Sample records for fault location

  1. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines

    PubMed Central

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088

  2. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    PubMed Central

    Al-Mohammed, A. H.; Abido, M. A.

    2014-01-01

    This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research. PMID:24701191

  3. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  4. Smart intimation and location of faults in distribution system

    NASA Astrophysics Data System (ADS)

    Hari Krishna, K.; Srinivasa Rao, B.

    2018-04-01

    Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.

  5. Features and dimensions of the Hayward Fault Zone in the Strawberry and Blackberry Creek Area, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1995-03-01

    This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less

  6. Bayesian estimation of source parameters and associated Coulomb failure stress changes for the 2005 Fukuoka (Japan) Earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, Rishabh; Jónsson, Sigurjón; Wang, Teng; Vasyura-Bathke, Hannes

    2018-04-01

    Several researchers have studied the source parameters of the 2005 Fukuoka (northwestern Kyushu Island, Japan) earthquake (Mw 6.6) using teleseismic, strong motion and geodetic data. However, in all previous studies, errors of the estimated fault solutions have been neglected, making it impossible to assess the reliability of the reported solutions. We use Bayesian inference to estimate the location, geometry and slip parameters of the fault and their uncertainties using Interferometric Synthetic Aperture Radar and Global Positioning System data. The offshore location of the earthquake makes the fault parameter estimation challenging, with geodetic data coverage mostly to the southeast of the earthquake. To constrain the fault parameters, we use a priori constraints on the magnitude of the earthquake and the location of the fault with respect to the aftershock distribution and find that the estimated fault slip ranges from 1.5 to 2.5 m with decreasing probability. The marginal distributions of the source parameters show that the location of the western end of the fault is poorly constrained by the data whereas that of the eastern end, located closer to the shore, is better resolved. We propagate the uncertainties of the fault model and calculate the variability of Coulomb failure stress changes for the nearby Kego fault, located directly below Fukuoka city, showing that the main shock increased stress on the fault and brought it closer to failure.

  7. Delivery and application of precise timing for a traveling wave powerline fault locator system

    NASA Technical Reports Server (NTRS)

    Street, Michael A.

    1990-01-01

    The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.

  8. Controls of repeating earthquakes' location from a- and b- values imaging

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Kawamura, M.

    2017-12-01

    The locations where creeping and locked fault areas abut have commonly found to be delineated by the foci of small repeating earthquakes (REs). REs not only represent the finer structure of high creep-rate location, they also function as fault slip-rate indicators. Knowledge of the expected location of REs therefore, is crucial for fault deformation monitoring and assessment of earthquake potential. However, a precise description of factors determining REs locations is lacking. To explore where earthquakes tend to recur, we statistically investigated repeating earthquake catalogs and background seismicity from different regions including six fault segments in California and Taiwan. We show that the location of repeating earthquakes can be mapped using the spatial distribution of the seismic a- and b-values obtained from the background seismicity. Molchan's error diagram statistically confirmed that repeating earthquakes occur within areas with high a-values (2.8-3.8) and high b-values (0.9-1.1) on both strike-slip and thrust fault segments. However, no significant association held true for fault segments with more complicated geometry or for wider areas with a complex fault network. The productivity of small earthquakes responsible for high a- and b-values may thus be the most important factor controlling the location of repeating earthquakes. We hypothesize that, given that the deformation conditions within a fault zone are suitable for a planar fault plane, the location of repeating earthquakes can be best described by a-value 3 and b-value 1. This feature of a- and b-values may be useful for foresee the location of REs for measuring creep rate at depth. Further investigation of REs-rich areas may allow testing of this hypothesis.

  9. Development of Murray Loop Bridge for High Induced Voltage

    NASA Astrophysics Data System (ADS)

    Isono, Shigeki; Kawasaki, Katsutoshi; Kobayashi, Shin-Ichi; Ishihara, Hayato; Chiyajo, Kiyonobu

    In the case of the cable fault that ground fault resistance is less than 10MΩ, Murray Loop Bridge is excellent as a fault locator in location accuracy and the convenience. But, when the induction of several hundred V is taken from the single core cable which adjoins it, a fault location with the high voltage Murray Loop Bridge becomes difficult. Therefore, we developed Murray Loop Bridge, which could be applied even when the induced voltage of several hundred V occurs in the measurement cable. The evaluation of the fault location accuracy was done with the developed prototype by the actual line and the training equipment.

  10. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  11. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    NASA Astrophysics Data System (ADS)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  12. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  13. The complex architecture of the 2009 MW 6.1 L'Aquila normal fault system (Central Italy) as imaged by 64,000 high-resolution aftershock locations

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.; Di Stefano, R.; Piccinini, D.; Schaff, D. P.; Waldhauser, F.

    2011-12-01

    On April 6th 2009, a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in Central Italy. We present high-precision hypocenter locations of an extraordinary dataset composed by 64,000 earthquakes recorded at a very dense seismic network of 60 stations operating for 9 months after the main event. Events span in magnitude (ML) between -0.9 to 5.9, reaching a completeness magnitude of 0.7. The dataset has been processed by integrating an accurate automatic picking procedure together with cross-correlation and double-difference relative location methods. The combined use of these procedures results in earthquake relative location uncertainties in the range of a few meters to tens of meters, comparable/lower than the spatial dimension of the earthquakes themselves). This data set allows us to image the complex inner geometry of individual faults from the kilometre to meter scale. The aftershock distribution illuminates the anatomy of the en-echelon fault system composed of two major faults. The mainshock breaks the entire upper crust from 10 km depth to the surface along a 14-km long normal fault. A second segment, located north of the normal fault and activated by two Mw>5 events, shows a striking listric geometry completely blind. We focus on the analysis of about 300 clusters of co-located events to characterize the mechanical behavior of the different portions of the fault system. The number of events in each cluster ranges from 4 to 24 events and they exhibit strongly correlated seismograms at common stations. They mostly occur where secondary structures join the main fault planes and along unfavorably oriented segments. Moreover, larger clusters nucleate on secondary faults located in the overlapping area between the two main segments, where the rate of earthquake production is very high with a long-lasting seismic decay.

  14. Preliminary Pseudo 3-D Imagery of the State Line Fault, Stewart Valley, Nevada Using Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Saldaña, S. C.; Snelson, C. M.; Taylor, W. J.; Beachly, M.; Cox, C. M.; Davis, R.; Stropky, M.; Phillips, R.; Robins, C.; Cothrun, C.

    2007-12-01

    The Pahrump Fault system is located in the central Basin and Range region and consists of three main fault zones: the Nopah range front fault zone, the State Line fault zone and the Spring Mountains range fault zone. The State Line fault zone is made up north-west trending dextral strike-slip faults that run parallel to the Nevada- California border. Previous geologic and geophysical studies conducted in and around Stewart Valley, located ~90 km from Las Vegas, Nevada, have constrained the location of the State Line fault zone to within a few kilometers. The goals of this project were to use seismic methods to definitively locate the northwestern most trace of the State Line fault and produce pseudo 3-D seismic cross-sections that can then be used to characterize the subsurface geometry and determine the slip of the State Line fault. During July 2007, four seismic lines were acquired in Stewart Valley: two normal and two parallel to the mapped traces of the State Line fault. Presented here are preliminary results from the two seismic lines acquired normal to the fault. These lines were acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to produce a 595 m long profile to the north and a 715 m long profile to the south. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. These data returned excellent signal to noise and reveal subsurface lithology that will subsequently be used to resolve the subsurface geometry of the State Line fault. This knowledge will then enhance our understanding of the evolution of the State Line fault. Knowing how the State Line fault has evolved gives insight into the stick-slip fault evolution for the region and may improve understanding of how stress has been partitioned from larger strike-slip systems such as the San Andreas fault.

  15. Fault structure and mechanics of the Hayward Fault, California from double-difference earthquake locations

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    The relationship between small-magnitude seismicity and large-scale crustal faulting along the Hayward Fault, California, is investigated using a double-difference (DD) earthquake location algorithm. We used the DD method to determine high-resolution hypocenter locations of the seismicity that occurred between 1967 and 1998. The DD technique incorporates catalog travel time data and relative P and S wave arrival time measurements from waveform cross correlation to solve for the hypocentral separation between events. The relocated seismicity reveals a narrow, near-vertical fault zone at most locations. This zone follows the Hayward Fault along its northern half and then diverges from it to the east near San Leandro, forming the Mission trend. The relocated seismicity is consistent with the idea that slip from the Calaveras Fault is transferred over the Mission trend onto the northern Hayward Fault. The Mission trend is not clearly associated with any mapped active fault as it continues to the south and joins the Calaveras Fault at Calaveras Reservoir. In some locations, discrete structures adjacent to the main trace are seen, features that were previously hidden in the uncertainty of the network locations. The fine structure of the seismicity suggest that the fault surface on the northern Hayward Fault is curved or that the events occur on several substructures. Near San Leandro, where the more westerly striking trend of the Mission seismicity intersects with the surface trace of the (aseismic) southern Hayward Fault, the seismicity remains diffuse after relocation, with strong variation in focal mechanisms between adjacent events indicating a highly fractured zone of deformation. The seismicity is highly organized in space, especially on the northern Hayward Fault, where it forms horizontal, slip-parallel streaks of hypocenters of only a few tens of meters width, bounded by areas almost absent of seismic activity. During the interval from 1984 to 1998, when digital waveforms are available, we find that fewer than 6.5% of the earthquakes can be classified as repeating earthquakes, events that rupture the same fault patch more than one time. These most commonly are located in the shallow creeping part of the fault, or within the streaks at greater depth. The slow repeat rate of 2-3 times within the 15-year observation period for events with magnitudes around M = 1.5 is indicative of a low slip rate or a high stress drop. The absence of microearthquakes over large, contiguous areas of the northern Hayward Fault plane in the depth interval from ???5 to 10 km and the concentrations of seismicity at these depths suggest that the aseismic regions are either locked or retarded and are storing strain energy for release in future large-magnitude earthquakes.

  16. Delineation of faulting and basin geometry along a seismic reflection transect in urbanized San Bernardino Valley, California

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Anderson, M.L.

    2002-01-01

    Fourteen kilometers of continuous, shallow seismic reflection data acquired through the urbanized San Bernardino Valley, California, have revealed numerous faults between the San Jacinto and San Andreas faults as well as a complex pattern of downdropped and uplifted blocks. These data also indicate that the Loma Linda fault continues northeastward at least 4.5 km beyond its last mapped location on the southern edge of the valley and to within at least 2 km of downtown San Bernardino. Previously undetected faults within the valley northeast of the San Jacinto fault are also imaged, including the inferred western extension of the Banning fault and several unnamed faults. The Rialto-Colton fault is interpreted southwest of the San Jacinto fault. The seismic data image the top of the crystalline basement complex across 70% of the profile length and show that the basement has an overall dip of roughly 10?? southwest between Perris Hill and the San Jacinto fault. Gravity and aeromagnetic data corroborate the interpreted location of the San Jacinto fault and better constrain the basin depth along the seismic profile to be as deep as 1.7 km. These data also corroborate other fault locations and the general dip of the basement surface. At least 1.2 km of apparent vertical displacement on the basement is observed across the San Jacinto fault at the profile location. The basin geometry delineated by these data was used to generate modeled ground motions that show peak horizontal amplifications of 2-3.5 above bedrock response in the 0.05- to 1.0-Hz frequency band, which is consistent with recorded earthquake data in the valley.

  17. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Hardebeck, Jeanne L.

    2010-01-01

    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  18. Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method

    NASA Astrophysics Data System (ADS)

    Widodo

    2015-04-01

    The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence, near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.

  19. Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widodo, E-mail: widodo@gf.itb.ac.id

    The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence,more » near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.« less

  20. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  1. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  2. Interpretations on the Geologic Setting of Yogyakarta Earthquakes 2006 (Central Java, Indonesia) Based on Integration of Aftershock Monitoring and Existing Geologic, Geophysical and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Setijadji, L. D.; Watanabe, K.; Fukuoka, K.; Ehara, S.; Setiadji, Y.; Rahardjo, W.; Susilo, A.; Barianto, D. H.; Harijoko, A.; Sudarno, I.; Pramumijoyo, S.; Hendrayana, H.; Akmalludin, A.; Nishijima, J.; Itaya, T.

    2007-05-01

    The unprecedented 26 May 2006 Yogyakarta earthquake (central Java, Indonesia) that took victims of 5,700 lives was generally accepted to have a depth of about 10 km and moment magnitude of 6.4. However, the definition of location of active fault is still under debate as the epicenter of mainshock was reported quite differently by several institutions. Many researchers believe that the Opak fault which is located at the eastern boundary of Yogyakarta low-land area (or Yogyakarta Basin) and the high-land region of Southern Mountains was the source of year 2006 earthquakes. However, our result of aftershocks observation suggests that the ruptured zone was not located along the Opak fault but from an unknown fault located about 10 km to the east from it and within the Southern Mountains domain. Unfortunately, surface geologic manifestations are scarce as this area is now largely covered by limestone. Therefore the suspected active fault system must be studied through interpretations of the subsurface geology and evaluation of the Cenozoic geo-history of the region utilizing existing geologic, geophysical and remote sensing data. This work suggests that the Yogyakarta Basin is a volcano-tectonic depression formed gradually since the early Tertiary period (Oligo-Miocene or older). Geological and geophysical evidence suggest that structural trends changed from the Oligocene NE-SW towards the Oligo-Miocene NNE-SSW and the Plio-Pleistocene NW-SE and E-W directions. The ruptured "X" fault during the Yogyakarta earthquakes 2006 is likely to be a NNE-SSW trending fault which is parallel to the Opak fault and both were firstly active in the Oligo-Miocene as sinistral strike-slip faults. However, while the Opak fault had changed into a normal faulting after the Pliocene, the evidence from Kali Ngalang and Kali Widoro suggests that the "X" fault system was still reactivated as a strike-slip one during the Plio-Pleistocene orogeny. As this new interpretation of active fault causes spatial discrepancy between locations of earthquakes epicenters and highly damaged regions, other geo-engineering factors must be considerably important in determining the final scale of seismic hazards. The most vulnerable areas for seismic hazards are those located nearest to the ruptured fault and are underlain by thick Quaternary unconsolidated deposits. In case of regions along the fault line, seismic hazards seem to reach more distance region, such as the case of Gantiwarno region, as the seismic waves can travel more easily along the fault line.

  3. Ground-Penatrating Radar Investigations Across the Sawmill Branch Fault Near Charleston, South Carolina

    NASA Astrophysics Data System (ADS)

    Dura-Gomez, I.; Addison, A.; Knapp, C. C.; Talwani, P.; Chapman, A.

    2005-12-01

    During the 1886 Charleston earthquake, two parallel tabby walls of Fort Dorchester broke left-laterally, and a strike of ~N25°W was inferred for the causative Sawmill Branch fault. To better define this fault, which does not have any surface expression, we planned to cut trenches across it. However, as Fort Dorchester is a protected archeological site, we were required to locate the fault accurately away from the fort, before permission could be obtained to cut short trenches. The present GPR investigations were planned as a preliminary step to determine locations for trenching. A pulseEKKO 100 GPR was used to collect data along eight profiles (varying in length from 10 m to 30 m) that were run across the projected strike of the fault, and one 50 m long profile that was run parallel to it. The locations of the profiles were obtained using a total station. To capture the signature of the fault, sixteen common-offset (COS) lines were acquired by using different antennas (50, 100 and 200 MHz) and stacking 64 times to increase the signal-to-noise ratio. The location of trees and stumps were recorded. In addition, two common-midpoint (CMP) tests were carried out, and gave an average velocity of about 0.097 m/ns. Processing included the subtraction of the low frequency "wow" on the trace (dewow), automatic gain control (AGC) and the application of bandpass filters. The signals using the 50 MHz, 100 MHz and 200 MHz antennas were found to penetrate up to about 30 meters, 20 meters and 12 meters respectively. Vertically offset reflectors and disruptions of the electrical signal were used to infer the location of the fault(s). Comparisons of the locations of these disruptions on various lines were used to infer the presence of a N30°W fault zone We plan to confirm these locations by cutting shallow trenches.

  4. High-resolution image of Calaveras fault seismicity

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Beroza, G.C.; Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents ~92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13 from the fault normal, supporting previous interpretations that this fault is weak.

  5. Protection Relaying Scheme Based on Fault Reactance Operation Type

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi

    The theories of operation of existing relays are roughly divided into two types: one is the current differential types based on Kirchhoff's first law and the other is impedance types based on second law. We can apply the Kirchhoff's laws to strictly formulate fault phenomena, so the circuit equations are represented non linear simultaneous equations with variables fault point k and fault resistance Rf. This method has next two defect. 1) heavy computational burden for the iterative calculation on N-R method, 2) relay operator can not easily understand principle of numerical matrix operation. The new protection relay principles we proposed this paper focuses on the fact that the reactance component on fault point is almost zero. Two reactance Xf(S), Xf(R) on branch both ends are calculated by operation of solving linear equations. If signs of Xf(S) and Xf(R) are not same, it can be judged that the fault point exist in the branch. This reactance Xf corresponds to difference of branch reactance between actual fault point and imaginaly fault point. And so relay engineer can to understand fault location by concept of “distance". The simulation results using this new method indicates the highly precise estimation of fault locations compared with the inspected fault locations on operating transmission lines.

  6. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  7. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  8. Geophysical Survey of Proposed Construction Site with Possible Faulting, East San Francisco Bay Hills, California

    NASA Astrophysics Data System (ADS)

    Galvin, J. L.; Deqiang, C.; Abimbola, A.; Shuler, S.; Hayashi, K.; Fox, J.; Craig, M. S.; Strayer, L. M.; Drumm, P.

    2015-12-01

    We conducted a geophysical study at a site proposed for a new dorm building prior to trenching planned as part of a separate fault investigation study. The study area was located on the south side of the CSU East Bay campus, roughly 100 - 300 m SSE of the current dorm complex. In addition to its proximity to the Hayward Fault, several smaller faults have been previously mapped within the proposed location, including the East and West Dibblee Faults. These faults are thought to represent contacts between the Leona Rhyolite and the Knoxville Formation. Data acquisition included seismic, resistivity, and GPS data collected in an effort to develop a better understanding of the geological and structural profile of this area, including the location of lithologic contacts, faults, and the thickness of soil and fill. Geophysical profiles were collected over the locations of future trenches. The survey included geophysical lines that were located coincident with two planned trenching sites, which were chosen to intersect mapped faults. Survey positions were recorded using differential GPS. Seismic refraction and MASW (multichannel analysis of surface waves) surveys were performed over two of the planned trench sites using a 48-channel seismographic system with 4.5 Hz geophones and a 10-lb sledgehammer. For one of the lines, geophones were spaced every 3 m with a total spread length of 141 m and a shot spacing of 9 m. For the second line, geophones were spaced every 4 m with a total spread length of 188 m. Shots were taken every 12 m. Resistivity surveys were also performed along one of the line locations using both a capacitively-coupled dipole (CCD) system and 48-electrode system. Geospatial data for the survey area were compiled, including 0.3 m color orthoimagery and vector line files for geologic unit boundaries and presumed fault locations. The products of this study will include the geophysical response of geologic formations, location of unit contacts and faults, thickness of soil and fill, shear wave velocity (VS and VS30). The results of this study will enable improved seismic hazard assessment of the site and will contribute to a better understanding of the overall geologic profile of this area.

  9. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Boutros, Tony; Liang, Ming

    2011-08-01

    Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.

  10. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  11. Determining on-fault earthquake magnitude distributions from integer programming

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  12. Latest Rate, Extent, and Temporal Evolution of Growth Faulting over Greater Houston Region Revealed by Multi- Band InSAR Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    Qu, F.; Lu, Z.; Kim, J. W.

    2017-12-01

    Growth faults are common and continue to evolve throughout the unconsolidated sediments of Greater Houston (GH) region in Texas. Presence of faults can induce localized surface displacements, aggravate localized subsidence, and discontinue the integrity of ground water flow. Property damages due to fault creep have become more evident during the past few years over the GH area, portraying the necessity of further study of these faults. Interferometric synthetic aperture radar (InSAR) has been proven to be effective in mapping creep along and/or across faults. However, extracting a short wavelength, as well as small amplitude of the creep signal (about 10-20 mm/year) from long time span interferograms is extremely difficult, especially in agricultural or vegetated areas. This paper aims to map and monitor the latest rate, extent, and temporal evolution of faulting at a highest spatial density over GH region using an improved Multi-temporal InSAR (MTI) technique. The method, with maximized usable signal and correlation, has the ability to identify and monitor the active faults to provide an accurate and elaborate image of the faults. In this study, two neighboring ALOS tracks and Sentinel-1A datasets are used. Many zones of steep phase gradients and/or discontinuities have been recognized from the long term velocity maps by both ALOS (2007-2011) and Sentinei-1A (2015-2017) imagery. Not only those previously known faults position but also the new fault traces that have not been mapped by other techniques are imaged by our MTI technique. Fault damage and visible cracking of ground were evident at most locations through our field survey. The discovery of new fault activation, or faults moved from earlier locations is a part of the Big Barn Fault and Conroe fault system, trending from southwest to northeast between Hockley and Conroe. The location of area of subsidence over GH is also shrinking and migrating toward the northeast (Montgomery County) after 2000. The continuous mining of ground water from the Jasper aquifer formed a new water-level decline cones over Montgomery County, exactly reflects the intensity of new fault activity. The discovery of new fault activation, or faults moved from earlier locations appear to be related to excessive water exploitation from Montgomery County aquifers.

  13. An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only.

    PubMed

    Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit

    2015-01-01

    Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.

  14. Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference

    USGS Publications Warehouse

    Wesson, R.L.; Bakun, W.H.; Perkins, D.M.

    2003-01-01

    Bayesian inference provides a method to use seismic intensity data or instrumental locations, together with geologic and seismologic data, to make quantitative estimates of the probabilities that specific past earthquakes are associated with specific faults. Probability density functions are constructed for the location of each earthquake, and these are combined with prior probabilities through Bayes' theorem to estimate the probability that an earthquake is associated with a specific fault. Results using this method are presented here for large, preinstrumental, historical earthquakes and for recent earthquakes with instrumental locations in the San Francisco Bay region. The probabilities for individual earthquakes can be summed to construct a probabilistic frequency-magnitude relationship for a fault segment. Other applications of the technique include the estimation of the probability of background earthquakes, that is, earthquakes not associated with known or considered faults, and the estimation of the fraction of the total seismic moment associated with earthquakes less than the characteristic magnitude. Results for the San Francisco Bay region suggest that potentially damaging earthquakes with magnitudes less than the characteristic magnitudes should be expected. Comparisons of earthquake locations and the surface traces of active faults as determined from geologic data show significant disparities, indicating that a complete understanding of the relationship between earthquakes and faults remains elusive.

  15. Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?

    USGS Publications Warehouse

    Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.

    2009-01-01

    We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.

  16. Parallel Fault Strands at 9-km Depth Resolved on the Imperial Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Shearer, P. M.

    2001-12-01

    The Imperial Fault is one of the most active faults in California with several M>6 events during the 20th century and geodetic results suggesting that it currently carries almost 80% of the total plate motion between the Pacific and North American plates. We apply waveform cross-correlation to a group of ~1500 microearthquakes along the Imperial Fault and find that about 25% of the events form similar event clusters. Event relocation based on precise differential times among events in these clusters reveals multiple streaks of seismicity up to 5 km in length that are at a nearly constant depth of ~9 km but are spaced about 0.5 km apart in map view. These multiples are unlikely to be a location artifact because they are spaced more widely than the computed location errors and different streaks can be resolved within individual similar event clusters. The streaks are parallel to the mapped surface rupture of the 1979 Mw=6.5 Imperial Valley earthquake. No obvious temporal migration of the event locations is observed. Limited focal mechanism data for the events within the streaks are consistent with right-lateral slip on vertical fault planes. The seismicity not contained in similar event clusters cannot be located as precisely; our locations for these events scatter between 7 and 11 km depth, but it is possible that their true locations could be much more tightly clustered. The observed streaks have some similarities to those previously observed in northern California along the San Andreas and Hayward faults (e.g., Rubin et al., 1999; Waldhauser et al., 1999); however those streaks were imaged within a single fault plane rather than the multiple faults resolved on the Imperial Fault. The apparent constant depth of the Imperial streaks is similar to that seen in Hawaii at much shallower depth by Gillard et al. (1996). Geodetic results (e.g., Lyons et al., 2001) suggest that the Imperial Fault is currently slipping at 45 mm/yr below a locked portion that extends to ~10 km depth. We interpret our observed seismicity streaks as representing activity on multiple fault strands at transition depths between the locked shallow part of the Imperial Fault and the slipping portion at greater depths. It is likely that these strands extend into the aseismic region below, suggesting that the lower crustal shear zone is at least 2 km wide.

  17. Paleoseismological surveys on the Hinagu fault zone in Kumamoto, central Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Azuma, T.

    2017-12-01

    The Hinagu fault zone is located on the south of the Futagawa fault zone, which was a main part of the source fault of the 2016 Kumamoto earthquake of Mj 7.3. Northernmost part of the Hinagu fault zone was also acted in 2016 event and surface faults with right-lateral displacement upto ca. 50 cm were appeared. Seismicity along the central part of the Hinagu fault was increased just after the 2016 Kumamoto Earthquake. It seems that the Hinagu fault zone would produce the next large earthquake in the near future, although it has not occurred yet. The Headquarters of the Earthquake Research Promotions (HERP) conducted active fault surveys on the Hinagu fault zone to recognize the probability of the occurrence of the next faulting event. The Hinagu fault zone is composed with 3 fault segments, Takano-Shirahata, Hinagu, and Yatsushiro Bay. Yatsushiro Bay segment is offshore fault. In FY2016, we conducted paleoseismological trenching surveys at 2 sites (Yamaide, Minamibeta) and offshore drilling. Those result showed evidences that the recurrence intervals of the Hinagu fault zone was rather short and the last faulting event occurred around 1500-2000 yrsBP. In FY2017, we are planning another trenching survey on the southern part of the central segment, where Yatsushiro city located close to the fault.

  18. Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern United States

    USGS Publications Warehouse

    Dillon, William P.; Danforth, W.W.; Hutchinson, D.R.; Drury, R.M.; Taylor, M.H.; Booth, J.S.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). An irregular, faulted, collapse depression about 38 x 18 km in extent is located on the crest of the Blake Ridge offshore from the south- eastern United States. Faults disrupt the sea floor and terminate or sole out about 40-500 m below the sea floor at the base of the gas hydrate stable zone, which is identified from the location of the bottom simulating reflection (BSR). Normal faults are common but reverse faults and folds also are widespread. Folds commonly convert upward into faults. Sediment diapirs and deposits of sediments that were erupted onto the sea floor are also present. Sea-floor depressions at faults may represent locations of liquid/gas vents. The collapse was probably caused by overpressures and by the decoupling of the overlying sediments by gassy muds that existed just beneath the zone of gas hydrate stability.

  19. Role of extensional structures on the location of folds and thrusts during tectonic inversion (northern Iberian Chain, Spain)

    NASA Astrophysics Data System (ADS)

    Cortés, Angel L.; Liesa, Carlos L.; Soria, Ana R.; Meléndez, Alfonso

    1999-03-01

    The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.

  20. Determining on-fault earthquake magnitude distributions from integer programming

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  1. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  2. The 7.9 Denali Fault, Alaska Earthquake of November 3, 2002: Aftershock Locations, Moment Tensors and Focal Mechanisms from the Regional Seismic Network Data

    NASA Astrophysics Data System (ADS)

    Ratchkovski, N. A.; Hansen, R. A.; Kore, K. R.

    2003-04-01

    The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 earthquake on October 23. This earlier earthquake and its zone of aftershocks were located ~20 km to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. The geologists mapped a ~300-km-long rupture and measured maximum offsets of 8.8 meters. The 7.9 event ruptured three different faults. The rupture began on the northeast trending Susitna Glacier Thrust fault, a splay fault south of the Denali fault. Then the rupture transferred to the Denali fault and propagated eastward for 220 km. At about 143W the rupture moved onto the adjacent southeast-trending Totschunda fault and propagated for another 55 km. The cumulative length of the 6.7 and 7.9 aftershock zones along the Denali and Totschunda faults is about 380 km. The earthquakes were recorded and processed by the Alaska Earthquake Information Center (AEIC). The AEIC acquires and processes data from the Alaska Seismic Network, consisting of over 350 seismograph stations. Nearly 40 of these sites are equipped with the broad-band sensors, some of which also have strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary seismic network of 6 instruments following the 6.7 earthquake and an additional 20 stations following the 7.9 earthquake. Prior to the 7.9 Denali Fault event, the AEIC was locating 35 to 50 events per day. After the event, the processing load increased to over 300 events per day during the first week following the event. In this presentation, we will present and interpret the aftershock location patterns, first motion focal mechanism solutions, and regional seismic moment tensors for the larger events. We used the double difference method to relocate aftershocks of both the 6.7 and 7.9 events. The relocated aftershocks indicate complex faulting along the rupture zone. The aftershocks are located not only along the main rupture zone, but also illuminate multiple splay faults north and south of the Denali fault. We calculated principal stress directions along the Denali fault both before and after the 7.9 event from the focal mechanisms. The stress orientations before and after the event are nearly identical. The maximum horizontal compressive stress is nearly normal to the trace of the Denali fault and rotates gradually from NW orientation at the western end of the rupture zone to NE orientation near the junction with the Totschunda fault.

  3. Integrated geophysical investigations of Main Barton Springs, Austin, Texas, USA

    NASA Astrophysics Data System (ADS)

    Saribudak, By Mustafa; Hauwert, Nico M.

    2017-03-01

    Barton Springs is a major discharge site for the Barton Springs Segment of the Edwards Aquifer and is located in Zilker Park, Austin, Texas. Barton Springs actually consists of at least four springs. The Main Barton Springs discharges into the Barton Springs pool from the Barton Springs fault and several outlets along a fault, from a cave, several fissures, and gravel-filled solution cavities on the floor of the pool west of the fault. Surface geophysical surveys [resistivity imaging, induced polarization (IP), self-potential (SP), seismic refraction, and ground penetrating radar (GPR)] were performed across the Barton Springs fault and at the vicinity of the Main Barton Springs in south Zilker Park. The purpose of the surveys was two-fold: 1) locate the precise location of submerged conduits (caves, voids) carrying flow to Main Barton Springs; and 2) characterize the geophysical signatures of the fault crossing Barton Springs pool. Geophysical results indicate significant anomalies to the south of the Barton Springs pool. A majority of these anomalies indicate a fault-like pattern, in front of the south entrance to the swimming pool. In addition, resistivity and SP results, in particular, suggest the presence of a large conduit in the southern part of Barton Springs pool. The groundwater flow-path to the Main Barton Springs could follow the locations of those resistivity and SP anomalies along the newly discovered fault, instead of along the Barton Springs fault, as previously thought.

  4. Seismic images and fault relations of the Santa Monica thrust fault, West Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.

    2001-01-01

    In May 1997, the US Geological Survey (USGS) and the University of Southern California (USC) acquired high-resolution seismic reflection and refraction images on the grounds of the Wadsworth Veterans Administration Hospital (WVAH) in the city of Los Angeles (Fig. 1a,b). The objective of the seismic survey was to better understand the near-surface geometry and faulting characteristics of the Santa Monica fault zone. In this report, we present seismic images, an interpretation of those images, and a comparison of our results with results from studies by Dolan and Pratt (1997), Pratt et al. (1998) and Gibbs et al. (2000). The Santa Monica fault is one of the several northeast-southwest-trending, north-dipping, reverse faults that extend through the Los Angeles metropolitan area (Fig. 1a). Through much of area, the Santa Monica fault trends subparallel to the Hollywood fault, but the two faults apparently join into a single fault zone to the southwest and to the northeast (Dolan et al., 1995). The Santa Monica and Hollywood faults may be part of a larger fault system that extends from the Pacific Ocean to the Transverse Ranges. Crook et al. (1983) refer to this fault system as the Malibu Coast-Santa Monica-Raymond-Cucamonga fault system. They suggest that these faults have not formed a contiguous zone since the Pleistocene and conclude that each of the faults should be treated as a separate fault with respect to seismic hazards. However, Dolan et al. (1995) suggest that the Hollywood and Santa Monica faults are capable of generating Mw 6.8 and Mw 7.0 earthquakes, respectively. Thus, regardless of whether the overall fault system is connected and capable of rupturing in one event, individually, each of the faults present a sizable earthquake hazard to the Los Angeles metropolitan area. If, however, these faults are connected, and they were to rupture along a continuous fault rupture, the resulting hazard would be even greater. Although the Santa Monica fault represents a hazard to millions of people, its lateral extent and rupture history are not well known, due largely to limited knowledge of the fault location, geometry, and relationship to other faults. The Santa Monica fault has been obscured at the surface by alluvium and urbanization. For example, Dolan et al. (1995) could find only one 200-m-long stretch of the Santa Monica fault that was not covered by either streets or buildings. Of the 19-km length onshore section of the Santa Monica fault, its apparent location has been delineated largely on the basis of geomorphic features and oil-well drilling. Seismic imaging efforts, in combination with other investigative methods, may be the best approach in locating and understanding the Santa Monica fault in the Los Angeles region. This investigation and another recent seismic imaging investigation (Pratt et al., 1998) were undertaken to resolve the near-surface location, fault geometry, and faulting relations associated with the Santa Monica fault.

  5. Map showing recently active breaks along the San Andreas Fault between Pt. Delgada and Bolinas Bay, California

    USGS Publications Warehouse

    Brown, Robert D.; Wolfe, Edward W.

    1970-01-01

    This strip map is one of a series of maps showing recently active fault breaks along the San Andreas and other active faults in California. It is designed to inform persons who are concerned with land use near the fault of the location of those fault breaks that have moved recently. The lines on the map are lines of rupture and creep that can be identified by field evidence and that clearly affect the present surface of the land. Map users should keep in mind that these lines are intended primarily as guides to help locate the fault; the mapped lines are not necessarily shown with the precision demanded by some engineering or land utilization needs.

  6. Long-Term Pavement Performance Automated Faulting Measurement

    DOT National Transportation Integrated Search

    2015-02-01

    This study focused on identifying transverse joint locations on jointed plain concrete pavements using an automated joint detection algorithm and computing faulting at these locations using Long-Term Pavement Performance (LTPP) Program profile data c...

  7. The Study of Fault Lineament Pattern of the Lamongan Volcanic Field Using Gravity Data

    NASA Astrophysics Data System (ADS)

    Aziz, K. N.; Hartantyo, E.; Niasari, S. W.

    2018-04-01

    Lamongan Volcano located in Tiris, East Java, possesses geothermal potential energy. The geothermal potential was indicated by the presence of geothermal manifestations such as hot springs. We usedsecondary gravity data from GGMplus. The result of gravity anomaly map shows that there is the lowest gravity anomaly in the center of the study area coinciding with the hot spring location. Gravity data were analyzed using SVD method to identify fault structures. It controls the geothermal fluid pathways. The result of this research shows thatthe type of fault in hot springsisanormal fault with direction NW-SE. The fault lineament pattern along maaris NW-SE.Maar indicates anormal fault. As the result we know that gravity data from GGMplus which analyzed with SVD can be used to determine the type and trend of fault.

  8. Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.; Schaff, D.P.; Cole, A.

    2004-01-01

    Double-difference locations of ???8000 earthquakes from 1969-2002 on the Parkfield section of the San Andreas Fault reveal detailed fault structures and seismicity that is, although complex, highly organized in both space and time. Distinctive features of the seismicity include: 1) multiple recurrence of earthquakes of the same size at precisely the same location on the fault (multiplets), implying frictional or geometric controls on their location and size; 2) sub-horizontal alignments of hypocenters along the fault plane (streaks), suggestive of rheological transitions within the fault zone and/or stress concentrations between locked and creeping areas; 3) regions devoid of microearthquakes with typical dimensions of 1-5 km (holes), one of which contains the M6 1966 Parkfield earthquake hypocenter. These features represent long lived structures that persist through many cycles of individual event. Copyright 2004 by the American Geophysical Union.

  9. Network Connectivity for Permanent, Transient, Independent, and Correlated Faults

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sicher, Courtney; henry, Courtney

    2012-01-01

    This paper develops a method for the quantitative analysis of network connectivity in the presence of both permanent and transient faults. Even though transient noise is considered a common occurrence in networks, a survey of the literature reveals an emphasis on permanent faults. Transient faults introduce a time element into the analysis of network reliability. With permanent faults it is sufficient to consider the faults that have accumulated by the end of the operating period. With transient faults the arrival and recovery time must be included. The number and location of faults in the system is a dynamic variable. Transient faults also introduce system recovery into the analysis. The goal is the quantitative assessment of network connectivity in the presence of both permanent and transient faults. The approach is to construct a global model that includes all classes of faults: permanent, transient, independent, and correlated. A theorem is derived about this model that give distributions for (1) the number of fault occurrences, (2) the type of fault occurrence, (3) the time of the fault occurrences, and (4) the location of the fault occurrence. These results are applied to compare and contrast the connectivity of different network architectures in the presence of permanent, transient, independent, and correlated faults. The examples below use a Monte Carlo simulation, but the theorem mentioned above could be used to guide fault-injections in a laboratory.

  10. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan

    In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  11. A signal-based fault detection and classification method for heavy haul wagons

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Luo, Shihui; Cole, Colin; Spiryagin, Maksym; Sun, Yanquan

    2017-12-01

    This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.

  12. Trench logs, terrestrial lidar system imagery, and radiocarbon data from the kilometer-62 site on the Greenville Fault, southeastern Alameda County, California, 2014

    USGS Publications Warehouse

    Lienkaemper, James J.; DeLong, Stephen B.; Avdievitch, Nikita N.; Pickering, Alexandra J; Guilderson, Thomas P.

    2015-01-01

    In 2014, we investigated an abrupt 8.5-meter (m), right-laterally deflected stream channel located near the Greenville Fault in southeastern Alameda County, California (-121.56224° E, 37.53430° N) that we discovered using 0.5-m resolution, 2011 aerial lidar imagery flown along the active fault trace. Prior to trenching we surveyed the site using a terrestrial lidar system (TLS) to document the exact geomorphic expression of this deflected stream channel before excavating a trench adjacent to it. We trenched perpendicular to the fault hoping to document the prehistoric history of earthquake ruptures along the fault. However, the alluvial stratigraphy that we document in these trench logs shows conclusively that this trench did not expose any active fault trace. Using other local geomorphic evidence for the fault location, a straight fault scarp immediately north of this stream projects slightly upslope of the west end of our trench and may be the actual location of the active fault trace. Five radiocarbon samples establish age control for the alluvial sequence documented in the trench, which may in the future be useful in constraining the long-term slip rate of the Greenville Fault. The deflection had been caused by an abrupt nontectonic termination of unit u30, a relatively thick (0.15–0.35 m) silt that is more erosion resistant than the adjacent cohesionless sand and gravel. 

  13. Ground-penetrating radar investigation of active faults along the Dead Sea Transform and implications for seismic hazards within the city of Aqaba, Jordan

    NASA Astrophysics Data System (ADS)

    Slater, Lee; Niemi, Tina M.

    2003-06-01

    Ground-penetrating radar (GPR) was used in an effort to locate a major active fault that traverses Aqaba City, Jordan. Measurements over an exposed (trenched) cross fault outside of the city identify a radar signature consisting of linear events and horizontal offset/flexured reflectors both showing a geometric correlation with two known faults at a control site. The asymmetric linear events are consistent with dipping planar reflectors matching the known direction of dip of the faults. However, other observations regarding this radar signature render the mechanism generating these events more complex and uncertain. GPR measurements in Aqaba City were limited to vacant lots. Seven GPR profiles were conducted approximately perpendicular to the assumed strike of the fault zone, based on regional geological evidence. A radar response very similar to that obtained over the cross fault was observed on five of the profiles in Aqaba City, although the response is weaker than that obtained at the control site. The positions of the identified responses form a near straight line with a strike of 45°. Although subsurface verification of the fault by trenching within the city is needed, the geophysical evidence for fault zone location is strong. The location of the interpreted fault zone relative to emergency services, military bases, commercial properties, and residential areas is defined to within a few meters. This study has significant implications for seismic hazard analysis in this tectonically active and heavily populated region.

  14. Automatic reconstruction of fault networks from seismicity catalogs: Three-dimensional optimal anisotropic dynamic clustering

    NASA Astrophysics Data System (ADS)

    Ouillon, G.; Ducorbier, C.; Sornette, D.

