Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-03-27
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-01-01
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385
NASA Astrophysics Data System (ADS)
Cui, Lingli; Gong, Xiangyang; Zhang, Jianyu; Wang, Huaqing
2016-12-01
The quantitative diagnosis of rolling bearing fault severity is particularly crucial to realize a proper maintenance decision. Aiming at the fault feature of rolling bearing, a novel double-dictionary matching pursuit (DDMP) for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity (LZC) index is proposed in this paper. In order to match the features of rolling bearing fault, the impulse time-frequency dictionary and modulation dictionary are constructed to form the double-dictionary by using the method of parameterized function model. Then a novel matching pursuit method is proposed based on the new double-dictionary. For rolling bearing vibration signals with different fault sizes, the signals are decomposed and reconstructed by the DDMP. After the noise reduced and signals reconstructed, the LZC index is introduced to realize the fault extent evaluation. The applications of this method to the fault experimental signals of bearing outer race and inner race with different degree of injury have shown that the proposed method can effectively realize the fault extent evaluation.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei
2018-07-01
Condition monitoring and fault diagnosis of rolling element bearings are significant to guarantee the reliability and functionality of a mechanical system, production efficiency, and plant safety. However, this is almost invariably a formidable challenge because the fault features are often buried by strong background noises and other unstable interference components. To satisfactorily extract the bearing fault features, a whale optimization algorithm (WOA)-optimized orthogonal matching pursuit (OMP) with a combined time-frequency atom dictionary is proposed in this paper. Firstly, a combined time-frequency atom dictionary whose atom is a combination of Fourier dictionary atom and impact time-frequency dictionary atom is designed according to the properties of bearing fault vibration signal. Furthermore, to improve the efficiency and accuracy of signal sparse representation, the WOA is introduced into the OMP algorithm to optimize the atom parameters for best approximating the original signal with the dictionary atoms. The proposed method is validated through analyzing the bearing fault simulation signal and the real vibration signals collected from an experimental bearing and a wheelset bearing of high-speed trains. The comparisons with the respect to the state of the art in the field are illustrated in detail, which highlight the advantages of the proposed method.
Application of composite dictionary multi-atom matching in gear fault diagnosis.
Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng
2011-01-01
The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.
Hierarchical Simulation to Assess Hardware and Software Dependability
NASA Technical Reports Server (NTRS)
Ries, Gregory Lawrence
1997-01-01
This thesis presents a method for conducting hierarchical simulations to assess system hardware and software dependability. The method is intended to model embedded microprocessor systems. A key contribution of the thesis is the idea of using fault dictionaries to propagate fault effects upward from the level of abstraction where a fault model is assumed to the system level where the ultimate impact of the fault is observed. A second important contribution is the analysis of the software behavior under faults as well as the hardware behavior. The simulation method is demonstrated and validated in four case studies analyzing Myrinet, a commercial, high-speed networking system. One key result from the case studies shows that the simulation method predicts the same fault impact 87.5% of the time as is obtained by similar fault injections into a real Myrinet system. Reasons for the remaining discrepancy are examined in the thesis. A second key result shows the reduction in the number of simulations needed due to the fault dictionary method. In one case study, 500 faults were injected at the chip level, but only 255 propagated to the system level. Of these 255 faults, 110 shared identical fault dictionary entries at the system level and so did not need to be resimulated. The necessary number of system-level simulations was therefore reduced from 500 to 145. Finally, the case studies show how the simulation method can be used to improve the dependability of the target system. The simulation analysis was used to add recovery to the target software for the most common fault propagation mechanisms that would cause the software to hang. After the modification, the number of hangs was reduced by 60% for fault injections into the real system.
NASA Astrophysics Data System (ADS)
Zhang, W.; Jia, M. P.
2018-06-01
When incipient fault appear in the rolling bearing, the fault feature is too small and easily submerged in the strong background noise. In this paper, wavelet total variation denoising based on kurtosis (Kurt-WATV) is studied, which can extract the incipient fault feature of the rolling bearing more effectively. The proposed algorithm contains main steps: a) establish a sparse diagnosis model, b) represent periodic impulses based on the redundant wavelet dictionary, c) solve the joint optimization problem by alternating direction method of multipliers (ADMM), d) obtain the reconstructed signal using kurtosis value as criterion and then select optimal wavelet subbands. This paper uses overcomplete rational-dilation wavelet transform (ORDWT) as a dictionary, and adjusts the control parameters to achieve the concentration in the time-frequency plane. Incipient fault of rolling bearing is used as an example, and the result shows that the effectiveness and superiority of the proposed Kurt- WATV bearing fault diagnosis algorithm.
Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan
2017-09-01
It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.
Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui
2014-01-01
This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective. PMID:25207870
Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui
2014-09-09
This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective.
NASA Astrophysics Data System (ADS)
Yang, Honggang; Lin, Huibin; Ding, Kang
2018-05-01
The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.
Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit
NASA Astrophysics Data System (ADS)
Rong, R. W.; Ming, T. F.
2017-12-01
In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.
Tensor Dictionary Learning for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2015-11-01
Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.
Cross-View Action Recognition via Transferable Dictionary Learning.
Zheng, Jingjing; Jiang, Zhuolin; Chellappa, Rama
2016-05-01
Discriminative appearance features are effective for recognizing actions in a fixed view, but may not generalize well to a new view. In this paper, we present two effective approaches to learn dictionaries for robust action recognition across views. In the first approach, we learn a set of view-specific dictionaries where each dictionary corresponds to one camera view. These dictionaries are learned simultaneously from the sets of correspondence videos taken at different views with the aim of encouraging each video in the set to have the same sparse representation. In the second approach, we additionally learn a common dictionary shared by different views to model view-shared features. This approach represents the videos in each view using a view-specific dictionary and the common dictionary. More importantly, it encourages the set of videos taken from the different views of the same action to have the similar sparse representations. The learned common dictionary not only has the capability to represent actions from unseen views, but also makes our approach effective in a semi-supervised setting where no correspondence videos exist and only a few labeled videos exist in the target view. The extensive experiments using three public datasets demonstrate that the proposed approach outperforms recently developed approaches for cross-view action recognition.
Kaleem, Muhammad; Gurve, Dharmendra; Guergachi, Aziz; Krishnan, Sridhar
2018-06-25
The objective of the work described in this paper is development of a computationally efficient methodology for patient-specific automatic seizure detection in long-term multi-channel EEG recordings. Approach: A novel patient-specific seizure detection approach based on signal-derived Empirical Mode Decomposition (EMD)-based dictionary approach is proposed. For this purpose, we use an empirical framework for EMD-based dictionary creation and learning, inspired by traditional dictionary learning methods, in which the EMD-based dictionary is learned from the multi-channel EEG data being analyzed for automatic seizure detection. We present the algorithm for dictionary creation and learning, whose purpose is to learn dictionaries with a small number of atoms. Using training signals belonging to seizure and non-seizure classes, an initial dictionary, termed as the raw dictionary, is formed. The atoms of the raw dictionary are composed of intrinsic mode functions obtained after decomposition of the training signals using the empirical mode decomposition algorithm. The raw dictionary is then trained using a learning algorithm, resulting in a substantial decrease in the number of atoms in the trained dictionary. The trained dictionary is then used for automatic seizure detection, such that coefficients of orthogonal projections of test signals against the trained dictionary form the features used for classification of test signals into seizure and non-seizure classes. Thus no hand-engineered features have to be extracted from the data as in traditional seizure detection approaches. Main results: The performance of the proposed approach is validated using the CHB-MIT benchmark database, and averaged accuracy, sensitivity and specificity values of 92.9%, 94.3% and 91.5%, respectively, are obtained using support vector machine classifier and five-fold cross-validation method. These results are compared with other approaches using the same database, and the suitability of the approach for seizure detection in long-term multi-channel EEG recordings is discussed. Significance: The proposed approach describes a computationally efficient method for automatic seizure detection in long-term multi-channel EEG recordings. The method does not rely on hand-engineered features, as are required in traditional approaches. Furthermore, the approach is suitable for scenarios where the dictionary once formed and trained can be used for automatic seizure detection of newly recorded data, making the approach suitable for long-term multi-channel EEG recordings. © 2018 IOP Publishing Ltd.
Discriminative Bayesian Dictionary Learning for Classification.
Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal
2016-12-01
We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.
Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J
2017-05-01
Existing approaches to derive decision models from plaintext clinical data frequently depend on medical dictionaries as the sources of potential features. Prior research suggests that decision models developed using non-dictionary based feature sourcing approaches and "off the shelf" tools could predict cancer with performance metrics between 80% and 90%. We sought to compare non-dictionary based models to models built using features derived from medical dictionaries. We evaluated the detection of cancer cases from free text pathology reports using decision models built with combinations of dictionary or non-dictionary based feature sourcing approaches, 4 feature subset sizes, and 5 classification algorithms. Each decision model was evaluated using the following performance metrics: sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using dictionary and non-dictionary feature sourcing approaches produced performance metrics between 70 and 90%. The source of features and feature subset size had no impact on the performance of a decision model. Our study suggests there is little value in leveraging medical dictionaries for extracting features for decision model building. Decision models built using features extracted from the plaintext reports themselves achieve comparable results to those built using medical dictionaries. Overall, this suggests that existing "off the shelf" approaches can be leveraged to perform accurate cancer detection using less complex Named Entity Recognition (NER) based feature extraction, automated feature selection and modeling approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
Akhtar, Naveed; Mian, Ajmal
2017-10-03
We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.
LeadMine: a grammar and dictionary driven approach to entity recognition.
Lowe, Daniel M; Sayle, Roger A
2015-01-01
Chemical entity recognition has traditionally been performed by machine learning approaches. Here we describe an approach using grammars and dictionaries. This approach has the advantage that the entities found can be directly related to a given grammar or dictionary, which allows the type of an entity to be known and, if an entity is misannotated, indicates which resource should be corrected. As recognition is driven by what is expected, if spelling errors occur, they can be corrected. Correcting such errors is highly useful when attempting to lookup an entity in a database or, in the case of chemical names, converting them to structures. Our system uses a mixture of expertly curated grammars and dictionaries, as well as dictionaries automatically derived from public resources. We show that the heuristics developed to filter our dictionary of trivial chemical names (from PubChem) yields a better performing dictionary than the previously published Jochem dictionary. Our final system performs post-processing steps to modify the boundaries of entities and to detect abbreviations. These steps are shown to significantly improve performance (2.6% and 4.0% F1-score respectively). Our complete system, with incremental post-BioCreative workshop improvements, achieves 89.9% precision and 85.4% recall (87.6% F1-score) on the CHEMDNER test set. Grammar and dictionary approaches can produce results at least as good as the current state of the art in machine learning approaches. While machine learning approaches are commonly thought of as "black box" systems, our approach directly links the output entities to the input dictionaries and grammars. Our approach also allows correction of errors in detected entities, which can assist with entity resolution.
LeadMine: a grammar and dictionary driven approach to entity recognition
2015-01-01
Background Chemical entity recognition has traditionally been performed by machine learning approaches. Here we describe an approach using grammars and dictionaries. This approach has the advantage that the entities found can be directly related to a given grammar or dictionary, which allows the type of an entity to be known and, if an entity is misannotated, indicates which resource should be corrected. As recognition is driven by what is expected, if spelling errors occur, they can be corrected. Correcting such errors is highly useful when attempting to lookup an entity in a database or, in the case of chemical names, converting them to structures. Results Our system uses a mixture of expertly curated grammars and dictionaries, as well as dictionaries automatically derived from public resources. We show that the heuristics developed to filter our dictionary of trivial chemical names (from PubChem) yields a better performing dictionary than the previously published Jochem dictionary. Our final system performs post-processing steps to modify the boundaries of entities and to detect abbreviations. These steps are shown to significantly improve performance (2.6% and 4.0% F1-score respectively). Our complete system, with incremental post-BioCreative workshop improvements, achieves 89.9% precision and 85.4% recall (87.6% F1-score) on the CHEMDNER test set. Conclusions Grammar and dictionary approaches can produce results at least as good as the current state of the art in machine learning approaches. While machine learning approaches are commonly thought of as "black box" systems, our approach directly links the output entities to the input dictionaries and grammars. Our approach also allows correction of errors in detected entities, which can assist with entity resolution. PMID:25810776
2008-11-01
improves our TREC 2007 dictionary -based approach by automatically building an internal opinion dictionary from the collection itself. We measure the opin...detecting opinionated documents. The first approach improves our TREC 2007 dictionary -based approach by automat- ically building an internal opinion... dictionary from the collection itself. The second approach is based on the OpinionFinder tool, which identifies subjective sentences in text. In particular
Weakly supervised visual dictionary learning by harnessing image attributes.
Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang
2014-12-01
Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.
Which Dictionary? A Review of the Leading Learners' Dictionaries.
ERIC Educational Resources Information Center
Nesi, Hilary
Three major dictionaries designed for learners of English as a second language are reviewed, their elements and approaches compared and evaluated, their usefulness for different learners discussed, and recommendations for future dictionary improvement made. The dictionaries in question are the "Oxford Advanced Learner's Dictionary," the…
Gapped Spectral Dictionaries and Their Applications for Database Searches of Tandem Mass Spectra*
Jeong, Kyowon; Kim, Sangtae; Bandeira, Nuno; Pevzner, Pavel A.
2011-01-01
Generating all plausible de novo interpretations of a peptide tandem mass (MS/MS) spectrum (Spectral Dictionary) and quickly matching them against the database represent a recently emerged alternative approach to peptide identification. However, the sizes of the Spectral Dictionaries quickly grow with the peptide length making their generation impractical for long peptides. We introduce Gapped Spectral Dictionaries (all plausible de novo interpretations with gaps) that can be easily generated for any peptide length thus addressing the limitation of the Spectral Dictionary approach. We show that Gapped Spectral Dictionaries are small thus opening a possibility of using them to speed-up MS/MS searches. Our MS-GappedDictionary algorithm (based on Gapped Spectral Dictionaries) enables proteogenomics applications (such as searches in the six-frame translation of the human genome) that are prohibitively time consuming with existing approaches. MS-GappedDictionary generates gapped peptides that occupy a niche between accurate but short peptide sequence tags and long but inaccurate full length peptide reconstructions. We show that, contrary to conventional wisdom, some high-quality spectra do not have good peptide sequence tags and introduce gapped tags that have advantages over the conventional peptide sequence tags in MS/MS database searches. PMID:21444829
Translation lexicon acquisition from bilingual dictionaries
NASA Astrophysics Data System (ADS)
Doermann, David S.; Ma, Huanfeng; Karagol-Ayan, Burcu; Oard, Douglas W.
2001-12-01
Bilingual dictionaries hold great potential as a source of lexical resources for training automated systems for optical character recognition, machine translation and cross-language information retrieval. In this work we describe a system for extracting term lexicons from printed copies of bilingual dictionaries. We describe our approach to page and definition segmentation and entry parsing. We have used the approach to parse a number of dictionaries and demonstrate the results for retrieval using a French-English Dictionary to generate a translation lexicon and a corpus of English queries applied to French documents to evaluation cross-language IR.
Dictionary Based Machine Translation from Kannada to Telugu
NASA Astrophysics Data System (ADS)
Sindhu, D. V.; Sagar, B. M.
2017-08-01
Machine Translation is a task of translating from one language to another language. For the languages with less linguistic resources like Kannada and Telugu Dictionary based approach is the best approach. This paper mainly focuses on Dictionary based machine translation for Kannada to Telugu. The proposed methodology uses dictionary for translating word by word without much correlation of semantics between them. The dictionary based machine translation process has the following sub process: Morph analyzer, dictionary, transliteration, transfer grammar and the morph generator. As a part of this work bilingual dictionary with 8000 entries is developed and the suffix mapping table at the tag level is built. This system is tested for the children stories. In near future this system can be further improved by defining transfer grammar rules.
Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J.
2013-01-01
In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data. PMID:24684004
2016-04-05
dictionary ]. Retrieved from http://www.investopedia.com/terms/b/blackbox.asp Bodeau, D., Brtis, J., Graubart, R., & Salwen, J. (2013). Resiliency...techniques for systems-of-systems (Report No. 13-3513). Bedford, MA: The MITRE Corporation. Confidence, (n.d.). In Oxford dictionaries [Online dictionary ...Acquisition, Technology and Logistics. Holistic Strategy Approach. (n.d.). In BusinessDictionary.com [Online business dictionary ]. Retrieved from http
Dictionary-based image reconstruction for superresolution in integrated circuit imaging.
Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim
2015-06-01
Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.
Developing a National-Level Concept Dictionary for EHR Implementations in Kenya.
Keny, Aggrey; Wanyee, Steven; Kwaro, Daniel; Mulwa, Edwin; Were, Martin C
2015-01-01
The increasing adoption of Electronic Health Records (EHR) by developing countries comes with the need to develop common terminology standards to assure semantic interoperability. In Kenya, where the Ministry of Health has rolled out an EHR at 646 sites, several challenges have emerged including variable dictionaries across implementations, inability to easily share data across systems, lack of expertise in dictionary management, lack of central coordination and custody of a terminology service, inadequately defined policies and processes, insufficient infrastructure, among others. A Concept Working Group was constituted to address these challenges. The country settled on a common Kenya data dictionary, initially derived as a subset of the Columbia International eHealth Laboratory (CIEL)/Millennium Villages Project (MVP) dictionary. The initial dictionary scope largely focuses on clinical needs. Processes and policies around dictionary management are being guided by the framework developed by Bakhshi-Raiez et al. Technical and infrastructure-based approaches are also underway to streamline workflow for dictionary management and distribution across implementations. Kenya's approach on comprehensive common dictionary can serve as a model for other countries in similar settings.
Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju
2014-01-01
It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively. PMID:24871988
Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju
2014-05-27
It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.
Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J
2016-04-01
Increased adoption of electronic health records has resulted in increased availability of free text clinical data for secondary use. A variety of approaches to obtain actionable information from unstructured free text data exist. These approaches are resource intensive, inherently complex and rely on structured clinical data and dictionary-based approaches. We sought to evaluate the potential to obtain actionable information from free text pathology reports using routinely available tools and approaches that do not depend on dictionary-based approaches. We obtained pathology reports from a large health information exchange and evaluated the capacity to detect cancer cases from these reports using 3 non-dictionary feature selection approaches, 4 feature subset sizes, and 5 clinical decision models: simple logistic regression, naïve bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using automated, informed, and manual feature selection approaches yielded similar results. Furthermore, non-dictionary classification approaches identified cancer cases present in free text reports with evaluation measures approaching and exceeding 80-90% for most metrics. Our methods are feasible and practical approaches for extracting substantial information value from free text medical data, and the results suggest that these methods can perform on par, if not better, than existing dictionary-based approaches. Given that public health agencies are often under-resourced and lack the technical capacity for more complex methodologies, these results represent potentially significant value to the public health field. Copyright © 2016 Elsevier Inc. All rights reserved.
Travel time tomography with local image regularization by sparsity constrained dictionary learning
NASA Astrophysics Data System (ADS)
Bianco, M.; Gerstoft, P.
2017-12-01
We propose a regularization approach for 2D seismic travel time tomography which models small rectangular groups of slowness pixels, within an overall or `global' slowness image, as sparse linear combinations of atoms from a dictionary. The groups of slowness pixels are referred to as patches and a dictionary corresponds to a collection of functions or `atoms' describing the slowness in each patch. These functions could for example be wavelets.The patch regularization is incorporated into the global slowness image. The global image models the broad features, while the local patch images incorporate prior information from the dictionary. Further, high resolution slowness within patches is permitted if the travel times from the global estimates support it. The proposed approach is formulated as an algorithm, which is repeated until convergence is achieved: 1) From travel times, find the global slowness image with a minimum energy constraint on the pixel variance relative to a reference. 2) Find the patch level solutions to fit the global estimate as a sparse linear combination of dictionary atoms.3) Update the reference as the weighted average of the patch level solutions.This approach relies on the redundancy of the patches in the seismic image. Redundancy means that the patches are repetitions of a finite number of patterns, which are described by the dictionary atoms. Redundancy in the earth's structure was demonstrated in previous works in seismics where dictionaries of wavelet functions regularized inversion. We further exploit redundancy of the patches by using dictionary learning algorithms, a form of unsupervised machine learning, to estimate optimal dictionaries from the data in parallel with the inversion. We demonstrate our approach on densely, but irregularly sampled synthetic seismic images.
The Creation of Learner-Centred Dictionaries for Endangered Languages: A Rotuman Example
ERIC Educational Resources Information Center
Vamarasi, M.
2014-01-01
This article examines the creation of dictionaries for endangered languages (ELs). Though each dictionary is uniquely prepared for its users, all dictionaries should be based on sound principles of vocabulary learning, including the importance of lexical chunks, as emphasised by Michael Lewis in his "Lexical Approach." Many of the…
The Pocket Dictionary: A Textbook for Spelling.
ERIC Educational Resources Information Center
Doggett, Maran
1982-01-01
Reports on a productive approach to secondary-school spelling instruction--one that emphasizes how and when to use the dictionary. Describes two of the many class activities that cultivate student use of the dictionary. (RL)
Image fusion via nonlocal sparse K-SVD dictionary learning.
Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang
2016-03-01
Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.
Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie
2016-01-01
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13. Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract PMID:27504009
Schuemie, Martijn J; Mons, Barend; Weeber, Marc; Kors, Jan A
2007-06-01
Gene and protein name identification in text requires a dictionary approach to relate synonyms to the same gene or protein, and to link names to external databases. However, existing dictionaries are incomplete. We investigate two complementary methods for automatic generation of a comprehensive dictionary: combination of information from existing gene and protein databases and rule-based generation of spelling variations. Both methods have been reported in literature before, but have hitherto not been combined and evaluated systematically. We combined gene and protein names from several existing databases of four different organisms. The combined dictionaries showed a substantial increase in recall on three different test sets, as compared to any single database. Application of 23 spelling variation rules to the combined dictionaries further increased recall. However, many rules appeared to have no effect and some appear to have a detrimental effect on precision.
Automatic Microaneurysms Detection Based on Multifeature Fusion Dictionary Learning
Wang, Zhenzhu; Du, Wenyou
2017-01-01
Recently, microaneurysm (MA) detection has attracted a lot of attention in the medical image processing community. Since MAs can be seen as the earliest lesions in diabetic retinopathy, their detection plays a critical role in diabetic retinopathy diagnosis. In this paper, we propose a novel MA detection approach named multifeature fusion dictionary learning (MFFDL). The proposed method consists of four steps: preprocessing, candidate extraction, multifeature dictionary learning, and classification. The novelty of our proposed approach lies in incorporating the semantic relationships among multifeatures and dictionary learning into a unified framework for automatic detection of MAs. We evaluate the proposed algorithm by comparing it with the state-of-the-art approaches and the experimental results validate the effectiveness of our algorithm. PMID:28421125
Automatic Microaneurysms Detection Based on Multifeature Fusion Dictionary Learning.
Zhou, Wei; Wu, Chengdong; Chen, Dali; Wang, Zhenzhu; Yi, Yugen; Du, Wenyou
2017-01-01
Recently, microaneurysm (MA) detection has attracted a lot of attention in the medical image processing community. Since MAs can be seen as the earliest lesions in diabetic retinopathy, their detection plays a critical role in diabetic retinopathy diagnosis. In this paper, we propose a novel MA detection approach named multifeature fusion dictionary learning (MFFDL). The proposed method consists of four steps: preprocessing, candidate extraction, multifeature dictionary learning, and classification. The novelty of our proposed approach lies in incorporating the semantic relationships among multifeatures and dictionary learning into a unified framework for automatic detection of MAs. We evaluate the proposed algorithm by comparing it with the state-of-the-art approaches and the experimental results validate the effectiveness of our algorithm.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111
Dictionary Approaches to Image Compression and Reconstruction
NASA Technical Reports Server (NTRS)
Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.
1998-01-01
This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as phi(sub gamma), are discrete time signals, where gamma represents the dictionary index. A dictionary with a collection of these waveforms is typically complete or overcomplete. Given such a dictionary, the goal is to obtain a representation image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.
Dictionary Approaches to Image Compression and Reconstruction
NASA Technical Reports Server (NTRS)
Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.
1998-01-01
This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as lambda, are discrete time signals, where y represents the dictionary index. A dictionary with a collection of these waveforms Is typically complete or over complete. Given such a dictionary, the goal is to obtain a representation Image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.
A Dictionary Approach to Electron Backscatter Diffraction Indexing.
Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O
2015-06-01
We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.
Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie
2016-01-01
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13.Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract. © The Author(s) 2016. Published by Oxford University Press.
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
Moody, Daniela; Wohlberg, Brendt
2018-01-02
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.
A Novel Approach to Creating Disambiguated Multilingual Dictionaries
ERIC Educational Resources Information Center
Boguslavsky, Igor; Cardenosa, Jesus; Gallardo, Carolina
2009-01-01
Multilingual lexicons are needed in various applications, such as cross-lingual information retrieval, machine translation, and some others. Often, these applications suffer from the ambiguity of dictionary items, especially when an intermediate natural language is involved in the process of the dictionary construction, since this language adds…
Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.
Xiao Yang; Jianjiang Feng; Jie Zhou
2014-05-01
Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.
Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.
Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef
2017-01-01
This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.
Building a protein name dictionary from full text: a machine learning term extraction approach.
Shi, Lei; Campagne, Fabien
2005-04-07
The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature. We present an approach to recognize named entities in full text. The approach collects high frequency terms in an article, and uses support vector machines (SVM) to identify biological entity names. It is also computationally efficient and robust to noise commonly found in full text material. We use the method to create a protein name dictionary from a set of 80,528 full text articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the quality of the dictionary by studying its protein name recognition performance in full text. This dictionary term lookup method compares favourably to other published methods, supporting the significance of our direct extraction approach. The method is strong in recognizing name variants not found in SwissProt.
Building a protein name dictionary from full text: a machine learning term extraction approach
Shi, Lei; Campagne, Fabien
2005-01-01
Background The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature. Results We present an approach to recognize named entities in full text. The approach collects high frequency terms in an article, and uses support vector machines (SVM) to identify biological entity names. It is also computationally efficient and robust to noise commonly found in full text material. We use the method to create a protein name dictionary from a set of 80,528 full text articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the quality of the dictionary by studying its protein name recognition performance in full text. Conclusion This dictionary term lookup method compares favourably to other published methods, supporting the significance of our direct extraction approach. The method is strong in recognizing name variants not found in SwissProt. PMID:15817129
Weakly Supervised Dictionary Learning
NASA Astrophysics Data System (ADS)
You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub
2018-05-01
We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.
Classification of multiple sclerosis lesions using adaptive dictionary learning.
Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian
2015-12-01
This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multivariate temporal dictionary learning for EEG.
Barthélemy, Q; Gouy-Pailler, C; Isaac, Y; Souloumiac, A; Larue, A; Mars, J I
2013-04-30
This article addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical approaches use a fixed Gabor dictionary to analyze EEG signals, this article proposes a data-driven method to obtain an adapted dictionary. To reach an efficient dictionary learning, appropriate spatial and temporal modeling is required. Inter-channels links are taken into account in the spatial multivariate model, and shift-invariance is used for the temporal model. Multivariate learned kernels are informative (a few atoms code plentiful energy) and interpretable (the atoms can have a physiological meaning). Using real EEG data, the proposed method is shown to outperform the classical multichannel matching pursuit used with a Gabor dictionary, as measured by the representative power of the learned dictionary and its spatial flexibility. Moreover, dictionary learning can capture interpretable patterns: this ability is illustrated on real data, learning a P300 evoked potential. Copyright © 2013 Elsevier B.V. All rights reserved.
Were, Martin C; Mamlin, Burke W; Tierney, William M; Wolfe, Ben; Biondich, Paul G
2007-10-11
The challenges of creating and maintaining concept dictionaries are compounded in resource-limited settings. Approaches to alleviate this burden need to be based on information derived in these settings. We created a concept dictionary and evaluated new concept proposals for an open source EMR in a resource-limited setting. Overall, 87% of the concepts in the initial dictionary were used. There were 5137 new concepts proposed, with 77% of these proposed only once. Further characterization of new concept proposals revealed that 41% were due to deficiency in the existing dictionary, and 19% were synonyms to existing concepts. 25% of the requests contained misspellings, 41% were complex terms, and 17% were ambiguous. Given the resource-intensive nature of dictionary creation and maintenance, there should be considerations for centralizing the concept dictionary service, using standards, prioritizing concept proposals, and redesigning the user-interface to reduce this burden in settings with limited resources.
Were, Martin C.; Mamlin, Burke W.; Tierney, William M.; Wolfe, Ben; Biondich, Paul G.
2007-01-01
The challenges of creating and maintaining concept dictionaries are compounded in resource-limited settings. Approaches to alleviate this burden need to be based on information derived in these settings. We created a concept dictionary and evaluated new concept proposals for an open source EMR in a resource-limited setting. Overall, 87% of the concepts in the initial dictionary were used. There were 5137 new concepts proposed, with 77% of these proposed only once. Further characterization of new concept proposals revealed that 41% were due to deficiency in the existing dictionary, and 19% were synonyms to existing concepts. 25% of the requests contained misspellings, 41% were complex terms, and 17% were ambiguous. Given the resource-intensive nature of dictionary creation and maintenance, there should be considerations for centralizing the concept dictionary service, using standards, prioritizing concept proposals, and redesigning the user-interface to reduce this burden in settings with limited resources. PMID:18693945
Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging
Ravishankar, Saiprasad; Moore, Brian E.; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery from undersampled measurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method. PMID:28092528
Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.
