 CFR 2.34 - Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Waters subject to tidal influence....34 Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water. (a) Waters subject to tidal influence and waters subject to the ebb and flow of the tide are waters...

  7. 33 CFR 2.34 - Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Waters subject to tidal influence....34 Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water. (a) Waters subject to tidal influence and waters subject to the ebb and flow of the tide are waters...

  8. 33 CFR 2.34 - Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Waters subject to tidal influence....34 Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water. (a) Waters subject to tidal influence and waters subject to the ebb and flow of the tide are waters...

  9. 33 CFR 2.34 - Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Waters subject to tidal influence....34 Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water. (a) Waters subject to tidal influence and waters subject to the ebb and flow of the tide are waters...

  10. Response of the Rio Grande and shallow ground water in the Mesilla Bolson to irrigation, climate stress, and pumping

    USGS Publications Warehouse

    Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.

    1999-01-01

    The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.

  11. EPA Office of Water (OW): Nutrient, Sediment, and Pathogens Water Impairments

    EPA Pesticide Factsheets

    National dataset consisting of a snapshot of 303(d) Listed Impaired Waters combined with Impaired Waters with TMDLs whose parent cause is Nutrients, Sediments, and Pathogens. The snapshot constitutes the top water impairments. The Impaired Waters with TMDLs and the 303(d) Listed Impaired Waters are combined into three mapping service layers in MyWaters Mapper application to provide a comprehensive view of each of these impairments. These waters are linked to the 303(d) information stored in EPAs Assessment and TMDL Tracking and Implementation System (ATTAINS). Below is a brief description of the two programs.The 303(d) Listed Impaired Waters program system provides impaired water data and impaired water features reflecting river segments, lakes, and estuaries designated under Section 303(d) of the Clean Water Act. Each State will establish Total Maximum Daily Loads (TMDLs) for these waters. Note the CWA Section 303(d) list of impaired waters does not represent waters that are impaired but have an EPA-approved TMDL established, impaired waters for which other pollution control mechanisms are in place and expected to attain water quality standards, or waters impaired as a result of pollution and is not caused by a pollutant; therefore, the Impaired Waters layers do not represent all impaired waters reported in a state's Integrated Report, but only the waters comprised of a state's approved 303(d) list. For more information regarding impaired waters refer to EPA's

  12. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    USGS Publications Warehouse

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  13. Public Water-Supply Systems and Associated Water Use in Tennessee, 2000

    USGS Publications Warehouse

    Webbers, Ank

    2003-01-01

    Public water-supply systems in Tennessee provide water to meet customer needs for domestic, industrial, and commercial users and municipal services. In 2000, more than 500 public water-supply systems distributed about 890 million gallons per day (Mgal/d) of surface water and ground water to a population of about 5 million in Tennessee. Surface-water sources provided 64 percent (about 569 Mgal/d) of the State?s water supplies, primarily in Middle and East Tennessee. Ground water produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 321 Mgal/d) of the public water supplies. Springs in Middle and East Tennessee provided about 14 percent (about 42 Mgal/d) of ground-water supplies used in the State. Per capita water use for Tennessee in 2000 was about 136 gallons per day. An additional 146 public water-supply systems provided approximately 84 Mgal/d of water supplies that were purchased from other water systems. Water withdrawals by public water-supply systems in Tennessee have increased by over 250 percent; from 250 Mgal/d in 1955 to 890 Mgal/d in 2000. Although Tennessee public water-supply systems withdraw less ground water than surface water, ground-water withdrawal rates reported by these systems continue to increase. In addition, the number of public water-supply systems reporting ground-water withdrawals of 1 Mgal/d or more in West Tennessee is increasing.

  14. Water shortage risk assessment considering large-scale regional transfers: a copula-based uncertainty case study in Lunan, China.

    PubMed

    Gao, Xueping; Liu, Yinzhu; Sun, Bowen

    2018-06-05

    The risk of water shortage caused by uncertainties, such as frequent drought, varied precipitation, multiple water resources, and different water demands, brings new challenges to the water transfer projects. Uncertainties exist for transferring water and local surface water; therefore, the relationship between them should be thoroughly studied to prevent water shortage. For more effective water management, an uncertainty-based water shortage risk assessment model (UWSRAM) is developed to study the combined effect of multiple water resources and analyze the shortage degree under uncertainty. The UWSRAM combines copula-based Monte Carlo stochastic simulation and the chance-constrained programming-stochastic multiobjective optimization model, using the Lunan water-receiving area in China as an example. Statistical copula functions are employed to estimate the joint probability of available transferring water and local surface water and sampling from the multivariate probability distribution, which are used as inputs for the optimization model. The approach reveals the distribution of water shortage and is able to emphasize the importance of improving and updating transferring water and local surface water management, and examine their combined influence on water shortage risk assessment. The possible available water and shortages can be calculated applying the UWSRAM, also with the corresponding allocation measures under different water availability levels and violating probabilities. The UWSRAM is valuable for mastering the overall multi-water resource and water shortage degree, adapting to the uncertainty surrounding water resources, establishing effective water resource planning policies for managers and achieving sustainable development.

  15. Efficient dynamic scarcity pricing in urban water supply

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR) tariff is designed, including a variable charge related to the scarcity value of water in the basin. The new tariff would encourage water conservation, providing more incentives with great water scarcity. The approach is applied to the supply to the city of Valencia with water resources from the Jucar river basin, a drought-prone Mediterranean basin in Eastern Spain that constitutes a good case for testing this policy. Our results demonstrate the potential of integrating the marginal value of water in the urban water tariffs, with water savings reaching up to 30% during scarcity conditions with respect to the baseline urban water tariffs.

  16. Water law as an adaptation strategy for global water scarcity in the future

    NASA Astrophysics Data System (ADS)

    Kakinuma, K.; Yoshikawa, S.; Endo, T.; Kanae, S.

    2014-12-01

    Water scarcity due to climate changes and growing human population is a major concern for the world. Adaptation and mitigation strategies should be developed for water scarcity in the future. Previous studies assessed the future water availability by hard technology (e.g., reservoirs, reclaimed and desalinated water plants) as adaptation strategies. On the other hand, soft path such as water law and policy would also be important for adaptation strategies. Water transfers is reallocation of water among water users. For example, distribution of the amount of available water is often heterogeneous especially during drought periods. If water transfers are permitted in these areas, water can be moved from surplus areas/sections to critical need areas/sections. There are several studies which describe the water transfer at the local scales (i.e., water bank in California), however the factors that determined the establishment of water transfer are not clear. If we can detect the factors, it could be used to estimate in which areas the water transfer would come into existence. This in turn would reduce the water stress. Here, we focus on historical interaction between human activity and water environments. Generally, rules of water use are developed by repeated discussion among water users. The frequency of these discussions would be related with their land use, frequency of drought and water resource sizes. For example, people in rice crop area need to discuss about water allocation compared to wheat crop area. Therefore, we examine the relationship between the permission of water transfer and factors such as water environment and human activity in the world.

  17. Direct and indirect urban water footprints of the United States

    NASA Astrophysics Data System (ADS)

    Chini, Christopher M.; Konar, Megan; Stillwell, Ashlynn S.

    2017-01-01

    The water footprint of the urban environment is not limited to direct water consumption (i.e., municipal supplies); embedded water in imported resources, or virtual water transfers, provides an additional component of the urban water footprint. Using empirical data, our analysis extends traditional urban water footprinting analysis to quantify both direct and indirect urban resources for the United States. We determine direct water volumes and their embedded energy through open records requests of water utilities. The indirect component of the urban water footprint includes water indirectly consumed through energy and food, relating to the food-energy-water nexus. We comprehensively quantify the indirect water footprint for 74 metropolitan statistical areas through the combination of various databases, including the Commodity Flow Survey of the U.S. Census Bureau, the U.S. Department of Agriculture, the Water Footprint Network, and the Energy Information Administration. We then analyze spatial heterogeneity in both direct and indirect water footprints, determining the average urban water footprint in the United States to be 1.64 million gallons of water per person per year [6200 m3/person/yr or 17,000 L/person/d], dominated by indirect water. Additionally, our study of the urban water cycle extends beyond considering only water resources to include embedded energy and equivalent carbon dioxide emissions. The inclusion of multiple sectors of the urban water cycle and their underlying processes provides important insights to the overall urban environment, the interdependencies of the food-energy-water nexus, and water resource sustainability. Our results provide opportunities for benchmarking the urban energy-water nexus, water footprints, and climate change potential.

  18. The Recreational Water Cycle: From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectants and Precursors and Implications for Exposure and Toxicity

    EPA Science Inventory

    The current study investigates the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, complete water pathway samples (untreated source waters ->fi...

  19. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    NASA Technical Reports Server (NTRS)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  20. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  1. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.

    PubMed

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J; Peel, Murray C; Phillips, Thomas J; Wada, Yoshihide; Ravalico, Jakin K

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  2. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    NASA Astrophysics Data System (ADS)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful consideration on the sustainability of their energy supply.

  3. Permitted water use in Iowa, 1985

    USGS Publications Warehouse

    Runkle, D.L.; Newman, J.L.; Shields, E.M.

    1985-01-01

    This report summarizes where, how much and for what purpose water is allocated for use in Iowa with permits issued by the Department of Water, Air and Waste Management. In Iowa, from a total permitted water use of 855,175.45 million gallons per year, about 58 percent is from surface-water sources and about 42 percent is from ground-water sources. Streams are 80.5 percent of the total surface-water use and wells make up 80.1 percent of the total ground-water use, with 65.4 percent of ground water coming from surficial aquifers. Power generation is the use category that is permitted the largest amount of total water use, 46.6 percent, with surface water being the source of 96.7 percent and 77.9 percent of the surface water is from streams. The public water suppliers' category is the next largest use type with 15.7 percent of the total permitted water. Ground water constitutes 74.4 percent of the public water supplier category with 51.7 percent from surficial aquifers. Surface water makes up 25.6 percent of this category with 83.0 percent of the surface water withdrawn from streams. Mining comprises 13.4 percent of the total water use and is the third largest water-use category. Ground water is the source of 63.3 percent of permitted mining water use with 94.3 percent of this from quarries and sand and gravel pits. Surface water is the source of 36.7 percent of the permitted mining water use with 97.6 percent from streams. Irrigation is the fourth largest permitted use type using 12.0 percent of the total water use. Eighty-eight percent of irrigation is from ground-water sources where surficial aquifers account for 94.7 percent. Streams are 81.1 percent of irrigational surface-water use. Self-supplied industrial users are permitted 10.6 percent of the total permitted water use with 85.5 percent of this from ground-water sources and 14.5 percent from surface-water sources. Of the self-supplied industrial ground-water use, 47.9 percent comes from surficial aquifers and of the self-supplied industrial surface-water use 86.1 percent is from streams. Self-supplied commercial use is allocated 1.5 percent of the total permitted water. Surface-water is the source of 37.7 percent of this and 62.3 percent is from ground-water sources. Agricultural (non-irrigation) use is 0.3 percent of the total permitted water with 73.3 percent from groundwater sources and 26.7 percent from surface-water sources. The areas that are allocated the most water permits are east-central Iowa and west-central Iowa.

  4. Role of water source in the growth of kale

    NASA Astrophysics Data System (ADS)

    Coates, M.

    2017-12-01

    Over the course of 2 months we watered Kale with tap water, water from turtle bayou, rain water, water from university lake, and deionized water. We found little difference between height and number of seedlings with different water treatments even though nutrient levels were different between these water sources.

  5. Water Development, Allocation, and Institutions: A Role for Integrated Tools

    NASA Astrophysics Data System (ADS)

    Ward, F. A.

    2008-12-01

    Many parts of the world suffer from inadequate water infrastructure, inefficient water allocation, and weak water institutions. Each of these three challenges compounds the burdens imposed by inadequacies associated with the other two. Weak water infrastructure makes it hard to allocate water efficiently and undermines tracking of water rights and use, which blocks effective functioning of water institutions. Inefficient water allocation makes it harder to secure resources to develop new water infrastructure. Poorly developed water institutions undermine the security of water rights, which damages incentives to develop water infrastructure or use water efficiently. This paper reports on the development of a prototype basin scale economic optimization, in which existing water supplies are allocated more efficiently in the short run to provide resources for more efficient long-run water infrastructure development. Preliminary results provide the basis for designing water administrative proposals, building effective water infrastructure, increasing farm income, and meeting transboundary delivery commitments. The application is to the Kabul River Basin in Afghanistan, where food security has been compromised by a history of drought, war, damaged irrigation infrastructure, lack of reservoir storage, inefficient water allocation, and weak water institutions. Results illustrate increases in economic efficiency achievable when development programs simultaneously address interdependencies in water allocation, development, and institutions.

  6. Integrated Water Resources Simulation Model for Rural Community

    NASA Astrophysics Data System (ADS)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a rural community. Keywords: Water Resources, Simulation Model, Domestic Water, Irrigation, Constructed Wetland, Rural Community

  7. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    USGS Publications Warehouse

    Cowdery, Timothy K.

    2005-01-01

    Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.

  8. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  9. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  10. Developing a methodological framework for estimating water productivity indicators in water scarce regions

    NASA Astrophysics Data System (ADS)

    Mubako, S. T.; Fullerton, T. M.; Walke, A.; Collins, T.; Mubako, G.; Walker, W. S.

    2014-12-01

    Water productivity is an area of growing interest in assessing the impact of human economic activities on water resources, especially in arid regions. Indicators of water productivity can assist water users in evaluating sectoral water use efficiency, identifying sources of pressure on water resources, and in supporting water allocation rationale under scarcity conditions. This case study for the water-scarce Middle Rio Grande River Basin aims to develop an environmental-economic accounting approach for water use in arid river basins through a methodological framework that relates water use to human economic activities impacting regional water resources. Water uses are coupled to economic transactions, and the complex but mutual relations between various water using sectors estimated. A comparison is made between the calculated water productivity indicators and representative cost/price per unit volume of water for the main water use sectors. Although it contributes very little to regional economic output, preliminary results confirm that Irrigation is among the sectors with the largest direct water use intensities. High economic value and low water use intensity economic sectors in the study region include Manufacturing, Mining, and Steam Electric Power. Water accounting challenges revealed by the study include differences in water management regimes between jurisdictions, and little understanding of the impact of major economic activities on the interaction between surface and groundwater systems in this region. A more comprehensive assessment would require the incorporation of environmental and social sustainability indicators to the calculated water productivity indicators.

  11. The rain-watered lawn: Informing effective lawn watering behavior.

    PubMed

    Survis, Felicia D; Root, Tara L

    2017-09-01

    Water restrictions are a common municipal water conservation strategy to manage outdoor water demand, which generally represents more than 50% of total urban-suburban water use. Although water restrictions are designed to limit the frequency of lawn watering, they do not always result in actual water savings. The project described here tested a weather-based add-on water conservation strategy in a South Florida suburban community to determine if it promoted more effective lawn watering behavior than mandatory water restrictions alone. The "rain-watered lawn" pilot program was designed to inform people of recent rainfall and how that contributed to naturally watering their lawns and offset the need to irrigate as often, or in some cases, at all. The goal of the study was to determine if homeowners would water more conservatively than with water restrictions alone if they were also informed of recent rainfall totals. The results show that households in neighborhoods where the add-on rain watered lawn strategy was implemented watered up to 61% less frequently than the control neighborhoods with water restrictions alone. This study demonstrates that weather-based information strategies can be effective for conservation and suggests that a program that focuses on coupling lawn watering behavior with actual climate variables such as rainfall can yield significant water savings. This study holds significance for municipal areas with water restrictions and provides a model to help improve outdoor water conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Health safety of main water pipe materials supplied in China market.