    2008-01-01

    We propose a new pattern recognition method that is able to reconstruct the three-dimensional structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering (or k means) method, that partitions a set of data points into clusters, using a global minimization criterion of the variance of the hypocenters locations about their center of mass. The new method improves on the original k means method by taking into account the full spatial covariance tensor of each cluster in order to partition the data set into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size, and orientation. The main tunable parameter is the accuracy of the earthquake locations, which fixes the resolution, i.e., the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog: the better the resolution, the finer the structure of the reconstructed fault segments. The algorithm successfully reconstructs the fault segments of synthetic earthquake catalogs. Applied to the real catalog constituted of a subset of the aftershock sequence of the 28 June 1992 Landers earthquake in southern California, the reconstructed plane segments fully agree with faults already known on geological maps or with blind faults that appear quite obvious in longer-term catalogs. Future improvements of the method are discussed, as well as its potential use in the multiscale study of the inner structure of fault zones.

  15. Applying Low Temperature Thermochronology to Constrain Exhumation Patterns along the Eastern Denali Fault Corner, Alaska

    NASA Astrophysics Data System (ADS)

    Warfel, T. S.; Fitzgerald, P. G.; Benowitz, J.; Ridgway, K.; Allen, W. K.

    2017-12-01

    The Denali Fault (DF) constitutes a long ( 2000 km), arcuate, dextrally transpressive intracontinental fault system sketching across south-central Alaska. Strain-partitioning along the DF is accommodated as slip on the fault and fault-normal motion on a series of thrusts located north and south of the fault itself. High topography in the central and eastern Alaska Range, also locations of the greatest exhumation along the fault, are associated with restraining bends in those regions. East of the Richardson Highway, along the eastern Denali fault corner (or east-central segment of the DF), thrust faults south of the DF, including the McCallum thrust have accommodated the fault-normal component of motion along the DF. The aim of this project is to better understand what controls exhumation along large strike-slip faults, in particular the DF. Previous work along the DF in the central and eastern Alaska Range (to the west of this region) indicate the importance of fault geometry and rheological contrasts between terranes that have been juxtaposed against one another in controlling the location of exhumation. Our area of interest is a largely unstudied section along the Denali Fault (eastern DF corner) located between the DF/Hines Creek fault intersection and the Totschunda/DF intersection. We are applying a combination of apatite fission track thermochronology and apatite (U-Th)/He dating to samples collected north and south of the DF, and across thrust faults south of the DF. Thermochronology is being applied to bedrock samples, collected in vertical profiles and/or hanging wall - footwall pairs. Cobbles were also collected within a stratigraphic framework (constrained by tephras), from Miocene sediments in inverted basins south of the DF. Thermochronologic data from these cobbles; using lag-time analyses and inverse thermal models, will constrain the exhumation history of the hinterland. Assuming modern rates for slip along the DF will allow constraints to be placed on spatial and temporal patterns of exhumation and hence, help constrain the underlying control on exhumation patterns. Preliminary results indicate older AFT and AHe ages (up to 50 Ma) away from the DF but yield apatite (U-Th)/He ages as young as 2 Ma for a sample from the footwall of the closest thrust south of the DF.

  16. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  17. InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts

    USGS Publications Warehouse

    Wicks, Charles; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P.

    2011-01-01

    In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energys Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agencys (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ???70mm of slip less than ???0.5km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process. Copyright 2011 by the American Geophysical Union.

  18. Fault-Sensitivity and Wear-Out Analysis of VLSI Systems.

    DTIC Science & Technology

    1995-06-01

    DESCRIPTION MIXED-MODE HIERARCIAIFAULT DESCRIPTION FAULT SIMULATION TYPE OF FAULT TRANSIENT/STUCK-AT LOCATION/TIME * _AUTOMATIC FAULT INJECTION TRACE...4219-4224, December 1985. [15] J. Sosnowski, "Evaluation of transient hazards in microprocessor controll - ers," Digest, FTCS-16, The Sixteenth

  19. Elevation changes

    USGS Publications Warehouse

    Jayko, A. S.; Marshall, G.A.; Carver, G.A.

    1992-01-01

    Elevation changes, as well as horizontal displacements of the Earth's surface, are an expected consequence of dip-slip displacement on earthquake faults. the rock surrounding and overlying the fault is forced to stretch and bend to accommodate fault slip. Slip in the case of the April 25 mainshock is thought to have occurred on a gently inclined plane dipping to the northeast at a small angle (see article on preliminary seismological results in this issue).The associated fault-plane solution implies that rock overlying the fault plane (the hanging-wall block west and south of the epicenter) rose and shifted to the northeast. The map on the next page shows the location of the epicenter and approximate extent of uplift and subsidence derived from estimates of the geometry, location. and slip on the buried fault plane. 

  20. Recently active traces of the Bartlett Springs Fault, California: a digital database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2010-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Bartlett Springs Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale aerial photography. In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  1. Assessment of seismic hazards along the northern Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    Abueladas, Abdel-Rahman Aqel

    Aqaba and Elat are very important port and recreation cities for the Hashemite Kingdom of Jordan and Israel, respectively. The two cities are the most susceptible to damage from a destructive future earthquake because they are located over the tectonically active Dead Sea transform fault (DST) that is the source of most of the major historical earthquakes in the region. The largest twentieth century earthquake on the DST, the magnitude Mw 7.2 Nuweiba earthquake of November 22, 1995, caused damage to structures in both cities. The integration of geological, geophysical, and earthquake engineering studies will help to assess the seismic hazards by determining the location and slip potential of active faults and by mapping areas of high liquefaction susceptibility. Ground Penetrating Radar (GPR) as a high resolution shallow geophysical tool was used to map the shallow active faults in Aqaba, Taba Sabkha area, and Elat. The GPR data revealed the onshore continuation of the Evrona, West Aqaba, Aqaba fault zones, and several transverse faults. The integration of offshore and onshore data confirm the extension of these faults along both sides of the Gulf of Aqaba. A 3D model of GPR data at one site in Aqaba indicates that the NW-trending transverse faults right laterally offset older than NE-trending faults. The most hazardous fault is the Evrona fault which extends north to the Tabs Sabkha. A geographic information system (GIS) database of the seismic hazard was created in order to facilitate the analyzing, manipulation, and updating of the input parameters. Liquefaction potential maps were created for the region based on analysis of borehole data. The liquefaction map shows high and moderate liquefaction susceptibility zones along the northern coast of the Gulf of Aqaba. In Aqaba several hotels are located within a high and moderate liquefaction zones. The Yacht Club, Aqaba, Ayla archaeological site, and a part of commercial area are also situated in a risk area. A part of residential site of the Saraya Development and the southern part of Ayla Oasis Development project area are located within a high susceptibility zone In Elat, the seaport and most hotels are located within a high susceptibility zone. Fortunately most residence areas, schools, and hospitals in both cities are located within zones not susceptible to liquefaction. A setback, or no build zone, is delineated around active faults to allow a suitable level of conservatism or factor of safety, residential, hotels, commercial buildings, schools, and other facilities are located inside this buffer in Aqaba area. These data will help planners, engineer instructions within the rapidly developing the northern Gulf of Aqaba.

  2. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault wasmore » previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.« less

  3. Along-strike variations of geometry and kinematics on the border fault of Nanpu sag, Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Ren, J.; Liu, X.; Sun, Z.; Su, M.

    2010-12-01

    Nanpu sag is located in the north-eastern portion of the Huanghua depression, covering an area of approximately 1900km2, and comprises one of the most important petroliferous basins of the Bohai Bay Basin. The Nanpu sag is bordered by two master faults with long-term activity: the Xi’nanzhuang (XNZ) and Bogezhuang (BGZ) fault. By analysis of horizontal slices, gravity anomaly map and seismic reflection sections, we found there is no cutting relationship, and thus considered the XNZ and BGZ fault as a same one. However it showed striking differences between the XNZ and BGZ segment in fault occurrence, fault throw and residual formation thickness and so on. The BGZ fault was NW trending fault with a steep inclination. Taken section across the northern region in Nanpu sag for example, its controlling depocenter is located in eastern subsag (Fig.1); the XNZ fault was a NE fault and displayed a Shovel-shaped to plate-like geometry, with its controlling depocenter located in western subsag. We qualitify the fault throw, showing that the XNZ fault strongly acted during the sedimentary period of Es3-Es2, while the BGZ fault presented weak activity, and especially during Es31 submember-Es2 member, the XNZ fault acted so strongly that the hanging wall of BGZ fault was tilt-lifted and suffered erosion (Fig.1), which created Es1 uncomformity; The BGZ fault acted strongly during the sedimentary period of Es1-Ed, which led the hanging wall of XNZ fault to be tilt-lifted. Controlled by such segmented activity of the whole border fault, which we suggested a "seesaw" model for its evolution, the northern part in the Nanpu sag experienced an alternative variation between a deposition center and an erosion region after tilt-lifting. Combination of the sediment stacking patterns, we further classified the history of "seesaw" activities into four stages: 1) Early double-break stage (Es35-Es31), both of the XNZ and BGZ fault acted; 2) Middle the XNZ segment throw and the BGZ tilting (Es2); 3) Late the XNZ segment tilting and BGZ throw (Es1-Ed3); 4) End weak double-break stage (Ed2-Present), the whole fault acted weakly and were superposed by neotectonic movement. Fig.1 Seesaw activity of the whole border fault

  4. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  5. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    USGS Publications Warehouse

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  6. Seismic constraints on the architecture of the Newport-Inglewood/Rose Canyon fault: Implications for the length and magnitude of future earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Sahakian, Valerie; Bormann, Jayne; Driscoll, Neal; Harding, Alistair; Kent, Graham; Wesnousky, Steve

    2017-03-01

    The Newport-Inglewood/Rose Canyon (NIRC) fault zone is an active strike-slip fault system within the Pacific-North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.

  7. Aftershocks of the 2010 Mw 7.2 El Mayor-Cucapah earthquake revealcomplex faulting in the Yuha Desert, California

    USGS Publications Warehouse

    Kroll, K.; Cochran, Elizabeth S.; Richards-Dinger, K.; Sumy, Danielle

    2013-01-01

    We detect and precisely locate over 9500 aftershocks that occurred in the Yuha Desert region during a 2 month period following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake. Events are relocated using a series of absolute and relative relocation procedures that include Hypoinverse, Velest, and hypoDD. Location errors are reduced to ~40 m horizontally and ~120 m vertically.Aftershock locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with published surface mapping of faults that experienced triggered surface slip in response to the EMC main shock. Aftershocks occurred between 2 km and 11 km depths, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes that are limited in their along-strike length. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a throughgoing fault segment. We observe a complex spatiotemporal migration of aftershocks, with seismicity that jumps between individual fault segments that are active for only a few days to weeks. Aftershock rates are roughly consistent with the expected earthquake production rates of Dieterich (1994). The conjugate pattern of faulting and nonuniform aftershock migration patterns suggest that strain in the Yuha Desert is being accommodated in a complex manner.

  8. An update of Quaternary faults of central and eastern Oregon

    USGS Publications Warehouse

    Weldon, Ray J.; Fletcher, D.K.; Weldon, E.M.; Scharer, K.M.; McCrory, P.A.

    2002-01-01

    This is the online version of a CD-ROM publication. We have updated the eastern portion of our previous active fault map of Oregon (Pezzopane, Nakata, and Weldon, 1992) as a contribution to the larger USGS effort to produce digital maps of active faults in the Pacific Northwest region. The 1992 fault map has seen wide distribution and has been reproduced in essentially all subsequent compilations of active faults of Oregon. The new map provides a substantial update of known active or suspected active faults east of the Cascades. Improvements in the new map include (1) many newly recognized active faults, (2) a linked ArcInfo map and reference database, (3) more precise locations for previously recognized faults on shaded relief quadrangles generated from USGS 30-m digital elevations models (DEM), (4) more uniform coverage resulting in more consistent grouping of the ages of active faults, and (5) a new category of 'possibly' active faults that share characteristics with known active faults, but have not been studied adequately to assess their activity. The distribution of active faults has not changed substantially from the original Pezzopane, Nakata and Weldon map. Most faults occur in the south-central Basin and Range tectonic province that is located in the backarc portion of the Cascadia subduction margin. These faults occur in zones consisting of numerous short faults with similar rates, ages, and styles of movement. Many active faults strongly correlate with the most active volcanic centers of Oregon, including Newberry Craters and Crater Lake.

  9. Characterization of emission microscopy and liquid crystal thermography in IC fault localization

    NASA Astrophysics Data System (ADS)

    Lau, C. K.; Sim, K. S.

    2013-05-01

    This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization. It is necessary for a failure analyst to use both techniques when one of the techniques produces no result.

  10. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    USGS Publications Warehouse

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

  11. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  12. Current microseismicity and generating faults in the Gyeongju area, southeastern Korea

    NASA Astrophysics Data System (ADS)

    Han, Minhui; Kim, Kwang-Hee; Son, Moon; Kang, Su Young

    2017-01-01

    A study of microseismicity in a 15 × 20 km2 subregion of Gyeongju, southeastern Korea, establishes a direct link between minor earthquakes and known fault structures. The study area has a complex history of tectonic deformation and has experienced large historic earthquakes, with small earthquakes recorded since the beginning of modern instrumental monitoring. From 5 years of continuously recorded local seismic data, 311 previously unidentified microearthquakes can be reliably located using the double-difference algorithm. These newly discovered events occur in linear streaks that can be spatially correlated with active faults, which could pose a serious hazard to nearby communities. At-risk infrastructure includes the largest industrial park in South Korea, nuclear power plants, and disposal facilities for radioactive waste. The current work suggests that the southern segment of the Yeonil Tectonic Line and segments of the Seokup and Waup Basin boundary faults are active. For areas with high rates of microseismic activity, reliably located hypocenters are spatially correlated with mapped faults; in less active areas, earthquake clusters tend to occur at fault intersections. Microearthquakes in stable continental regions are known to exist, but have been largely ignored in assessments of seismic hazard because their magnitudes are well below the detection thresholds of seismic networks. The total number of locatable microearthquakes could be dramatically increased by lowering the triggering thresholds of network detection algorithms. The present work offers an example of how microearthquakes can be reliably detected and located with advanced techniques. This could make it possible to create a new database to identify subsurface fault geometries and modes of fault movement, which could then be considered in the assessments of seismic hazard in regions where major earthquakes are rare.

  13. Contradicting Estimates of Location, Geometry, and Rupture History of Highly Active Faults in Central Japan

    NASA Astrophysics Data System (ADS)

    Okumura, K.

    2011-12-01

    Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku earthquake show pure strike-slip. However, thrusts are modeled from seismic profiles and gravity anomalies. Therefore, two contradicting models are presented for strong motion estimates. There should be a unique solution of the geometry, which will be discussed. As to the rupture history, there is plenty of paleoseismological evidence that supports segmentation of those faults above. However, in most fault zones, the largest and sometimes possibly less frequent earthquakes are modeled. Segmentation and modeling of coming earthquakes should be more carefully examined without leaving them in contradictions.

  14. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are precluded by the depths of the earthquake and aftershocks, about 8 km and as deep as 12 km, respectively. These depths are below where an antithetic fault would intersect any main fault, and a tilted, formerly shallow and sub-horizontal thrust fault would not extend to depths of more than about 5–6 km. The east-dipping, high-angle, earthquake fault cuts older west-dipping faults rather than reactivating them, highlighting a change in the structural style of Basin and Range extension in this region from closely-spaced, west-dipping faults that rotated significantly during slip and accommodated large-magnitude extension, to widely-spaced, high-angle faults that accommodate much less total strain over a long time span.

  15. Secondary Fracturing of Europa's Crust in Response to Combined Slip and Dilation Along Strike-Slip Faults

    NASA Technical Reports Server (NTRS)

    Kattenhorn, S. A.

    2003-01-01

    A commonly observed feature in faulted terrestrial rocks is the occurrence of secondary fractures alongside faults. Depending on exact morphology, such fractures have been termed tail cracks, wing cracks, kinks, or horsetail fractures, and typically form at the tip of a slipping fault or around small jogs or steps along a fault surface. The location and orientation of secondary fracturing with respect to the fault plane or the fault tip can be used to determine if fault motion is left-lateral or right-lateral.

  16. The Dallas-Fort Worth Airport Earthquake Sequence: Seismicity Beyond Injection Period

    NASA Astrophysics Data System (ADS)

    Ogwari, Paul O.; DeShon, Heather R.; Hornbach, Matthew J.

    2018-01-01

    The 2008 Dallas-Fort Worth Airport earthquakes mark the beginning of seismicity rate changes linked to oil and gas operations in the central United States. We assess the spatial and temporal evolution of the sequence through December 2015 using template-based waveform correlation and relative location methods. We locate 400 earthquakes spanning 2008-2015 along a basement fault mapped as the Airport fault. The sequence exhibits temporally variable b values, and small-magnitude (m < 3.4) earthquakes spread northeast along strike over time. Pore pressure diffusion models indicate that the high-volume brine injection well located within 1 km of the 2008 earthquakes, although only operating from September 2008 to August 2009, contributes most significantly to long-term pressure perturbations, and hence stress changes, along the fault; a second long-operating, low-volume injector located 10 km north causes insufficient pressure changes. High-volume injection for a short time period near a critically stressed fault can induce long-lasting seismicity.

  17. Development and Testing of Protection Scheme for Renewable-Rich Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahma, Sukumar; Ranade, Satish; Elkhatib, Mohamed E.

    As the penetration of renewables increases in the distribution systems, and microgrids are conceived with high penetration of such generation that connects through inverters, fault location and protection of microgrids needs consideration. This report proposes averaged models that help simulate fault scenarios in renewable-rich microgrids, models for locating faults in such microgrids, and comments on the protection models that may be considered for microgrids. Simulation studies are reported to justify the models.

  18. Using Dynamic Sensitivity Analysis to Assess Testability

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey; Morell, Larry; Miller, Keith

    1990-01-01

    This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.

  19. The 7.9 Denali Fault Earthquake: Aftershock Locations, Moment Tensors and Focal Mechanisms from the Regional Seismic Network Data

    NASA Astrophysics Data System (ADS)

    Ratchkovski, N. A.; Hansen, R. A.; Christensen, D.; Kore, K.

    2002-12-01

    The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 foreshock on October 23. This earlier earthquake and its zone of aftershocks were located slightly to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. Near Mentasta Lake, a village that experienced some of the worst damage in the quake, the surface rupture scar turns from the Denali fault to the adjacent Totschunda fault, which trends toward more southeasterly toward the Canadian border. Overall, the geologists found that measurable scarps indicate that the north side of the Denali fault moved to the east and vertically up relative to the south. Maximum offsets on the Denali fault were 8.8 meters at the Tok Highway cutoff, and were 2.2 meters on the Totschunda fault. The Alaska regional seismic network consists of over 250 station sites, operated by the Alaska Earthquake Information Center (AEIC), the Alaska Volcano Observatory (AVO), and the Pacific Tsunami Warning Center (PTWC). Over 25 sites are equipped with the broad-band sensors, some of which have in addition the strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary network with over 20 instruments following the 6.7 Nenana Mountain and the 7.9 events. Prior to the M 7.9 Denali Fault event, the automatic earthquake detection system at AEIC was locating between 15 and 30 events per day. After the event, the system had over 200-400 automatic locations per day for at least 10 days following the 7.9 event. The processing of the data is ongoing with the priority given to the larger events. The cumulative length of the 6.7 and 7.9 aftershock locations along the Denali and Totschunda faults is about 300 km. We will present the aftershock locations, first motion focal mechanisms for M4+ events and regional moment tensors for M4.5+ events. The first motion focal mechanism for the main event indicates thrusting on the NE-trending plane with a dip of 48 degrees. We will present results of the double difference relocation of the aftershocks of the M7.9 event. The relocated aftershocks indicate a NW-dipping fault plane in the epicentral area of the event and a vertical plane along the rest of the rupture length.

  20. VCSEL fault location apparatus and method

    DOEpatents

    Keeler, Gordon A [Albuquerque, NM; Serkland, Darwin K [Albuquerque, NM

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  1. Precise Hypocenter Determination around Palu Koro Fault: a Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fawzy Ismullah, M. Muhammad; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono

    2017-04-01

    Sulawesi area is located in complex tectonic pattern. High seismicity activity in the middle of Sulawesi is related to Palu Koro fault (PKF). In this study, we determined precise hypocenter around PKF by applying double-difference method. We attempt to investigate of the seismicity rate, geometry of the fault and distribution of focus depth around PKF. We first re-pick P-and S-wave arrival time of the PKF events to determine the initial hypocenter location using Hypoellipse method through updated 1-D seismic velocity. Later on, we relocated the earthquake event using double-difference method. Our preliminary results show the distribution of relocated events are located around PKF and have smaller residual time than the initial location. We will enhance the hypocenter location through updating of arrival time by applying waveform cross correlation method as input for double-difference relocation.

  2. Modelling of hydrothermal fluid flow and structural architecture in an extensional basin, Ngakuru Graben, Taupo Rift, New Zealand

    NASA Astrophysics Data System (ADS)

    Kissling, W. M.; Villamor, P.; Ellis, S. M.; Rae, A.

    2018-05-01

    Present-day geothermal activity on the margins of the Ngakuru graben and evidence of fossil hydrothermal activity in the central graben suggest that a graben-wide system of permeable intersecting faults acts as the principal conduit for fluid flow to the surface. We have developed numerical models of fluid and heat flow in a regional-scale 2-D cross-section of the Ngakuru Graben. The models incorporate simplified representations of two 'end-member' fault architectures (one symmetric at depth, the other highly asymmetric) which are consistent with the surface locations and dips of the Ngakuru graben faults. The models are used to explore controls on buoyancy-driven convective fluid flow which could explain the differences between the past and present hydrothermal systems associated with these faults. The models show that the surface flows from the faults are strongly controlled by the fault permeability, the fault system architecture and the location of the heat source with respect to the faults in the graben. In particular, fault intersections at depth allow exchange of fluid between faults, and the location of the heat source on the footwall of normal faults can facilitate upflow along those faults. These controls give rise to two distinct fluid flow regimes in the fault network. The first, a regular flow regime, is characterised by a nearly unchanging pattern of fluid flow vectors within the fault network as the fault permeability evolves. In the second, complex flow regime, the surface flows depend strongly on fault permeability, and can fluctuate in an erratic manner. The direction of flow within faults can reverse in both regimes as fault permeability changes. Both flow regimes provide insights into the differences between the present-day and fossil geothermal systems in the Ngakuru graben. Hydrothermal upflow along the Paeroa fault seems to have occurred, possibly continuously, for tens of thousands of years, while upflow in other faults in the graben has switched on and off during the same period. An asymmetric graben architecture with the Paeroa being the major boundary fault will facilitate the predominant upflow along this fault. Upflow on the axial faults is more difficult to explain with this modelling. It occurs most easily with an asymmetric graben architecture and heat sources close to the graben axis (which could be associated with remnant heat from recent eruptions from Okataina Volcanic Centre). Temporal changes in upflow can also be associated with acceleration and deceleration of fault activity if this is considered a proxy for fault permeability. Other explanations for temporal variations in hydrothermal activity not explored here are different permeability on different faults, and different permeability along fault strike.

  3. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Xu, Fei; Burdette, T.

    1998-01-01

    Repeated seismic surveys of the Landers, California, fault zone that ruptured in the magnitude (M) 7.5 earthquake of 1992 reveal an increase in seismic velocity with time. P, S, and fault zone trapped waves were excited by near-surface explosions in two locations in 1994 and 1996, and were recorded on two linear, three-component seismic arrays deployed across the Johnson Valley fault trace. The travel times of P and S waves for identical shot-receiver pairs decreased by 0.5 to 1.5 percent from 1994 to 1996, with the larger changes at stations located within the fault zone. These observations indicate that the shallow Johnson Valley fault is strengthening after the main shock, most likely because of closure of cracks that were opened by the 1992 earthquake. The increase in velocity is consistent with the prevalence of dry over wet cracks and with a reduction in the apparent crack density near the fault zone by approximately 1.0 percent from 1994 to 1996.

  4. Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Bürgmann, R.; Fattahi, H.; Nadeau, R. M.; Taira, T.; Johnson, C. W.; Johanson, I.

    2015-04-01

    The Hayward and Calaveras Faults, two strike-slip faults of the San Andreas System located in the East San Francisco Bay Area, are commonly considered independent structures for seismic hazard assessment. We use Interferometric Synthetic Aperture RADAR to show that surface creep on the Hayward Fault continues 15 km farther south than previously known, revealing new potential for rupture and damage south of Fremont. The extended trace of the Hayward Fault, also illuminated by shallow repeating micro-earthquakes, documents a surface connection with the Calaveras Fault. At depths greater than 3-5 km, repeating micro-earthquakes located 10 km north of the surface connection highlight the 3-D wedge geometry of the junction. Our new model of the Hayward and Calaveras Faults argues that they should be treated as a single system with potential for earthquake ruptures generating events with magnitudes greater than 7, posing a higher seismic hazard to the East San Francisco Bay Area than previously considered.

  5. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  6. Gravity and Magnetic Surveys Over the Santa Rita Fault System, Southeastern Arizona

    USGS Publications Warehouse

    Hegmann, Mary

    2001-01-01

    Gravity and magnetic surveys were performed in the northeast portion of the Santa Rita Experimental Range, in southeastern Arizona, to identify faults and gain a better understanding of the subsurface geology. A total of 234 gravity stations were established, and numerous magnetic data were collected with portable and truck-mounted proton precession magnetometers. In addition, one line of very low frequency electromagnetic data was collected together with magnetic data. Gravity anomalies are used to identify two normal faults that project northward toward a previously identified fault. The gravity data also confirm the location of a second previously interpreted normal fault. Interpretation of magnetic anomaly data indicates the presence of a higher-susceptibility sedimentary unit located beneath lowersusceptibility surficial sediments. Magnetic anomaly data identify a 1-km-wide negative anomaly east of these faults caused by an unknown source and reveal the high variability of susceptibility in the Tertiary intrusive rocks in the area.

  7. Geoelectric characteristics of portions of the Raha fault zone and surrounding rocks, Jabal As Silsilah Quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Zablocki, Charles J.; Hajnour, M.O.

    1987-01-01

    Telluric-electric and auto-magnetotelluric measurements obtained in and around the Raha fault zone in the Buqaya area indicate that it dips steeply to the southwest. Large contrasts in the electrical properties of Qarnayn and Maraghan metasedimentary rocks located on either side of the fault are characteristic of the rocks within the fault zone. However, no large electrical contrasts were detected along several segments of a southern branch of the main fault in the Shiaila area, indicating that the rocks on either side of the fault are of similar composition. Extremely low resistivity readings in the Buqaya and Shiaila areas are associated with fracturing and clay-bearing gouge that accompany known shear zones. The locations of several shallow plutons have been inferred from these studies, one of which is probably a source of gold-bearing quartz veins in the metasedimentary rocks of the Shiaila area.

  8. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the 2007 Noto-hanto earthquake, 2008 Iwate-Miyagi earthquake, and 2008 Wenchuan earthquake. The on-going rupture extent can be estimated for all datasets as the rupture propagates. For earthquakes with magnitude about 7.0, the determination of the fault parameters converges to the final geometry within 10 seconds.

  9. The study of active tectonic based on hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.

  10. Constraints from Mesozoic siliciclastic cover rocks and satellite image analysis on the slip history of regional E-W faults in the southeast Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Tewksbury, Barbara J.; Mehrtens, Charlotte J.; Gohlke, Steven A.; Tarabees, Elhamy A.; Hogan, John P.

    2017-12-01

    In the southeast Western Desert of Egypt, a prominent set of E-W faults and co-located domes and basins involve sedimentary cover rock as young as the early Eocene. Although earlier Mesozoic slip on faults in southern Egypt has been widely mentioned in the literature and attributed to repeated reactivation of basement faults, evidence is indirect and based on the idea that regional stresses associated with tectonic events in the Syrian Arc would likely have reactivated basement faults in south Egypt in dextral strike slip during the Mesozoic as well as the Cenozoic. Here, we present direct evidence from the rock record for the sequence of development of features along these faults. Southwest of Aswan, a small structural dome in Mesozoic Nubia facies rocks occurs where the Seiyal Fault bends northward from west to east. The dome is cut by strands of the Seiyal Fault and a related set of cataclastic deformation bands showing dominantly right lateral strike slip, as well as by younger calcite veins with related patchy poikilotopic cement. High resolution satellite image analysis of the remote southwest Kharga Valley shows a similar sequence of events: older structural domes and basins located where E-W faults bend northward from west to east, right lateral offset of domes and basins along the E-W faults, and two sets of deformation band faults that lack co-located domes and basins. We suggest that field data, image analysis, and burial depth estimates are best explained by diachronous development of features along the E-W fault system. We propose that Late Mesozoic right lateral strike slip produced domes and basins in Nubia facies rocks in stepover regions above reactivated basement faults. We further suggest that the extensively linked segments of the E-W fault system in Nubia facies rocks, plus the deformation band systems, formed during the late Eocene when basement faults were again reactivated in dominantly right lateral strike slip.

  11. Precise relative locations for earthquakes in the northeast Pacific region

    DOE PAGES

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    2015-10-09

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less

  12. Geologic Map and GIS Data for the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  13. A seismic fault recognition method based on ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong

    2018-05-01

    Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.

  14. The buried active faults in southeastern China as revealed by the relocated background seismicity and fault plane solutions

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Wang, P.; Liu, F.

    2017-12-01

    The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.

  15. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo

    2018-02-01

    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  16. Need for denser geodetic network to get real constrain on the fault behavior along the Main Marmara Sea segments of the NAF, toward an optimized GPS network.

    NASA Astrophysics Data System (ADS)

    Klein, E.; Masson, F.; Duputel, Z.; Yavasoglu, H.; Agram, P. S.

    2016-12-01

    Over the last two decades, the densification of GPS networks and the development of new radar satellites offered an unprecedented opportunity to study crustal deformation due to faulting. Yet, submarine strike slip fault segments remain a major issue, especially when the landscape appears unfavorable to the use of SAR measurements. It is the case of the North Anatolian fault segments located in the Main Marmara Sea, that remain unbroken ever since the Mw7.4 earthquake of Izmit in 1999, which ended a eastward migrating seismic sequence of Mw > 7 earthquakes. Located directly offshore Istanbul, evaluation of seismic hazard appears capital. But a strong controversy remains over whether these segments are accumulating strain and are likely to experience a major earthquake, or are creeping, resulting both from the simplicity of current geodetic models and the scarcity of geodetic data. We indeed show that 2D infinite fault models cannot account for the complexity of the Marmara fault segments. But current geodetic data in the western region of Istanbul are also insufficient to invert for the coupling using a 3D geometry of the fault. Therefore, we implement a global optimization procedure aiming at identifying the most favorable distribution of GPS stations to explore the strain accumulation. We present here the results of this procedure that allows to determine both the optimal number and location of the new stations. We show that a denser terrestrial survey network can indeed locally improve the resolution on the shallower part of the fault, even more efficiently with permanent stations. But data closer from the fault, only possible by submarine measurements, remain necessary to properly constrain the fault behavior and its potential along strike coupling variations.

  17. Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Drahor, Mahmut G.; Berge, Meriç A.

    2017-01-01

    Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.

  18. Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing

    2018-05-01

    We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.

  19. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    USGS Publications Warehouse

    Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.

    2008-01-01

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we inverted, yielding a velocity model that shows lateral heterogeneity similar to the 2006 DC resistivity models. Finally, we collected P-wave data along a second transect in Area 2, located north of the first line and in an area of a very minor fault that was targeted by another 2006 DC resistivity survey. The P-wave refraction velocity model shows generally high velocities, with a zone of somewhat lower velocities in the central part of the transect. The position of the low velocity zone corresponds with the location of a minor fault, though it is unclear whether the two are related. Together, these results demonstrate the value of geophysical data for mapping the subsurface extent of faults. The 2007 DC resistivity data complement the 2006 data and provide important new detail of the overlapping fault splays. The seismic data demonstrate the ability of P-wave refraction methods to identify the damage zones at faults, and they show the difficulties associated with S-wave methods in areas with caliche. Combining all of the geophysical data from the Area 7 studies, we are able to develop a coherent interpretation of the relation between the site geology, the fault, and the observations.

  20. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Jacobi; John Fountain

    2002-01-30

    In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently weremore » sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located. The trend and location of these faults based on aeromagnetics agrees with the location based on FIDs. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.« less

  1. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    NASA Astrophysics Data System (ADS)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-11-01

    Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  2. Fiber fault location utilizing traffic signal in optical network.

    PubMed

    Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi

    2013-10-07

    We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.

  3. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake

    USGS Publications Warehouse

    Shen, Z.-K.; Sun, Jielun; Zhang, P.; Wan, Y.; Wang, M.; Burgmann, R.; Zeng, Y.; Gan, Weijun; Liao, H.; Wang, Q.

    2009-01-01

    The disastrous 12 May 2008 Wenchuan earthquake in China took the local population as well as scientists by surprise. Although the Longmen Shan fault zonewhich includes the fault segments along which this earthquake nucleatedwas well known, geologic and geodetic data indicate relatively low (<3 mm yr -1) deformation rates. Here we invert Global Positioning System and Interferometric Synthetic Aperture Radar data to infer fault geometry and slip distribution associated with the earthquake. Our analysis shows that the geometry of the fault changes along its length: in the southwest, the fault plane dips moderately to the northwest but becomes nearly vertical in the northeast. Associated with this is a change in the motion along the fault from predominantly thrusting to strike-slip. Peak slip along the fault occurs at the intersections of fault segments located near the towns of Yingxiu, Beichuan and Nanba, where fatalities and damage were concentrated. We suggest that these locations represent barriers that failed in a single event, enabling the rupture to cascade through several fault segments and cause a major moment magnitude (Mw) 7.9 earthquake. Using coseismic slip distribution and geodetic and geological slip rates, we estimate that the failure of barriers and rupture along multiple segments takes place approximately once in 4,000 years. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  4. Lembang fault plane identification using electrical resistivity method for disaster mitigation

    NASA Astrophysics Data System (ADS)

    Maulinadya, S.; Ramadhan, M. Lutfi; N. Wening, F.; Pinehas, D.; Widodo

    2017-07-01

    Lembang Fault is an active fault lies from West to East located 10 kilometers in north of Bandung. It is a normal fault that its foot wall raises 40-450 meters above the ground. Its location that is not so far from Bandung, which is densely populated and frequently visited by tourists, makes Lembang Fault a threat if it becomes suddenly active. Its movement can cause earthquakes that can result in fatalities. Therefore, act of mitigation is necessary, such as educating people about Lembang Fault and its potential to cause disaster. The objective of this study is to find Lembang Fault plane below the surface with geo electrical mapping method and vertical elect rical sounding method around Ciwarega and The Peak, Lembang (west side of Lembang Fault). Both of these methods are using electricity current to measure rock resistivity. Currents are injected to the ground and potential differences are measured. According to Ohm's Law, resistivity can be calculated so that resistivity distribution can be obtained. In this study, high resistivity contrast is obtained; it is about 1400-5000 Ohm.m. This resistivity contrast can be caused by lateral lithology difference resulted by fault existence. This proves that there is actually a fault in Lembang that potentially cause disasters like earthquakes.

  5. The hazard education model in the high school science-club activities above active huge fault

    NASA Astrophysics Data System (ADS)

    Nakamura, R.

    2017-12-01

    Along the west coast of pacific ocean, includes Japan, there are huge numerous volcanoes and earthquakes. The biggest cause is their location on the border of plates. The pressure among the plates cause strains and cracks. By the island arc lines, strains make long and enormous faults. More than huge 150 faults are reported (the head quarters for earthquake research promotion, Japan, 2017). Below my working school, it is laying one of the biggest faults Nagamachi-Rifu line which is also laying under 1 million population city Sendai. Before 2011 Tohoku earthquake, one of the hugest earthquake was predicted because of the fault activities. Investigating the fault activity with our school student who live in the closest area is one of the most important hazard education. Therefore, now we are constructing the science club activity with make attention for (1) seeking fault line(s) with topographic land maps and on foot search (2) investigate boling core sample soils that was brought in our school founded. (1) Estimate of displacement of the faults on foot observation In order to seek the unknown fault line in Rifu area, at first it was needed to estimate on the maps(1:25,000 Scale Topographic Maps and Active Faults in Urban Area of Map(Sendai), Geographical Survey Institute of Japan). After that estimation, walked over the region with club students to observe slopes which was occurred by the faults activation and recorded on the maps. By observant slope gaps, there has a possibilities to have 3 or 4 fault lines that are located parallel to the known activate faults. (2) Investigate of the boling core samples above the fault. We investigated 6 columnar-shaped boling core samples which were excavated when the school has been built. The maximum depth of the samples are over 20m, some are new filled sands over original ash tephra and pumice from old volcanoes located west direction. In the club activities, we described column diagram of sediments and discussed the sediment circumstances by the sediments grain observation, however, it was impossible to describe the sediments origin of exact volcano(es).

  6. A novel fault location scheme for power distribution system based on injection method and transient line voltage

    NASA Astrophysics Data System (ADS)

    Huang, Yuehua; Li, Xiaomin; Cheng, Jiangzhou; Nie, Deyu; Wang, Zhuoyuan

    2018-02-01

    This paper presents a novel fault location method by injecting travelling wave current. The new methodology is based on Time Difference Of Arrival(TDOA)measurement which is available measurements the injection point and the end node of main radial. In other words, TDOA is the maximum correlation time when the signal reflected wave crest of the injected and fault appear simultaneously. Then distance calculation is equal to the wave velocity multiplied by TDOA. Furthermore, in case of some transformers connected to the end of the feeder, it’s necessary to combine with the transient voltage comparison of amplitude. Finally, in order to verify the effectiveness of this method, several simulations have been undertaken by using MATLAB/SIMULINK software packages. The proposed fault location is useful to short the positioning time in the premise of ensuring the accuracy, besides the error is 5.1% and 13.7%.

  7. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  8. Seismic Images of the Non-Volcanic Tremor Region around Cholame, California, USA

    NASA Astrophysics Data System (ADS)

    Gutjahr, S.; Buske, S.

    2012-04-01

    We reprocessed the industry seismic reflection profile "WSJ-6" which is so far the only seismic profile crossing the San Andreas fault at the non-volcanic tremor region around Cholame. The profile "WSJ-6" runs from Morro Bay eastward to the foothills of the Sierra Nevada and crosses several prominent fault systems, e.g.the Rinconada fault as well as the San Juan fault and the San Andreas fault respectively. By applying the so-called Fresnel Volume migration to the data we produced seismic images of the lower crust and the upper mantle down to depths of approximately 40 km. A 3D tomographic velocity model derived from local earthquake data analysis (Thurber et al., 2006, Lin et al., 2010) was used for slowness analyses and traveltime calculations. The imaging technique was implemented in 3D taking into account the true shot and receiver locations on the crooked profile line. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the San Andreas fault. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the Rinconada fault and the San Andreas fault. Southwest of the San Andreas fault surface trace a broad zone of high reflectivity is located at depths between 20 km to 35 km. In this region non-volcanic tremor has been located below the seismogenic zone down to 30 km depth. Tremor locations correlate with zones of high reflectivity. This correlation may be an indicator for high pore pressures and fluid content in that region as it is assumed by several authors. The images of the eastern part of the profile show slightly west dipping sedimentary layers in the area of the San Joaquin Valley that are folded and faulted below the Kettleman Hills. Our imaging results will be compared to existing interpretations of the same data.

  9. New insights on active fault geometries in the Mentawai region of Sumatra, Indonesia, from broadband waveform modeling of earthquake source parameters

    NASA Astrophysics Data System (ADS)

    WANG, X.; Wei, S.; Bradley, K. E.

    2017-12-01

    Global earthquake catalogs provide important first-order constraints on the geometries of active faults. However, the accuracies of both locations and focal mechanisms in these catalogs are typically insufficient to resolve detailed fault geometries. This issue is particularly critical in subduction zones, where most great earthquakes occur. The Slab 1.0 model (Hayes et al. 2012), which was derived from global earthquake catalogs, has smooth fault geometries, and cannot adequately address local structural complexities that are critical for understanding earthquake rupture patterns, coseismic slip distributions, and geodetically monitored interseismic coupling. In this study, we conduct careful relocation and waveform modeling of earthquake source parameters to reveal fault geometries in greater detail. We take advantage of global data and conduct broadband waveform modeling for medium size earthquakes (M>4.5) to refine their source parameters, which include locations and fault plane solutions. The refined source parameters can greatly improve the imaging of fault geometry (e.g., Wang et al., 2017). We apply these approaches to earthquakes recorded since 1990 in the Mentawai region offshore of central Sumatra. Our results indicate that the uncertainty of the horizontal location, depth and dip angle estimation are as small as 5 km, 2 km and 5 degrees, respectively. The refined catalog shows that the 2005 and 2009 "back-thrust" sequences in Mentawai region actually occurred on a steeply landward-dipping fault, contradicting previous studies that inferred a seaward-dipping backthrust. We interpret these earthquakes as `unsticking' of the Sumatran accretionary wedge along a backstop fault that separates accreted material of the wedge from the strong Sunda lithosphere, or reactivation of an old normal fault buried beneath the forearc basin. We also find that the seismicity on the Sunda megathrust deviates in location from Slab 1.0 by up to 7 km, with along strike variation. The refined megathrust geometry will improve our understanding of the tectonic setting in this region, and place further constraints on rupture processes of the hazardous megathrust.