Ravishankar, Saiprasad; Moore, Brian E; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-05-01
Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.
Dictionary Indexing of Electron Channeling Patterns.
Singh, Saransh; De Graef, Marc
2017-02-01
The dictionary-based approach to the indexing of diffraction patterns is applied to electron channeling patterns (ECPs). The main ingredients of the dictionary method are introduced, including the generalized forward projector (GFP), the relevant detector model, and a scheme to uniformly sample orientation space using the "cubochoric" representation. The GFP is used to compute an ECP "master" pattern. Derivative free optimization algorithms, including the Nelder-Mead simplex and the bound optimization by quadratic approximation are used to determine the correct detector parameters and to refine the orientation obtained from the dictionary approach. The indexing method is applied to poly-silicon and shows excellent agreement with the calibrated values. Finally, it is shown that the method results in a mean disorientation error of 1.0° with 0.5° SD for a range of detector parameters.
Comparison of Fault Detection Algorithms for Real-time Diagnosis in Large-Scale System. Appendix E
NASA Technical Reports Server (NTRS)
Kirubarajan, Thiagalingam; Malepati, Venkat; Deb, Somnath; Ying, Jie
2001-01-01
In this paper, we present a review of different real-time capable algorithms to detect and isolate component failures in large-scale systems in the presence of inaccurate test results. A sequence of imperfect test results (as a row vector of I's and O's) are available to the algorithms. In this case, the problem is to recover the uncorrupted test result vector and match it to one of the rows in the test dictionary, which in turn will isolate the faults. In order to recover the uncorrupted test result vector, one needs the accuracy of each test. That is, its detection and false alarm probabilities are required. In this problem, their true values are not known and, therefore, have to be estimated online. Other major aspects in this problem are the large-scale nature and the real-time capability requirement. Test dictionaries of sizes up to 1000 x 1000 are to be handled. That is, results from 1000 tests measuring the state of 1000 components are available. However, at any time, only 10-20% of the test results are available. Then, the objective becomes the real-time fault diagnosis using incomplete and inaccurate test results with online estimation of test accuracies. It should also be noted that the test accuracies can vary with time --- one needs a mechanism to update them after processing each test result vector. Using Qualtech's TEAMS-RT (system simulation and real-time diagnosis tool), we test the performances of 1) TEAMSAT's built-in diagnosis algorithm, 2) Hamming distance based diagnosis, 3) Maximum Likelihood based diagnosis, and 4) HidderMarkov Model based diagnosis.
Bengali-English Relevant Cross Lingual Information Access Using Finite Automata
NASA Astrophysics Data System (ADS)
Banerjee, Avishek; Bhattacharyya, Swapan; Hazra, Simanta; Mondal, Shatabdi
2010-10-01
CLIR techniques searches unrestricted texts and typically extract term and relationships from bilingual electronic dictionaries or bilingual text collections and use them to translate query and/or document representations into a compatible set of representations with a common feature set. In this paper, we focus on dictionary-based approach by using a bilingual data dictionary with a combination to statistics-based methods to avoid the problem of ambiguity also the development of human computer interface aspects of NLP (Natural Language processing) is the approach of this paper. The intelligent web search with regional language like Bengali is depending upon two major aspect that is CLIA (Cross language information access) and NLP. In our previous work with IIT, KGP we already developed content based CLIA where content based searching in trained on Bengali Corpora with the help of Bengali data dictionary. Here we want to introduce intelligent search because to recognize the sense of meaning of a sentence and it has a better real life approach towards human computer interactions.
de Lusignan, Simon; Liaw, Siaw-Teng; Michalakidis, Georgios; Jones, Simon
2011-01-01
The burden of chronic disease is increasing, and research and quality improvement will be less effective if case finding strategies are suboptimal. To describe an ontology-driven approach to case finding in chronic disease and how this approach can be used to create a data dictionary and make the codes used in case finding transparent. A five-step process: (1) identifying a reference coding system or terminology; (2) using an ontology-driven approach to identify cases; (3) developing metadata that can be used to identify the extracted data; (4) mapping the extracted data to the reference terminology; and (5) creating the data dictionary. Hypertension is presented as an exemplar. A patient with hypertension can be represented by a range of codes including diagnostic, history and administrative. Metadata can link the coding system and data extraction queries to the correct data mapping and translation tool, which then maps it to the equivalent code in the reference terminology. The code extracted, the term, its domain and subdomain, and the name of the data extraction query can then be automatically grouped and published online as a readily searchable data dictionary. An exemplar online is: www.clininf.eu/qickd-data-dictionary.html Adopting an ontology-driven approach to case finding could improve the quality of disease registers and of research based on routine data. It would offer considerable advantages over using limited datasets to define cases. This approach should be considered by those involved in research and quality improvement projects which utilise routine data.
A dictionary learning approach for human sperm heads classification.
Shaker, Fariba; Monadjemi, S Amirhassan; Alirezaie, Javad; Naghsh-Nilchi, Ahmad Reza
2017-12-01
To diagnose infertility in men, semen analysis is conducted in which sperm morphology is one of the factors that are evaluated. Since manual assessment of sperm morphology is time-consuming and subjective, automatic classification methods are being developed. Automatic classification of sperm heads is a complicated task due to the intra-class differences and inter-class similarities of class objects. In this research, a Dictionary Learning (DL) technique is utilized to construct a dictionary of sperm head shapes. This dictionary is used to classify the sperm heads into four different classes. Square patches are extracted from the sperm head images. Columnized patches from each class of sperm are used to learn class-specific dictionaries. The patches from a test image are reconstructed using each class-specific dictionary and the overall reconstruction error for each class is used to select the best matching class. Average accuracy, precision, recall, and F-score are used to evaluate the classification method. The method is evaluated using two publicly available datasets of human sperm head shapes. The proposed DL based method achieved an average accuracy of 92.2% on the HuSHeM dataset, and an average recall of 62% on the SCIAN-MorphoSpermGS dataset. The results show a significant improvement compared to a previously published shape-feature-based method. We have achieved high-performance results. In addition, our proposed approach offers a more balanced classifier in which all four classes are recognized with high precision and recall. In this paper, we use a Dictionary Learning approach in classifying human sperm heads. It is shown that the Dictionary Learning method is far more effective in classifying human sperm heads than classifiers using shape-based features. Also, a dataset of human sperm head shapes is introduced to facilitate future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction
Lu, Hongyang; Wei, Jingbo; Wang, Yuhao; Deng, Xiaohua
2016-01-01
Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. PMID:27110235
A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction.
Lu, Hongyang; Wei, Jingbo; Liu, Qiegen; Wang, Yuhao; Deng, Xiaohua
2016-01-01
Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
A Space-Time-Frequency Dictionary for Sparse Cortical Source Localization.
Korats, Gundars; Le Cam, Steven; Ranta, Radu; Louis-Dorr, Valerie
2016-09-01
Cortical source imaging aims at identifying activated cortical areas on the surface of the cortex from the raw electroencephalogram (EEG) data. This problem is ill posed, the number of channels being very low compared to the number of possible source positions. In some realistic physiological situations, the active areas are sparse in space and of short time durations, and the amount of spatio-temporal data to carry the inversion is then limited. In this study, we propose an original data driven space-time-frequency (STF) dictionary which takes into account simultaneously both spatial and time-frequency sparseness while preserving smoothness in the time frequency (i.e., nonstationary smooth time courses in sparse locations). Based on these assumptions, we take benefit of the matching pursuit (MP) framework for selecting the most relevant atoms in this highly redundant dictionary. We apply two recent MP algorithms, single best replacement (SBR) and source deflated matching pursuit, and we compare the results using a spatial dictionary and the proposed STF dictionary to demonstrate the improvements of our multidimensional approach. We also provide comparison using well-established inversion methods, FOCUSS and RAP-MUSIC, analyzing performances under different degrees of nonstationarity and signal to noise ratio. Our STF dictionary combined with the SBR approach provides robust performances on realistic simulations. From a computational point of view, the algorithm is embedded in the wavelet domain, ensuring high efficiency in term of computation time. The proposed approach ensures fast and accurate sparse cortical localizations on highly nonstationary and noisy data.
Domain Adaptation of Translation Models for Multilingual Applications
2009-04-01
expansion effect that corpus (or dictionary ) based trans- lation introduces - however, this effect is maintained even with monolingual query expansion [12...every day; bilingual web pages are harvested as parallel corpora as the quantity of non-English data on the web increases; online dictionaries of...approach is to customize translation models to a domain, by automatically selecting the resources ( dictionaries , parallel corpora) that are best for
Regularized spherical polar fourier diffusion MRI with optimal dictionary learning.
Cheng, Jian; Jiang, Tianzi; Deriche, Rachid; Shen, Dinggang; Yap, Pew-Thian
2013-01-01
Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kinds of Dictionary Learning (DL) methods: 1) Discrete Representation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL is susceptible to numerical inaccuracy owing to interpolation and regridding errors in a discretized q-space. In this paper, we propose a novel CR-DL approach, called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for effective compressed-sensing reconstruction of the q-space diffusion-weighted signal and the EAP. In DL-SPFI, a dictionary that sparsifies the signal is learned from the space of continuous Gaussian diffusion signals. The learned dictionary is then adaptively applied to different voxels using a weighted LASSO framework for robust signal reconstruction. Compared with the start-of-the-art CR-DL and DR-DL methods proposed by Merlet et al. and Bilgic et al., respectively, our work offers the following advantages. First, the learned dictionary is proved to be optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first work to learn a voxel-adaptive dictionary. The importance of the adaptive dictionary in EAP reconstruction will be demonstrated theoretically and empirically. Third, optimization in DL-SPFI is only performed in a small subspace resided by the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al. We experimentally evaluated DL-SPFI with respect to L1-norm regularized SPFI (L1-SPFI), which uses the original SPF basis, and the DR-DL method proposed by Bilgic et al. The experiment results on synthetic and real data indicate that the learned dictionary produces sparser coefficients than the original SPF basis and results in significantly lower reconstruction error than Bilgic et al.'s method.
Developing a hybrid dictionary-based bio-entity recognition technique.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2015-01-01
Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.
Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.
Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang
2017-07-01
It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.
Developing a hybrid dictionary-based bio-entity recognition technique
2015-01-01
Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907
High-recall protein entity recognition using a dictionary
Kou, Zhenzhen; Cohen, William W.; Murphy, Robert F.
2010-01-01
Protein name extraction is an important step in mining biological literature. We describe two new methods for this task: semiCRFs and dictionary HMMs. SemiCRFs are a recently-proposed extension to conditional random fields that enables more effective use of dictionary information as features. Dictionary HMMs are a technique in which a dictionary is converted to a large HMM that recognizes phrases from the dictionary, as well as variations of these phrases. Standard training methods for HMMs can be used to learn which variants should be recognized. We compared the performance of our new approaches to that of Maximum Entropy (Max-Ent) and normal CRFs on three datasets, and improvement was obtained for all four methods over the best published results for two of the datasets. CRFs and semiCRFs achieved the highest overall performance according to the widely-used F-measure, while the dictionary HMMs performed the best at finding entities that actually appear in the dictionary—the measure of most interest in our intended application. PMID:15961466
Task-driven dictionary learning.
Mairal, Julien; Bach, Francis; Ponce, Jean
2012-04-01
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.
Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.
Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael
2017-08-22
We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.
Image fusion using sparse overcomplete feature dictionaries
Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt
2015-10-06
Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.
Arabic Information Retrieval at UMass in TREC-10
2006-01-01
electronic bilingual dictionaries , and stemmers, and our unfamiliarity with Arabic, we had our hands full carrying out some standard approaches to... monolingual and cross-lan- guage Arabic retrieval, and did not submit any runs based on novel approaches. We submitted three monolingual runs and one... dictionary construction, expanded Arabic queries, improved estimation and smoothing in language models, and added combination of evidence, increasing
Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.
Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc
2017-10-01
The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.
Normalizing biomedical terms by minimizing ambiguity and variability
Tsuruoka, Yoshimasa; McNaught, John; Ananiadou, Sophia
2008-01-01
Background One of the difficulties in mapping biomedical named entities, e.g. genes, proteins, chemicals and diseases, to their concept identifiers stems from the potential variability of the terms. Soft string matching is a possible solution to the problem, but its inherent heavy computational cost discourages its use when the dictionaries are large or when real time processing is required. A less computationally demanding approach is to normalize the terms by using heuristic rules, which enables us to look up a dictionary in a constant time regardless of its size. The development of good heuristic rules, however, requires extensive knowledge of the terminology in question and thus is the bottleneck of the normalization approach. Results We present a novel framework for discovering a list of normalization rules from a dictionary in a fully automated manner. The rules are discovered in such a way that they minimize the ambiguity and variability of the terms in the dictionary. We evaluated our algorithm using two large dictionaries: a human gene/protein name dictionary built from BioThesaurus and a disease name dictionary built from UMLS. Conclusions The experimental results showed that automatically discovered rules can perform comparably to carefully crafted heuristic rules in term mapping tasks, and the computational overhead of rule application is small enough that a very fast implementation is possible. This work will help improve the performance of term-concept mapping tasks in biomedical information extraction especially when good normalization heuristics for the target terminology are not fully known. PMID:18426547
Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation.
Grossi, Giuliano; Lanzarotti, Raffaella; Lin, Jianyi
2017-01-01
In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD's robustness and wide applicability.
Discriminative object tracking via sparse representation and online dictionary learning.
Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua
2014-04-01
We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.
Seghouane, Abd-Krim; Iqbal, Asif
2017-09-01
Sequential dictionary learning algorithms have been successfully applied to functional magnetic resonance imaging (fMRI) data analysis. fMRI data sets are, however, structured data matrices with the notions of temporal smoothness in the column direction. This prior information, which can be converted into a constraint of smoothness on the learned dictionary atoms, has seldomly been included in classical dictionary learning algorithms when applied to fMRI data analysis. In this paper, we tackle this problem by proposing two new sequential dictionary learning algorithms dedicated to fMRI data analysis by accounting for this prior information. These algorithms differ from the existing ones in their dictionary update stage. The steps of this stage are derived as a variant of the power method for computing the SVD. The proposed algorithms generate regularized dictionary atoms via the solution of a left regularized rank-one matrix approximation problem where temporal smoothness is enforced via regularization through basis expansion and sparse basis expansion in the dictionary update stage. Applications on synthetic data experiments and real fMRI data sets illustrating the performance of the proposed algorithms are provided.
Jing, Xiao-Yuan; Zhu, Xiaoke; Wu, Fei; Hu, Ruimin; You, Xinge; Wang, Yunhong; Feng, Hui; Yang, Jing-Yu
2017-03-01
Person re-identification has been widely studied due to its importance in surveillance and forensics applications. In practice, gallery images are high resolution (HR), while probe images are usually low resolution (LR) in the identification scenarios with large variation of illumination, weather, or quality of cameras. Person re-identification in this kind of scenarios, which we call super-resolution (SR) person re-identification, has not been well studied. In this paper, we propose a semi-coupled low-rank discriminant dictionary learning (SLD 2 L) approach for SR person re-identification task. With the HR and LR dictionary pair and mapping matrices learned from the features of HR and LR training images, SLD 2 L can convert the features of the LR probe images into HR features. To ensure that the converted features have favorable discriminative capability and the learned dictionaries can well characterize intrinsic feature spaces of the HR and LR images, we design a discriminant term and a low-rank regularization term for SLD 2 L. Moreover, considering that low resolution results in different degrees of loss for different types of visual appearance features, we propose a multi-view SLD 2 L (MVSLD 2 L) approach, which can learn the type-specific dictionary pair and mappings for each type of feature. Experimental results on multiple publicly available data sets demonstrate the effectiveness of our proposed approaches for the SR person re-identification task.
Abnormality detection of mammograms by discriminative dictionary learning on DSIFT descriptors.
Tavakoli, Nasrin; Karimi, Maryam; Nejati, Mansour; Karimi, Nader; Reza Soroushmehr, S M; Samavi, Shadrokh; Najarian, Kayvan
2017-07-01
Detection and classification of breast lesions using mammographic images are one of the most difficult studies in medical image processing. A number of learning and non-learning methods have been proposed for detecting and classifying these lesions. However, the accuracy of the detection/classification still needs improvement. In this paper we propose a powerful classification method based on sparse learning to diagnose breast cancer in mammograms. For this purpose, a supervised discriminative dictionary learning approach is applied on dense scale invariant feature transform (DSIFT) features. A linear classifier is also simultaneously learned with the dictionary which can effectively classify the sparse representations. Our experimental results show the superior performance of our method compared to existing approaches.
University of Glasgow at TREC 2009: Experiments with Terrier
2009-11-01
identify entities in the category B subset of the corpus, we resort to an efficient dictionary -based named en- tity recognition approach.4 In particular...we build a large dictio- nary of entity names using DBPedia,5 a structured representation of Wikipedia. Dictionary entries comprise all known...aliases for each unique entity, as obtained from DBPedia (e.g., ‘Barack Obama’ is represented by the dictionary entries ‘Barack Obama’ and ‘44th President
An efficient dictionary learning algorithm and its application to 3-D medical image denoising.
Li, Shutao; Fang, Leyuan; Yin, Haitao
2012-02-01
In this paper, we propose an efficient dictionary learning algorithm for sparse representation of given data and suggest a way to apply this algorithm to 3-D medical image denoising. Our learning approach is composed of two main parts: sparse coding and dictionary updating. On the sparse coding stage, an efficient algorithm named multiple clusters pursuit (MCP) is proposed. The MCP first applies a dictionary structuring strategy to cluster the atoms with high coherence together, and then employs a multiple-selection strategy to select several competitive atoms at each iteration. These two strategies can greatly reduce the computation complexity of the MCP and assist it to obtain better sparse solution. On the dictionary updating stage, the alternating optimization that efficiently approximates the singular value decomposition is introduced. Furthermore, in the 3-D medical image denoising application, a joint 3-D operation is proposed for taking the learning capabilities of the presented algorithm to simultaneously capture the correlations within each slice and correlations across the nearby slices, thereby obtaining better denoising results. The experiments on both synthetically generated data and real 3-D medical images demonstrate that the proposed approach has superior performance compared to some well-known methods. © 2011 IEEE
Brain tumor image segmentation using kernel dictionary learning.
Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H
2015-08-01
Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.
Low-dose X-ray CT reconstruction via dictionary learning.
Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge
2012-09-01
Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.
Low-Dose X-ray CT Reconstruction via Dictionary Learning
Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge
2013-01-01
Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666
Data Compression Using the Dictionary Approach Algorithm
1990-12-01
Compression Technique The LZ77 is an OPM/L data compression scheme suggested by Ziv and Lempel . A slightly modified...June 1984. 12. Witten H. I., Neal M. R. and Cleary G. J., Arithmetic Coding For Data Compression , Communication ACM June 1987. 13. Ziv I. and Lempel A...AD-A242 539 NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC NOV 181991 0 THESIS DATA COMPRESSION USING THE DICTIONARY APPROACH ALGORITHM
Cross-label Suppression: a Discriminative and Fast Dictionary Learning with Group Regularization.
Wang, Xiudong; Gu, Yuantao
2017-05-10
This paper addresses image classification through learning a compact and discriminative dictionary efficiently. Given a structured dictionary with each atom (columns in the dictionary matrix) related to some label, we propose crosslabel suppression constraint to enlarge the difference among representations for different classes. Meanwhile, we introduce group regularization to enforce representations to preserve label properties of original samples, meaning the representations for the same class are encouraged to be similar. Upon the cross-label suppression, we don't resort to frequently-used `0-norm or `1- norm for coding, and obtain computational efficiency without losing the discriminative power for categorization. Moreover, two simple classification schemes are also developed to take full advantage of the learnt dictionary. Extensive experiments on six data sets including face recognition, object categorization, scene classification, texture recognition and sport action categorization are conducted, and the results show that the proposed approach can outperform lots of recently presented dictionary algorithms on both recognition accuracy and computational efficiency.
Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
Grossi, Giuliano; Lin, Jianyi
2017-01-01
In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD’s robustness and wide applicability. PMID:28103283
Fast dictionary-based reconstruction for diffusion spectrum imaging.
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar
2013-11-01
Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.
Nam, Junghyun; Choo, Kim-Kwang Raymond; Paik, Juryon; Won, Dongho
2014-01-01
While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol.
Multi-level discriminative dictionary learning with application to large scale image classification.
Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua
2015-10-01
The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.
Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar
2015-01-01
Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466
Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Andrew J.; Pu, Yunchen; Sun, Yannan
We introduce new dictionary learning methods for tensor-variate data of any order. We represent each data item as a sum of Kruskal decomposed dictionary atoms within the framework of beta-process factor analysis (BPFA). Our model is nonparametric and can infer the tensor-rank of each dictionary atom. This Kruskal-Factor Analysis (KFA) is a natural generalization of BPFA. We also extend KFA to a deep convolutional setting and develop online learning methods. We test our approach on image processing and classification tasks achieving state of the art results for 2D & 3D inpainting and Caltech 101. The experiments also show that atom-rankmore » impacts both overcompleteness and sparsity.« less
Multiple sclerosis lesion segmentation using dictionary learning and sparse coding.
Weiss, Nick; Rueckert, Daniel; Rao, Anil
2013-01-01
The segmentation of lesions in the brain during the development of Multiple Sclerosis is part of the diagnostic assessment for this disease and gives information on its current severity. This laborious process is still carried out in a manual or semiautomatic fashion by clinicians because published automatic approaches have not been universal enough to be widely employed in clinical practice. Thus Multiple Sclerosis lesion segmentation remains an open problem. In this paper we present a new unsupervised approach addressing this problem with dictionary learning and sparse coding methods. We show its general applicability to the problem of lesion segmentation by evaluating our approach on synthetic and clinical image data and comparing it to state-of-the-art methods. Furthermore the potential of using dictionary learning and sparse coding for such segmentation tasks is investigated and various possibilities for further experiments are discussed.
Brain tumor classification and segmentation using sparse coding and dictionary learning.
Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo
2016-08-01
This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.
Sentiment analysis of political communication: combining a dictionary approach with crowdcoding.
Haselmayer, Martin; Jenny, Marcelo
2017-01-01
Sentiment is important in studies of news values, public opinion, negative campaigning or political polarization and an explosive expansion of digital textual data and fast progress in automated text analysis provide vast opportunities for innovative social science research. Unfortunately, tools currently available for automated sentiment analysis are mostly restricted to English texts and require considerable contextual adaption to produce valid results. We present a procedure for collecting fine-grained sentiment scores through crowdcoding to build a negative sentiment dictionary in a language and for a domain of choice. The dictionary enables the analysis of large text corpora that resource-intensive hand-coding struggles to cope with. We calculate the tonality of sentences from dictionary words and we validate these estimates with results from manual coding. The results show that the crowdbased dictionary provides efficient and valid measurement of sentiment. Empirical examples illustrate its use by analyzing the tonality of party statements and media reports.
Document image database indexing with pictorial dictionary
NASA Astrophysics Data System (ADS)
Akbari, Mohammad; Azimi, Reza
2010-02-01
In this paper we introduce a new approach for information retrieval from Persian document image database without using Optical Character Recognition (OCR).At first an attribute called subword upper contour label is defined then, a pictorial dictionary is constructed based on this attribute for the subwords. By this approach we address two issues in document image retrieval: keyword spotting and retrieval according to the document similarities. The proposed methods have been evaluated on a Persian document image database. The results have proved the ability of this approach in document image information retrieval.
Generating a Spanish Affective Dictionary with Supervised Learning Techniques
ERIC Educational Resources Information Center
Bermudez-Gonzalez, Daniel; Miranda-Jiménez, Sabino; García-Moreno, Raúl-Ulises; Calderón-Nepamuceno, Dora
2016-01-01
Nowadays, machine learning techniques are being used in several Natural Language Processing (NLP) tasks such as Opinion Mining (OM). OM is used to analyse and determine the affective orientation of texts. Usually, OM approaches use affective dictionaries in order to conduct sentiment analysis. These lexicons are labeled manually with affective…
Quantitative Investigations in Hungarian Phonotactics and Syllable Structure
ERIC Educational Resources Information Center
Grimes, Stephen M.
2010-01-01
This dissertation investigates statistical properties of segment collocation and syllable geometry of the Hungarian language. A corpus and dictionary based approach to studying language phonologies is outlined. In order to conduct research on Hungarian, a phonological lexicon was created by compiling existing dictionaries and corpora and using a…
Xu, Rong; Supekar, Kaustubh; Morgan, Alex; Das, Amar; Garber, Alan
2008-11-06
Concept specific lexicons (e.g. diseases, drugs, anatomy) are a critical source of background knowledge for many medical language-processing systems. However, the rapid pace of biomedical research and the lack of constraints on usage ensure that such dictionaries are incomplete. Focusing on disease terminology, we have developed an automated, unsupervised, iterative pattern learning approach for constructing a comprehensive medical dictionary of disease terms from randomized clinical trial (RCT) abstracts, and we compared different ranking methods for automatically extracting con-textual patterns and concept terms. When used to identify disease concepts from 100 randomly chosen, manually annotated clinical abstracts, our disease dictionary shows significant performance improvement (F1 increased by 35-88%) over available, manually created disease terminologies.
Xu, Rong; Supekar, Kaustubh; Morgan, Alex; Das, Amar; Garber, Alan
2008-01-01
Concept specific lexicons (e.g. diseases, drugs, anatomy) are a critical source of background knowledge for many medical language-processing systems. However, the rapid pace of biomedical research and the lack of constraints on usage ensure that such dictionaries are incomplete. Focusing on disease terminology, we have developed an automated, unsupervised, iterative pattern learning approach for constructing a comprehensive medical dictionary of disease terms from randomized clinical trial (RCT) abstracts, and we compared different ranking methods for automatically extracting contextual patterns and concept terms. When used to identify disease concepts from 100 randomly chosen, manually annotated clinical abstracts, our disease dictionary shows significant performance improvement (F1 increased by 35–88%) over available, manually created disease terminologies. PMID:18999169
Super resolution reconstruction of infrared images based on classified dictionary learning
NASA Astrophysics Data System (ADS)
Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng
2018-05-01
Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.
NASA Astrophysics Data System (ADS)
Liu, Xingchen; Hu, Zhiyong; He, Qingbo; Zhang, Shangbin; Zhu, Jun
2017-10-01
Doppler distortion and background noise can reduce the effectiveness of wayside acoustic train bearing monitoring and fault diagnosis. This paper proposes a method of combining a microphone array and matching pursuit algorithm to overcome these difficulties. First, a dictionary is constructed based on the characteristics and mechanism of a far-field assumption. Then, the angle of arrival of the train bearing is acquired when applying matching pursuit to analyze the acoustic array signals. Finally, after obtaining the resampling time series, the Doppler distortion can be corrected, which is convenient for further diagnostic work. Compared with traditional single-microphone Doppler correction methods, the advantages of the presented array method are its robustness to background noise and its barely requiring pre-measuring parameters. Simulation and experimental study show that the proposed method is effective in performing wayside acoustic bearing fault diagnosis.
Assigning categorical information to Japanese medical terms using MeSH and MEDLINE.
Onogi, Yuzo
2007-01-01
This paper reports on the assigning of MeSH (Medical Subject Headings) categories to Japanese terms in an English-Japanese dictionary using the titles and abstracts of articles indexed in MEDLINE. In a previous study, 30,000 of 80,000 terms in the dictionary were mapped to MeSH terms by normalized comparison. It was reasoned that if the remaining dictionary terms appeared in MEDLINE-indexed articles that are indexed using MeSH terms, then relevancies between the dictionary terms and MeSH terms could be calculated, and thus MeSH categories assigned. This study compares two approaches for calculating the weight matrix. One is the TF*IDF method and the other uses the inner product of two weight matrices. About 20,000 additional dictionary terms were identified in MEDLINE-indexed articles published between 2000 and 2004. The precision and recall of these algorithms were evaluated separately for MeSH terms and non-MeSH terms. Unfortunately, the precision and recall of the algorithms was not good, but this method will help with manual assignment of MeSH categories to dictionary terms.
Nam, Junghyun; Choo, Kim-Kwang Raymond
2014-01-01
While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol. PMID:25309956
1988-03-01
oriented expansion of dictionaries and systems. 4,.j - Portability. Included essential criteria for evaluation are: N - Quality of the raw (also called...hard to be made without having precise criteria for the de- cision. Because the amount of data in computerized dictionaries - on the long line of...develop- ment of MT and CAT systems - is the decisive component, the update of the (electronic) dictionary plays a substantial part in both alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Daniela Irina
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detectmore » geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.« less
Piano Transcription with Convolutional Sparse Lateral Inhibition
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon
2017-02-08
This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less
Piano Transcription with Convolutional Sparse Lateral Inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon
This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less
Image super-resolution via sparse representation.
Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi
2010-11-01
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
Supervised dictionary learning for inferring concurrent brain networks.
Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming
2015-10-01
Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.
Relaxations to Sparse Optimization Problems and Applications
NASA Astrophysics Data System (ADS)
Skau, Erik West
Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we apply a maximum entropy model, guided by the social media data, to estimate the flooded regions during a 2013 flood in Boulder, CO and show that the results are comparable to those obtained using expert information.