    PubMed

    Lu, Kai; Ding, Liang; Wang, Hong-Wei; Jing, Hai-Ning; Zhao, Xiao-Ning; Lin, Shao-Bin; Li, Ya-Dong; Jin, Yin-Long; Liu, Feng-Mao; Jiang, Shu-Ren

    2006-04-01

    To assess the health safety of copper, steel and plastic water pipes by field water quality investigations. Four consumers were randomly selected for each type of water pipes. Two consumers of every type of the water pipes had used the water pipes for more than 1 year and the other 2 consumers had used the water pipes for less than 3 months. The terminal volume of tap water in copper and steel water pipes should be not less than 0.1 liter, whereas that in plastic water pipes should be not less than 1 liter. The mean values of the experimental results in the second field water quality investigation of the copper and steel water pipes met the Sanitary Standards for Drinking Water Quality. The items of water sample of the plastic water pipes met the requirements of the Sanitary Standards for Drinking Water Quality. Copper, steel, and plastic pipes can be used as drinking water pipes.

  13. Optimizing Water Management for Collocated Conventional and Unconventional Reservoirs

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Walsh, M.

    2016-12-01

    With the U.S. producing much more water than oil from oil and gas reservoirs, managing produced water is becoming a critical issue. Here we quantify water production from collocated conventional and unconventional reservoirs using well by well analysis and evaluate various water management strategies using the U.S. Permian Basin as a case study. Water production during the past 15 years in the Permian Basin totaled 55×109 barrels (bbl), 95% from wells in conventional reservoirs resulting in an average water to oil ratio of 12 compared to ratios of 2-3 in wells in unconventional reservoirs. Some of this water ( 25%) is returned to the reservoir for secondary oil recovery (water flooding) while the remaining water is injected into an average of 18,000 salt water disposal wells. Total water production over the past 15 yr (2000 - 2015) exceeds water used for hydraulic fracturing by almost 40 times. Analyzing water injection into salt water disposal wells relative to water requirements for hydraulic fracturing at a 5 square mile grid scale based on 2014 data indicates that water disposal exceeds water requirements for hydraulic fracturing throughout most of the play. Reusing/recycling of produced water for hydraulic fracturing would reduce sourcing and disposal issues related to hydraulic fracturing. Because shales (unconventional reservoirs) provide the source rocks for many conventional reservoirs, coordinating water management from both conventional and unconventional reservoirs can help resolve issues related to sourcing of water for hydraulic fracturing and disposing of produced water. Reusing/recycling produced water can also help reduce water scarcity concerns in some regions.

  14. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.

    2016-12-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  15. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    PubMed

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    NASA Astrophysics Data System (ADS)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  17. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    NASA Astrophysics Data System (ADS)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These evaluations will be used to determine the proportion of water from upper soil horizons and deep horizons for rice and maize in different maturity periods during wet and dry seasons. Finally we will estimate the influence of groundwater and surface water by irrigation water and/or by precipitation. First results of the sampling during the wet season 2015 will be presented.

  18. Determination of radon concentration in water using RAD7 with RAD H{sub 2}O accessories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M. F. I.; Rabaiee, N. A.; Jaafar, M. S.

    In the last decade, the radon issue has become one of the major problems of radiation protection. Radon exposure occurs when using water for showering, washing dishes, cooking and drinking water. RAD7 and Rad H20 accessories were used in order to measure radon concentration in water sample. In this study, four types of water were concerns which are reverse osmosis (drinking water), mineral water, tap water and well water. Reverse osmosis (drinking water) and mineral water were bought from the nearest supermarket while tap water and well water were taken from selected areas of Pulau Pinang and Kedah. Total 20more » samples were taken with 5 samples for each type of water. The measured radon concentration ranged from 2.9±2.9 to 79.5±17 pCi/L, 2.9±2.9 to 67.8±16 pCi/L, 15.97±7 to 144.25±24 pCi/L and 374.89±37 to 6409.03±130 pCi/L in reverse osmosis (drinking water), mineral water, tap water and well water. Well water has the highest radon compared to others. It was due to their geological element such as granite. Results for all types of water are presented and compared with maximum contamination limit (MCL) recommended by United State Environmental Protection Agency (USEPA) which is 300pCi/L. Reverse osmosis water, mineral water and tap water were fall below MCL. However, well water was exceeded maximum level that was recommended. Thus, these findings were suggested that an action should be taken to reduce radon concentration level in well water as well as reduce a health risk towards the public.« less

  19. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  20. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  1. Assessing the risk posed by high-turbidity water to water supplies.

    PubMed

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  2. The effects of large-scale pumping and diversion on the water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Bradbury, Kenneth R.; Krohelski, James T.

    2001-01-01

    Throughout many parts of the U.S., there is growing concern over the effects of rapid urban growth and development on water resources. Ground- water and surface-water systems (which comprise the hydrologic system) are linked in much of Wisconsin, and ground water can be utilized both for drinking water and as a source of water for sustaining lakes, streams, springs, and wetlands. Ground water is important for surface-water systems because it commonly has greater dissolved solids and more acid-neutraliz- ing capacity than surface water or precipitation. The supplies of ground water are finite, however, and, in many cases ground water used for one purpose cannot be used for another. Moreover, ground-water use and withdrawal patterns may not be easy to alter once established. Thus, urban and rural planners are faced with decisions that balance the need for ground- water withdrawals while maintaining the quantity and quality of ground water for sustaining surface-water resources. Science-based information on the ground-water system and the connections to surface-water systems provides valuable insight for such decisions.

  3. Water Resources Data for California, Water Year 1987. Volume 5. Ground-water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 786 observation wells and water-quality data for 168 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Water Resources Data for California, Water Year 1986. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Keeter, G.L.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 765 observation wells and water-quality data for 174 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water Resources Data, California, Water Year 1989. Volume 5. Ground-Water Data

    USGS Publications Warehouse

    Lamb, C.E.; Johnson, J.A.; Fogelman, R.P.; Grillo, D.A.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in weils. Volume 5 contains water levels for 1,037 observation wells and water-quality data for 254 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperatine State and Federal agencies in California.

  6. Water Resources Data for California, Water Year 1988. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water-quality in wells. Volume 5 contains water levels for 980 observation wells and water-quality data for 239 observation monitoring wells. These data represent that part of the National water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  7. Water resources data, Wyoming, water year 2004; Volume 1. Surface water; with List of discontinued and active surface-water, water-quality, sediment, and biological stations

    USGS Publications Warehouse

    Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.

    2005-01-01

    Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  8. Water Resources Data, Louisiana, Water Year 2002

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.

    2003-01-01

    Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  9. Indian water rights settlements and water management innovations: The role of the Arizona Water Settlements Act

    NASA Astrophysics Data System (ADS)

    Bark, Rosalind H.; Jacobs, Katharine L.

    2009-05-01

    In the American southwest, over-allocated water supplies, groundwater depletion, and potential climate change impacts are major water management concerns. It may therefore seem counterintuitive that the resolution of outstanding senior tribal water claims, essentially reallocating finite water supplies to tribes, could support improved water supply reliability for many water users as is the case with the 2004 Arizona Water Settlements Act. The large size of the settlement and its multiple components translate to significant impacts on water policy in Arizona. Key water management solutions incorporated into the settlement and associated legislation have expanded the water manager's "toolbox" and are expected to enhance water supply reliability both within and outside Arizona's active management areas. Many of these new tools are transferable to water management applications in other states.

  10. Water resources data, Louisiana, water year 2004

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.

    2005-01-01

    Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  11. Valuation of irrigation water in South-western Iran using a hedonic pricing model

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdoulkarim; Shahsavari, Zahra

    2011-12-01

    Population growth, improved socioeconomic conditions, increased demand for various types of water use, and a reduction in water supply has created more competition for scarce water supplies leveling many countries. Efficient allocation of water supplies between different economic sectors is therefore very important. Water valuation is a useful tool to determine water price. Water pricing can play a major part in improving water allocation by encouraging users to conserve scarce water resources, and promoting improvements in productivity. We used a hedonic pricing method to reveal the implicit value of irrigation water by analyzing agricultural land values in farms under the Doroodzan dam in South-western Iran. The method was applied to farms in which irrigation water came from wells and canals. The availability of irrigation water was one of the most important factors influencing land prices. The value of irrigation water in the farms investigated was estimated to be 0.046 per cubic meter. The estimated price for water was clearly higher than the price farmers currently pay for water in the area of study. Efficient water pricing could help the sustainability of the water resources. Farmers must therefore be informed of the real value of irrigation water used on their land.

  12. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  13. Water use in Arkansas, 1995

    USGS Publications Warehouse

    Holland, Terrance W.

    1999-01-01

    As part of the National Water-Use Information Program, the U.S. Geological Survey (USGS) stores water-use data in standardized format for different categories of water use. These data are aggregated by county, 4- and 8-digit hydrologic units, and aquifer in the Aggregated Water-Use Data System (AWUDS). Site-specific water-use data for public supply, commercial, industrial, mining, and power generation are stored in the Site-Specific Water-Use Data System (SSWUDS). Site-specific water-use for irrigation and livestock (stock and animal specialties) is stored in the Arkansas District's Water-Use Data Base System (WUDBS). Information about amounts of water withdrawn, sources of water, how the water was used, and how much was returned is available to water-resources managers and policy makers. From 1960 until about 1985, water-use data were collected and compiled in cooperation with Arkansas Geological Commission (AGC). Since 1985, water-use data have been collected and stored in cooperation with the Arkansas Soil and Water Conservation Commission (ASWCC). Updated reports are periodically required because water use changes with time. This report contains 1995 water-use data compiled as part of the National Water-Use Information Program.

  14. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  15. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  16. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea

    PubMed Central

    Houri, Daisuke; Koo, Chung Mo

    2015-01-01

    Background The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. Methods For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the “Prerequisites for Tasty Water” and the “Standards for Tasty Water” devised for city water. Results The PET Bottled water varieties analyzed in this study—Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND—showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health < 5.2. Conclusion The South Korean PET bottled water studied here fulfills the “Water Index of Taste,” “Water Index of Health,” “Standard for Tasty Water” and “Prerequisites for Tasty Water” that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people. PMID:26538797

  17. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    PubMed

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  18. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures.

    PubMed

    Chen, Xianfeng; Weber, Irene; Harrison, Robert W

    2008-09-25

    Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (

  19. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they were published in 5- year series. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled “Quality of Surface Waters of the United States.” Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled “Ground-Water Levels in the United States.” Water-supply papers may be consulted in the libraries of the principal cities in the United States, or they may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225. For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water is published in official U.S. Geological Survey reports on a State-boundary basis. These official reports carry an identification number consisting of the two-letter State postal abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as “U.S. Geological Survey Water-Data Report IA-01-1.” These water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

  20. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE PAGES

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; ...

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  1. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments.

    PubMed

    Vargas, Ana I; Schaffer, Bruce; Yuhong, Li; Sternberg, Leonel da Silveira Lobo

    2017-07-01

    We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against 18 O and 2 H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Are we running out of water?

    USGS Publications Warehouse

    Nace, Raymond L.

    1967-01-01

    Water supplies are not running out, but time is getting short to stem waste of water and destructive exploitation of the environment before harm is done that may be irreparable. Most of the world's water is oceanic brine. Of the waters on the land, most is frozen in Antarctica and Greenland. Only a small part of continental water is available for use and management. The discharge of rivers to the sea is a close measure of the availability of liquid water, but ground-water reservoirs have important functions as inexpensive equalizers of water supply. Soil moisture is a major factor in the water economy, and its function usually is overlooked in assessments of water use and future water demand. Despite outcries of water shortage, the principal use of water in advanced countries is as a medium for waste disposal. In reality, despite regional maldistribution of water, United States supplies are adequate, given rational management. Also, contrary to common belief, water pollution is primarily a problem of economics, not of health. A paramount problem in most parts of the world is the shortage of water development and management facilities, not a shortage of water. The International Hydrological Decade is a program to awaken people everywhere to the crucial importance of water in man's future and to promote rational approach to water problems.

  3. A holistic water balance of Austria - how does the quantitative proportion of urban water requirements relate to other users?

    PubMed

    Vanham, D

    2012-01-01

    Traditional water use statistics only include the blue water withdrawal/consumption of municipalities, industry and irrigated agriculture. When, however, green water use of the agricultural sector is included as well as the virtual water use/water footprint (WF), water use quantity statistics become very different. In common water use statistics, Austria withdraws in total about 2.5 km(3) per year, only 3% of available resources (total discharge 81.4 km(3) = surface and ground water). The total water consumption (0.5 km(3)) is less than 1% of available resources. Urban (municipal) water requirements account for 27% of total withdrawal or 33% of consumption. When agricultural green water use (cropland) is included in statistics, the fraction of municipal water requirements diminishes to 7.6% of total withdrawal and 2.5% of total consumption. If the evapotranspiration of grassland and alpine meadows is also included in agricultural green water use, this fraction decreases to 3.2% and 0.9% respectively. When the WF is assessed as base value for water use in Austria, the municipal water use represents 5.8% of this value. In this globalized world, these traditional water use statistics are no longer recommendable. Only a holistic water balance approach really represents water use statistics.

  4. Mechanism of Urban Water Dissipation: A Case Study in Xiamen Island

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Liu, J.; Wang, Z.

    2017-12-01

    Urbanization have resulted in increasing water supply and water dissipation from water uses in urban areas, but traditional hydrological models usually ignores the dissipation from social water cycle. In order to comprehensively calculate the water vapor flux of urban natural - social binary water cycle, this study advanced the concept of urban water dissipation (UWD) to describe all form water transfer from liquid to gas in urban area. UWD units were divided according to the water consumption characteristics of the underlying surface, and experimental methods of investigation, statistics, observation and measurement were used to study the water dissipation of different units, determine the corresponding calculation method, and establish the UWD calculation model. Taking Xiamen Island as an example, the city's water dissipation in 2016 was calculated to be 850 mm and verified by water balance. The results showed that the contributions of water dissipation from the green land, building, hardened ground and water surface. The results means that water dissipation inside buildings was one main component of the total UWD. The proportion of water vapor fluxes exceeds the natural water cycle in the urban area. Social water cycle is the main part of the city's water cycle, and also the hot and focus of urban hydrology research in the future.

  5. Effects of acute fresh water exposure on water flux rates and osmotic responses in Kemp's ridley sea turtles (Lepidochelys kempi)

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Patterson, R. M.; Wade, C. E.; Byers, F. M.

    2000-01-01

    Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.

  6. The development of water services and their interaction with water resources in European and Brazilian cities

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  7. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf])

    NASA Astrophysics Data System (ADS)

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J.; Cisneros, G. Andrés

    2018-01-01

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf]- anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  8. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf]).

    PubMed

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J; Cisneros, G Andrés

    2018-01-14

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17 O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO 4 ]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf] - anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  9. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  10. Natural mineral waters: chemical characteristics and health effects

    PubMed Central

    Quattrini, Sara; Pampaloni, Barbara; Brandi, Maria Luisa

    2016-01-01

    Summary Water contributes significantly to health and a daily intake of 1.5 to 2 liters of water should be guaranteed, because a good hydration is essential to maintain the body water equilibrium, although needs may vary among people. However, worldwide population is far from the Recommended Allowance for water intake. Among the waters for human uses, there are ‘waters (treated or not), intended for drinking, used for the food and beverages preparation or for other domestic purposes’ and natural mineral waters, that are ‘originated from an aquifer or underground reservoir, spring from one or more natural or bore sources and have specific hygienic features and, eventually, healthy properties’. According to the European Legislation (2009/54/EC Directive), physical and chemical characterization is used to make a classification of the different mineral waters, basing on the analysis of main parameters. Mineral composition enables to classify natural mineral waters as bicarbonate mineral waters, sulphate mineral waters, chloride mineral waters, calcic mineral waters, magnesiac mineral waters, fluorurate mineral waters, ferrous mineral waters and sodium-rich mineral waters. Although the concerns about bottled mineral waters (due to plasticizers and endocrine disruptors), many are the health effects of natural mineral waters and several studies explored their properties and their role in different physiological and pathological conditions. PMID:28228777

  11. Selection of an evaluation index for water ecological civilizations of water-shortage cities based on the grey rough set

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Zhu, J. W.; Xie, J. C.; Liu, J. L.; Jiang, R. G.