  10. Practical Methods for Estimating Software Systems Fault Content and Location

    NASA Technical Reports Server (NTRS)

    Nikora, A.; Schneidewind, N.; Munson, J.

    1999-01-01

    Over the past several years, we have developed techniques to discriminate between fault-prone software modules and those that are not, to estimate a software system's residual fault content, to identify those portions of a software system having the highest estimated number of faults, and to estimate the effects of requirements changes on software quality.

  11. A 10 cm Dual Frequency Doppler Weather Radar. Part I. The Radar System.

    DTIC Science & Technology

    1982-10-25

    Evaluation System ( RAMCES )". The step attenuator required for this calibration can be programmed remotely, has low power and temperature coefficients, and...Control and Evaluation System". The Quality Assurance/Fault Location Network makes use of fault location techniques at critical locations in the radar and...quasi-con- tinuous monitoring of radar performance. The Radar Monitor, Control and Evaluation System provides for automated system calibration and

  12. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  13. Analysis on IGBT and Diode Failures in Distribution Electronic Power Transformers

    NASA Astrophysics Data System (ADS)

    Wang, Si-cong; Sang, Zi-xia; Yan, Jiong; Du, Zhi; Huang, Jia-qi; Chen, Zhu

    2018-02-01

    Fault characteristics of power electronic components are of great importance for a power electronic device, and are of extraordinary importance for those applied in power system. The topology structures and control method of Distribution Electronic Power Transformer (D-EPT) are introduced, and an exploration on fault types and fault characteristics for the IGBT and diode failures is presented. The analysis and simulation of different fault types for the fault characteristics lead to the D-EPT fault location scheme.

  14. A Fault Location Algorithm for Two-End Series-Compensated Double-Circuit Transmission Lines Using the Distributed Parameter Line Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Ning; Gombos, Gergely; Mousavi, Mirrasoul J.

    A new fault location algorithm for two-end series-compensated double-circuit transmission lines utilizing unsynchronized two-terminal current phasors and local voltage phasors is presented in this paper. The distributed parameter line model is adopted to take into account the shunt capacitance of the lines. The mutual coupling between the parallel lines in the zero-sequence network is also considered. The boundary conditions under different fault types are used to derive the fault location formulation. The developed algorithm directly uses the local voltage phasors on the line side of series compensation (SC) and metal oxide varistor (MOV). However, when potential transformers are not installedmore » on the line side of SC and MOVs for the local terminal, these measurements can be calculated from the local terminal bus voltage and currents by estimating the voltages across the SC and MOVs. MATLAB SimPowerSystems is used to generate cases under diverse fault conditions to evaluating accuracy. The simulation results show that the proposed algorithm is qualified for practical implementation.« less

  15. Quantifying Vertical Exhumation in Intracontinental Strike-Slip Faults: the Garlock fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Chinn, L.; Blythe, A. E.; Fendick, A.

    2012-12-01

    New apatite fission-track ages show varying rates of vertical exhumation at the eastern terminus of the Garlock fault zone. The Garlock fault zone is a 260 km long east-northeast striking strike-slip fault with as much as 64 km of sinistral offset. The Garlock fault zone terminates in the east in the Avawatz Mountains, at the intersection with the dextral Southern Death Valley fault zone. Although motion along the Garlock fault west of the Avawatz Mountains is considered purely strike-slip, uplift and exhumation of bedrock in the Avawatz Mountains south of the Garlock fault, as recently as 5 Ma, indicates that transpression plays an important role at this location and is perhaps related to a restricting bend as the fault wraps around and terminates southeastward along the Avawatz Mountains. In this study we complement extant thermochronometric ages from within the Avawatz core with new low temperature fission-track ages from samples collected within the adjacent Garlock and Southern Death Valley fault zones. These thermochronometric data indicate that vertical exhumation rates vary within the fault zone. Two Miocene ages (10.2 (+5.0/-3.4) Ma, 9.0 (+2.2/-1.8) Ma) indicate at least ~3.3 km of vertical exhumation at ~0.35 mm/yr, assuming a 30°C/km geothermal gradient, along a 2 km transect parallel and adjacent to the Mule Spring fault. An older Eocene age (42.9 (+8.7/-7.3) Ma) indicates ~3.3 km of vertical exhumation at ~0.08 mm/yr. These results are consistent with published exhumation rates of 0.35 mm/yr between ~7 and ~4 Ma and 0.13 mm/yr between ~15 and ~9 Ma, as determined by apatite fission-track and U-Th/He thermochronometry in the hanging-wall of the Mule Spring fault. Similar exhumation rates on both sides of the Mule Spring fault support three separate models: 1) Thrusting is no longer active along the Mule Spring fault, 2) Faulting is dominantly strike-slip at the sample locations, or 3) Miocene-present uplift and exhumation is below detection levels using apatite fission-track thermochronometry. In model #1 slip on the Mule Spring fault may have propagated towards the range front, and may be responsible for the fault-propagation-folding currently observed along the northern branch of the Southern Death Valley fault zone. Model #2 may serve to determine where faulting has historically included a component of thrust faulting to the east of sample locations. Model #3 would further determine total offset along the Mule Spring fault from Miocene-present. Anticipated fission-track and U-Th/He data will help distinguish between these alternative models.

  16. Tectonic Setting of NGHP-1 Site 17, Andaman Forearc

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.

    2008-12-01

    The National Gas Hydrate Program (NGHP) Expedition 1 was an 'IODP-like' coring and logging program to investigate gas hydrate occurrences along the margins of India. Although most sites were located along the east coast of India, Site NGHP-01-17 was located near 10° 45'N on the Andaman forearc approximately 50 km east of Little Andaman Island in a water depth of 1325 m. Seismic lines across the site show an anomalously deep bottom simulating reflector (BSR) at a depth of about 600 mbsf. Coring and logging results confirmed that the BSR does mark the base of the gas hydrate stability zone. The age of the sediments at the base of the hole was estimated as 12.3 Ma. The Andaman Sea is an extensional basin resulting from strain partitioning during oblique subduction at the Sunda trench. The site is located within the eastern portion of the Andaman-Nicobar outer arc accretionary ridge on a long sliver of crust between the Eastern Margin Fault and the Diligent Fault. They are both down-to-the-east normal faults that form the eastern edge of the accretionary prism. The West Andaman Fault (WAF), which forms the principal active plate boundary between the Sumatra Fault and the Andaman Spreading Center, is located about 45 km further east along the eastern side of Invisible Bank. The Eastern Margin Fault forms the eastern edge of the block containing Little Andaman Island and extends northward for at least 100 km along the eastern side of South Andaman Island where it appears to die out. It can be traced south to about 8° 20'N where it dies out east of Tarasa Island. The Diligent Fault extends south to about 9° N where it apparently merges with the WAF. It forms the eastern edge of the accretionary prism northward to at least to 13° N and most likely to the Mynamar shelf at 14° N. It probably continues on to join the Kabaw Fault, which marks the eastern boundary of the accretionary prism in Myanmar. Although there is a significant vertical offset across both faults near the NGDP-1-17 site, the Diligent Fault appears to have also experienced strike-slip faulting at some point, probably prior to formation of the Andaman Spreading Center at about 4 Ma. At that time the situation may have been similar to that now found between about 7° N and 4° N where the northern motion of the sliver plate is concentrated at two locations, a fault system along the landward margin of the accretionary prism and another system further landward that forms the main plate boundary.

  17. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  18. Comprehensive analysis of single- and multi-vehicle large truck at-fault crashes on rural and urban roadways in Alabama.

    PubMed

    Islam, Samantha; Jones, Steven L; Dye, Daniel

    2014-06-01

    The research described in this paper analyzed injury severities at a disaggregate level for single-vehicle (SV) and multi-vehicle (MV) large truck at-fault accidents for rural and urban locations in Alabama. Given the occurrence of a crash, four separate random parameter logit models of injury severity (with possible outcomes of major, minor, and possible or no injury) were estimated. The models identified different sets of factors that can lead to effective policy decisions aimed at reducing large truck-at-fault accidents for respective locations. The results of the study clearly indicated that there are differences between the influences of a variety of variables on the injury severities resulting from urban vs. rural SV and MV large truck at-fault accidents. The results showed that some variables were significant only in one type of accident model (SV or MV) but not in the other accident model. Again, some variables were found to be significant in one location (rural or urban) but not in other locations. The study also identified important factors that significantly impact the injury severity resulting from SV and MV large truck at-fault accidents in urban and rural locations based on the estimated values of average direct pseudo-elasticity. A careful study of the results of this study will help policy makers and transportation agencies identify location specific recommendations to increase safety awareness related to large truck involved accidents and to improve overall highway safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Using marine magnetic survey data to identify a gold ore-controlling fault: a case study in Sanshandao fault, eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Jiayong; Wang, Zhihui; Wang, Jinhui; Song, Jianhua

    2018-06-01

    The Jiaodong Peninsula has the greatest concentration of gold ore in China and is characterized by altered tectonite-type gold ore deposits. This type of gold deposit is mainly formed in fracture zones and is strictly controlled by faults. Three major ore-controlling faults occur in the Jiaodong Peninsula—the Jiaojia, Zhaoping and Sanshandao faults; the former two are located on land and the latter is located near Sanshandao and its adjacent offshore area. The discovery of the world’s largest marine gold deposit in northeastern Sanshandao indicates that the shallow offshore area has great potential for gold prospecting. However, as two ends of the Sanshandao fault extend to the Bohai Sea, conventional geological survey methods cannot determine the distribution of the fault and this is constraining the discovery of new gold deposits. To explore the southwestward extension of the Sanshandao fault, we performed a 1:25 000 scale marine magnetic survey in this region and obtained high-quality magnetic survey data covering 170 km2. Multi-scale edge detection and three-dimensional inversion of magnetic anomalies identify the characteristics of the southwestward extension of the Sanshandao fault and the three-dimensional distribution of the main lithologies, providing significant evidence for the deployment of marine gold deposit prospecting in the southern segment of the Sanshandao fault. Moreover, three other faults were identified in the study area and faults F2 and F4 are inferred as ore-controlling faults: there may exist other altered tectonite-type gold ore deposits along these two faults.

  20. Microseismicity Studies in Northern Baja California: General Results.

    NASA Astrophysics Data System (ADS)

    Frez, J.; Acosta, J.; Gonzalez, J.; Nava, F.; Suarez, F.

    2005-12-01

    Between 1997 and 2003, we installed local seismological networks in northern Baja California with digital, three-component, Reftek instruments, and with 100-125 Hz sampling. Each local network had from 15 to 40 stations over an area approximately of 50 x 50 km2. Surveys have been carried out for the Mexicali seismic zone and the Ojos Negros region (1997), the San Miguel fault system (1998), the Pacific coast between Tijuana and Ensenada (1999), the Agua Blanca and Vallecito fault systems (2001), the Sierra Juarez fault system (2002), and other smaller areas (2001 and 2003). These detailed microseismicity surveys are complemented with seismograms and arrival times from regional networks (RESNOM and SCSN). Selected locations presented here have errors (formal errors from HYPO71) less than 1 km. Phase reading errors are estimated at less than or about 0.03 s. Most of the activity is located between mapped fault traces, along alignments which do not follow the fault traces, and where tectonic alignments intersect. The results suggests an orthogonal pattern at various scales. Depth distributions generally have two maxima, one secondary maximum, at about 5 km; the other, located at 12-17 km. The Agua Blanca fault is essentially inactive for earthquakes with ML > 1.7. Most focal mechanisms are strike-slip with a minor normal component; the others are dominantly normal; the resulting pattern indicates a regional extensional regime for all the regions with an average NS azimuth for the P-axes. Fracture directions, obtained from directivity measurements, show orthogonal directions, one of which approximately coincides with the azimuth of mapped fault traces. These results indicate that the Pacific-North American interplate motion is not being entirely accommodated by the NW trending faults, but rather is creating a complex system of conjugate faults.

  1. Foreshocks and Aftershocks Detected from Stick-slip Events on a 3 m Biaxial Apparatus and their Relationship to Quasistatic Nucleation and Wear Processes

    NASA Astrophysics Data System (ADS)

    Wu, S.; Mclaskey, G.

    2017-12-01

    We investigate foreshocks and aftershocks of dynamic stick-slip events generated on a newly constructed 3 m biaxial friction apparatus at Cornell University (attached figure). In a typical experiment, two rectangular granite blocks are squeezed together under 4 or 7 MPa of normal pressure ( 4 or 7 million N on a 1 m2 fault surface), and then shear stress is increased until the fault slips 10 - 400 microns in a dynamic rupture event similar to a M -2 to M -3 earthquake. Some ruptures nucleate near the north end of the fault, where the shear force is applied, other ruptures nucleate 2 m from the north end of the fault. The samples are instrumented with 16 piezoelectric sensors, 16 eddy current sensors, and 8 strain gage rosettes, evenly placed along the fault to measure vertical ground motion, local slip, and local stress, respectively. We studied sequences of tens of slip events and identified a total of 194 foreshocks and 66 aftershocks located within 6 s time windows around the stick-slip events and analyzed their timing and locations relative to the quasistatic nucleation process. We found that the locations of the foreshocks and aftershocks were distributed all along the length of the fault, with the majority located at the ends of the fault where local normal and shear stress is highest (caused by both edge effects and the finite stiffness of the steel frame surrounding the granite blocks). We also opened the laboratory fault and inspected the fault surface and found increased wear at the sample ends. To explore the foreshocks' and aftershocks' relationship to the nucleation and afterslip, we compared the occurrence of foreshocks to the local slip rate on the laboratory fault closest to each foreshock in space and time. We found that that majority of foreshocks were generated from local slip rates between 1 and 100 microns/s, though we were not able to resolve slip rate lower than about 1 micron/s. Our experiments provide insight into how foreshocks and aftershocks in natural earthquakes may be influenced both by fault structure and slow slip associated with nucleation or afterslip.

  2. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  3. Recently Active Traces of the Berryessa Fault, California: A Digital Database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2012-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Berryessa section and parts of adjacent sections of the Green Valley Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale 2010 aerial photography and from 2007 and 2011 0.5 and 1.0 meter bare-earth LiDAR imagery (that is, high-resolution topographic data). In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  4. Fault patterns in the Strait of Messina, Southern Italy

    NASA Astrophysics Data System (ADS)

    Fu, L.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Schulten, I.; Cukur, D.; Gross, F.; Bialas, J.

    2013-12-01

    The Strait of Messina is one of the seismically most active areas in the Mediterranean region. The structural and seismotectonic settings of the area are still poorly understood. A number of faults have been identified on new high-resolution 2D seismic data collected in December 2011/January 2012. Most of the faults trending NWW-SEE are high angle (>60°) faults; they are located in the northern (off Calabria) and southern part of the Messina Straits. A number of faults identified in the central part of the Straits along the central channel or on the Calabrian side strike NNE-SSW or NNW-NNE. They dip at intermediate (30°-60°) to low (<30°) angles. The NNW-ward motion of Sicily and the NE-ward motion of Calabria indicate that faults in the strait are transtensional and that the strait is basically an asymmetric pull-apart basin (half-graben) under transtensional condition. This is confirmed by the appearances of negative flower structures, an en-echelon fault zone, and two main depocentres in the northern and central part of the straits, respectively. A fault located close to the Sicilian coast between Taormina and Briga may represent the so called Taormina fault. The existence of this fault is heavily debated in literatures. As the Strait of Messina is a transtensional basin, the Taormina fault should be a surface fault, which may outcrop very close to the Ionian coast off Sicily rather than a blind basement fault as identified on our data. Faults in the north may be the source of the 1908 Messina earthquake, because the area is in an early mature developing stage of a pull-apart basin. The cross-basin faults transecting this part of the basin would increase the slippage and the potential for large-magnitude earthquakes.

  5. InSAR Evidence for an active shallow thrust fault beneath the city of Spokane Washington, USA

    USGS Publications Warehouse

    Wicks, Charles W.; Weaver, Craig S.; Bodin, Paul; Sherrod, Brian

    2013-01-01

    In 2001, a nearly five month long sequence of shallow, mostly small magnitude earthquakes occurred beneath the city of Spokane, a city with a population of about 200,000, in the state of Washington. During most of the sequence, the earthquakes were not well located because seismic instrumentation was sparse. Despite poor-quality locations, the earthquake hypocenters were likely very shallow, because residents near the city center both heard and felt many of the earthquakes. The combination of poor earthquake locations and a lack of known surface faults with recent movement make assessing the seismic hazards related to the earthquake swarm difficult. However, the potential for destruction from a shallow moderate-sized earthquake is high, for example Christchurch New Zealand in 2011, so assessing the hazard potential of a seismic structure involved in the Spokane earthquake sequence is important. Using interferometric synthetic aperture radar (InSAR) data from the European Space Agency ERS2 and ENVISAT satellites and the Canadian Space Agency RADARSAT-1, satellite we are able to show that slip on a shallow previously unknown thrust fault, which we name the Spokane Fault, is the source of the earthquake sequence. The part of the Spokane Fault that slipped during the 2001 earthquake sequence underlies the north part of the city, and slip on the fault was concentrated between ~0.3 and 2 km depth. Projecting the buried fault plane to the surface gives a possible surface trace for the Spokane Fault that strikes northeast from the city center into north Spokane.

  6. Application of ground-penetrating radar to investigation of near-surface fault properties in the San Francisco Bay region

    USGS Publications Warehouse

    Cai, J.; McMechan, G.A.; Fisher, M.A.

    1996-01-01

    In many geologic environments, ground-penetrating radar (GPR) provides high-resolution images of near-surface Earth structure. GPR data collection is nondestructive and very economical. The scale of features detected by GPR lies between those imaged by high-resolution seismic reflection surveys and those exposed in trenches and is therefore potentially complementary to traditional techniques for fault location and mapping. Sixty-two GPR profiles were collected at 12 sites in the San Francisco Bay region. Results show that GPR data correlate with large-scale features in existing trench observations, can be used to locate faults where they are buried or where their positions are not well known, and can identify previously unknown fault segments. The best data acquired were on a profile across the San Andreas fault, traversing Pleistocene terrace deposits south of Olema in Marin County; this profile shows a complicated multi-branched fault system from the ground surface down to about 40 m, the maximum depth for which data were recorded.

  7. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  8. A distal earthquake cluster concurrent with the 2006 explosive eruption of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Ruppert, N.A.; White, R.A.; Wilson, Frederic H.; Comer, D.; Sliter, R.W.; Wong, F.L.

    2009-01-01

    Clustered earthquakes located 25??km northeast of Augustine Volcano began about 6??months before and ceased soon after the volcano's 2006 explosive eruption. This distal seismicity formed a dense cluster less than 5??km across, in map view, and located in depth between 11??km and 16??km. This seismicity was contemporaneous with sharply increased shallow earthquake activity directly below the volcano's vent. Focal mechanisms for five events within the distal cluster show strike-slip fault movement. Cluster seismicity best defines a plane when it is projected onto a northeast-southwest cross section, suggesting that the seismogenic fault strikes northwest. However, two major structural trends intersect near Augustine Volcano, making it difficult to put the seismogenic fault into a regional-geologic context. Specifically, interpretation of marine multichannel seismic-reflection (MCS) data shows reverse faults, directly above the seismicity cluster, that trend northeast, parallel to the regional geologic strike but perpendicular to the fault suggested by the clustered seismicity. The seismogenic fault could be a reactivated basement structure.

  9. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  10. Fault Geometry and Slip Distribution at Depth of the 1997 Mw 7.2 Zirkuh Earthquake: Contribution of Near-Field Displacement Data

    NASA Astrophysics Data System (ADS)

    Marchandon, Mathilde; Vergnolle, Mathilde; Sudhaus, Henriette; Cavalié, Olivier

    2018-02-01

    In this study, we reestimate the source model of the 1997 Mw 7.2 Zirkuh earthquake (northeastern Iran) by jointly optimizing intermediate-field Interferometry Synthetic Aperture Radar data and near-field optical correlation data using a two-step fault modeling procedure. First, we estimate the geometry of the multisegmented Abiz fault using a genetic algorithm. Then, we discretize the fault segments into subfaults and invert the data to image the slip distribution on the fault. Our joint-data model, although similar to the Interferometry Synthetic Aperture Radar-based model to the first order, highlights differences in the fault dip and slip distribution. Our preferred model is ˜80° west dipping in the northern part of the fault, ˜75° east dipping in the southern part and shows three disconnected high slip zones separated by low slip zones. The low slip zones are located where the Abiz fault shows geometric complexities and where the aftershocks are located. We interpret this rough slip distribution as three asperities separated by geometrical barriers that impede the rupture propagation. Finally, no shallow slip deficit is found for the overall rupture except on the central segment where it could be due to off-fault deformation in quaternary deposits.

  11. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    PubMed Central

    Moghadas, Amin A.; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  12. Slip-parallel seismic lineations on the Northern Hayward Fault, California

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.; Cole, A.

    1999-01-01

    A high-resolution relative earthquake location procedure is used to image the fine-scale seismicity structure of the northern Hayward fault, California. The seismicity defines a narrow, near-vertical fault zone containing horizontal alignments of hypocenters extending along the fault zone. The lineations persist over the 15-year observation interval, implying the localization of conditions on the fault where brittle failure conditions are met. The horizontal orientation of the lineations parallels the slip direction of the fault, suggesting that they are the result of the smearing of frictionally weak material along the fault plane over thousands of years.

  13. Imaging the crustal structure of Haiti's transpressional fault system using seismicity and tomography

    NASA Astrophysics Data System (ADS)

    Possee, D.; Keir, D.; Harmon, N.; Rychert, C.; Rolandone, F.; Leroy, S. D.; Stuart, G. W.; Calais, E.; Boisson, D.; Ulysse, S. M. J.; Guerrier, K.; Momplaisir, R.; Prepetit, C.

    2017-12-01

    Oblique convergence of the Caribbean and North American plates has partitioned strain across an extensive transpressional fault system that bisects Haiti. Most recently the 2010, MW7.0 earthquake ruptured multiple thrust faults in southern Haiti. However, while the rupture mechanism has been well studied, how these faults are segmented and link to deformation across the plate boundary is still debated. Understanding the link between strain accumulation and faulting in Haiti is also key to future modelling of seismic hazards. To assess seismic activity and fault structures we used data from 31 broadband seismic stations deployed on Haiti for 16-months. Local earthquakes were recorded and hypocentre locations determined using a 1D velocity model. A high-quality subset of the data was then inverted using travel-time tomography for relocated hypocentres and 2D images of Vp and Vp/Vs crustal structure. Earthquake locations reveal two clusters of seismic activity, the first delineates faults associated with the 2010 earthquake and the second shows activity 100km further east along a thrust fault north of Lake Enriquillo (Dominican Republic). The velocity models show large variations in seismic properties across the plate boundary; shallow low-velocity zones with a 5-8% decrease in Vp and high Vp/Vs ratios of 1.85-1.95 correspond to sedimentary basins that form the low-lying terrain on Haiti. We also image a region with a 4-5% decrease in Vp and an increased Vp/Vs ratio of 1.80-1.85 dipping south to a depth of 20km beneath southern Haiti. This feature matches the location of a major thrust fault and suggests a substantial damage zone around this fault. Beneath northern Haiti a transition to lower Vp/Vs values of 1.70-1.75 reflects a compositional change from mafic facies such as the Caribbean large igneous province in the south, to arc magmatic facies associated with the Greater Antilles arc in the north. Our seismic images are consistent with the fault system across southern Haiti transitioning from a near vertical strike-slip fault in the west to a major south dipping oblique-slip fault in the east. Seismicity in southern Haiti broadly occurs on the thrust/oblique-slip faults. The results show evidence for significant variations in fault zone structure and kinematics along strike of a major transpressional plate boundary.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, E.A.; Brennan, P.A.; Hook, S.C.

    The authors present graphical solutions to the extensional fault-related folding equations of Xiao and Suppe (1992), simplifying the prediction of normal fault location or rollover geometry from subsurface data. These equations also predict the extent of bed thinning and elongation in hanging wall strata. They have derived new equations that relate change in fault slip across a fault bend to fault geometry. Applying these equations in seismic interpretation makes it easier to (1) construct balanced cross-sections, (2) account for the slip observed, and (3) determine the growth history of extensional fault-related folds. They have applied these concepts to several southeastmore » Asian rift basins in Malaysia, Myanmar, Indonesia, and Thailand. These basins were formed by early Tertiary crustal extension, producing rollover structures in which sediment supply generally did not keep up with subsidence. These under-filled, internally drained depressions periodically contained lakes, providing the environment for deposition of organic-rich strata that ultimately became hydrocarbon source rock. Typically, the main basin bounding faults dip 35-55[degrees] near their upper terminations and flatten to become subhorizontal. Synthetic and antithetic secondary faults are usually present. Late compaction faulting often propagates upward from major extensional faults and may reactivate the upper portions of these faults. In many basins, late compression produced inversion structures. By applying the concepts of extensional fault-related folding to these basins, they can (1) explain observed geometries, (2) predict poorly imaged geometries, (3) predict the location of source and reservoir facies, and (4) determine the timing of faulting relative to deposition of source and reservoir rocks.« less

  15. Spatial arrangement and size distribution of normal faults, Buckskin detachment upper plate, Western Arizona

    NASA Astrophysics Data System (ADS)

    Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.

    2018-03-01

    Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.

  16. Miocene stratigraphy and structure of Sabine Pass, West Cameron, and East Cameron outer continental shelf areas, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.Y.; Watkins, J.S.

    Mapping of Miocene stratigraphy and structure of the Sabine Pass, West Cameron, and East Cameron areas of the western Louisiana outer continental shelf - based on over 1300 mi of seismic data on a 4-mi grid, paleotops from 60 wells, and logs from 35 wells - resulted in time-structure and isochron maps at six intervals from the upper Pliocene to lower Miocene. The most pronounced structural features are the fault systems, which trend east-northeast to east along the Miocene stratigraphic trend. Isolated normal faults with small displacements characterize the inner inner shelf, whereas interconnected faults with greater displacements characterize themore » outer inner shelf. The inner inner shelf faults exhibit little growth, but expansion across the interconnected outer inner shelf fault ranges up to 1 sec two-way traveltime. The interconnected faults belong to two structurally independent fault families. The innermost shelf faults appear to root in the sediment column. A third set of faults located in the Sabine Pass area trends north-south. This fault set is thought to be related to basement movement and/or basement structure. Very little salt is evident in the area. A single diapir is located in West Cameron Block 110 and vicinity. There is little evidence of deep salt. Overall sediment thickness probably exceeds 20,000 ft, with the middle Miocene accounting for 8000 ft.« less

  17. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  18. Characterization of Fault Size in Bearings

    DTIC Science & Technology

    2014-12-23

    suggests to use the ratio between the horizontal and the vertical RMS as an indicator of the fault location is not applicable for small faults. Since...Vibration Monitoring of rolling element bearing by the high- frequency resonance technique - a review, Tribology international, Vol. 17, pp 3-10. M

  19. Detection of arcing location on photovoltaic systems using filters

    DOEpatents

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less

  1. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    NASA Astrophysics Data System (ADS)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  2. Computing Fault Displacements from Surface Deformations

    NASA Technical Reports Server (NTRS)

    Lyzenga, Gregory; Parker, Jay; Donnellan, Andrea; Panero, Wendy

    2006-01-01

    Simplex is a computer program that calculates locations and displacements of subterranean faults from data on Earth-surface deformations. The calculation involves inversion of a forward model (given a point source representing a fault, a forward model calculates the surface deformations) for displacements, and strains caused by a fault located in isotropic, elastic half-space. The inversion involves the use of nonlinear, multiparameter estimation techniques. The input surface-deformation data can be in multiple formats, with absolute or differential positioning. The input data can be derived from multiple sources, including interferometric synthetic-aperture radar, the Global Positioning System, and strain meters. Parameters can be constrained or free. Estimates can be calculated for single or multiple faults. Estimates of parameters are accompanied by reports of their covariances and uncertainties. Simplex has been tested extensively against forward models and against other means of inverting geodetic data and seismic observations. This work

  3. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  4. Multiple resolution chirp reflectometry for fault localization and diagnosis in a high voltage cable in automotive electronics

    NASA Astrophysics Data System (ADS)

    Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae

    2016-12-01

    A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.

  5. Where's the Hayward Fault? A Green Guide to the Fault

    USGS Publications Warehouse

    Stoffer, Philip W.

    2008-01-01

    This report describes self-guided field trips to one of North America?s most dangerous earthquake faults?the Hayward Fault. Locations were chosen because of their easy access using mass transit and/or their significance relating to the natural and cultural history of the East Bay landscape. This field-trip guidebook was compiled to help commemorate the 140th anniversary of an estimated M 7.0 earthquake that occurred on the Hayward Fault at approximately 7:50 AM, October 21st, 1868. Although many reports and on-line resources have been compiled about the science and engineering associated with earthquakes on the Hayward Fault, this report has been prepared to serve as an outdoor guide to the fault for the interested public and for educators. The first chapter is a general overview of the geologic setting of the fault. This is followed by ten chapters of field trips to selected areas along the fault, or in the vicinity, where landscape, geologic, and man-made features that have relevance to understanding the nature of the fault and its earthquake history can be found. A glossary is provided to define and illustrate scientific term used throughout this guide. A ?green? theme helps conserve resources and promotes use of public transportation, where possible. Although access to all locations described in this guide is possible by car, alternative suggestions are provided. To help conserve paper, this guidebook is available on-line only; however, select pages or chapters (field trips) within this guide can be printed separately to take along on an excursion. The discussions in this paper highlight transportation alternatives to visit selected field trip locations. In some cases, combinations, such as a ride on BART and a bus, can be used instead of automobile transportation. For other locales, bicycles can be an alternative means of transportation. Transportation descriptions on selected pages are intended to help guide fieldtrip planners or participants choose trip destinations based on transportation options, interests, or special needs.

  6. Seismicity of the St. Lawrence paleorift faults overprinted by a meteorite impact crater: Implications for crustal strength based on new earthquake relocations in the Charlevoix Seismic Zone, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.

    2015-12-01

    The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.

  7. Micro-geomorphology Surveying and Analysis of Xiadian Fault Scarp, China

    NASA Astrophysics Data System (ADS)

    Ding, R.

    2014-12-01

    Historic records and field investigations reveal that the Mw 8.0 Sanhe-Pinggu (China) earthquake of 1679 produced a 10 to 18 km-long surface rupture zone, with dominantly dip-slip accompanied by a right-lateral component along the Xiadian fault, resulting in extensive damage throughout north China. The fault scarp that was coursed by the co-seismic ruptures from Dongliuhetun to Pangezhang is about 1 to 3 meters high, and the biggest vertical displacement locates in Pangezhuang, it is easily to be seen in the flat alluvial plain. But the 10 to 18 km-long surface rupture couldn't match the Mw 8.0 earthquake scale. After more than 300 years land leveling, the fault scarps in the meizoseismal zone which is farmland are retreat at different degree, some small scarps are becoming disappeared, so it is hard to identify by visual observation in the field investigations. The meizoseismal zone is located in the alluvial plain of the Chaobai river and Jiyun river, and the fault is perpendicular to the river. It is easy to distinguish fault scarps from erosion scarps. Land leveling just changes the slope of the fault scarp, but it can't eliminate the height difference between two side of the fault. So it is possible to recover the location and height of the fault scarp by using Digital Elevation Model (DEM) analysis and landform surveying which is constrained by 3D centimeter-precision RTK GPS surveying method in large scale crossing the fault zone. On the base of the high-precision DEM landform analysis, we carried out 15 GPS surveying lines which extends at least 10km for each crossing the meizoseismal zone. Our findings demonstrate that 1) we recover the complete rupture zone of the Sanhe-Pinggu earthquake in 1679, and survey the co-seismic displacement at 15 sites; 2) we conform that the Xiadian fault scarp is consist of three branches with left stepping. Height of the scarp is from 0.5 to 4.0 meters, and the total length of the scarp is at least 50km; 3) Combined with the analysis of offset strata of the trench, we conform that the middle segment of the fault scarp is made by 1679 earthquake; 4) The fault scarp strikes along with the Ju river at the northeast segment of the Xiadian fault which course the asymmetrical valley geomorphology.

  8. A coverage and slicing dependencies analysis for seeking software security defects.

    PubMed

    He, Hui; Zhang, Dongyan; Liu, Min; Zhang, Weizhe; Gao, Dongmin

    2014-01-01

    Software security defects have a serious impact on the software quality and reliability. It is a major hidden danger for the operation of a system that a software system has some security flaws. When the scale of the software increases, its vulnerability has becoming much more difficult to find out. Once these vulnerabilities are exploited, it may lead to great loss. In this situation, the concept of Software Assurance is carried out by some experts. And the automated fault localization technique is a part of the research of Software Assurance. Currently, automated fault localization method includes coverage based fault localization (CBFL) and program slicing. Both of the methods have their own location advantages and defects. In this paper, we have put forward a new method, named Reverse Data Dependence Analysis Model, which integrates the two methods by analyzing the program structure. On this basis, we finally proposed a new automated fault localization method. This method not only is automation lossless but also changes the basic location unit into single sentence, which makes the location effect more accurate. Through several experiments, we proved that our method is more effective. Furthermore, we analyzed the effectiveness among these existing methods and different faults.

  9. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabtaji, Agung, E-mail: sabtaji.agung@gmail.com, E-mail: agung.sabtaji@bmkg.go.id; Indonesia’s Agency for Meteorological, Climatological and Geophysics Region V, Jayapura 1572; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as inputmore » for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.« less

  10. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  11. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type (i.e., well constrained, moderately constrained, or inferred), and mapped scale. Each fault is assigned a three-integer CODE, based upon age, slip rate, and how well the fault is located. This CODE dictates the line-type for the GIS files. To host the database, we are developing an interactive web-map application with ArcGIS for Server and the ArcGIS API for JavaScript from Environmental Systems Research Institute, Inc. (Esri). The web-map application will present the database through a visible scale range with each fault displayed at the resolution of the original map. Application functionality includes: search by name or location, identification of fault by manual selection, and choice of base map. Base map options include topographic, satellite imagery, and digital elevation maps available from ArcGIS on-line. We anticipate that the database will be publically accessible from a portal embedded on the DGGS website by the end of 2011.

  12. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.

  13. An automatic procedure for high-resolution earthquake locations: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Latorre, Diana; Piccinini, Davide

    2014-05-01

    The characterization of the geometry, kinematics and rheology of fault zones by seismological data depends on our capability of accurately locate the largest number of low-magnitude seismic events. To this aim, we have been working for the past three years to develop an advanced modular earthquake location procedure able to automatically retrieve high-resolution earthquakes catalogues directly from continuous waveforms data. We use seismograms recorded at about 60 seismic stations located both at surface and at depth. The network covers an area of about 80x60 km with a mean inter-station distance of 6 km. These stations are part of a Near fault Observatory (TABOO; http://taboo.rm.ingv.it/), consisting of multi-sensor stations (seismic, geodetic, geochemical and electromagnetic). This permanent scientific infrastructure managed by the INGV is devoted to studying the earthquakes preparatory phase and the fast/slow (i.e., seismic/aseismic) deformation process active along the Alto Tiberina fault (ATF) located in the northern Apennines (Italy). The ATF is potentially one of the rare worldwide examples of active low-angle (< 15°) normal fault accommodating crustal extension and characterized by a regular occurrence of micro-earthquakes. The modular procedure combines: i) a sensitive detection algorithm optimized to declare low-magnitude events; ii) an accurate picking procedure that provides consistently weighted P- and S-wave arrival times, P-wave first motion polarities and the maximum waveform amplitude for local magnitude calculation; iii) both linearized iterative and non-linear global-search earthquake location algorithms to compute accurate absolute locations of single-events in a 3D geological model (see Latorre et al. same session); iv) cross-correlation and double-difference location methods to compute high-resolution relative event locations. This procedure is now running off-line with a delay of 1 week to the real-time. We are now implementing this procedure to obtain high-resolution double-difference earthquake locations in real-time (DDRT). We show locations of ~30k low-magnitude earthquakes recorded during the past 4 years (2010-2013) of network operation, reaching a completeness magnitude of the catalogue of 0.2. The spatiotemporal seismicity distribution has an almost constant and high rate of r = 24.30e-04 eqks/day*km2, interrupted by low to moderate magnitude seismic sequences such as the 2010 Pietralunga sequence (M L 3.8) and the still ongoing 2013 Gubbio sequence (M L 4.0 on 22nd December 2013). Low-magnitude seismicity images the fine scale geometry of the ATF: an E-dipping plane at low angle (15°) from 4 km down to ~15 km of depth. While in the ATF hanging-wall we observe the activation of high-angle minor synthetic and antithetic normal faults (4-5 km long) confined at depth by the detachment. Both seismic sequences activated up to now only these high-angle fault segments.

  14. Rift flank segmentation, basin initiation and propagation: a neotectonic example from Lake Baikal

    USGS Publications Warehouse

    Agar, Susan M.; Klitgord, Kim D.

    1995-01-01

    New surficial data (field, Landsat TM and topography) define morpho-tectonic domains and rift flank segmentation in the Ol'khon region of the Central Baikal rift. Deformation, drainage and depositional patterns indicate a change in the locus of active extension that may relate to a recent (

  15. Decision support system for outage management and automated crew dispatch

    DOEpatents

    Kang, Ning; Mousavi, Mirrasoul

    2018-01-23

    A decision support system is provided for utility operations to assist with crew dispatch and restoration activities following the occurrence of a disturbance in a multiphase power distribution network, by providing a real-time visualization of possible location(s). The system covers faults that occur on fuse-protected laterals. The system uses real-time data from intelligent electronics devices coupled with other data sources such as static feeder maps to provide a complete picture of the disturbance event, guiding the utility crew to the most probable location(s). This information is provided in real-time, reducing restoration time and avoiding more costly and laborious fault location finding practices.

  16. Fault zone identification in the eastern part of the Persian Gulf based on combined seismic attributes

    NASA Astrophysics Data System (ADS)

    Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.

    2013-02-01

    Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data set. The fault probability cube was obtained with higher mapping accuracy and greater contrast, and with fewer disturbances in comparison with individual attributes. The computed results of this study can support better understanding of the data, providing fault zone mapping with reliable results.

  17. "The Big One" in Taipei: Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lee, S.; Ng, S.

    2012-12-01

    Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. According to the report of Central Geological Survey, the terrestrial portion of the Sanchiao fault can be divided into north and south segments. The south segment is about 13 km and north segment is about 21 km. Recent study demonstrated that there are about 40 km of the fault trace that extended to the marine area offshore of northern Taiwan. Combined with the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers. Based on the recipe proposed by IRIKURA and Miyake (2010), we estimate the Sanchiao fault has the potential to produce an earthquake with moment magnitude larger than Mw 7.2. The total area of fault rupture is about 1323 km2, asperity to the total fault plane is 22%, and the slips of the asperity and background are 2.8 m and 1.6 m respectively. Use the characteristic source model based on this assumption, the 3D spectral-element method simulation results indicate that Peak ground acceleration (PGA) is significantly stronger along the surface fault-rupture. The basin effects play an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. It is worth noting that, when the rupture starts from the southern tip of the fault, i.e. the hypocenter locates in the basin, the impact of the Sanchiao fault earthquake to the Taipei metropolitan area will be the most serious. The strong shaking can cover the entire Taipei city, and even across the basin that extended to eastern-most part of northern Taiwan.

  18. Modelling Fault Zone Evolution: Implications for fluid flow.

    NASA Astrophysics Data System (ADS)

    Moir, H.; Lunn, R. J.; Shipton, Z. K.