A dictionary based informational genome analysis
2012-01-01
Background In the post-genomic era several methods of computational genomics are emerging to understand how the whole information is structured within genomes. Literature of last five years accounts for several alignment-free methods, arisen as alternative metrics for dissimilarity of biological sequences. Among the others, recent approaches are based on empirical frequencies of DNA k-mers in whole genomes. Results Any set of words (factors) occurring in a genome provides a genomic dictionary. About sixty genomes were analyzed by means of informational indexes based on genomic dictionaries, where a systemic view replaces a local sequence analysis. A software prototype applying a methodology here outlined carried out some computations on genomic data. We computed informational indexes, built the genomic dictionaries with different sizes, along with frequency distributions. The software performed three main tasks: computation of informational indexes, storage of these in a database, index analysis and visualization. The validation was done by investigating genomes of various organisms. A systematic analysis of genomic repeats of several lengths, which is of vivid interest in biology (for example to compute excessively represented functional sequences, such as promoters), was discussed, and suggested a method to define synthetic genetic networks. Conclusions We introduced a methodology based on dictionaries, and an efficient motif-finding software application for comparative genomics. This approach could be extended along many investigation lines, namely exported in other contexts of computational genomics, as a basis for discrimination of genomic pathologies. PMID:22985068
Tong, Tong; Wolz, Robin; Coupé, Pierrick; Hajnal, Joseph V; Rueckert, Daniel
2013-08-01
We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Huaiguang
With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach is feasible, convenient and effective. Conventionally, wind energy is highly location-dependent. Many desirable wind resources are located in rural areas without direct access to the transmission grid. By connecting MW-scale wind turbines or wind farms to the distributions system of SG, the cost of building long transmission facilities can be avoid and wind power supplied to consumers can be greatly increased. After the effective wide area monitoring (WAM) approach is built, an event-driven control strategy is proposed for renewable energy integration. This approach is based on support vector machine (SVM) predictor and multiple-input and multiple-output (MIMO) model predictive control (MPC) on linear time-invariant (LTI) and linear time-variant (LTV) systems. The voltage condition of the distribution system is predicted by the SVM classifier using synchrophasor measurement data. The controllers equipped with wind turbine generators are triggered by the prediction results. Both transmission level and distribution level are designed based on this proposed approach. Considering economic issues in the power system, a statistical scheduling approach to economic dispatch and energy reserves is proposed. The proposed approach focuses on minimizing the overall power operating cost with considerations of renewable energy uncertainty and power system security. The hybrid power system scheduling is formulated as a convex programming problem to minimize power operating cost, taking considerations of renewable energy generation, power generation-consumption balance and power system security. A genetic algorithm based approach is used for solving the minimization of the power operating cost. In addition, with technology development, it can be predicted that the renewable energy such as wind turbine generators and PV panels will be pervasively located in distribution systems. The distribution system is an unbalanced system, which contains single-phase, two-phase and three-phase loads, and distribution lines. The complex configuration brings a challenge to power flow calculation. A topology analysis based iterative approach is used to solve this problem. In this approach, a self-adaptive topology recognition method is used to analyze the distribution system, and the backward/forward sweep algorithm is used to generate the power flow results. Finally, for the numerical simulations, the IEEE 14-bus, 30-bus, 39-bus and 118-bus systems are studied for fault detection, identification and location. Both transmission level and distribution level models are employed with the proposed control strategy for voltage stability of renewable energy integration. The simulation results demonstrate the effectiveness of the proposed methods. The IEEE 24-bus reliability test system (IEEE-RTS), which is commonly used for evaluating the price stability and reliability of power system, is used as the test bench for verifying and evaluating system performance of the proposed scheduling approach.
Creating a Digital Jamaican Sign Language Dictionary: A R2D2 Approach
ERIC Educational Resources Information Center
MacKinnon, Gregory; Soutar, Iris
2015-01-01
The Jamaican Association for the Deaf, in their responsibilities to oversee education for individuals who are deaf in Jamaica, has demonstrated an urgent need for a dictionary that assists students, educators, and parents with the practical use of "Jamaican Sign Language." While paper versions of a preliminary resource have been explored…
Wu, Lin; Wang, Yang; Pan, Shirui
2017-12-01
It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.
Wang, Bigong; Li, Liang
2015-01-01
As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training.
Recent Development of Dual-Dictionary Learning Approach in Medical Image Analysis and Reconstruction
Wang, Bigong; Li, Liang
2015-01-01
As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training. PMID:26089956
Enhancement of snow cover change detection with sparse representation and dictionary learning
NASA Astrophysics Data System (ADS)
Varade, D.; Dikshit, O.
2014-11-01
Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.
Low rank approximation methods for MR fingerprinting with large scale dictionaries.
Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra
2018-04-01
This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches. T 1 , T 2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence. The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Thai Automatic Speech Recognition
2005-01-01
used in an external DARPA evaluation involving medical scenarios between an American Doctor and a naïve monolingual Thai patient. 2. Thai Language... dictionary generation more challenging, and (3) the lack of word segmentation, which calls for automatic segmentation approaches to make n-gram language...requires a dictionary and provides various segmentation algorithms to automatically select suitable segmentations. Here we used a maximal matching
Learning a Dictionary of Shape Epitomes with Applications to Image Labeling
Chen, Liang-Chieh; Papandreou, George; Yuille, Alan L.
2015-01-01
The first main contribution of this paper is a novel method for representing images based on a dictionary of shape epitomes. These shape epitomes represent the local edge structure of the image and include hidden variables to encode shift and rotations. They are learnt in an unsupervised manner from groundtruth edges. This dictionary is compact but is also able to capture the typical shapes of edges in natural images. In this paper, we illustrate the shape epitomes by applying them to the image labeling task. In other work, described in the supplementary material, we apply them to edge detection and image modeling. We apply shape epitomes to image labeling by using Conditional Random Field (CRF) Models. They are alternatives to the superpixel or pixel representations used in most CRFs. In our approach, the shape of an image patch is encoded by a shape epitome from the dictionary. Unlike the superpixel representation, our method avoids making early decisions which cannot be reversed. Our resulting hierarchical CRFs efficiently capture both local and global class co-occurrence properties. We demonstrate its quantitative and qualitative properties of our approach with image labeling experiments on two standard datasets: MSRC-21 and Stanford Background. PMID:26321886
Low-dose CT image reconstruction using gain intervention-based dictionary learning
NASA Astrophysics Data System (ADS)
Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra
2018-05-01
Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.
Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred
Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less
NASA Astrophysics Data System (ADS)
Liu, Tingting; Liu, Hai; Chen, Zengzhao; Chen, Yingying; Wang, Shengming; Liu, Zhi; Zhang, Hao
2018-05-01
Infrared (IR) spectra are the fingerprints of the molecules, and the spectral band location closely relates to the structure of a molecule. Thus, specimen identification can be performed based on IR spectroscopy. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances. In this paper, we propose a fast blind reconstruction approach for IR spectra, which is based on sparse and redundant representations over a dictionary. The proposed method recovers the spectrum with the discrete wavelet transform dictionary on its content. The experimental results demonstrate that the proposed method is superior because of the better performance when compared with other state-of-the-art methods. The method the authors used remove the instrument aging issue to a large extent, thus leading the reconstruction IR spectra a more convenient tool for extracting features of an unknown material and interpreting it.
Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-02-22
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.
Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-01-01
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406
Ramkumar, Barathram; Sabarimalai Manikandan, M.
2017-01-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal. PMID:28529758
Group-sparse representation with dictionary learning for medical image denoising and fusion.
Li, Shutao; Yin, Haitao; Fang, Leyuan
2012-12-01
Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.
Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M
2017-02-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.
DOLPHIn—Dictionary Learning for Phase Retrieval
NASA Astrophysics Data System (ADS)
Tillmann, Andreas M.; Eldar, Yonina C.; Mairal, Julien
2016-12-01
We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.
Improved interior wall detection using designated dictionaries in compressive urban sensing problems
NASA Astrophysics Data System (ADS)
Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse
2013-05-01
In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.
Proposal: A Hybrid Dictionary Modelling Approach for Malay Tweet Normalization
NASA Astrophysics Data System (ADS)
Muhamad, Nor Azlizawati Binti; Idris, Norisma; Arshi Saloot, Mohammad
2017-02-01
Malay Twitter message presents a special deviation from the original language. Malay Tweet widely used currently by Twitter users, especially at Malaya archipelago. Thus, it is important to make a normalization system which can translated Malay Tweet language into the standard Malay language. Some researchers have conducted in natural language processing which mainly focuses on normalizing English Twitter messages, while few studies have been done for normalize Malay Tweets. This paper proposes an approach to normalize Malay Twitter messages based on hybrid dictionary modelling methods. This approach normalizes noisy Malay twitter messages such as colloquially language, novel words, and interjections into standard Malay language. This research will be used Language Model and N-grams model.
2013-01-01
Background Breast cancer is the leading cause of both incidence and mortality in women population. For this reason, much research effort has been devoted to develop Computer-Aided Detection (CAD) systems for early detection of the breast cancers on mammograms. In this paper, we propose a new and novel dictionary configuration underpinning sparse representation based classification (SRC). The key idea of the proposed algorithm is to improve the sparsity in terms of mass margins for the purpose of improving classification performance in CAD systems. Methods The aim of the proposed SRC framework is to construct separate dictionaries according to the types of mass margins. The underlying idea behind our method is that the separated dictionaries can enhance the sparsity of mass class (true-positive), leading to an improved performance for differentiating mammographic masses from normal tissues (false-positive). When a mass sample is given for classification, the sparse solutions based on corresponding dictionaries are separately solved and combined at score level. Experiments have been performed on both database (DB) named as Digital Database for Screening Mammography (DDSM) and clinical Full Field Digital Mammogram (FFDM) DBs. In our experiments, sparsity concentration in the true class (SCTC) and area under the Receiver operating characteristic (ROC) curve (AUC) were measured for the comparison between the proposed method and a conventional single dictionary based approach. In addition, a support vector machine (SVM) was used for comparing our method with state-of-the-arts classifier extensively used for mass classification. Results Comparing with the conventional single dictionary configuration, the proposed approach is able to improve SCTC of up to 13.9% and 23.6% on DDSM and FFDM DBs, respectively. Moreover, the proposed method is able to improve AUC with 8.2% and 22.1% on DDSM and FFDM DBs, respectively. Comparing to SVM classifier, the proposed method improves AUC with 2.9% and 11.6% on DDSM and FFDM DBs, respectively. Conclusions The proposed dictionary configuration is found to well improve the sparsity of dictionaries, resulting in an enhanced classification performance. Moreover, the results show that the proposed method is better than conventional SVM classifier for classifying breast masses subject to various margins from normal tissues. PMID:24564973
Extending Phrase-Based Decoding with a Dependency-Based Reordering Model
2009-11-01
strictly within the confines of phrase-based translation. The hope was to introduce an approach that could take advantage of monolingual syntactic...tuple represents one element of the XML markup, where element is the name of this element, attributes is a dictionary (mapping strings to strings...representing the range of possible compressions, in the form of a dictionary mapping the latter to the former. To represent multiple dependency
Contour Tracking in Echocardiographic Sequences via Sparse Representation and Dictionary Learning
Huang, Xiaojie; Dione, Donald P.; Compas, Colin B.; Papademetris, Xenophon; Lin, Ben A.; Bregasi, Alda; Sinusas, Albert J.; Staib, Lawrence H.; Duncan, James S.
2013-01-01
This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets. PMID:24292554
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Li, Xiang; Yan, Ruqiang
2016-04-01
Fault information of aero-engine bearings presents two particular phenomena, i.e., waveform distortion and impulsive feature frequency band dispersion, which leads to a challenging problem for current techniques of bearing fault diagnosis. Moreover, although many progresses of sparse representation theory have been made in feature extraction of fault information, the theory also confronts inevitable performance degradation due to the fact that relatively weak fault information has not sufficiently prominent and sparse representations. Therefore, a novel nonlocal sparse model (coined NLSM) and its algorithm framework has been proposed in this paper, which goes beyond simple sparsity by introducing more intrinsic structures of feature information. This work adequately exploits the underlying prior information that feature information exhibits nonlocal self-similarity through clustering similar signal fragments and stacking them together into groups. Within this framework, the prior information is transformed into a regularization term and a sparse optimization problem, which could be solved through block coordinate descent method (BCD), is formulated. Additionally, the adaptive structural clustering sparse dictionary learning technique, which utilizes k-Nearest-Neighbor (kNN) clustering and principal component analysis (PCA) learning, is adopted to further enable sufficient sparsity of feature information. Moreover, the selection rule of regularization parameter and computational complexity are described in detail. The performance of the proposed framework is evaluated through numerical experiment and its superiority with respect to the state-of-the-art method in the field is demonstrated through the vibration signals of experimental rig of aircraft engine bearings.
Hsiao, Mei-Yu; Chen, Chien-Chung; Chen, Jyh-Horng
2009-10-01
With a rapid progress in the field, a great many fMRI studies are published every year, to the extent that it is now becoming difficult for researchers to keep up with the literature, since reading papers is extremely time-consuming and labor-intensive. Thus, automatic information extraction has become an important issue. In this study, we used the Unified Medical Language System (UMLS) to construct a hierarchical concept-based dictionary of brain functions. To the best of our knowledge, this is the first generalized dictionary of this kind. We also developed an information extraction system for recognizing, mapping and classifying terms relevant to human brain study. The precision and recall of our system was on a par with that of human experts in term recognition, term mapping and term classification. Our approach presented in this paper presents an alternative to the more laborious, manual entry approach to information extraction.
NASA Astrophysics Data System (ADS)
Li, Qianxiao; Dietrich, Felix; Bollt, Erik M.; Kevrekidis, Ioannis G.
2017-10-01
Numerical approximation methods for the Koopman operator have advanced considerably in the last few years. In particular, data-driven approaches such as dynamic mode decomposition (DMD)51 and its generalization, the extended-DMD (EDMD), are becoming increasingly popular in practical applications. The EDMD improves upon the classical DMD by the inclusion of a flexible choice of dictionary of observables which spans a finite dimensional subspace on which the Koopman operator can be approximated. This enhances the accuracy of the solution reconstruction and broadens the applicability of the Koopman formalism. Although the convergence of the EDMD has been established, applying the method in practice requires a careful choice of the observables to improve convergence with just a finite number of terms. This is especially difficult for high dimensional and highly nonlinear systems. In this paper, we employ ideas from machine learning to improve upon the EDMD method. We develop an iterative approximation algorithm which couples the EDMD with a trainable dictionary represented by an artificial neural network. Using the Duffing oscillator and the Kuramoto Sivashinsky partical differential equation as examples, we show that our algorithm can effectively and efficiently adapt the trainable dictionary to the problem at hand to achieve good reconstruction accuracy without the need to choose a fixed dictionary a priori. Furthermore, to obtain a given accuracy, we require fewer dictionary terms than EDMD with fixed dictionaries. This alleviates an important shortcoming of the EDMD algorithm and enhances the applicability of the Koopman framework to practical problems.
Li, Qianxiao; Dietrich, Felix; Bollt, Erik M; Kevrekidis, Ioannis G
2017-10-01
Numerical approximation methods for the Koopman operator have advanced considerably in the last few years. In particular, data-driven approaches such as dynamic mode decomposition (DMD) 51 and its generalization, the extended-DMD (EDMD), are becoming increasingly popular in practical applications. The EDMD improves upon the classical DMD by the inclusion of a flexible choice of dictionary of observables which spans a finite dimensional subspace on which the Koopman operator can be approximated. This enhances the accuracy of the solution reconstruction and broadens the applicability of the Koopman formalism. Although the convergence of the EDMD has been established, applying the method in practice requires a careful choice of the observables to improve convergence with just a finite number of terms. This is especially difficult for high dimensional and highly nonlinear systems. In this paper, we employ ideas from machine learning to improve upon the EDMD method. We develop an iterative approximation algorithm which couples the EDMD with a trainable dictionary represented by an artificial neural network. Using the Duffing oscillator and the Kuramoto Sivashinsky partical differential equation as examples, we show that our algorithm can effectively and efficiently adapt the trainable dictionary to the problem at hand to achieve good reconstruction accuracy without the need to choose a fixed dictionary a priori. Furthermore, to obtain a given accuracy, we require fewer dictionary terms than EDMD with fixed dictionaries. This alleviates an important shortcoming of the EDMD algorithm and enhances the applicability of the Koopman framework to practical problems.
Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.
Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano
2015-12-01
On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.
Blind compressive sensing dynamic MRI
Lingala, Sajan Goud; Jacob, Mathews
2013-01-01
We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the non-orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler sub problems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding. Our phase transition experiments demonstrate that the BCS scheme provides much better recovery rates than classical Fourier-based CS schemes, while being only marginally worse than the dictionary aware setting. Since the overhead in additionally estimating the dictionary is low, this method can be very useful in dynamic MRI applications, where the signal is not sparse in known dictionaries. We demonstrate the utility of the BCS scheme in accelerating contrast enhanced dynamic data. We observe superior reconstruction performance with the BCS scheme in comparison to existing low rank and compressed sensing schemes. PMID:23542951
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-01-01
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-07-01
Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.
Altmann, U.; Tafazzoli, A. G.; Noelle, G.; Huybrechts, T.; Schweiger, R.; Wächter, W.; Dudeck, J. W.
1999-01-01
In oncology various international and national standards exist for the documentation of different aspects of a disease. Since elements of these standards are repeated in different contexts, a common data dictionary could support consistent representation in any context. For the construction of such a dictionary existing documents have to be worked up in a complex procedure, that considers aspects of hierarchical decomposition of documents and of domain control as well as aspects of user presentation and models of the underlying model of patient data. In contrast to other thesauri, text chunks like definitions or explanations are very important and have to be preserved, since oncologic documentation often means coding and classification on an aggregate level and the safe use of coding systems is an important precondition for comparability of data. This paper discusses the potentials of the use of XML in combination with a dictionary for the promotion and development of standard conformable applications for tumor documentation. PMID:10566311
Top-Down Visual Saliency via Joint CRF and Dictionary Learning.
Yang, Jimei; Yang, Ming-Hsuan
2017-03-01
Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
Roy, Snehashis; He, Qing; Sweeney, Elizabeth; Carass, Aaron; Reich, Daniel S; Prince, Jerry L; Pham, Dzung L
2015-09-01
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas
2017-01-01
The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.
Process and methodology of developing Cassini G and C Telemetry Dictionary
NASA Technical Reports Server (NTRS)
Kan, Edwin P.
1994-01-01
While the Cassini spacecraft telemetry design had taken on the new approach of 'packetized telemetry', the AACS (Attitude and Articulation Subsystem) had further extended into the design of 'mini-packets' in its telemetry system. Such telemetry packet and mini-packet design produced the AACS Telemetry Dictionary; iterations of the latter in turn provided changes to the former. The ultimate goals were to achieve maximum telemetry packing density, optimize the 'freshness' of more time-critical data, and to effect flexibility, i.e., multiple AACS data collection schemes, without needing to change the overall spacecraft telemetry mode. This paper describes such a systematic process and methodology, evidenced by various design products related to, or as part of, the AACS Telemetry Dictionary.
Co, Manuel C; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne
2012-01-01
In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies.
A method for named entity normalization in biomedical articles: application to diseases and plants.
Cho, Hyejin; Choi, Wonjun; Lee, Hyunju
2017-10-13
In biomedical articles, a named entity recognition (NER) technique that identifies entity names from texts is an important element for extracting biological knowledge from articles. After NER is applied to articles, the next step is to normalize the identified names into standard concepts (i.e., disease names are mapped to the National Library of Medicine's Medical Subject Headings disease terms). In biomedical articles, many entity normalization methods rely on domain-specific dictionaries for resolving synonyms and abbreviations. However, the dictionaries are not comprehensive except for some entities such as genes. In recent years, biomedical articles have accumulated rapidly, and neural network-based algorithms that incorporate a large amount of unlabeled data have shown considerable success in several natural language processing problems. In this study, we propose an approach for normalizing biological entities, such as disease names and plant names, by using word embeddings to represent semantic spaces. For diseases, training data from the National Center for Biotechnology Information (NCBI) disease corpus and unlabeled data from PubMed abstracts were used to construct word representations. For plants, a training corpus that we manually constructed and unlabeled PubMed abstracts were used to represent word vectors. We showed that the proposed approach performed better than the use of only the training corpus or only the unlabeled data and showed that the normalization accuracy was improved by using our model even when the dictionaries were not comprehensive. We obtained F-scores of 0.808 and 0.690 for normalizing the NCBI disease corpus and manually constructed plant corpus, respectively. We further evaluated our approach using a data set in the disease normalization task of the BioCreative V challenge. When only the disease corpus was used as a dictionary, our approach significantly outperformed the best system of the task. The proposed approach shows robust performance for normalizing biological entities. The manually constructed plant corpus and the proposed model are available at http://gcancer.org/plant and http://gcancer.org/normalization , respectively.
Dictionary learning-based spatiotemporal regularization for 3D dense speckle tracking
NASA Astrophysics Data System (ADS)
Lu, Allen; Zontak, Maria; Parajuli, Nripesh; Stendahl, John C.; Boutagy, Nabil; Eberle, Melissa; O'Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.
2017-03-01
Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.
Visual saliency detection based on in-depth analysis of sparse representation
NASA Astrophysics Data System (ADS)
Wang, Xin; Shen, Siqiu; Ning, Chen
2018-03-01
Visual saliency detection has been receiving great attention in recent years since it can facilitate a wide range of applications in computer vision. A variety of saliency models have been proposed based on different assumptions within which saliency detection via sparse representation is one of the newly arisen approaches. However, most existing sparse representation-based saliency detection methods utilize partial characteristics of sparse representation, lacking of in-depth analysis. Thus, they may have limited detection performance. Motivated by this, this paper proposes an algorithm for detecting visual saliency based on in-depth analysis of sparse representation. A number of discriminative dictionaries are first learned with randomly sampled image patches by means of inner product-based dictionary atom classification. Then, the input image is partitioned into many image patches, and these patches are classified into salient and nonsalient ones based on the in-depth analysis of sparse coding coefficients. Afterward, sparse reconstruction errors are calculated for the salient and nonsalient patch sets. By investigating the sparse reconstruction errors, the most salient atoms, which tend to be from the most salient region, are screened out and taken away from the discriminative dictionaries. Finally, an effective method is exploited for saliency map generation with the reduced dictionaries. Comprehensive evaluations on publicly available datasets and comparisons with some state-of-the-art approaches demonstrate the effectiveness of the proposed algorithm.
Fault Detection for Automotive Shock Absorber
NASA Astrophysics Data System (ADS)
Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis
2015-11-01
Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yanrong; Shao, Yeqin; Gao, Yaozong
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integratemore » the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.« less
Co, Manuel C.; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne
2012-01-01
In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies. PMID:24199059
Study of Tools for Command and Telemetry Dictionaries
NASA Technical Reports Server (NTRS)
Pires, Craig; Knudson, Matthew D.
2017-01-01
The Command and Telemetry Dictionary is at the heart of space missions. The C&T Dictionary represents all of the information that is exchanged between the various systems both in space and on the ground. Large amounts of ever-changing information has to be disseminated to all for the various systems and sub-systems throughout all phases of the mission. The typical approach of having each sub-system manage it's own information flow, results in a patchwork of methods within a mission. This leads to significant duplication of effort and potential errors. More centralized methods have been developed to manage this data flow. This presentation will compare two tools that have been developed for this purpose, CCDD and SCIMI that were designed to work with the Core Flight System (cFS).
Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2016-09-07
This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.
2016-04-20
skills within a business that make it more valuable or competitive, https://dictionary.cambridge.org/us/dictionary/ english /skill. Examples of knowledge ...is a lack of standardization – from the tactical to the strategic level – with integrating and employing IRCs and these SMEs. This along with other...organization strategic goals and objectives, and/or a lack of senior leader advocacy. Practical approaches such as the IRCs Integration Continuum acts as a
Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping
2015-01-01
Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771
Qualitative Event-Based Diagnosis: Case Study on the Second International Diagnostic Competition
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil
2010-01-01
We describe a diagnosis algorithm entered into the Second International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed and provide corresponding recovery recommendations. The diagnosis algorithm embodies a model-based approach, centered around qualitative event-based fault isolation. Faults produce deviations in measured values from model-predicted values. The sequence of these deviations is matched to those predicted by the model in order to isolate faults. We augment this approach with model-based fault identification, which determines fault parameters and helps to further isolate faults. We describe the diagnosis approach, provide diagnosis results from running the algorithm on provided example scenarios, and discuss the issues faced, and lessons learned, from implementing the approach
Booksearch: What Dictionary (General or Specialized) Do You Find Useful or Interesting for Students?
ERIC Educational Resources Information Center
English Journal, 1988
1988-01-01
Presents classroom teachers' recommendations for a variety of dictionaries that may heighten students' interest in language: a reverse dictionary, a visual dictionary, WEIGHTY WORD BOOK, a collegiate desk dictionary, OXFORD ENGLISH DICTIONARY, DICTIONARY OF AMERICAN REGIONAL ENGLISH, and a dictionary of idioms. (ARH)
Liu, Chunbo; Pan, Feng; Li, Yun
2016-07-29
Glutamate is of great importance in food and pharmaceutical industries. There is still lack of effective statistical approaches for fault diagnosis in the fermentation process of glutamate. To date, the statistical approach based on generalized additive model (GAM) and bootstrap has not been used for fault diagnosis in fermentation processes, much less the fermentation process of glutamate with small samples sets. A combined approach of GAM and bootstrap was developed for the online fault diagnosis in the fermentation process of glutamate with small sample sets. GAM was first used to model the relationship between glutamate production and different fermentation parameters using online data from four normal fermentation experiments of glutamate. The fitted GAM with fermentation time, dissolved oxygen, oxygen uptake rate and carbon dioxide evolution rate captured 99.6 % variance of glutamate production during fermentation process. Bootstrap was then used to quantify the uncertainty of the estimated production of glutamate from the fitted GAM using 95 % confidence interval. The proposed approach was then used for the online fault diagnosis in the abnormal fermentation processes of glutamate, and a fault was defined as the estimated production of glutamate fell outside the 95 % confidence interval. The online fault diagnosis based on the proposed approach identified not only the start of the fault in the fermentation process, but also the end of the fault when the fermentation conditions were back to normal. The proposed approach only used a small sample sets from normal fermentations excitements to establish the approach, and then only required online recorded data on fermentation parameters for fault diagnosis in the fermentation process of glutamate. The proposed approach based on GAM and bootstrap provides a new and effective way for the fault diagnosis in the fermentation process of glutamate with small sample sets.
Sparse representation of electrodermal activity with knowledge-driven dictionaries.
Chaspari, Theodora; Tsiartas, Andreas; Stein, Leah I; Cermak, Sharon A; Narayanan, Shrikanth S
2015-03-01
Biometric sensors and portable devices are being increasingly embedded into our everyday life, creating the need for robust physiological models that efficiently represent, analyze, and interpret the acquired signals. We propose a knowledge-driven method to represent electrodermal activity (EDA), a psychophysiological signal linked to stress, affect, and cognitive processing. We build EDA-specific dictionaries that accurately model both the slow varying tonic part and the signal fluctuations, called skin conductance responses (SCR), and use greedy sparse representation techniques to decompose the signal into a small number of atoms from the dictionary. Quantitative evaluation of our method considers signal reconstruction, compression rate, and information retrieval measures, that capture the ability of the model to incorporate the main signal characteristics, such as SCR occurrences. Compared to previous studies fitting a predetermined structure to the signal, results indicate that our approach provides benefits across all aforementioned criteria. This paper demonstrates the ability of appropriate dictionaries along with sparse decomposition methods to reliably represent EDA signals and provides a foundation for automatic measurement of SCR characteristics and the extraction of meaningful EDA features.
TH-CD-206-09: Learning-Based MRI-CT Prostate Registration Using Spare Patch-Deformation Dictionary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Jani, A; Rossi, P
Purpose: To enable MRI-guided prostate radiotherapy, MRI-CT deformable registration is required to map the MRI-defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey-level intensity characteristics between MRI and CT images, the integration of MRI into CT-based radiotherapy is very challenging. We are developing a learning-based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch-wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch-wise appearance patterns aremore » similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI-CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate-cancer patients’ data and its performance was compared with the commonly used free-form-deformation-based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity-based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR-CT registration approach based on patch-deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient-specific treatment variation measured during the course of radiotherapy, is therefore well-suited for a number of MRI-guided adaptive radiotherapy, and potentially enhance prostate radiotherapy treatment outcome.« less
Shape prior modeling using sparse representation and online dictionary learning.
Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N
2012-01-01
The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, F.; Rutqvist, J.
2010-06-01
The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less
Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin
2018-04-18
Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.
Estimation of Faults in DC Electrical Power System
NASA Technical Reports Server (NTRS)
Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott
2009-01-01
This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.
Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction
Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong
2015-01-01
In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991
Automatic Dictionary Expansion Using Non-parallel Corpora
NASA Astrophysics Data System (ADS)
Rapp, Reinhard; Zock, Michael
Automatically generating bilingual dictionaries from parallel, manually translated texts is a well established technique that works well in practice. However, parallel texts are a scarce resource. Therefore, it is desirable also to be able to generate dictionaries from pairs of comparable monolingual corpora. For most languages, such corpora are much easier to acquire, and often in considerably larger quantities. In this paper we present the implementation of an algorithm which exploits such corpora with good success. Based on the assumption that the co-occurrence patterns between different languages are related, it expands a small base lexicon. For improved performance, it also realizes a novel interlingua approach. That is, if corpora of more than two languages are available, the translations from one language to another can be determined not only directly, but also indirectly via a pivot language.
Learners' Dictionaries: State of the Art. Anthology Series 23.
ERIC Educational Resources Information Center
Tickoo, Makhan L., Ed.
A collection of articles on dictionaries for advanced second language learners includes essays on the past, present, and future of learners' dictionaries; alternative dictionaries; dictionary construction; and dictionaries and their users. Titles include: "Idle Thoughts of an Idle Fellow; or Vaticinations on the Learners' Dictionary"…
The SMAP Dictionary Management System
NASA Technical Reports Server (NTRS)
Smith, Kevin A.; Swan, Christoper A.
2014-01-01
The Soil Moisture Active Passive (SMAP) Dictionary Management System is a web-based tool to develop and store a mission dictionary. A mission dictionary defines the interface between a ground system and a spacecraft. In recent years, mission dictionaries have grown in size and scope, making it difficult for engineers across multiple disciplines to coordinate the dictionary development effort. The Dictionary Management Systemaddresses these issues by placing all dictionary information in one place, taking advantage of the efficiencies inherent in co-locating what were once disparate dictionary development efforts.
Dictionaries: British and American. The Language Library.
ERIC Educational Resources Information Center
Hulbert, James Root
An account of the dictionaries, great and small, of the English-speaking world is given in this book. Subjects covered include the origin of English dictionaries, early dictionaries, Noah Webster and his successors to the present, abridged dictionaries, "The Oxford English Dictionary" and later dictionaries patterned after it, the…
Dynamic Textures Modeling via Joint Video Dictionary Learning.
Wei, Xian; Li, Yuanxiang; Shen, Hao; Chen, Fang; Kleinsteuber, Martin; Wang, Zhongfeng
2017-04-06
Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DT) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.
Finamore, Joe; Ray, William; Kadolph, Chris; Rastegar-Mojarad, Majid; Ye, Zhan; Jacqueline, Bohne; Tachinardi, Umberto; Mendonça, Eneida; Finnegan, Brian; Bartkowiak, Barbara; Weichelt, Bryan; Lin, Simon
2014-01-01
Background/Aims New terms are rapidly appearing in the literature and practice of clinical medicine and translational research. To catalog real-world usage of medical terms, we report the first construction of an online dictionary of clinical and translational medicinal terms, which are computationally generated in near real-time using a big data approach. This project is NIH CTSA-funded and developed by the Marshfield Clinic Research Foundation in conjunction with University of Wisconsin - Madison. Currently titled Marshfield Dictionary of Clinical and Translational Science (MD-CTS), this application is a Google-like word search tool. By entering a term into the search bar, MD-CTS will display that term’s definition, usage examples, contextual terms, related images, and ontological information. A prototype is available for public viewing at http://spellchecker.mfldclin.edu/. Methods We programmatically derived the lexicon for MD-CTS from scholarly communications by parsing through 15,156,745 MEDLINE abstracts and extracting all of the unique words found therein. We then ran this list through several filters in order to remove words that were not relevant for searching, such as common English words and numeric expressions. We then loaded the resulting 1,795,769 terms into SQL tables. Each term is cross-referenced with every occurrence in all abstracts in which it was found. Additional information is aggregated from Wiktionary, Bioportal, and Wikipedia in real-time and displayed on-screen. From this lexicon we created a supplemental dictionary resource (updated quarterly) to be used in Microsoft Office® products. Results We evaluated the utility of MD-CTS by creating a list of 100 words derived from recent clinical and translational medicine publications in the week of July 22, 2013. We then performed comparative searches for each term with Taber’s Cyclopedic Medical Dictionary, Stedman’s Medical Dictionary, Dorland’s Illustrated Medical Dictionary, Medical Subject Headings (MeSH), and MD-CTS. We compared our supplemental dictionary resource to OpenMedSpell for effectiveness in accuracy of term recognition. Conclusions In summary, we developed an online mobile and desktop reference, which comprehensively integrates Wiktionary (term information), Bioportal (ontological information), Wikipedia (related images), and Medline abstract information (term usage) for scientists and clinicians to browse in real-time. We also created a supplemental dictionary resource to be used in Microsoft Office® products.
Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality
NASA Astrophysics Data System (ADS)
Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.
2018-03-01
This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For deriving high quality short test suites, the approach that is the combination of randomly generated sequences together with sequences which are aimed to detect faults not detected by random tests, allows to reach the good fault coverage using shortest test sequences.
Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2003-01-01
In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.
A fault isolation method based on the incidence matrix of an augmented system
NASA Astrophysics Data System (ADS)
Chen, Changxiong; Chen, Liping; Ding, Jianwan; Wu, Yizhong
2018-03-01
A new approach is proposed for isolating faults and fast identifying the redundant sensors of a system in this paper. By introducing fault signal as additional state variable, an augmented system model is constructed by the original system model, fault signals and sensor measurement equations. The structural properties of an augmented system model are provided in this paper. From the viewpoint of evaluating fault variables, the calculating correlations of the fault variables in the system can be found, which imply the fault isolation properties of the system. Compared with previous isolation approaches, the highlights of the new approach are that it can quickly find the faults which can be isolated using exclusive residuals, at the same time, and can identify the redundant sensors in the system, which are useful for the design of diagnosis system. The simulation of a four-tank system is reported to validate the proposed method.
The semantics of Chemical Markup Language (CML): dictionaries and conventions.
Murray-Rust, Peter; Townsend, Joe A; Adams, Sam E; Phadungsukanan, Weerapong; Thomas, Jens
2011-10-14
The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs.
The semantics of Chemical Markup Language (CML): dictionaries and conventions
2011-01-01
The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs. PMID:21999509
The production of the AGARD multilingual aeronautical dictionary using computer techniques
NASA Technical Reports Server (NTRS)
Wente, V. A.; Kirschbaum, J. C.; Kuney, J. H.
1981-01-01
The AGARD Multilingual Aeronautical Dictionary (MAD) contained 7,300 technical terms defined in English but also translated into nine other languages. The preparation work was performed by some 250 scientists and engineers who were members of AGARD and involved the translation skills of staff in many of the NATO nations. Nearly all the compilation and setting work for the book was done by computer and automatic photo-composition. The purpose of this publication is to record how the task was approached in terms of management planning.
Personalizing the Approach to Childhood Asthma
American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...
Pedestrian detection from thermal images: A sparse representation based approach
NASA Astrophysics Data System (ADS)
Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi
2016-05-01
Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.
Boosting drug named entity recognition using an aggregate classifier.
Korkontzelos, Ioannis; Piliouras, Dimitrios; Dowsey, Andrew W; Ananiadou, Sophia
2015-10-01
Drug named entity recognition (NER) is a critical step for complex biomedical NLP tasks such as the extraction of pharmacogenomic, pharmacodynamic and pharmacokinetic parameters. Large quantities of high quality training data are almost always a prerequisite for employing supervised machine-learning techniques to achieve high classification performance. However, the human labour needed to produce and maintain such resources is a significant limitation. In this study, we improve the performance of drug NER without relying exclusively on manual annotations. We perform drug NER using either a small gold-standard corpus (120 abstracts) or no corpus at all. In our approach, we develop a voting system to combine a number of heterogeneous models, based on dictionary knowledge, gold-standard corpora and silver annotations, to enhance performance. To improve recall, we employed genetic programming to evolve 11 regular-expression patterns that capture common drug suffixes and used them as an extra means for recognition. Our approach uses a dictionary of drug names, i.e. DrugBank, a small manually annotated corpus, i.e. the pharmacokinetic corpus, and a part of the UKPMC database, as raw biomedical text. Gold-standard and silver annotated data are used to train maximum entropy and multinomial logistic regression classifiers. Aggregating drug NER methods, based on gold-standard annotations, dictionary knowledge and patterns, improved the performance on models trained on gold-standard annotations, only, achieving a maximum F-score of 95%. In addition, combining models trained on silver annotations, dictionary knowledge and patterns are shown to achieve comparable performance to models trained exclusively on gold-standard data. The main reason appears to be the morphological similarities shared among drug names. We conclude that gold-standard data are not a hard requirement for drug NER. Combining heterogeneous models build on dictionary knowledge can achieve similar or comparable classification performance with that of the best performing model trained on gold-standard annotations. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
MO-G-17A-05: PET Image Deblurring Using Adaptive Dictionary Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiollahzadeh, S; Clark, J; Mawlawi, O
2014-06-15
Purpose: The aim of this work is to deblur PET images while suppressing Poisson noise effects using adaptive dictionary learning (DL) techniques. Methods: The model that relates a blurred and noisy PET image to the desired image is described as a linear transform y=Hm+n where m is the desired image, H is a blur kernel, n is Poisson noise and y is the blurred image. The approach we follow to recover m involves the sparse representation of y over a learned dictionary, since the image has lots of repeated patterns, edges, textures and smooth regions. The recovery is based onmore » an optimization of a cost function having four major terms: adaptive dictionary learning term, sparsity term, regularization term, and MLEM Poisson noise estimation term. The optimization is solved by a variable splitting method that introduces additional variables. We simulated a 128×128 Hoffman brain PET image (baseline) with varying kernel types and sizes (Gaussian 9×9, σ=5.4mm; Uniform 5×5, σ=2.9mm) with additive Poisson noise (Blurred). Image recovery was performed once when the kernel type was included in the model optimization and once with the model blinded to kernel type. The recovered image was compared to the baseline as well as another recovery algorithm PIDSPLIT+ (Setzer et. al.) by calculating PSNR (Peak SNR) and normalized average differences in pixel intensities (NADPI) of line profiles across the images. Results: For known kernel types, the PSNR of the Gaussian (Uniform) was 28.73 (25.1) and 25.18 (23.4) for DL and PIDSPLIT+ respectively. For blinded deblurring the PSNRs were 25.32 and 22.86 for DL and PIDSPLIT+ respectively. NADPI between baseline and DL, and baseline and blurred for the Gaussian kernel was 2.5 and 10.8 respectively. Conclusion: PET image deblurring using dictionary learning seems to be a good approach to restore image resolution in presence of Poisson noise. GE Health Care.« less
Shen, Chenyang; Li, Bin; Chen, Liyuan; Yang, Ming; Lou, Yifei; Jia, Xun
2018-04-01
Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy. © 2018 American Association of Physicists in Medicine.
Matching Pursuit with Asymmetric Functions for Signal Decomposition and Parameterization
Spustek, Tomasz; Jedrzejczak, Wiesław Wiktor; Blinowska, Katarzyna Joanna
2015-01-01
The method of adaptive approximations by Matching Pursuit makes it possible to decompose signals into basic components (called atoms). The approach relies on fitting, in an iterative way, functions from a large predefined set (called dictionary) to an analyzed signal. Usually, symmetric functions coming from the Gabor family (sine modulated Gaussian) are used. However Gabor functions may not be optimal in describing waveforms present in physiological and medical signals. Many biomedical signals contain asymmetric components, usually with a steep rise and slower decay. For the decomposition of this kind of signal we introduce a dictionary of functions of various degrees of asymmetry – from symmetric Gabor atoms to highly asymmetric waveforms. The application of this enriched dictionary to Otoacoustic Emissions and Steady-State Visually Evoked Potentials demonstrated the advantages of the proposed method. The approach provides more sparse representation, allows for correct determination of the latencies of the components and removes the "energy leakage" effect generated by symmetric waveforms that do not sufficiently match the structures of the analyzed signal. Additionally, we introduced a time-frequency-amplitude distribution that is more adequate for representation of asymmetric atoms than the conventional time-frequency-energy distribution. PMID:26115480
Parametric dictionary learning for modeling EAP and ODF in diffusion MRI.
Merlet, Sylvain; Caruyer, Emmanuel; Deriche, Rachid
2012-01-01
In this work, we propose an original and efficient approach to exploit the ability of Compressed Sensing (CS) to recover diffusion MRI (dMRI) signals from a limited number of samples while efficiently recovering important diffusion features such as the ensemble average propagator (EAP) and the orientation distribution function (ODF). Some attempts to sparsely represent the diffusion signal have already been performed. However and contrarly to what has been presented in CS dMRI, in this work we propose and advocate the use of a well adapted learned dictionary and show that it leads to a sparser signal estimation as well as to an efficient reconstruction of very important diffusion features. We first propose to learn and design a sparse and parametric dictionary from a set of training diffusion data. Then, we propose a framework to analytically estimate in closed form two important diffusion features: the EAP and the ODF. Various experiments on synthetic, phantom and human brain data have been carried out and promising results with reduced number of atoms have been obtained on diffusion signal reconstruction, thus illustrating the added value of our method over state-of-the-art SHORE and SPF based approaches.
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.
A Simple and Practical Dictionary-based Approach for Identification of Proteins in Medline Abstracts
Egorov, Sergei; Yuryev, Anton; Daraselia, Nikolai
2004-01-01
Objective: The aim of this study was to develop a practical and efficient protein identification system for biomedical corpora. Design: The developed system, called ProtScan, utilizes a carefully constructed dictionary of mammalian proteins in conjunction with a specialized tokenization algorithm to identify and tag protein name occurrences in biomedical texts and also takes advantage of Medline “Name-of-Substance” (NOS) annotation. The dictionaries for ProtScan were constructed in a semi-automatic way from various public-domain sequence databases followed by an intensive expert curation step. Measurements: The recall and precision of the system have been determined using 1,000 randomly selected and hand-tagged Medline abstracts. Results: The developed system is capable of identifying protein occurrences in Medline abstracts with a 98% precision and 88% recall. It was also found to be capable of processing approximately 300 abstracts per second. Without utilization of NOS annotation, precision and recall were found to be 98.5% and 84%, respectively. Conclusion: The developed system appears to be well suited for protein-based Medline indexing and can help to improve biomedical information retrieval. Further approaches to ProtScan's recall improvement also are discussed. PMID:14764613
A flight expert system for on-board fault monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Ali, Moonis
1990-01-01
An architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing, and recovering from inflight faults is described. A prototype was implemented and an attempt was made to automate the knowledge acquisition process by employing a learning by being told methodology. The scope of acquired knowledge ranges from domain knowledge, including the information about objects and their relationships, to the procedural knowledge associated with the functionality of the mechanisms. AKAS (automatic knowledge acquisition system) is the constructed prototype for demonstration proof of concept, in which the expert directly interfaces with the knowledge acquisition system to ultimately construct the knowledge base for the particular application. The expert talks directly to the system using a natural language restricted only by the extent of the definitions in an analyzer dictionary, i.e., the interface understands a subset of concepts related to a given domain. In this case, the domain is the electrical system of the Boeing 737. Efforts were made to define and employ heuristics as well as algorithmic rules to conceptualize data produced by normal and faulty jet engine behavior examples. These rules were employed in developing the machine learning system (MLS). The input to MLS is examples which contain data of normal and faulty engine behavior and which are obtained from an engine simulation program. MLS first transforms the data into discrete selectors. Partial descriptions formed by those selectors are then generalized or specialized to generate concept descriptions about faults. The concepts are represented in the form of characteristic and discriminant descriptions, which are stored in the knowledge base and are employed to diagnose faults. MLS was successfully tested on jet engine examples.
Analysis of a hardware and software fault tolerant processor for critical applications
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1993-01-01
Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.
DTU BCI speller: an SSVEP-based spelling system with dictionary support.
Vilic, Adnan; Kjaer, Troels W; Thomsen, Carsten E; Puthusserypady, S; Sorensen, Helge B D
2013-01-01
In this paper, a new brain computer interface (BCI) speller, named DTU BCI speller, is introduced. It is based on the steady-state visual evoked potential (SSVEP) and features dictionary support. The system focuses on simplicity and user friendliness by using a single electrode for the signal acquisition and displays stimuli on a liquid crystal display (LCD). Nine healthy subjects participated in writing full sentences after a five minutes introduction to the system, and obtained an information transfer rate (ITR) of 21.94 ± 15.63 bits/min. The average amount of characters written per minute (CPM) is 4.90 ± 3.84 with a best case of 8.74 CPM. All subjects reported systematically on different user friendliness measures, and the overall results indicated the potentials of the DTU BCI Speller system. For subjects with high classification accuracies, the introduced dictionary approach greatly reduced the time it took to write full sentences.
NASA Technical Reports Server (NTRS)
Rinehart, Aidan W.; Simon, Donald L.
2015-01-01
This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
NASA Technical Reports Server (NTRS)
Rinehart, Aidan W.; Simon, Donald L.
2014-01-01
This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
The Role of Dictionaries in Language Learning.
ERIC Educational Resources Information Center
White, Philip A.
1997-01-01
Examines assumptions about dictionaries, especially the bilingual dictionary, and suggests ways of integrating the monolingual dictionary into the second-language instructional process. Findings indicate that the monolingual dictionary can coexist with bilingual dictionaries within a foreign-language course if the latter are appropriately used as…
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.
2015-06-01
Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.
Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.
Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi
2014-02-01
This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.
French Dictionaries. Series: Specialised Bibliographies.
ERIC Educational Resources Information Center
Klaar, R. M.
This is a list of French monolingual, French-English and English-French dictionaries available in December 1975. Dictionaries of etymology, phonetics, place names, proper names, and slang are included, as well as dictionaries for children and dictionaries of Belgian, Canadian, and Swiss French. Most other specialized dictionaries, encyclopedias,…
Robust Fault Detection and Isolation for Stochastic Systems
NASA Technical Reports Server (NTRS)
George, Jemin; Gregory, Irene M.
2010-01-01
This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.
Which Desk Dictionary Is Best for Foreign Students of English?
ERIC Educational Resources Information Center
Yorkey, Richard
1969-01-01
"The American College Dictionary, "Funk and Wagnalls Standard College Dictionary," Webster's New World Dictionary of the American Language," The Random House Dictionary of the English Language," and Webster's Seventh New Collegiate Dictionary" are analyzed and ranked as to their usefulness for the foreign learner of English. (FWB)
Integrated Approach To Design And Analysis Of Systems
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1993-01-01
Object-oriented fault-tree representation unifies evaluation of reliability and diagnosis of faults. Programming/fault tree described more fully in "Object-Oriented Algorithm For Evaluation Of Fault Trees" (ARC-12731). Augmented fault tree object contains more information than fault tree object used in quantitative analysis of reliability. Additional information needed to diagnose faults in system represented by fault tree.
Integral Sensor Fault Detection and Isolation for Railway Traction Drive.
Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka
2018-05-13
Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.
Integral Sensor Fault Detection and Isolation for Railway Traction Drive
del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka
2018-01-01
Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251
Optimal design and use of retry in fault tolerant real-time computer systems
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Shin, K. G.
1983-01-01
A new method to determin an optimal retry policy and for use in retry of fault characterization is presented. An optimal retry policy for a given fault characteristic, which determines the maximum allowable retry durations to minimize the total task completion time was derived. The combined fault characterization and retry decision, in which the characteristics of fault are estimated simultaneously with the determination of the optimal retry policy were carried out. Two solution approaches were developed, one based on the point estimation and the other on the Bayes sequential decision. The maximum likelihood estimators are used for the first approach, and the backward induction for testing hypotheses in the second approach. Numerical examples in which all the durations associated with faults have monotone hazard functions, e.g., exponential, Weibull and gamma distributions are presented. These are standard distributions commonly used for modeling analysis and faults.
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...
2017-08-18
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2016-01-01
This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040
... content 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
... content 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Parallel and distributed computation for fault-tolerant object recognition
NASA Technical Reports Server (NTRS)
Wechsler, Harry
1988-01-01
The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.
Thinking about Complementary and Alternative Medicine
... content 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
ERIC Educational Resources Information Center
Zou, Di; Xie, Haoran; Wang, Fu Lee
2015-01-01
Previous studies on dictionary consultation investigated mainly online dictionaries or simple pocket electronic dictionaries as they were commonly used among learners back then, yet the more updated mobile dictionaries were superficially investigated though they have already replaced the pocket electronic dictionaries. These studies are also…
The Power of Math Dictionaries in the Classroom
ERIC Educational Resources Information Center
Patterson, Lynn Gannon; Young, Ashlee Futrell
2013-01-01
This article investigates the value of a math dictionary in the elementary classroom and if elementary students prefer using a traditional math dictionary or a dictionary on an iPad. In each child's journey to reading with understanding, the dictionary can be a comforting and valuable resource. Would students find a math dictionary to be a…
Cancer Information Summaries: Screening/Detection
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Children with Cancer: A Guide for Parents
... content 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Li, Yunji; Wu, QingE; Peng, Li
2018-01-23
In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.
Automatic discrimination of color retinal images using the bag of words approach
NASA Astrophysics Data System (ADS)
Sadek, I.; Sidibé, D.; Meriaudeau, F.
2015-03-01
Diabetic retinopathy (DR) and age related macular degeneration (ARMD) are among the major causes of visual impairment all over the world. DR is mainly characterized by small red spots, namely microaneurysms and bright lesions, specifically exudates. However, ARMD is mainly identified by tiny yellow or white deposits called drusen. Since exudates might be the only visible signs of the early diabetic retinopathy, there is an increase demand for automatic diagnosis of retinopathy. Exudates and drusen may share similar appearances; as a result discriminating between them plays a key role in improving screening performance. In this research, we investigative the role of bag of words approach in the automatic diagnosis of retinopathy diabetes. Initially, the color retinal images are preprocessed in order to reduce the intra and inter patient variability. Subsequently, SURF (Speeded up Robust Features), HOG (Histogram of Oriented Gradients), and LBP (Local Binary Patterns) descriptors are extracted. We proposed to use single-based and multiple-based methods to construct the visual dictionary by combining the histogram of word occurrences from each dictionary and building a single histogram. Finally, this histogram representation is fed into a support vector machine with linear kernel for classification. The introduced approach is evaluated for automatic diagnosis of normal and abnormal color retinal images with bright lesions such as drusen and exudates. This approach has been implemented on 430 color retinal images, including six publicly available datasets, in addition to one local dataset. The mean accuracies achieved are 97.2% and 99.77% for single-based and multiple-based dictionaries respectively.
A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.
2010-01-01
A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.
NASA Astrophysics Data System (ADS)
Li, Shuanghong; Cao, Hongliang; Yang, Yupu
2018-02-01
Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.
Usage Notes in the Oxford American Dictionary.
ERIC Educational Resources Information Center
Berner, R. Thomas
1981-01-01
Compares the "Oxford American Dictionary" with the "American Heritage Dictionary." Examines the dictionaries' differences in philosophies of language, introductory essays, and usage notes. Concludes that the "Oxford American Dictionary" is too conservative, paternalistic, and dogmatic for the 1980s. (DMM)
Treatment Choices for Men with Early-Stage Prostate Cancer
... content 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Pain Control: Support for People with Cancer
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Chemotherapy and You: Support for People with Cancer
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Facing Forward Series: Life After Cancer Treatment
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Eating Hints: Before, During, and After Cancer Treatment
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Taking Time: Support for People with Cancer
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
An overview of the phase-modular fault tree approach to phased mission system analysis
NASA Technical Reports Server (NTRS)
Meshkat, L.; Xing, L.; Donohue, S. K.; Ou, Y.
2003-01-01
We look at how fault tree analysis (FTA), a primary means of performing reliability analysis of PMS, can meet this challenge in this paper by presenting an overview of the modular approach to solving fault trees that represent PMS.
Fault Injection Campaign for a Fault Tolerant Duplex Framework
NASA Technical Reports Server (NTRS)
Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.
2007-01-01
Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.
Radiation Therapy and You: Support for People with Cancer
... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Levels of Evidence: Integrative Therapies Fact Sheets NCI Dictionaries NCI Dictionary of Cancer Terms NCI Drug Dictionary ...
Local structure preserving sparse coding for infrared target recognition
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
NASA Astrophysics Data System (ADS)
Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.
2017-11-01
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Flight elements: Fault detection and fault management
NASA Technical Reports Server (NTRS)
Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.
1990-01-01
Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2004-01-01
In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.
A broader classification of damage zones
NASA Astrophysics Data System (ADS)
Peacock, D. C. P.; Dimmen, V.; Rotevatn, A.; Sanderson, D. J.
2017-09-01
Damage zones have previously been classified in terms of their positions at fault tips, walls or areas of linkage, with the latter being described in terms of sub-parallel and synchronously active faults. We broaden the idea of linkage to include structures around the intersections of non-parallel and/or non-synchronous faults. These interaction damage zones can be divided into approaching damage zones, where the faults kinematically interact but are not physically connected, and intersection damage zones, where the faults either abut or cross-cut. The damage zone concept is applied to other settings in which strain or displacement variations are taken up by a range of structures, such as at fault bends. It is recommended that a prefix can be added to a wide range of damage zones, to describe the locations in which they formed, e.g., approaching, intersection and fault bend damage zone. Such interpretations are commonly based on limited knowledge of the 3D geometries of the structures, such as from exposure surfaces, and there may be spatial variations. For example, approaching faults and related damage seen in outcrop may be intersecting elsewhere on the fault planes. Dilation in intersection damage zones can represent narrow and localised channels for fluid flow, and such dilation can be influenced by post-faulting stress patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, T; UT Southwestern Medical Center, Dallas, TX; Yan, H
2014-06-15
Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm inmore » a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application. A high zresolution is preferred to stabilize statistical iterative reconstruction. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011), China Scholarship Council.« less
Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties
NASA Astrophysics Data System (ADS)
Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui
2017-10-01
In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.
Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.
Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang
2017-03-01
This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-07-01
This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.
Li, Jiansen; Song, Ying; Zhu, Zhen; Zhao, Jun
2017-05-01
Dual-dictionary learning (Dual-DL) method utilizes both a low-resolution dictionary and a high-resolution dictionary, which are co-trained for sparse coding and image updating, respectively. It can effectively exploit a priori knowledge regarding the typical structures, specific features, and local details of training sets images. The prior knowledge helps to improve the reconstruction quality greatly. This method has been successfully applied in magnetic resonance (MR) image reconstruction. However, it relies heavily on the training sets, and dictionaries are fixed and nonadaptive. In this research, we improve Dual-DL by using self-adaptive dictionaries. The low- and high-resolution dictionaries are updated correspondingly along with the image updating stage to ensure their self-adaptivity. The updated dictionaries incorporate both the prior information of the training sets and the test image directly. Both dictionaries feature improved adaptability. Experimental results demonstrate that the proposed method can efficiently and significantly improve the quality and robustness of MR image reconstruction.
A dictionary learning approach for Poisson image deblurring.
Ma, Liyan; Moisan, Lionel; Yu, Jian; Zeng, Tieyong
2013-07-01
The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a maximum a posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio value and the method noise, the proposed algorithm outperforms state-of-the-art methods.
Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K
2016-11-01
In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.
Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Felix; Quach, Tu-Thach; Wheeler, Jason
File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less
Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification
Wang, Felix; Quach, Tu-Thach; Wheeler, Jason; ...
2018-04-05
File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less
Chemical entity recognition in patents by combining dictionary-based and statistical approaches
Akhondi, Saber A.; Pons, Ewoud; Afzal, Zubair; van Haagen, Herman; Becker, Benedikt F.H.; Hettne, Kristina M.; van Mulligen, Erik M.; Kors, Jan A.
2016-01-01
We describe the development of a chemical entity recognition system and its application in the CHEMDNER-patent track of BioCreative 2015. This community challenge includes a Chemical Entity Mention in Patents (CEMP) recognition task and a Chemical Passage Detection (CPD) classification task. We addressed both tasks by an ensemble system that combines a dictionary-based approach with a statistical one. For this purpose the performance of several lexical resources was assessed using Peregrine, our open-source indexing engine. We combined our dictionary-based results on the patent corpus with the results of tmChem, a chemical recognizer using a conditional random field classifier. To improve the performance of tmChem, we utilized three additional features, viz. part-of-speech tags, lemmas and word-vector clusters. When evaluated on the training data, our final system obtained an F-score of 85.21% for the CEMP task, and an accuracy of 91.53% for the CPD task. On the test set, the best system ranked sixth among 21 teams for CEMP with an F-score of 86.82%, and second among nine teams for CPD with an accuracy of 94.23%. The differences in performance between the best ensemble system and the statistical system separately were small. Database URL: http://biosemantics.org/chemdner-patents PMID:27141091
Dictionary Learning for Data Recovery in Positron Emission Tomography
Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama
2015-01-01
Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as Total variation (TV), wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications towards reducing scanner cost while maintaining accurate PET image quantification. PMID:26161630
Dictionary learning for data recovery in positron emission tomography
NASA Astrophysics Data System (ADS)
Valiollahzadeh, SeyyedMajid; Clark, John W., Jr.; Mawlawi, Osama
2015-08-01
Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as total variation, wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications toward reducing scanner cost while maintaining accurate PET image quantification.
ERIC Educational Resources Information Center
Shaw, A. M.
1983-01-01
Three dictionaries are compared for their usefulness to teachers of English as a foreign language, teachers in training, students, and other users of English as a foreign language. The issue of monolingual versus bilingual dictionary format is discussed, and a previous analysis of the two bilingual dictionaries is summarized. Pronunciation…
A design approach for ultrareliable real-time systems
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Harper, Richard E.; Alger, Linda S.