    2017-08-01

    According to the characteristics and existing problems of water ecological civilization of water-shortage cities, the evaluation index system of water ecological civilization was established using a grey rough set. From six aspects of water resources, water security, water environment, water ecology, water culture and water management, this study established the prime frame of the evaluation system, including 28 items, and used rough set theory to undertake optimal selection of the index system. Grey correlation theory then was used for weightings in order that the integrated evaluation index system for water ecology civilization of water-shortage cities could be constituted. Xi’an City was taken as an example, for which the results showed that 20 evaluation indexes could be obtained after optimal selection of the preliminary framework of evaluation index. The most influential indices were the water-resource category index and water environment category index. The leakage rate of the public water supply pipe network, as well as the disposal, treatment and usage rate of polluted water, urban water surface area ratio, the water quality of the main rivers, and so on also are important. It was demonstrated that the evaluation index could provide an objectively reflection of regional features and key points for the development of water ecology civilization for cities with scarce water resources. It is considered that the application example has universal applicability.

  12. Sustainable water services and interaction with water resources in Europe and in Brazil

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  13. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  14. A mixed-methods approach to understanding water use and water infrastructure in a schistosomiasis-endemic community: case study of Asamama, Ghana.

    PubMed

    Kosinski, Karen Claire; Kulinkina, Alexandra V; Abrah, Akua Frimpomaa Atakora; Adjei, Michael N; Breen, Kara Marie; Chaudhry, Hafsa Myedah; Nevin, Paul E; Warner, Suzanne H; Tendulkar, Shalini Ahuja

    2016-04-14

    Surface water contaminated with human waste may transmit urogenital schistosomiasis (UGS). Water-related activities that allow skin exposure place people at risk, but public health practitioners know little about why some communities with access to improved water infrastructure have substantial surface water contact with infectious water bodies. Community-based mixed-methods research can provide critical information about water use and water infrastructure improvements. Our mixed-methods study assessed the context of water use in a rural community endemic for schistosomiasis. Eighty-seven (35.2 %) households reported using river water but not borehole water; 26 (10.5 %) reported using borehole water but not river water; and 133 (53.8 %) households reported using both water sources. All households are within 1 km of borehole wells, but tested water quality was poor in most wells. Schistosomiasis is perceived by study households (89.3 %) to be a widespread problem in the community, but perceived schistosomiasis risk fails to deter households from river water usage. Hematuria prevalence among schoolchildren does not differ by household water use preference. Focus group data provides context for water preferences. Demand for improvements to water infrastructure was a persistent theme; however, roles and responsibilities with respect to addressing community water and health concerns are ill-defined. Collectively, our study illustrates how complex attitudes towards water resources can affect which methods will be appropriate to address schistosomiasis.

  15. Keep Food and Water Safe After a Disaster or Power Outage

    MedlinePlus

    ... DO NOT drink the water. Use a safe water supply like bottled or treated water. Contact your local, ... you know the water is safe, use bottled water or some other safe supply of water. If you suspect your water has ...

  16. Observations of Drinking Water Access in School Food Service Areas Before Implementation of Federal and State School Water Policy, California, 2011

    PubMed Central

    Chandran, Kumar; Hampton, Karla E.; Hecht, Kenneth; Grumbach, Jacob M.; Kimura, Amanda T.; Braff-Guajardo, Ellen; Brindis, Claire D.

    2012-01-01

    Introduction Recent legislation requires schools to provide free drinking water in food service areas (FSAs). Our objective was to describe access to water at baseline and student water intake in school FSAs and to examine barriers to and strategies for implementation of drinking water requirements. Methods We randomly sampled 24 California Bay Area public schools. We interviewed 1 administrator per school to assess knowledge of water legislation and barriers to and ideas for policy implementation. We observed water access and students’ intake of free water in school FSAs. Wellness policies were examined for language about water in FSAs. Results Fourteen of 24 schools offered free water in FSAs; 10 offered water via fountains, and 4 provided water through a nonfountain source. Four percent of students drank free water at lunch; intake at elementary schools (11%) was higher than at middle or junior high schools (6%) and high schools (1%). In secondary schools when water was provided by a nonfountain source, the percentage of students who drank free water doubled. Barriers to implementation of water requirements included lack of knowledge of legislation, cost, and other pressing academic concerns. No wellness policies included language about water in FSAs. Conclusion Approximately half of schools offered free water in FSAs before implementation of drinking water requirements, and most met requirements through a fountain. Only 1 in 25 students drank free water in FSAs. Although schools can meet regulations through installation of fountains, more appealing water delivery systems may be necessary to increase students’ water intake at mealtimes. PMID:22765930

  17. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  18. Observations of drinking water access in school food service areas before implementation of federal and state school water policy, California, 2011.

    PubMed

    Patel, Anisha I; Chandran, Kumar; Hampton, Karla E; Hecht, Kenneth; Grumbach, Jacob M; Kimura, Amanda T; Braff-Guajardo, Ellen; Brindis, Claire D

    2012-01-01

    Recent legislation requires schools to provide free drinking water in food service areas (FSAs). Our objective was to describe access to water at baseline and student water intake in school FSAs and to examine barriers to and strategies for implementation of drinking water requirements. We randomly sampled 24 California Bay Area public schools. We interviewed 1 administrator per school to assess knowledge of water legislation and barriers to and ideas for policy implementation. We observed water access and students' intake of free water in school FSAs. Wellness policies were examined for language about water in FSAs. Fourteen of 24 schools offered free water in FSAs; 10 offered water via fountains, and 4 provided water through a nonfountain source. Four percent of students drank free water at lunch; intake at elementary schools (11%) was higher than at middle or junior high schools (6%) and high schools (1%). In secondary schools when water was provided by a nonfountain source, the percentage of students who drank free water doubled. Barriers to implementation of water requirements included lack of knowledge of legislation, cost, and other pressing academic concerns. No wellness policies included language about water in FSAs. Approximately half of schools offered free water in FSAs before implementation of drinking water requirements, and most met requirements through a fountain. Only 1 in 25 students drank free water in FSAs. Although schools can meet regulations through installation of fountains, more appealing water delivery systems may be necessary to increase students' water intake at mealtimes.

  19. Chronic Diarrhea

    MedlinePlus

    ... Water Fluoridation Leadership Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... this disease, consult a health care provider. Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ...

  20. Body Hygiene

    MedlinePlus

    ... Water Fluoridation Leadership Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... Protect Your Eyes CDC. Hygiene-related Diseases Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ...

  1. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  2. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  3. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  4. Virtual water trade of agri-food products: Evidence from italian-chinese relations.

    PubMed

    Lamastra, Lucrezia; Miglietta, Pier Paolo; Toma, Pierluigi; De Leo, Federica; Massari, Stefania

    2017-12-01

    At global scale, the majority of world water withdrawal is for the agricultural sector, with differences among countries depending on the relevance of agri-food sector in the economy. Virtual water and water footprint could be useful to express the impact on the water resources of each production process and good with the objective to lead to a sustainable use of water at a global level. International trade could be connected to the virtual water flows, in fact through commodities importation, water poor countries can save their own water resources. The present paper focuses on the bilateral virtual water flows connected to the top ten agri-food products traded between Italy and China. Comparing the virtual water flow related to the top 10 agri-food products, the virtual water flow from Italy to China is bigger than the water flow in the opposite direction. Moreover, the composition of virtual water flows is different; Italy imports significant amounts of grey water from China, depending on the different environmental strategies adopted by the two selected countries. This difference could be also related to the fact that traded commodities are very different; the 91% of virtual water imported by Italy is connected to crops products, while the 95% of virtual water imported by China is related to the animal products. Considering national water saving and global water saving, appears that Italy imports virtual water from China while China exerts pressure on its water resources to supply the exports to Italy. This result at global scale implies a global water loss of 129.29millionm3 because, in general, the agri-food products are traded from the area with lower water productivity to the area with the higher water productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Target Water Consumption Calculation for Human Water Management based on Water Balance

    NASA Astrophysics Data System (ADS)

    Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.

    2016-12-01

    Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.

  6. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  7. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Maryland and Delaware. Prior to introduction of this series and for several water years concurrent with it, water resources data for Maryland and Delaware were published in U.S. Geological Survey Water-Supply Papers. Data on water levels for the 1935 through 1974 water years were published under the title 'Ground-Water Levels in the United States.' The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the Branch of Information Services, Federal Center, Bldg. 41, Box 25286, Denver, CO 80225-0286. Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as 'U.S. Geological Survey Water-Data Report MD-DE-98-2.' For archiving and general distribution, the reports for l971- 74 water years also are identified as water data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (410)238-4200.

  8. Water resources data, Puerto Rico and the U.S. Virgin Islands, water year 2004

    USGS Publications Warehouse

    Figueroa-Alamo, Carlos; Aquino, Zaida; Guzman-Rios, Senen; Sanchez, Ana V.

    2006-01-01

    The Caribbean Water Science Center of the U.S. Geological Survey (USGS), in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 89 streamflow-gaging stations, daily sediment records for 13 sediment stations, stage records for 18 reservoirs, and (2) water-quality records for 20 streamflow-gaging stations, and for 38 ungaged stream sites, 13 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 72 observation wells. Water-resources data for Puerto Rico for calendar years 1958-67 were released in a series of reports entitled 'Water Records of Puerto Rico.' Water-resources data for the U.S. Virgin Islands for the calendar years 1962-69 were released in a report entitled 'Water Records of U.S. Virgin Islands.' Included were records of streamflow, ground-water levels, and water-quality data for both surface and ground water. Beginning with the 1968 calendar year, surface-water records for Puerto Rico were released separately on an annual basis. Ground-water level records and water-quality data for surface and ground water were released in companion reports covering periods of several years. Data for the 1973-74 reports were published under separate covers. Water-resources data reports for 1975 to 2003 water years consist of one volume each and contain data for streamflow, water quality, and ground water.

  9. Ground-water flow patterns and water budget of a bottomland forested wetland, Black Swamp, eastern Arkansas

    USGS Publications Warehouse

    Gonthier, G.J.; Kleiss, B.A.

    1996-01-01

    The U.S. Geological Survey, working in cooperation with the U.S. Army Corps of Engineers, Waterways Experiment Station, collected surface-water and ground-water data from 119 wells and 13 staff gages from September 1989 to September 1992 to describe ground-water flow patterns and water budget in the Black Swamp, a bottomland forested wetland in eastern Arkansas. The study area was between two streamflow gaging stations located about 30.5 river miles apart on the Cache River. Ground-water flow was from northwest to southeast with some diversion toward the Cache River. Hydraulic connection between the surface water and the alluvial aquifer is indicated by nearly equal changes in surface-water and ground-water levels near the Cache River. Diurnal fluctuations of hydraulic head ranged from more than 0 to 0.38 feet and were caused by evapotranspiration. Changes in hydraulic head of the alluvial aquifer beneath the wetland lagged behind stage fluctuations and created the potential for changes in ground-water movement. Differences between surface-water levels in the wetland and stage of the Cache River created a frequently occurring local ground-water flow condition in which surface water in the wetland seeped into the upper part of the alluvial aquifer and then seeped into the Cache River. When the Cache River flooded the wetland, ground water consistently seeped to the surface during falling surface-water stage and surface water seeped into the ground during rising surface-water stage. Ground-water flow was a minor component of the water budget, accounting for less than 1 percent of both inflow and outflow. Surface-water drainage from the study area through diversion canals was not accounted for in the water budget and may be the reason for a surplus of water in the budget. Even though ground-water flow volume is small compared to other water budget components, ground-water seepage to the wetland surface may still be vital to some wetland functions.

  10. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.

  11. Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Barker, R.G.; Robinson, J.B.

    2003-01-01

    Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  12. Neural correlates of water reward in thirsty Drosophila

    PubMed Central

    Lin, Suewei; Owald, David; Chandra, Vikram; Talbot, Clifford; Huetteroth, Wolf; Waddell, Scott

    2014-01-01

    Drinking water is innately rewarding to thirsty animals. In addition, the consumed value can be assigned to behavioral actions and predictive sensory cues by associative learning. Here we show that thirst converts water avoidance into water-seeking in naïve Drosophila. Thirst also permits flies to learn olfactory cues paired with water reward. Water learning requires water taste and <40 water-responsive dopaminergic neurons that innervate a restricted zone of the mushroom body γ lobe. These water learning neurons are different from those that are critical to convey the reinforcing effects of sugar. Naïve water-seeking behavior in thirsty flies does not require water taste but relies on another subset of water-responsive dopaminergic neurons that target the mushroom body β′ lobe. Furthermore, these naïve water-approach neurons are not required for learned water-seeking. Our results therefore demonstrate that naïve and learned water-seeking, and water learning, utilize separable neural circuitry in the brain of thirsty flies. PMID:25262493

  13. Evaluation of dripper clogging using magnetic water in drip irrigation

    NASA Astrophysics Data System (ADS)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  14. An evaluation index system of water security in China based on macroeconomic data from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Li, X. S.; Peng, Z. Y.; Li, T. T.

    2016-08-01

    This paper establishes an evaluation index system of water security. The index system employs 5 subsystems (water circulation security, water environment security, water ecology security, water society security and water economy security) and has 39 indicators. Using the AHP method, each indicator is given a relative weight to integrate within the whole system. With macroeconomic data from 2000 to 2012, a model of water security evaluation is applied to assess the state of water security in China. The results show an improving trend in the overall state of China's water security. In particular, the cycle of water security is at a high and low fluctuation. Water environment security presents an upward trend on the whole; however, this trend is unsteady and has shown a descending tendency in some years. Yet, water ecology security, water society security, and water economy security are basically on the rise. However, the degree of coordination of China's water security system remains in need of consolidation.

  15. Water use patterns of co-occurring C3 and C4 shrubs in the Gurbantonggut desert in northwestern China.

    PubMed

    Tiemuerbieke, Bahejiayinaer; Min, Xiao-Jun; Zang, Yong-Xin; Xing, Peng; Ma, Jian-Ying; Sun, Wei

    2018-09-01

    In water-limited ecosystems, spatial and temporal partitioning of water sources is an important mechanism that facilitates plant survival and lessens the competition intensity of co-existing plants. Insights into species-specific root functional plasticity and differences in the water sources of co-existing plants under changing water conditions can aid in accurate prediction of the response of desert ecosystems to future climate change. We used stable isotopes of soil water, groundwater and xylem water to determine the seasonal and inter- and intraspecific differences variations in the water sources of six C 3 and C 4 shrubs in the Gurbantonggut desert. We also measured the stem water potentials to determine the water stress levels of each species under varying water conditions. The studied shrubs exhibited similar seasonal water uptake patterns, i.e., all shrubs extracted shallow soil water recharged by snowmelt water during early spring and reverted to deeper water sources during dry summer periods, indicating that all of the studied shrubs have dimorphic root systems that enable them to obtain water sources that differ in space and time. Species in the C 4 shrub community exhibited differences in seasonal water absorption and water status due to differences in topography and rooting depth, demonstrating divergent adaptations to water availability and water stress. Haloxylon ammodendron and T. ramosissima in the C 3 /C 4 mixed community were similar in terms of seasonal water extraction but differed with respect to water potential, which indicated that plant water status is controlled by both root functioning and shoot eco-physiological traits. The two Tamarix species in the C 3 shrub community were similar in terms of water uptake and water status, which suggests functional convergence of the root system and physiological performance under same soil water conditions. In different communities, Haloxylon ammodendron differed in terms of summer water extraction, which suggests that this species exhibits plasticity with respect to rooting depth under different soil water conditions. Shrubs in the Gurbantonggut desert displayed varying adaptations across species and communities through divergent root functioning and shoot eco-physiological traits. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  17. Water Wisdom: 23 Stand-Alone Activities on Water Supply and Water Conservation for High School Students. 2nd Edition.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    This water conservation education program for high schools consists of both stand-alone activities and teacher support materials. Lessons are divided into six broad categories: (1) The Water Cycle; (2) Water and Society; (3) Keeping Water Pure; (4) Visualizing Volumes; (5) The Economics of Water Use; and (6) Domestic Water Conservation. The…

  18. The South Australian Safe Drinking Water Act: summary of the first year of operation.

    PubMed

    Froscio, Suzanne M; Bolton, Natalie; Cooke, Renay; Wittholz, Michelle; Cunliffe, David

    2016-06-01

    The Safe Drinking Water Act 2011 was introduced in South Australia to provide clear direction to drinking water providers on how to achieve water safety. The Act requires drinking water providers to register with SA Health and develop a risk management plan (RMP) for their water supply that includes operational and verification monitoring plans and an incident notification and communication protocol. During the first year of operation, 212 drinking water providers registered under the Act, including one major water utility and a range of small to medium sized providers in regional and remote areas of the State. Information was captured on water source(s) used and water treatment. Rainwater was the most frequently reported drinking water source (66%), followed by bore water (13%), on-supply or carting of mains water (13%), mixed source (rainwater with bore water backup) (6%) and surface water (3%). The majority of providers (91%) treated the water supply, 87% used disinfection. During the first year of operation, 16 water quality incidents were formally reported to SA Health. These included both microbial and chemical incidents. Case studies presented highlight how the RMPs are assisting drinking water providers to identify incidents of potential health concern and implement corrective actions.