    2009-04-01

    Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of which compare well to features observed in mapped exposures. For these simple simulations from a small number of pre-existing joints the fault zone evolves in a predictable way: fault linkage is governed by three key factors: Stress ratio of s1 (maximum compressive stress) to s3(minimum compressive stress), original geometry of the pre-existing structures (contractional vs. dilational geometries) and the orientation of the principle stress direction (σ1) to the pre-existing structures. In this paper we present numerical simulations of the temporal and spatial evolution of fault linkage structures from many pre-existing joints. The initial location, size and orientations of these joints are based on field observations of cooling joints in granite from the Sierra Nevada. We show that the constantly evolving geometry and local stress field perturbations contribute significantly to fault zone evolution. The location and orientations of linkage structures previously predicted by the simple simulations are consistent with the predicted geometries in the more complex fault zones, however, the exact location at which individual structures form is not easily predicted. Markedly different fault zone geometries are predicted when the pre-existing joints are rotated with respect to the maximum compressive stress. In particular, fault surfaces range from evolving smooth linear structures to producing complex ‘stepped' fault zone geometries. These geometries have a significant effect on simulations of along and across-fault flow.

  19. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  20. Late Oligocene to present contractional structure in and around the Susitna basin, Alaska—Geophysical evidence and geological implications

    USGS Publications Warehouse

    Saltus, Richard W.; Stanley, Richard G.; Haeussler, Peter J.; Jones, James V.; Potter, Christopher J.; Lewis, Kristen A.

    2016-01-01

    The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of Susitna basin, spans a horizontal distance of ∼40 km and straddles the topographic front. The location and shape of the gravity gradient preclude a normal fault geometry; instead, it is best explained by a southwest-dipping thrust fault, with its leading edge located several kilometers to the northeast of the mountain front, concealed beneath the shallow glacial and fluvial cover deposits. Similar contractional fault relationships are observed for other basin-bounding and regional faults as well. Contractional structures are consistent with a regional shortening strain field inferred from differential offsets on the Denali and Castle Mountain right-lateral strike-slip fault systems.

  1. 5000 yr of paleoseismicity along the southern Dead Sea fault

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Le Béon, M.; Al-Qaryouti, M.

    2015-07-01

    The 1000-km-long left-lateral Dead Sea fault is a major tectonic structure of the oriental Mediterranean basin, bounding the Arabian Plate to the west. The fault is located in a region with an exceptionally long and rich historical record, allowing to document historical seismicity catalogues with unprecedented level of details. However, if the earthquake time series is well documented, location and lateral extent of past earthquakes remain often difficult to establish, if only based on historical testimonies. We excavated a palaeoseismic trench in a site located in a kilometre-size extensional jog, south of the Dead Sea, in the Wadi Araba. Based on the stratigraphy exposed in the trench, we present evidence for nine earthquakes that produced surface ruptures during a time period spanning 5000 yr. Abundance of datable material allows us to tie the five most recent events to historical earthquakes with little ambiguities, and to constrain the possible location of these historical earthquakes. The events identified at our site are the 1458 C.E., 1212 C.E., 1068 C.E., one event during the 8th century crisis, and the 363 C.E. earthquake. Four other events are also identified, which correlation with historical events remains more speculative. The magnitude of earthquakes is difficult to assess based on evidence at one site only. The deformation observed in the excavation, however, allows discriminating between two classes of events that produced vertical deformation with one order of amplitude difference, suggesting that we could distinguish earthquakes that started/stopped at our site from earthquakes that potentially ruptured most of the Wadi Araba fault. The time distribution of earthquakes during the past 5000 yr is uneven. The early period shows little activity with return interval of ˜500 yr or longer. It is followed by a ˜1500-yr-long period with more frequent events, about every 200 yr. Then, for the past ˜550 yr, the fault has switched back to a quieter mode with no significant earthquake along the entire southern part of the Dead Sea fault, between the Dead Sea and the Gulf of Aqaba. We computed the Coefficient of Variation for our site and three other sites along the Dead Sea fault, south of Lebanon, to compare time distribution of earthquakes at different locations along the fault. With one exception at a site located next to Lake Tiberias, the three other sites are consistent to show some temporal clustering at the scale of few thousands years.

  2. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.

  3. Assessing active faulting by hydrogeological modeling and superconducting gravimetry: A case study for Hsinchu Fault, Taiwan

    NASA Astrophysics Data System (ADS)

    Lien, Tzuyi; Cheng, Ching-Chung; Hwang, Cheinway; Crossley, David

    2014-09-01

    We develop a new hydrology and gravimetry-based method to assess whether or not a local fault may be active. We take advantage of an existing superconducting gravimeter (SG) station and a comprehensive groundwater network in Hsinchu to apply the method to the Hsinchu Fault (HF) across the Hsinchu Science Park, whose industrial output accounts for 10% of Taiwan's gross domestic product. The HF is suspected to pose seismic hazards to the park, but its existence and structure are not clear. The a priori geometry of the HF is translated into boundary conditions imposed in the hydrodynamic model. By varying the fault's location, depth, and including a secondary wrench fault, we construct five hydrodynamic models to estimate groundwater variations, which are evaluated by comparing groundwater levels and SG observations. The results reveal that the HF contains a low hydraulic conductivity core and significantly impacts groundwater flows in the aquifers. Imposing the fault boundary conditions leads to about 63-77% reduction in the differences between modeled and observed values (both water level and gravity). The test with fault depth shows that the HF's most recent slip occurred in the beginning of Holocene, supplying a necessary (but not sufficient) condition that the HF is currently active. A portable SG can act as a virtual borehole well for model assessment at critical locations of a suspected active fault.

  4. 3D resistivity survey for shallow subsurface fault investigations

    NASA Astrophysics Data System (ADS)

    Petrit, Kraipat; Klamthim, Poonnapa; Duerrast, Helmut

    2018-03-01

    The shallow subsurface is subject to various human activities, and the place of occurrence of geohazards, e.g. shallow active faults. The identification of the location and orientation of such faults can be vital for infrastructure development. The aim of this study was to develop a low-cost 3D resistivity survey system, with reasonable survey time for shallow fault investigations. The study area in Songkhla Province, Thailand is located in an old quarry where faults could be identified in outcrops. The study area was designed to cover the expected fault with 100 electrodes arranged in a 10×10 square grid with an electrode spacing of 3 meters in x and y axis. Each electrode in turn was used as a current and potential electrode using a dipole-dipole array. Field data have been processed and interpreted using 3DResINV. Results, presented in horizontal depth slices and vertical xz- and yz-cross sections, revealed through differences in resistivity down to 8 m depths a complex structural setting with two shallow faults and dipping sedimentary rock layers. In conclusion, this study has shown that a 3D resistivity survey can imagine complex tectonic structures, thus providing a far more insight into the shallow subsurface.

  5. Unsaturated flow and transport through a fault embedded in fractured welded tuff

    USGS Publications Warehouse

    Salve, Rohit; Liu, Hui‐Hai; Cook, Paul; Czarnomski, Atlantis; Hu, Qinhong; Hudson, David

    2004-01-01

    To evaluate the importance of matrix diffusion as a mechanism for retarding radionuclide transport in the vicinity of a fault located in unsaturated fractured rock, we carried out an in situ field experiment in the Exploratory Studies Facility at Yucca Mountain, Nevada. This experiment involved the release of ∼82,000 L of water over a period of 17 months directly into a near‐vertical fault under both constant positive head (at ∼0.04 m) and decreasing fluxes. A mix of conservative tracers (pentafluorobenzoic acid (PFBA) and bromide (applied in the form of lithium bromide)) was released along the fault over a period of 9 days, 7 months after the start of water release along the fault. As water was released into the fault, seepage rates were monitored in a large cavity excavated below the test bed. After the release of tracers, seepage water was continuously collected from three locations and analyzed for the injected tracers. Observations of bromide concentrations in seepage water during the early stages of the experiment and bromide and PFBA concentrations in the seepage water indicate the significant effects of matrix diffusion on transport through a fault embedded in fractured, welded rock.

  6. Fault Activity in the Terrebonne Trough, Southeastern Louisiana: A Continuation of Salt-Withdrawal Fault Activity from the Miocene into the late Quaternary and Implication for Subsidence Hot-Spots

    NASA Astrophysics Data System (ADS)

    Akintomide, A. O.; Dawers, N. H.

    2017-12-01

    The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date suggests both salt and fault activity continued at least into the latest Pleistocene.

  7. The plumbing system of the Pagosa thermal Springs, Colorado: Application of geologically constrained geophysical inversion and data fusion

    NASA Astrophysics Data System (ADS)

    Revil, A.; Cuttler, S.; Karaoulis, M.; Zhou, J.; Raynolds, B.; Batzle, M.

    2015-06-01

    Fault and fracture networks usually provide the plumbing for movement of hydrothermal fluids in geothermal fields. The Big Springs of Pagosa Springs in Colorado is known as the deepest geothermal hot springs in the world. However, little is known about the plumbing system of this hot spring, especially regarding the position of the reservoir (if any) or the position of the major tectonic faults controlling the flow of the thermal water in this area. The Mancos shale, a Cretaceous shale, dominates many of the surface expressions around the springs and impede an easy recognition of the fault network. We use three geophysical methods (DC resistivity, self-potential, and seismic) to image the faults in this area, most of which are not recognized in the geologic fault map of the region. Results from these surveys indicate that the hot Springs (the Big Spring and a warm spring located 1.8 km further south) are located at the intersection of the Victoire Fault, a major normal crustal fault, and two north-northeast trending faults (Fault A and B). Self-potential and DC resistivity tomographies can be combined and a set of joint attributes defined to determine the localization of the flow of hot water associated with the Eight Miles Mesa Fault, a second major tectonic feature responsible for the occurrence of warm springs further West and South from the Big Springs of Pagosa Springs.

  8. Pre-Earthquake Paleoseismic Trenching in 2014 Along a Mapped Trace of the West Napa Fault

    NASA Astrophysics Data System (ADS)

    Rubin, R. S.; Dawson, T. E.; Mareschal, M.

    2014-12-01

    Paleoseismic trenching in July 2014 across a previously mapped trace of the West Napa fault in eastern Alston Park (EAP) was undertaken with NEHRP funding as part of an effort to better characterize activity of the fault for regional seismic hazard assessments, and as part of an Alquist-Priolo Earthquake Fault Zoning (APEFZ) evaluation. The trench was excavated across a prominent escarpment that had been interpreted by others to represent evidence of Holocene fault activity, based on faults logged in an ~1-m-deep natural drainage exposure. Our trench was located ~3 m south of the drainage exposure and encompassed the interpreted fault zone, and beyond. The trench exposed the same surficial units as the natural exposure, as well as additional Pleistocene and older stratigraphy at depth. Escarpment parallel channeling was evident within deposits along the base of the slope. Faulting was not encountered, and is precluded by unbroken depositional contacts. Our preferred interpretation is that the escarpment in EAP is a result of fluvial and differential erosion, which is consistent with existence of channels along the base of the escarpment and a lack of faulting. The location of surface rupture of the South Napa Earthquake (SNE) of 8/24/14 occurred on fault strands south and west of this study and crosses Alston Park approximately 800 m west of our trench site, at its nearest point. Pre- and post-earthquake UAVSAR from NASA's JPL been useful in identifying major and minor ruptures of the SNE. Based on the imagery, a subtle lineament has been interpreted upslope from the trench. However, field observations along this feature yielded no visible surface deformation and the origin of this lineament is uncertain. The fault rupture pattern expressed by the SNE, as reflected by detailed field mapping and UAVSAR imagery, provides a unique opportunity to better understand the complex nature of the West Napa fault. Our study illustrates the value of subsurface investigations as part of fault characterization in order to accurately assess geomorphic features that may, or may not, be formed by tectonic processes. Selection of additional trench locations will be aided by soon-to-be-released post-earthquake LiDAR imagery and existing UAVSAR imagery, with the ultimate goal of preparing an accurate APEFZ in this area.

  9. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    EPA Pesticide Factsheets

    LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.

  10. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault include secondary faults at depths up to 4-8m below the surface and located up to 24m away from the main fault trace. The Torremolinos fault system includes secondary faults, which are present up to 8m deep and 12-18m away from the main fault trace. Even though the InSAR analysis provides an unsurpassed synoptic view, a higher temporal resolution observation of fault movement has been pursued using the MOIT continuously operating GPS station, which is located within 100 m from the La Colina main fault trace. GPS data is also particularly useful to decompose horizontal and vertical motion in the absence of both ascending and descending SAR data acquisitions. Observations since July 2009 show a total general displacement trend of -39mm/yr and a total horizontal differential motion of 41.8 mm/yr and -4.7mm/yr in its latitudinal and Longitudinal components respectively in respect to the motion observed at the MOGA GPS station located 5.0 km to the SSE within an area which is not affected by subsidence. In addition to the overall trend, high amplitude excursions at the MOIT station with individual residual amplitudes up to 20mm, 25mm, and 60mm in its latitudinal, longitudinal and vertical components respectively vertical are observed. The correlation of fault motion excursions in relationship to the rainfall records will be analyzed.

  11. Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network

    NASA Astrophysics Data System (ADS)

    Raj, Nithin; Jagadanand, G.; George, Saly

    2018-04-01

    The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.

  12. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    USGS Publications Warehouse

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  13. Faults in parts of north-central and western Houston metropolitan area, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.; Ratzlaff, Karl W.; Clanton, Uel S.

    1979-01-01

    Hundreds of residential, commercial, and industrial structures in the Houston metropolitan area have sustained moderate to severe damage owing to their locations on or near active faults. Paved roads have been offset by faults at hundreds of locations, butted pipelines have been distorted by fault movements, and fault-induced gradient changes in drainage lines have raised concern among flood control engineers. Over 150 faults, many of them moving at rates of 0.5 to 2 cm/yr, have been mapped in the Houston area; the number of faults probably far exceeds this figure.This report includes a map of eight faults, in north-central and western Houston, at a scale useful for land-use planning. Seven of the faults, are known, to be active and have caused considerable damage to structures built on or near them. If the eighth fault is active, it may be of concern to new developments on the west side of Houston. A ninth feature shown on the map is regarded only as a possible fault, as an origin by faulting has not been firmly established.Seismic and drill-hold data for some 40 faults, studied in detail by various investigators have verified connections between scarps at the land surface and growth faults in the shallow subsurface. Some scarps, then, are known to be the surface manifestations of faults that have geologically long histories of movement. The degree to which natural geologic processes contribute to current fault movement, however, is unclear, for some of man’s activities may play a role in faulting as well.Evidence that current rates of fault movement far exceed average prehistoric rates and that most offset of the land surface in the Houston area has occurred only within the last 50 years indirectly suggest that fluid withdrawal may be accelerating or reinitiating movement on pre-existing faults. This conclusion, however, is based only on a coincidence in time between increased fault activity and increased rates of withdrawal of water, oil, and gas from subsurface sediments; no cause-and-effect relationship has been demonstrated. An alternative hypothesis is that natural fault movements are characterized by short—term episodicity and that Houston is experiencing the effects of a brief period of accelerated natural fault movement. Available data from monitored faults are insufficient to weigh the relative importance of natural vs. induced fault movements.

  14. Preliminary Investigation and Surficial Mapping of the Faults North and South of Blacktail Butte, Teton County, Wyoming

    NASA Astrophysics Data System (ADS)

    Wittke, S.

    2016-12-01

    The Wyoming State Geological Survey has focused on surficial mapping and examination of the location and offset of faults north and south of Blacktail Butte in eastern Jackson Hole, Wyoming. The fault strands south of Blacktail Butte are classified as Late Quaternary, the faults north of the butte are considered Class B structures by the USGS. Little to no detailed studies, including paleoseismic investigations or fault scarp morphology, have been conducted on these fault strands. The acquisition of LiDAR for the Grand Teton National Park and recent aerial photographs provided data necessary for revised mapping and geomorphic interpretation of fault-related features north and south of Blacktail Butte. New fault traces and geomorphic features were identified in the LiDAR data which had not been previously mapped. Mapped fault traces are intermittent, forming a 1.5 km-long graben that extends south from Blacktail Butte and crosses a loess-mantle late-Pleistocene terrace generated from the Pinedale glaciation. Other lineaments were identified that continued for another 0.5 km to the south. With very little vertical offset across the system and comparatively short fault strands, the faults may represent secondary features related to movement on another unidentified fault within the basin. The secondary faults north of Blacktail Butte were mapped based on geomorphic features and through LiDAR-based spatial analysis. The fault scarps are relatively short and are present on alluvial fan and/or terrace deposits related to the Pinedale glaciation or on undated Holocene deposits. The scarps have little net vertical offset, suggesting they could also be secondary features related to movement from another unidentified fault within the basin. Improved understanding of these fault strands is significant because of the vicinity to populated areas within Jackson Hole and the possible relevance to the Teton Fault system. To our knowledge, these fault strands have not been proposed as antithetic to the Teton fault. The faults are located on the eastern edge of the valley, approximately 8-16 km from the Teton fault, and based on their orientation and sense of slip, the Teton fault may be the unidentified fault within the basin. Detailed paleoseismic surveys, including fault trenching, may shed light on the question in the future.

  15. Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Lin, Kuan-Chuan; Lee, Chyi-Tyi; Chen, Rou-Fei; Hu, Jyr-Ching; Magalhaes, Samuel

    2018-03-01

    Characterizing active faults and quantifying their activity are major concerns in Taiwan, especially following the major Chichi earthquake on 21 September 1999. Among the targets that still remain poorly understood in terms of active tectonics are the Hengchun and Kenting faults (Southern Taiwan). From a geodynamic point of view, the faults affect the outcropping top of the Manila accretionary prism of the Manila subduction zone that runs from Luzon (northern Philippines) to Taiwan. In order to better locate and quantify the location and quantify the activity of the Hengchun Fault, we start from existing geological maps, which we update thanks to the use of two products derived from unmanned aircraft system acquisitions: (1) a very high precision (< 50 cm) and resolution (< 10 cm) digital surface model (DSM) and (2) a georeferenced aerial photograph mosaic of the studied area. Moreover, the superimposition of the resulting structural sketch map with new Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) results obtained from PALSAR ALOS images, validated by Global Positioning System (GPS) and leveling data, allows the characterization and quantification of the surface displacements during the monitoring period (2007-2011). We confirm herein the geometry, characterization and quantification of the active Hengchun Fault deformation, which acts as an active left-lateral transpressive fault. As the Hengchun ridge was the location of one of the last major earthquakes in Taiwan (26 December 2006, depth: 44 km, ML = 7.0), Hengchun Peninsula active tectonics must be better constrained in order if possible to prevent major destructions in the near future.

  16. INL Seismic Monitoring Annual Report: January 1, 2006 - December 31, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. J. Payne; N. S. Carpenter; J. M. Hodges

    During 2006, the Idaho National Laboratory (INL) recorded 1998 independent triggers from earthquakes both within the region and from around the world. Fifteen small to moderate size earthquakes ranging in magnitude from 3.0 to 4.5 occurred within and outside the 161-km (100-mile) radius of INL. There were 357 earthquakes with magnitudes up to 4.5 that occurred within the 161-km radius of the INL. The majority of earthquakes occurred in the Basin and Range Province surrounding the eastern Snake River Plain (ESRP). The largest of these earthquakes had a body-wave magnitude (mb) 4.5 and occurred on February 5, 2006. It wasmore » located northeast of Spencer, Idaho near the east-west trending Centennial fault along the Idaho-Montana border. The earthquake did not trigger SMAs located within INL buildings. Three earthquakes occurred within the ESRP, two of which occurred within the INL boundaries. One earthquake of coda magnitude (Mc) 1.7 occurred on October 18, 2006 and was located southeast of Pocatello, Idaho. The two earthquakes within the INL boundaries included the local magnitude (ML) 2.0 on July 31, 2006 located near the southern termination of the Lemhi fault and the Mc 0.4 on August 6, 2006 located near the center of INL. The ML 2.0 earthquake was well recorded by most of the INL seismic stations and had a focal depth of 8.98 km. First motions were used to compute a focal mechanism, which indicated normal faulting along one of two possible fault planes that may strike N76ºW and dip 70±3ºSW or strike N55ºW and dip 20±13ºNE. Slip along a normal fault that strikes N76ºW and dips 70±3ºSW is consistent with slip along a possible segment of the NW-trending Lemhi normal fault.« less

  17. Seismicity and Structure of the Incoming Pacific Plate Subducting into the Japan Trench off Miyagi

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Yamashita, M.; Nakamura, Y.; Miura, S.

    2015-12-01

    Stresses within the oceanic plate in trench axis and outer-rise region have been characterized by shallow extension and deep compression due to the bending of the plate subducting into the trench. The stress state within the incoming/subducting oceanic plate is an important factor not only for the occurrence of shallow intraplate normal-faulting earthquakes in the trench-outer rise region but also the hydration of the oceanic plate through the shallow normal faults cutting the oceanic lithosphere. We investigate seismic velocity structure and stress state within the incoming/subducting Pacific Plate in the Japan Trench based on the OBS aftershock observations for the December 2012 intraplate doublet, which consists of a deep reverse faulting (Mw 7.2) and a shallow normal faulting (Mw 7.2) earthquake, in the Japan Trench off Miyagi. Hypocenter locations and seismic velocity structures were estimated from the arrival time data of about 3000 earthquakes by using double-difference tomography method (Zhang and Thurber, 2003). Also, focal mechanisms were estimated from first motion polarities by using the program HASH by Hardebeck and Shearer (2002). The results show that the earthquakes occurred mainly within the oceanic crust and the uppermost mantle. The deepest event was located at a depth of about 60 km. Focal mechanisms of the earthquakes shallower than a depth of 40 km indicate normal-faulting with T-axis normal to the trench. On the other hand, first motion polarities of the events at depths between 50 and 60 km can be explained a reverse faulting. The results suggest that the neutral plane of the stress between shallow extension and deep compression locates at 40 to 50 km deep. Seismic velocity structures indicate velocity decrease in the oceanic mantle toward the trench. Although the velocity decrease varies with locations, the results suggest the bending-related structure change could extend to at least about 15 km below the oceanic Moho in some locations.

  18. Morphostructural study of the Belledonne faults system (French Alps).

    NASA Astrophysics Data System (ADS)

    Billant, Jérémy; Bellier, Olivier; Hippolyte, Jean-Claude; Godard, Vincent; Manchuel, Kevin

    2016-04-01

    The NE trending Belledonne faults system, located in the Alps, is a potentially active faults system that extends from the Aiguilles Rouges and Mont Blanc massifs in the NE to the Vercors massif in the SW (subalpine massifs). It includes the Belledonne border fault (BBF), defined by an alignment of micro earthquakes (ML≤3.5) along the eastern part of the Grésivaudan valley (Thouvenot et al., 2003). Focal mechanisms and their respective depths tend to confirm a dextral strike-slip faulting at crustal scale. In the scope of the Sigma project (http://projet-sigma.com/index.html, EDF), this study aims at better constraining the geometry, kinematic and seismogenic potential of the constitutive faults of the Belledonne fault system, by using a multidisciplinary approach that includes tectonics, geomorphology and geophysics. Fault kinematic analysis along the BBF (Billant et al., 2015) and the Jasneuf fault allows the determination of a strike-slip tectonic regime characterised by an ENE trending σ1 stress axes, which is consistent with stress state deduced from the focal mechanisms. Although no morphological anomalies could be related to recent faulting along the BBF, new clues of potential Quaternary deformations were observed along the other faults of the system: -right lateral offset of morphologic markers (talwegs...) along the NE trending Arcalod fault located at the north-eastern terminations of the BBF; -left lateral offset of the valley formed by the Isère glacier along the NW trending Brion fault which is consistent with its left-lateral slip inferred from the focal mechanisms; -fault scarps and right lateral offsets of cliffs bordering a calcareous plateau and talwegs along the four fault segments of the NE trending Jasneuf fault located at the south-western termination of the BBF in the Vercors massif. Some offsets were measured using a new method that does not require the identification of piercing points and take advantage of the high resolution topographic data that we obtained using photogrammetry. Fault slip rates cannot be reliably assessed because of the lack of morphologic features that can be dated. For the Arcalod and Brion faults, when considering that the observed offset are inherited from Würm, the calculated fault slip rates are much larger than those deduced for other faults in France suggesting that the studied morphologic markers are older than the Würm. For the Jasneuf fault, assuming a constant long term (since Messinian) fault slip rate, the comparison of the long term offset (measured using cliff offsets) and short term offset (measured using stream offsets and fault scarps) yields a fault slip rate which is of 0.13±0.03 mm/yr. The extension of the fault is poorly constrained and we can not ascertain the prolongation of the Jasneuf fault outside of the Vercors plateau nor in depth. Nevertheless, if this fault is limited to the sedimentary cover and do not extend outside of the Vercors plateau, it could generate Mw 5.7 earthquakes each ~500 years. On the other hand we can not exclude that a large part of the deformation could be accommodated by aseismic creep as indicated by pressure solution features (Gratier et al.,2003).

  19. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    NASA Astrophysics Data System (ADS)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic analysis is underway to give a fresh understanding of the tectonic evolution of this complex zone of faulting and plate interaction.

  20. Fault detection and isolation for complex system

    NASA Astrophysics Data System (ADS)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  1. Determination of the fault plane and rupture size of the 2013 Santa Cruz earthquake, Bolivia, 5.2 Mw, by relative location of the aftershocks

    NASA Astrophysics Data System (ADS)

    Rivadeneyra-Vera, C.; Assumpção, M.; Minaya, E.; Aliaga, P.; Avila, G.

    2016-11-01

    The Central Andes of southern Bolivia is a highly seismic region with many active faults, that could generate earthquakes up to 8.9 Mw. In 2013, an earthquake of 5.2 Mw occurred in Santa Cruz de la Sierra, in the sub-Andean belt, close to the Mandeyapecua fault, one of the most important reverse faults in Bolivia. Five larger aftershocks were reported by the International Seismological Centre (ISC) and 33 smaller aftershocks were recorded by the San Calixto Observatory (OSC) in the two months after the mainshock. Distances between epicenters of the events were up to 36 km, which is larger than expected for an earthquake of this magnitude. Using data from South American regional stations and the relative location technique with Rayleigh waves, the epicenters of the five larger aftershocks of the Santa Cruz series were determined in relation to the mainshock. This method enabled to achieve epicentral locations with uncertainties smaller than 1 km. Additionally, using data of three Bolivian stations (MOC, SIV and LPAZ) eight smaller aftershocks, recorded by the OSC, were relocated through correlation of P and S waves. The results show a NNW-SSE trend of epicenters and suggest an E dipping plane. The maximum distance between the aftershocks is 14 km, which is not consistent with the expected subsurface rupture length, in accordance with the magnitude of the mainshock. The events are located away from the Mandeyapecua fault and show an opposite dip, demonstrating that these events were generated by another fault in the area, that had not been well studied yet.

  2. Study of a phase-to-ground fault on a 400 kV overhead transmission line

    NASA Astrophysics Data System (ADS)

    Iagăr, A.; Popa, G. N.; Diniş, C. M.

    2018-01-01

    Power utilities need to supply their consumers at high power quality level. Because the faults that occur on High-Voltage and Extra-High-Voltage transmission lines can cause serious damages in underlying transmission and distribution systems, it is important to examine each fault in detail. In this work we studied a phase-to-ground fault (on phase 1) of 400 kV overhead transmission line Mintia-Arad. Indactic® 650 fault analyzing system was used to record the history of the fault. Signals (analog and digital) recorded by Indactic® 650 were visualized and analyzed by Focus program. Summary of fault report allowed evaluation of behavior of control and protection equipment and determination of cause and location of the fault.

  3. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Schwartz, David P.; Dawson, Timothy E.; Stenner, Heidi D.; Lienkaemper, James J.; Sherrod, Brian; Cinti, Francesca R.; Montone, Paola; Craw, Patricia; Crone, Anthony J.; Personius, Stephen F.

    2004-01-01

    The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slip-distribution data can be used to infer moment release along other active fault traces.

  4. Active tectonics of the northern Mojave Desert: The 2017 Desert Symposium field trip road log

    USGS Publications Warehouse

    Miller, David; Reynolds, R.E.; Phelps, Geoffrey; Honke, Jeff; Cyr, Andrew J.; Buesch, David C.; Schmidt, Kevin M.; Losson, G.

    2017-01-01

    The 2017 Desert Symposium field trip will highlight recent work by the U.S. Geological Survey geologists and geophysicists, who have been mapping young sediment and geomorphology associated with active tectonic features in the least well-known part of the eastern California Shear Zone (ECSZ). This area, stretching from Barstow eastward in a giant arc to end near the Granite Mountains on the south and the Avawatz Mountains on the north (Fig. 1-1), encompasses the two major structural components of the ECSZ—east-striking sinistral faults and northwest-striking dextral faults—as well as reverseoblique and normal-oblique faults that are associated with topographic highs and sags, respectively. In addition, folds and stepovers (both restraining stepovers that form pop-up structures and releasing stepovers that create narrow basins) have been identified. The ECSZ is a segment in the ‘soft’ distributed deformation of the North American plate east of the San Andreas fault (Fig. 1-1), where it takes up approximately 20-25% of plate motion in a broad zone of right-lateral shear (Sauber et al., 1994) The ECSZ (sensu strictu) begins in the Joshua Tree area and passes north through the Mojave Desert, past the Owens Valley-to-Death Valley swath and northward, where it is termed the Walker Lane. It has been defined as the locus of active faulting (Dokka and Travis, 1990), but when the full history from about 10 Ma forward is considered, it lies in a broader zone of right shear that passes westward in the Mojave Desert to the San Andreas fault (Mojave strike-slip province of Miller and Yount, 2002) and passes eastward to the Nevada state line or beyond (Miller, this volume).We will visit several accessible highlights for newly studied faults, signs of young deformation, and packages of syntectonic sediments. These pieces of a complex active tectonic puzzle have yielded some answers to longstanding questions such as: How is fault slip transfer in this area accommodated between northwest-striking dextral faults and eaststriking sinistral faults?How is active deformation on the Ludlow fault transferred northward, presumably to connect to the southern Death Valley fault zone?When were faults in this area of the central Mojave Desert initiated?Are faults in this area more or less active than faults in the ECSZ to the west?What is the role of NNW-striking faults and when did they form?How has fault slip changed over time? Locations and fault names are provided in figure 1-2. Important turns and locations are identified with locations in the projection: UTM, zone 11; datum NAD 83: (578530 3917335).

  5. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.

  6. Streaks of Aftershocks Following the 2004 Sumatra-Andaman Earthquake

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.; Diehl, T.

    2009-12-01

    Five years after the devastating 26 December, 2004 M 9.3 Sumatra-Andaman earthquake, regional and global seismic networks have recorded tens of thousands of aftershocks. We use bulletin data from the International Seismological Centre (ISC) and the National Earthquake Information Center (NEIC), and waveforms from IRIS, to relocate more than 20,000 hypocenters between 1964 and 2008 using teleseimic cross-correlation and double-difference methods. Relative location uncertainties of a few km or less allow for detailed analysis of the seismogenic faults activated as a result of the massive stress changes associated with the mega-thrust event. We focus our interest on an area of intense aftershock activity off-shore Banda Aceh in northern Sumatra, where the relocated epicenters reveal a pattern of northeast oriented streaks. The two most prominent streaks are ~70 km long with widths of only a few km. Some sections of the streaks are formed by what appear to be small, NNE striking sub-streaks. Hypocenter depths indicate that the events locate both on the plate interface and in the overriding Sunda plate, within a ~20 km wide band overlying the plate interface. Events on the plate interface indicate that the slab dip changes from ~20° to ~30° at around 50 km depth. Locations of the larger events in the overriding plate indicate an extension of the steeper dipping mega thrust fault to the surface, imaging what appears to be a major splay fault that reaches the surface somewhere near the western edge of the Aceh basin. Additional secondary splay faults, which branch off the plate interface at shallower depths, may explain the diffuse distribution of smaller events in the overriding plate, although their relative locations are less well constrained. Focal mechanisms support the relocation results. They show a narrowing range of fault dips with increasing distance from the trench. Specifically, they show reverse faulting on ~30° dipping faults above the shallow (20°) dipping plate interface. The observation of active splay faults associated with the mega thrust event is consistent with co- and post-seismic motion data, and may have significant implications on the generation and size of the tsunami that caused 300,000 deaths.

  7. Empirical Relationships Among Magnitude and Surface Rupture Characteristics of Strike-Slip Faults: Effect of Fault (System) Geometry and Observation Location, Dervided From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Arrowsmith, J.

    2007-12-01

    In order to determine the magnitude of pre-historic earthquakes, surface rupture length, average and maximum surface displacement are utilized, assuming that an earthquake of a specific size will cause surface features of correlated size. The well known Wells and Coppersmith (1994) paper and other studies defined empirical relationships between these and other parameters, based on historic events with independently known magnitude and rupture characteristics. However, these relationships show relatively large standard deviations and they are based only on a small number of events. To improve these first-order empirical relationships, the observation location relative to the rupture extent within the regional tectonic framework should be accounted for. This however cannot be done based on natural seismicity because of the limited size of datasets on large earthquakes. We have developed the numerical model FIMozFric, based on derivations by Okada (1992) to create synthetic seismic records for a given fault or fault system under the influence of either slip- or stress boundary conditions. Our model features A) the introduction of an upper and lower aseismic zone, B) a simple Coulomb friction law, C) bulk parameters simulating fault heterogeneity, and D) a fault interaction algorithm handling the large number of fault patches (typically 5,000-10,000). The joint implementation of these features produces well behaved synthetic seismic catalogs and realistic relationships among magnitude and surface rupture characteristics which are well within the error of the results by Wells and Coppersmith (1994). Furthermore, we use the synthetic seismic records to show that the relationships between magntiude and rupture characteristics are a function of the observation location within the regional tectonic framework. The model presented here can to provide paleoseismologists with a tool to improve magnitude estimates from surface rupture characteristics, by incorporating the regional and local structural context which can be determined in the field: Assuming a paleoseismologist measures the offset along a fault caused by an earthquake, our model can be used to determine the probability distribution of magnitudes which are capable of producing the observed offset, accounting for regional tectonic setting and observation location.

  8. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  9. The relationship between oceanic transform fault segmentation, seismicity, and thermal structure

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, Monica

    Mid-ocean ridge transform faults (RTFs) are typically viewed as geometrically simple, with fault lengths readily constrained by the ridge-transform intersections. This relative simplicity, combined with well-constrained slip rates, make them an ideal environment for studying strike-slip earthquake behavior. As the resolution of available bathymetric data over oceanic transform faults continues to improve, however, it is being revealed that the geometry and structure of these faults can be complex, including such features as intra-transform pull-apart basins, intra-transform spreading centers, and cross-transform ridges. To better determine the resolution of structural complexity on RTFs, as well as the prevalence of RTF segmentation, fault structure is delineated on a global scale. Segmentation breaks the fault system up into a series of subparallel fault strands separated by an extensional basin, intra-transform spreading center, or fault step. RTF segmentation occurs across the full range of spreading rates, from faults on the ultraslow portion of the Southwest Indian Ridge to faults on the ultrafast portion of the East Pacific Rise (EPR). It is most prevalent along the EPR, which hosts the fastest spreading rates in the world and has undergone multiple changes in relative plate motion over the last couple of million years. Earthquakes on RTFs are known to be small, to scale with the area above the 600°C isotherm, and to exhibit some of the most predictable behaviors in seismology. In order to determine whether segmentation affects the global RTF scaling relations, the scalings are recomputed using an updated seismic catalog and fault database in which RTF systems are broken up according to their degree of segmentation (as delineated from available bathymetric datasets). No statistically significant differences between the new computed scaling relations and the current scaling relations were found, though a few faults were identified as outliers. Finite element analysis is used to model 3-D RTF fault geometry assuming a viscoplastic rheology in order to determine how segmentation affects the underlying thermal structure of the fault. In the models, fault segment length, length and location along fault of the intra-transform spreading center, and slip rate are varied. A new scaling relation is developed for the critical fault offset length (OC) that significantly reduces the thermal area of adjacent fault segments, such that adjacent segments are fully decoupled at ~4 OC . On moderate to fast slipping RTFs, offsets ≥ 5 km are sufficient to significantly reduce the thermal influence between two adjacent transform fault segments. The relationship between fault structure and seismic behavior was directly addressed on the Discovery transform fault, located at 4°S on the East Pacific Rise. One year of microseismicity recorded on an OBS array, and 24 years of Mw ≥ 5.4 earthquakes obtained from the Global Centroid Moment Tensor catalog, were correlated with surface fault structure delineated from high-resolution multibeam bathymetry. Each of the 15 Mw ≥ 5.4 earthquakes was relocated into one of five distinct repeating rupture patches, while microseismicity was found to be reduced within these patches. While the endpoints of these patches appeared to correlate with structural features on the western segment of Discovery, small step-overs in the primary fault trace were not observed at patch boundaries. This indicates that physical segmentation of the fault is not the primary control on the size and location of large earthquakes on Discovery, and that along-strike heterogeneity in fault zone properties must play an important role.

  10. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine Fault can inhibit rupture propagation, producing a soft earthquake segment boundary. The study demonstrates the utility of lakes as paleoseismometers that can be used to reconstruct the spatial and temporal patterns of earthquakes on a fault.

  11. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yunhua; Zhang, Guohong; Zhang, Yingfeng; Shan, Xinjian

    2018-06-01

    On January 21st, 2016, a Ms 6.4 earthquake hit Menyuan County, Qinghai province, China. The nearest known fault is the Leng Long Ling (LLL) fault which is located approximately 7 km north of the epicenter. This fault has mainly shown sinistral strike-slip movement since the late Quaternary Period. However, the focal mechanism indicates that it is a thrust earthquake, which is different from the well-known strike-slip feature of the LLL fault. In this study, we determined the focal mechanism and primary nodal plane through multi-step inversions in the frequency and time domain by using the broadband regional seismic waveforms recorded by the China Digital Seismic Network (CDSN). Our results show that the rupture duration was short, within 0-2 s after the earthquake, and the rupture expanded upwards along the fault plane. Based on these fault parameters, we then solve for variable slip distribution on the fault plane using the InSAR data. We applied a three-segment fault model to simulate the arc-shaped structure of the northern LLL fault, and obtained a detailed slip distribution on the fault plane. The inversion results show that the maximum slip is 0.43 m, and the average slip angle is 78.8°, with a magnitude of Mw 6.0 and a focal depth of 9.38 km. With the geological structure and the inversion results taken into consideration, it can be suggested that this earthquake was caused by the arc-shaped secondary fault located at the north side of the LLL fault. The secondary fault, together with the LLL fault, forms a normal flower structure. The main LLL fault extends almost vertically into the base rock and the rocks between the two faults form a bulging fault block. Therefore, we infer that this earthquake is the manifestation of a neotectonics movement, in which the bulging fault block is lifted further up under the compresso-shear action caused by the Tibetan Plateau pushing towards the northwest direction.

  12. Fuzzy-Wavelet Based Double Line Transmission System Protection Scheme in the Presence of SVC

    NASA Astrophysics Data System (ADS)

    Goli, Ravikumar; Shaik, Abdul Gafoor; Tulasi Ram, Sankara S.

    2015-06-01

    Increasing the power transfer capability and efficient utilization of available transmission lines, improving the power system controllability and stability, power oscillation damping and voltage compensation have made strides and created Flexible AC Transmission (FACTS) devices in recent decades. Shunt FACTS devices can have adverse effects on distance protection both in steady state and transient periods. Severe under reaching is the most important problem of relay which is caused by current injection at the point of connection to the system. Current absorption of compensator leads to overreach of relay. This work presents an efficient method based on wavelet transforms, fault detection, classification and location using Fuzzy logic technique which is almost independent of fault impedance, fault distance and fault inception angle. The proposed protection scheme is found to be fast, reliable and accurate for various types of faults on transmission lines with and without Static Var compensator at different locations and with various incidence angles.

  13. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  14. The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects

    NASA Astrophysics Data System (ADS)

    Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.

    2018-06-01

    On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.

  15. A High-Resolution Seismic Survey Across the State Line fault, NV

    NASA Astrophysics Data System (ADS)

    Beachly, M.; Cox, C. M.; Saldana, S. C.; Snelson, C. M.; Taylor, W. J.; Robins, C.; Davis, R.; Stropky, M.; Phillips, R.; Cothrun, C.