1991-01-01
A design approach developed over the past few years to formalize redundancy management and validation is described. Redundant elements are partitioned into individual fault-containment regions (FCRs). An FCR is a collection of components that operates correctly regardless of any arbitrary logical or electrical fault outside the region. Conversely, a fault in an FCR cannot cause hardware outside the region to fail. The outputs of all channels are required to agree bit-for-bit under no-fault conditions (exact bitwise consensus). Synchronization, input agreement, and input validity conditions are discussed. The Advanced Information Processing System (AIPS), which is a fault-tolerant distributed architecture based on this approach, is described. A brief overview of recent applications of these systems and current research is presented.
A systematic risk management approach employed on the CloudSat project
NASA Technical Reports Server (NTRS)
Basilio, R. R.; Plourde, K. S.; Lam, T.
2000-01-01
The CloudSat Project has developed a simplified approach for fault tree analysis and probabilistic risk assessment. A system-level fault tree has been constructed to identify credible fault scenarios and failure modes leading up to a potential failure to meet the nominal mission success criteria.
Creating a medical English-Swedish dictionary using interactive word alignment.
Nyström, Mikael; Merkel, Magnus; Ahrenberg, Lars; Zweigenbaum, Pierre; Petersson, Håkan; Ahlfeldt, Hans
2006-10-12
This paper reports on a parallel collection of rubrics from the medical terminology systems ICD-10, ICF, MeSH, NCSP and KSH97-P and its use for semi-automatic creation of an English-Swedish dictionary of medical terminology. The methods presented are relevant for many other West European language pairs than English-Swedish. The medical terminology systems were collected in electronic format in both English and Swedish and the rubrics were extracted in parallel language pairs. Initially, interactive word alignment was used to create training data from a sample. Then the training data were utilised in automatic word alignment in order to generate candidate term pairs. The last step was manual verification of the term pair candidates. A dictionary of 31,000 verified entries has been created in less than three man weeks, thus with considerably less time and effort needed compared to a manual approach, and without compromising quality. As a side effect of our work we found 40 different translation problems in the terminology systems and these results indicate the power of the method for finding inconsistencies in terminology translations. We also report on some factors that may contribute to making the process of dictionary creation with similar tools even more expedient. Finally, the contribution is discussed in relation to other ongoing efforts in constructing medical lexicons for non-English languages. In three man weeks we were able to produce a medical English-Swedish dictionary consisting of 31,000 entries and also found hidden translation errors in the utilized medical terminology systems.
Creating a medical English-Swedish dictionary using interactive word alignment
Nyström, Mikael; Merkel, Magnus; Ahrenberg, Lars; Zweigenbaum, Pierre; Petersson, Håkan; Åhlfeldt, Hans
2006-01-01
Background This paper reports on a parallel collection of rubrics from the medical terminology systems ICD-10, ICF, MeSH, NCSP and KSH97-P and its use for semi-automatic creation of an English-Swedish dictionary of medical terminology. The methods presented are relevant for many other West European language pairs than English-Swedish. Methods The medical terminology systems were collected in electronic format in both English and Swedish and the rubrics were extracted in parallel language pairs. Initially, interactive word alignment was used to create training data from a sample. Then the training data were utilised in automatic word alignment in order to generate candidate term pairs. The last step was manual verification of the term pair candidates. Results A dictionary of 31,000 verified entries has been created in less than three man weeks, thus with considerably less time and effort needed compared to a manual approach, and without compromising quality. As a side effect of our work we found 40 different translation problems in the terminology systems and these results indicate the power of the method for finding inconsistencies in terminology translations. We also report on some factors that may contribute to making the process of dictionary creation with similar tools even more expedient. Finally, the contribution is discussed in relation to other ongoing efforts in constructing medical lexicons for non-English languages. Conclusion In three man weeks we were able to produce a medical English-Swedish dictionary consisting of 31,000 entries and also found hidden translation errors in the utilized medical terminology systems. PMID:17034649
DICTIONARIES AND LANGUAGE CHANGE.
ERIC Educational Resources Information Center
POOLEY, ROBERT C.
TWO VIEWS OF A DICTIONARY'S PURPOSE CAME INTO SHARP CONFLICT UPON THE PUBLICATION OF WEBSTER'S "THIRD NEW INTERNATIONAL UNABRIDGED DICTIONARY." THE FIRST VIEW IS THAT A DICTIONARY IS A REFERENCE BOOK ON LANGUAGE ETIQUETTE, AN AUTHORITY FOR MAINTAINING THE PURITY OF THE ENGLISH LANGUAGE. THE SECOND IS THAT A DICTIONARY IS A SCIENTIFIC…
Do Dictionaries Help Students Write?
ERIC Educational Resources Information Center
Nesi, Hilary
Examples are given of real lexical errors made by learner writers, and consideration is given to the way in which three learners' dictionaries could deal with the lexical items that were misused. The dictionaries were the "Oxford Advanced Learner's Dictionary," the "Longman Dictionary of Contemporary English," and the "Chambers Universal Learners'…
Information on Quantifiers and Argument Structure in English Learner's Dictionaries.
ERIC Educational Resources Information Center
Lee, Thomas Hun-tak
1993-01-01
Lexicographers have been arguing for the inclusion of abstract and complex grammatical information in dictionaries. This paper examines the extent to which information about quantifiers and the argument structure of verbs is encoded in English learner's dictionaries. The Oxford Advanced Learner's Dictionary (1989), the Longman Dictionary of…
Students' Understanding of Dictionary Entries: A Study with Respect to Four Learners' Dictionaries.
ERIC Educational Resources Information Center
Jana, Abhra; Amritavalli, Vijaya; Amritavalli, R.
2003-01-01
Investigates the effects of definitional information in the form of dictionary entries, on second language learners' vocabulary learning in an instructed setting. Indian students (Native Hindi speakers) of English received monolingual English dictionary entries of five previously unknown words from four different learner's dictionaries. Results…
Seismic classification through sparse filter dictionaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickmann, Kyle Scott; Srinivasan, Gowri
We tackle a multi-label classi cation problem involving the relation between acoustic- pro le features and the measured seismogram. To isolate components of the seismo- grams unique to each class of acoustic pro le we build dictionaries of convolutional lters. The convolutional- lter dictionaries for the individual classes are then combined into a large dictionary for the entire seismogram set. A given seismogram is classi ed by computing its representation in the large dictionary and then comparing reconstruction accuracy with this representation using each of the sub-dictionaries. The sub-dictionary with the minimal reconstruction error identi es the seismogram class.
Adaptive structured dictionary learning for image fusion based on group-sparse-representation
NASA Astrophysics Data System (ADS)
Yang, Jiajie; Sun, Bin; Luo, Chengwei; Wu, Yuzhong; Xu, Limei
2018-04-01
Dictionary learning is the key process of sparse representation which is one of the most widely used image representation theories in image fusion. The existing dictionary learning method does not use the group structure information and the sparse coefficients well. In this paper, we propose a new adaptive structured dictionary learning algorithm and a l1-norm maximum fusion rule that innovatively utilizes grouped sparse coefficients to merge the images. In the dictionary learning algorithm, we do not need prior knowledge about any group structure of the dictionary. By using the characteristics of the dictionary in expressing the signal, our algorithm can automatically find the desired potential structure information that hidden in the dictionary. The fusion rule takes the physical meaning of the group structure dictionary, and makes activity-level judgement on the structure information when the images are being merged. Therefore, the fused image can retain more significant information. Comparisons have been made with several state-of-the-art dictionary learning methods and fusion rules. The experimental results demonstrate that, the dictionary learning algorithm and the fusion rule both outperform others in terms of several objective evaluation metrics.
Image reconstruction from few-view CT data by gradient-domain dictionary learning.
Hu, Zhanli; Liu, Qiegen; Zhang, Na; Zhang, Yunwan; Peng, Xi; Wu, Peter Z; Zheng, Hairong; Liang, Dong
2016-05-21
Decreasing the number of projections is an effective way to reduce the radiation dose exposed to patients in medical computed tomography (CT) imaging. However, incomplete projection data for CT reconstruction will result in artifacts and distortions. In this paper, a novel dictionary learning algorithm operating in the gradient-domain (Grad-DL) is proposed for few-view CT reconstruction. Specifically, the dictionaries are trained from the horizontal and vertical gradient images, respectively and the desired image is reconstructed subsequently from the sparse representations of both gradients by solving the least-square method. Since the gradient images are sparser than the image itself, the proposed approach could lead to sparser representations than conventional DL methods in the image-domain, and thus a better reconstruction quality is achieved. To evaluate the proposed Grad-DL algorithm, both qualitative and quantitative studies were employed through computer simulations as well as real data experiments on fan-beam and cone-beam geometry. The results show that the proposed algorithm can yield better images than the existing algorithms.
Robust multi-atlas label propagation by deep sparse representation
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2016-01-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods. PMID:27942077
Robust multi-atlas label propagation by deep sparse representation.
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2017-03-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer ( label-specific dictionaries ) consists of groups of representative atlas patches and the subsequent layers ( residual dictionaries ) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods.
Coupled dictionary learning for joint MR image restoration and segmentation
NASA Astrophysics Data System (ADS)
Yang, Xuesong; Fan, Yong
2018-03-01
To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.
Garten, Justin; Hoover, Joe; Johnson, Kate M; Boghrati, Reihane; Iskiwitch, Carol; Dehghani, Morteza
2018-02-01
Theory-driven text analysis has made extensive use of psychological concept dictionaries, leading to a wide range of important results. These dictionaries have generally been applied through word count methods which have proven to be both simple and effective. In this paper, we introduce Distributed Dictionary Representations (DDR), a method that applies psychological dictionaries using semantic similarity rather than word counts. This allows for the measurement of the similarity between dictionaries and spans of text ranging from complete documents to individual words. We show how DDR enables dictionary authors to place greater emphasis on construct validity without sacrificing linguistic coverage. We further demonstrate the benefits of DDR on two real-world tasks and finally conduct an extensive study of the interaction between dictionary size and task performance. These studies allow us to examine how DDR and word count methods complement one another as tools for applying concept dictionaries and where each is best applied. Finally, we provide references to tools and resources to make this method both available and accessible to a broad psychological audience.
Distributed adaptive diagnosis of sensor faults using structural response data
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-10-01
The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.
DeVries, David Todd; Papier, Art; Byrnes, Jennifer; Goldsmith, Lowell A
2004-01-01
Medical dictionaries serve to describe and clarify the term set used by medical professionals. In this commentary, we analyze a representative set of skin disease definitions from 2 prominent medical dictionaries, Stedman's Medical Dictionary and Dorland's Illustrated Medical Dictionary. We find that there is an apparent lack of stylistic standards with regard to content and form. We advocate a new standard form for the definition of medical terminology, a standard to complement the easy-to-read yet unstructured style of the traditional dictionary entry. This new form offers a reproducible structure, paving the way for the development of a computer readable "dictionary" of medical terminology. Such a dictionary offers immediate update capability and a fundamental improvement in the ability to search for relationships between terms.
Multiplicative noise removal via a learned dictionary.
Huang, Yu-Mei; Moisan, Lionel; Ng, Michael K; Zeng, Tieyong
2012-11-01
Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods.
Data-based fault-tolerant control for affine nonlinear systems with actuator faults.
Xie, Chun-Hua; Yang, Guang-Hong
2016-09-01
This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Data-Dictionary-Editing Program
NASA Technical Reports Server (NTRS)
Cumming, A. P.
1989-01-01
Access to data-dictionary relations and attributes made more convenient. Data Dictionary Editor (DDE) application program provides more convenient read/write access to data-dictionary table ("descriptions table") via data screen using SMARTQUERY function keys. Provides three main advantages: (1) User works with table names and field names rather than with table numbers and field numbers, (2) Provides online access to definitions of data-dictionary keys, and (3) Provides displayed summary list that shows, for each datum, which data-dictionary entries currently exist for any specific relation or attribute. Computer program developed to give developers of data bases more convenient access to the OMNIBASE VAX/IDM data-dictionary relations and attributes.
Dictionary Learning Algorithms for Sparse Representation
Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.
2010-01-01
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811
2017-01-01
Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673
Validation of Helicopter Gear Condition Indicators Using Seeded Fault Tests
NASA Technical Reports Server (NTRS)
Dempsey, Paula; Brandon, E. Bruce
2013-01-01
A "seeded fault test" in support of a rotorcraft condition based maintenance program (CBM), is an experiment in which a component is tested with a known fault while health monitoring data is collected. These tests are performed at operating conditions comparable to operating conditions the component would be exposed to while installed on the aircraft. Performance of seeded fault tests is one method used to provide evidence that a Health Usage Monitoring System (HUMS) can replace current maintenance practices required for aircraft airworthiness. Actual in-service experience of the HUMS detecting a component fault is another validation method. This paper will discuss a hybrid validation approach that combines in service-data with seeded fault tests. For this approach, existing in-service HUMS flight data from a naturally occurring component fault will be used to define a component seeded fault test. An example, using spiral bevel gears as the targeted component, will be presented. Since the U.S. Army has begun to develop standards for using seeded fault tests for HUMS validation, the hybrid approach will be mapped to the steps defined within their Aeronautical Design Standard Handbook for CBM. This paper will step through their defined processes, and identify additional steps that may be required when using component test rig fault tests to demonstrate helicopter CI performance. The discussion within this paper will provide the reader with a better appreciation for the challenges faced when defining a seeded fault test for HUMS validation.
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-06-17
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-01-01
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273
Fast Low-Rank Shared Dictionary Learning for Image Classification.
Tiep Huu Vu; Monga, Vishal
2017-11-01
Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e., claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Furthermore, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image data sets establish the advantages of our method over the state-of-the-art dictionary learning methods.
Fast Low-Rank Shared Dictionary Learning for Image Classification
NASA Astrophysics Data System (ADS)
Vu, Tiep Huu; Monga, Vishal
2017-11-01
Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e. claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Further, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image datasets establish the advantages of our method over state-of-the-art dictionary learning methods.
Emo, love and god: making sense of Urban Dictionary, a crowd-sourced online dictionary.
Nguyen, Dong; McGillivray, Barbara; Yasseri, Taha
2018-05-01
The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the 'wisdom of the crowd' has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often unmonitored environment of such projects may make them susceptible to low-quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionary's voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation.
ERIC Educational Resources Information Center
Chen, Szu-An
2016-01-01
This study investigates bilingualized dictionary use of Taiwanese university students. It aims to examine EFL learners' overall dictionary use behavior and their perspectives on book dictionary as well as the necessity of advance guidance in using dictionaries. Data was collected through questionnaires and analyzed by SPSS 15.0. Findings indicate…
ERIC Educational Resources Information Center
Alharbi, Majed A.
2016-01-01
This study investigated the effects of monolingual book dictionaries, popup dictionaries, and type-in dictionaries on improving reading comprehension and vocabulary learning in an EFL program. An experimental design involving four groups and a post-test was chosen for the experiment: (1) pop-up dictionary (experimental group 1); (2) type-in…
Students Working with an English Learners' Dictionary on CD-ROM.
ERIC Educational Resources Information Center
Winkler, Birgit
This paper examines the growing literature on pedagogical lexicography and the growing focus on how well the learner uses the dictionary in second language learning. Dictionaries are becoming more user-friendly. This study used the writing task to reveal new insights into how students use a CD-ROM dictionary. It found a lack of dictionary-using…
ERIC Educational Resources Information Center
Hsien-jen, Chin
This study investigated the effects of dictionary use on the vocabulary learning strategies used by intermediate college-level Spanish learners to understand new vocabulary items in a reading test. Participants were randomly assigned to one of three groups: control (without a dictionary), bilingual dictionary (using a Spanish-English dictionary),…
Multi-thresholds for fault isolation in the presence of uncertainties.
Touati, Youcef; Mellal, Mohamed Arezki; Benazzouz, Djamel
2016-05-01
Monitoring of the faults is an important task in mechatronics. It involves the detection and isolation of faults which are performed by using the residuals. These residuals represent numerical values that define certain intervals called thresholds. In fact, the fault is detected if the residuals exceed the thresholds. In addition, each considered fault must activate a unique set of residuals to be isolated. However, in the presence of uncertainties, false decisions can occur due to the low sensitivity of certain residuals towards faults. In this paper, an efficient approach to make decision on fault isolation in the presence of uncertainties is proposed. Based on the bond graph tool, the approach is developed in order to generate systematically the relations between residuals and faults. The generated relations allow the estimation of the minimum detectable and isolable fault values. The latter is used to calculate the thresholds of isolation for each residual. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Jiang, Quansheng; Shen, Yehu; Li, Hua; Xu, Fengyu
2018-01-24
Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural network is proposed in this paper. The new method first uses information entropy theory to extract three kinds of characteristics entropy in vibration signals, namely, singular spectrum entropy, power spectrum entropy, and approximate entropy. Then the feature fusion model is constructed to classify and diagnose the fault signals. The proposed approach can combine comprehensive information from different aspects and is more sensitive to the fault features. The experimental results on simulated fault signals verified better performances of our proposed approach. In real two-span rotor data, the fault detection accuracy of the new method is more than 10% higher compared with the methods using three kinds of information entropy separately. The new approach is proved to be an effective fault recognition method for rotating machinery.
The Making of the "Oxford English Dictionary."
ERIC Educational Resources Information Center
Winchester, Simon
2003-01-01
Summarizes remarks made to open the Gallaudet University conference on Dictionaries and the Standardization of languages. It concerns the making of what is arguably the world's greatest dictionary, "The Oxford English Dictionary." (VWL)
A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery.
Xue, Xiaoming; Zhou, Jianzhong
2017-01-01
To make further improvement in the diagnosis accuracy and efficiency, a mixed-domain state features data based hybrid fault diagnosis approach, which systematically blends both the statistical analysis approach and the artificial intelligence technology, is proposed in this work for rolling element bearings. For simplifying the fault diagnosis problems, the execution of the proposed method is divided into three steps, i.e., fault preliminary detection, fault type recognition and fault degree identification. In the first step, a preliminary judgment about the health status of the equipment can be evaluated by the statistical analysis method based on the permutation entropy theory. If fault exists, the following two processes based on the artificial intelligence approach are performed to further recognize the fault type and then identify the fault degree. For the two subsequent steps, mixed-domain state features containing time-domain, frequency-domain and multi-scale features are extracted to represent the fault peculiarity under different working conditions. As a powerful time-frequency analysis method, the fast EEMD method was employed to obtain multi-scale features. Furthermore, due to the information redundancy and the submergence of original feature space, a novel manifold learning method (modified LGPCA) is introduced to realize the low-dimensional representations for high-dimensional feature space. Finally, two cases with 12 working conditions respectively have been employed to evaluate the performance of the proposed method, where vibration signals were measured from an experimental bench of rolling element bearing. The analysis results showed the effectiveness and the superiority of the proposed method of which the diagnosis thought is more suitable for practical application. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karimi, Davood; Ward, Rabab K.
2016-03-01
Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.
A Participatory Research Approach to develop an Arabic Symbol Dictionary.
Draffan, E A; Kadous, Amatullah; Idris, Amal; Banes, David; Zeinoun, Nadine; Wald, Mike; Halabi, Nawar
2015-01-01
The purpose of the Arabic Symbol Dictionary research discussed in this paper, is to provide a resource of culturally, environmentally and linguistically suitable symbols to aid communication and literacy skills. A participatory approach with the use of online social media and a bespoke symbol management system has been established to enhance the process of matching a user based Arabic and English core vocabulary with appropriate imagery. Participants including AAC users, their families, carers, teachers and therapists who have been involved in the research from the outset, collating the vocabularies, debating cultural nuances for symbols and critiquing the design of technologies for selection procedures. The positive reaction of those who have voted on the symbols with requests for early use have justified the iterative nature of the methodologies used for this part of the project. However, constant re-evaluation will be necessary and in depth analysis of all the data received has yet to be completed.
Polarimetric SAR image classification based on discriminative dictionary learning model
NASA Astrophysics Data System (ADS)
Sang, Cheng Wei; Sun, Hong
2018-03-01
Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.
ERIC Educational Resources Information Center
Gould, Tate; Nicholas, Amy; Blandford, William; Ruggiero, Tony; Peters, Mary; Thayer, Sara
2014-01-01
This overview of the basic components of a data dictionary is designed to educate and inform IDEA Part C and Part B 619 state staff about the purpose and benefits of having up-to-date data dictionaries for their data systems. This report discusses the following topics: (1) What Is a Data Dictionary?; (2) Why Is a Data Dictionary Needed and How Can…
ERIC Educational Resources Information Center
Abouserie, Hossam Eldin Mohamed Refaat
2010-01-01
The purpose of this study was to evaluate online dictionaries from faculty prospective. The study tried to obtain in depth information about various forms of dictionaries the faculty used; degree of awareness and accessing online dictionaries; types of online dictionaries accessed; basic features of information provided; major benefits gained…
Li, Pengfei; Jiang, Yongying; Xiang, Jiawei
2014-01-01
To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples. PMID:24688361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Q; Han, H; Xing, L
Purpose: Dictionary learning based method has attracted more and more attentions in low-dose CT due to the superior performance on suppressing noise and preserving structural details. Considering the structures and noise vary from region to region in one imaging object, we propose a region-specific dictionary learning method to improve the low-dose CT reconstruction. Methods: A set of normal-dose images was used for dictionary learning. Segmentations were performed on these images, so that the training patch sets corresponding to different regions can be extracted out. After that, region-specific dictionaries were learned from these training sets. For the low-dose CT reconstruction, amore » conventional reconstruction, such as filtered back-projection (FBP), was performed firstly, and then segmentation was followed to segment the image into different regions. Sparsity constraints of each region based on its dictionary were used as regularization terms. The regularization parameters were selected adaptively according to different regions. A low-dose human thorax dataset was used to evaluate the proposed method. The single dictionary based method was performed for comparison. Results: Since the lung region is very different from the other part of thorax, two dictionaries corresponding to lung region and the rest part of thorax respectively were learned to better express the structural details and avoid artifacts. With only one dictionary some artifact appeared in the body region caused by the spot atoms corresponding to the structures in the lung region. And also some structure in the lung regions cannot be recovered well by only one dictionary. The quantitative indices of the result by the proposed method were also improved a little compared to the single dictionary based method. Conclusion: Region-specific dictionary can make the dictionary more adaptive to different region characteristics, which is much desirable for enhancing the performance of dictionary learning based method.« less
A dictionary to identify small molecules and drugs in free text.
Hettne, Kristina M; Stierum, Rob H; Schuemie, Martijn J; Hendriksen, Peter J M; Schijvenaars, Bob J A; Mulligen, Erik M van; Kleinjans, Jos; Kors, Jan A
2009-11-15
From the scientific community, a lot of effort has been spent on the correct identification of gene and protein names in text, while less effort has been spent on the correct identification of chemical names. Dictionary-based term identification has the power to recognize the diverse representation of chemical information in the literature and map the chemicals to their database identifiers. We developed a dictionary for the identification of small molecules and drugs in text, combining information from UMLS, MeSH, ChEBI, DrugBank, KEGG, HMDB and ChemIDplus. Rule-based term filtering, manual check of highly frequent terms and disambiguation rules were applied. We tested the combined dictionary and the dictionaries derived from the individual resources on an annotated corpus, and conclude the following: (i) each of the different processing steps increase precision with a minor loss of recall; (ii) the overall performance of the combined dictionary is acceptable (precision 0.67, recall 0.40 (0.80 for trivial names); (iii) the combined dictionary performed better than the dictionary in the chemical recognizer OSCAR3; (iv) the performance of a dictionary based on ChemIDplus alone is comparable to the performance of the combined dictionary. The combined dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web site http://www.biosemantics.org/chemlist.
Standardized Representation of Clinical Study Data Dictionaries with CIMI Archetypes.
Sharma, Deepak K; Solbrig, Harold R; Prud'hommeaux, Eric; Pathak, Jyotishman; Jiang, Guoqian
2016-01-01
Researchers commonly use a tabular format to describe and represent clinical study data. The lack of standardization of data dictionary's metadata elements presents challenges for their harmonization for similar studies and impedes interoperability outside the local context. We propose that representing data dictionaries in the form of standardized archetypes can help to overcome this problem. The Archetype Modeling Language (AML) as developed by the Clinical Information Modeling Initiative (CIMI) can serve as a common format for the representation of data dictionary models. We mapped three different data dictionaries (identified from dbGAP, PheKB and TCGA) onto AML archetypes by aligning dictionary variable definitions with the AML archetype elements. The near complete alignment of data dictionaries helped map them into valid AML models that captured all data dictionary model metadata. The outcome of the work would help subject matter experts harmonize data models for quality, semantic interoperability and better downstream data integration.
An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks
Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang
2016-01-01
To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods. PMID:27669250
Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang
2016-09-22
To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.
Bayesian nonparametric dictionary learning for compressed sensing MRI.
Huang, Yue; Paisley, John; Lin, Qin; Ding, Xinghao; Fu, Xueyang; Zhang, Xiao-Ping
2014-12-01
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.
Diagnosing a Strong-Fault Model by Conflict and Consistency
Zhou, Gan; Feng, Wenquan
2018-01-01
The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods. PMID:29596302
Improving Multiple Fault Diagnosability using Possible Conflicts
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino
2012-01-01
Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.
Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations
Chaspari, Theodora; Tsiartas, Andreas; Tsilifis, Panagiotis; Narayanan, Shrikanth
2016-01-01
Parametric dictionaries can increase the ability of sparse representations to meaningfully capture and interpret the underlying signal information, such as encountered in biomedical problems. Given a mapping function from the atom parameter space to the actual atoms, we propose a sparse Bayesian framework for learning the atom parameters, because of its ability to provide full posterior estimates, take uncertainty into account and generalize on unseen data. Inference is performed with Markov Chain Monte Carlo, that uses block sampling to generate the variables of the Bayesian problem. Since the parameterization of dictionary atoms results in posteriors that cannot be analytically computed, we use a Metropolis-Hastings-within-Gibbs framework, according to which variables with closed-form posteriors are generated with the Gibbs sampler, while the remaining ones with the Metropolis Hastings from appropriate candidate-generating densities. We further show that the corresponding Markov Chain is uniformly ergodic ensuring its convergence to a stationary distribution independently of the initial state. Results on synthetic data and real biomedical signals indicate that our approach offers advantages in terms of signal reconstruction compared to previously proposed Steepest Descent and Equiangular Tight Frame methods. This paper demonstrates the ability of Bayesian learning to generate parametric dictionaries that can reliably represent the exemplar data and provides the foundation towards inferring the entire variable set of the sparse approximation problem for signal denoising, adaptation and other applications. PMID:28649173
Chemical entity recognition in patents by combining dictionary-based and statistical approaches.
Akhondi, Saber A; Pons, Ewoud; Afzal, Zubair; van Haagen, Herman; Becker, Benedikt F H; Hettne, Kristina M; van Mulligen, Erik M; Kors, Jan A
2016-01-01
We describe the development of a chemical entity recognition system and its application in the CHEMDNER-patent track of BioCreative 2015. This community challenge includes a Chemical Entity Mention in Patents (CEMP) recognition task and a Chemical Passage Detection (CPD) classification task. We addressed both tasks by an ensemble system that combines a dictionary-based approach with a statistical one. For this purpose the performance of several lexical resources was assessed using Peregrine, our open-source indexing engine. We combined our dictionary-based results on the patent corpus with the results of tmChem, a chemical recognizer using a conditional random field classifier. To improve the performance of tmChem, we utilized three additional features, viz. part-of-speech tags, lemmas and word-vector clusters. When evaluated on the training data, our final system obtained an F-score of 85.21% for the CEMP task, and an accuracy of 91.53% for the CPD task. On the test set, the best system ranked sixth among 21 teams for CEMP with an F-score of 86.82%, and second among nine teams for CPD with an accuracy of 94.23%. The differences in performance between the best ensemble system and the statistical system separately were small.Database URL: http://biosemantics.org/chemdner-patents. © The Author(s) 2016. Published by Oxford University Press.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches.
Akhondi, Saber A; Hettne, Kristina M; van der Horst, Eelke; van Mulligen, Erik M; Kors, Jan A
2015-01-01
The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches
2015-01-01
Background The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. Results The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. Conclusions We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance. PMID:25810767
Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning
NASA Astrophysics Data System (ADS)
Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.
2017-12-01
Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.
An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics
NASA Technical Reports Server (NTRS)
imon, Donald L.; Armstrong, Jeffrey B.
2012-01-01
A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.
Specifications for a Federal Information Processing Standard Data Dictionary System
NASA Technical Reports Server (NTRS)
Goldfine, A.
1984-01-01
The development of a software specification that Federal agencies may use in evaluating and selecting data dictionary systems (DDS) is discussed. To supply the flexibility needed by widely different applications and environments in the Federal Government, the Federal Information Processing Standard (FIPS) specifies a core DDS together with an optimal set of modules. The focus and status of the development project are described. Functional specifications for the FIPS DDS are examined for the dictionary, the dictionary schema, and the dictionary processing system. The DDS user interfaces and DDS software interfaces are discussed as well as dictionary administration.
Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu
2015-07-21
Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.