  19. Water conservation in irrigation can increase water use

    PubMed Central

    Ward, Frank A.; Pulido-Velazquez, Manuel

    2008-01-01

    Climate change, water supply limits, and continued population growth have intensified the search for measures to conserve water in irrigated agriculture, the world's largest water user. Policy measures that encourage adoption of water-conserving irrigation technologies are widely believed to make more water available for cities and the environment. However, little integrated analysis has been conducted to test this hypothesis. This article presents results of an integrated basin-scale analysis linking biophysical, hydrologic, agronomic, economic, policy, and institutional dimensions of the Upper Rio Grande Basin of North America. It analyzes a series of water conservation policies for their effect on water used in irrigation and on water conserved. In contrast to widely-held beliefs, our results show that water conservation subsidies are unlikely to reduce water use under conditions that occur in many river basins. Adoption of more efficient irrigation technologies reduces valuable return flows and limits aquifer recharge. Policies aimed at reducing water applications can actually increase water depletions. Achieving real water savings requires designing institutional, technical, and accounting measures that accurately track and economically reward reduced water depletions. Conservation programs that target reduced water diversions or applications provide no guarantee of saving water. PMID:19015510

  20. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  1. U.S. Geological Survey ground-water studies in Utah

    USGS Publications Warehouse

    Gates, Joseph S.

    1988-01-01

    Ground water is an important natural resource in Utah. In the basins west of the Wasatch Front, and in many other parts of Utah, ground water is the primary source of water. In many of the basins of the western desert and in parts of the Colorado Plateau, ground water is the only reliable source of water. Along the Wasatch Front to the north and south of Salt Lake City, in the Uinta Basin, and in the Sevier River drainage, surface water is the primary source of water. Ground-water sources supply about 20 percent of all water used in Utah and about 63 percent of the water for public supply. Of the total amount of ground water used, 44 percent is for irrigation, 35 percent is for public supply, 11 percent is for industry, 5 percent is for rural domestic supplies, and 5 percent is for livestock. The major issues related to ground water in Utah are: -Development of additional ground-water supplies while protecting existing water rights and minimizing effects on water levels, water quality, and streamflow, and-Protection of ground-water resources from contamination by pollutants from various types of land-use and waste-disposal practices.

  2. Concentration data for anthropogenic organic compounds in groundwater, surface water, and finished water of selected community water systems in the United States, 2002-10

    USGS Publications Warehouse

    Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and propellants; and (13) solvents. This report presents the analytical results of source- water samples from 448 community water system wells and 21 surface-water sites. This report also presents the analytical results of finished-water samples from 285 wells and 20 surface-water sites from community water systems. Results of quality-assurance/quality-control samples also are presented including data for equipment blanks, field blanks, source solution blanks, and replicate samples.

  3. Water footprint of Ghana

    NASA Astrophysics Data System (ADS)

    Debrah, E. R.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; van der Zaag, P.

    2009-04-01

    Water is used in almost all human endeavour. Unlike oil, water does not have a substitute. There are many factors that affect the water consumption pattern of people. These include climatic condition, income level and agricultural practices among others. The water footprint concept has been developed in order to have an indicator of water use in relation to its consumption by people. The water footprint of a country is defined as the volume of water needed for the production of the goods and services consumed by the inhabitants of the country (Chapagain and Hoekstra, 2008). Due to the bulky nature of water, it is not in its raw state a tradable commodity though it could be traded through the exchange of goods and services from one point to the other. Closely linked to the water footprint concept is the virtual water concept. Virtual water can be defined as the volume of water required to produce a commodity or service (Chapagain and Hoekstra, 2008 and Allan, 1999). The international trade of these commodities implies flows of virtual water over large distances. The water footprint of a nation can therefore be assessed by quantifying the use of domestic water resources, taking out the virtual water flow that leaves the country and adding the virtual water flow that enters the country to it. This research focuses on the assessment and analysis of the water footprints of Ghana considering only the consumptive component of the water footprint. In addition to livestock, 13 crops were considered, 4 of which were cash crops. Data was analysed for the year 2001 to 2005 The most recent framework for the analysis of water footprint is offered by Chapagain and Hoekstra. This was adopted for the study. The water footprint calculations show that the water footprint of Ghana is about 20011 Gm³/yr. Base on this the average water footprint of a Ghanaian is 823 m³/cap/yr. Not only agricultural crops but also other products require water for their manufacture, aluminium being a case in point. The water required for energy production through hydropower is important to account for, as well as the question to what extent this may or may not be considered non-consumptive water use. Further research is needed to correctly estimate the water footprint of energy-intensive products. Keywords: water footprint, virtual water, trade, commodity

  4. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using measurements of soil water potentials, water contents, and root distributions. The results showed that this modelling approach reproduced soil water dynamics well in the different plots and treatments. Root water uptake reduced when the effective soil water potential decreased to around -70 to -100 kPa in the root zone. Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957-2971, doi:10.5194/hess-16-2957-2012, 2012.

  5. [Investigation on the phenomena of bacteria exceeding standards in rural pit water treated by ultrafiltration membrane].

    PubMed

    Yue, Yinling; Zhang, Lan; Ling, Bo

    2011-11-01

    To investigate the phenomenon of bacteria exceeding standards in rural pit water, which was intermittently operated by water pump equipped with ultrafiltration membrane, and to explore the solutions. Polyvinyl chloride (PVC) alloy capillary membranes combined with UV, disinfectant, one-way valve, water-seal, high water level-water tank and direct outlet were tested. The operation on water treatment was intermittent, simulating the ways of treating pit water in the rural. The combination modes of ultrafiltration membrane with UV, disinfectant and high water level-water tank are valid in solving the problem of high turbidity and microorganism of pit water stored in cellars, the quality of effluents was consistent with the requirements of the national standards. While the combination modes of ultrafiltration membrane with one-way valve or water-seal were less desirable, more bacteria in treated water than raw water were observed because of bacteria breeding on the membrane component. In order to avoid excessive bacteria in filtered pit water caused by intermittent operation, it is recommended that for the pit water in high water level water tanks, the ultrafiltration membranes should be cleaned with disinfectants on a regular basis. The effluent pit water from underground cellars should be disinfected with UV after ultrafiltration.

  6. The economics of water reuse and implications for joint water quality-quantity management

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  7. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  8. Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows.

    PubMed

    Dong, Huijuan; Geng, Yong; Fujita, Tsuyoshi; Fujii, Minoru; Hao, Dong; Yu, Xiaoman

    2014-12-01

    With rapid economic development in China, water crisis is becoming serious and may impede future sustainable development. The uneven distribution of water resources further aggravates such a problem. Under such a circumstance, the concepts of water footprint and virtual water have been proposed in order to respond water scarcity problems. This paper focuses on studying provincial disparity of China's water footprints and inter-provincial virtual water trade flows by adopting inter-regional input-output (IRIO) method. The results show that fast developing areas with larger economic scales such as Guangdong, Jiangsu, Shandong, Zhejiang, Shanghai and Xinjiang had the largest water footprints. The most developed and water scarce areas such as Shanghai, Beijing, Tianjin and Shandong intended to import virtual water, a rational choice for mitigating their water crisis. Xinjiang, Jiangsu, Heilongjiang, Inner Mongolia, Guangxi and Hunan, had the largest per GDP water intensities and were the main water import regions. Another key finding is that agriculture water footprint was the main part in water footprint composition and water export trade. On the basis of these findings, policy implications on agriculture geographical dispersion, consumption behavior changes, trade structure adjustment and water use efficiency improvement are further discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. 76 FR 41243 - Agency Information Collection Activities: Proposed Collection; Comment Request; National Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Activities: Proposed Collection; Comment Request; National Water Quality Inventory Reports (Renewal) AGENCY... Clean Water Act (CWA) responsibilities. Title: National Water Quality Inventory Reports (Clean Water Act... information on the water quality standards attainment status of assessed waters, and, when waters are impaired...

  10. Be Water Wise.

    ERIC Educational Resources Information Center

    Birch, Sandra K.; Pettus, Alvin M.

    Various topics on water and water conservation are discussed, each general topic followed by a student activity. Topics include: (1) importance of water; (2) water in the environment; (3) getting water to and from homes (making water usable; treating wastewater; on-site systems, including water wells and septic tanks); (4) relationship between…

  11. Geohydrology and water chemistry in the Rialto-Colton Basin, San Bernardino County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Kadhim, Dina

    1997-01-01

    The 40-square-mile Rialto-Colton ground- water basin is in western San Bernardino County, California, about 60 miles east of Los Angeles.This basin was chosen for storage of imported water because of the good quality of native ground water, the known capacity for additional ground-water storage in the basin, and the availability of imported water. Because the movement and mixing of imported water needed to be determined, the San Bernardino Valley Municipal Water District entered into a cooperative program with the U.S.Geological Survey in 1991 to study the geohydrology and water chemistry in the Rialto- Colton basin. Ground-water flow and chemistry were investigated using existing data, borehole- geophysical and lithologic logs from newly drilled test holes, measurement of water levels, and chemical analyses of water samples. The Rialto-Colton basin is bounded on the northwest and southeast by the San Gabriel Mountains and the Badlands, respectively. The San Jacinto Fault and Barrier E form the northeastern boundary, and the Rialto-Colton Fault forms the southwestern boundary. Except in the southeastern part of the basin, the San Jacinto and Rialto-Colton Faults act as groundwater barriers that impede ground- water flow into and out of the basin.Barrier E generally does not impede ground- water flow into the basin. The ground-water system consists primarily of gravel, sand, silt, and clay. The maximum thickness is greater than 1,000 feet. The ground- water system is divided into four water-bearing units: river-channel deposits, and upper, middle, and lower water-bearing units. Relatively impermeable consolidated deposits underlie the lower water- bearing unit and form the lower boundary of the ground- water system. Ground water moves from east to west in the river-channel deposits and upper water-bearing unit in the southeastern part of the basin, and from northwest to southeast in the middle and lower water-bearing units. Two major internal faults, Barrier J and an unnamed fault, affect ground-water movement. Ground water moves across Barrier J in the unfaulted part of the ground-water system. The unnamed fault is a partial barrier to ground-water movement in the middle water- bearing unit and an effective barrier in the lower water-bearing unit.Imported water flows laterally across the unnamed fault above the saturated zone. Major sources of recharge to the ground- water system are underflow; precipitation that collects in small streams that drain the San Gabriel Mountains and the Badlands or runs off the mountain front as sheet flow, and sub-surface inflow; imported water; seepage loss from the Santa Ana River and Warm Creek; infiltration of rainfall; and irrigation return flow. The main component of discharge is pumpage. Long-term water levels in production wells reflect precipitation cycles. During a 194777 dry period, water levels in three wells declined almost continuously?as much as 100 feet in one well.Water levels in a well north of Barrier J are not affected by stresses on the groundwater system south of the barrier, indicating that these two parts of the ground-water system are not well connected. Water levels in cluster wells east of the unnamed fault north and south of the Linden Ponds artificial-recharge site rose as much as 70 feet during 1992-95. The rise in water levels in wells near the recharge ponds was observed within 2 months after the beginning of recharge. Water levels in most wells west of the unnamed fault changed very little during 1992-95. Water-chemistry data indicate that chemical characteristics vary within the groundwater system, and that dissolvedsolids concentrations are generally higher in the river-channel deposits, upper water- bearing unit, and the consolidated deposits than in the middle and lower water-bearing units. The chemical characteristics in water from the middle water-bearing unit were similar for most wells sampled west of the unnamed fault. In water from well

  12. Water budgets for selected watersheds in the Delaware River basin, eastern Pennsylvania and western New Jersey

    USGS Publications Warehouse

    Sloto, Ronald A.; Buxton, Debra E.

    2005-01-01

    This pilot study, done by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission, developed annual water budgets using available data for five watersheds in the Delaware River Basin with different degrees of urbanization and different geological settings. A basin water budget and a water-use budget were developed for each watershed. The basin water budget describes inputs to the watershed (precipitation and imported water), outputs of water from the watershed (streamflow, exported water, leakage, consumed water, and evapotranspiration), and changes in ground-water and surface-water storage. The water-use budget describes water withdrawals in the watershed (ground-water and surface-water withdrawals), discharges of water in the watershed (discharge to surface water and ground water), and movement of water of water into and out of the watershed (imports, exports, and consumed water). The water-budget equations developed for this study can be applied to any watershed in the Delaware River Basin. Data used to develop the water budgets were obtained from available long-term meteorological and hydrological data-collection stations and from water-use data collected by regulatory agencies. In the Coastal Plain watersheds, net ground-water loss from unconfined to confined aquifers was determined by using ground-water-flow-model simulations. Error in the water-budget terms is caused by missing data, poor or incomplete measurements, overestimated or underestimated quantities, measurement or reporting errors, and the use of point measurements, such as precipitation and water levels, to estimate an areal quantity, particularly if the watershed is hydrologically or geologically complex or the data-collection station is outside the watershed. The complexity of the water budgets increases with increasing watershed urbanization and interbasin transfer of water. In the Wissahickon Creek watershed, for example, some ground water is discharged to streams in the watershed, some is exported as wastewater, and some is exported for public supply. In addition, ground water withdrawn outside the watershed is imported for public supply or imported as wastewater for treatment and discharge in the watershed. A GIS analysis was necessary to quantify many of the water-budget components. The 89.9-square mile East Branch Brandywine Creek watershed in Pennsylvania is a rural watershed with reservoir storage that is underlain by fractured rock. Water budgets were developed for 1977-2001. Average annual precipitation, streamflow, and evapotranspiration were 46.89, 21.58, and 25.88 inches, respectively. Some water was imported (average of 0.68 inches) into the watershed for public-water supply and as wastewater for treatment and discharge; these imports resulted in a net gain of water to the watershed. More water was discharged to East Branch Brandywine Creek than was withdrawn from it; the net discharge resulted in an increase in streamflow. Most ground water was withdrawn (average of 0.25 inches) for public-water supply. Surface water was withdrawn (average of 0.58 inches) for public-water and industrial supply. Discharge of water by sewage-treatment plants and industries (average of 1.22 inches) and regulation by Marsh Creek Reservoir caused base flow to appear an average of 7.2 percent higher than it would have been without these additional sources. On average, 67 percent of the difference was caused by sewage-treatment-plant and industrial discharges, and 33 percent was caused by regulation of the Marsh Creek Reservoir. Water imports, withdrawals, and discharges have been increasing as the watershed becomes increasingly urbanized. The 64-square mile Wissahickon Creek watershed in Pennsylvania is an urban watershed underlain by fractured rock. Water budgets were developed for 1987-98. Average annual precipitation, streamflow, and evapotranspiration were 47.23, 22.24, and 23.12 inches, respectively. The watershed is highly u

  13. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  14. Perceptions of Tap Water and School Water Fountains among Youth and Association with Intake of Plain Water and Sugar-Sweetened Beverages

    PubMed Central

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Merlo, Caitlin; Dean, Wesley R.; Sherry, Bettylou

    2015-01-01

    BACKGROUND Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. METHODS We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. RESULTS Nearly 1 in 5 participants disagreed their tap water was safe and nearly 2 in 5 disagreed school water fountains were clean and safe. Perceived tap water risk was more prevalent among non-Hispanic (NH) blacks (26.4%) and Hispanics (28.3%) compared to NH whites (14.7%, p < .001) and more prevalent among lower income youth. Negative water fountain perceptions were more common among high school age youth. Perceived tap water risk was not associated with SSB intake (odds ratio (OR) = 1.0, 95% CI: 0.6, 1.5) or water intake (OR = 1.4, 95% CI: 0.9, 2.1). Negative water fountain perceptions were associated with SSB intake only among Hispanics (race/ethnicity interaction p < .001; OR = 2.9, 95% CI: 1.3, 6.6) but were not associated with water intake. CONCLUSION Negative perceptions of tap water and water fountains among youth are common and should be considered in efforts to provide water in schools. PMID:24443781

  15. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  16. Research on the Relationship between Water Diversion and Water Quality of Xuanwu Lake, China.