    2007-12-01

    During the summer of 2007, an investigation of the faulting in Stewart Valley was under taken, located within the central Basin and Range province ~90 km west of Las Vegas, Nevada. The goal of this study was to resolve the seismic hazard potential of the State Line fault, a right-lateral strike-slip fault that runs the length of Stewart Valley. Four seismic reflection lines were acquired, two perpendicular and two parallel to the State Line fault. What is presented is an analysis of the western and eastern seismic lines parallel to the State Line fault. The western line was acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to form a 715 m long profile. The eastern line employed 120 of these geophones in a 595 m long profile. A mini-vibroseis served as the seismic source every ten meters, between geophones. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. Three sweeps were recorded at each shot location without acquisition filters at a sampling rate of 0.5 ms. The three shot gathers were then stacked at each location to reduce noise. The data collected had minimal noise, although; during the processing of the eastern line a notch filtered was used to remove the 60 Hz noise created by adjacent power line. These lines, acquired parallel to the State Line fault, contain matching features that serve to determine how much lateral displacement the fault has undergone. The amount of the displacement can indicate how active the fault is, and thus, what magnitude of earthquake can be expected in the future. This will in turn contribute to determining the seismic hazard potential for southern Nevada. A preliminary interpretation of the seismic reflection sections indicates an average displacement of about 20 - 38 m with greater displacement in the deeper sections of the image. The shallow depth displacement calculations are consistent with previous work in the area. The State Line fault is believed to be a result of strain partitioning from the San Andreas Fault. By studying this more localized active strike-slip fault system the results of this study can contribute to a model that provides a better understanding of the tectonics in the central Basin and Range.

  16. Fault- and Area-Based PSHA in Nepal using OpenQuake: New Insights from the 2015 M7.8 Gorkha-Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Stevens, Victoria

    2017-04-01

    The 2015 Gorkha-Nepal M7.8 earthquake (hereafter known simply as the Gorkha earthquake) highlights the seismic risk in Nepal, allows better characterization of the geometry of the Main Himalayan Thrust (MHT), and enables comparison of recorded ground-motions with predicted ground-motions. These new data, together with recent paleoseismic studies and geodetic-based coupling models, allow for good parameterization of the fault characteristics. Other faults in Nepal remain less well studied. Unlike previous PSHA studies in Nepal that are exclusively area-based, we use a mix of faults and areas to describe six seismic sources in Nepal. For each source, the Gutenberg-Richter a and b values are found, and the maximum magnitude earthquake estimated, using a combination of earthquake catalogs, moment conservation principals and similarities to other tectonic regions. The MHT and Karakoram fault are described as fault sources, whereas four other sources - normal faulting in N-S trending grabens of northern Nepal, strike-slip faulting in both eastern and western Nepal, and background seismicity - are described as area sources. We use OpenQuake (http://openquake.org/) to carry out the analysis, and peak ground acceleration (PGA) at 2 and 10% chance in 50 years is found for Nepal, along with hazard curves at various locations. We compare this PSHA model with previous area-based models of Nepal. The Main Himalayan Thrust is the principal seismic hazard in Nepal so we study the effects of changing several parameters associated with this fault. We compare ground shaking predicted from various fault geometries suggested from the Gorkha earthquake with each other, and with a simple model of a flat fault. We also show the results from incorporating a coupling model based on geodetic data and microseismicity, which limits the down-dip extent of rupture. There have been no ground-motion prediction equations (GMPEs) developed specifically for Nepal, so we compare the results of standard GMPEs used together with an earthquake-scenario representing that of the Gorkha earthquake, with actual data from the Gorkha earthquake itself. The Gorkha earthquake also highlighted the importance of basin-, topographic- and directivity-effects, and the location of high-frequency sources, on influencing ground motion. Future study aims at incorporating the above, together with consideration of the fault-rupture history and its influence on the location and timing of future earthquakes.

  17. Logs of Paleoseismic Excavations Across the Central Range Fault, Trinidad

    USGS Publications Warehouse

    Crosby, Christopher J.; Prentice, Carol S.; Weber, John; Ragona, Daniel

    2009-01-01

    This publication makes available maps and trench logs associated with studies of the Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. Our studies were conducted in 2001 and 2002. We mapped geomorphic features indicative of active faulting along the right-lateral, Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. We excavated trenches at two sites, the Samlalsingh and Tabaquite sites. At the Samlalsingh site, sediments deposited after the most recent fault movement bury the fault, and the exact location of the fault was unknown until we exposed it in our excavations. At this site, we excavated a total of eleven trenches, six of which exposed the fault. The trenches exposed fluvial sediments deposited over a strath terrace developed on Miocene bedrock units. We cleaned the walls of the excavations, gridded the walls with either 1 m X 1 m or 1 m X 0.5 m nail and string grid, and logged the walls in detail at a scale of 1:20. Additionally, we described the different sedimentary units in the field, incorporating these descriptions into our trench logs. We mapped the locations of the trenches using a tape and compass. Our field logs were scanned, and unit contacts were traced in Adobe Illustrator. The final drafted logs of all the trenches are presented here, along with photographs showing important relations among faults and Holocene sedimentary deposits. Logs of south walls were reversed in Illustrator, so that all logs are drafted with the view direction to the north. We collected samples of various materials exposed in the trench walls, including charcoal samples for radiocarbon dating from both faulted and unfaulted deposits. The locations of all samples collected are shown on the logs. The ages of seventeen of the charcoal samples submitted for radiocarbon analysis at the University of Arizona Accelerator Mass Spectrometry Laboratory in Tucson, Ariz., are given in Table 1. Samples found in Table 1 are shown in red on the trench logs. All radiocarbon ages are calibrated and given with 2 standard deviation age ranges. Our studies suggest that the Central Range Fault is a Holocene fault capable of producing damaging earthquakes in Trinidad

  18. High resolution t-LiDAR scanning of an active bedrock fault scarp for palaeostress analysis

    NASA Astrophysics Data System (ADS)

    Reicherter, Klaus; Wiatr, Thomas; Papanikolaou, Ioannis; Fernández-Steeger, Tomas

    2013-04-01

    Palaeostress analysis of an active bedrock normal fault scarp based on kinematic indicators is carried applying terrestrial laser scanning (t-LiDAR or TLS). For this purpose three key elements are necessary for a defined region on the fault plane: (i) the orientation of the fault plane, (ii) the orientation of the slickenside lineation or other kinematic indicators and (iii) the sense of motion of the hanging wall. We present a workflow to obtain palaeostress data from point cloud data using terrestrial laser scanning. The entire case-study was performed on a continuous limestone bedrock normal fault scarp on the island of Crete, Greece, at four different locations along the WNW-ESE striking Spili fault. At each location we collected data with a mobile terrestrial light detection and ranging system and validated the calculated three-dimensional palaeostress results by comparison with the conventional palaeostress method with compass at three of the locations. Numerous kinematics indicators for normal faulting were discovered on the fault plane surface using t-LiDAR data and traditional methods, like Riedel shears, extensional break-outs, polished corrugations and many more. However, the kinematic indicators are more or less unidirectional and almost pure dip-slip. No oblique reactivations have been observed. But, towards the tips of the fault, inclination of the striation tends to point towards the centre of the fault. When comparing all reconstructed palaeostress data obtained from t-LiDAR to that obtained through manual compass measurements, the degree of fault plane orientation divergence is around ±005/03 for dip direction and dip. The degree of slickenside lineation variation is around ±003/03 for dip direction and dip. Therefore, the percentage threshold error of the individual vector angle at the different investigation site is lower than 3 % for the dip direction and dip for planes, and lower than 6 % for strike. The maximum mean variation of the complete calculated palaeostress tensors is ±005/03. So, technically t-LiDAR measurements are in the error range of conventional compass measurements. The advantages is that remote palaeostress analysis is possible. Further steps in our research will be studying reactivated faults planes with multiple kinematic indicators or striations with t-LiDAR.

  19. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  20. S-velocity structure in Cimandiri fault zone derived from neighbourhood inversion of teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Syuhada; Anggono, T.; Febriani, F.; Ramdhan, M.

    2018-03-01

    The availability information about realistic velocity earth model in the fault zone is crucial in order to quantify seismic hazard analysis, such as ground motion modelling, determination of earthquake locations and focal mechanism. In this report, we use teleseismic receiver function to invert the S-velocity model beneath a seismic station located in the Cimandiri fault zone using neighbourhood algorithm inversion method. The result suggests the crustal thickness beneath the station is about 32-38 km. Furthermore, low velocity layers with high Vp/Vs exists in the lower crust, which may indicate the presence of hot material ascending from the subducted slab.

  1. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in Holocene... have been displaced with respect to that on the other side. (2) Displacement means the relative...

  2. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in Holocene... have been displaced with respect to that on the other side. (2) Displacement means the relative...

  3. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in Holocene... have been displaced with respect to that on the other side. (2) Displacement means the relative...

  4. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in Holocene... have been displaced with respect to that on the other side. (2) Displacement means the relative...

  5. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in Holocene... have been displaced with respect to that on the other side. (2) Displacement means the relative...

  6. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  7. DETERMINATION OF ELASTIC WAVE VELOCITY AND RELATIVE HYPOCENTER LOCATIONS USING REFRACTED WAVES. II. APPLICATION TO THE HAICHENG, CHINA, AFTERSHOCK SEQUENCE.

    USGS Publications Warehouse

    Shedlock, Kaye M.; Jones, Lucile M.; Ma, Xiufang

    1985-01-01

    The authors located the aftershocks of the February 4, 1975 Haicheng, China, aftershock sequence using an arrival time difference (ATD) simultaneous inversion method for determining the near-source (in situ) velocity and the location of the aftershocks with respect to a master event. The aftershocks define a diffuse zone, 70 km multiplied by 25 km, trending west-northwest, perpendicular to the major structural trend of the region. The main shock and most of the large aftershocks have strike-slip fault plane solutions. The preferred fault plane strikes west-northwest, and the inferred sense of motion is left-lateral. The entire Haicheng earthauake sequence appears to have been the response of an intensely faulted range boundary to a primarily east-west crustal compression and/or north-south extension.

  8. Interpretation of Self-Potential anomalies for investigating fault using the Levenberg-Marquardt method: a study case in Pinggirsari, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Fajriani; Srigutomo, Wahyu; Pratomo, Prihandhanu M.

    2017-04-01

    Self-Potential (SP) method is frequently used to identify subsurface structures based on electrical properties. For fixed geometry problems, SP method is related to simple geometrical shapes of causative bodies such as a sphere, cylinder, and sheet. This approach is implemented to determine the value of parameters such as shape, depth, polarization angle, and electric dipole moment. In this study, the technique was applied for investigation of fault, where the fault is considered as resembling the shape of a sheet representing dike or fault. The investigated fault is located at Pinggirsari village, Bandung regency, West Java, Indonesia. The observed SP anomalies that were measured allegedly above the fault were inverted to estimate all the fault parameters through inverse modeling scheme using the Levenberg-Marquardt method. The inversion scheme was first tested on a synthetic model, where a close agreement between the test parameters and the calculated parameters was achieved. Finally, the schema was carried out to invert the real observed SP anomalies. The results show that the presence of the fault was detected beneath the surface having electric dipole moment K = 41.5 mV, half-fault dimension a = 34 m, depth of the sheet’s center h = 14.6 m, the location of the fault’s center xo = 478.25 m, and the polarization angle to the horizontal plane θ = 334.52° in a clockwise direction.

  9. MX Siting Investigation. Faults and Lineaments in the MX Siting Region, Nevada and Utah. Volume I.

    DTIC Science & Technology

    1981-11-06

    indicate favorable mineral potential. Verifi- cation, Operational Base, and Shelter Layout studies used fault and lineament data to assist in determining... shelter locations were situated so as to avoid faults but roads were allowed to cross some faults and lineaments because it is generally infeasible, if not... Cordillera in the Western United States, in Smith, R. B., and Eaton, G. P., eds., Cenozoic tectonics - and regional geophysics of the western Cordillera

  10. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  11. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Astrophysics Data System (ADS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-11-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  12. Geometry and slip rates of active blind thrusts in a reactivated back-arc rift using shallow seismic imaging: Toyama basin, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin; Toda, Shigeru; Kobayashi, Kenta

    2017-10-01

    Active blind thrust faults, which can be a major seismic hazard in urbanized areas, are commonly difficult to image with seismic reflection surveys. To address these challenges in coastal plains, we collected about 8 km-long onshore high-resolution two-dimensional (2D) seismic reflection data using a dense array of 800 geophones across compressionally reactivated normal faults within a failed rift system located along the southwestern extension of the Toyama trough in the Sea of Japan. The processing of the seismic reflection data illuminated their detailed subsurface structures to depths of about 3 km. The interpreted depth-converted section, correlated with nearby Neogene stratigraphy, indicated the presence of and along-strike variation of previously unrecognized complex thrust-related structures composed of active fault-bend folds coupled with pairs of flexural slip faults within the forelimb and newly identified frontal active blind thrusts beneath the alluvial plain. In addition, growth strata and fold scarps that deform lower to upper Pleistocene units record the recent history of their structural growth and fault activity. This case shows that shallow seismic reflection imaging with densely spaced seismic recorders is a useful tool in defining locations, recent fault activity, and complex geometry of otherwise inaccessible active blind thrust faults.

  13. Subsurface imaging in a sector of Cerro Prieto transform fault near to pull-apart basin, Mexicali Valley, Baja California, Mexico, based on crooked lines 2D seismic reflection.

    NASA Astrophysics Data System (ADS)

    Mares-Agüero, M. A.; González-Escobar, M.; Arregui, S.

    2016-12-01

    In the transition zone between San Andres continental transformation system and the coupled transform faults system and rifting of Gulf of California is located the Cerro Prieto pull-apart basin delimitated by Imperial fault (northeast) and Cerro Prieto fault (CPF) (southwest), this last, is the limit west of Cerro Prieto geothermic field (CPGF). Crooked lines 2D seismic reflection, covering a portion near the intersection of CPF and CPGF are processed and interpreted. The seismic data were obtained in the early 80's by Petróleos Mexicanos (PEMEX). By decades, technical and investigation works in Cerro Prieto geothermic field and its vicinity had mapped faults at several depths but do not stablish a clear limit where this faults and CPF interact due the complex hydrothermal effects imaging the subsurface. The profiles showing the presence of a zone of uplift effect due to CPF. Considering the proximity of the profiles to CPF, it is surprising almost total absence of faults. A strong reflector around 2 km of depth, it is present in all profiles. This seismic reflector is considered a layer of shale, result of the correlation with a well located in the same region.

  14. Principal facts for gravity data along the Hayward fault and vicinity, San Francisco Bay area, northern California

    USGS Publications Warehouse

    Ponce, David A.

    2001-01-01

    The U.S. Geological Survey (USGS) established over 940 gravity stations along the Hayward fault and vicinity. The Hayward fault, regarded as one of the most hazardous faults in northern California (Working Group on California Earthquake Probabilities, 1999), extends for about 90 km from Fremont in the southeast to San Pablo Bay in the northwest. The Hayward fault is predominantly a right-lateral strike-slip fault that forms the western boundary of the East Bay Hills. These data and associated physical property measurement were collected as part of on-going studies to help determine the earthquake hazard potential of major faults within the San Francisco Bay region. Gravity data were collected between latitude 37°30' and 38°15' N and longitude 121°45' and 122°30' W. Gravity stations were located on the following 7.5 minute quadrangles: Newark, Niles, San Leandro, Hayward, Dublin, Oakland West, Oakland East, Las Trampas Ridge, Diablo, Richmond, Briones Valley, Walnut Creek, and Clayton. All data were ultimately tied to primary gravity base station Menlo Park A, located on the campus of the U.S. Geological Survey in Menlo Park, Calif. (latitude 37°27.34' N, longitude 122°10.18' W, observed gravity value 979944.27 mGal).

  15. The 29 July 2014 (Mw 6.4) Southern Veracruz, Mexico Earthquake: Scenary Previous to Its Occurrence.

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.

    2014-12-01

    On 29 July 2014 (10:46 UTC) a magnitude 6.4 (Mw) earthquake occurred at the southern Veracruz, Mexico region. The epicenter was preliminary located at 17.70° N and 95.63° W. It was a normal fault event with the slip on a fault that trend NNW and a focus approximately 117 km below the surface of the Gulf of Mexico costal plane. The earthquake was widely felt through centro and southern Mexico. In Oaxaca City 133 km to the south a person die of a hearth attack. No damages were reported. Most prominent moderate-sized earthquakes occurring in the southern Veracruz region since 1959 has been concentrated along two well defined seismic belts. One belt runs off the coast following nearly its contour. Here the earthquakes are shallow depth and mostly show a reverse fault mechanism. This belt of seismicity begins at the Los Tuxtlas volcanic field. Another seismic belt is located inland 70 km to the west. Here most earthquakes are of intermediate-depth (108-154 km) focus and normal faulting mechanism. The July 2014 earthquake is located near to this second seismic belt. In the present paper we discuss, within the regional geotectonic framework, the location and some aspects of the rupture process of the July 2014 earthquake.

  16. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    NASA Astrophysics Data System (ADS)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is considered as one of the factors is the effect of the fault zone adjacent, especially the Atera fault. CPBF is located just southeast extension of the Akou fault, NW-SE strike. We think that this extension reaches up to CPBF. Based on the above, we make a presentation about interaction of two faults from the point of view of kinematic vicissitudes and alteration process.

  17. Synthesis of Creep Measurements from Strainmeters and Creepmeters along the San Andreas Fault: Implications for Seismic vs. Aseismic Partitioning

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Gottlieb, M. H.; Hodgkinson, K. M.; Bilham, R. G.; Mattioli, G. S.; Johnson, W.; Van Boskirk, E.; Meertens, C. M.

    2015-12-01

    Strainmeters and creepmeters have been operated along the San Andreas Fault, observing creep events for decades. In particular, the EarthScope Plate Boundary Observatory (PBO) has added a significant number of borehole strainmeters along the San Andreas Fault (SAF) over the last decade. The geodetic data cover a significant temporal portion of the inferred earthquake cycle along this portion of the SAF. Creepmeters measure the surface displacement over time (creep) with short apertures and have the ability to capture slow slip, coseismic rupture, and afterslip. Modern creepmeters deployed by the authors have a resolution of 5 µm over a range of 10 mm and a dynamic sensor with a resolution 25 µm over a range 2.2 m. Borehole strainmeters measure local deformation some distance from the fault with a broader aperture. Borehole tensor strainmeters principally deployed as part of the PBO, measure the horizontal strain tensor at a depth of 100-200 m with a resolution of 10-11 strain and are located 4 - 10 km from the fault with the ability to image a 1 mm creep event acting on an area of ~500 m2 from over 4 km away (fault perpendicular). A single borehole tensor strainmeter is capable of providing broad constraints on the creep event asperity size, location, direction and depth of a single creep event. The synthesis of these data from all the available geodetic instruments proximal to the SAF presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that simple elastic half-space models allow us to loosely constrain the location and depth of any individual creep event on the fault, even with a single instrument, and to image the accumulation of creep with time.

  18. Geologic and geophysical investigations of Climax Stock intrusive, Nevada

    USGS Publications Warehouse

    ,

    1983-01-01

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ashflow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1,500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3,000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N. 32? W., 22? NE; N. 60? W., vertical and N. 35? E., vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary mineral s. The location of the water table and the degree of saturation of the granitic rocks are presently unknown. Measurement from drill holes indicated that depth to perched water levels ranges from 30 to 244 m (100-800 ft). Recent field investigations have shown the contact between the Pogonip marble and the granodiorite is a contact rather than a fault as previously mapped. The thickness of the weathered granodiorite is estimated to be 8 to 46 m (25 to 150 ft).

  19. A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.

    2000-01-01

    We have developed an efficient method to determine high-resolution hypocenter locations over large distances. The location method incorporates ordinary absolute travel-time measurements and/or cross-correlation P-and S-wave differential travel-time measurements. Residuals between observed and theoretical travel-time differences (or double-differences) are minimized for pairs of earthquakes at each station while linking together all observed event-station pairs. A least-squares solution is found by iteratively adjusting the vector difference between hypocentral pairs. The double-difference algorithm minimizes errors due to unmodeled velocity structure without the use of station corrections. Because catalog and cross-correlation data are combined into one system of equations, interevent distances within multiplets are determined to the accuracy of the cross-correlation data, while the relative locations between multiplets and uncorrelated events are simultaneously determined to the accuracy of the absolute travel-time data. Statistical resampling methods are used to estimate data accuracy and location errors. Uncertainties in double-difference locations are improved by more than an order of magnitude compared to catalog locations. The algorithm is tested, and its performance is demonstrated on two clusters of earthquakes located on the northern Hayward fault, California. There it colapses the diffuse catalog locations into sharp images of seismicity and reveals horizontal lineations of hypocenter that define the narrow regions on the fault where stress is released by brittle failure.

  20. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (<0.2); while several faults with high understress (>0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress < 0.08), whereas the fault of M5 Fairview earthquake is only moderately stressed (understress > 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock-type sequence for Prague and Pawnee earthquakes, compared to predominantly swarm-type behavior for Fairview earthquake. These results provide ways to quantitatively evaluate local earthquake hazard.

  1. Observations of Static Coulomb Stress Triggering During the Mw 5.7 Pawnee Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Pennington, C.; Chen, X.; Nakata, N.; Chang, J. C.

    2016-12-01

    The Pawnee earthquake occurred at 12:02 UTC on September 3 and was felt throughout Oklahoma and is the largest event recorded in Oklahoma instrumented history. The earthquake occurred near the junction of two previously mapped faults (Watchorn Fault and Labette Fault), but the actual fault that ruptured was a left-lateral unmapped basement fault (now known as the Sooner Lake Fault) with a strike of 107°, which is conjugate to a segment of the Labette fault that is optimally oriented (referred as OOF). We located 634 events from both before and after the mainshock (updated on September 15, 2016) and use these locations to map other seismogenic faults in the area. Examining the catalog, we found two episodes of seismicity, which started at 100 days and 40 days prior to mainshock, each episode has two clusters occurring two days apart on both OOF and near the mainshock. The near-simultaneous occurrence of clusters suggests possible stress interaction between the Sooner Lake Fault and the Labette fault. We examined the Coulomb stress changes on the surrounding faults caused by the mainshock and have found an increase of coulomb stress along the rakes of mapped faults in the area, the highest being along the Sooner Lake fault and the OOF segment of the Labette fault (see fig 1). These faults experienced up to 5 bars of positive coulomb stress increase, which matched the areas that experience the most aftershocks. To better understand the effect of the coulomb stress on the aftershocks, we plan on refining the catalogs for both aftershocks over a longer period and focal mechanisms to obtain accurate nodal planes, which will be used to see how and if the aftershocks were triggered by the Coulomb stress changes. We will also examine and refine the focal mechanisms that were produced for the events that occurred both before and after the main shock to investigate Coulomb stress interaction. Fig 1. (a) Is a map of faults in the Pawnee area with the red line being the source fault, which is part of the Sooner Lake Fault (green and red line segments.) The opitimally oriented segment of the Labette Fault (OOF) is shown in blue. (b) Shows the coulomb stress change for individual rakes after the rupture along the source fault.

  2. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    PubMed

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  3. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture

    PubMed Central

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-01

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT. PMID:28098822

  4. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. Themore » Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.« less

  5. Fethiye-Burdur Fault Zone (SW Turkey): a myth?

    NASA Astrophysics Data System (ADS)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan

    2017-04-01

    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault zone. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Fethiye Burdu Fault Zone, Paleomagnetism, paleostress inversion, normal fault, Strike-slip fault, SW Turkey

  6. The San Andreas fault in the San Francisco Bay region, California: Structure and kinematics of a Young plate boundary

    USGS Publications Warehouse

    Jachens, R.C.; Zoback, M.L.

    1999-01-01

    Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence with continued strike-slip movement) may explain the progressive narrowing of the basin to the southeast and the puzzling recent uplift of the Merced Formation in a predominantly extensional (pull-apart basin) setting. The 1906 San Francisco earthquake may have nucleated within the step-over region, and the step-over places a strand of the San Andreas fault 3 km closer to downtown San Francisco than previously thought.

  7. Upper crustal fault reactivation and the potential of triggered earthquakes on the Atacama Fault System, N-Chile

    NASA Astrophysics Data System (ADS)

    Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken

    2016-04-01

    The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.

  8. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  9. Microseismic Analysis of Fracture of an Intact Rock Asperity Traversing a Sawcut Fault

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.; Lockner, D. A.

    2017-12-01

    Microseismic events carry information related to stress state, fault geometry, and other subsurface properties, but their relationship to large and potentially damaging earthquakes is not well defined. We conducted laboratory rock mechanics experiments that highlight the interaction between a sawcut fault and an asperity composed of an intact rock "pin". The sample is a 76 mm diameter cylinder of Westerly granite with a 21 mm diameter cylinder (the pin) of intact Westerly granite that crosses the sawcut fault. Upon loading to 80 MPa in a triaxial machine, we first observed a slip event that ruptured the sawcut fault, slipped about 35 mm, but was halted by the rock pin. With continued loading, the rock pin failed in a swarm of thousands of M -7 seismic events similar to the localized microcracking that occurs during the final fracture nucleation phase in an intact rock sample. Once the pin was fractured to a critical point, it permitted complete rupture events on the sawcut fault (stick-slip instabilities). No seismicity was detected on the sawcut fault plane until the pin was sheared. Subsequent slip events were preceded by 10s of foreshocks, all located on the fault plane. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that this gouge propped open the fault and prevented microseismic events in its vicinity. This experiment is an excellent case study in microseismicity since the events separate neatly into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. The distinct locations, timing, and focal mechanisms of the different categories of microseismic events allow us to study how their occurrence is related to the mechanics of the deforming rock.

  10. Possible strain partitioning structure between the Kumano fore-arc basin and the slope of the Nankai Trough accretionary prism

    NASA Astrophysics Data System (ADS)

    Martin, Kylara M.; Gulick, Sean P. S.; Bangs, Nathan L. B.; Moore, Gregory F.; Ashi, Juichiro; Park, Jin-Oh; Kuramoto, Shin'ichi; Taira, Asahiko

    2010-05-01

    A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan, images the accretionary prism, fore-arc basin, and subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel depression (a "notch") along the seaward edge of the fore-arc Kumano Basin, just landward of the megasplay fault system. This bathymetric feature varies along strike, from a single, steep-walled, ˜3.5 km wide notch in the northeast to a broader, ˜5 km wide zone with several shallower linear depressions in the southwest. Below the notch we found both vertical faults and faults which dip toward the central axis of the depression. Dipping faults appear to have normal offset, consistent with the extension required to form a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is difficult to determine, but the along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. By considering only the along-strike variability of the megasplay fault, we could not explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of fore-arc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollement strength variations which control the location of the fore-arc basins may therefore play a role in the position where an along-strike component of strain is localized. While the obliquity of convergence in the Nankai Trough is comparatively small (˜15°), we believe it generated the Kumano Basin Edge Fault Zone, which has implications for interpreting local measured stress orientations and suggests potential locations for strain-partitioning-related deformation in other subduction zones.

  11. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  12. Rupture processes of the 2013-2014 Minab earthquake sequence, Iran

    NASA Astrophysics Data System (ADS)

    Kintner, Jonas A.; Ammon, Charles J.; Cleveland, K. Michael; Herman, Matthew

    2018-06-01

    We constrain epicentroid locations, magnitudes and depths of moderate-magnitude earthquakes in the 2013-2014 Minab sequence using surface-wave cross-correlations, surface-wave spectra and teleseismic body-wave modelling. We estimate precise relative locations of 54 Mw ≥ 3.8 earthquakes using 48 409 teleseismic, intermediate-period Rayleigh and Love-wave cross-correlation measurements. To reduce significant regional biases in our relative locations, we shift the relative locations to align the Mw 6.2 main-shock centroid to a location derived from an independent InSAR fault model. Our relocations suggest that the events lie along a roughly east-west trend that is consistent with the faulting geometry in the GCMT catalogue. The results support previous studies that suggest the sequence consists of left-lateral strain release, but better defines the main-shock fault length and shows that most of the Mw ≥ 5.0 aftershocks occurred on one or two similarly oriented structures. We also show that aftershock activity migrated westwards along strike, away from the main shock, suggesting that Coulomb stress transfer played a role in the fault failure. We estimate the magnitudes of the relocated events using surface-wave cross-correlation amplitudes and find good agreement with the GCMT moment magnitudes for the larger events and underestimation of small-event size by catalogue MS. In addition to clarifying details of the Minab sequence, the results demonstrate that even in tectonically complex regions, relative relocation using teleseismic surface waves greatly improves the precision of relative earthquake epicentroid locations and can facilitate detailed tectonic analyses of remote earthquake sequences.

  13. Seismic and Tectonic Regionalization of the State of Michoacan.

    NASA Astrophysics Data System (ADS)

    Vazquez Rosas, R.; Aguirre, J.; Garduño-Monroy, V. H.; Ramirez-Guzman, L.

    2017-12-01

    In Mexico it is a country with seismically active regions, mainly the zones that are next to the pacific where the zone of subduction is located, in this work we focus on the state of Michoacán, since this has not been completely studied in the last 30 years after the earthquake in Michoacán in 1985. The first most important step is to know the region which are the most seismic zones within the state and one way is to carry out the regionalization of Michoacán identifying the sources of earthquakes as well as where occur more frequently.If we could know each of the factors that influence seismicity and describe every point of the terrain, every rupture, every rock, etc., then we could describe in an analytical way the seismic process and predict the occurrence of earthquakes such as eclipses. Unfortunately the number of parameters is so enormous that we cannot arrive at an exact description; however, we can take advantage of statistical properties to evaluate probabilities, even in the case of small systems such as a particular seismic zone.In this paper, epicenter data were collected from 1970 to 2014, and with them a statistical study was carried out and the epicenter data plotted using data reported by the National Seismological Service and the IRIS catalog as well as some data from the Institute of engineering UNAM. Where earthquakes of equal and greater than M = 4 were used. Graphing these in function with the depth and with that it was graficaron and was made an overlapping the faults of the state and with that it was divided in 4 seismic zones in function of the faults and the localized seismicity.Zone A. is located within the Michoacán Block set of faults, as well as part of the subduction zone on the coast of the state. Seismicity in this area is high. Zone B-1. This is located between the limits of Jalisco and Michoacán in the set of faults called Tepalcatepec depression and limits with the Jorullo-Tacámbaro fracture. At this site seismicity is relatively moderate. The Zone B-2 is located in the limits of Michoacán and Guerrero, within the fault complex Michoacán Oaxaca, and the faults Zitzio and Villa de Santiago. With relatively moderate seismicity. Zone C This zone is located in the limits of Guanajuato, Querétaro and State of Mexico, within the Acambay fault complex and the Morelia fault system. With relatively low seismicity.

  14. Imaging the concealed section of the Whakatane fault below Whakatane city, New Zealand, with a shear wave land streamer system

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Mueller, Christof; Krawczyk, CharLotte M.

    2016-04-01

    The Mw 7.1 Darfield Earthquake in September 2010 ruptured the surface along the Greendale Fault that was not known prior to the earthquake. The subsequent Mw 6.3 Christchurch earthquake in February 2011 demonstrated that concealed active faults have a significant risk potential for urban infrastructure and human life in New Zealand if they are located beneath or close to such areas. Mapping exposures and analysis of active faults incorporated into the National Seismic Hazard Model (NSHM) suggests that several thousands of these active structures are yet to be identified and have the potential to generate moderate to large magnitude earthquakes (i.e. magnitudes >5). Geological mapping suggests that active faults pass beneath, or within many urban areas in New Zealand, including Auckland, Blenheim, Christchurch, Hastings/Napier, Nelson, Rotorua, Taupo, Wellington, and Whakatane. Since no established methodology for routinely locating and assessing the earthquake hazard posed by concealed active faults is available, the principal objective of the presented study was to evaluate the usefulness of high-resolution shear wave seismic reflection profiling using a land streamer to locate buried faults in urban areas of New Zealand. During the survey carried out in the city of Whakatane in February 2015, the method was first tested over a well known surface outcrop of the Edgecumbe Fault 30 km south-west of Whakatane city. This allowed further to investigate the principle shear wave propagation characteristics in the unknown sediments, consisting mainly of effusive rock material of the Taupo volcanic zone mixed with marine transgression units. Subsequently the survey was continued within Whakatane city using night operation time slots to reduce the urban noise. In total, 11 profiles of 5.7 km length in high data quality were acquired, which clearly show concealed rupture structures of obviously different age in the shallow sediments down to 100 m depth. Subject to depth verification by drillings normal fault displacements of up to 15 m are visible in depths of 20-40 m, deeper rupture structures show displacements of up to 20 m. Furthermore, indications of strike-slip fault activities are visible. The concealed rupture structures found are not aligned along former estimated fault lineaments or main surface structures like the Whakatane river bed. Correlations exist with small topographic variations detected by LIDAR imaging and surface signatures on a historic map of 1867.

  15. Active Fault Near-Source Zones Within and Bordering the State of California for the 1997 Uniform Building Code

    USGS Publications Warehouse

    Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.

    2000-01-01

    The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.

  16. dc Arc Fault Effect on Hybrid ac/dc Microgrid

    NASA Astrophysics Data System (ADS)

    Fatima, Zahra

    The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.

  17. Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield

    USGS Publications Warehouse

    Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.

    2001-01-01

    Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.

  18. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  19. Along strike variation of active fault arrays and their effect on landscape morphology of the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Nennewitz, Markus; Thiede, Rasmus; Bookhagen, Bodo

    2017-04-01

    The location and magnitude of the active deformation of the Himalaya has been debated for decades, but several aspects remain unknown. For instance, the spatial distribution of the deformation and the shortening that ultimately sustains Himalayan topography and the activity of major fault zones are not well constrained neither for the present day and nor for Holocene and Quarternary timescales. Because of these weakly constrained factors, many previous studies have assumed that the structural setting and the fault geometry of the Himalaya is continuous along strike and similar to fault geometries of central Nepal. Thus, the sub-surface structural information from central Nepal have been projected along strike, but have not been verified at other locations. In this study we use digital topographic analysis of the NW Himalaya. We obtained catchment-averaged, normalized steepness indexes of longitudinal river profiles with drainage basins ranging between 5 and 250km2 and analyzed the relative change in their spatial distribution both along and across strike. More specific, we analyzed the relative changes of basins located in the footwall and in the hanging wall of major fault zones. Under the assumption that along strike changes in the normalized steepness index are primarily controlled by the activity of thrust segments, we revealed new insights in the tectonic deformation and uplift pattern. Our results show three different segments along the northwest Himalaya, which are located, from east to west, in Garwhal, Chamba and Kashmir Himalaya. These have formed independent orogenic segments characterized by significant changes in their structural architecture and fault geometry. Moreover, their topographic changes indicate strong variations on fault displacement rates across first-order fault zones. With the help of along- and across-strike profiles, we were able to identify fault segments of pronounced fault activity across MFT, MBT, and the PT2 and identify the location of along strike changes which are interpreted as their segment boundaries. In addition to the steepness indices we use the accumulation of elevation data as a proxy for the strain that has been accumulated over a specific distance. Thus, despite the changes in topography, structural setting, and kinematics along the NW Himalaya we observe that the topography of the orogen is in good agreement with recently measured convergence rates obtained from GPS campaigns. These data suggest reduced crustal shortening towards the northwest. Deformation in the Central Himalaya has been explained either by in-sequence thrusting along the MFT that localize the entire Holocene shortening or a combination of this with out-of-sequence thrusting in the vicinity of the PT2. In contrast to these conceptual models, we propose that the segmented NW Himalaya is a product of the synchronous activity of different fault segments, accommodating the crustal shortening along three independently deforming organic segments. The lateral discontinuity of these segments is responsible for the accommodation of the variation in the deformation and the maintenance of the topography of the Himalaya in NW India.

  20. Investigating the Influence of Regional Stress on Fault and Fracture Permeability at Pahute Mesa, Nevada National Security Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Donald M.; Smith, Kenneth D.; Parashar, Rishi

    Regional stress may exert considerable control on the permeability and hydraulic function (i.e., barrier to and/or conduit for fluid flow) of faults and fractures at Pahute Mesa, Nevada National Security Site (NNSS). In-situ measurements of the stress field are sparse in this area, and short period earthquake focal mechanisms are used to delineate principal horizontal stress orientations. Stress field inversion solutions to earthquake focal mechanisms indicate that Pahute Mesa is located within a transtensional faulting regime, represented by oblique slip on steeply dipping normal fault structures, with maximum horizontal stress ranging from N29°E to N63°E and average of N42°E. Averagemore » horizontal stress directions are in general agreement with large diameter borehole breakouts from Pahute Mesa analyzed in this study and with stress measurements from other locations on the NNSS.« less

  1. Magma storage in a strike-slip caldera

    PubMed Central

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-01-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions. PMID:27447932

  2. Magma storage in a strike-slip caldera.

    PubMed

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  3. Locating hardware faults in a data communications network of a parallel computer

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  4. Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform

    NASA Astrophysics Data System (ADS)

    Abd-el-Malek, Mina; Abdelsalam, Ahmed K.; Hassan, Ola E.

    2017-09-01

    Robustness, low running cost and reduced maintenance lead Induction Motors (IMs) to pioneerly penetrate the industrial drive system fields. Broken rotor bars (BRBs) can be considered as an important fault that needs to be early assessed to minimize the maintenance cost and labor time. The majority of recent BRBs' fault diagnostic techniques focus on differentiating between healthy and faulty rotor cage. In this paper, a new technique is proposed for detecting the location of the broken bar in the rotor. The proposed technique relies on monitoring certain statistical parameters estimated from the analysis of the start-up stator current envelope. The envelope of the signal is obtained using Hilbert Transformation (HT). The proposed technique offers non-invasive, fast computational and accurate location diagnostic process. Various simulation scenarios are presented that validate the effectiveness of the proposed technique.

  5. Strike-slip Fault Structure in the Salton Trough and Deformation During and After the 2010 M7.2 El Mayor-Cucapah Earthquake from Geodetic and Seismic Data

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Sun, J.; Gonzalez-Ortega, A.; González-Escobar, M.; Freed, A. M.; Burgmann, R.; Samsonov, S. V.; Gonzalez-Garcia, J.; Fletcher, J. M.; Hinojosa, A.

    2013-12-01

    The Pacific-North America plate boundary character changes southward from the strike-slip and transpressional configuration along most of California to oblique rifting in the Gulf of California, with a transitional zone of transtension beneath the Salton Trough in southernmost California and northern Mexico. The Salton Trough is characterized by extremely high heat flow and thin lithosphere with a thick fill of sedimentary material delivered by the Colorado River during the past 5-6 million years. Because of the rapid sedimentation, most of the faults in Salton Trough are buried and reveal themselves when they slip either seismically or aseismically. They can also be located by refraction and reflection of seismic waves. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in Baja California and Sonora, Mexico is probably the largest earthquake in the Salton Trough for at least 120 years, and had primarily right-lateral strike-slip motion. The earthquake ruptured a complex set of faults that lie to the west of the main plate boundary fault, the Cerro Prieto Fault, and shows that the strike-slip fault system in the southern Salton Trough has multiple sub-parallel active faults, similar to southern California. The Cerro Prieto Fault is still likely absorbing the majority of strain in the plate boundary. We study the coseismic and postseismic deformation of the 2010 earthquake with interferometric analysis of synthetic aperture radar (SAR) images (InSAR) and pixel tracking by subpixel correlation of SAR and optical images. We combine sampled InSAR and subpixel correlation results with GPS (Global Positioning System) offsets at PBO (Plate Boundary Observatory) stations to estimate the likely subsurface geometry of the major faults that slipped during the earthquake and to derive a static coseismic slip model. We constrained the surface locations of the fault segments to mapped locations in the Sierra Cucapah to the northwest of the epicenter. SAR along-track offsets, especially on ALOS images, show that there is a large amount of right-lateral slip (1-3 m) on a previously unmapped system of faults extending about 60 km to the southeast of the epicenter beneath the Colorado River Delta named the Indiviso Fault system. The finite fault slip modeling shows a bilateral rupture with coseismic fault slip shallower than 10 km on the faults to the NW (dipping NE) and SE (dipping SW) of the epicenter. The southeastern end of the coseismic ruptures has complex fault geometry, including both east- and west-dipping faults revealed by recently reprocessed seismic reflection profiles. This new coseismic fault geometry will be the basis for a new finite element model of the crust and mantle for modeling of the coseismic slip with realistic 3D elastic structure and the viscoelastic postseismic relaxation. Postseismic InSAR, including new Uninhabited Aerial Vehicle SAR (UAVSAR) data, and GPS show rapid shallow afterslip on faults at the north and south ends of the main coseismic rupture and down-dip from the area of largest coseismic slip. Longer wavelength postseismic relaxation will be best measured by GPS.

  6. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  7. Seismicity rate surge on faults after shut-in: poroelastic response to fluid injection

    NASA Astrophysics Data System (ADS)

    Chang, K. W.; Yoon, H.; Martinez, M. J.