Manifold optimization-based analysis dictionary learning with an ℓ1∕2-norm regularizer.
Li, Zhenni; Ding, Shuxue; Li, Yujie; Yang, Zuyuan; Xie, Shengli; Chen, Wuhui
2018-02-01
Recently there has been increasing attention towards analysis dictionary learning. In analysis dictionary learning, it is an open problem to obtain the strong sparsity-promoting solutions efficiently while simultaneously avoiding the trivial solutions of the dictionary. In this paper, to obtain the strong sparsity-promoting solutions, we employ the ℓ 1∕2 norm as a regularizer. The very recent study on ℓ 1∕2 norm regularization theory in compressive sensing shows that its solutions can give sparser results than using the ℓ 1 norm. We transform a complex nonconvex optimization into a number of one-dimensional minimization problems. Then the closed-form solutions can be obtained efficiently. To avoid trivial solutions, we apply manifold optimization to update the dictionary directly on the manifold satisfying the orthonormality constraint, so that the dictionary can avoid the trivial solutions well while simultaneously capturing the intrinsic properties of the dictionary. The experiments with synthetic and real-world data verify that the proposed algorithm for analysis dictionary learning can not only obtain strong sparsity-promoting solutions efficiently, but also learn more accurate dictionary in terms of dictionary recovery and image processing than the state-of-the-art algorithms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Emo, love and god: making sense of Urban Dictionary, a crowd-sourced online dictionary
McGillivray, Barbara
2018-01-01
The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the ‘wisdom of the crowd’ has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often unmonitored environment of such projects may make them susceptible to low-quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionary’s voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation. PMID:29892417
A comparative study of sensor fault diagnosis methods based on observer for ECAS system
NASA Astrophysics Data System (ADS)
Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli
2017-03-01
The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems
NASA Technical Reports Server (NTRS)
Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.
1992-01-01
The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.
Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo
2016-12-01
This paper presents a novel method for Alzheimer's disease classification via an automatic 3D caudate nucleus segmentation. The proposed method consists of segmentation and classification steps. In the segmentation step, we propose a novel level set cost function. The proposed cost function is constrained by a sparse representation of local image features using a dictionary learning method. We present coupled dictionaries: a feature dictionary of a grayscale brain image and a label dictionary of a caudate nucleus label image. Using online dictionary learning, the coupled dictionaries are learned from the training data. The learned coupled dictionaries are embedded into a level set function. In the classification step, a region-based feature dictionary is built. The region-based feature dictionary is learned from shape features of the caudate nucleus in the training data. The classification is based on the measure of the similarity between the sparse representation of region-based shape features of the segmented caudate in the test image and the region-based feature dictionary. The experimental results demonstrate the superiority of our method over the state-of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy. In this paper, we find that the study of the caudate nucleus atrophy gives an advantage over the study of whole brain structure atrophy to detect Alzheimer's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aydin, Orhun; Caers, Jef Karel
2017-08-01
Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed methodology generates realistic fault network models conditioned to data and a conceptual model of the underlying tectonics.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
The efficacy of dictionary use while reading for learning new words.
Hamilton, Harley
2012-01-01
The researcher investigated the use of three types of dictionaries while reading by high school students with severe to profound hearing loss. The objective of the study was to determine the effectiveness of each type of dictionary for acquiring the meanings of unknown vocabulary in text. The three types of dictionaries were (a) an online bilingual multimedia English-American Sign Language (ASL) dictionary (OBMEAD), (b) a paper English-ASL dictionary (PBEAD), and (c) an online monolingual English dictionary (OMED). It was found that for immediate recall of target words, the OBMEAD was superior to both the PBEAD and the OMED. For later recall, no significant difference appeared between the OBMEAD and the PBEAD. For both of these, recall was statistically superior to recall for words learned via the OMED.
Fang, Lu
2018-01-01
Nowadays, more and more Chinese medicine practices are applied in the world and popularizing that becomes an urgent task. To meet the requiremets, an increasing number of Chinese - English traditional medicine dictionaries have been produced at home or abroad in recent decades. Nevertheless, the users are still struggling to spot the information in dictionaries. What traditional medicine dictionaries are needed for the English speakers now? To identify an entry model for online TCM dictionaries, I compared the entries in five printed traditional medicine dictionaries and two online ones. Based upon this, I tentatively put forward two samples, “阳经 (yángjīng)” and “阴经 (yīn jīng)”, focusing on concepts transmitting, for online Chinese - English TCM dictionaries. PMID:29875861
Fault displacement hazard assessment for nuclear installations based on IAEA safety standards
NASA Astrophysics Data System (ADS)
Fukushima, Y.
2016-12-01
In the IAEA Safety NS-R-3, surface fault displacement hazard assessment (FDHA) is required for the siting of nuclear installations. If any capable faults exist in the candidate site, IAEA recommends the consideration of alternative sites. However, due to the progress in palaeoseismological investigations, capable faults may be found in existing site. In such a case, IAEA recommends to evaluate the safety using probabilistic FDHA (PFDHA), which is an empirical approach based on still quite limited database. Therefore a basic and crucial improvement is to increase the database. In 2015, IAEA produced a TecDoc-1767 on Palaeoseismology as a reference for the identification of capable faults. Another IAEA Safety Report 85 on ground motion simulation based on fault rupture modelling provides an annex introducing recent PFDHAs and fault displacement simulation methodologies. The IAEA expanded the project of FDHA for the probabilistic approach and the physics based fault rupture modelling. The first approach needs a refinement of the empirical methods by building a world wide database, and the second approach needs to shift from kinematic to the dynamic scheme. Both approaches can complement each other, since simulated displacement can fill the gap of a sparse database and geological observations can be useful to calibrate the simulations. The IAEA already supported a workshop in October 2015 to discuss the existing databases with the aim of creating a common worldwide database. A consensus of a unified database was reached. The next milestone is to fill the database with as many fault rupture data sets as possible. Another IAEA work group had a WS in November 2015 to discuss the state-of-the-art PFDHA as well as simulation methodologies. Two groups jointed a consultancy meeting in February 2016, shared information, identified issues, discussed goals and outputs, and scheduled future meetings. Now we may aim at coordinating activities for the whole FDHA tasks jointly.
Reconfigurable tree architectures using subtree oriented fault tolerance
NASA Technical Reports Server (NTRS)
Lowrie, Matthew B.
1987-01-01
An approach to the design of reconfigurable tree architecture is presented in which spare processors are allocated at the leaves. The approach is unique in that spares are associated with subtrees and sharing of spares between these subtrees can occur. The Subtree Oriented Fault Tolerance (SOFT) approach is more reliable than previous approaches capable of tolerating link and switch failures for both single chip and multichip tree implementations while reducing redundancy in terms of both spare processors and links. VLSI layout is 0(n) for binary trees and is directly extensible to N-ary trees and fault tolerance through performance degradation.
Faults Discovery By Using Mined Data
NASA Technical Reports Server (NTRS)
Lee, Charles
2005-01-01
Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.
An Intelligent Actuator Fault Reconstruction Scheme for Robotic Manipulators.
Xiao, Bing; Yin, Shen
2018-02-01
This paper investigates a difficult problem of reconstructing actuator faults for robotic manipulators. An intelligent approach with fast reconstruction property is developed. This is achieved by using observer technique. This scheme is capable of precisely reconstructing the actual actuator fault. It is shown by Lyapunov stability analysis that the reconstruction error can converge to zero after finite time. A perfect reconstruction performance including precise and fast properties can be provided for actuator fault. The most important feature of the scheme is that, it does not depend on control law, dynamic model of actuator, faults' type, and also their time-profile. This super reconstruction performance and capability of the proposed approach are further validated by simulation and experimental results.
Label consistent K-SVD: learning a discriminative dictionary for recognition.
Jiang, Zhuolin; Lin, Zhe; Davis, Larry S
2013-11-01
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
An Event-Based Approach to Distributed Diagnosis of Continuous Systems
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhurry, Indranil; Biswas, Gautam; Koutsoukos, Xenofon
2010-01-01
Distributed fault diagnosis solutions are becoming necessary due to the complexity of modern engineering systems, and the advent of smart sensors and computing elements. This paper presents a novel event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, based on a qualitative abstraction of measurement deviations from the nominal behavior. We systematically derive dynamic fault signatures expressed as event-based fault models. We develop a distributed diagnoser design algorithm that uses these models for designing local event-based diagnosers based on global diagnosability analysis. The local diagnosers each generate globally correct diagnosis results locally, without a centralized coordinator, and by communicating a minimal number of measurements between themselves. The proposed approach is applied to a multi-tank system, and results demonstrate a marked improvement in scalability compared to a centralized approach.
Chinese-English Nuclear and Physics Dictionary.
ERIC Educational Resources Information Center
Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.
The Nuclear and Physics Dictionary is one of a series of Chinese-English technical dictionaries prepared by the Foreign Technology Division, United States Air Force Systems Command. The purpose of this dictionary is to provide rapid reference tools for translators, abstractors, and research analysts concerned with scientific and technical…
Mandarin Chinese Dictionary: English-Chinese.
ERIC Educational Resources Information Center
Wang, Fred Fangyu
This dictionary is a companion volume to the "Mandarin Chinese Dictionary (Chinese-English)" published in 1967 by Seton Hall University. The purpose of the dictionary is to help English-speaking students produce Chinese sentences in certain cultural situations by looking up the English expressions. Natural, spoken Chinese expressions within the…
Intertwining thesauri and dictionaries
NASA Technical Reports Server (NTRS)
Buchan, R. L.
1989-01-01
The use of dictionaries and thesauri in information retrieval is discussed. The structure and functions of thesauri and dictionaries are described. Particular attention is given to the format of the NASA Thesaurus. The relationship between thesauri and dictionaries, the need to regularize terminology, and the capitalization of words are examined.
MEANING DISCRIMINATION IN BILINGUAL DICTIONARIES.
ERIC Educational Resources Information Center
IANNUCCI, JAMES E.
SEMANTIC DISCRIMINATION OF POLYSEMOUS ENTRY WORDS IN BILINGUAL DICTIONARIES WAS DISCUSSED IN THE PAPER. HANDICAPS OF PRESENT BILINGUAL DICTIONARIES AND BARRIERS TO THEIR FULL UTILIZATION WERE ENUMERATED. THE AUTHOR CONCLUDED THAT (1) A BILINGUAL DICTIONARY SHOULD HAVE A DISCRIMINATION FOR EVERY TRANSLATION OF AN ENTRY WORD WHICH HAS SEVERAL…
The Use of Hyper-Reference and Conventional Dictionaries.
ERIC Educational Resources Information Center
Aust, Ronald; And Others
1993-01-01
Describes a study of 80 undergraduate foreign language learners that compared the use of a hyper-reference source incorporating an electronic dictionary and a conventional paper dictionary. Measures of consultation frequency, study time, efficiency, and comprehension are examined; bilingual and monolingual dictionary use is compared; and further…
Assessing Effects of Prenatal Alcohol Exposure Using Group-wise Sparse Representation of FMRI Data
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Zhao, Shijie; Zhang, Tuo; Hu, Xintao; Han, Junwei; Guo, Lei; Li, Zhihao; Coles, Claire; Hu, Xiaoping; Liu, Tianming
2015-01-01
Task-based fMRI activation mapping has been widely used in clinical neuroscience in order to assess different functional activity patterns in conditions such as prenatal alcohol exposure (PAE) affected brains and healthy controls. In this paper, we propose a novel, alternative approach of group-wise sparse representation of the fMRI data of multiple groups of subjects (healthy control, exposed non-dysmorphic PAE and exposed dysmorphic PAE) and assess the systematic functional activity differences among these three populations. Specifically, a common time series signal dictionary is learned from the aggregated fMRI signals of all three groups of subjects, and then the weight coefficient matrices (named statistical coefficient map (SCM)) associated with each common dictionary were statistically assessed for each group separately. Through inter-group comparisons based on the correspondence established by the common dictionary, our experimental results have demonstrated that the group-wise sparse coding strategy and the SCM can effectively reveal a collection of brain networks/regions that were affected by different levels of severity of PAE. PMID:26195294
Su, Hai; Xing, Fuyong; Yang, Lin
2016-01-01
Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706
Determining building interior structures using compressive sensing
NASA Astrophysics Data System (ADS)
Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse
2013-04-01
We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.
Infrared small target detection in heavy sky scene clutter based on sparse representation
NASA Astrophysics Data System (ADS)
Liu, Depeng; Li, Zhengzhou; Liu, Bing; Chen, Wenhao; Liu, Tianmei; Cao, Lei
2017-09-01
A novel infrared small target detection method based on sky clutter and target sparse representation is proposed in this paper to cope with the representing uncertainty of clutter and target. The sky scene background clutter is described by fractal random field, and it is perceived and eliminated via the sparse representation on fractal background over-complete dictionary (FBOD). The infrared small target signal is simulated by generalized Gaussian intensity model, and it is expressed by the generalized Gaussian target over-complete dictionary (GGTOD), which could describe small target more efficiently than traditional structured dictionaries. Infrared image is decomposed on the union of FBOD and GGTOD, and the sparse representation energy that target signal and background clutter decomposed on GGTOD differ so distinctly that it is adopted to distinguish target from clutter. Some experiments are induced and the experimental results show that the proposed approach could improve the small target detection performance especially under heavy clutter for background clutter could be efficiently perceived and suppressed by FBOD and the changing target could also be represented accurately by GGTOD.
Entity recognition in the biomedical domain using a hybrid approach.
Basaldella, Marco; Furrer, Lenz; Tasso, Carlo; Rinaldi, Fabio
2017-11-09
This article describes a high-recall, high-precision approach for the extraction of biomedical entities from scientific articles. The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a machine-learning classifier. First, the OGER entity recognizer, which has a bias towards high recall, annotates the terms that appear in selected domain ontologies. Subsequently, the Distiller framework uses this information as a feature for a machine learning algorithm to select the relevant entities only. For this step, we compare two different supervised machine-learning algorithms: Conditional Random Fields and Neural Networks. In an in-domain evaluation using the CRAFT corpus, we test the performance of the combined systems when recognizing chemicals, cell types, cellular components, biological processes, molecular functions, organisms, proteins, and biological sequences. Our best system combines dictionary-based candidate generation with Neural-Network-based filtering. It achieves an overall precision of 86% at a recall of 60% on the named entity recognition task, and a precision of 51% at a recall of 49% on the concept recognition task. These results are to our knowledge the best reported so far in this particular task.
A Dynamic Finite Element Method for Simulating the Physics of Faults Systems
NASA Astrophysics Data System (ADS)
Saez, E.; Mora, P.; Gross, L.; Weatherley, D.
2004-12-01
We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.
Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis
NASA Technical Reports Server (NTRS)
Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette
2010-01-01
Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.
The Oxford English Dictionary: A Brief History.
ERIC Educational Resources Information Center
Fritze, Ronald H.
1989-01-01
Reviews the development of English dictionaries in general and the Oxford English Dictionary (OED) in particular. The discussion covers the decision by the Philological Society to create the dictionary, the principles that guided its development, the involvement of James Augustus Henry Murray, the magnitude and progress of the project, and the…
Dictionary Making: A Case of Kiswahili Dictionaries.
ERIC Educational Resources Information Center
Mohamed, Mohamed A.
Two Swahili dictionaries and two bilingual dictionaries by the same author (one English-Swahili and one Swahili-English) are evaluated for their form and content, with illustrations offered from each. Aspects examined include: the compilation of headwords, including their meanings with relation to basic and extended meanings; treatment of…
Buying and Selling Words: What Every Good Librarian Should Know about the Dictionary Business.
ERIC Educational Resources Information Center
Kister, Ken
1993-01-01
Discusses features to consider when selecting dictionaries. Topics addressed include the publishing industry; the dictionary market; profits from dictionaries; pricing; competitive marketing tactics, including similar titles, claims to numbers of entries and numbers of definitions, and similar physical appearance; a trademark infringement case;…
The New Unabridged English-Persian Dictionary.
ERIC Educational Resources Information Center
Aryanpur, Abbas; Saleh, Jahan Shah
This five-volume English-Persian dictionary is based on Webster's International Dictionary (1960 and 1961) and The Shorter Oxford English Dictionary (1959); it attempts to provide Persian equivalents of all the words of Oxford and all the key-words of Webster. Pronunciation keys for the English phonetic transcription and for the difficult Persian…
Evaluating L2 Readers' Vocabulary Strategies and Dictionary Use
ERIC Educational Resources Information Center
Prichard, Caleb
2008-01-01
A review of the relevant literature concerning second language dictionary use while reading suggests that selective dictionary use may lead to improved comprehension and efficient vocabulary development. This study aims to examine the dictionary use of Japanese university students to determine just how selective they are when reading nonfiction…
Online English-English Learner Dictionaries Boost Word Learning
ERIC Educational Resources Information Center
Nurmukhamedov, Ulugbek
2012-01-01
Learners of English might be familiar with several online monolingual dictionaries that are not necessarily the best choices for the English as Second/Foreign Language (ESL/EFL) context. Although these monolingual online dictionaries contain definitions, pronunciation guides, and other elements normally found in general-use dictionaries, they are…
Research Timeline: Dictionary Use by English Language Learners
ERIC Educational Resources Information Center
Nesi, Hilary
2014-01-01
The history of research into dictionary use tends to be characterised by small-scale studies undertaken in a variety of different contexts, rather than larger-scale, longer-term funded projects. The research conducted by dictionary publishers is not generally made public, because of its commercial sensitivity, yet because dictionary production is…
The Dictionary and Vocabulary Behavior: A Single Word or a Handful?
ERIC Educational Resources Information Center
Baxter, James
1980-01-01
To provide a context for dictionary selection, the vocabulary behavior of students is examined. Distinguishing between written and spoken English, the relation between dictionary use, classroom vocabulary behavior, and students' success in meeting their communicative needs is discussed. The choice of a monolingual English learners' dictionary is…
Product quality management based on CNC machine fault prognostics and diagnosis
NASA Astrophysics Data System (ADS)
Kozlov, A. M.; Al-jonid, Kh M.; Kozlov, A. A.; Antar, Sh D.
2018-03-01
This paper presents a new fault classification model and an integrated approach to fault diagnosis which involves the combination of ideas of Neuro-fuzzy Networks (NF), Dynamic Bayesian Networks (DBN) and Particle Filtering (PF) algorithm on a single platform. In the new model, faults are categorized in two aspects, namely first and second degree faults. First degree faults are instantaneous in nature, and second degree faults are evolutional and appear as a developing phenomenon which starts from the initial stage, goes through the development stage and finally ends at the mature stage. These categories of faults have a lifetime which is inversely proportional to a machine tool's life according to the modified version of Taylor’s equation. For fault diagnosis, this framework consists of two phases: the first one is focusing on fault prognosis, which is done online, and the second one is concerned with fault diagnosis which depends on both off-line and on-line modules. In the first phase, a neuro-fuzzy predictor is used to take a decision on whether to embark Conditional Based Maintenance (CBM) or fault diagnosis based on the severity of a fault. The second phase only comes into action when an evolving fault goes beyond a critical threshold limit called a CBM limit for a command to be issued for fault diagnosis. During this phase, DBN and PF techniques are used as an intelligent fault diagnosis system to determine the severity, time and location of the fault. The feasibility of this approach was tested in a simulation environment using the CNC machine as a case study and the results were studied and analyzed.
Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed
2016-07-01
Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Tissue microstructure estimation using a deep network inspired by a dictionary-based framework.
Ye, Chuyang
2017-12-01
Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods. Copyright © 2017 Elsevier B.V. All rights reserved.
SU-E-J-212: Identifying Bones From MRI: A Dictionary Learnign and Sparse Regression Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, D; Yang, Y; Cao, M
2014-06-01
Purpose: To develop an efficient and robust scheme to identify bony anatomy based on MRI-only simulation images. Methods: MRI offers important soft tissue contrast and functional information, yet its lack of correlation to electron-density has placed it as an auxiliary modality to CT in radiotherapy simulation and adaptation. An effective scheme to identify bony anatomy is an important first step towards MR-only simulation/treatment paradigm and would satisfy most practical purposes. We utilize a UTE acquisition sequence to achieve visibility of the bone. By contrast to manual + bulk or registration-to identify bones, we propose a novel learning-based approach for improvedmore » robustness to MR artefacts and environmental changes. Specifically, local information is encoded with MR image patch, and the corresponding label is extracted (during training) from simulation CT aligned to the UTE. Within each class (bone vs. nonbone), an overcomplete dictionary is learned so that typical patches within the proper class can be represented as a sparse combination of the dictionary entries. For testing, an acquired UTE-MRI is divided to patches using a sliding scheme, where each patch is sparsely regressed against both bone and nonbone dictionaries, and subsequently claimed to be associated with the class with the smaller residual. Results: The proposed method has been applied to the pilot site of brain imaging and it has showed general good performance, with dice similarity coefficient of greater than 0.9 in a crossvalidation study using 4 datasets. Importantly, it is robust towards consistent foreign objects (e.g., headset) and the artefacts relates to Gibbs and field heterogeneity. Conclusion: A learning perspective has been developed for inferring bone structures based on UTE MRI. The imaging setting is subject to minimal motion effects and the post-processing is efficient. The improved efficiency and robustness enables a first translation to MR-only routine. The scheme generalizes to multiple tissue classes.« less
NASA Astrophysics Data System (ADS)
Ablay, Gunyaz
Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.
NASA Astrophysics Data System (ADS)
Volkov, D.
2017-12-01
We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.
On the Application of Syntactic Methodologies in Automatic Text Analysis.
ERIC Educational Resources Information Center
Salton, Gerard; And Others
1990-01-01
Summarizes various linguistic approaches proposed for document analysis in information retrieval environments. Topics discussed include syntactic analysis; use of machine-readable dictionary information; knowledge base construction; the PLNLP English Grammar (PEG) system; phrase normalization; and statistical and syntactic phrase evaluation used…
Technology Approach: DoD Versus Boeing (A Comparative Study)
2016-01-01
the American public continues to demand that its gov - ernment become more efficient, prompting Vice President Al Gore to initiate a National...new world dictionary, Ohio: William Collins. Henderson, B. W. (1990, December). NASA research aircraft demonstrates solutions to powered-lift
Algorithm-Based Fault Tolerance Integrated with Replication
NASA Technical Reports Server (NTRS)
Some, Raphael; Rennels, David
2008-01-01
In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.
Standardized Representation of Clinical Study Data Dictionaries with CIMI Archetypes
Sharma, Deepak K.; Solbrig, Harold R.; Prud’hommeaux, Eric; Pathak, Jyotishman; Jiang, Guoqian
2016-01-01
Researchers commonly use a tabular format to describe and represent clinical study data. The lack of standardization of data dictionary’s metadata elements presents challenges for their harmonization for similar studies and impedes interoperability outside the local context. We propose that representing data dictionaries in the form of standardized archetypes can help to overcome this problem. The Archetype Modeling Language (AML) as developed by the Clinical Information Modeling Initiative (CIMI) can serve as a common format for the representation of data dictionary models. We mapped three different data dictionaries (identified from dbGAP, PheKB and TCGA) onto AML archetypes by aligning dictionary variable definitions with the AML archetype elements. The near complete alignment of data dictionaries helped map them into valid AML models that captured all data dictionary model metadata. The outcome of the work would help subject matter experts harmonize data models for quality, semantic interoperability and better downstream data integration. PMID:28269909
Weighted Discriminative Dictionary Learning based on Low-rank Representation
NASA Astrophysics Data System (ADS)
Chang, Heyou; Zheng, Hao
2017-01-01
Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods.
Software fault tolerance for real-time avionics systems
NASA Technical Reports Server (NTRS)
Anderson, T.; Knight, J. C.
1983-01-01
Avionics systems have very high reliability requirements and are therefore prime candidates for the inclusion of fault tolerance techniques. In order to provide tolerance to software faults, some form of state restoration is usually advocated as a means of recovery. State restoration can be very expensive for systems which utilize concurrent processes. The concurrency present in most avionics systems and the further difficulties introduced by timing constraints imply that providing tolerance for software faults may be inordinately expensive or complex. A straightforward pragmatic approach to software fault tolerance which is believed to be applicable to many real-time avionics systems is proposed. A classification system for software errors is presented together with approaches to recovery and continued service for each error type.
The purpose of this SOP is to provide a standard method for the writing of data dictionaries. This procedure applies to the dictionaries used during the Arizona NHEXAS project and the "Border" study. Keywords: guidelines; data dictionaries.
The National Human Exposure Assessme...
The Influence of Electronic Dictionaries on Vocabulary Knowledge Extension
ERIC Educational Resources Information Center
Rezaei, Mojtaba; Davoudi, Mohammad
2016-01-01
Vocabulary learning needs special strategies in language learning process. The use of dictionaries is a great help in vocabulary learning and nowadays the emergence of electronic dictionaries has added a new and valuable resource for vocabulary learning. The present study aims to explore the influence of Electronic Dictionaries (ED) Vs. Paper…
Should Dictionaries Be Used in Translation Tests and Examinations?
ERIC Educational Resources Information Center
Mahmoud, Abdulmoneim
2017-01-01
Motivated by the conflicting views regarding the use of the dictionary in translation tests and examinations this study was intended to verify the dictionary-free vs dictionary-based translation hypotheses. The subjects were 135 Arabic-speaking male and female EFL third-year university students. A group consisting of 62 students translated a text…
Corpora and Collocations in Chinese-English Dictionaries for Chinese Users
ERIC Educational Resources Information Center
Xia, Lixin
2015-01-01
The paper identifies the major problems of the Chinese-English dictionary in representing collocational information after an extensive survey of nine dictionaries popular among Chinese users. It is found that the Chinese-English dictionary only provides the collocation types of "v+n" and "v+n," but completely ignores those of…
Marks, Spaces and Boundaries: Punctuation (and Other Effects) in the Typography of Dictionaries
ERIC Educational Resources Information Center
Luna, Paul
2011-01-01
Dictionary compilers and designers use punctuation to structure and clarify entries and to encode information. Dictionaries with a relatively simple structure can have simple typography and simple punctuation; as dictionaries grew more complex, and encountered the space constraints of the printed page, complex encoding systems were developed,…
Evaluating Bilingual and Monolingual Dictionaries for L2 Learners.
ERIC Educational Resources Information Center
Hunt, Alan
1997-01-01
A discussion of dictionaries and their use for second language (L2) learning suggests that lack of computerized modern language corpora can adversely affect bilingual dictionaries, commonly used by L2 learners, and shows how use of such corpora has benefitted two contemporary monolingual L2 learner dictionaries (1995 editions of the Longman…
Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
NASA Astrophysics Data System (ADS)
Hassanabadi, Amir Hossein; Shafiee, Masoud; Puig, Vicenc
2018-01-01
In this paper, sensor fault diagnosis of a singular delayed linear parameter varying (LPV) system is considered. In the considered system, the model matrices are dependent on some parameters which are real-time measurable. The case of inexact parameter measurements is considered which is close to real situations. Fault diagnosis in this system is achieved via fault estimation. For this purpose, an augmented system is created by including sensor faults as additional system states. Then, an unknown input observer (UIO) is designed which estimates both the system states and the faults in the presence of measurement noise, disturbances and uncertainty induced by inexact measured parameters. Error dynamics and the original system constitute an uncertain system due to inconsistencies between real and measured values of the parameters. Then, the robust estimation of the system states and the faults are achieved with H∞ performance and formulated with a set of linear matrix inequalities (LMIs). The designed UIO is also applicable for fault diagnosis of singular delayed LPV systems with unmeasurable scheduling variables. The efficiency of the proposed approach is illustrated with an example.
Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.
Zhou, Tao; Liu, Fanghui; Bhaskar, Harish; Yang, Jie
2017-09-12
In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.
Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715
Online multi-modal robust non-negative dictionary learning for visual tracking.
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.
Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.
Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun
2014-03-01
To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.
Chip level modeling of LSI devices
NASA Technical Reports Server (NTRS)
Armstrong, J. R.
1984-01-01
The advent of Very Large Scale Integration (VLSI) technology has rendered the gate level model impractical for many simulation activities critical to the design automation process. As an alternative, an approach to the modeling of VLSI devices at the chip level is described, including the specification of modeling language constructs important to the modeling process. A model structure is presented in which models of the LSI devices are constructed as single entities. The modeling structure is two layered. The functional layer in this structure is used to model the input/output response of the LSI chip. A second layer, the fault mapping layer, is added, if fault simulations are required, in order to map the effects of hardware faults onto the functional layer. Modeling examples for each layer are presented. Fault modeling at the chip level is described. Approaches to realistic functional fault selection and defining fault coverage for functional faults are given. Application of the modeling techniques to single chip and bit slice microprocessors is discussed.
NASA Astrophysics Data System (ADS)
Golafshan, Reza; Yuce Sanliturk, Kenan
2016-03-01
Ball bearings remain one of the most crucial components in industrial machines and due to their critical role, it is of great importance to monitor their conditions under operation. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. This incapability in identifying the faults makes the de-noising process one of the most essential steps in the field of Condition Monitoring (CM) and fault detection. In the present study, Singular Value Decomposition (SVD) and Hankel matrix based de-noising process is successfully applied to the ball bearing time domain vibration signals as well as to their spectrums for the elimination of the background noise and the improvement the reliability of the fault detection process. The test cases conducted using experimental as well as the simulated vibration signals demonstrate the effectiveness of the proposed de-noising approach for the ball bearing fault detection.