    PubMed

    Song, Weiwei; Xu, Qing; Fu, Xingqian; Zhang, Peng; Pang, Yong; Song, Dahao

    2018-06-14

    Water diversion is often used to improve water quality to reach the standard of China in the short term. However, this large amount of water diversion can not only improve the water quality, but also lead to a decline in the water quality (total phosphorus, total nitrogen) of Xuanwu Lake. Through theoretical analysis, the relationship between water quality and water diversion is established. We also found that the multiplication of the pollutant degradation coefficient ( K ) and the water residence time ( T ) is a constant ( N ), K⋅T=N. The water quality changed better at first, with the increase of inflow discharge, and then became worse, and the optimal water quality inflow discharge is 180,000 m³/day. By constructing two-dimensional hydrodynamic and water quality models, the optimal diversion water plan is calculated. Through model calculations, it can be seen that reducing the inflow discharge makes the water residence time longer (15.3 days changed to 23.8 days). Thereby, increasing the degradation of pollutants, and thus improving water quality. Compared with other wind directions, the southwest wind makes the water quality of Xuanwu Lake the most uniform. The concentration of water quality first became smaller and then became larger, as the wind speed increased, and eventually became constant. Implementing these results for water quality improvement in small and medium lakes will significantly reduce the cost of water diversion.

  17. Perceptions of tap water and school water fountains and association with intake of plain water and sugar-sweetened beverages.

    PubMed

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Merlo, Caitlin; Dean, Wesley R; Sherry, Bettylou

    2014-03-01

    Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. Nearly 1 in 5 participants disagreed their tap water was safe and nearly 2 in 5 disagreed school water fountains were clean and safe. Perceived tap water risk was more prevalent among non-Hispanic (NH) Blacks (26.4%) and Hispanics (28.3%) compared with NH Whites (14.7%, p < .001) and more prevalent among lower-income youth. Negative water fountain perceptions were more common among high school-aged youth. Perceived tap water risk was not associated with SSB intake (odds ratio [OR] = 1.0, 95% confidence interval [CI]: 0.6, 1.5) or water intake (OR = 1.4, 95% CI: 0.9, 2.1). Negative water fountain perceptions were associated with SSB intake only among Hispanics (race/ethnicity interaction p < .001; OR = 2.9, 95% CI: 1.3, 6.6) but were not associated with water intake. Negative perceptions of tap water and water fountains among youth are common and should be considered in efforts to provide water in schools. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela L.; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  19. Hygiene-Related Diseases: Athlete's Foot (Tinea Pedis)

    MedlinePlus

    ... Water Fluoridation Leadership Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... pedis. Dermatol Clin. 2003;21:431-62. Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ...

  20. [Research and development of a vehicle-mounted drinking water installation and its purification effect].

    PubMed

    Gao, Junhong; Wan, Hong; Kong, Wei; Yue, Hong

    2012-01-01

    To provide a suitable vehicle-mounted installation to solve the problem of drinking water in the wild. The vehicle-mounted drinking water installation, made up of pre-treatment unit, purification unit, box and VECU, was used to storage, transport and purify water in the wild. The effect of purification was detected by assembling the installation in the wild and observing the change of water turbidity, TDS, the number of total bacteria and coliform bacteria before and after the treatment of water sources. The wild water sources, such as river water, rainwater, well water and spring water could be purified, and the quality of the treated water could meet the requirement of Drinking Water Quality Standard of CJ94-2005. The vehicle-mounted drinking water installation is suitable for purifying water sources in the wild for drinking use.

  1. Residential water demand model under block rate pricing: A case study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yang, Z. F.

    2009-05-01

    In many cities, the inconsistency between water supply and water demand has become a critical problem because of deteriorating water shortage and increasing water demand. Uniform price of residential water cannot promote the efficient water allocation. In China, block water price will be put into practice in the future, but the outcome of such regulation measure is unpredictable without theory support. In this paper, the residential water is classified by the volume of water usage based on economic rules and block water is considered as different kinds of goods. A model based on extended linear expenditure system (ELES) is constructed to simulate the relationship between block water price and water demand, which provide theoretical support for the decision-makers. Finally, the proposed model is used to simulate residential water demand under block rate pricing in Beijing.

  2. Natural mineral waters, curative-medical waters and their protection

    NASA Astrophysics Data System (ADS)

    Fricke, M.

    1993-10-01

    In Europe different types of water are marketed, each strictly defined by EC Directive 80/777 (Natural Mineral Water, Spring and Table Water) or 80/778 (Drinking Water). In Germany, an additional type of water is common in the market: curative/medical water. Product quality and safety, registration as medicine, and pharmaceutical control are defined by the German Federal Medicine Act. A medical water is treated as any other medicine and may be sold only in pharmacies. The use of any water in Germany is controlled and strictly regulated by the Federal Water Act (Fricke 1981). The following requirements are set by the act: (1) No water use without a permit, which is limited in time and quantity. (2) No single or juristic person may own water. (3) Water resources of public interest and their recharge areas are to be protected by the definition of water protection zones. (Natural mineral water is not of public interest and therefore is not required to be protected by the definition of water protection zones, although it represents a market value of more than US2 billion. Medical water is of public interest). The definition of water protection zones impacts private property rights and has to be handled carefully. In order to protect water resources, sometimes the economic basis of a traditional industrial and/or agricultural infrastructure is destroyed. The concerns and needs all citizens, including industry, must be considered in analyzing the adequacy of water protection zones.

  3. Irrigation water as a source of drinking water: is safe use possible?

    PubMed

    van der Hoek, W; Konradsen, F; Ensink, J H; Mudasser, M; Jensen, P K

    2001-01-01

    In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than direct use of irrigation water and how irrigation water management would impact on health. The study was undertaken in an irrigated area in the southern Punjab, Pakistan. Over a one-year period, drinking water sources used and diarrhoea episodes were recorded each day for all individuals of 200 households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status. The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0.69-0.93). This indicates that good quality drinking water provides additional health benefits only when sufficient quantities of water and a toilet are available. In a multivariate analysis no association was found between water quality and diarrhoea but there was a significant effect of water quantity on diarrhoea which was to a large extent mediated through sanitation and hygiene behaviour. Increasing the availability of water in the house by having a household connection and a storage facility is the most important factor associated with reduced diarrhoea in this area. Safe use of canal irrigation water seems possible if households can pump seepage water to a large storage tank in their house and have a continuous water supply for sanitation and hygiene. Irrigation water management clearly has an impact on health and bridging the gap between the irrigation and drinking water supply sectors could provide important health benefits by taking into account the domestic water availability when managing irrigation water.

  4. Gastrointestinal and renal responses to variable water intake in whitebellied sunbirds and New Holland honeyeaters.

    PubMed

    Purchase, Cromwell; Napier, Kathryn R; Nicolson, Susan W; McWhorter, Todd J; Fleming, Patricia A

    2013-05-01

    Nectarivores face a constant challenge in terms of water balance, experiencing water loading or dehydration when switching between food plants or between feeding and fasting. To understand how whitebellied sunbirds and New Holland honeyeaters meet the challenges of varying preformed water load, we used the elimination of intramuscular-injected [(14)C]-l-glucose and (3)H2O to quantify intestinal and renal water handling on diets varying in sugar concentration. Both sunbirds and honeyeaters showed significant modulation of intestinal water absorption, allowing excess water to be shunted through the intestine when on dilute diets. Despite reducing their fractional water absorption, both species showed linear increases in water flux and fractional body water turnover as water intake increased (both afternoon and morning), suggesting that the modulation of fractional water absorption was not sufficient to completely offset dietary water loads. In both species, glomerular filtration rate was independent of water gain (but was higher for the afternoon), as was renal fractional water reabsorption (measured in the afternoon). During the natural overnight fast, both sunbirds and honeyeaters arrested whole kidney function. Evaporative water loss in sunbirds was variable but correlated with water gain. Both sunbirds and honeyeaters appear to modulate intestinal water absorption as an important component of water regulation to help deal with massive preformed water loads. Shutting down glomerular filtration rate during the overnight fast is another way of saving energy for osmoregulatory function. Birds maintain osmotic balance on diets varying markedly in preformed water load by varying both intestinal water absorption and excretion through the intestine and kidneys.

  5. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  6. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  7. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  8. Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fengping, W.

    2016-12-01

    Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.

  9. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Spatio-temporal variation in the tap water isotope ratios of Salt Lake City: a novel indicator of urban water system structure and dynamics.

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Bowen, G. J.

    2015-12-01

    Public water supply systems are the life-blood of urban areas. How we use urban water systems affects more than human health and well-being. Our water use can alter a city's energy balance, including how much solar energy is absorbed as heat or reflected back into space. The severity of these effects, and the need to better understand connections between climate, water extraction, water use, and water use impacts, is strongest in areas of climatic aridity and substantial land-use change, such as the rapidly urbanizing areas of Utah. We have gathered and analyzed stable water isotope data from a series of semi-annual hydrological surveys (spring and fall, 2013 and 2014) in urban tap water sampled across the Salt Lake Valley. Our study has led to four major findings thus far: 1) Clear and substantial variation in tap water isotopic composition in space and time that can be linked to different water sources and management practices within the urban area, 2) There is a strong correlation between the range of observed isotope values and the population of water districts, reflecting use of water from multiple local and non-local sources in districts with high water demand, 3) Water isotopes reflect significant and variable loss of water due to evaporation of surface water resources and 4) Overall, tap water contains lower concentrations of the heavy H and O isotopes than does precipitation within the basin, reflecting the connection between city water supplies and mountain water sources. Our results highlight the utility of isotopic data as an indicator of heterogeneities within urban water systems, management practices and their variation across a major metropolitan area, and effects of climate variability on urban water supplies

  11. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  12. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in…

  13. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  14. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  15. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  16. Integrated water resources management and infrastructure planning for water security in Southern Africa

    NASA Astrophysics Data System (ADS)

    Mapani, Benjamin; Magole, Lapologang; Makurira, Hodson; Meck, Maideyi; Mkandawire, Theresa; Mul, Marloes; Ngongondo, Cosmo

    2017-08-01

    This volume has brought together papers that are peer reviewed emanating from the WaterNet/WARFSA/GWP-SA 16th Symposium. The papers cover the following themes: Hydrology, Water and Environment, Water and Land, Water and Society, Water Supply and Sanitation and Water Resources Management.

  17. Economic accounting of water: The Botswana experience

    NASA Astrophysics Data System (ADS)

    Setlhogile, T.; Arntzen, J.; Pule, O. B.

    2017-08-01

    Water accounts aim to capture the value of water resources and their use within the economy. The accounts complement the National Accounts as the latter's main indicator (GDP) does not reflect changes in natural capital. Botswana developed water accounts for the period 2010/11-2014/15 using the UN's standard System of Environmental Economic Accounting for water (SEEA-water). The article focuses both on the construction of physical flow accounts as well as on the policy implications for development planning and water resource management through the use of policy indicators. It also shows long-term trends in water abstraction and water use efficiency linking the SEEA water accounts with results of earlier (non-SEEA) water accounting projects in Botswana. The water accounts results show that water abstraction and consumption have been largely stable since 2010/11 despite population (1.9% p.a.) and economic growth (around 5% p.a.) likely due to a combination of water sector reforms and drought conditions in south eastern Botswana; the latter led to the drying up of several dams and the imposition of severe water restrictions. While public attention focuses mostly on water service providers, self-providers (mines and the agricultural sector) account for more than 50% of total water abstracted from the environment of water, demonstrating the need to pay more attention to self-providers in IWRM implementation. Water consumption is highest for the agricultural sector (70.2 Mm3) followed by households and mines at 41.2 and 39 Mm3 respectively in 2014/15. In terms of water use efficiency, value added per m3 has increased in time, showing (some) decoupling of water consumption and economic growth. This positive trend needs to be enhanced in the pursuit of economic diversification, which should focus on growth of water-efficient economic sectors. Finally, per capita water consumption has decreased over time; while this may indicate that people conserve water, it may also point at delivery problems associated with water sector reforms. This requires further analysis.

  18. [Patterns and characteristics of ecological water demand in west arid zone of China--a case study of green corridor in the lower reaches of Tarim River].

    PubMed

    Wang, Ranghui; Lu, Xinming; Song, Yudong; Fan, Zili; Ma, Yingjie

    2003-04-01

    Ecological water demand has some characteristics. The ecological water demand that was used for protection of the green corridor in the lower reaches of Tarim River was chiefly water demand by natural vegetation below Daxihaizi reservoir, and it included gross restoration water amount of ground water level and gross stand water amount in all over the lower reaches of Tarim River. The gross restoration water amount of ground water level mainly included restoration water amount of ground water level and lateral discharge, as well as evaporation of the course. Based on the drainage target of Alagan in 2005, gross ecological water demand was the gross water amount of restoration ground water level between Daxihaizi and Alagan, which would be 13.20 x 10(8) m3. Meanwhile, the annual average water demand would be 2.64 x 10(8) m3. Because the drainage target and vegetation protection target would be all Taitema lake in 2010, the gross ecological water demand included not only the gross water amount of restoration ground water level between Alagan and Taitema lake, but also the ecological stand water amount between Daxihaizi and Taitema lake, which would be 18.32 x 10(8) m3. Meanwhile, the annual average water demand would be 3.66 x 10(8) m3. From the year 2010 to 2030, the gross ecological water demand would be consisted of two parts (the gross stand water amount between Daxihaizi and Alagan, and the water demand by increased vegetation of 18.67 x 10(4) hm2), and the total ecological water demand during the 20 years would be 139.00 x 10(8) m3. Meanwhile, the annual average water demand would be 6.95 x 10(8) m3.

  19. Water tight.

    PubMed

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use of water-efficient plumbing fixtures. Multilateral development agencies have identified some developing country cities as demonstrated sites for urban water conservation.

  20. Some Interesting Facts about Water and Water Conservation

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  1. Generalized water-level contours, September-October 2000 and March-April 2001, and long-term water-level changes, at the U.S. Air Force Plant 42 and vicinity, Palmdale, California

    USGS Publications Warehouse

    Christensen, Allen H.