    2017-12-01

    Subsurface energy activities such as geological CO2 storage and wastewater injection require injecting large amounts of fluid into the subsurface, which will alter the states of pore pressure and stress in the storage formation. One of the main issues for injection-induced seismicity is the post shut-in increases in the seismicity rate, often observed in the fluid-injection operation sites. The rate surge can be driven by the following mechanisms: (1) pore-pressure propagation into distant faults after shut-in and (2) poroelastic stressing caused by well operations, depending on fault geometry, hydraulic and mechanical properties of the formation, and injection history. We simulate the aerial view of the target reservoir intersected by strike-slip faults, in which injection-induced pressure buildup encounters the faults directly. We examine the poroelastic response of the faults to fluid injection and perform a series of sensitivity tests considering: (1) permeability of the fault zone, (2) locations and the number of faults with respect to the injection point, and (3) well operations with varying the injection rate. Our analysis of the Coulomb stress change suggests that the sealing fault confines pressure diffusion which stabilizes or weakens the nearby conductive fault depending on the injection location. We perform the sensitivity test by changing injection scenarios (time-dependent rates), while keeping the total amount of injected fluids. Sensitivity analysis shows that gradual reduction of the injection rate minimizes the Coulomb stress change and the least seismicity rates are predicted. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  8. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  9. High-precision relocation for aftershocks of the 2016 ML 5.8 Gyeongju earthquake in South Korea: Stress partitioning controlled by complex fault systems

    NASA Astrophysics Data System (ADS)

    Woo, J. U.; Rhie, J.; Kang, T. S.; Kim, S.; Chai, G.; Cho, E.

    2017-12-01

    Complex inherent fault system is one of key factors controlling the main shock occurrence and the pattern of aftershock sequence. Many field studies have shown that the fault systems in the Korean Peninsula are complex because they formed by various tectonic events since Proterozoic. Apart from that the mainshock is the largest one (ML 5.8) ever recorded in South Korea, the Gyeongju earthquake sequence shows particularly interesting features: ML 5.1 event preceded ML 5.8 event by 50 min and they are located closely to each other ( 1 km). In addition, ML 4.5 event occurred 2 3 km away from the two events after a week of the mainshock. Considering reported focal mechanisms and hypocenters of the three major events, it is unlikely that the earthquake sequence occurs on a single fault plane. To depict the detailed fault geometry associated with the sequence, we precisely determine the relative locations of 1,400 aftershocks recorded by 27 broadband stations, which started to be deployed less than one hour after the mainshock. Double difference algorithm is applied using relative travel time measurements by a waveform cross-correlation method. Relocated hypocenters show that a major fault striking NE-SW and some minor faults get involved in the sequence. In particular, aftershocks immediately following ML 4.5 event seem to occur on a fault striking NW-SE, which is orthogonal to the strike of a major fault. We expect that the Gyeongju earthquake sequence resulted from the stress transfer controlled by the complex inherent fault system in this region.

  10. Source parameters of the 2013, Ms 7.0, Lushan earthquake and the characteristics of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Zhao, Fengfan; Meng, Lingyuan

    2016-04-01

    The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).

  11. Gravity study through the Tualatin Mountains, Oregon: Understanding crustal structure and earthquake hazards in the Portland urban area

    USGS Publications Warehouse

    Blakely, R.J.; Beeson, M.H.; Cruikshank, K.; Wells, R.E.; Johnson, Aaron H.; Walsh, K.

    2004-01-01

    A high-resolution gravity survey through the Tualatin Mountains (Portland Nills) west of downtown Portland exhibits evidence of faults previously identified from surface geologic and aeromagnetic mapping. The gravity survey was conducted in 1996 along the 4.5-km length of a twin-bore tunnel, then under construction and now providing light-rail service between downtown Portland and communities west of the Portland Hills. Gravitational attraction gradually increases from west to east inside the tunnel, which reflects the tunnel's location between low-density sedimentary deposits of the Tualatin basin to the west and high-density, mostly concealed Eocene basalt to the east. Superimposed on this gradient are several steplike anomalies that we interpret as evidence for faulted contacts between rocks of contrasting density. The largest of these anomalies occurs beneath Sylvan Creek, where a fault had previously been mapped inside the tunnel. Another occurs 1200 m from the west portal, at the approximate intersection of the tunnel with an aeromagnetic anomaly associated with the Sylvan fault (formerly called the Oatfield fault). Lithologic cross sections based on these gravity data show that the steplike anomalies are consistent with steeply dipping reverse faults, although strike-slip displacements also may be important. Three gravity lows correspond with topographic lows directly overhead and may reflect zones of shearing. Several moderate earthquakes (M ??? 3.5) occurred near the present-day location of the tunnel in 1991, suggesting that some of these faults or other faults in the Portland Hills fault zone are seismically active.

  12. Fault growth and acoustic emissions in confined granite

    USGS Publications Warehouse

    Lockner, David A.; Byerlee, James D.

    1992-01-01

    The failure process in a brittle granite was studied by using acoustic emission techniques to obtain three dimensional locations of the microfracturing events. During a creep experiment the nucleation of faulting coincided with the onset of tertiary creep, but the development of the fault could not be followed because the failure occurred catastrophically. A technique has been developed that enables the failure process to be stabilized by controlling the axial stress to maintain a constant acoustic emission rate. As a result the post-failure stress-strain curve has been followed quasi-statically, extending to hours the fault growth process that normally would occur violently in a fraction of a second. The results from the rate-controlled experiments show that the fault plane nucleated at a point on the sample surface after the stress-strain curve reached its peak. Before nucleation, the microcrack growth was distributed throughout the sample. The fault plane then grew outward from the nucleation site and was accompanied by a gradual drop in stress. Acoustic emission locations showed that the fault propagated as a fracture front (process zone) with dimensions of 1 to 3 cm. As the fracture front passed by a given fixed point on the fault plane, the subsequent acoustic emission would drop. When growth was allowed to progress until the fault bisected the sample, the stress dropped to the frictional strength. These observations are in accord with the behavior predicted by Rudnicki and Rice's bifurcation analysis but conflict with experiments used to infer that shear localization would occur in brittle rock while the material is still hardening.

  13. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Qiao, Xuejun; Yang, Shaomin; Wang, Dijin

    2017-02-01

    In this study, we present a new synthesis of GPS velocities for tectonic deformation within the Tibetan Plateau and its surrounding areas, a combined data set of ˜1854 GPS-derived horizontal velocity vectors. Assuming that crustal deformation is localized along major faults, a block modelling approach is employed to interpret the GPS velocity field. We construct a 30-element block model to describe present-day deformation in western China, with half of them located within the Tibetan Plateau, and the remainder located in its surrounding areas. We model the GPS velocities simultaneously for the effects of block rotations and elastic strain induced by the bounding faults. Our model yields a good fit to the GPS data with a mean residual of 1.08 mm a-1 compared to the mean uncertainty of 1.36 mm a-1 for each velocity component, indicating a good agreement between the predicted and observed velocities. The major strike-slip faults such as the Altyn Tagh, Xianshuihe, Kunlun and Haiyuan faults have relatively uniform slip rates in a range of 5-12 mm a-1 along most of their segments, and the estimated fault slip rates agree well with previous geologic and geodetic results. Blocks having significant residuals are located at the southern and southeastern Tibetan Plateau, suggesting complex tectonic settings and further refinement of accurate definition of block geometry in these regions.

  14. A 3D modeling approach to complex faults with multi-source data

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Xu, Hua; Zou, Xukai; Lei, Hongzhuan

    2015-04-01

    Fault modeling is a very important step in making an accurate and reliable 3D geological model. Typical existing methods demand enough fault data to be able to construct complex fault models, however, it is well known that the available fault data are generally sparse and undersampled. In this paper, we propose a workflow of fault modeling, which can integrate multi-source data to construct fault models. For the faults that are not modeled with these data, especially small-scale or approximately parallel with the sections, we propose the fault deduction method to infer the hanging wall and footwall lines after displacement calculation. Moreover, using the fault cutting algorithm can supplement the available fault points on the location where faults cut each other. Increasing fault points in poor sample areas can not only efficiently construct fault models, but also reduce manual intervention. By using a fault-based interpolation and remeshing the horizons, an accurate 3D geological model can be constructed. The method can naturally simulate geological structures no matter whether the available geological data are sufficient or not. A concrete example of using the method in Tangshan, China, shows that the method can be applied to broad and complex geological areas.

  15. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    PubMed

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  16. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    NASA Astrophysics Data System (ADS)

    Dixit, Madan M.; Kumar, Sanjay; Catchings, R. D.; Suman, K.; Sarkar, Dipankar; Sen, M. K.

    2014-08-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  17. The 2014, MW6.9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities

    NASA Astrophysics Data System (ADS)

    Konca, Ali Ozgun; Cetin, Seda; Karabulut, Hayrullah; Reilinger, Robert; Dogan, Ugur; Ergintav, Semih; Cakir, Ziyadin; Tari, Ergin

    2018-05-01

    We report that asperities with the highest coseismic slip in the 2014 MW6.9 North Aegean earthquake persisted through the interseismic, coseismic and immediate post-seismic periods. We use GPS and seismic data to obtain the source model of the 2014 earthquake, which is located on the western extension of the North Anatolian Fault (NAF). The earthquake ruptured a bilateral, 90 km strike-slip fault with three slip patches: one asperity located west of the hypocentre and two to the east with a rupture duration of 40 s. Relocated pre-earthquake seismicity and aftershocks show that zones with significant coseismic slip were relatively quiet during both the 7 yr of interseismic and the 3-month aftershock periods, while the surrounding regions generated significant seismicity during both the interseismic and post-seismic periods. We interpret the unusually long fault length and source duration, and distribution of pre- and post-main-shock seismicity as evidence for a rupture of asperities that persisted through strain accumulation and coseismic strain release in a partially coupled fault zone. We further suggest that the association of seismicity with fault creep may characterize the adjacent Izmit, Marmara Sea and Saros segments of the NAF. Similar behaviour has been reported for sections of the San Andreas Fault, and some large subduction zones, suggesting that the association of seismicity with creeping fault segments and rapid relocking of asperities may characterize many large earthquake faults.

  18. Near-Surface Geophysical Character of a Holocene Fault Carrying Geothermal Flow Near Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Dudley, C.; Dorsey, A.; Louie, J. N.; Schwering, P. C.; Pullammanappallil, S.

    2012-12-01

    Lines of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources, providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass shows a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location to a depth of at least 60 m at 11 ka. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey comprises near-surface seismic reflection and refraction, nine near-surface refraction microtremor (SeisOpt® ReMi™) arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys at and near the tufa columns. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results show no indication of any fast (> 500 m/s) tufa below the surface at or near the tufa columns. Vs30 averages were 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results also show no indication of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that deposition of the lakebeds in the Quaternary buried and preserved older tufa columns within the section. Near-surface Wenner arrays with a-spacings up to 30 m show a higher resistivity near the faults, and tufa, than away from the faults. Resistivity averages were 33 ± 17 ohm-m on the fault, 13 ± 3 ohm-m east of the fault, and 9 ± 3 ohm-m west of the fault. It is possible the geothermal waters are fresher than waters held in the lakebed clays. Water samples from more than 1 km depth in exploration wells had almost drinking-water quality. This higher resistivity of the waters carried by the fault zone, with perhaps a higher porosity and permeability along the fault, could explain the higher resistivity near the fault. Our work shows that there is no high-velocity, high-resistivity tufa along the faults below the surface, so we are unable to use buried tufa to locate faults with geothermal upwellings in this area. We can further hypothesize that as sedimentation buried the tufa during the Quaternary, warm geothermal waters re-dissolved it, and re-precipitated it only in the cold lake-bottom water.

  19. Location, Reprocessing, and Analysis of Two Dimensional Seismic Reflection Data on the Jicarilla Apache Indian Reservation, New Mexico, Final Report, September 1, 1997-February 1, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie; Taylor, David J.; Huffman, Jr., A. Curtis

    2000-06-08

    Multichannel surface seismic reflection data recording is a standard industry tool used to examine various aspects of geology, especially the stratigraphic characteristics and structural style of sedimentary formations in the subsurface. With the help of the Jicarilla Apache Tribe and the Bureau of Indian Affairs we were able to locate over 800 kilometers (500 miles) of multichannel seismic reflection data located on the Jicarilla Apache Indian reservation. Most of the data was received in hardcopy form, but there were data sets where either the demultiplexed digital field data or the processed data accompanied the hardcopy sections. The seismic data wasmore » acquired from the mid 1960's to the early 1990's. The most extensive seismic coverage is in the southern part of the reservation, although there are two good surveys located on the northeastern and northwestern parts of the reservation. Most of the data show that subsurface formations are generally flat-lying in the southern and western portion of the reservation. There is, however, a significant amount of structure imaged on seismic data located over the San Juan Basin margin along the east-central and northern part of the reservation. Several west to east trending lines in these areas show a highly faulted monoclinal structure from the deep basin in the west up onto the basin margin to the east. Hydrocarbon exploration in flat lying formations is mostly stratigraphic in nature. Where there is structure in the subsurface and indications are that rocks have been folded, faulted, and fractured, exploration has concentrated on structural traps and porosity/permeability "sweet spots" caused by fracturing. Therefore, an understanding of the tectonics influencing the entire section is critical in understanding mechanisms for generating faults and fractures in the Cretaceous. It is apparent that much of the hydrocarbon production on the reservation is from fracture porosity in either source or reservoir sequences. Therefore it is important to understand the mechanism that controls the location and intensity of the fractures. A possible mechanism may be deep seated basement faulting that has been active through time. Examining the basement fault patterns in this part of the basin and their relation to fracture production may provide a model for new plays on the Jicarilla Indian Reservation. There are still parts of the reservation where the subsurface has not been imaged geophysically with either conventional two-dimensional or three-dimensional reflection seismic techniques. These methods, especially 3-D seismic, would provide the best data for mapping deep basement faulting. The authors would recommend that 3-D seismic be acquired along the Basin margin located along the eastern edge of the reservation and the results be used to construct detailed fault maps which may help to locate areas with the potential to contain highly fractured zones in the subsurface.« less

  20. Contemporary Tectonics of China

    DTIC Science & Technology

    1978-02-01

    that it would be of value to the United States to understand seismicity in China because their methods used in predicting large intraplate seismic...ability to discriminate between natural events and nuclear explosions. General Method In order to circumvent the limitations placed on studies of...accurate relative locations. Fault planes maybe determined with this method , thereby removing the ambiguity of the choice of fault plane from a fault plane

  1. InSAR Time Series Analysis of Dextral Strain Partitioning Across the Burma Plate

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Wang, Y.; Lin, N.; Lindsey, E. O.; Mueller, K. J.

    2017-12-01

    Oblique convergence between the India and Sunda plates creates partitioning of strike-slip and compressional strain across the Burma plate. GPS data indicate up to 40 mm/yr (Steckler et al 2016) of dextral strain exists between the India and Sunda plates. The Sagaing fault in Myanmar accommodates 20 mm/yr at the eastern boundary of the Burma plate, but the location and magnitude of dextral strain on other faults remains an open question, as does the relative importance of seismic vs aseismic processes. The remaining 20 mm/yr of dextral strain may be accommodated on one or two faults or widely distributed on faults across the Burma plate, scenarios that have a major impact on seismic hazard. However, the dense GPS data necessary for precise determination of which faults accommodate how much strain do not exist yet. Previous studies using GPS data ascribe 10-18 mm/yr dextral strain on the Churachandpur Mao fault in India (Gahaluat et al 2013, Steckler et al 2016) and 18-22 mm/yr on the northern Sagaing fault (Maurin et al 2010, Steckler et al 2016), leaving up to 10 mm/yr unconstrained. Several of the GPS results are suggestive of shallow aseismic slip along parts of these faults, which, if confirmed, would have a significant impact on our understanding of hazard in the area. Here, we use differential InSAR analyzed in time series to investigate dextral strain on the Churachandpur Mao fault and across the Burma plate. Ascending ALOS-1 imagery spanning 2007-2010 were processed in time series for three locations. Offsets in phase and a strong gradient in line-of-sight deformation rate are observed across the Churachandpur Mao fault, and work is ongoing to determine if these are produced by shallow fault movement, topographic effects, or both. The results of this study will provide further constraints for strain rate on the Churachandpur Mao fault, and yield a more complete understanding of strain partitioning across the Burma plate.

  2. Submarine Neotectonic Investigations of the Bahia Soledad Fault, off Northern Baja California Near the US - Mexico Border

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Maier, K. L.; McGann, M.; Herguera, J. C.; Gwiazda, R.; Arregui, S.; Barrientos, L. A.

    2015-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) conducted detailed surveys at selected sites on the seafloor along the Bahia Soledad Fault offshore of Northern Baja California, Mexico, during a two-ship expedition in the spring of 2015. The Bahia Soledad Fault is a NNW-trending strike-slip fault that is likely continuous with the San Diego Trough Fault offshore of San Diego, California. Constraining the style of deformation, continuity, and slip rate along this fault system is critical to characterizing the seismic hazards to the adjacent coastal areas extending from Los Angeles to Ensenada. Detailed morphologic surveys were conducted using an autonomous underwater vehicle (AUV) to provide ultra high-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m). The AUV also carried a 2-10 kHz chirp sub-bottom profiler and an Edgetech 110kHz and 410kHz sidescan. The two sites along the Bahia Soledad Fault each run ~6 km along the fault with ~1.8 km wide footprint. The resulting bathymetry shows these fault zones are marked with distinct lineations that are flanked by ~1 km long elongated ridges and depressions which are interpreted to be transpressional pop-up structures and transtensional pull-apart basins up to 100 m of relief. Offset seismic reflectors that extend to near the seafloor confirm that these lineations are fault scarps. The detailed bathymetric maps and sub-bottom profiles were used to locate key sites where deformed stratigraphic horizons along the fault are within 1.5 m of the seafloor. These areas were sampled using a remotely operated vehicle (ROV) equipped with a vibracoring system capable of collecting precisely located cores that are up to 1.5 m long. The coupled use of multibeam imagery and surgically-collected stratigraphic samples will enable to constrain the frequency and timing of recent movements on this fault which will be useful to incorporated into future seismic hazard assessment.

  3. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori

    2018-05-01

    We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.

  4. Seismo-Lineament Analysis Method (SLAM) Applied to the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Worrell, V. E.; Cronin, V. S.

    2014-12-01

    We used the seismo-lineament analysis method (SLAM; http://bearspace.baylor.edu/Vince_Cronin/www/SLAM/) to "predict" the location of the fault that produced the M 6.0 South Napa earthquake of 24 August 2014, using hypocenter and focal mechanism data from NCEDC (http://www.ncedc.org/ncedc/catalog-search.html) and a digital elevation model from the USGS National Elevation Dataset (http://viewer.nationalmap.gov/viewer/). The ground-surface trace of the causative fault (i.e., the Browns Valley strand of the West Napa fault zone; Bryant, 2000, 1982) and virtually all of the ground-rupture sites reported by the USGS and California Geological Survey (http://www.eqclearinghouse.org/2014-08-24-south-napa/) were located within the north-striking seismo-lineament. We also used moment tensors published online by the USGS and GCMT (http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#scientific_moment-tensor) as inputs to SLAM and found that their northwest-striking seismo-lineaments correlated spatially with the causative fault. We concluded that SLAM could have been used as soon as these mechanism solutions were available to help direct the search for the trace of the causative fault and possible rupture-related damage. We then considered whether the seismogenic fault could have been identified using SLAM prior to the 24 August event, based on the focal mechanisms of smaller prior earthquakes reported by the NCEDC or ISC (http://www.isc.ac.uk). Seismo-lineaments from three M~3.5 events from 1990 and 2012, located in the Vallejo-Crockett area, correlate spatially with the Napa County Airport strand of the West Napa fault and extend along strike toward the Browns Valley strand (Bryant, 2000, 1982). Hence, we might have used focal mechanisms from smaller earthquakes to establish that the West Napa fault is likely seismogenic prior to the South Napa earthquake. Early recognition that a fault with a mapped ground-surface trace is seismogenic, based on smaller earthquakes, can facilitate appropriate preparatory work to minimize damage during a larger-magnitude event.

  5. Seismotectonic significance of the 2008–2010 Walloon Brabant seismic swarm in the Brabant Massif, Belgium

    USGS Publications Warehouse

    Van Noten, Koen; Lecocq, Thomas; Shah, Anjana K.; Camelbeeck, Thierry

    2015-01-01

    Between 12 July 2008 and 18 January 2010 a seismic swarm occurred close to the town of Court-Saint-Etienne, 20 km SE of Brussels (Belgium). The Belgian network and a temporary seismic network covering the epicentral area established a seismic catalogue in which magnitude varies between ML -0.7 and ML 3.2. Based on waveform cross-correlation of co-located earthquakes, the spatial distribution of the hypocentre locations was improved considerably and shows a dense cluster displaying a 200 m-wide, 1.5-km long, NW-SE oriented fault structure at a depth range between 5 and 7 km, located in the Cambrian basement rocks of the Lower Palaeozoic Anglo-Brabant Massif. Waveform comparison of the largest events of the 2008–2010 swarm with an ML 4.0 event that occurred during swarm activity between 1953 and 1957 in the same region shows similar P- and S-wave arrivals at the Belgian Uccle seismic station. The geometry depicted by the hypocentral distribution is consistent with a nearly vertical, left-lateral strike-slip fault taking place in a current local WNW–ESE oriented local maximum horizontal stress field. To determine a relevant tectonic structure, a systematic matched filtering approach of aeromagnetic data, which can approximately locate isolated anomalies associated with hypocentral depths, has been applied. Matched filtering shows that the 2008–2010 seismic swarm occurred along a limited-sized fault which is situated in slaty, low-magnetic rocks of the Mousty Formation. The fault is bordered at both ends with obliquely oriented magnetic gradients. Whereas the NW end of the fault is structurally controlled, its SE end is controlled by a magnetic gradient representing an early-orogenic detachment fault separating the low-magnetic slaty Mousty Formation from the high-magnetic Tubize Formation. The seismic swarm is therefore interpreted as a sinistral reactivation of an inherited NW–SE oriented isolated fault in a weakened crust within the Cambrian core of the Brabant Massif.

  6. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    NASA Astrophysics Data System (ADS)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline for hazard assessment, and guide future studies in the Kivu rift, and document the role of magmatism in rifting processes.

  7. Experimental Fault Diagnosis in Systems Containing Finite Elements of Plate of Kirchoff by Using State Observers Methodology

    NASA Astrophysics Data System (ADS)

    Alegre, D. M.; Koroishi, E. H.; Melo, G. P.

    2015-07-01

    This paper presents a methodology for detection and localization of faults by using state observers. State Observers can rebuild the states not measured or values from points of difficult access in the system. So faults can be detected in these points without the knowledge of its measures, and can be track by the reconstructions of their states. In this paper this methodology will be applied in a system which represents a simplified model of a vehicle. In this model the chassis of the car was represented by a flat plate, which was divided in finite elements of plate (plate of Kirchoff), in addition, was considered the car suspension (springs and dampers). A test rig was built and the developed methodology was used to detect and locate faults on this system. In analyses done, the idea is to use a system with a specific fault, and then use the state observers to locate it, checking on a quantitative variation of the parameter of the system which caused this crash. For the computational simulations the software MATLAB was used.

  8. Shallow-depth location and geometry of the Piedmont Reverse splay of the Hayward Fault, Oakland, California

    USGS Publications Warehouse

    Catchings, Rufus D.; Goldman, Mark R.; Trench, David; Buga, Michael; Chan, Joanne H.; Criley, Coyn J.; Strayer, Luther M.

    2017-04-18

    The Piedmont Thrust Fault, herein referred to as the Piedmont Reverse Fault (PRF), is a splay of the Hayward Fault that trends through a highly populated area of the City of Oakland, California (fig. 1A). Although the PRF is unlikely to generate a large-magnitude earthquake, slip on the PRF or high-amplitude seismic energy traveling along the PRF may cause considerable damage during a large earthquake on the Hayward Fault. Thus, it is important to determine the exact location, geometry (particularly dip), and lateral extent of the PRF within the densely populated Oakland area. In the near surface, the PRF juxtaposes Late Cretaceous sandstone (of the Franciscan Complex Novato Quarry terrane of Blake and others, 1984) and an older Pleistocene alluvial fan unit along much of its mapped length (fig. 1B; Graymer and others, 1995). The strata of the Novato Quarry unit vary greatly in strike (NW, NE, and E), dip direction (NE, SW, E, and NW), dip angle (15° to 85°), and lithology (shale and sandstone), and the unit has been intruded by quartz diorite in places. Thus, it is difficult to infer the structure of the fault, particularly at depth, with conventional seismic reflection imaging methods. To better determine the location and shallow-depth geometry of the PRF, we used high-resolution seismic imaging methods described by Catchings and others (2014). These methods involve the use of coincident P-wave (compressional wave) and S-wave (shear wave) refraction tomography and reflection data, from which tomographic models of P- and S-wave velocity and P-wave reflection images are developed. In addition, the coincident P-wave velocity (VP) and S-wave velocity (VS) data are used to develop tomographic models of VP/VS ratios and Poisson’s ratio, which are sensitive to shallow-depth faulting and groundwater. In this study, we also compare measurements of Swave velocities determined from surface waves with those determined from refraction tomography. We use the combination of seismic methods to infer the fault location, dip, and the National Earthquake Hazards Reduction Program (NEHRP) site classification along the seismic profile. Our seismic study is a smaller part of a larger study of the PRF by Trench and others (2016).

  9. Seismic reflection evidence for a northeast-dipping Hayward fault near Fremont, California: Implications for seismic hazard

    USGS Publications Warehouse

    Williams, R.A.; Simpson, R.W.; Jachens, R.C.; Stephenson, W.J.; Odum, J.K.; Ponce, D.A.

    2005-01-01

    A 1.6-km-long seismic reflection profile across the creeping trace of the southern Hayward fault near Fremont, California, images the fault to a depth of 650 m. Reflector truncations define a fault dip of about 70 degrees east in the 100 to 650 m depth range that projects upward to the creeping surface trace, and is inconsistent with a nearly vertical fault in this vicinity as previously believed. This fault projects to the Mission seismicity trend located at 4-10 km depth about 2 km east of the surface trace and suggests that the southern end of the fault is as seismically active as the part north of San Leandro. The seismic hazard implication is that the Hayward fault may have a more direct connection at depth with the Calaveras fault, affecting estimates of potential event magnitudes that could occur on the combined fault surfaces, thus affecting hazard assessments for the south San Francisco Bay region.

  10. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    2014-05-01

    Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.

  11. Remote Imaging of Earthquake Characteristics Along Oceanic Transforms

    NASA Astrophysics Data System (ADS)

    Cleveland, M.; Ammon, C. J.

    2014-12-01

    Compared with subduction and continental transform systems, many characteristics of oceanic transform faults (OTF) are better defined (first-order structure and composition, thermal properties, etc.). Still, many aspects of earthquake behavior along OTFs remain poorly understood as a result of their relative remoteness. But the substantial aseismic deformation (averaging roughly 85%) that occurs along OTFs and the implied interaction of aseismic with seismic deformation is an opportunity to explore fundamental earthquake nucleation and rupture processes. However, the study of OTF earthquake properties is not easy because these faults are often located in remote regions, lacking nearby seismic networks. Thus, many standard network-based seismic approaches are infeasible, but some can be adapted to the effort. For example, double-difference methods applied to cross-correlation measured Rayleigh wave time shifts is an effective tool to provide greatly improved relative epicentroid locations, origin-time shifts, and relative event magnitudes for earthquakes in remote regions. The same comparative waveform measurements can provide insight into rupture directivity of the larger OTF events. In this study, we calculate improved relative earthquake locations and magnitudes of earthquakes along the Blanco Fracture Zone in the northeast Pacific Ocean and compare and contrast that work with a study of the more remote Menard Transform Fault (MTF), located in the southeast Pacific Ocean. For the Blanco, we work exclusively with Rayleigh (R1) observations exploiting the dense networks in the northern hemisphere. For the MTF, we combine R1 with Love (G1) observations to map and to analyze the distribution of strong asperities along this remote, 200-km-long fault. Specifically, we attempt to better define the relationship between observed near-transform normal and vertical strike-slip earthquakes in the vicinity of the MTF. We test our ability to use distant observations (the closest station is about 2,500 km distant) to constrain rupture characteristics of recent strong earthquakes in the region. We compare the seismicity characteristics along the faults to explore the relationship of fault age and morphology on rupture behavior.

  12. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°-15°N: The role of magmatic injections and hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Picazo, Suzanne; Cannat, Mathilde; Delacour, AdéLie; EscartíN, Javier; RouméJon, StéPhane; Silantyev, Sergei

    2012-09-01

    Outcrops of deeply derived ultramafic rocks and gabbros are widespread along slow spreading ridges where they are exposed in the footwall of detachment faults. We report on the microstructural and petrological characteristics of a large number of samples from ultramafic exposures in the walls of the Mid-Atlantic Ridge (MAR) axial valley at three distinct locations at lat. 13°N and 14°45'N. One of these locations corresponds to the footwall beneath a corrugated paleo-fault surface. Bearing in mind that dredging and ROV sampling may not preserve the most fragile lithologies (fault gouges), this study allows us to document a sequence of deformation, and the magmatic and hydrothermal history recorded in the footwall within a few hundred meters of the axial detachment fault. At the three sampled locations, we find that tremolitic amphiboles have localized deformation in the ultramafic rocks prior to the onset of serpentinization. We interpret these tremolites as hydrothermal alteration products after evolved gabbroic rocks intruded into the peridotites. We also document two types of brittle deformation in the ultramafic rocks, which we infer could produce the sustained low magnitude seismicity recorded at ridge axis detachment faults. The first type of brittle deformation affects fresh peridotite and is associated with the injection of the evolved gabbroic melts, and the second type affects serpentinized peridotites and is associated with the injection of Si-rich hydrothermal fluids that promote talc crystallization, leading to strain localization in thin talc shear zones. We also observed chlorite + serpentine shear zones but did not identify samples with serpentine-only shear zones. Although the proportion of magmatic injections in the ultramafic rocks is variable, these characteristics are found at each investigated location and are therefore proposed as fundamental components of the deformation in the footwall of the detachment faults associated with denudation of mantle-derived rocks at the MAR.

  13. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.

  14. Paleoseismic evidence of characteristic slip on the Western segment of the North Anatolian fault, Turkey

    USGS Publications Warehouse

    Klinger, Yann; Sieh, K.; Altunel, E.; Akoglu, A.; Barka, A.; Dawson, Tim; Gonzalez, Tania; Meltzner, A.; Rockwell, Thomas

    2003-01-01

    We have conducted a paleoseismic investigation of serial fault rupture at one site along the 110-km rupture of the North Anatolian fault that produced the Mw 7.4 earthquake of 17 August 1999. The benefit of using a recent rupture to compare serial ruptures lies in the fact that the location, magnitude, and slip vector of the most recent event are all very well documented. We wished to determine whether or not the previous few ruptures of the fault were similar to the recent one. We chose a site at a step-over between two major strike-slip traces, where the principal fault is a normal fault. Our two excavations across the 1999 rupture reveal fluvial sands and gravels with two colluvial wedges related to previous earthquakes. Each wedge is about 0.8 m thick. Considering the processes of collapse and subsequent diffusion that are responsible for the formation of a colluvial wedge, we suggest that the two paleoscarps were similar in height to the 1999 scarp. This similarity supports the concept of characteristic slip, at least for this location along the fault. Accelerator mass spectrometry (AMS) radiocarbon dates of 16 charcoal samples are consistent with the interpretation that these two paleoscarps formed during large historical events in 1509 and 1719. If this is correct, the most recent three ruptures at the site have occurred at 210- and 280-year intervals.

  15. Power System Transient Diagnostics Based on Novel Traveling Wave Detection

    NASA Astrophysics Data System (ADS)

    Hamidi, Reza Jalilzadeh

    Modern electrical power systems demand novel diagnostic approaches to enhancing the system resiliency by improving the state-of-the-art algorithms. The proliferation of high-voltage optical transducers and high time-resolution measurements provide opportunities to develop novel diagnostic methods of very fast transients in power systems. At the same time, emerging complex configuration, such as multi-terminal hybrid transmission systems, limits the applications of the traditional diagnostic methods, especially in fault location and health monitoring. The impedance-based fault-location methods are inefficient for cross-bounded cables, which are widely used for connection of offshore wind farms to the main grid. Thus, this dissertation first presents a novel traveling wave-based fault-location method for hybrid multi-terminal transmission systems. The proposed method utilizes time-synchronized high-sampling voltage measurements. The traveling wave arrival times (ATs) are detected by observation of the squares of wavelet transformation coefficients. Using the ATs, an over-determined set of linear equations are developed for noise reduction, and consequently, the faulty segment is determined based on the characteristics of the provided equation set. Then, the fault location is estimated. The accuracy and capabilities of the proposed fault location method are evaluated and also compared to the existing traveling-wave-based method for a wide range of fault parameters. In order to improve power systems stability, auto-reclosing (AR), single-phase auto-reclosing (SPAR), and adaptive single-phase auto-reclosing (ASPAR) methods have been developed with the final objectives of distinguishing between the transient and permanent faults to clear the transient faults without de-energization of the solid phases. However, the features of the electrical arcs (transient faults) are severely influenced by a number of random parameters, including the convection of the air and plasma, wind speed, air pressure, and humidity. Therefore, the dead-time (the de-energization duration of the faulty phase) is unpredictable. Accordingly, conservatively long dead-times are usually considered by protection engineers. However, if the exact arc distinction time is determined, the power system stability and quality will enhance. Therefore, a new method for detection of arc extinction times leading to a new ASPAR method utilizing power line carrier (PLC) signals is presented. The efficiency of the proposed ASPAR method is verified through simulations and compared with the existing ASPAR methods. High-sampling measurements are prone to be skewed by the environmental noises and analog-to-digital (A/D) converters quantization errors. Therefore noise-contaminated measurements are the major source of uncertainties and errors in the outcomes of traveling wave-based diagnostic applications. The existing AT-detection methods do not provide enough sensitivity and selectivity at the same time. Therefore, a new AT-detection method based on short-time matrix pencil (STMPM) is developed to accurately detect ATs of the traveling waves with low signal-to-noise (SNR) ratios. As STMPM is based on matrix algebra, it is a challenging to implement this new technique in microprocessor-based fault locators. Hence, a fully recursive and computationally efficient method based on adaptive discrete Kalman filter (ADKF) is introduced for AT-detection, which is proper for microprocessors and able to accomplish accurate AT-detection for online applications such as ultra-high-speed protection. Both proposed AT-detection methods are evaluated based on extensive simulation studies, and the superior outcomes are compared to the existing methods.

  16. Defining the Relationship between Seismicity and Deformation at Regional and Local Scales

    NASA Astrophysics Data System (ADS)

    Williams, Nneka Njeri Akosua

    In this thesis, I use source inversion methods to improve understanding of crustal deformation along the Nyainquentanglha (NQTL) Detachment in Southern Tibet and the Piceance Basin in northwestern Colorado. Broadband station coverage in both regions is sparse, necessitating the development of innovative approaches to source inversion for the purpose of studying local earthquakes. In an effort to study the 2002-2003 earthquake swarm and the 2008 M w 6.3 Damxung earthquake and aftershocks that occurred in the NQTL region, we developed a single station earthquake location inversion method called the SP Envelope method, to be used with data from LHSA at Lhasa, a broadband seismometer located 75 km away. A location is calculated by first rotating the seismogram until the azimuth at which the envelope of the P-wave arrival on the T-component is smallest (its great circle path) is found. The distance at which to place the location along this azimuth is measured by calculating the S-P distance from arrivals on the seismogram. When used in conjunction with an existing waveform modeling based source inversion method called Cut and Paste (CAP), a catalog of 40 regional earthquakes was generated. From these 40 earthquakes, a catalog of 30 earthquakes with the most certain locations was generated to study the relationship of seismicity and NQTL region faults mapped in Google Earth™ and in Armijo et al., 1986 and Kapp et al., 2005. Using these faults and focal mechanisms, a fault model of the NQTL Region was generated using GOCAD, a 3D modeling suite. By studying the relationship of modeled faults to mapped fault traces at the surface, the most likely fault slip plane was chosen. These fault planes were then used to calculate slip vectors and a regional bulk stress tensor, with respect to which the low-angle NQTL Detachment was found to be badly misoriented. The formation of low-angle normal faults is inconsistent with the Anderson Theory of faulting, and the presence of the NQTL Detachment in a region with such an incongruous stress field supports the notion that such faults are real. The timing and locations of the earthquakes in this catalog with respect to an anomalous increase in the eastward component of velocity readings at the single cGPS station in Lhasa (LHAS) were analyzed to determine the relationship between plastic and brittle deformation in the region. The fact that cGPS velocities slow significantly after the 2002-2003 earthquake swarm suggests that this motion is tectonic in nature, and it has been interpreted as only the second continental slow slip event (SSE) ever to be observed. The observation of slow slip followed by an earthquake swarm within a Tibetan rift suggests that other swarms observed within similar rifts in the region are related to SSEs. In the Piceance Basin, CAP was used to determine source mechanisms of microearthquakes triggered as a result of fracture stimulation within a tight gas reservoir. The expense of drilling monitor wells and installing borehole geophones reduces the azimuthal station coverage, thus making it difficult to determine source mechanisms of microearthquakes using more traditional methods. For high signal to noise ratio records, CAP produced results on par with those obtained in studies of regional earthquakes. This finding suggests that CAP could successfully be applied in studies of microseismicity when data quality is high.

  17. Monitoring microearthquakes with the San Andreas fault observatory at depth

    USGS Publications Warehouse

    Oye, V.; Ellsworth, W.L.

    2007-01-01

    In 2005, the San Andreas Fault Observatory at Depth (SAFOD) was drilled through the San Andreas Fault zone at a depth of about 3.1 km. The borehole has subsequently been instrumented with high-frequency geophones in order to better constrain locations and source processes of nearby microearthquakes that will be targeted in the upcoming phase of SAFOD. The microseismic monitoring software MIMO, developed by NORSAR, has been installed at SAFOD to provide near-real time locations and magnitude estimates using the high sampling rate (4000 Hz) waveform data. To improve the detection and location accuracy, we incorporate data from the nearby, shallow borehole (???250 m) seismometers of the High Resolution Seismic Network (HRSN). The event association algorithm of the MIMO software incorporates HRSN detections provided by the USGS real time earthworm software. The concept of the new event association is based on the generalized beam forming, primarily used in array seismology. The method requires the pre-computation of theoretical travel times in a 3D grid of potential microearthquake locations to the seismometers of the current station network. By minimizing the differences between theoretical and observed detection times an event is associated and the location accuracy is significantly improved.

  18. Paleoearthquakes on the Denali-Totschunda Fault system: Preliminary Observations of Slip and Timing

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Denali Fault Earthquake Geology Wp, .

    2003-12-01

    Understanding the behavior of large strike-slip fault systems requires information about the amount of slip and timing of past earthquakes at different locations along a fault. A historical surface rupture adds a critically important baseline for calibration. During July 2003 we performed additional mapping of the 2002 Denali-Totschunda surface rupture with the goal of also measuring and dating slip during previous earthquakes. We were able to obtain slip values for prior events at a dozen locations along Denali-Totschunda strike-slip rupture. We focused on the penultimate event, which is easiest to distinguish (slip from individual older events can eventually be measured). On the Denali fault just west of the intersection with the Susitna Glacier thrust 2002 slip was low, 1.0 m to 1.5 m; cumulative slip from two events was 2.5-3.0, which is essentially double. On the 100-km-long section between Black Rapids Glacier and Gillett Pass, where 2002 slip averaged 5 m, three measurements indicate penultimate-event slip was about the same as 2002. The 7-8 m offset section east of Gillett Pass has the clearest paleoevent slip history. We measured three locations where 2002 slip was 7-8m and cumulative offset on channels was 14.5-16 m. Along this section previous workers noted gullies with 15 m offsets before the 2002 earthquake, suggesting the past three events here had similar slip. On the Totschunda fault paleo offsets appear to be similar in amount to 2002. At one locality we measured 2.8 m in 2002 and 5.4 m for two events. A second site had 1.0-1.4 m of offset in 2002 and 3.1 m for two events. A third location yielded 3.3 m in 2002 and 10.8 m on a paleochannel, which could represent three events with similar slip. A location in the Denali-Totschunda transition zone had a 5-6 m-high scarp and a well-developed sag pond, indicating that this complex part of the fault system has been active in previous events. The major observation is that the paleo offset measurements, though presently limited in number, indicate that penultimate event slip was very similar to the 2002 offset along the length of the ruptured Denali and Totschundafaults, and may have been similar for at least a third event back. For most of the it's length the 2002 rupture is expressed as a narrow mole track (typically 1m to 3m wide) but locally it has produced pull aparts and large fissures. These features contain a variety of organic deposits associated with the ground surface at the time of the penultimate earthquake(s) on the Denali and Totschunda faults. We sampled five of these, and recovered peat, pine needles, and trees that were toppled during the penultimate event(s). Including a test pit west of the Delta River, we have six sample sites that span the 5m and 7-8m rupture segments of the Denali, the Denali-Totschunda transition zone, and the Totschunda fault. Preliminary radiocarbon dates indicate that the timing of the penultimate event on the Denali fault is younger than 1400 to 1289 yr BP and may have occurred as recently as 520 to 310 yr BP. The penultimate event on the Totschunda fault occurred after 1340 to 1130 yr BP and most likely occurred shortly after 660 to 530 years BP. The Denali-Totschunda fault system is a remarkable laboratory, particularly in terms of preservation of fault geomorphology and organic material, for studying large strike-slip faults. These initial observations of paleoslip and event dates are the first steps in unraveling the behavior of this major strike-slip zone. Denali Fault Earthquake Geology Working Group: T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome), G. Carver. G.Plafker (Alyeska)

  19. a Study of Electrical Structures of Shanchiao Fault in Taiwan Using Audio-Frequency Magnetotelluric (amt) Method

    NASA Astrophysics Data System (ADS)

    Yang, C.; Liu, H.