The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.
Kumar, Mohit; Yadav, Shiv Prasad
2012-07-01
In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
An approach to secure weather and climate models against hardware faults
NASA Astrophysics Data System (ADS)
Düben, Peter D.; Dawson, Andrew
2017-03-01
Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelization to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. In this paper, we present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform model simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13 % for the shallow water model.
An approach to secure weather and climate models against hardware faults
NASA Astrophysics Data System (ADS)
Düben, Peter; Dawson, Andrew
2017-04-01
Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelisation to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. We present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13% for the shallow water model.
NASA Astrophysics Data System (ADS)
Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M.
2018-06-01
We present the results of a multidisciplinary and multiscale study at Mt. Massico, Southern Italy. Mt. Massico is a carbonate horst located along the Campanian-Latial margin of the Tyrrhenian basin, bordered by two main NE-SW systems of faults, and by NW-SE and N-S trending faults. Our analysis deals with the modelling of the main NE-SW faults. These faults were capable during Plio-Pleistocene and are still active today, even though with scarce and low-energy seismicity (Mw maximum = 4.8). We inferred the pattern of the fault planes through a combined interpretation of 2-D hypocentral sections, a multiscale analysis of gravity field and geochemical data. This allowed us to characterize the geometry of these faults and infer their large depth extent. This region shows very striking gravimetric signatures, well-known Quaternary faults, moderate seismicity and a localized geothermal fluid rise. Thus, this analysis represents a valid case study for testing the effectiveness of a multidisciplinary approach, and employing it in areas with buried and/or silent faults of potential high hazard, such as in the Apennine chain.
Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence.
Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong
2017-03-09
Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults.
Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence
Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong
2017-01-01
Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults. PMID:28282936
Alternatively Constrained Dictionary Learning For Image Superresolution.
Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun
2014-03-01
Dictionaries are crucial in sparse coding-based algorithm for image superresolution. Sparse coding is a typical unsupervised learning method to study the relationship between the patches of high-and low-resolution images. However, most of the sparse coding methods for image superresolution fail to simultaneously consider the geometrical structure of the dictionary and the corresponding coefficients, which may result in noticeable superresolution reconstruction artifacts. In other words, when a low-resolution image and its corresponding high-resolution image are represented in their feature spaces, the two sets of dictionaries and the obtained coefficients have intrinsic links, which has not yet been well studied. Motivated by the development on nonlocal self-similarity and manifold learning, a novel sparse coding method is reported to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries and provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Furthermore, to utilize the model of the proposed method more effectively for single-image superresolution, this paper also proposes a novel dictionary-pair learning method, which is named as two-stage dictionary training. Extensive experiments are carried out on a large set of images comparing with other popular algorithms for the same purpose, and the results clearly demonstrate the effectiveness of the proposed sparse representation model and the corresponding dictionary learning algorithm.
SSME fault monitoring and diagnosis expert system
NASA Technical Reports Server (NTRS)
Ali, Moonis; Norman, Arnold M.; Gupta, U. K.
1989-01-01
An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.
ERIC Educational Resources Information Center
Thompson, Geoff
1987-01-01
Monolingual dictionaries have serious disadvantages in many language teaching situations; bilingual dictionaries are potentially more efficient and more motivating sources of information for language learners. (Author/CB)
Agent Based Fault Tolerance for the Mobile Environment
NASA Astrophysics Data System (ADS)
Park, Taesoon
This paper presents a fault-tolerance scheme based on mobile agents for the reliable mobile computing systems. Mobility of the agent is suitable to trace the mobile hosts and the intelligence of the agent makes it efficient to support the fault tolerance services. This paper presents two approaches to implement the mobile agent based fault tolerant service and their performances are evaluated and compared with other fault-tolerant schemes.
Design for dependability: A simulation-based approach. Ph.D. Thesis, 1993
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.
1994-01-01
This research addresses issues in simulation-based system level dependability analysis of fault-tolerant computer systems. The issues and difficulties of providing a general simulation-based approach for system level analysis are discussed and a methodology that address and tackle these issues is presented. The proposed methodology is designed to permit the study of a wide variety of architectures under various fault conditions. It permits detailed functional modeling of architectural features such as sparing policies, repair schemes, routing algorithms as well as other fault-tolerant mechanisms, and it allows the execution of actual application software. One key benefit of this approach is that the behavior of a system under faults does not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail and injected with faults to determine its failure modes. The thesis describes how object-oriented design is used to incorporate this methodology into a general purpose design and fault injection package called DEPEND. A software model is presented that uses abstractions of application programs to study the behavior and effect of software on hardware faults in the early design stage when actual code is not available. Finally, an acceleration technique that combines hierarchical simulation, time acceleration algorithms and hybrid simulation to reduce simulation time is introduced.
NASA Astrophysics Data System (ADS)
Schlechtingen, Meik; Ferreira Santos, Ilmar
2011-07-01
This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based approaches, which are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and stator temperature anomalies. The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required for model development and the remaining operational time after first indication of damage. The general nonlinear neural network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault visibility and thus led to the highest confidence level.
Seismic data interpolation and denoising by learning a tensor tight frame
NASA Astrophysics Data System (ADS)
Liu, Lina; Plonka, Gerlind; Ma, Jianwei
2017-10-01
Seismic data interpolation and denoising plays a key role in seismic data processing. These problems can be understood as sparse inverse problems, where the desired data are assumed to be sparsely representable within a suitable dictionary. In this paper, we present a new method based on a data-driven tight frame (DDTF) of Kronecker type (KronTF) that avoids the vectorization step and considers the multidimensional structure of data in a tensor-product way. It takes advantage of the structure contained in all different modes (dimensions) simultaneously. In order to overcome the limitations of a usual tensor-product approach we also incorporate data-driven directionality. The complete method is formulated as a sparsity-promoting minimization problem. It includes two main steps. In the first step, a hard thresholding algorithm is used to update the frame coefficients of the data in the dictionary; in the second step, an iterative alternating method is used to update the tight frame (dictionary) in each different mode. The dictionary that is learned in this way contains the principal components in each mode. Furthermore, we apply the proposed KronTF to seismic interpolation and denoising. Examples with synthetic and real seismic data show that the proposed method achieves better results than the traditional projection onto convex sets method based on the Fourier transform and the previous vectorized DDTF methods. In particular, the simple structure of the new frame construction makes it essentially more efficient.
Learning a common dictionary for subject-transfer decoding with resting calibration.
Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin
2015-05-01
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.
A Framework to Debug Diagnostic Matrices
NASA Technical Reports Server (NTRS)
Kodal, Anuradha; Robinson, Peter; Patterson-Hine, Ann
2013-01-01
Diagnostics is an important concept in system health and monitoring of space operations. Many of the existing diagnostic algorithms utilize system knowledge in the form of diagnostic matrix (D-matrix, also popularly known as diagnostic dictionary, fault signature matrix or reachability matrix) gleaned from physical models. But, sometimes, this may not be coherent to obtain high diagnostic performance. In such a case, it is important to modify this D-matrix based on knowledge obtained from other sources such as time-series data stream (simulated or maintenance data) within the context of a framework that includes the diagnostic/inference algorithm. A systematic and sequential update procedure, diagnostic modeling evaluator (DME) is proposed to modify D-matrix and wrapper logic considering least expensive solution first. This iterative procedure includes conditions ranging from modifying 0s and 1s in the matrix, or adding/removing the rows (failure sources) columns (tests). We will experiment this framework on datasets from DX challenge 2009.
NASA Astrophysics Data System (ADS)
Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan
2018-07-01
Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.
NASA Technical Reports Server (NTRS)
Lee, S. C.; Lollar, Louis F.
1988-01-01
The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.
Time-dependent earthquake probabilities
Gomberg, J.; Belardinelli, M.E.; Cocco, M.; Reasenberg, P.
2005-01-01
We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have loading as in the framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failures of different members of a the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function of PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models. Copyright 2005 by the American Geophysical Union.
Grammar Coding in the "Oxford Advanced Learner's Dictionary of Current English."
ERIC Educational Resources Information Center
Wekker, Herman
1992-01-01
Focuses on the revised system of grammar coding for verbs in the fourth edition of the "Oxford Advanced Learner's Dictionary of Current English" (OALD4), comparing it with two other similar dictionaries. It is shown that the OALD4 is found to be more favorable on many criteria than the other comparable dictionaries. (16 references) (VWL)
A Study on the Use of Mobile Dictionaries in Vocabulary Teaching
ERIC Educational Resources Information Center
Aslan, Erdinç
2016-01-01
In recent years, rapid developments in technology have placed books and notebooks into the mobile phones and tablets and also the dictionaries into these small boxes. Giant dictionaries, which we once barely managed to carry, have been replaced by mobile dictionaries through which we can reach any words we want with only few touches. Mobile…
ERIC Educational Resources Information Center
Bello, Anne Pence
2013-01-01
The publication of "Webster's Third New International Dictionary" in September 1961 set off a national controversy about dictionaries and language that ultimately included issues related to linguistics and English education. The negative reviews published in the press about the "Third" have shaped beliefs about the nature of…
ERIC Educational Resources Information Center
Chiu, Li-Ling; Liu, Gi-Zen
2013-01-01
This study obtained empirical evidence regarding the effects of using printed dictionaries (PD), pocket electronic dictionaries (PED), and online type-in dictionaries (OTID) on English vocabulary retention at a junior high school. A mixed-methods research methodology was adopted in this study. Thirty-three seventh graders were asked to use all…
The Efficacy of Dictionary Use while Reading for Learning New Words
ERIC Educational Resources Information Center
Hamilton, Harley
2012-01-01
The researcher investigated the use of three types of dictionaries while reading by high school students with severe to profound hearing loss. The objective of the study was to determine the effectiveness of each type of dictionary for acquiring the meanings of unknown vocabulary in text. The three types of dictionaries were (a) an online…
ERIC Educational Resources Information Center
Center for Applied Linguistics, Arlington, VA.
The purpose of this bulletin is to provide the American teacher or sponsor with information on the use, limitations and availability of dictionaries that can be used by Indochinese refugees. The introductory material contains descriptions of both monolingual and bilingual dictionaries, a discussion of the inadequacies of bilingual dictionaries in…
Dictionaries Can Help Writing--If Students Know How To Use Them.
ERIC Educational Resources Information Center
Jacobs, George M.
A study investigated whether instruction in how to use a dictionary led to improved second language performance and greater dictionary use among English majors (N=54) in a reading and writing course at a Thai university. One of three participating classes was instructed in the use of a monolingual learner's dictionary. A passage correction test…
Dictionary-Based Tensor Canonical Polyadic Decomposition
NASA Astrophysics Data System (ADS)
Cohen, Jeremy Emile; Gillis, Nicolas
2018-04-01
To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
Data dictionaries in information systems - Standards, usage , and application
NASA Technical Reports Server (NTRS)
Johnson, Margaret
1990-01-01
An overview of data dictionary systems and the role of standardization in the interchange of data dictionaries is presented. The development of the data dictionary for the Planetary Data System is cited as an example. The data element dictionary (DED), which is the repository of the definitions of the vocabulary utilized in an information system, is an important part of this service. A DED provides the definitions of the fields of the data set as well as the data elements of the catalog system. Finally, international efforts such as the Consultative Committee on Space Data Systems and other committees set up to provide standard recommendations on the usage and structure of data dictionaries in the international space science community are discussed.
AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.
Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S
2017-09-01
Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.
Sparse dictionary learning for resting-state fMRI analysis
NASA Astrophysics Data System (ADS)
Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul
2011-09-01
Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.
Low rank magnetic resonance fingerprinting.
Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C
2016-08-01
Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.
NASA Astrophysics Data System (ADS)
Jiang, Fan; Zhu, Zhencai; Li, Wei; Zhou, Gongbo; Chen, Guoan
2014-07-01
Accurately identifying faults in rotor-bearing systems by analyzing vibration signals, which are nonlinear and nonstationary, is challenging. To address this issue, a new approach based on ensemble empirical mode decomposition (EEMD) and self-zero space projection analysis is proposed in this paper. This method seeks to identify faults appearing in a rotor-bearing system using simple algebraic calculations and projection analyses. First, EEMD is applied to decompose the collected vibration signals into a set of intrinsic mode functions (IMFs) for features. Second, these extracted features under various mechanical health conditions are used to design a self-zero space matrix according to space projection analysis. Finally, the so-called projection indicators are calculated to identify the rotor-bearing system's faults with simple decision logic. Experiments are implemented to test the reliability and effectiveness of the proposed approach. The results show that this approach can accurately identify faults in rotor-bearing systems.
A review on data-driven fault severity assessment in rolling bearings
NASA Astrophysics Data System (ADS)
Cerrada, Mariela; Sánchez, René-Vinicio; Li, Chuan; Pacheco, Fannia; Cabrera, Diego; Valente de Oliveira, José; Vásquez, Rafael E.
2018-01-01
Health condition monitoring of rotating machinery is a crucial task to guarantee reliability in industrial processes. In particular, bearings are mechanical components used in most rotating devices and they represent the main source of faults in such equipments; reason for which research activities on detecting and diagnosing their faults have increased. Fault detection aims at identifying whether the device is or not in a fault condition, and diagnosis is commonly oriented towards identifying the fault mode of the device, after detection. An important step after fault detection and diagnosis is the analysis of the magnitude or the degradation level of the fault, because this represents a support to the decision-making process in condition based-maintenance. However, no extensive works are devoted to analyse this problem, or some works tackle it from the fault diagnosis point of view. In a rough manner, fault severity is associated with the magnitude of the fault. In bearings, fault severity can be related to the physical size of fault or a general degradation of the component. Due to literature regarding the severity assessment of bearing damages is limited, this paper aims at discussing the recent methods and techniques used to achieve the fault severity evaluation in the main components of the rolling bearings, such as inner race, outer race, and ball. The review is mainly focused on data-driven approaches such as signal processing for extracting the proper fault signatures associated with the damage degradation, and learning approaches that are used to identify degradation patterns with regards to health conditions. Finally, new challenges are highlighted in order to develop new contributions in this field.
NASA Astrophysics Data System (ADS)
Drahor, Mahmut G.; Berge, Meriç A.
2017-01-01
Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.
Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.
Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H
2012-12-01
Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.
Personalized Age Progression with Bi-Level Aging Dictionary Learning.
Shu, Xiangbo; Tang, Jinhui; Li, Zechao; Lai, Hanjiang; Zhang, Liyan; Yan, Shuicheng
2018-04-01
Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wrinkles), where the dictionary bases corresponding to the same index yet from two neighboring aging dictionaries form a particular aging pattern cross these two age groups, and a linear combination of all these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each person may have extra personalized facial characteristics, e.g., mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular person, yet much easier and more practical to get face pairs from neighboring age groups. To this end, we propose a novel Bi-level Dictionary Learning based Personalized Age Progression (BDL-PAP) method. Here, bi-level dictionary learning is formulated to learn the aging dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of the proposed BDL-PAP over other state-of-the-arts in term of personalized age progression, as well as the performance gain for cross-age face verification by synthesizing aging faces.
The purpose of this SOP is to provide a standard method for the writing of data dictionaries. This procedure applies to the dictionaries used during the Arizona NHEXAS project and the Border study. Keywords: guidelines; data dictionaries.
The U.S.-Mexico Border Program is spon...
Multimodal Task-Driven Dictionary Learning for Image Classification
2015-12-18
1 Multimodal Task-Driven Dictionary Learning for Image Classification Soheil Bahrampour, Student Member, IEEE, Nasser M. Nasrabadi, Fellow, IEEE...Asok Ray, Fellow, IEEE, and W. Kenneth Jenkins, Life Fellow, IEEE Abstract— Dictionary learning algorithms have been suc- cessfully used for both...reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are
ERIC Educational Resources Information Center
Vahdany, Fereidoon; Abdollahzadeh, Milad; Gholami, Shokoufeh; Ghanipoor, Mahmood
2014-01-01
This study aimed at investigating the relationship between types of dictionaries used and lexical proficiency in writing. Eighty TOEFL students took part in responding to two Questionnaires collecting information about their dictionary type preferences and habits of dictionary use, along with an interview for further in-depth responses. They were…
English-Chinese Cross-Language IR Using Bilingual Dictionaries
2006-01-01
specialized dictionaries together contain about two million entries [6]. 4 Monolingual Experiment The Chinese documents and the Chinese translations of... monolingual performance. The main performance-limiting factor is the limited coverage of the dictionary used in query translation. Some of the key con...English-Chinese Cross-Language IR using Bilingual Dictionaries Aitao Chen , Hailing Jiang , and Fredric Gey School of Information Management
Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao
2014-01-01
An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.
Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Brown; Bernard Laskowski
The prospect of substantial investment in wind energy generation represents a significant capital investment strategy. In order to maximize the life-cycle of wind turbines, associated rotors, gears, and structural towers, a capability to detect and predict (prognostics) the onset of mechanical faults at a sufficiently early stage for maintenance actions to be planned would significantly reduce both maintenance and operational costs. Advancement towards this effort has been made through the development of anomaly detection, fault detection and fault diagnosis routines to identify selected fault modes of a wind turbine based on available sensor data preceding an unscheduled emergency shutdown. Themore » anomaly detection approach employs spectral techniques to find an approximation of the data using a combination of attributes that capture the bulk of variability in the data. Fault detection and diagnosis (FDD) is performed using a neural network-based classifier trained from baseline and fault data recorded during known failure conditions. The approach has been evaluated for known baseline conditions and three selected failure modes: pitch rate failure, low oil pressure failure and a gearbox gear-tooth failure. Experimental results demonstrate the approach can distinguish between these failure modes and normal baseline behavior within a specified statistical accuracy.« less
A fuzzy decision tree for fault classification.
Zio, Enrico; Baraldi, Piero; Popescu, Irina C
2008-02-01
In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.
Detection of faults and software reliability analysis
NASA Technical Reports Server (NTRS)
Knight, J. C.
1986-01-01
Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.
A Probabilistic Approach to Crosslingual Information Retrieval
2001-06-01
language expansion step can be performed before the translation process. Implemented as a call to the INQUERY function get_modified_query with one of the...database consists of American English while the dictionary is British English. Therefore, e.g. the Spanish word basura is translated to rubbish and
Learning Essential Terms and Concepts in Statistics and Accounting
ERIC Educational Resources Information Center
Peters, Pam; Smith, Adam; Middledorp, Jenny; Karpin, Anne; Sin, Samantha; Kilgore, Alan
2014-01-01
This paper describes a terminological approach to the teaching and learning of fundamental concepts in foundation tertiary units in Statistics and Accounting, using an online dictionary-style resource (TermFinder) with customised "termbanks" for each discipline. Designed for independent learning, the termbanks support inquiring students…
Eigenstructure Assignment for Fault Tolerant Flight Control Design
NASA Technical Reports Server (NTRS)
Sobel, Kenneth; Joshi, Suresh (Technical Monitor)
2002-01-01
In recent years, fault tolerant flight control systems have gained an increased interest for high performance military aircraft as well as civil aircraft. Fault tolerant control systems can be described as either active or passive. An active fault tolerant control system has to either reconfigure or adapt the controller in response to a failure. One approach is to reconfigure the controller based upon detection and identification of the failure. Another approach is to use direct adaptive control to adjust the controller without explicitly identifying the failure. In contrast, a passive fault tolerant control system uses a fixed controller which achieves acceptable performance for a presumed set of failures. We have obtained a passive fault tolerant flight control law for the F/A-18 aircraft which achieves acceptable handling qualities for a class of control surface failures. The class of failures includes the symmetric failure of any one control surface being stuck at its trim value. A comparison was made of an eigenstructure assignment gain designed for the unfailed aircraft with a fault tolerant multiobjective optimization gain. We have shown that time responses for the unfailed aircraft using the eigenstructure assignment gain and the fault tolerant gain are identical. Furthermore, the fault tolerant gain achieves MIL-F-8785C specifications for all failure conditions.
Sensor placement for diagnosability in space-borne systems - A model-based reasoning approach
NASA Technical Reports Server (NTRS)
Chien, Steve; Doyle, Richard; Rouquette, Nicolas
1992-01-01
This paper presents an approach to evaluating sensor placements on the basis of how well they are able to discriminate between a given fault and normal operating modes and/or other fault modes. In this approach, a model of the system in both normal operations and fault modes is used to evaluate possible sensor placements upon the basis of three criteria. Discriminability measures how much of a divergence in expected sensor readings the two system modes can be expected to produce. Accuracy measures confidence in the particular model predictions. Timeliness measures how long after the fault occurrence the expected divergence will take place. These three metrics then can be used to form a recommendation for a sensor placement. This paper describes how these measures can be computed and illustrated these methods with a brief example.
Speech and Language and Language Translation (SALT)
2012-12-01
Resources are classified as: Parallel Text Dictionaries Monolingual Text Other Dictionaries are further classified as: Text: can download entire...not clear how many are translated http://www.redsea-online.com/modules.php?name= dictionary Monolingual Text Monolingual Text; An Crubadan web...attached to a following word. A program could be written to detach the character د from unknown words, when the remaining word matches a dictionary
Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining.
Hettne, Kristina M; Williams, Antony J; van Mulligen, Erik M; Kleinjans, Jos; Tkachenko, Valery; Kors, Jan A
2010-03-23
Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/chemlist.
Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining
2010-01-01
Background Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. Results We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. Conclusions We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/chemlist. PMID:20331846
NASA Astrophysics Data System (ADS)
Strak, V.; Dominguez, S.; Petit, C.; Meyer, B.; Loget, N.
2013-12-01
Relief evolution in active tectonic areas is controlled by the interactions between tectonics and surface processes (erosion, transport and sedimentation). These interactions lead to the formation of geomorphologic markers that remain stable during the equilibrium reached in the long-term between tectonics and erosion. In regions experiencing active extension, drainage basins and faceted spurs (triangular facets) are such long-lived morphologic markers and they can help in quantifying the competing effects between tectonics, erosion and sedimentation. We performed analog and numerical models simulating the morphologic evolution of a mountain range bounded by a normal fault. In each approach we imposed identical initial conditions. We carried out several models by varying the fault slip rate (V) and keeping a constant rainfall rate allowing us to study the effect of V on morphology. Both approaches highlight the main control of V on the topographic evolution of the footwall. The experimental approach shows that V controls erosion rates (incision rate, erosion rate of slopes and regressive erosion rate) and possibly the height of triangular facets. This approach indicates likewise that the parameter K of the stream power law depends on V even for non-equilibrium topography. The numerical approach corroborates the control of V on erosion rates and facet height. It also shows a correlation between the shape of drainage basins and V (slope-area relationship) and it suggests the same for the parameters of the stream power law. Therefore both approaches suggest the possibility of using the height of triangular facets and the slope-area relationship to infer the fault slip rate of normal faults situated in a given climatic context.
Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach
Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.
2017-01-01
Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303
NASA Astrophysics Data System (ADS)
Ottewill, J. R.; Ruszczyk, A.; Broda, D.
2017-02-01
Time-varying transmission paths and inaccessibility can increase the difficulty in both acquiring and processing vibration signals for the purpose of monitoring epicyclic gearboxes. Recent work has shown that the synchronous signal averaging approach may be applied to measured motor currents in order to diagnose tooth faults in parallel shaft gearboxes. In this paper we further develop the approach, so that it may also be applied to monitor tooth faults in epicyclic gearboxes. A low-degree-of-freedom model of an epicyclic gearbox which incorporates the possibility of simulating tooth faults, as well as any subsequent tooth contact loss due to these faults, is introduced. By combining this model with a simple space-phasor model of an induction motor it is possible to show that, in theory, tooth faults in epicyclic gearboxes may be identified from motor currents. Applying the synchronous averaging approach to experimentally recorded motor currents and angular displacements recorded from a shaft mounted encoder, validate this finding. Comparison between experiments and theory highlight the influence of operating conditions, backlash and shaft couplings on the transient response excited in the currents by the tooth fault. The results obtained suggest that the method may be a viable alternative or complement to more traditional methods for monitoring gearboxes. However, general observations also indicate that further investigations into the sensitivity and robustness of the method would be beneficial.
NASA Technical Reports Server (NTRS)
Schutte, P. C.; Abbott, K. H.
1986-01-01
Real-time onboard fault monitoring and diagnosis for aircraft applications, whether performed by the human pilot or by automation, presents many difficult problems. Quick response to failures may be critical, the pilot often must compensate for the failure while diagnosing it, his information about the state of the aircraft is often incomplete, and the behavior of the aircraft changes as the effect of the failure propagates through the system. A research effort was initiated to identify guidelines for automation of onboard fault monitoring and diagnosis and associated crew interfaces. The effort began by determining the flight crew's information requirements for fault monitoring and diagnosis and the various reasoning strategies they use. Based on this information, a conceptual architecture was developed for the fault monitoring and diagnosis process. This architecture represents an approach and a framework which, once incorporated with the necessary detail and knowledge, can be a fully operational fault monitoring and diagnosis system, as well as providing the basis for comparison of this approach to other fault monitoring and diagnosis concepts. The architecture encompasses all aspects of the aircraft's operation, including navigation, guidance and controls, and subsystem status. The portion of the architecture that encompasses subsystem monitoring and diagnosis was implemented for an aircraft turbofan engine to explore and demonstrate the AI concepts involved. This paper describes the architecture and the implementation for the engine subsystem.
Developing a distributed data dictionary service
NASA Technical Reports Server (NTRS)
U'Ren, J.
2000-01-01
This paper will explore the use of the Lightweight Directory Access Protocol (LDAP) using the ISO 11179 Data Dictionary Schema as a mechanism for standardizing the structure and communication links between data dictionaries.
Mobilization Protocols for Hybrid Sensors for Environmental AOP Sampling (HySEAS) Observations
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.
2014-01-01
The protocols presented here enable the proper mobilization of the latest-generation instruments for measuring the apparent optical properties (AOPs) of aquatic ecosystems. The protocols are designed for the Hybrid Sensors for Environmental AOP Sampling (HySEAS) class of instruments, but are applicable to the community of practice for AOP measurements. The protocols are organized into eleven sections beyond an introductory overview: a) cables and connectors, b) HySEAS instruments, c) platform preparation, d) instrument installation, e) cable installation, f) test deployment, g) test recovery, h) maintenance, i) shipping, j) storage, and k) smallboat operations. Each section concentrates on documenting how to prevent the most likely faults, remedy them should they occur, and accomplishing both with the proper application of a modest set of useful tools. Within the twelve sections, there are Socratic exercises to stimulate thought, and the answers to these exercises appear in Appendix A. Frequently asked questions (FAQs) are summarized in a separate section after the answers to the exercises in Appendix B. For practitioners unfamiliar with the nautical terms used throughout this document plus others likely encountered at sea, an abbreviated dictionary of nautical terms appears in Appendix C. An abbreviated dictionary of radiotelephone terms is presented in Appendix D. To ensure familiarity with many of the tools that are presented, Appendix E provides a description of the tools alongside a thumbnail picture. Abbreviated deployment checklists and cable diagrams are provided in Appendix F. The document concludes with an acknowledgments section, a glossary of acronyms, a definition of symbols, and a list of references.
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...
2014-12-09
We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less
NASA Astrophysics Data System (ADS)
Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James
2016-03-01
Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.
Hippocampus Segmentation Based on Local Linear Mapping
Pang, Shumao; Jiang, Jun; Lu, Zhentai; Li, Xueli; Yang, Wei; Huang, Meiyan; Zhang, Yu; Feng, Yanqiu; Huang, Wenhua; Feng, Qianjin
2017-01-01
We propose local linear mapping (LLM), a novel fusion framework for distance field (DF) to perform automatic hippocampus segmentation. A k-means cluster method is propose for constructing magnetic resonance (MR) and DF dictionaries. In LLM, we assume that the MR and DF samples are located on two nonlinear manifolds and the mapping from the MR manifold to the DF manifold is differentiable and locally linear. We combine the MR dictionary using local linear representation to present the test sample, and combine the DF dictionary using the corresponding coefficients derived from local linear representation procedure to predict the DF of the test sample. We then merge the overlapped predicted DF patch to obtain the DF value of each point in the test image via a confidence-based weighted average method. This approach enabled us to estimate the label of the test image according to the predicted DF. The proposed method was evaluated on brain images of 35 subjects obtained from SATA dataset. Results indicate the effectiveness of the proposed method, which yields mean Dice similarity coefficients of 0.8697, 0.8770 and 0.8734 for the left, right and bi-lateral hippocampus, respectively. PMID:28368016
Hippocampus Segmentation Based on Local Linear Mapping.
Pang, Shumao; Jiang, Jun; Lu, Zhentai; Li, Xueli; Yang, Wei; Huang, Meiyan; Zhang, Yu; Feng, Yanqiu; Huang, Wenhua; Feng, Qianjin
2017-04-03
We propose local linear mapping (LLM), a novel fusion framework for distance field (DF) to perform automatic hippocampus segmentation. A k-means cluster method is propose for constructing magnetic resonance (MR) and DF dictionaries. In LLM, we assume that the MR and DF samples are located on two nonlinear manifolds and the mapping from the MR manifold to the DF manifold is differentiable and locally linear. We combine the MR dictionary using local linear representation to present the test sample, and combine the DF dictionary using the corresponding coefficients derived from local linear representation procedure to predict the DF of the test sample. We then merge the overlapped predicted DF patch to obtain the DF value of each point in the test image via a confidence-based weighted average method. This approach enabled us to estimate the label of the test image according to the predicted DF. The proposed method was evaluated on brain images of 35 subjects obtained from SATA dataset. Results indicate the effectiveness of the proposed method, which yields mean Dice similarity coefficients of 0.8697, 0.8770 and 0.8734 for the left, right and bi-lateral hippocampus, respectively.