    2005-01-01

    Historically, the U.S. Air Force Plant 42 has relied on ground water as the primary source of water owing, in large part, to the scarcity of surface water in the region. Groundwater withdrawal for municipal, industrial, and agricultural use has affected ground-water levels at U.S. Air Force Plant 42, and vicinity. A study to document changes in groundwater gradients and to present historical water-level data was completed by the U.S. Geological Survey in cooperation with the U.S. Air Force. This report presents historical water-level data, hydrographs, and generalized seasonal water-level and water-level contours for September?October 2000 and March?April 2001. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently water availability. During September?October 2000 and March?April 2001 the U.S. Geological Survey and other agencies made a total of 102 water-level measurements, 46 during September?October 2000 and 56 during March?April 2001. These data document recent conditions and, when compared with historical data, document changes in ground-water levels. Two water-level contour maps were drawn: the first depicts water-level conditions for September?October 2000 map and the second depicts water-level conditions for March?April 2001 map. In general, the water-level contour maps show water-level depressions formed as result of ground-water withdrawal. One hundred sixteen long-term hydrographs, using water-level data from 1915 through 2000, were constructed to show water-level trends in the area. The hydrographs indicate that water-level decline occurred throughout the study area, with the greatest declines south of U.S. Air Force Plant 42.

  2. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    NASA Astrophysics Data System (ADS)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  3. Perceptions on the use of bottled water in restaurants in Harare's Central Business District (CBD)

    NASA Astrophysics Data System (ADS)

    Juba, Olivia Sakhile; Tanyanyiwa, Vincent Itai

    2018-06-01

    Bottled water use continues to expand worldwide and in the last two decades, a significant number of consumers have shifted from tap water to bottled water due to Cryptosporidium outbreaks. Bottled water consumption has increased in Harare due to erratic tap water supplies. Since 2011, forty bottled water brands have been banned because of failure to meet safety and quality standards due to contamination, unsuitable packaging, and wrong labelling. Nevertheless, the bottled water industry continues to thrive as local authorities fail to adequately purify municipal water. The study assessed the perceptions on drinking bottled water in restaurants within Harare's CBD. Demographic and social factors associated with bottled water users were established and the role and influence of stakeholders in bottling and distribution of water documented. A field survey through the administration of questionnaires to fifty restaurant users was carried out to assess the perceptions of people on the use of bottled water in terms of its safety and potential health benefits. Key informant interviews were conducted using a semi-structured interview with ten local water bottling companies as well as representatives from the Environmental Management Agency (EMA) and Standards Association of Zimbabwe (SAZ). Data were analysed using descriptive statistics and logistic regression analysis. Standard descriptive statistics were generated, with 95% confidence intervals (95% CIs). Consumers used bottled water as their primary drinking water source when they perceived that tap water was not safe. Perceptions of purity of water, bottled water convenience, and tap water unavailability seemed to determine consumption patterns among users. Females in the 18-48 age groups were more likely to think that bottled water was cleaner, safer, tasted better and was more convenient than tap water. Consumers regularly purchased bottled water for drinking and used bottled water as their primary drinking water source regardless of cost implications. Government and local authorities need to ensure that pure and clean water is availed in Harare. In addition, the public must be engaged in recognizing the relationships that exist between water quality and the capacity of local authorities to maintain taste and safety standards.

  4. Regional Water Table (2002) and Water-Level Changes in the Mojave River and Morongo Ground-Water Basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.; Stamos, Christina L.; Predmore, Steven K.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During 2002, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 600 wells, providing coverage for most of the basins. Twenty-eight hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 9 short-term (1997 to 2002) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 2000 and 2002 water levels throughout the basins. In the Mojave River ground-water basin, about 66 percent of the wells had water-level declines of 0.5 ft or more since 2000 and about 27 percent of the wells had water-level declines greater than 5 ft. The only area that had water-level increases greater than 5 ft that were not attributed to fluctuations in nearby pumpage was in the Harper Lake (dry) area where there has been a significant reduction in pumpage during the last decade. In the Morongo ground-water basin, about 36 percent of the wells had water-level declines of 0.5 ft or more and about 10 percent of the wells had water-level declines greater than 5 ft. Water-level increases greater than 5 ft were measured only in the Warren subbasin, where artificial-recharge operations have caused water levels to rise almost 60 ft since 2000.

  5. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily modifies the natural conditions and the total natural system must be successfully blended with the unnatural stresses placed upon it. This can be accomplished by introducing new methods (such as ground-water zoning) in and by developing alternative strategies for ground-water management and protection. ?? 1983 D. Reidel Publishing Company.

  6. Total Water Management - slides

    EPA Science Inventory

    Total Water Management (TWM) examines urban water systems in an interconnected manner. It encompasses reducing water demands, increasing water recycling and reuse, creating water supply assets from stormwater management, matching water quality to end-use needs, and achieving envi...

  7. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small amount of water consumption, the drinking water station is different from the ordinary drinking water station repeatedly boil, greatly saving energy, embodies the idea of energy saving.

  8. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  9. Management of the water balance and quality in mining areas

    NASA Astrophysics Data System (ADS)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to systematically integrate all water balance components (groundwater, surface water, infiltration, precipitation, mine water facilities and operations etc.) into overall dynamic mine site considerations. After coupling the surface and ground water models (e.g. Feflow and WSFS) with each other, they are compared with Goldsim. The third objective is to integrate the monitoring and modelling tools into the mine management system and process control. The modelling and predictive process control can prevent flood situations, ensure water adequacy, and enable the controlled mine water treatment. The project will develop a constantly updated management system for water balance including both natural waters and process waters.

  10. Domestic water conservation potential in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdulrazzak, Mohammed J.; Khan, Muhammad Z. A.

    1990-03-01

    Domestic water conservation in arid climates can result in efficient utilization of existing water supplies. The impacts of conservation measures such as the installation of water-saving devices, water metering and pricing schemes, water rationing and public awareness programs, strict plumbing codes, penalties for wasting water, programs designed to reduce leakage from public water lines and within the home, water-efficient landscaping, economic and ethical incentives are addressed in detail. Cost savings in arid climates, with particular reference to Saudi Arabia, in relation to some conservation techniques, are presented. Water conservation technology and tentative demonstration and implementation of water conservation programs are discussed.

  11. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  12. Concept and Connotation of Water Resources Carrying Capacity in Water Ecological Civilization Construction

    NASA Astrophysics Data System (ADS)

    Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua

    2018-01-01

    Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.

  13. Research on water shortage risks and countermeasures in North China

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiang; Fang, Wenxuan; Wu, Ziqin

    2017-05-01

    In the paper, a grey forecasting model and a population growth model are established for forecasting water resources supply and demand situation in the region, and evaluating the scarcity of water resources thereof in order to solve the problem of water shortage in North China. A concrete plan for alleviating water resources pressure is proposed with AHP as basis, thereby discussing the feasibility of the plan. Firstly, water resources supply and demand in the future 15 years are predicted. There are four sources for the demand of water resources mainly: industry, agriculture, ecology and resident living. Main supply sources include surface water and underground water resources. A grey forecasting method is adopted for predicting in the paper aiming at water resources demands since industrial, agricultural and ecological water consumption data have excessive decision factors and the correlation is relatively fuzzy. Since residents' water consumption is determined by per capita water consumption and local population, a logistic growth model is adopted to forecast the population. The grey forecasting method is used for predicting per capita water consumption, and total water demand can be obtained finally. International calculation standards are adopted as reference aiming at water supply. The grey forecasting method is adopted for forecasting surface water quantity and underground water quantity, and water resources supply is obtained finally. Per capita water availability in the region is calculated by comparing the water resources supply and demand. Results show that per capita water availability in the region is only 283 cubic meters this year, people live in serious water shortage region, who will suffer from water shortage state for long time. Then, sensitivity analysis is applied for model test. The test result is excellent, and the prediction results are more accurate. In the paper, the following measures are proposed for improving water resources condition in the region according to prediction results, such as construction of reservoirs, sewage treatment, water diversion project and other measures. A detailed water supply plan is formulated. Water supply weights of all measures are determined according to the AHP model. Solution is sought after original models are improved. Results show that water resources quantity per capita will be up to 2170 cubic meters or so this year, people suffer from moderate water shortage in the region, which can meet people's life needs and economic development needs basically. In addition, water resources quantity per capita is increased year by year, and it can reach mild water shortage level after 2030. In a word, local water resources dilemma can be effectively solved by the plan actually, and thoughts can be provided for decision makers.

  14. Water Resources Data for Alaska, Water Year 1996

    USGS Publications Warehouse

    Linn, K.R.; Shaw, S.K.; Swanner, W.C.; Rickman, R.L.; Schellekens, M.F.

    1997-01-01

    Water resources data for the 1996 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 85 gaging stations; stage or contents only at 5 gaging stations; water quality at 19 gaging stations; and water levels for 49 observation wells. Also included are data for 56 crest-stage partial-record stations and 2 lakes. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  15. Water resources data, Kansas, water year 2004

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2005-01-01

    Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  16. Water Resources Data, Nebraska, Water Year 2003

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.; Miller, J.D.; Drudik, R.A.

    2004-01-01

    The Nebraska water resources data report for water year 2003 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 103 continuous and 5 crest-stage gaging stations, and 5 miscellaneous sites; stream water quality for 14 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 40 observation wells; and ground-water quality for 132 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, State, and Federal agencies.

  17. Water resources data, Nebraska, water year 2004

    USGS Publications Warehouse

    Hitch, D. E.; Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.

    2005-01-01

    The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.

  18. Towards a healthy water cycle in China.

    PubMed

    Zhang, J; Xiong, B Y

    2006-01-01

    Water shortage and water environment deterioration are becoming the bottleneck of the continuous socioeconomic growth of China in the 21st Century. Based on the development of water utilisation and the natural matter cycle rule, the authors argued that the fundamental approach to resolve the water crises and achieve the sustainable utilisation of water resource is to establish a healthy water cycle. The key strategy to establish this is advanced wastewater treatment and recycling to entire cities. The successional researches and practices of sustainable water utilisation and water environment restoration in Dalian, Shenzhen, Beijing and the north-east region were presented. These projects were the initial applications of the primary healthy water cycle theory, and indicated that the Chinese water industry gradually tends to the water environment restoration and water recycling.

  19. Lead and Drinking Water from Private Wells

    MedlinePlus

    ... Drinking Water Policy & Recommendations History of Drinking Water Treatment Drinking Water FAQ Fast Facts Healthy Water Sites Healthy Water ... if needed. You may also wish to consider water treatment methods such as reverse osmosis, distillation, and carbon ...

  20. Testing the Waters.

    ERIC Educational Resources Information Center

    Finks, Mason

    1993-01-01

    Provides information about home drinking water treatment systems to address concerns about the safety and quality of drinking water. Discusses water testing, filtration, product options and selection, water testing resources, water treatment device guidelines, water analysis terminology, and laboratory selection. (MCO)

  1. Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  2. Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2004-01-01

    Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  3. Review of water footprint components of grain

    NASA Astrophysics Data System (ADS)

    Ahmad, Wan Amiza Amneera Wan; Meriam Nik Sulaiman, Nik; Zalina Mahmood, Noor

    2017-06-01

    Burgeoning global population, economic development, agriculture and prevailing climate pattern are among aspects contributed to water scarcity. In low and middle income countries, agriculture takes the highest share among water user sector. Demand for grain is widespread all over the globe. Hence, this study review published papers regarding quantification of water footprint of grain. Review shows there are various methods in quantifying water footprint. In ascertaining water footprint, three (green, blue, grey) or two (green, blue) components of water footprint involved. However, there was a study introduced new term in evaluating water footprint, white water footprint. The vulnerability of varying methods is difficulty in conducting comparative among water footprint. Salient source in contributing high water footprint also varies. In some studies, green water footprint play major role. Conversely, few studies found out blue water footprint most contributing component in water footprint. This fluctuate pattern influenced by various aspects, namely, regional climatic characteristics, crop yield and crop types.

  4. Water resources data--North Dakota water year 2005, Volume 1. Surface water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2006-01-01

    Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  5. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  6. Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.

    2002-01-01

    Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  7. Water use data to enhance scientific and policy insight

    NASA Astrophysics Data System (ADS)

    Konar, M.

    2017-12-01

    We live in an era of big data. However, water use data remains sparse. There is an urgent need to enhance both the quality and resolution of water data. Metered water use information - as opposed to estimated water use, typically based on climate - would enhance the quality of existing water databases. Metered water use data would enable the research community to evaluate the "who, where, and when" of water use. Importantly, this information would enable the scientific community to better understand decision making related to water use (i.e. the "why"), providing the insight necessary to guide policies that promote water conservation. Metered water use data is needed at a sufficient resolution (i.e. spatial, temporal, and water user) to fully resolve how water is used throughout the economy and society. Improving the quality and resolution of water use data will enable scientific understanding that can inform policy.

  8. Water Resources Data--Kansas, Water Year 2003

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2004-01-01

    Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  9. Bibliography of selected water-resources publications by the U.S. Geological Survey for North Carolina, 1886-1995

    USGS Publications Warehouse

    Winner, M.D.

    1996-01-01

    More than 660 selected publications, written by scientists, engineers, and technicians of the U.S. Geological Survey during the period 1886-1995, compose the bulk of information about North Carolina?s water resources. The bibliography includes interpretive reports on water resources, ground water, surface water, water quality, and public-water supply and water use, as well as data reports on the same subjects. The interpretive reports are organized by geographic areas of the State. These areas include statewide, physiographic province, major river basin, and county. The data reports are listed by water-resource topic, and the introduction to each topic provides historical notes for data-collection and publication activities. Summary tables list Water-Supply Paper numbers for reports containing ground-water, surface-water, and water-quality data by calendar year or water year. A concluding section discusses the availability of U.S. Geological Survey publications.

  10. Water security evaluation in Yellow River basin

    NASA Astrophysics Data System (ADS)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  11. Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.

    2002-01-01

    Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  12. Drops of energy: conserving urban water to reduce greenhouse gas emissions.

    PubMed

    Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun

    2013-10-01

    Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.

  13. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  14. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  15. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  16. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water... site is served by a privately owned and centrally operated water and water/waste disposal system, the...

  17. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  18. Water repellents and water-repellent preservatives for wood

    Treesearch

    R. Sam Williams; William C. Feist

    1999-01-01

    Water repellents and water-repellent preservatives increase the durability of wood by enabling the wood to repel liquid water. This report focuses on water-repellent finishes for wood exposed outdoors above ground. The report includes a discussion of the effects of outdoor exposure on wood, the characteristics of water repellent and water-repellent preservative...

  19. Water Quality: Water Education for Teachers. A 4-H School Enrichment Program.

    ERIC Educational Resources Information Center

    Powell, G. Morgan; Kling, Emily B.

    This looseleaf notebook is a teacher resource package that is designed for enrichment program use. It contains five units dealing with water quality: (1) The Water Cycle; (2) Our Water Supply; (3) Waste/Water Treatment; (4) Water Conservation; (5) Water Pollution. The units provide background information, experiments, stories, poems, plays, and…

  20. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  1. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  2. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  3. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  4. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  5. Water Data Report: An Annotated Bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham Whitehead, Camilla; Melody, Moya

    2007-05-01

    This report and its accompanying Microsoft Excel workbooksummarize water data we found to support efforts of the EnvironmentalProtection Agency s WaterSense program. WaterSense aims to extend theoperating life of water and wastewater treatment facilities and prolongthe availability of water resourcesby reducing residential andcommercial water consumption through the voluntary replacement ofinefficient water-using products with more efficient ones. WaterSense hasan immediate need for water consumption data categorized by sector and,for the residential sector, per capita data available by region. Thisinformation will assist policy makers, water and wastewater utilityplanners, and others in defining and refining program possibilities.Future data needs concern water supply, wastewatermore » flow volumes, waterquality, and watersheds. This report focuses primarily on the immediateneed for data regarding water consumption and product end-use. We found avariety of data on water consumption at the national, state, andmunicipal levels. We also found several databases related towater-consuming products. Most of the data are available in electronicform on the Web pages of the data-collecting organizations. In addition,we found national, state, and local data on water supply, wastewater,water quality, and watersheds.« less

  6. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    PubMed

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  7. Public water supplies of the 100 largest cities of the United States, 1962

    USGS Publications Warehouse

    Durfor, Charles N.; Becker, Edith

    1964-01-01

    The report is divided into two sections. The first describes the uses of water in large cities, the raw-water supplies available for public supplies, tl-<; major and minor constituents and the properties of water, the methods of analyses, the treatment of water, the effects of chemical treatment on constituents and properties of water, and the costs of water treatment. The second is a city-by-city inventory that gives (a) the population of the city, (b) the adjacent communities supplied by the city water system, (c) the total population served, (d) the sources of water supply (including auxiliary and emergency supplies), (e) the average amount of water used daily, (f) the lowest 30-day mean discharge of streams used for public supply during recent years, (g) the treatment of water, (h) the rated capacity of each water-treatment plant, and (i) the storage capacity for raw and finished water. For 58 of the cities, the sources of water, the location of water-treatment plants, and the areas served by the city system are shown on maps. Chemical, spectrographic, and radiochemical analyses of treated water and chemical and spectrographic analyses for many of the raw-water supplies are presented in tabular form.