    2007-12-01

    The Shanchiao normal fault is located in the western edge of Taipei basin in an N-E to S-W direction. Since the fault crosses through the Tertiary basement of Taipei basin, it is classified as an active fault. The overburden of the fault is sediments with a thickness around few tenth meters to several hundred meters. No detailed studies related to the Shanchiao fault in the western side of Taipei Basin are reported. In addition, there are no outcrops which have been found on the surface. This part of fault seems to be a potential source of disaster for the development of western Taipei basin. The audio-frequency magnetotelluric (AMT) method is a technique used to find the vertical resistivity distribution of formation and to characterize a fault structure through the ground surface based measurement. Based on the geological investigation and lithogic information from wells, the AMT data from six soundings at Wugu site, nine soundings at XinZhuang site and eight sounding at GuanDu site were collected on a NE-SW profile, approximately perpendicular to the prospective strike of the Shanchiao fault. AMT data were then inverted for two- dimension resistivity models (sections). The features of all resistivity sections are similar; an apparent drop in resistivity was observed at the position correlates to the western edge of Taipei basin. The predicted location of Shanchiao fault matches was verified by the lithologic sections of boreholes nearby. It indicates that the Shanchiao normal fault may associate with the subsidence of Taipei basin. The basement is clearly detected as a geoelectrical unit having resistivity less than 250 . It has a trend of increasing its depth toward S-E. The uplift of layers in the east of resistivity sections may affect by the XinZhuang thrust fault from the east. As with each site, the calculated resistivity may affect by cultural interference. However, the AMT survey still successfully delineates the positions and features of the Shanchiao fault and western edge of Taipei basin. Keywords¡GCSAMT, RIP, Shanchiao fault

  20. Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padres-Tehachapi Trilateration Networks, California

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Lisowski, Michael; Zoback, Mark D.

    1990-02-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30° from N40°W, close to that predicted by plate motion for a transform boundary, to N73°W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38±0.01 μrad/yr at N63°W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19±0.01 μrad/yr at N44°W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 ± 6 mm/yr is estimated. We also estimated buried slip for models that included the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11±2 mm/yr below 10 km. Buried left-lateral slip of 15±6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. We investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault or a fault zone located south of the surface trace.

  1. Looking for Off-Fault Deformation and Measuring Strain Accumulation During the Past 70 years on a Portion of the Locked San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Vadman, M.; Bemis, S. P.

    2017-12-01

    Even at high tectonic rates, detection of possible off-fault plastic/aseismic deformation and variability in far-field strain accumulation requires high spatial resolution data and likely decades of measurements. Due to the influence that variability in interseismic deformation could have on the timing, size, and location of future earthquakes and the calculation of modern geodetic estimates of strain, we attempt to use historical aerial photographs to constrain deformation through time across a locked fault. Modern photo-based 3D reconstruction techniques facilitate the creation of dense point clouds from historical aerial photograph collections. We use these tools to generate a time series of high-resolution point clouds that span 10-20 km across the Carrizo Plain segment of the San Andreas fault. We chose this location due to the high tectonic rates along the San Andreas fault and lack of vegetation, which may obscure tectonic signals. We use ground control points collected with differential GPS to establish scale and georeference the aerial photograph-derived point clouds. With a locked fault assumption, point clouds can be co-registered (to one another and/or the 1.7 km wide B4 airborne lidar dataset) along the fault trace to calculate relative displacements away from the fault. We use CloudCompare to compute 3D surface displacements, which reflect the interseismic strain accumulation that occurred in the time interval between photo collections. As expected, we do not observe clear surface displacements along the primary fault trace in our comparisons of the B4 lidar data against the aerial photograph-derived point clouds. However, there may be small scale variations within the lidar swath area that represent near-fault plastic deformation. With large-scale historical photographs available for the Carrizo Plain extending back to at least the 1940s, we can potentially sample nearly half the interseismic period since the last major earthquake on this portion of this fault (1857). Where sufficient aerial photograph coverage is available, this approach has the potential to illuminate complex fault zone processes for this and other major strike-slip faults.

  2. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    NASA Astrophysics Data System (ADS)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.

  3. Noncharacteristic Slip on the Northern San Andreas Fault at the Vedanta Marsh, Marin County, CA

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Niemi, T. M.; Allison, A.; Fumal, T. E.

    2004-12-01

    Three-dimensional excavations along the 1906 trace of the northern San Andreas fault at the Vedanta marsh paleoseismic site near Olema, CA have yielded new data on the timing and amount of slip during the penultimate earthquake on this fault section. The excavations exposed a 3-m-wide paleochannel that has been offset right-laterally 7.8-8.3 m by coseismic slip during the past two large earthquakes: 1906 and the penultimate earthquake. The paleochannel was eroded into a silty clay marsh deposit and was filled after AD 1400. Both the silty clay layer and the paleochannel deposit are directly overlain by an in situ burn/peat sequence. The penultimate earthquake occurred while the peat was at the ground surface whereas faulting from the 1906 earthquake terminates within an overlying gravel/fill sequence. Preliminary OxCal analyses of radiocarbon dates indicate that the penultimate earthquake occurred in the late 17th to early 18th century. In plan view, two main fault traces were mapped in the excavation. The northwestern portion of the paleochannel is offset across a single fault trace. Just southeast of this portion of the channel the fault splits into two traces. We believe that one of these traces likely slipped only during 1906 and the other trace slipped on during the penultimate earthquake. Unfortunately, the overlying stratigraphic section that could resolve the exact reconstruction of movement on these faults is missing due to the excavation of an artificial drainage ditch at this location in the 1940's. Matching the north margin of the paleochannel to the first exposure of gravel in the zone between the two fault traces gives an offset of 5 m. We have historic records that show the 1906 coseismic slip near the study site was about 5m from field notes of David Starr Jordan (Stanford University Archives) who describes two 16 ft (5m) offsets: one of a tree located about 150m SE of the offset channel and the other of a path to the Shafter barn located about 300m NW. As the locations of these two historical records are so close to the study site, it is reasonable to assume that our excavation site has the same amount of coseismic slip in 1906. Our data indicate that the paleochannel was offset about 2.8 to 3.3 m during the penultimate earthquake which occurred in the late 17th to early 18th century, and that the San Andreas fault at this section is capable of slip in earthquakes smaller than 1906.

  4. CO2 Push-Pull Single Fault Injection Simulations

    DOE Data Explorer

    Borgia, Andrea; Oldenburg, Curtis (ORCID:0000000201326016); Zhang, Rui; Pan, Lehua; Daley, Thomas M.; Finsterle, Stefan; Ramakrishnan, T.S.; Doughty, Christine; Jung, Yoojin; Lee, Kyung Jae; Altundas, Bilgin; Chugunov, Nikita

    2017-09-21

    ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a damage zone, a fault gouge and a slip plane. The runs are described in detail in the following: Borgia A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Chugunov N., Altundas B, Ramakrishnan T.S., 2017. Carbon Dioxide Injection for Enhanced Characterization of Faults and Fractures in Geothermal Systems. Proceedings of the 42st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-17.

  5. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary analysis shows that more than half the pingos occur within 150 m of the vertical projections of subsurface fault plane traces. In a previous, unpublished geostatistical study, comparison of pingo and random locations indicated a non-random NE-trending alignment of pingos. This trend in particular matches the dominant orientation of fault sets that are linked to the most recent tectonic deformation of the region. A concurrent Phase 2 of the study examines the potential role of near-surface stratigraphic units in regard to both pingos and faults. Both surface and subsurface coarse-grained deposits across the region are often controlled by fault structures; this study is the first to assess any relationship between reservoir rocks and pingo locations. Cross-sections were constructed from well log data to depths of 100 meters. Subsurface elements were compared with surface features. Although some studies have linked fine-grained surface sediments with pingo occurrence, our analysis hints that coarse-grained sediments underlie pingos and may be related to near-surface fluid transmissivity, as suggested by other researchers. We also investigated pingo occurrence in relationship to upthrown or downthrown fault blocks that vary in the degree of deformation and fluid transmission. Results will guide a proposed pingo drilling project to test linkages between pingos, subsurface geology, hydrology, and petroleum systems. Findings from this study could aid research and planning for field exploration of similar settings on Earth and Mars.

  6. Earthquake activity along the Himalayan orogenic belt

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  7. Fault Diagnosis of Power Systems Using Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated from the rest of the system. The benefit of these studies provides NASA with the ability to quickly restore the operating status of a space station from a critical state to a safe degraded mode, thereby saving costs in experimentation rescheduling, fault diagnostics, and prevention of loss-of-life.

  8. The analysis and study of fault systems in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Tsai, C.; Lee, C.

    2004-12-01

    Taiwan is located in the boundary between the Eurasian and Philippine Sea plates. Due to different subduction, two arc-trench systems in different direction were happened. One is Luzon arc-trench system in N-S direction; the other one is called Ryukyu arc-trench system in E-W direction. The Okinawa Trough is a back-arc basin which was formed by extension of Eurasian plate, and the tectonic setting in this area has a series of normal-faults and igneous bodies. According to previous studies, we know that Southernmost Part of Okinawa Trough (SPOT) have evolved at least two main tensional phases of Okinawa Trough, the first phase probably came up in early Pleistocene and struck in NE-SW direction; and the second phases occurred during late Pleistocene and Holocene changed the direction to E-W. In this study, we have used seismic data collected by R/V Chiu-Lien, Ocean Research I, and R/V L'Atalante to explain the normal-fault systems in the SPOT area. We integrate seismic profiles with corrected bathymetry to relocate these normal faults. Our results show these normal fault systems has two main strikes, respectively N60° E and N80° E. We find that most of N60° E faults are located in the northern slope of SPOT and landward to Taiwan. The N80° E faults are found in the southern slop and center area of SPOT. Compare with the faults and a new topographic map, we find there were a lot of faults around the canyon, such as North-Mienhua Canyon. We suggest that the origin of the canyon is probably due to these tectonic forces. The canyon is a weak area, and is eroded much fast than the surrounding continental shelf. Passing through a series of erosional processes, the canyon becomes what looks like today. We find a lot of graben structure located in the center of SPOT. This area is the extension axis of SPOT right now. We also find many possible igneous rocks in the seismic profiles, some of them are intrusions and the others penetrate the seabed along the weak zone and form the submarine volcanoes. We have found at least 68 volcanoes in the SPOT area. The interactions of submarine volcanoes, canyons, and fault grabens demonstrate an active tectonic episode.

  9. Surface fault rupture during the Mw 7.8 Kaikoura earthquake, New Zealand, with specific comment on the Kekerengu Fault - one of the country's fastest slipping onland active faults

    NASA Astrophysics Data System (ADS)

    Van Dissen, Russ; Little, Tim

    2017-04-01

    The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches received surface fault rupture, and are now dextrally offset by about 9 m, while the third trench did not have any 2016 surface rupture pass through it. In this instance, ground-surface rupture along this trace of the fault died out within tens of metres of the trench. Another salient aspect of the Kaikoura earthquake is that the determined (or estimated) recurrence intervals of the faults that ruptured the ground surface vary by an order of magnitude or more. This strongly implies that the ensemble of faults that ruptured with the Kekerengu Fault in the 2016 earthquake has not always been the same for past earthquakes. Possible reasons for this could include the state of stress at the time of a specific earthquake, the direction of rupture propagation, and whether or not rupture on one fault system cascades into rupture on another as is suspected to have happened in the Kaikoura earthquake.

  10. Slow NE-SW to NNE-SSW extension in the Pasto Ventura region of the southern Puna Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Schoenbohm, L. M.; Cosca, M. A.

    2011-12-01

    Recent extension on the Puna Plateau of NW Argentina has been linked to lithospheric foundering, gravitational spreading, and edge effects. However, the timing, kinematics and rate of extension are poorly constrained. In the Pasto Ventura region, along the southern margin of the plateau, we map out two different groups of faults: (1) recently formed Quaternary normal faults and strike-slip faults; and (2) pre-Quaternary reverse faults reactivated in the Quaternary. The faults in Group (1) are relatively short (~1-2 km) normal and strike-slip faults that offset Quaternary geomorphic features. The orientation of these faults indicates NE-SW to NNE-SSW extension. The faults in Group (2) bound exposures of basement rock and are associated with basaltic cinder cones and lava flows. Previous studies indicate they were reverse faults which have been reactivated as normal faults. We applied kinematic GPS surveying and 40Ar/39Ar dating of three cinder cones displaced by two of Group-(2) faults. Kinematic analysis on vertical and horizontal offsets obtained by GPS survey shows that the one fault is now undergoing NE-SW to NNE-SSW extension, consistent with Group (1) fault kinematics. A cinder cone has been displaced 34-40 meters horizontally along this fault, yielding a slow extension rate of 0.02-0.04 mm/yr since 0.8-0.5 Ma. The shift from contraction to extension in the Pasto Ventura region is estimated to be between 7.8 and 0.5 Ma, but more likely between 7.8 and 4 Ma. A regional compilation of kinematics on the southern plateau from this study and existing data, although sparse, shows two spatial groups: the extension directions are N-S to NE-SW south of 26°S latitude, while they are NW-SE to NNW-SSW north of 26°S latitude. Mafic volcanism, thought to indicate the timing of the onset of extension in the Puna, shows a similar pattern, with the oldest ages (up to 7.3 Ma) clustered near 26°S latitude, becoming younger to both the north and the south. Kinematic and geochronologic data from the Pasto Ventura region are consistent with this trend. The pattern of ages of mafic volcanism and the fault kinematics imply that the removal of the lower lithosphere beneath the Puna Plateau occurred through the formation of a Rayleigh-Taylor type instability, or "driplet," located around 26°S at about 7.3 Ma. This driplet is probably relatively small since the extension rate observed on the surface is very slow. However, the pattern of extension directions indicates that the "driplet" located around 26°S was probably not perfectly cylindrical and/or the surficial extension pattern is also affected by other drivers, such as gravitational collapse, back-arc extension or other "driplets" located in the other regions.

  11. Ice Surface Morphology and Flow on Malaspina Glacier, Alaska: Implications for Regional Tectonics in the Saint Elias Orogen

    NASA Technical Reports Server (NTRS)

    Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.

    2014-01-01

    The Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1earthquakes in September 1899.

  12. Aftershocks to Philippine quake found within nearby megathrust fault

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-02-01

    On 31 August 2012 a magnitude 7.6 earthquake ruptured deep beneath the sea floor of the Philippine Trench, a powerful intraplate earthquake centered seaward of the plate boundary. In the wake of the main shock, sensors detected a flurry of aftershocks, counting 110 in total. Drawing on seismic wave observations and rupture mechanisms calculated for the aftershocks, Ye et al. found that many were located near the epicenter of the main intraplate quake but at shallower depth; all involved normal faulting. Some shallow thrusting aftershocks were located farther to the west, centered within the potentially dangerous megathrust fault formed by the subduction of the Philippine Sea plate beneath the Philippine microplate, the piece of crust housing the Philippine Islands.

  13. Seismological analyses of the 2010 March 11, Pichilemu, Chile Mw 7.0 and Mw 6.9 coastal intraplate earthquakes

    USGS Publications Warehouse

    Ruiz, Javier A.; Hayes, Gavin P.; Carrizo, Daniel; Kanamori, Hiroo; Socquet, Anne; Comte, Diana

    2014-01-01

    On 2010 March 11, a sequence of large, shallow continental crust earthquakes shook central Chile. Two normal faulting events with magnitudes around Mw 7.0 and Mw 6.9 occurred just 15 min apart, located near the town of Pichilemu. These kinds of large intraplate, inland crustal earthquakes are rare above the Chilean subduction zone, and it is important to better understand their relationship with the 2010 February 27, Mw 8.8, Maule earthquake, which ruptured the adjacent megathrust plate boundary. We present a broad seismological analysis of these earthquakes by using both teleseismic and regional data. We compute seismic moment tensors for both events via a W-phase inversion, and test sensitivities to various inversion parameters in order to assess the stability of the solutions. The first event, at 14 hr 39 min GMT, is well constrained, displaying a fault plane with strike of N145°E, and a preferred dip angle of 55°SW, consistent with the trend of aftershock locations and other published results. Teleseismic finite-fault inversions for this event show a large slip zone along the southern part of the fault, correlating well with the reported spatial density of aftershocks. The second earthquake (14 hr 55 min GMT) appears to have ruptured a fault branching southward from the previous ruptured fault, within the hanging wall of the first event. Modelling seismograms at regional to teleseismic distances (Δ > 10°) is quite challenging because the observed seismic wave fields of both events overlap, increasing apparent complexity for the second earthquake. We perform both point- and extended-source inversions at regional and teleseismic distances, assessing model sensitivities resulting from variations in fault orientation, dimension, and hypocentre location. Results show that the focal mechanism for the second event features a steeper dip angle and a strike rotated slightly clockwise with respect to the previous event. This kind of geological fault configuration, with secondary rupture in the hanging wall of a large normal fault, is commonly observed in extensional geological regimes. We propose that both earthquakes form part of a typical normal fault diverging splay, where the secondary fault connects to the main fault at depth. To ascertain more information on the spatial and temporal details of slip for both events, we gathered near-fault seismological and geodetic data. Through forward modelling of near-fault synthetic seismograms we build a kinematic k−2 earthquake source model with spatially distributed slip on the fault that, to first-order, explains both coseismic static displacement GPS vectors and short-period seismometer observations at the closest sites. As expected, the results for the first event agree with the focal mechanism derived from teleseismic modelling, with a magnitude Mw 6.97. Similarly, near-fault modelling for the second event suggests rupture along a normal fault, Mw 6.90, characterized by a steeper dip angle (dip = 74°) and a strike clockwise rotated (strike = 155°) with respect to the previous event.

  14. Large earthquakes and creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  15. Location of deeply buried, offshore Mesozoic transform fault along the western margin of the Gulf of Mexico inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Mann, P.; Bird, D. E.

    2013-12-01

    Several workers have proposed that a Jurassic age, 500-km-long, right-lateral transform fault along the western margin of the Gulf of Mexico, possibly extending southward and onshore for another 500 km onto the isthmus area of southern Mexico, was formed as the ocean basin opened. This proposed transform fault plays a critical role in the most widely accepted tectonic model for the Mesozoic opening of the Gulf of Mexico by a ~40 degree, CCW rotation of the Yucatan block about a pole near southern Florida. Previously proposed names for the fault include the Tamaulipas-Chiapas transform fault and the Western Main transform fault for the offshore fault and the Orizaba transform fault for the southern, onland continuation of the fault into southern Mexico. There are few direct geologic or geophysical observations on the location or characteristics of the proposed offshore transform because it is buried beneath an over 10-km-thick sedimentary wedge along the continental margin of eastern Mexico. To better define this offshore fault, we identify a 500-km-long, 40-km-wide gravity anomaly, concentric with, and located about 60-70 km off the eastern coast of Mexico. Two east-west 200/1200-km-long gravity models constructed to cross the anomaly at right angles are parallel to existing multi-channel seismic lines with age-correlated stratigraphy. Both gravity models reveal an abrupt crustal thickness change beneath the gravity anomaly: from 27 km to 12 km over a distance of 65 km in the southern profile, and from 23 km to 16 km over a distance of 30 km in northern profile. The linearity of the anomaly in map view combined with the abrupt change in thickness inferred from gravity modeling is consistent with the tectonic origin of a right-lateral transform fault separating continental rocks of Mexico from Mesozoic seafloor produced by the opening of the Gulf of Mexico. Magnetic profiles were analyzed using a Werner depth-to-magnetic source technique, coincident with the gravity models, estimate the depth to top of crystalline basement for the northern (9 km) and southern (11 km) transects. Subsidence analysis along both transects shows that sedimentation rates sharply peaked during the Laramide orogeny in the latest Cretaceous-Eocene, but otherwise conform to steady thermal subsidence of oceanic crust in the deep Gulf of Mexico that formed during the Jurassic CCW rotation of the Yucatan block. The more precisely defined offshore fault aligns well with the onland right-lateral Orizaba transform fault of southern Mexico that is thought to have been active in Mesozoic time.

  16. Strike-slip faults in the Moroccan Rif: Their geophysical signatures and hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jobidon, G.P.; Dakki, M.

    1994-12-31

    The Rif Domain in Northern Morocco includes major movements along left-lateral strike-slips faults that created various structures and influenced depositional systems. The major ones are the Jebha fault in the Rif`s northwest area, and the Nekkor fault that extends southwesterly from the Mediterranean sea toward the Meseta. Although identified by surface geology in the east, the western extent of the faults is ambiguous. Detail interpretation of gravity and magnetic maps provide a better definition of their locations and related structures. The Rif`s geology is a mirror image of the right-lateral strike-slip fault system of Venezuela and Trinidad. Most features associatedmore » with the Rif`s strike-slip faults have not been explored to data and hydrocarbon potential remains a good possibility.« less

  17. Analysis of Seismotektonic Patterns in Sumatra Region Based on the Focal Mechanism of Earthquake Period 1976-2016

    NASA Astrophysics Data System (ADS)

    Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.

    2018-04-01

    Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.

  18. Investigating The Relationship Between Structural Geology and Wetland Loss Near Golden Meadow, Louisiana By Utilizing 3D Seismic Reflection and Well Log Data

    NASA Astrophysics Data System (ADS)

    Johnston, A. S.; Zhang, R.; Gottardi, R.; Dawers, N. H.

    2017-12-01

    Wetland loss is one of the greatest environmental and economic threats in the deltaic plain of the Gulf Coast. This loss is controlled by subsidence, sea level rise, decreased sediment supply rates, movement along normal faults, salt tectonics, fluid extraction related to oil, gas and water exploration, and compaction. However, the interplay and feedback between these different processes are still poorly understood. In this study, we investigate the role of active faulting and salt tectonics on wetland loss in an area located between Golden Meadow and Leeville, Louisiana. Using industry 3D seismic and well log data, we investigate key segments of the Golden Meadow fault zone and map shallow faults that overlie the Leeville salt dome, to compare those fault planes with areas of wetland loss and subsidence. Faults were mapped to a depth of 1200 m, and well logs were tied to the upper 180 m of the seismic data to make accurate projections of the faults to the surface. Preliminary results highlight a graben structure south of a segment of the Golden Meadow fault. Well log and published data from shallow borings reveal a thicker Holocene accumulation at the center of the graben, up to 45 m than on the flanks of the graben. The location of this graben spatially correlates with Catfish Lake, and part of it overlies salt adjacent to the main fault surface. Bayou Lafourche, the main distributary channel of the Lafourche lobe of the Mississippi River delta complex, appears to have its path controlled by faults. Bayou Lafourche changes orientation and flows parallel to, and on the downthrown side of, two radial faults associated with the Leeville salt dome. These preliminary results indicate that there is a relationship between surface geomorphology and subsurface structures that, at least in part, exert a control on wetland loss in southern Louisiana.

  19. Deep crustal faults and the origin and long-term flank stability of Mt. Etna : First results from the CIRCEE cruise (Oct. 2013)

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-Andre; Dominguez, Stephane; Mercier de Lepinay, Bernard; Pinheiro, Luis; Babonneau, Nathalie; Cattaneo, Antonio; LeFaou, Yann; Barreca, Giovanni; Micallef, Aaron; Rovere, Marzia

    2014-05-01

    The relation between deep crustal faults and the origin of Mount Etna, the largest and most active volcano in Europe has long been suspected due to its unusual geodynamic location. Results from a new marine geophysical survey offshore Eastern Sicily reveal the detailed geometry (location, length, dip and orientation) of a two-branched 200-km long, lithospheric scale fault system, long sought for as being the cause of Mount Etna. Using high-resolution bathymetry and seismic profiling, we image a 60-km long, previously unidentified, NW trending fault with evidence of recent displacement at the seafloor, offsetting Holocene sediments. This newly identified fault connects NE of Catania, to a known 40-km long, offshore-onshore fault system dissecting the southeastern flank of Mount Etna, generally interpreted as purely gravitational collapse structures. Geological and morphological field studies together with earthquake focal mechanisms indicate active dextral strike-slip motion along the onshore and shallow offshore portion of this 40 + 60 km long segment. The southern 100 km branch of the fault is associated with a sub-vertical lithospheric scale tear fault showing pure down to the East normal faulting and a 500+m thick elongate basin marked by syn-tectonic Plio-quaternary sediment fill. Together they represent two kinematically distinct strands of the long sought "STEP" (Subduction Tear Edge Propagator) fault, whose expression at depth controls the position of Mount Etna. Both 100-km long branches of the fault system are mechanically capable of generating magnitude 7 earthquakes (e.g. - like the 1693 Catania earthquake, the strongest in Italian history, causing 40,000 deaths). We conclude this deep-rooted lithospheric weakness guides gradual down slope creep of Mount Etna and may lead to long-term catastrophic flank collapse with associated tsunami by large-scale mass wasting.

  20. Using InSAR time series to identify geologic hazards associated with the Hayward and Calaveras faults along the South Bay Aqueduct

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Burgmann, R.; Hoirup, D. F., Jr.; Hawkins, B.

    2016-12-01

    We evaluated Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data using InSAR time series analysis and documented ground movement along the Calaveras and Hayward faults near the South Bay Aqueduct (SBA). Images from seven different UAVSAR flight lines at 7m x 7m resolution were used for the study. A total of 132 acquisitions (between 12 and 51 per line) were acquired between 2009 and 2015. Each of the seven lines observed only part of the aqueduct, but all segments of the aqueduct were imaged in more than one line with some segments in up to four lines. This provided between one and three imaging geometries for every fault location along the aqueduct. The SBA transports water from the Sacramento-San Joaquin Delta (Delta) to communities east and south of San Francisco Bay through a combination of open canals, tunnels, and pipelines. From its starting point immediately west of the Delta at Bethany Reservoir, the SBA extends westward, crossing multiple faults, including Calaveras and Hayward faults. The aqueduct continues south, largely following the Hayward fault to its terminus east of San Jose. The SBA and associated infrastructure are at risk from landslides and from movement along any of these faults, with the landslides often spatially associated with the faults. We report linear rates of surface movement averaged across the six-year time period, and identify locations experiencing significant movement along the Calaveras and Hayward faults. Aseismic displacement is quantified and mapped for the two faults, including multiple traces of the Calaveras fault extending north and south of where it crosses the SBA. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the California Dept. of Water Resources and with the National Aeronautics and Space Administration.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsey, Alison; Dudley, Colton; Louie, John

    Linear deposits of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources by providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass reveals a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hitmore » cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location 11 ka to a depth of at least 60 m. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey at and near the tufa columns comprises near-surface Pwave seismic reflection and refraction, electrical resistivity tomography, nearsurface refraction microtremor arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results indicate that no seismically fast (> 500 m/s) tufa deposits are present below the surface at or near the tufa columns. Vs30 averages were for example 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results similarly indicate a lack of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that deposition of the lakebeds in the Quaternary buried and preserved older tufa columns within the section. Near-surface Wenner arrays with a-spacings up to 30 m show a higher resistivity near the faults, and tufa, than away from the faults. Resistivity averages within a few meters of the surface were 33 ± 17 ohm-m on the fault, 13 ± 3 ohm-m east of the fault, and 9 ± 3 ohm-m west of the fault. It is possible that the geothermal waters are fresher, and more resistive, than waters held in the lakebed clays. Water samples from more than 1 km depth in exploration wells have a TDS of 2500 p.p.m., nearly drinking-water quality. The relatively resistive water, perhaps localized by greater permeability along the fault, could explain the higher resistivity measured near the fault. The results show that there is no high-velocity, high-resistivity tufa along the faults below the surface, so we are unable to use buried tufa to locate the faults that may promote geothermal upwelling in this area. We further hypothesize that as sedimentation buried the tufa during the Quaternary, warm geothermal waters re-dissolved it, and re-precipitated it in the cold lake-bottom water.« less

  2. Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2016-12-01

    Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.

  3. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments

    USGS Publications Warehouse

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.

    2013-01-01

    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  4. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  5. Analyzing fault in pedestrian-motor vehicle crashes in North Carolina.

    PubMed

    Ulfarsson, Gudmundur F; Kim, Sungyop; Booth, Kathleen M

    2010-11-01

    Crashes between pedestrians and motor vehicles are an important traffic safety concern. This paper explores the assignment of fault in such crashes, where observed factors are associated with pedestrian at fault, driver at fault, or both at fault. The analysis is based on police reported crash data for 1997 through 2000 in North Carolina, U.S.A. The results show that pedestrians are found at fault in 59% of the crashes, drivers in 32%, and both are found at fault in 9%. The results indicate drivers need to take greater notice of pedestrians when drivers are turning, merging, and backing up as these are some of the prime factors associated with the driver being found at fault in a crash. Pedestrians must apply greater caution when crossing streets, waiting to cross, and when walking along roads, as these are correlated with pedestrians being found at fault. The results suggest a need for campaigns focused on positively affecting pedestrian street-crossing behavior in combination with added jaywalking enforcement. The results also indicate that campaigns to increase the use of pedestrian visibility improvements at night can have a significant positive impact on traffic safety. Intoxication is a concern and the results show that it is not only driver intoxication that is affecting safety, but also pedestrian intoxication. The findings show in combination with other research in the field, that results from traffic safety studies are not necessarily transferable between distant geographic locations, and that location-specific safety research needs to take place. It is also important to further study the specific effects of the design of the pedestrian environment on safety, e.g. crosswalk spacing, signal timings, etc., which together may affect pedestrian safety and pedestrian behavior. 2010 Elsevier Ltd. All rights reserved.

  6. Structural style and hydrocarbon trap of Karbasi anticline, in the Interior Fars region, Zagros, Iran

    NASA Astrophysics Data System (ADS)

    Maleki, Z.; Arian, M.; Solgi, A.

    2014-07-01

    Karbasi anticline between west-northwest parts of Jahrom town is located in northwest 40 km distance of Aghar gas anticline in interior Fars region. This anticline has asymmetric structure and some faults with large strike separation observed in its structure. The operation of Nezamabad sinistral strike slip fault in west part of this anticline caused fault plunge change in this region. Because of complication increasing of structures geometry in Fars region and necessity to exploration activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies seems necessary. In this paper because of some reasons such as Karbasi anticline structural complication, importance of drilling and hydrocarbon explorations in Fars region, it is proceed to analysis and evaluation of fold style elements and geometry with emphasis on Nezamabad fault operation in Interior Fars region. According to fold style elements analysis results, it became clear that in east part of anticline the type of fold horizontal moderately inclined and in west part it is upright moderately plunging, so west evaluation of anticline is affected by more deformation. In this research the relationship present faults especially the Nezamabad sinistral strike slip one with folding and its affection on Dehram horizon and Bangestan group were modeled. Based on received results may be the Nezamabad fault is located between G-G' and E-E' structural sections and this fault in this area operated same as fault zone. In different parts of Karbasi anticline, Dashtak formation as a middle detachment unit plays an important role in connection to folding geometry, may be which is affected by Nezamabad main fault.

  7. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data

    USGS Publications Warehouse

    Schmidt, D.A.; Burgmann, R.; Nadeau, R.M.; d'Alessio, M.

    2005-01-01

    We solve for the slip rate distribution on the Hayward fault by performing a least squares inversion,of geodetic and seismic data sets. Our analysis focuses on the northern 60 km of the fault. Interferometric synthetic aperture radar (InSAR) data from 13 independent ERS interferograms are stacked to obtain range change rates from 1992 to 2000. Horizontal surface displacement rates at 141 bench marks are measured using GPS from 1994 to 2003. Surface creep observations and estimates of deep slip rates determined from characteristic repeating earthquake sequences are also incorporated in the inversion. The fault is discretized into 283 triangular dislocation elements that approximate the nonplanar attributes of the fault surface. South of the city of Hayward, a steeply, east dipping fault geometry accommodates the divergence of the surface trace and the microseismicity at depth. The inferred slip rate distribution is consistent with a fault that creeps aseismically at a rate of ???5 mm/yr to a depth of 4-6 km. The interferometric synthetic aperture radar (InSAR) data require an aseismic slip rate that approaches the geologic slip rate on the northernmost fault segment beneath Point Pinole, although the InSAR data might be complicated by a small dip-slip component at this location. A low slip rate patch of <1 mm/yr is inferred beneath San Leandro consistent with the source location of the 1868 earthquake. We calculate that the entire fault is accumulating a slip rate deficit equivalent to a Mw = 6.77 ?? 0.05 per century. However, this estimate of potential coseismic moment represents an upper bound because we do not know how much of the accumulated strain will be released through aseismic processes such as afterslip. Copyright 2005 by the American Geophysical Union.

  8. High resolution images of the mid- to lower-crust beneath the North Anatolian Fault obtained using the scattered seismic wavefield

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Houseman, G.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Rondenay, S.; Frederiksen, A. W.

    2014-12-01

    Deformation along major strike-slip faults is typically focussed into narrow damage zones at the surface, but the distribution at greater depths is more enigmatic. For instance, deformation in the lower crust beneath these faults is often attributed to much broader ductile shear zones. Deciphering how strain is distributed throughout the crust and lithospheric mantle is important because it has ramifications on the earthquake loading cycle. In order to better understand the structure of these systems at depth, we investigate the North Anatolian Fault Zone (NAFZ) as part of a multidisciplinary project entitled FaultLab. This fault system extends ~1200km across Turkey and has shown a clear west-east progression in seismicity over the last century, culminating in 2 catastrophic earthquakes located close to the population centers of Izmit and Duzce in 1999. In this contribution, we will present new data from a dense seismic array (Dense Array for North Anatolia, DANA, a 6x11 grid with a nominal station spacing of 7km) located across a part of the ruptured segment of the Izmit earthquake. Using the techniques of teleseismic scattering tomography and scattering migration, the excellent resolution afforded by DANA highlights sharp (< 5km) lateral variations in structure at mid- to lower-crustal depths (~20-25 km) across two branches of the NAFZ. This suggests that deformation zones between distinct crustal blocks remain narrow at these depths. Integrating complementary results from other parts of the FaultLab project (satellite geodesy, geodynamical modelling, structural geology), the results appear to be consistent with postseismic deformation being accommodated through afterslip on the deep extension of a narrow fault zone as opposed to a broad ductile region beneath the seismogenic extent of the fault.

  9. Ontology-Based Method for Fault Diagnosis of Loaders.

    PubMed

    Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-02-28

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.

  10. Transient cnoidal waves explain the formation and geometry of fault damage zones

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Schrank, Christoph

    2017-04-01

    The spatial footprint of a brittle fault is usually dominated by a wide area of deformation bands and fractures surrounding a narrow, highly deformed fault core. This diffuse damage zone relates to the deformation history of a fault, including its seismicity, and has a significant impact on flow and mechanical properties of faulted rock. Here, we propose a new mechanical model for damage-zone formation. It builds on a novel mathematical theory postulating fundamental material instabilities in solids with internal mass transfer associated with volumetric deformation due to elastoviscoplastic p-waves termed cnoidal waves. We show that transient cnoidal waves triggered by fault slip events can explain the characteristic distribution and extent of deformation bands and fractures within natural fault damage zones. Our model suggests that an overpressure wave propagating away from the slipping fault and the material properties of the host rock control damage-zone geometry. Hence, cnoidal-wave theory may open a new chapter for predicting seismicity, material and geometrical properties as well as the location of brittle faults.

  11. Ontology-Based Method for Fault Diagnosis of Loaders

    PubMed Central

    Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-01-01

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study. PMID:29495646

  12. Attitude, movement history, and structure of cataclastic rocks of the Flemington Fault results of core drilling near Oldwick, New Jersey

    USGS Publications Warehouse

    Burton, W.C.; Ratcliffe, N.M.

    1985-01-01

    In the summer of 1983, two holes were drilled through the border fault of the Newark basin near Oldwick, New Jersey, in the Gladstone 7.5minute quadrangle. Figure 1A shows the location of the drill site in relation to regional geology and the major faults. The fault drilled in this study connects to the south with the Flemington fault, which trends southwestward across the Newark basin, as shown. To the north, the fault can be traced along the valley that extends towards Mendham, N. J., beyond the limits of exposed Mesozoic rocks, to connect with the Ramapo fault near Morristown N. J. (fig. 1A; Ratcliffe, 1980). For this reason, we use the name "Flemington" for the border fault in the region of the drill site. A detailed map (fig. 1B) shows the local geology along the border fault from Pottersville, N. J. southward to the axis of the Oldwick syncline.

  13. Palaeostress perturbations near the El Castillo de las Guardas fault (SW Iberian Massif)

    NASA Astrophysics Data System (ADS)

    García-Navarro, Encarnación; Fernández, Carlos

    2010-05-01

    Use of stress inversion methods on faults measured at 33 sites located at the northwestern part of the South Portuguese Zone (Variscan Iberian Massif), and analysis of the basic dyke attitude at this same region, has revealed a prominent perturbation of the stress trajectories around some large, crustal-scale faults, like the El Castillo de las Guardas fault. The results are compared with the predictions of theoretical models of palaeostress deviations near master faults. According to this comparison, the El Castillo de las Guardas fault, an old structure that probably reversed several times its slip sense, can be considered as a sinistral strike-slip fault during the Moscovian. These results also point out the main shortcomings that still hinder a rigorous quantitative use of the theoretical models of stress perturbations around major faults: the spatial variation in the parameters governing the brittle behaviour of the continental crust, and the possibility of oblique slip along outcrop-scale faults in regions subjected to general, non-plane strain.

  14. Kinematics, mechanics, and potential earthquake hazards for faults in Pottawatomie County, Kansas, USA

    USGS Publications Warehouse

    Ohlmacher, G.C.; Berendsen, P.

    2005-01-01

    Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north-northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east-northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85??W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (

  15. Distribution of creep in the northern San Francisco Bay Area illuminated by repeating earthquakes and InSAR

    NASA Astrophysics Data System (ADS)

    Funning, G.; Shakibay Senobari, N.; Swiatlowski, J. L.

    2017-12-01

    Surface observations of fault creep in the region north of San Francisco Bay are sporadic. While there are long-standing instances of creep-affected infrastructure on the Maacama and Bartlett Springs faults, the lateral and depth extents of creep on these and other faults in the region remain a question. Here, we supplement this sparse existing observation set with additional information from repeating earthquake sequences (REs) and InSAR, to illuminate, and significantly improve our knowledge of, creep across the region. Repeating earthquakes have long been considered indicators of creep on faults. We present the results of an extensive similarity search through over 600,000 archived waveforms from 43,000 events using a fast algorithm; from this we can identify 39 periodic repeating sequences and over 80 nonperiodic repeated event groups. We compare these with decadal line-of-sight velocity measurements made by applying the StaMPS time series InSAR code to ERS and Envisat data covering the region, that can be used to identify surface creep on faults. On the Rodgers Creek, Maacama and Bartlett Springs faults, both InSAR and REs show corroborating evidence for creep at locations where it was previously inferred. The REs additionally provide information on its depth extent. On the Maacama fault, we find REs extending almost to the southern limit of the mapped fault trace, south of Cloverdale, suggesting that creep may be pervasive on the fault. We can also identify structural complexity both in the stepover region with the Rodgers Creek fault, and in the northern segment of the fault close to Willits, potentially indicating parallel and/or down-dip branching creeping structures in both locations. REs on the Bartlett Springs fault indicate creep that extends across the full down-dip width of the brittle fault; here the proximity of InSAR creep rate estimates and a shallow RE sequence may permit a calibration of the RE `creepmeter', allowing us to estimate creep rates directly from RE source characteristics.