Sparse Coding of Natural Human Motion Yields Eigenmotions Consistent Across People
NASA Astrophysics Data System (ADS)
Thomik, Andreas; Faisal, A. Aldo
2015-03-01
Providing a precise mathematical description of the structure of natural human movement is a challenging problem. We use a data-driven approach to seek a generative model of movement capturing the underlying simplicity of spatial and temporal structure of behaviour observed in daily life. In perception, the analysis of natural scenes has shown that sparse codes of such scenes are information theoretic efficient descriptors with direct neuronal correlates. Translating from perception to action, we identify a generative model of movement generation by the human motor system. Using wearable full-hand motion capture, we measure the digit movement of the human hand in daily life. We learn a dictionary of ``eigenmotions'' which we use for sparse encoding of the movement data. We show that the dictionaries are generally well preserved across subjects with small deviations accounting for individuality of the person and variability in tasks. Further, the dictionary elements represent motions which can naturally describe hand movements. Our findings suggest the motor system can compose complex movement behaviours out of the spatially and temporally sparse activation of ``eigenmotion'' neurons, and is consistent with data on grasp-type specificity of specialised neurons in the premotor cortex. Andreas is supported by the Luxemburg Research Fund (1229297).
Hippocampus Segmentation Based on Local Linear Mapping
NASA Astrophysics Data System (ADS)
Pang, Shumao; Jiang, Jun; Lu, Zhentai; Li, Xueli; Yang, Wei; Huang, Meiyan; Zhang, Yu; Feng, Yanqiu; Huang, Wenhua; Feng, Qianjin
2017-04-01
We propose local linear mapping (LLM), a novel fusion framework for distance field (DF) to perform automatic hippocampus segmentation. A k-means cluster method is propose for constructing magnetic resonance (MR) and DF dictionaries. In LLM, we assume that the MR and DF samples are located on two nonlinear manifolds and the mapping from the MR manifold to the DF manifold is differentiable and locally linear. We combine the MR dictionary using local linear representation to present the test sample, and combine the DF dictionary using the corresponding coefficients derived from local linear representation procedure to predict the DF of the test sample. We then merge the overlapped predicted DF patch to obtain the DF value of each point in the test image via a confidence-based weighted average method. This approach enabled us to estimate the label of the test image according to the predicted DF. The proposed method was evaluated on brain images of 35 subjects obtained from SATA dataset. Results indicate the effectiveness of the proposed method, which yields mean Dice similarity coefficients of 0.8697, 0.8770 and 0.8734 for the left, right and bi-lateral hippocampus, respectively.
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-01-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2015-10-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.
NASA Technical Reports Server (NTRS)
Nelson, James H.; Callan, Daniel R.
1985-01-01
To establish consistency and visibility within the Orbital Transfer Vehicle (OTV) program, a preliminary work breakdown structure (WBS) and dictionary were developed. The dictionary contains definitions of terms to be used in conjunction with the WBS so that a clear understanding of the content of the hardware, function, and cost elements may be established. The OTV WBS matrix is a two-dimensional structure which shows the interrelationship of these dimensions: the hardware elements dimension and the phase and function dimension. The dimension of time cannot be shown graphically, but must be considered. Each cost entry varies with time so that it is necessary to know these cost values by year for budget planning and approval as well as for establishing cost streams for discounting purposes in the economic analysis. While a multiple dimensional approach may at first appear complex, it actually provides benefits which outweigh any concern. This structural interrelationship provides the capability to view and analyze the OTV costs from a number of different financial and management aspects. Cost may be summed by hardware groupings, phases, or functions. The WBS may be used in a number of dimensional or single listing format applications.
NASA Astrophysics Data System (ADS)
Panu, U. S.; Ng, W.; Rasmussen, P. F.
2009-12-01
The modeling of weather states (i.e., precipitation occurrences) is critical when the historical data are not long enough for the desired analysis. Stochastic models (e.g., Markov Chain and Alternating Renewal Process (ARP)) of the precipitation occurrence processes generally assume the existence of short-term temporal-dependency between the neighboring states while implying the existence of long-term independency (randomness) of states in precipitation records. Existing temporal-dependent models for the generation of precipitation occurrences are restricted either by the fixed-length memory (e.g., the order of a Markov chain model), or by the reining states in segments (e.g., persistency of homogenous states within dry/wet-spell lengths of an ARP). The modeling of variable segment lengths and states could be an arduous task and a flexible modeling approach is required for the preservation of various segmented patterns of precipitation data series. An innovative Dictionary approach has been developed in the field of genome pattern recognition for the identification of frequently occurring genome segments in DNA sequences. The genome segments delineate the biologically meaningful ``words" (i.e., segments with a specific patterns in a series of discrete states) that can be jointly modeled with variable lengths and states. A meaningful “word”, in hydrology, can be referred to a segment of precipitation occurrence comprising of wet or dry states. Such flexibility would provide a unique advantage over the traditional stochastic models for the generation of precipitation occurrences. Three stochastic models, namely, the alternating renewal process using Geometric distribution, the second-order Markov chain model, and the Dictionary approach have been assessed to evaluate their efficacy for the generation of daily precipitation sequences. Comparisons involved three guiding principles namely (i) the ability of models to preserve the short-term temporal-dependency in data through the concepts of autocorrelation, average mutual information, and Hurst exponent, (ii) the ability of models to preserve the persistency within the homogenous dry/wet weather states through analysis of dry/wet-spell lengths between the observed and generated data, and (iii) the ability to assesses the goodness-of-fit of models through the likelihood estimates (i.e., AIC and BIC). Past 30 years of observed daily precipitation records from 10 Canadian meteorological stations were utilized for comparative analyses of the three models. In general, the Markov chain model performed well. The remainders of the models were found to be competitive from one another depending upon the scope and purpose of the comparison. Although the Markov chain model has a certain advantage in the generation of daily precipitation occurrences, the structural flexibility offered by the Dictionary approach in modeling the varied segment lengths of heterogeneous weather states provides a distinct and powerful advantage in the generation of precipitation sequences.
Analysis of typical fault-tolerant architectures using HARP
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Bechta Dugan, Joanne; Trivedi, Kishor S.; Rothmann, Elizabeth M.; Smith, W. Earl
1987-01-01
Difficulties encountered in the modeling of fault-tolerant systems are discussed. The Hybrid Automated Reliability Predictor (HARP) approach to modeling fault-tolerant systems is described. The HARP is written in FORTRAN, consists of nearly 30,000 lines of codes and comments, and is based on behavioral decomposition. Using the behavioral decomposition, the dependability model is divided into fault-occurrence/repair and fault/error-handling models; the characteristics and combining of these two models are examined. Examples in which the HARP is applied to the modeling of some typical fault-tolerant systems, including a local-area network, two fault-tolerant computer systems, and a flight control system, are presented.
A dictionary server for supplying context sensitive medical knowledge.
Ruan, W; Bürkle, T; Dudeck, J
2000-01-01
The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service.
Nonuniform code concatenation for universal fault-tolerant quantum computing
NASA Astrophysics Data System (ADS)
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
Sparsity and Nullity: Paradigm for Analysis Dictionary Learning
2016-08-09
16. SECURITY CLASSIFICATION OF: Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and...we investigate the relation between the SNS problem and the analysis dictionary learning problem, and show that the SNS problem plays a central role...and may be utilized to solve dictionary learning problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12
Parsing and Tagging of Bilingual Dictionary
2003-09-01
LAMP-TR-106 CAR-TR-991 CS-TR-4529 UMIACS-TR-2003-97 PARSING ANS TAGGING OF BILINGUAL DICTIONARY Huanfeng Ma1,2, Burcu Karagol-Ayan1,2, David... dictionaries hold great potential as a source of lexical resources for training and testing automated systems for optical character recognition, machine...translation, and cross-language information retrieval. In this paper, we describe a system for extracting term lexicons from printed bilingual dictionaries
Whissell, Cynthia
2003-06-01
A principal components analysis of 68 volunteers' subjective ratings of 20 excerpts of Romantic poetry and of Dictionary of Affect scores for the same excerpts produced four components representing Pleasantness, Activation, Romanticism, and Nature. Dictionary measures and subjective ratings of the same constructs loaded on the same factor. Results are interpreted as providing construct validity for the Dictionary of Affect.
Adaptive Greedy Dictionary Selection for Web Media Summarization.
Cong, Yang; Liu, Ji; Sun, Gan; You, Quanzeng; Li, Yuncheng; Luo, Jiebo
2017-01-01
Initializing an effective dictionary is an indispensable step for sparse representation. In this paper, we focus on the dictionary selection problem with the objective to select a compact subset of basis from original training data instead of learning a new dictionary matrix as dictionary learning models do. We first design a new dictionary selection model via l 2,0 norm. For model optimization, we propose two methods: one is the standard forward-backward greedy algorithm, which is not suitable for large-scale problems; the other is based on the gradient cues at each forward iteration and speeds up the process dramatically. In comparison with the state-of-the-art dictionary selection models, our model is not only more effective and efficient, but also can control the sparsity. To evaluate the performance of our new model, we select two practical web media summarization problems: 1) we build a new data set consisting of around 500 users, 3000 albums, and 1 million images, and achieve effective assisted albuming based on our model and 2) by formulating the video summarization problem as a dictionary selection issue, we employ our model to extract keyframes from a video sequence in a more flexible way. Generally, our model outperforms the state-of-the-art methods in both these two tasks.
ERIC Educational Resources Information Center
Murray, John J.
1965-01-01
Three game approaches to the teaching of poetry, designed to make the student actively involved with poems are described as "teaching tools." The semantico-dictionary or word-cross game involves programing techniques, logic, and lexicography in poetic analysis. The punched-out poem game involves filling in the blanks of a poem in which all the…
New Media in the Design of a Learners' Dictionary.
ERIC Educational Resources Information Center
Gamper, Johann; Knapp, Judith
This paper presents an interdisciplinary research project that aims at developing an electronic vocabulary acquisition system for the German and the Italian language called ELDIT (Elektronisches Lern(er)worterbuch Deutsch Italienisch). The approach for studying and practicing the vocabulary. To ensure maximum effectiveness of the learning process,…
Indigenous Research Capability in Aotearoa
ERIC Educational Resources Information Center
Ormond, Adreanne; Williams, Les R. Tumoana
2013-01-01
This article begins by considering the general nature of capability, from some dictionary meanings, then extends to theoretical perspectives related to the capability approach. As a consequence, we arrive at an operational definition that emphasises the ability to solve problems in a systematic way that brings transformation. In these terms,…
Nguyen, Ba Nghiep; Hou, Zhangshuan; Last, George V.; ...
2016-09-29
This work develops a three-dimensional multiscale model to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults southwest of the Kimberlina site. The model uses the STOMP-CO 2 code for flow modeling that is coupled to the ABAQUS® finite element package for geomechanical analysis. A 3D ABAQUS® finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements. Five zones with different mineral compositions are considered: shale, sandstone, faultmore » damaged sandstone, fault damaged shale, and fault core. Rocks’ elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanka approach (EMTA). EMTA can account for up to 15 mineral phases. The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation. A STOMP-CO 2 grid that exactly maps the ABAQUS® finite element model is built for coupled hydro-mechanical analyses. Simulations of the reservoir assuming three different crack pattern situations (including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO 2 due to cracks that enhance the permeability of the fault damage zones. Here, the results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO 2 plume. Potential hydraulic fracture and the tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Last, George V.
This work develops a three-dimensional multiscale model to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults southwest of the Kimberlina site. The model uses the STOMP-CO 2 code for flow modeling that is coupled to the ABAQUS® finite element package for geomechanical analysis. A 3D ABAQUS® finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements. Five zones with different mineral compositions are considered: shale, sandstone, faultmore » damaged sandstone, fault damaged shale, and fault core. Rocks’ elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanka approach (EMTA). EMTA can account for up to 15 mineral phases. The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation. A STOMP-CO 2 grid that exactly maps the ABAQUS® finite element model is built for coupled hydro-mechanical analyses. Simulations of the reservoir assuming three different crack pattern situations (including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO 2 due to cracks that enhance the permeability of the fault damage zones. Here, the results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO 2 plume. Potential hydraulic fracture and the tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties.« less
Natural-Annotation-based Unsupervised Construction of Korean-Chinese Domain Dictionary
NASA Astrophysics Data System (ADS)
Liu, Wuying; Wang, Lin
2018-03-01
The large-scale bilingual parallel resource is significant to statistical learning and deep learning in natural language processing. This paper addresses the automatic construction issue of the Korean-Chinese domain dictionary, and presents a novel unsupervised construction method based on the natural annotation in the raw corpus. We firstly extract all Korean-Chinese word pairs from Korean texts according to natural annotations, secondly transform the traditional Chinese characters into the simplified ones, and finally distill out a bilingual domain dictionary after retrieving the simplified Chinese words in an extra Chinese domain dictionary. The experimental results show that our method can automatically build multiple Korean-Chinese domain dictionaries efficiently.
NASA Astrophysics Data System (ADS)
Jiang, Li; Xuan, Jianping; Shi, Tielin
2013-12-01
Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yumin; Lum, Kai-Yew; Wang Qingguo
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew
2009-03-01
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.
Deconvoluting complex structural histories archived in brittle fault zones
NASA Astrophysics Data System (ADS)
Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.
2016-11-01
Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.
NASA Technical Reports Server (NTRS)
Landano, M. R.; Easter, R. W.
1984-01-01
Aspects of Space Station automated systems testing and verification are discussed, taking into account several program requirements. It is found that these requirements lead to a number of issues of uncertainties which require study and resolution during the Space Station definition phase. Most, if not all, of the considered uncertainties have implications for the overall testing and verification strategy adopted by the Space Station Program. A description is given of the Galileo Orbiter fault protection design/verification approach. Attention is given to a mission description, an Orbiter description, the design approach and process, the fault protection design verification approach/process, and problems of 'stress' testing.
Cheap Words: A Paperback Dictionary Roundup.
ERIC Educational Resources Information Center
Kister, Ken
1979-01-01
Surveys currently available paperback editions in three classes of dictionaries: collegiate, abridged, and pocket. A general discussion distinguishes among the classes and offers seven consumer tips, followed by an annotated listing of dictionaries now available. (SW)
The Fault Block Model: A novel approach for faulted gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ursin, J.R.; Moerkeseth, P.O.
1994-12-31
The Fault Block Model was designed for the development of gas production from Sleipner Vest. The reservoir consists of marginal marine sandstone of Hugine Formation. Modeling of highly faulted and compartmentalized reservoirs is severely impeded by the nature and extent of known and undetected faults and, in particular, their effectiveness as flow barrier. The model presented is efficient and superior to other models, for highly faulted reservoir, i.e. grid based simulators, because it minimizes the effect of major undetected faults and geological uncertainties. In this article the authors present the Fault Block Model as a new tool to better understandmore » the implications of geological uncertainty in faulted gas reservoirs with good productivity, with respect to uncertainty in well coverage and optimum gas recovery.« less
As above, so below? Towards understanding inverse models in BCI
NASA Astrophysics Data System (ADS)
Lindgren, Jussi T.
2018-02-01
Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.
On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.
Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba
2013-01-01
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ d , and the dictionary is learned from the training data using the vector space structure of ℝ d and its Euclidean L 2 -metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.
On A Nonlinear Generalization of Sparse Coding and Dictionary Learning
Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba
2013-01-01
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝd, and the dictionary is learned from the training data using the vector space structure of ℝd and its Euclidean L2-metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis. PMID:24129583
An analysis dictionary learning algorithm under a noisy data model with orthogonality constraint.
Zhang, Ye; Yu, Tenglong; Wang, Wenwu
2014-01-01
Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.
Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data
Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.
2015-01-01
We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.
Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda
2014-01-01
In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467
An adaptive confidence limit for periodic non-steady conditions fault detection
NASA Astrophysics Data System (ADS)
Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong
2016-05-01
System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.
Managing Space System Faults: Coalescing NASA's Views
NASA Technical Reports Server (NTRS)
Muirhead, Brian; Fesq, Lorraine
2012-01-01
Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.
Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan
2014-03-01
Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.
SaRAD: a Simple and Robust Abbreviation Dictionary.
Adar, Eytan
2004-03-01
Due to recent interest in the use of textual material to augment traditional experiments it has become necessary to automatically cluster, classify and filter natural language information. The Simple and Robust Abbreviation Dictionary (SaRAD) provides an easy to implement, high performance tool for the construction of a biomedical symbol dictionary. The algorithms, applied to the MEDLINE document set, result in a high quality dictionary and toolset to disambiguate abbreviation symbols automatically.
The Effect of Bilingual Term List Size on Dictionary-Based Cross-Language Information Retrieval
2006-01-01
The Effect of Bilingual Term List Size on Dictionary -Based Cross-Language Information Retrieval Dina Demner-Fushman Department of Computer Science... dictionary -based Cross-Language Information Retrieval (CLIR), in which the goal is to find documents written in one natural language based on queries that...in which the documents are written. In dictionary -based CLIR techniques, the princi- pal source of translation knowledge is a translation lexicon
Robust Multimodal Dictionary Learning
Cao, Tian; Jojic, Vladimir; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
We propose a robust multimodal dictionary learning method for multimodal images. Joint dictionary learning for both modalities may be impaired by lack of correspondence between image modalities in training data, for example due to areas of low quality in one of the modalities. Dictionaries learned with such non-corresponding data will induce uncertainty about image representation. In this paper, we propose a probabilistic model that accounts for image areas that are poorly corresponding between the image modalities. We cast the problem of learning a dictionary in presence of problematic image patches as a likelihood maximization problem and solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly corresponding patches and re-finements of the dictionary. We tested our method on synthetic and real data. We show improvements in image prediction quality and alignment accuracy when using the method for multimodal image registration. PMID:24505674
A dictionary server for supplying context sensitive medical knowledge.
Ruan, W.; Bürkle, T.; Dudeck, J.
2000-01-01
The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service. PMID:11079978
NASA Astrophysics Data System (ADS)
Correll, Don; Heeter, Robert; Alvarez, Mitch
2000-10-01
In response to many inquiries for a list of plasma terms, a database driven Plasma Dictionary website (plasmadictionary.llnl.gov) was created that allows users to submit new terms, search for specific terms or browse alphabetic listings. The Plasma Dictionary website contents began with the Fusion & Plasma Glossary terms available at the Fusion Energy Educational website (fusedweb.llnl.gov). Plasma researchers are encouraged to add terms and definitions. By clarifying the meanings of specific plasma terms, it is envisioned that the primary use of the Plasma Dictionary website will be by students, teachers, researchers, and writers for (1) Enhancing literacy in plasma science, (2) Serving as an educational aid, (3) Providing practical information, and (4) Helping clarify plasma writings. The Plasma Dictionary website has already proved useful in responding to a request from the CRC Press (www.crcpress.com) to add plasma terms to its CRC physics dictionary project (members.aol.com/physdict/).
The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm
NASA Astrophysics Data System (ADS)
Tan, Linglong; Li, Changkai; Wang, Yueqin
2018-04-01
SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
NASA Astrophysics Data System (ADS)
Liu, G.; Wu, C.; Li, X.; Song, P.
2013-12-01
The 3D urban geological information system has been a major part of the national urban geological survey project of China Geological Survey in recent years. Large amount of multi-source and multi-subject data are to be stored in the urban geological databases. There are various models and vocabularies drafted and applied by industrial companies in urban geological data. The issues such as duplicate and ambiguous definition of terms and different coding structure increase the difficulty of information sharing and data integration. To solve this problem, we proposed a national standard-driven information classification and coding method to effectively store and integrate urban geological data, and we applied the data dictionary technology to achieve structural and standard data storage. The overall purpose of this work is to set up a common data platform to provide information sharing service. Research progresses are as follows: (1) A unified classification and coding method for multi-source data based on national standards. Underlying national standards include GB 9649-88 for geology and GB/T 13923-2006 for geography. Current industrial models are compared with national standards to build a mapping table. The attributes of various urban geological data entity models are reduced to several categories according to their application phases and domains. Then a logical data model is set up as a standard format to design data file structures for a relational database. (2) A multi-level data dictionary for data standardization constraint. Three levels of data dictionary are designed: model data dictionary is used to manage system database files and enhance maintenance of the whole database system; attribute dictionary organizes fields used in database tables; term and code dictionary is applied to provide a standard for urban information system by adopting appropriate classification and coding methods; comprehensive data dictionary manages system operation and security. (3) An extension to system data management function based on data dictionary. Data item constraint input function is making use of the standard term and code dictionary to get standard input result. Attribute dictionary organizes all the fields of an urban geological information database to ensure the consistency of term use for fields. Model dictionary is used to generate a database operation interface automatically with standard semantic content via term and code dictionary. The above method and technology have been applied to the construction of Fuzhou Urban Geological Information System, South-East China with satisfactory results.
Swetapadma, Aleena; Yadav, Anamika
2015-01-01
Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088
Learning overcomplete representations from distributed data: a brief review
NASA Astrophysics Data System (ADS)
Raja, Haroon; Bajwa, Waheed U.
2016-05-01
Most of the research on dictionary learning has focused on developing algorithms under the assumption that data is available at a centralized location. But often the data is not available at a centralized location due to practical constraints like data aggregation costs, privacy concerns, etc. Using centralized dictionary learning algorithms may not be the optimal choice in such settings. This motivates the design of dictionary learning algorithms that consider distributed nature of data as one of the problem variables. Just like centralized settings, distributed dictionary learning problem can be posed in more than one way depending on the problem setup. Most notable distinguishing features are the online versus batch nature of data and the representative versus discriminative nature of the dictionaries. In this paper, several distributed dictionary learning algorithms that are designed to tackle different problem setups are reviewed. One of these algorithms is cloud K-SVD, which solves the dictionary learning problem for batch data in distributed settings. One distinguishing feature of cloud K-SVD is that it has been shown to converge to its centralized counterpart, namely, the K-SVD solution. On the other hand, no such guarantees are provided for other distributed dictionary learning algorithms. Convergence of cloud K-SVD to the centralized K-SVD solution means problems that are solvable by K-SVD in centralized settings can now be solved in distributed settings with similar performance. Finally, cloud K-SVD is used as an example to show the advantages that are attainable by deploying distributed dictionary algorithms for real world distributed datasets.
Automatic Fault Characterization via Abnormality-Enhanced Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronevetsky, G; Laguna, I; de Supinski, B R
Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less
Dictionnaires et encyclopedies: cuvee 89 (Dictionaries and Encyclopedias: Vintage 89).
ERIC Educational Resources Information Center
Ibrahim, Amr Helmy
1989-01-01
For the first time since its initial publication in 1905, the much-imitated "Petit Larousse" dictionary/reference book has a true competitor in Hachette's "Le Dictionnaire de notre temps", a new dictionary reflecting modern French usage. (MSE)
Methodology for Designing Fault-Protection Software
NASA Technical Reports Server (NTRS)
Barltrop, Kevin; Levison, Jeffrey; Kan, Edwin
2006-01-01
A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture.
Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng
2017-07-12
As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.
Terminological reference of a knowledge-based system: the data dictionary.
Stausberg, J; Wormek, A; Kraut, U
1995-01-01
The development of open and integrated knowledge bases makes new demands on the definition of the used terminology. The definition should be realized in a data dictionary separated from the knowledge base. Within the works done at a reference model of medical knowledge, a data dictionary has been developed and used in different applications: a term definition shell, a documentation tool and a knowledge base. The data dictionary includes that part of terminology, which is largely independent of a certain knowledge model. For that reason, the data dictionary can be used as a basis for integrating knowledge bases into information systems, for knowledge sharing and reuse and for modular development of knowledge-based systems.
Using dictionaries to study the mental lexicon.
Anshen, F; Aronoff, M
The notion of a mental lexicon has its historical roots in practical reference dictionaries. The distributional analysis of dictionaries provides one means of investigating the structure of the mental lexicon. We review our earlier work with dictionaries, based on a three-way horserace model of lexical access and production, and then present the most recent results of our ongoing analysis of the Oxford English Dictionary, Second Edition on CD-ROM, which traces changes in productivity over time of the English suffixes -ment and -ity, both of which originate in French borrowings. Our results lead us to question the validity of automatic analogy from a set of existing words as the driving force behind morphological productivity. Copyright 1999 Academic Press.
Weiss, Christian; Zoubir, Abdelhak M
2017-05-01
We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a preprocessing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.
NASA Technical Reports Server (NTRS)
Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.
1992-01-01
Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.
NASA Astrophysics Data System (ADS)
Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe
2017-04-01
A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.
The T.M.R. Data Dictionary: A Management Tool for Data Base Design
Ostrowski, Maureen; Bernes, Marshall R.
1984-01-01
In January 1981, a dictionary-driven ambulatory care information system known as TMR (The Medical Record) was installed at a large private medical group practice in Los Angeles. TMR's data dictionary has enabled the medical group to adapt the software to meet changing user needs largely without programming support. For top management, the dictionary is also a tool for navigating through the system's complexity and assuring the integrity of management goals.
NASA Astrophysics Data System (ADS)
Horesh, L.; Haber, E.
2009-09-01
The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.
An Improved Sparse Representation over Learned Dictionary Method for Seizure Detection.
Li, Junhui; Zhou, Weidong; Yuan, Shasha; Zhang, Yanli; Li, Chengcheng; Wu, Qi
2016-02-01
Automatic seizure detection has played an important role in the monitoring, diagnosis and treatment of epilepsy. In this paper, a patient specific method is proposed for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. This seizure detection method is based on sparse representation with online dictionary learning and elastic net constraint. The online learned dictionary could sparsely represent the testing samples more accurately, and the elastic net constraint which combines the 11-norm and 12-norm not only makes the coefficients sparse but also avoids over-fitting problem. First, the EEG signals are preprocessed using wavelet filtering and differential filtering, and the kernel function is applied to make the samples closer to linearly separable. Then the dictionaries of seizure and nonseizure are respectively learned from original ictal and interictal training samples with online dictionary optimization algorithm to compose the training dictionary. After that, the test samples are sparsely coded over the learned dictionary and the residuals associated with ictal and interictal sub-dictionary are calculated, respectively. Eventually, the test samples are classified as two distinct categories, seizure or nonseizure, by comparing the reconstructed residuals. The average segment-based sensitivity of 95.45%, specificity of 99.08%, and event-based sensitivity of 94.44% with false detection rate of 0.23/h and average latency of -5.14 s have been achieved with our proposed method.
ERIC Educational Resources Information Center
Painter, Derrick
1996-01-01
Discussion of dictionaries as databases focuses on the digitizing of The Oxford English dictionary (OED) and the use of Standard Generalized Mark-Up Language (SGML). Topics include the creation of a consortium to digitize the OED, document structure, relational databases, text forms, sequence, and discourse. (LRW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper presents a detailed evaluation of the performance of a statistical, rule-based fault detection and diagnostic (FDD) technique presented by Rossi and Braun (1997). Steady-state and transient tests were performed on a simple rooftop air conditioner over a range of conditions and fault levels. The steady-state data without faults were used to train models that predict outputs for normal operation. The transient data with faults were used to evaluate FDD performance. The effect of a number of design variables on FDD sensitivity for different faults was evaluated and two prototype systems were specified for more complete evaluation. Good performancemore » was achieved in detecting and diagnosing five faults using only six temperatures (2 input and 4 output) and linear models. The performance improved by about a factor of two when ten measurements (three input and seven output) and higher order models were used. This approach for evaluating and optimizing the performance of the statistical, rule-based FDD technique could be used as a design and evaluation tool when applying this FDD method to other packaged air-conditioning systems. Furthermore, the approach could also be modified to evaluate the performance of other FDD methods.« less
NASA Astrophysics Data System (ADS)
Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.
2017-12-01
Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (<0.2); while several faults with high understress (>0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress < 0.08), whereas the fault of M5 Fairview earthquake is only moderately stressed (understress > 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock-type sequence for Prague and Pawnee earthquakes, compared to predominantly swarm-type behavior for Fairview earthquake. These results provide ways to quantitatively evaluate local earthquake hazard.
Aagaard, Brad T.; Knepley, M.G.; Williams, C.A.
2013-01-01
We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.
An Integrated Framework for Model-Based Distributed Diagnosis and Prognosis
NASA Technical Reports Server (NTRS)
Bregon, Anibal; Daigle, Matthew J.; Roychoudhury, Indranil
2012-01-01
Diagnosis and prognosis are necessary tasks for system reconfiguration and fault-adaptive control in complex systems. Diagnosis consists of detection, isolation and identification of faults, while prognosis consists of prediction of the remaining useful life of systems. This paper presents a novel integrated framework for model-based distributed diagnosis and prognosis, where system decomposition is used to enable the diagnosis and prognosis tasks to be performed in a distributed way. We show how different submodels can be automatically constructed to solve the local diagnosis and prognosis problems. We illustrate our approach using a simulated four-wheeled rover for different fault scenarios. Our experiments show that our approach correctly performs distributed fault diagnosis and prognosis in an efficient and robust manner.