  8. Water scarcity in Beijing and countermeasures to solve the problem at river basins scale

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Gao, Jixi; Zou, Changxin; Wang, Yan; Lin, Naifeng

    2017-11-01

    Beijing has been subject to water scarcity in recent decades. Over-exploitation of water resources reduced water availability, and water-saving measures were not enough to mitigate the water scarcity. To address this problem, water transfer projects across river basins are being built. This paper assessed water scarcity in Beijing and the feasibility of solving the problem at river basins scale. The results indicate that there was an average annual water deficit of 13×108 m3 y-1 in Beijing, which totaled 208.9 ×108 m3 for 1998-2014, despite the adoption of various measures to alleviate water scarcity. Three of the adjacent four sub-river basins suffered a serious water deficit from 1998-2014. It was therefore impossible to transfer enough water from the adjacent river basins to mitigate the water scarcity in Beijing. However, the annual water deficit will be eliminated after the comprehensive operation of the world’s largest water transfer project (the South-to-North Water Transfer Project, SNWTP) in 2020, but it will take approximately 200 years before Beijing’s water resources are restored to the 1998 levels.

  9. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  10. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  11. Water demand management in times of drought: What matters for water conservation

    NASA Astrophysics Data System (ADS)

    Maggioni, Elena

    2015-01-01

    Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.

  12. Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  13. Handbook for the Institutional and Financial Implementation of Water Utilities.

    DTIC Science & Technology

    1984-05-01

    water . From a public health standpoint, water is necessary for drinking and sanitation. While public drinking water use aver- ages approximately 5 pints a... water . Domestic water includes that water furnished to homes, hotels, apartments, etc., for sanitary, drinking , washing, and other purposes. This use...with establishing Primary Drinking Water Standards under the Safe Drinking Water Act of 1974 (Public Law 93-523) for all public

  14. Perceptions of Tap Water and School Water Fountains and Association with Intake of Plain Water and Sugar-Sweetened Beverages

    ERIC Educational Resources Information Center

    Onufrak, Stephen J.; Park, Sohyun; Sharkey, Joseph R.; Merlo, Caitlin; Dean, Wesley R.; Sherry, Bettylou

    2014-01-01

    Background: Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. Methods: We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. Results: Nearly 1 in 5…

  15. Drivers of microbiological quality of household drinking water - a case study in rural Ethiopia.

    PubMed

    Usman, Muhammed A; Gerber, Nicolas; Pangaribowo, Evita H

    2018-04-01

    This study aims at assessing the determinants of microbiological contamination of household drinking water under multiple-use water systems in rural areas of Ethiopia. For this analysis, a random sample of 454 households was surveyed between February and March 2014, and water samples from community sources and household storage containers were collected and tested for fecal contamination. The number of Escherichia coli (E. coli) colony-forming units per 100 mL water was used as an indicator of fecal contamination. The microbiological tests demonstrated that 58% of household stored water samples and 38% of protected community water sources were contaminated with E. coli. Moreover, most improved water sources often considered to provide safe water showed the presence of E. coli. The result shows that households' stored water collected from unprotected wells/springs had higher levels of E. coli than stored water from alternative sources. Distance to water sources and water collection containers are also strongly associated with stored water quality. To ensure the quality of stored water, the study suggests that there is a need to promote water safety from the point-of-source to point-of-use, with due considerations for the linkages between water and agriculture to advance the Sustainable Development Goal 6 of ensuring access to clean water for everyone.

  16. Quality of drinking water from the agricultural area treated with pitcher water filters

    PubMed

    Królak, Elżbieta; Raczuk, Jolanta; Sakowicz, Danuta; Biardzka, Elżbieta

    Home methods of drinking water treatment through filtration have recently become quite popular. The aim of the study was to compare chemical composition of unfiltered water with water filtered in households with pitcher water filters. Obtained results were discussed in view of the effect of analysed chemical components of water on human health. Water samples were taken from water works supplies and from home dug wells from the agricultural area. Unfiltered water and water filtered through filters filled with active carbon and ion-exchanging resin and placed in a pitcher were analysed. Electrolytic conductivity, pH, hardness and the concentrations of calcium, magnesium, nitrate, phosphate and chloride ions were determined in water samples. Results of analyses were statistically processed. As a result of water filtration, the concentration of phosphates significantly increased and the concentrations of calcium, magnesium, electrolytic conductivity and pH decreased. No changes were noted in the concentration of chloride ions. Filtering water decreased the concentration of nitrates in dug wells samples. Using water purification devices is justified in the case of water originating from home dug wells contaminated with nitrates when, at the same time, consumers’ diet is supplemented with calcium and magnesium. Filtration of water from water works supplies, controlled by sanitary inspection seems aimless.

  17. Water Resources Data--Nebraska, Water Year 2002

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.

    2002-01-01

    The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.

  18. Determinants of household water conservation: The role of demographic, infrastructure, behavior, and psychosocial variables

    NASA Astrophysics Data System (ADS)

    Fielding, Kelly S.; Russell, Sally; Spinks, Anneliese; Mankad, Aditi

    2012-10-01

    Securing water supplies in urban areas is a major challenge for policy makers, both now and into the future. This study aimed to identify the key determinants of household water use, with a view to identifying those factors that could be targeted in water demand management campaigns. Objective water use data and surveys were collected from 1008 households in four local government areas of southeast Queensland, Australia. Results showed that demographic, psychosocial, behavioral, and infrastructure variables all have a role to play in determining household water use. Consistent with past research, household occupancy was the most important predictor of water use. Households in regions recently exposed to drought conditions and higher-level restrictions also used less water than those who had less experience with drought. The effect of water efficient technology was mixed: some water efficient appliances were associated with less water use, while others were associated with more water use. Results also demonstrated the importance of considering water use as a collective behavior that is influenced by household dynamics. Households who reported a stronger culture of water conservation used less water. These findings, along with evidence that good water-saving habits are linked to water conservation, highlight the value of policies that support long-term cultural shifts in the way people think about and use water.

  19. Water Budgets and Potential Effects of Land- and Water-Use Changes for Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.

    2006-01-01

    To address concerns over continued growth in Carson Valley, the U.S. Geological Survey, in cooperation with Douglas County, Nevada, began a study in February 2003 to update estimates of water-budget components in Carson Valley. Estimates of water-budget components were updated using annual evapotranspiration (ET) rates, rates of streamflow loss to infiltration and gain from ground-water seepage, and rates of recharge from precipitation determined from data collected in 2003 and 2004 for the study and reported in the literature. Overall water budgets were developed for the area of basin-fill deposits in Carson Valley for water years 1941-70 and 1990-2005. Water years 1941-70 represent conditions prior to increased population growth and ground-water pumping, and the importation of effluent. A ground-water budget was developed for the same area for water years 1990-2005. Estimates of total inflow in the overall water budget ranged from 432,000 to 450,000 acre-feet per year (acre-ft/yr) for water years 1941-70 and from 430,000 to 448,000 for water years 1990-2005. Estimates of total inflow for both periods were fairly similar because variations in streamflow and precipitation were offset by increases in imported effluent. Components of inflow included precipitation on basin-fill deposits of 38,000 acre-ft/yr for both periods, streamflow of the Carson River and tributaries to the valley floor of 372,000 acre-ft/yr for water years 1941-70 and 360,000 acre-ft/yr for water years 1990-2005, ground-water inflow ranging from 22,000 to 40,000 acre-ft/yr for both periods, and imported effluent of 9,800 acre-ft/yr for water years 1990-2005 with none imported for water years 1941-70. Estimates of ground-water inflow from the California portion of Carson Valley averaged about 6,000 acre-ft/yr and ranged from 4,000 to 8,000 acre-ft/yr. These estimates compared well with a previous estimate of ground-water inflow across the State line. Estimates of total outflow in the overall water budget were 446,000 acre-ft/yr for water years 1941-70, and 439,000 to 442,000 acre-ft/yr for water years 1990-2005. Variations in ET and outflow of the Carson River were offset by an increase in net ground-water pumping for water years 1990-2005. Components of outflow include ET of 151,000 acre-ft/yr for water years 1941-70 and 146,000 acre-ft/yr for water years 1990-2005, streamflow of the Carson River of 293,000 acre-ft/yr for water years 1941-70 and 278,000 acre-ft/yr for water years 1990-2005, and net ground-water pumping of 2,000 acre-ft/yr for water years 1941-70, and 15,000 to 18,000 acre-ft/yr for water years 1990-2005. The decreased average flows for water years 1990-2005 compared to water years 1940-71 were likely the result of dry conditions from 1987 to 1990. The large volumes of inflow and outflow of the Carson River dominate the overall water budget. Estimates of ground-water recharge for water years 1990-2005 ranged from 35,000 to 56,000 acre-ft/yr, and total sources of ground-water discharge ranged from 41,000 to 44,000 acre-ft/yr. Components of ground-water recharge included ground-water inflow from the Carson Range and Pine Nut Mountains (22,000 to 40,000 acre-ft/yr), ground-water recharge from streamflow (a minimum value of 10,000 acre-ft/yr), and secondary recharge of pumped ground water that returns to the water table (3,000 to 6,000 acre-ft/yr). Components of total ground-water discharge included ground-water ET from native phreatophytes, riparian vegetation, and non-irrigated pasture grasses (11,000 acre-ft/yr); ground-water discharge to streamflow of the Carson River (15,000 acre-ft/yr), and net ground-water pumping (15,000 to 18,000 acre-ft/yr). Changes in land use between water years 1941-70 and 1990-2005 have decreased ET by about 5,000 acre-ft/yr. Increased application of effluent for irrigation between those years has decreased the use of surface water and ground water for irrigation by about 9,500 acre-ft/yr. The total decrease, about 15,000 acre-ft/yr, was approximately equal to the net ground-water pumping of 15,000 to 18,000 acre-ft/yr. The decrease in ET and in the use of streamflow and ground water for irrigation would tend to increase outflow of the Carson River from Carson Valley, offsetting the decrease in outflow caused by ground-water pumping without changes in land use predicted by previous studies of water budgets for Carson Valley.

  20. Accounting for Water Insecurity in Modeling Domestic Water Demand

    NASA Astrophysics Data System (ADS)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  1. Preference for tap, bottled, and recycled water: Relations to PTC taste sensitivity and personality.

    PubMed

    Harmon, Daniel; Gauvain, Mary; Z Reisz; Arthur, Isaac; Story, S Drew

    2018-02-01

    This study investigated people's preferences for different water sources and factors that predict such preferences using a blind taste test. Water preferences of 143 participants for one name-brand bottled water, one groundwater-sourced tap water, and one indirect potable reuse (IDR) water were assessed. For predictors of water preference, we measured each participant's PTC taste sensitivity and assessed two personality traits (Neuroticism, Openness to Experience). We also explored participants' descriptions of each water source. Results indicate a preference for water treated with Reverse Osmosis (RO) (bottled and IDR water) over groundwater-sourced water, which had higher pH levels and lower concentrations of Ca and HCO 3 - . PTC taste sensitivity did not predict preferences, while Openness to Experience and Neuroticism predicted preference for IDR water. Positive relations between Openness to Experience and preferences for bottled and IDR water were moderated by gender and were stronger among females. Participants described water primarily by its taste and texture. Findings suggest that (1) tap water treated by RO is equally preferable to some bottled water, (2) personality traits may affect water preferences, and (3) prior findings of gender differences in preferences for bottled water may reflect personality characteristics. Efforts to increase acceptance for sustainable water alternatives, such as IDR, may be more successful by assuring consumers about taste and addressing personality traits that encourage or inhibit use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Economic aspects of virtual water trade

    NASA Astrophysics Data System (ADS)

    Oki, Taikan; Yano, Shinjiro; Hanasaki, Naota

    2017-04-01

    Although water is rarely traded over long distances by itself, the total weight of the water consumed to produce traded commodities exceeds the weight of any other commodity traded in the world. This concept is known as virtual water trade. Although space-/time-/commodity-based quantification has been conducted extensively, the underlying causes of this peculiar feature have thus far received little exploration. Here, we use estimates of water consumption from a global hydrological model and statistical data related to food trade to elucidate three facts that explain the fundamental nature of virtual water trade with respect to alleviating water scarcity. First, we quantitatively illustrate the unique position of water among commodities based on its unit price and quantity of sales. Water has an extremely low unit price, and a tremendous volume of water is consumed per person each day. Second, we show that rich but water-scarce countries tend to reduce local water consumption by importing virtual water. Third, we demonstrate that nations characterized by net virtual water exports have higher water resources and income per capita and that no countries fall below a certain threshold with respect to both GDP and water resources. These points suggest that the virtual water trade is explained by economic characteristics of water and that sustainable development depends on promoting the co-development of poverty alleviation and water resource development.

  3. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  4. How water is different from energy and food?

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Oki, T.; Yano, S.

    2017-12-01

    Although water is rarely traded over long distances by itself, the total weight of the water consumed to produce traded commodities exceeds the weight of any other commodity traded in the world. This concept is known as virtual water trade. Although space-/time-/commodity-based quantification has been conducted extensively, the underlying causes of this peculiar feature have thus far received little exploration. Here, we use estimates of water consumption from a global hydrological model and statistical data related to food trade to elucidate three facts that explain the fundamental nature of virtual water trade with respect to alleviating water scarcity. First, we quantitatively illustrate the unique position of water among commodities based on its unit price and quantity of sales. Water has an extremely low unit price, and a tremendous volume of water is consumed per person each day. Second, we show that rich but water-scarce countries tend to reduce local water consumption by importing virtual water. Third, we demonstrate that nations characterized by net virtual water exports have higher water resources and income per capita and that no countries fall below a certain threshold with respect to both GDP and water resources. These points suggest that the virtual water trade is explained by economic characteristics of water and that sustainable development depends on promoting the co-development of poverty alleviation and water resource development.

  5. Revelations of an overt water contamination.

    PubMed

    Singh, Gurpreet; Kaushik, S K; Mukherji, S

    2017-07-01

    Contaminated water sources are major cause of water borne diseases of public health importance. Usually, contamination is suspected after an increase in patient load. Two health teams investigated the episode. First team conducted sanitary survey, and second team undertook water safety and morbidity survey. On-site testing was carried out from source till consumer end. Investigation was also undertaken to identify factors which masked the situation. Prevention and control measures included super chlorination, provision of alternate drinking water sources, awareness campaign, layout of new water pipeline bypassing place of contamination, repair of sewers, flushing and cleaning of water pipelines, and repeated water sampling and testing. Multiple sources of drinking water supply were detected. Water samples from consumer end showed 18 coliforms per 100 ml. Sewer cross connection with active leakage in water pipeline was found and this was confirmed by earth excavation. Water safety and morbidity survey found majority of households receiving contaminated water supply. This survey found no significant difference among households receiving contaminated water supply and those receiving clean water. Average proportion of household members with episode of loose motions, pain abdomen, vomiting, fever, and eye conditions was significantly more among households receiving contaminated water. The present study documents detailed methodology of investigation and control measures to be instituted on receipt of contaminated water samples. Effective surveillance mechanisms for drinking water supplies such as routine testing of water samples can identify water contamination at an early stage and prevent an impending outbreak.

  6. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  7. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  8. Quantifying Impacts of Food Trade on Water Availability Considering Water Sources

    NASA Astrophysics Data System (ADS)

    Oki, T.; Yano, S.; Hanasaki, N.

    2012-12-01

    Food production requires a lot of water, and traded food potentially has external impacts on environment through reducing the water availability in the producing region. Water footprint is supposed to be an indicator to reflect the impacts of water use. However, impacts of water use on environment, resource, and sustainability are different in place and time, and according to the sources of water withdrawals. Therefore it is preferable to characterize the water withdrawals or consumptions rather than just accumulate the total amount of water use when estimating water footprint. In this study, a new methodology, global green-water equivalent method, is proposed in which regional characterization factors are determined based on the estimates of natural hydrological cycles, such as precipitation, total runoff, and sub-surface runoff, and applied for green-water, river(+reservoir) water, and non-renewable ground water uses. Water footprint of the world associated with the production of 19 major crops was estimated using an integrated hydrological and water resources modeling system (H08), with atmospheric forcing data for 1991-2000 with spatial resolution of 0.5 by 0.5 longitudinal and latitudinal degrees. The impacts is estimated to be 6 times larger than the simple summation of green and blue water uses, and reflect the climatological water scarcity conditions geographically. The results can be used to compare the possible impacts of food trade associated with various crops from various regions on environment through reducing the availability of water resources in the cropping area.

  9. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1992-93

    USGS Publications Warehouse

    Tadayon, Saeid

    1995-01-01

    Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.

  10. WaterSMART-The Colorado River Basin focus-area study

    USGS Publications Warehouse

    Bruce, Breton W.

    2012-01-01

    Increasing demand for the limited water resources of the United States continues to put pressure on water-resource agencies to balance the competing needs of ecosystem health with municipal, agricultural, and recreational uses. In 2007, the U.S. Geological Survey (USGS) identified a National Water Census as one of six pivotal future science directions for the USGS in the following decade. The envisioned USGS National Water Census would evaluate large-scale effects of changes in land use and land cover, water use, and climate on water availability, water quality, and human and aquatic ecosystem health. The passage of the SECURE (Science and Engineering to Comprehensively Understand and Responsibly Enhance) Water Act in 2009 was a key step towards implementing the USGS National Water Census. Section 9508 of the Act authorizes a "national water availability and use assessment program" within the USGS (1) to provide a more accurate assessment of the status of the water resources of the United States; and (2) to develop the science for improved forecasts of the availability of water for future economic, energy production, and environmental uses. Initial funding for the USGS to begin working on the National Water Census came with the approval of the U.S. Department of the Interior's WaterSMART (Sustain and Manage America's Resources for Tomorrow) Initiative. The WaterSMART Initiative provides funding to the USGS, Bureau of Reclamation, and U.S. Department of Energy to achieve a sustainable water strategy to meet the Nation's water needs. WaterSMART funding also allowed the USGS to begin the national Water Availability and Use Assessment, as called for under the SECURE Water Act.

  11. Mechanistic understanding of cellular level of water in plant-based food material

    NASA Astrophysics Data System (ADS)

    Khan, Md. Imran H.; Kumar, C.; Karim, M. A.

    2017-06-01

    Understanding of water distribution in plant-based food material is crucial for developing an accurate heat and mass transfer drying model. Generally, in plant-based food tissue, water is distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. For hygroscopic material, these three types of water transport should be considered for actual understanding of heat and mass transfer during drying. However, there is limited study dedicated to the investigation of the moisture distribution in a different cellular environment in the plant-based food material. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the plant-based food material. During this study, experiments were performed for two different plant-based food tissues namely, eggplant and potato tissue using 1H-NMR-T2 relaxometry. Various types of water component were calculated by using multicomponent fits of the T2 relaxation curves. The experimental result showed that in potato tissue 80-82% water exist in intracellular space; 10-13% water in intercellular space and only 4-6% water exist in the cell wall space. In eggplant tissue, 90-93% water in intracellular space, 4-6% water exists in intercellular space and the remaining percentage of water is recognized as cell wall water. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. Therefore, it is necessary to include different transport mechanism for intracellular, intercellular and cell wall water during modelling of heat and mass transfer during drying.

  12. The real water consumption behind drinking water: the case of Italy.

    PubMed

    Niccolucci, V; Botto, S; Rugani, B; Nicolardi, V; Bastianoni, S; Gaggi, C

    2011-10-01

    The real amount of drinking water available per capita is a topic of great interest for human health and the economic and political management of resources. The global market of bottled drinking water, for instance, has shown exponential growth in the last twenty years, mainly due to reductions in production costs and investment in promotion. This paper aims to evaluate how much freshwater is actually consumed when water is drunk in Italy, which can be considered a mature bottled-water market. A Water Footprint (WF) calculation was used to compare the alternatives: bottled and tap water. Six Italian brands of water sold in PET bottles were inventoried, analysed and compared with the public tap water of the city of Siena, as representative of the Italian context. Results showed that more than 3 L of water were needed to provide consumers with 1.50 L of drinking water. In particular, a volume of 1.50 L of PET-bottled water required an extra virtual volume of 1.93 L of water while an extra 2.13 L was necessary to supply the same volume of tap water. These values had very different composition and origin. The WF of tap water was mainly due to losses of water during pipeline distribution and usage, while WF of bottled water was greatly influenced by the production of plastic materials. When the contribution of cooling water was added to the calculation, the WF of bottled water rose from 3.43 to 6.92 L. Different strategies to reduce total water footprint are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Determinants of willingness to pay for improved water supply services in rural Kazakhstan

    NASA Astrophysics Data System (ADS)

    Tussupova, Kamshat

    2017-04-01

    The UN Sustainable development goals declare to provide water, sanitation and hygiene for all. The supply of affordable and safe water is a global priority and there is thus a requirement for a safe drinking water management and management of excreta disposal and wastewater. The current paper assesses the determinants of consumers' willingness to connect and pay (WTP) for the piped water in rural Kazakhstan. The results show that local villagers use water from different sources and at least three quarters of the respondents are willing to connect and use water from the piped water supply. The general defined determinants for WTP should be carefully considered among the different water users. Perceived water quality is a variable that is relevant for all water users. Other variables such as perceived reliability and the time-spent to collect water from the source, in-household treatment of water, and income perception are also significant but differently correlated with the WTP among different water users. Although, piped water is considered to be a safe system if properly managed, still some water users are reluctant to pay for the system and are satisfied with their current water supply and sanitation services. In this case, a proper management for the drinking water and wastewater and safe management of the excreta disposal should be supplied. It is recommended to include local water userś opinion as regard the willingness to connect and pay for the piped water system. The findings are of particular importance for policy-makers, water managers, engineers, and public health specialists.

  14. The Relationship of Perceptions of Tap Water Safety with Intake of Sugar Sweetened Beverages and Plain Water among U.S. Adults

    PubMed Central

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Sherry, Bettylou

    2015-01-01

    Objective Research is limited on whether mistrust of tap water discourages plain water intake and leads to greater intake of sugar-sweetened beverages (SSB). The objective of this study is to examine demographic differences in perceptions of tap water safety and determine if these perceptions are associated with intake of SSB and plain water Design The study examined perceptions of tap water safety and their cross-sectional association with intake of SSB and plain water. Racial/ethnic differences in the associations of tap water perceptions with SSB and plain water intake were also examined. Setting Nationally weighted data from 2010 HealthStyles Survey (n=4184) Subjects United States adults ≥18 years Results Overall, 13.0% of participants disagreed that their local tap water was safe to drink and 26.4% of participants agreed that bottled water was safer than tap water. Both mistrust of tap water safety and favoring bottled water differed by region, age, race/ethnicity, income, and education. The associations of tap water mistrust on intake of SSB and plain water were modified by race/ethnicity (p<0.05). Non-white racial/ethnic groups who disagreed that their local tap water was safe to drink were more likely to report low intake of plain water. The odds of consuming ≥1 SSB/day among Hispanics who mistrusted their local tap water was twice that of Hispanics who did not (OR = 2.0; 95% CI: 1.2, 3.3). Conclusions Public health efforts to promote healthy beverages should recognize the potential impact of tap water perceptions on water and SSB intake among minority populations. PMID:23098620

  15. Comparison of the Mineral Content of Tap Water and Bottled Waters

    PubMed Central

    Azoulay, Arik; Garzon, Philippe; Eisenberg, Mark J

    2001-01-01

    OBJECTIVES Because of growing concern that constituents of drinking water may have adverse health effects, consumption of tap water in North America has decreased and consumption of bottled water has increased. Our objectives were to 1) determine whether North American tap water contains clinically important levels of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) and 2) determine whether differences in mineral content of tap water and commercially available bottled waters are clinically important. DESIGN We obtained mineral analysis reports from municipal water authorities of 21 major North American cities. Mineral content of tap water was compared with published data regarding commercially available bottled waters and with dietary reference intakes (DRIs). MEASUREMENTS AND MAIN RESULTS Mineral levels varied among tap water sources in North America and among bottled waters. European bottled waters generally contained higher mineral levels than North American tap water sources and North American bottled waters. For half of the tap water sources we examined, adults may fulfill between 8% and 16% of their Ca2+ DRI and between 6% and 31% of their Mg2+ DRI by drinking 2 liters per day. One liter of most moderate mineralization European bottled waters contained between 20% and 58% of the Ca2+ DRI and between 16% and 41% of the Mg2+ DRI in adults. High mineralization bottled waters often contained up to half of the maximum recommended daily intake of Na+. CONCLUSION Drinking water sources available to North Americans may contain high levels of Ca2+, Mg2+, and Na+ and may provide clinically important portions of the recommended dietary intake of these minerals. Physicians should encourage patients to check the mineral content of their drinking water, whether tap or bottled, and choose water most appropriate for their needs. PMID:11318912

  16. WetDATA Hub: Democratizing Access to Water Data to Accelerate Innovation through Data Visualization, Predictive Analytics and Artificial Intelligence Applications

    NASA Astrophysics Data System (ADS)

    Sarni, W.

    2017-12-01

    Water scarcity and poor quality impacts economic development, business growth, and social well-being. Water has become, in our generation, the foremost critical local, regional, and global issue of our time. Despite these needs, there is no water hub or water technology accelerator solely dedicated to water data and tools. There is a need by the public and private sectors for vastly improved data management and visualization tools. This is the WetDATA opportunity - to develop a water data tech hub dedicated to water data acquisition, analytics, and visualization tools for informed policy and business decisions. WetDATA's tools will help incubate disruptive water data technologies and accelerate adoption of current water data solutions. WetDATA is a Colorado-based (501c3), global hub for water data analytics and technology innovation. WetDATA's vision is to be a global leader in water information, data technology innovation and collaborate with other US and global water technology hubs. ROADMAP * Portal (www.wetdata.org) to provide stakeholders with tools/resources to understand related water risks. * The initial activities will provide education, awareness and tools to stakeholders to support the implementation of the Colorado State Water Plan. * Leverage the Western States Water Council Water Data Exchange database. * Development of visualization, predictive analytics and AI tools to engage with stakeholders and provide actionable data and information. TOOLS Education: Provide information on water issues and risks at the local, state, national and global scale. Visualizations: Development of data analytics and visualization tools based upon the 2030 Water Resources Group methodology to support the implementation of the Colorado State Water Plan. Predictive Analytics: Accessing publically available water databases and using machine learning to develop water availability forecasting tools, and time lapse images to support city / urban planning.

  17. Mapping inter-annual dynamics of open surface water bodies in Oklahoma from Landsat images in 1984 to 2015 at 30-m spatial resolution

    NASA Astrophysics Data System (ADS)

    Zou, Z.; Xiao, X.; Menarguez, M.; Dong, J.; Qin, Y.

    2016-12-01

    Open surface water bodies are important water resource for public supply, irrigation, livestock, and wildlife in Oklahoma. The inter-annual variation of Oklahoma water bodies directly affect the water availability for public supply, irrigation and cattle industry. In this study, tens of thousands of Landsat TM/ETM+ images from 1984 to 2015 were used to track the dynamics of open surface water bodies. Both water-related spectral indices and vegetation indices were used to map water bodies for individual images. The resultant maps show that Oklahoma year-long open surface water bodies varied significantly over the last 32 years, with an average annual water body area equals to 2300 km2, accounting for 1.27 % of the Oklahoma state area (181,037 km2). 4.3 million year-long water body pixels were detected in the 32-year accumulated water frequency map, corresponding to 3100 km2. Only 45% ( 1400 km2) of the those pixels had water throughout the 32 years, while the rest 55% pixels had a dry-up period. The smaller water bodies have a higher risk to dry up and a lower probability to have water throughout the years. Drought years could significantly decrease the number of small water bodies and shrink the area of large water bodies, while pluvial years could create large number of small seasonal water bodies. The significant influencing factors of current year water bodies include the precipitation and temperature of current year and the water body condition of the previous year. This water body dynamics study could be used to support water resource management, crop and livestock production, and biodiversity conservation in Oklahoma.

  18. Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?: Riparian tree water sources

    DOE PAGES

    Bowling, David R.; Schulze, Emily S.; Hall, Steven J.

    2016-10-14

    We revisit a classic ecohydrological study that showed streamside riparian trees in a semiarid mountain catchment did not use perennial stream water. The original study suggested that mature individuals of Acer negundo, Acer grandidentatum, and other species were dependent on water from “deeper strata,” possibly groundwater. We used a dual stable isotope approach (δ 18O and δ 2H) to further examine the water sources of these trees. We tested the hypothesis that groundwater was the main tree water source, but found that neither groundwater nor stream water matched the isotope composition of xylem water during two growing seasons. Soil watermore » (0–1 m depth) was closest to and periodically overlapped with xylem water isotope composition, but overall, xylem water was isotopically enriched compared to all measured water sources. The “two water worlds” hypothesis postulates that soil water comprises isotopically distinct mobile and less mobile pools that do not mix, potentially explaining this disparity. We further hypothesized that isotopic effects during snowpack metamorphosis impart a distinct isotope signature to the less mobile soil water that supplies summer transpiration. Depth trends in water isotopes following snowmelt were consistent with the two water worlds hypothesis, but snow metamorphic isotope effects could not explain the highly enriched xylem water. Thus, the dual isotope approach did not unambiguously determine the water source(s) of these riparian trees. Further exploration of physical, geochemical, and biological mechanisms of water isotope fractionation and partitioning is necessary to resolve these data, highlighting critical challenges in the isotopic determination of plant water sources.« less

  19. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  20. Integrating Infrastructure and Institutions for Water Security in Large Urban Areas

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Jawitz, J. W.; Carrera, L.

    2015-12-01

    Urban growth has forced cities to procure more freshwater to meet demands; however the relationship between urban water security, water availability and water management is not well understood. This work quantifies the urban water security of 108 large cities in the United States (n=50) and Africa (n=58) based on their hydrologic, hydraulic and institutional settings. Using publicly available data, urban water availability was estimated as the volume of water available from local water resources and those captured via hydraulic infrastructure (e.g. reservoirs, wellfields, aqueducts) while urban water institutions were assessed according to their ability to deliver, supply and regulate water resources to cities. When assessing availability, cities relying on local water resources comprised a minority (37%) of those assessed. The majority of cities (55%) instead rely on captured water to meet urban demands, with African cities reaching farther and accessing a greater number and variety of sources for water supply than US cities. Cities using captured water generally had poorer access to local water resources and maintained significantly more complex strategies for water delivery, supply and regulatory management. Eight cities, all African, are identified in this work as having water insecurity issues. These cities lack sufficient infrastructure and institutional complexity to capture and deliver adequate amounts of water for urban use. Together, these findings highlight the important interconnection between infrastructure investments and management techniques for urban areas with a limited or dwindling natural abundance of water. Addressing water security challenges in the future will require that more attention be placed not only on increasing water availability, but on developing the institutional support to manage captured water supplies.

Top