  16. Intraplate seismicity along the Gedi Fault in Kachchh rift basin of western India

    NASA Astrophysics Data System (ADS)

    Joshi, Vishwa; Rastogi, B. K.; Kumar, Santosh

    2017-11-01

    The Kachchh rift basin is located on the western continental margin of India and has a history of experiencing large to moderate intraplate earthquakes with M ≥ 5. During the past two centuries, two large earthquakes of Mw 7.8 (1819) and Mw 7.7 (2001) have occurred in the Kachchh region, the latter with an epicenter near Bhuj. The aftershock activity of the 2001 Bhuj earthquake is still ongoing with migration of seismicity. Initially, epicenters migrated towards the east and northeast within the Kachchh region but, since 2007, it has also migrated to the south. The triggered faults are mostly within 100 km and some up to 200 km distance from the epicentral area of the mainshock. Most of these faults are trending in E-W direction, and some are transverse. It was noticed that some faults generate earthquakes down to the Moho depth whereas some faults show earthquake activity within the upper crustal volume. The Gedi Fault, situated about 50 km northeast of the 2001 mainshock epicenter, triggered the largest earthquake of Mw 5.6 in 2006. We have carried out detailed seismological studies to evaluate the seismic potential of the Gedi Fault. We have relocated 331 earthquakes by HypoDD to improve upon location errors. Further, the relocated events are used to estimate the b value, p value, and fractal correlation dimension Dc of the fault zone. The present study indicates that all the events along the Gedi Fault are shallow in nature, with focal depths less than 20 km. The estimated b value shows that the Gedi aftershock sequence could be classified as Mogi's type 2 sequence, and the p value suggests a relatively slow decay of aftershocks. The fault plane solutions of some selected events of Mw > 3.5 are examined, and activeness of the Gedi Fault is assessed from the results of active fault studies as well as GPS and InSAR results. All these results are critically examined to evaluate the material properties and seismic potential of the Gedi Fault that may be useful for seismic hazard assessment in the region.

  17. Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms

    NASA Astrophysics Data System (ADS)

    Gusman, Aditya Riadi; Satake, Kenji; Shinohara, Masanao; Sakai, Shin'ichi; Tanioka, Yuichiro

    2017-08-01

    The 2016 Fukushima normal-faulting earthquake (Mjma 7.4) occurred 40 km off the coast of Fukushima within the upper crust. The earthquake generated a moderate tsunami which was recorded by coastal tide gauges and offshore pressure gauges. First, the sensitivity of tsunami waveforms to fault dimensions and depths was examined and the best size and depth were determined. Tsunami waveforms computed based on four available focal mechanisms showed that a simple fault striking northeast-southwest and dipping southeast (strike = 45°, dip = 41°, rake = -95°) yielded the best fit to the observed waveforms. This fault geometry was then used in a tsunami waveform inversion to estimate the fault slip distribution. A large slip of 3.5 m was located near the surface and the major slip region covered an area of 20 km × 20 km. The seismic moment, calculated assuming a rigidity of 2.7 × 1010 N/m2 was 3.70 × 1019 Nm, equivalent to Mw = 7.0. This is slightly larger than the moments from the moment tensor solutions (Mw 6.9). Large secondary tsunami peaks arrived approximately an hour after clear initial peaks were recorded by the offshore pressure gauges and the Sendai and Ofunato tide gauges. Our tsunami propagation model suggests that the large secondary tsunami signals were from tsunami waves reflected off the Fukushima coast. A rather large tsunami amplitude of 75 cm at Kuji, about 300 km north of the source, was comparable to those recorded at stations located much closer to the epicenter, such as Soma and Onahama. Tsunami simulations and ray tracing for both real and artificial bathymetry indicate that a significant portion of the tsunami wave was refracted to the coast located around Kuji and Miyako due to bathymetry effects.

  18. Evolution of groundwater chemistry along fault structures in sandstone

    NASA Astrophysics Data System (ADS)

    Dausse, A.; Guiheneuf, N.; Pierce, A. A.; Cherry, J. A.; Parker, B. L.

    2016-12-01

    Fluid-rock interaction across geological structures plays a major role on evolution of groundwater chemistry and physical properties of reservoirs. In particular, groundwater chemistry evolve on different facies according to residence times which can be linked to hydraulic properties of the geological unit. In this study, we analyze groundwater samples collected at an 11 km² site located in southern California (USA) to evaluate the evolution of groundwater chemistry according to different geological structures. Major and minor elements were sampled at the same period of time from 40 wells located along the main structures in the northeast of the site, where major NE-SW trending faults and other oriented ESE-WNW are present in sandstone Chatsworth formation. By analyzing the spatial distribution of ions concentration at the site scale, several hydrochemical compartments (main- and sub-compartments) can be distinguished and are in agreement with structural and hydrological information. In particular, as previously observed from piezometric informations, the shear zone fault serves as a barrier for groundwater flow and separates the site on two mains compartments. In addition, the analysis along major faults oriented orthogonal to this shear zone (ESE-WNW) in the eastern part of the site, shows an increase in mineralization following the hydraulic gradient. This salinization has been confirmed by ionic ratio and Gibbs plots and is attributed to fluid-rock interaction processes. In particular, groundwater chemistry seems to evolve from bicarbonate to sodium facies. Moreover, the gradient of concentrations vary depending on fault locations and can be related to their hydraulic properties and hence to different characteristic times from point to point. To conclude, major faults across the site display different degrees of groundwater chemistry evolution, linked to their physical properties, which may in turn have a large impact on contaminant transport and attenuation.

  19. A Report Of The December 6, 2016 Mw 6.5 Pidie Jaya, Aceh Earthquake

    NASA Astrophysics Data System (ADS)

    Muzli, M.; Daniarsyad, G.; Nugraha, A. D.; Muksin, U.; Widiyantoro, S.; Bradley, K.; Wang, T.; Jousset, P. G.; Erbas, K.; Nurdin, I.; Wei, S.

    2017-12-01

    The December 6, 2016 Mw 6.5 earthquake in Pidie Jaya, Aceh was one of the devastating inland earthquakes in Sumatra that took away more than 100 people's life. Here we present our seismological analysis of the earthquake sequence. The earthquake focal mechanism inversions using regional BMKG broadband data and teleseismic waveform data all indicate a strike-slip focal mechanism with a centroid depth of 15 km. Preliminary finite fault inversion using teleseismic body waves prefers the fault plane with strike of 45 degree and dip of 50 degree, in agreement with the surface geology and USGS aftershock distributions. Nine broadband seismic stations were installed in the source region along the coast one week after the earthquake and have collected the data for one month. The data have been used to locate aftershocks with grid search and double-difference algorithm, which results in the lineup of the seismicity in NE-SW direction, in agreement with the fault inversion and geology results. Using the M4.0 calibration earthquake that was recorded by the temporally network, we relocated the mainshock epicenter, which is also consistent with fault geometry defined by the well located aftershocks. In addition, a portion of the seismicity shows a lineation in E-W direction, indicating a secondary fault that has not been identified before. Aftershock focal mechanisms determined by the first motion reveal similar solutions as the mainshock. The observed macro intensity data shows most of the damaged buildings are distributed along the coast, approximately perpendicular to the preferred fault strike instead of parallel with it. It appears that the distribution of damage is strongly related to the site conditions, since these strong shaking/damage regions are mainly located on the costal sedimentary soils.

  20. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    USGS Publications Warehouse

    Dixit, Madan M.; Kumar, Sanjay; Catchings, Rufus D.; Suman, K.; Sarkar, Dipankar; Sen, M.K.

    2014-01-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  1. Security Implications of Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Jha, B.; Rao, A.

    2016-12-01

    The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.

  2. Magma-Tectonic Interactions in the Main Ethiopian Rift; Insights into Rifting Processes

    NASA Astrophysics Data System (ADS)

    Greenfield, T.; Keir, D.; Tessema, T.; Lloyd, R.; Biggs, J.; Ayele, A.; Kendall, J. M.

    2017-12-01

    We report observations made around the Bora-Tulu Moye volcanic field, in the Main Ethiopian Rift (MER). A network of seismometers deployed around the volcano for one and a half years reveals the recent state of the volcano. Accurate earthquake locations and focal mechanisms are combined with surface deformation and mapping of faults, fissures and geothermally active areas to reveal the interaction between magmatism and intra-rift faulting. More than 1000 earthquakes are detected and located, making the Bora-Tulu Moye volcanic field one of the most seismically active regions of the MER. Earthquakes are located at depths of less than 5 km below the surface and range between magnitudes of 1.5 - 3.5. Surface deformation of Bora-Tulu Moye is observed using satellite based radar interferometry (InSAR) recorded before and during the seismic deployment. Since 2004, deformation has oscillated between uplift and subsidence centered at the same spatial location but different depths. We constrain the source of the uplift to be at 7 km depth while the source of the subsidence is shallower. Micro-earthquake locations reveal that earthquakes are located around the edge of the observed deformation and record the activation of normal faults orientated at 025°. The spatial link between surface deformation and brittle failure suggest that significant hydrothermal circulation driven by an inflating shallow heat source is inducing brittle failure. Elsewhere, seismicity is focused in areas of significant surface alteration from hydrothermal processes. We use shear wave splitting using local earthquakes to image the stress state of the volcano. A combination of rift parallel and rift-oblique fast directions are observed, indicating the volcano has a significant influence on the crustal stresses. Volcanic activity around Bora-Tulu Moye has migrated eastwards over time, closer to the intra-rift fault system, the Wonji Fault Belt. How and why this occurs relates to changes in the melt supply to the upper crust from depth and has implications for the early stages of rift evolution and for volcanic and tectonic hazard in Ethiopia and rifts generally.

  3. Earthquake doublet that occurred in a pull-apart basin along the Sumatran fault and its seismotectonic implication

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Yamashina, T.; Inoue, H.; Toda, S.

    2007-12-01

    On March 6, 2007, an earthquake doublet occurred around Lake Singkarak, central Sumatra in Indonesia. An earthquake with magnitude (Mw) 6.4 at 03:49 is followed two hours later (05:49) by a similar-size event (Mw 6.3). Lake Singkarak is located between the Sianok and Sumani fault segments of the Sumatran fault system, and is a pull-apart basin formed at the segment boundary. We investigate source processes of the earthquakes using waveform data obtained from JISNET, which is a broad-band seismograph network in Indonesia. We first estimate the centroid source locations and focal mechanisms by the waveform inversion carried out in the frequency domain. Since stations are distributed almost linearly in the NW-SE direction coincident with the Sumatran fault strike direction, the estimated centroid locations are not well resolved especially in the direction orthogonal to the NW-SE direction. If we assume that these earthquakes occurred along the Sumatran fault, the first earthquake is located on the Sumani segment below Lake Singkarak and the second event is located at a few tens of kilometers north of the first event on the Sianok segment. The focal mechanisms of both events point to almost identical right-lateral strike-slip vertical faulting, which is consistent with the geometry of the Sumatran fault system. We next investigate the rupture initiation points using the particle motions of the P-waves of these earthquakes observed at station PPI, which is located about 20 km north of the Lake Singkarak. The initiation point of the first event is estimated in the north of the lake, which corresponds to the northern end of the Sumani segment. The initiation point of the second event is estimated at the southern end of the Sianok segment. The observed maximum amplitudes at stations located in the SE of the source region show larger amplitudes for the first event than those for the second one. On the other hand, the amplitudes at station BSI located in the NW of the source region show larger amplitude for the second event than that for the first one. Since the magnitudes, focal mechanisms, and source locations are almost identical for the two events, the larger amplitudes for the second event at BSI may be due to the effect of rupture directivity. Accordingly, we obtain the following image of source processes of the earthquake doublet: The first event initiated at the segment boundary and its rupture propagated along the Sumani segment to the SW direction. Then, the second event, which may be triggered by the first event, initiated at a location close to the hypocenter of the first event, but its rupture propagated along the Sianok segment to the NE direction, opposite to the first event. It is known that the previous significant seismic activity along the Sianok and Sumani segments occurred in 1926, which was also an earthquake doublet with similar magnitudes to those in 2007. If we assume that the time interval between the earthquake doublets in 1926 and 2007 represents the average recurrence interval and that typical slip in the individual earthquakes is 1 m, we obtain approximately 1 cm/year for a slip rate of the fault segments. Geological features indicate that Lake Singkrak is no more than a few million years old (Sieh and Natawidjaja, 2000, JGR). If the pull-apart basin has been created since a few million years ago with the estimated slip rate of the segments, we obtain roughly 20 km of the total offset on the Sianok and Sumani segments, which is consistent with the observed offset. Our study supports the model of Sieh and Natawidjaja (2000) that the basin continues to be created by dextral slip on the en echelon Sumani and Sianok segments.

  4. Significant earthquakes on the Enriquillo fault system, Hispaniola, 1500-2010: Implications for seismic hazard

    USGS Publications Warehouse

    Bakun, William H.; Flores, Claudia H.; ten Brink, Uri S.

    2012-01-01

    Historical records indicate frequent seismic activity along the north-east Caribbean plate boundary over the past 500 years, particularly on the island of Hispaniola. We use accounts of historical earthquakes to assign intensities and the intensity assignments for the 2010 Haiti earthquakes to derive an intensity attenuation relation for Hispaniola. The intensity assignments and the attenuation relation are used in a grid search to find source locations and magnitudes that best fit the intensity assignments. Here we describe a sequence of devastating earthquakes on the Enriquillo fault system in the eighteenth century. An intensity magnitude MI 6.6 earthquake in 1701 occurred near the location of the 2010 Haiti earthquake, and the accounts of the shaking in the 1701 earthquake are similar to those of the 2010 earthquake. A series of large earthquakes migrating from east to west started with the 18 October 1751 MI 7.4–7.5 earthquake, probably located near the eastern end of the fault in the Dominican Republic, followed by the 21 November 1751 MI 6.6 earthquake near Port-au-Prince, Haiti, and the 3 June 1770 MI 7.5 earthquake west of the 2010 earthquake rupture. The 2010 Haiti earthquake may mark the beginning of a new cycle of large earthquakes on the Enriquillo fault system after 240 years of seismic quiescence. The entire Enriquillo fault system appears to be seismically active; Haiti and the Dominican Republic should prepare for future devastating earthquakes.

  5. Microearthquake sequences along the Irpinia normal fault system in Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Orefice, Antonella; Festa, Gaetano; Alfredo Stabile, Tony; Vassallo, Maurizio; Zollo, Aldo

    2013-04-01

    Microearthquakes reflect a continuous readjustment of tectonic structures, such as faults, under the action of local and regional stress fields. Low magnitude seismicity in the vicinity of active fault zones may reveal insights into the mechanics of the fault systems during the inter-seismic period and shine a light on the role of fluids and other physical parameters in promoting or disfavoring the nucleation of larger size events in the same area. Here we analyzed several earthquake sequences concentrated in very limited regions along the 1980 Irpinia earthquake fault zone (Southern Italy), a complex system characterized by normal stress regime, monitored by the dense, multi-component, high dynamic range seismic network ISNet (Irpinia Seismic Network). On a specific single sequence, the May 2008 Laviano swarm, we performed accurate absolute and relative locations and estimated source parameters and scaling laws that were compared with standard stress-drops computed for the area. Additionally, from EGF deconvolution, we computed a slip model for the mainshock and investigated the space-time evolution of the events in the sequence to reveal possible interactions among earthquakes. Through the massive analysis of cross-correlation based on the master event scanning of the continuous recording, we also reconstructed the catalog of repeated earthquakes and recognized several co-located sequences. For these events, we analyzed the statistical properties, location and source parameters and their space-time evolution with the aim of inferring the processes that control the occurrence and the size of microearthquakes in a swarm.

  6. Fluid-Faulting Interactions Examined Though Massive Waveform-Based Analyses of Earthquake Swarms in Volcanic and Tectonic Settings: Mammoth Mountain, Long Valley, Lassen, and Fillmore, California Swarms, 2014-2015

    NASA Astrophysics Data System (ADS)

    Shelly, D. R.; Ellsworth, W. L.; Prejean, S. G.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.

    2015-12-01

    Earthquake swarms, sequences of sustained seismicity, convey active subsurface processes that sometimes precede larger tectonic or volcanic episodes. Their extended activity and spatiotemporal migration can often be attributed to fluid pressure transients as migrating crustal fluids (typically water and CO2) interact with subsurface structures. Although the swarms analyzed here are interpreted to be natural in origin, the mechanisms of seismic activation likely mirror those observed for earthquakes induced by industrial fluid injection. Here, we use massive-scale waveform correlation to detect and precisely locate 3-10 times as many earthquakes as included in routine catalogs for recent (2014-2015) swarms beneath Mammoth Mountain, Long Valley Caldera, Lassen Volcanic Center, and Fillmore areas of California, USA. These enhanced catalogs, with location precision as good as a few meters, reveal signatures of fluid-faulting interactions, such as systematic migration, fault-valve behavior, and fracture mesh structures, not resolved in routine catalogs. We extend this analysis to characterize source mechanism similarity even for very small newly detected events using relative P and S polarity estimates. This information complements precise locations to define fault complexities that would otherwise be invisible. In particular, although swarms often consist of groups of highly similar events, some swarms contain a population of outliers with different slip and/or fault orientations. These events highlight the complexity of fluid-faulting interactions. Despite their different settings, the four swarms analyzed here share many similarities, including pronounced hypocenter migration suggestive of a fluid pressure trigger. This includes the July 2015 Fillmore swarm, which, unlike the others, occurred outside of an obvious volcanic zone. Nevertheless, it exhibited systematic westward and downdip migration on a ~1x1.5 km low-angle, NW-dipping reverse fault at midcrustal depth.

  7. Space geodetic observation of the deformation cycle across the Ballenas Transform, Gulf of California

    NASA Astrophysics Data System (ADS)

    Plattner, Christina; Malservisi, Rocco; Amelung, Falk; Dixon, Timothy H.; Hackl, Matthias; Verdecchia, Alessandro; Lonsdale, Peter; Suarez-Vidal, Francisco; Gonzalez-Garcia, Javier

    2015-08-01

    The Gulf of California, Mexico, accommodates ~90% of North America-Pacific plate relative motion. While most of this motion occurs on marine transform faults and spreading centers, several fault segments in the central Gulf come close to peninsular Baja California. Here we present Global Positioning System and interferometric synthetic aperture radar data near the Ballenas transform fault, separating the peninsula from Angel de la Guarda Island. We observe interseismic motion between June 2004 and May 2009 and displacements associated with the 3 August 2009 Mw 6.9 earthquake. From the interseismic data we estimate a locking depth of 9-12.5 km and a slip rate of 44.9-48.1 mm/yr, indicating that faults east of Angel de la Guarda deform at negligible rates and that the Ballenas Transform accommodates virtually all of the relative motion between the North American plate and the Baja California microplate. Our preferred model for coseismic slip on a finite rectangular fault plane suggests 1.3 m of strike-slip displacement along a vertical rupture plane that is 60 km long and extends from the surface to a depth of 13 km in the eastern Ballenas Channel, striking parallel to Baja California-North America relative plate motion. These estimates agree with the seismic moment tensor and the location of the major foreshock and aftershocks and are compatible with the fault location identified from high-resolution bathymetric mapping. The geodetic moment is 33% higher than the seismic moment in part because some afterslip and viscous flow in the first month after the earthquake are included in the geodetic estimate. Coulomb stress changes for adjacent faults in the Gulf are consistent with the location of smaller aftershocks following the 2009 main shock and suggest potential triggering of the 12 April 2012 Mw 6.9 Guaymas earthquake.

  8. Long term seismic observation using ocean bottom seismographs in Marmara Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Pinar, A.; Kalafat, D.; Yamamoto, Y.; Citak, S.; Comoglu, M.; Çok, Ö.; Ogutcu, Z.; Suvarikli, M.; Tunc, S.; Gurbuz, C.; Ozel, N.; Kaneda, Y.

    2015-12-01

    The North Anatolian Fault crosses the Marmara Sea with a direction of E-W. There are many large earthquakes repeatedly along the fault with a linkage each other. Due to recent large eastern Aegean earthquake with M6, the Marmara Sea is the "blank zone". Japan and Turkey have a SATREPS collaborative study to clarify the structural characters, construct fault models, simulate the strong motion and tsunami, evaluate these risks with hazard maps and educate disaster prevention for local governments and residents. Our activity is one of the most basic studies, and the objectives are to clarify hypocenter locations, monitor the move, and construct fault models referring seismic/magnetotelluric structures, geodetic nature and trenching works. The target area is from western Marmara Sea to the off Istanbul area along the north Anatolian Fault. We deployed ten Ocean Bottom Seismographs (OBSs) between the Tekirdag Basin and the Central Basin in September, 2014. Then, we added five Japanese OBSs and deployed them at the western end of the Marmara Sea and the eastern Central Basin to extend observed area in March, 2015. The OBS has a three-component velocity sensor with a natural frequency of 4.5 Hz and a hydrophone. Japanese team have clarified seismicity around Japan using the OBS. The magnitude of the detected events is 1.0-1.5. We retrieved all 15 OBSs in July, 2015 and deployed them again on the same locations after data copy and battery maintenance. We started OBS data analysis combined with land stations data. Now we detect events automatically using these data and succeeded detection of over one thousand around the north Anatolian Fault. The tentative results show heterogeneous seismicity. The western and central basins have relative high seismicity and the seismogenic zone becomes thicker rather than previous estimation. Then we will evaluate hypocenter locations with high resolution and discuss the shape of faults in each segment and their linkage.

  9. The 1911 M ~6.6 Calaveras earthquake: Source parameters and the role of static, viscoelastic, and dynamic coulomb stress changes imparted by the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.

    2009-01-01

    The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.

  10. The seismic velocity structure of a foreshock zone on an oceanic transform fault: Imaging a rupture barrier to the 2008 Mw 6.0 earthquake on the Gofar fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Lizarralde, D.; Collins, J. A.

    2010-12-01

    East Pacific Rise (EPR) oceanic transform faults are known to exhibit a number of unique seismicity characteristics, including abundant seismic swarms, a prevalence of aseismic slip, and high rates of foreshock activity. Until recently the details of how this behavior fits into the seismic cycle of large events that occur periodically on transforms have remained poorly understood. In 2008 the most recent seismic cycle of the western segment (G3) of the Gofar fault (4 degrees South on the EPR) ended with a Mw 6.0 earthquake. Seismicity associated with this event was recorded by a local array of ocean bottom seismometers, and earthquake locations reveal several distinct segments with unique slip behavior on the G3 fault. Preceding the Mw 6.0 event, a significant foreshock sequence was recorded just to the east of the mainshock rupture zone that included more than 20,000 detected earthquakes. This foreshock zone formed the eastern barrier to the mainshock rupture, and following the mainshock, seismicity rates within the foreshock zone remained unchanged. Based on aftershock locations of events following the 2007 Mw 6.0 event that completed the seismic cycle on the eastern end of the G3 fault, it appears that the same foreshock zone may have served as the western rupture barrier for that prior earthquake. Moreover, mainshock rupture associated with each of the last 8 large (~ Mw 6.0) events on the G3 fault seems to terminate at the same foreshock zone. In order to elucidate some of the structural controls on fault slip and earthquake rupture along transform faults, we present a seismic P-wave velocity profile crossing the center of the foreshock zone of the Gofar fault, as well as a profile for comparison across the neighboring Quebrada fault. Although tectonically similar, Quebrada does not sustain large earthquakes and is thought to accommodate slip primarily aseismically and with small magnitude earthquake swarms. Velocity profiles were obtained using data collected from ~100 km refraction profiles crossing the two faults, each using 8 short period ocean bottom seismometers from OBSIP and over 900 shots from the RV Marcus Langseth. These data are modeled using a 2-D tomographic code that allows joint inversion of the Pg, PmP, and Pn arrivals. We resolve a significant low velocity zone associated with the faults, which likely indicates rocks that have undergone intensive brittle deformation. Low velocities may also signify the presence of metamorphic alteration and/or elevated fluid pressures, both of which could have a significant affect on the friction laws that govern fault slip in these regions. A broad low velocity zone is apparent in the shallow crust (< 3km) at both faults, with velocities that are reduced by more than 1 km/s relative to the surrounding oceanic crust. A narrower zone of reduced seismic velocity appears to extend to mantle depths, and particularly on the Gofar fault, this corresponds with the seismogenic zone inferred from located foreshock seismicity, spanning depths of 3-9 km beneath the seafloor.

  11. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    USGS Publications Warehouse

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the incorporation of uncertainties in earthquake locations, just 55 per cent of aftershock nodal planes align with faults promoted towards failure by co-seismic slip. When epicentral uncertainties are considered (on the order of just ±2–3 km), 90 per cent of aftershocks are consistent with occurring along faults demonstrating positive stress transfer. These results imply large sensitivities of Coulomb stress transfer calculations to uncertainties in both earthquake locations and models of slip distributions, particularly when applied to aftershocks close to a heterogeneous fault rupture; such uncertainties should therefore be considered in similar studies used to argue for or against models of static stress triggering.

  12. Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.

    1992-01-01

    The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.

  13. Field based geothermal exploration: Structural controls in the Tarutung Basin/North Central Sumatra (Indonesia)

    NASA Astrophysics Data System (ADS)

    Nukman, M.; Moeck, I.

    2012-04-01

    The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.

  14. Millennial strain partitioning revealed by 36Cl cosmogenic data on active bedrock fault scarps from Abruzzo, Italy

    NASA Astrophysics Data System (ADS)

    Gregory, Laura; Roberts, Gerald; Cowie, Patience; Wedmore, Luke; McCaffrey, Ken; Shanks, Richard; Zijerveld, Leo; Phillips, Richard

    2017-04-01

    In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. Measuring earthquake slip histories on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with millennial resolution. In this presentation, we present new 36Cl data combined with historical earthquake records to document orogen-wide changes in the distribution of seismicity on millennial timescales in Abruzzo, central Italy. Seismic activity due to extensional faulting was concentrated on the northwest side of the mountain range during the historical period, or since approximately the 14th century. Seismicity is more limited on the southwest side of Abruzzo during historical times. This pattern has led some to suggest that faults on the southwest side of Abruzzo are not active, however clear fault scarps cutting Holocene-aged slopes are well preserved across the whole of the orogen. These scarps preserve an excellent record of Late Pleistocene to Holocene earthquake activity, which can be quantified using cosmogenic isotopes that track the exposure of the bedrock fault scarps. 36Cl accumulates in the fault scarps as the plane is progressively exhumed by earthquakes and the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. We utilise Bayesian modelling techniques to estimate slip histories based on the cosmogenic data. Each sampling site is carefully characterised using LiDAR and GPR to ensure that fault plane exposure is due to slip during earthquakes and not sediment transport processes. In this presentation we will focus on new data from faults located across-strike in Abruzzo. Many faults in Abruzzo demonstrate slip rate variability on millennial timescales, with relatively fast slip interspersed between quiescent periods. We show that heightened activity is co-located and spatially migrates across Abruzzo over time. We highlight the importance of understanding this dynamic fault behaviour of migrating seismic activity, and in particular how our research is relevant to the 2016 Amatrice-Vettore seismic sequence in central Italy.

  15. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  16. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2005-01-01

    To investigate laboratory earthquakes, stick-slip events were induced on a saw-cut Westerly granite sample by triaxial loading at 150 MPa confining pressure. Acoustic emissions (AE) were monitored using an innovative continuous waveform recorder. The first motion of each stick slip was recorded as a large-amplitude AE signal. These events source locate onto the saw-cut fault plane, implying that they represent the nucleation sites of the dynamic failure stick-slip events. The precise location of nucleation varied between events and was probably controlled by heterogeneity of stress or surface conditions on the fault. The initial nucleation diameter of each dynamic instability was inferred to be less than 3 mm. A small number of AE were recorded prior to each macro slip event. For the second and third slip events, premonitory AE source mechanisms mimic the large scale fault plane geometry. Copyright 2005 by the American Geophysical Union.

  17. Earthquake mechanism and predictability shown by a laboratory fault

    USGS Publications Warehouse

    King, C.-Y.

    1994-01-01

    Slip events generated in a laboratory fault model consisting of a circulinear chain of eight spring-connected blocks of approximately equal weight elastically driven to slide on a frictional surface are studied. It is found that most of the input strain energy is released by a relatively few large events, which are approximately time predictable. A large event tends to roughen stress distribution along the fault, whereas the subsequent smaller events tend to smooth the stress distribution and prepare a condition of simultaneous criticality for the occurrence of the next large event. The frequency-size distribution resembles the Gutenberg-Richter relation for earthquakes, except for a falloff for the largest events due to the finite energy-storage capacity of the fault system. Slip distributions, in different events are commonly dissimilar. Stress drop, slip velocity, and rupture velocity all tend to increase with event size. Rupture-initiation locations are usually not close to the maximum-slip locations. ?? 1994 Birkha??user Verlag.

  18. A 'Propagating' Active Across-Arc Normal Fault Shows Rupture Process of the Basement: the Case of the Southwestern Ryukyu Arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.

    2011-12-01

    Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main scarp and on the footwall. These suggest that basically the both sides are composed of the same material, that the whole study area is characterised by Ryukyu limestone exposure and that the basement was split by the across-arc normal fault. Coarse-grained sand and gravels/rubbles were observed towards and on the trough of the fault. On the main scarp an outcrop of limestone basement was exposed and in some part it was broken into rubbles. These facts suggest that crash of the basement due to rupturing is taking place repeatedly on the scarp and the trough. The observed fine-grained sand on the hanging wall might be the final product by the process of the crash of the limestone basement.

  19. The 2016 Central Italy "reverse" seismic sequence

    NASA Astrophysics Data System (ADS)

    Chiaraluce, Lauro; Di Stefano, Raffaele; Tinti, Elisa; Scognamiglio, Laura; Michele, Maddalena; Cattaneo, Marco; De Gori, Pasquale; Chiarabba, Claudio; Monachesi, Giancarlo; Lombardi, Annamaria; Valoroso, Luisa; Latorre, Diana; Marzorati, Simone

    2017-04-01

    The 2016 seismic sequence consists so far of a series of moderate to large earthquakes that within three month's time activated a 60 km long segmented normal fault system located in the Central Italy and almost contiguous to the 1997 Colfiorito and 2009 L'Aquila normal fault systems. The first mainshock of the sequence occurred with MW6.0 on the 24th of August at 01:36 UTC close to the Accumoli and Amatrice villages producing evidence for centimetres' surface ruptures along the Mt. Vettore normal fault outcrop. Two months later on the 26th of October at 19:18 UTC another mainshock with MW5.9 occurred 25 km to the north activating another normal fault segment approximately on the along strike continuation of the first structure. Then, four days later on the 30th of October at 06:40 UTC the largest shock of the sequence with MW6.5 close to Norcia, in the middle part of the fault system activated two months before. We reconstruct the first order anatomy of the activated normal faults system, by analysing the spatial and temporal distribution of 25,354 aftershocks with 0.1

  20. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  1. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE PAGES

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; ...

    2017-08-12

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  2. Heterogeneous rupture on homogenous faults: Three-dimensional spontaneous rupture simulations with thermal pressurization

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2008-11-01

    To understand role of fluid on earthquake rupture processes, we investigated effects of thermal pressurization on spatial variation of dynamic rupture by computing spontaneous rupture propagation on a rectangular fault. We found thermal pressurization can cause heterogeneity of rupture even on a fault of uniform properties. On drained faults, tractions drop linearly with increasing slip in the same way everywhere. However, by changing the drained condition to an undrained one, the slip-weakening curves become non-linear and depend on locations on faults with small shear zone thickness w, and the dynamic frictional stresses vary spatially and temporally. Consequently, the super-shear transition fault length decreases for small w, and the final slip distribution can have some peaks regardless of w, especially on undrained faults. These effects should be taken into account of determining dynamic rupture parameters and modeling earthquake cycles when the presence of fluid is suggested in the source regions.

  3. Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogues, Gilles, E-mail: gilles.nogues@neel.cnrs.fr; Den Hertog, Martien; Inst. NEEL, CNRS, F-38042 Grenoble

    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.

  4. Characteristics of the recent seismic activity on a near-shore fault south of Malta, Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Bozionelos, George; Galea, Pauline; D'Amico, Sebastiano; Agius, Matthew

    2017-04-01

    The tectonic setting of the Maltese islands is mainly influenced by two dominant rift systems belonging to different ages and having different trends. The first and older rift created the horst and graben structure in northern Malta. The second rift generation, in the south, including the Maghlaq Fault, is associated with the Pantelleria Rift. The Maghlaq Fault is a spectacular NW - SE trending and left-stepping normal fault running along the southern coastline of the Maltese islands, cutting the Oligo-Miocene pre to syn-rift carbonates. Its surface expression is traceable along 4 km of the coastline, where vertical displacements of the island's Tertiary stratigraphic sequence are clearly visible and exceed 210m. These displacements have given rise to sheer, slickensided fault scarps, as well as isolating the small island of Filfla 4km offshore the southern coast. Identification and assessment of the seismic activity related with Maghlaq fault, for the recent years, is performed, re-evaluating and redetermining the hypocentral locations and the source parameters of both recent and older events. The earthquakes that have affected the Maltese islands in the historical past, have occurred mainly at the Sicily Channel, at eastern Sicily, even as far away as the Hellenic arc. Some of these earthquakes also have caused considerable damage to buildings. The Maghlaq fault is believed to be one of the master faults of the Sicily Channel Rift, being parallel to the Malta graben, which passes around 20km south of Malta and shows continuous seismic activity. Despite the relationship of this fault with the graben system, no seismic activity on the Maghlaq fault had been documented previous to 2015. On the July 30nth 2015, an earthquake was widely felt in the southern half of Malta and was approximately located just offshore the southern coast. Since then, a swarm of seismic events lasting several days, as well as other isolated events have occurred, indicating the fault to be seismically active. Investigation of the nature of the seismic events and other previous activity that may have been misclassified due to poor location capability, is performed. Such results are of utmost importance in order to reveal the implication of this newly-discovered activity on the seismic hazard to the Maltese islands and also to improve understanding of the local geodynamics, highlighting the mechanisms that contribute to both the crustal deformation and the tectonics of the upper crust. The investigation is carried out using the stations of the recently extended Malta Seismic Network and regional stations. The results are evaluated in the context of the role of the Maghlaq fault in the extensional tectonics associated with the Sicily Channel Rift and the African continental margin.

  5. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    NASA Astrophysics Data System (ADS)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.

  6. Evaluation of LiDAR Imagery as a Tool for Mapping the Northern San Andreas Fault in Heavily Forested Areas of Mendocino and Sonoma Counties, California

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.

    2004-12-01

    We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.

  7. Strike-slip faulting, wrinkle ridges, and time variable stress states in the Coprates Region of Mars

    NASA Technical Reports Server (NTRS)

    Schultz, Richard A.

    1990-01-01

    The existence of strike-slip faults was recently documented in two locations on Mars. Two clear examples are reviewed located southeast of Valles Marineris and preliminary evidence is presented for more widespread strike-slip deformation elsewhere in Coprates. The first two examples show that strike-slip faulting occurred in a broad zone east of the Coprates Rise spanning approximately 400 km east-west by perhaps 1000 km north-south. The last example suggests that the growth of major wrinkle ridges throughout Coprates may have been influenced by horizontally directed shear stresses and that more than one generation of ridges was produced. Thus, 'compressional' deformation of ridged plains south of Valles Marineris was spatially heterogeneous and a temporal change in stress may have been involved.

  8. Application of Landsat imagery to problems of petroleum exploration in Qaidam Basin, China

    USGS Publications Warehouse

    Bailey, G.B.; Anderson, P.D.

    1982-01-01

    Tertiary and Quaternary nonmarine, petroleum-bearing sedimentary rocks have been extensively deformed by compressive forces. These forces created many folds which are current targets of Chinese exploration programs. Image-derived interpretations of folds, strike-slip faults, thrust faults, normal or reverse faults, and fractures compared very favorably, in terms of locations and numbers mapped, with Chinese data compiled from years of extensive field mapping. Many potential hydrocarbon trapping structures were precisely located. Orientations of major structural trends defined from Landsat imagery correlate well with those predicted for the area based on global tectonic theory. These correlations suggest that similar orientations exist in the eastern half of the basin where folded rocks are mostly obscured by unconsolidated surface sediments and where limited exploration has occurred.--Modified journal abstract.

  9. Geologic Map and GID Data for the Salt Wells Geothermal Area

    DOE Data Explorer

    Hinz, Nick

    2011-10-31

    Salt Wells—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

  10. Estimation of the depth of faulting in the northeast margin of Argyre basin (Mars) by structural analysis of lobate scarps

    NASA Astrophysics Data System (ADS)

    Herrero-Gil, Andrea; Ruiz, Javier; Egea-González, Isabel; Romeo, Ignacio

    2017-04-01

    Lobate scarps are tectonic structures considered as the topographic expression of thrust faults. For this study we have chosen three large lobate scarps (Ogygis Rupes, Bosporos Rupes and a third unnamed one) located in Aonia Terra, in the southern hemisphere of Mars near the northeast margin of the Argyre impact basin. These lobate scarps strike parallel to the edge of Thaumasia in this area, showing a roughly arcuate to linear form and an asymmetric cross section with a steeply frontal scarp and a gently dipping back scarp. The asymmetry in the cross sections suggests that the three lobate scarps were generated by ESE-vergent thrust faults. Two complementary methods were used to analyze the faults underlying these lobate scarps based on Mars Orbiter Laser Altimeter data and the Mars imagery available: (i) analyzing topographic profiles together with the horizontal shortening estimations from cross-cut craters to create balanced cross sections on the basis of thrust fault propagation folding [1]; (ii) using a forward mechanical dislocation method [2], which predicts fault geometry by comparing model outputs with real topography. The objective is to obtain fault geometry parameters as the minimum value for the horizontal offset, dip angle and depth of faulting of each underlying fault. By comparing the results obtained by both methods we estimate a preliminary depth of faulting value between 15 and 26 kilometers for this zone between Thaumasia and Argyre basin. The significant sizes of the faults underlying these three lobate scarps suggest that their detachments are located at a main rheological change. Estimates of the depth of faulting in similar lobate scarps on Mars or Mercury [3] have been associated to the depth of the brittle-ductile transition. [1] Suppe (1983), Am. J. Sci., 283, 648-721; Seeber and Sorlien (2000), Geol. Soc. Am. Bull., 112, 1067-1079. [2] Toda et al. (1998) JGR, 103, 24543-24565. [3] i.e. Schultz and Watters (2001) Geophys. Res. Lett., 28, 4659-4662; Ruiz et al. (2008) EPSL, 270, 1-12; Egea-Gonzalez et al. (2012) PSS, 60, 193-198; Mueller et al. (2014) EPSL, 408, 100-109.

  11. An earthquake rate forecast for Europe based on smoothed seismicity and smoothed fault contribution

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Woessner, Jochen; Basili, Roberto; Wiemer, Stefan

    2013-04-01

    The main objective of project SHARE (Seismic Hazard Harmonization in Europe) is to develop a community-based seismic hazard model for the Euro-Mediterranean region. The logic tree of earthquake rupture forecasts comprises several methodologies including smoothed seismicity approaches. Smoothed seismicity thus represents an alternative concept to express the degree of spatial stationarity of seismicity and provides results that are more objective, reproducible, and testable. Nonetheless, the smoothed-seismicity approach suffers from the common drawback of being generally based on earthquake catalogs alone, i.e. the wealth of knowledge from geology is completely ignored. We present a model that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults and subductions. The result is mainly driven by the data, being independent of subjective delineation of seismic source zones. The core parts of our model are two distinct location probability densities: The first is computed by smoothing past seismicity (using variable kernel smoothing to account for varying data density). The second is obtained by smoothing fault moment rate contributions. The fault moment rates are calculated by summing the moment rate of each fault patch on a fully parameterized and discretized fault as available from the SHARE fault database. We assume that the regional frequency-magnitude distribution of the entire study area is well known and estimate the a- and b-value of a truncated Gutenberg-Richter magnitude distribution based on a maximum likelihood approach that considers the spatial and temporal completeness history of the seismic catalog. The two location probability densities are linearly weighted as a function of magnitude assuming that (1) the occurrence of past seismicity is a good proxy to forecast occurrence of future seismicity and (2) future large-magnitude events occur more likely in the vicinity of known faults. Consequently, the underlying location density of our model depends on the magnitude. We scale the density with the estimated a-value in order to construct a forecast that specifies the earthquake rate in each longitude-latitude-magnitude bin. The model is intended to be one branch of SHARE's logic tree of rupture forecasts and provides rates of events in the magnitude range of 5 <= m <= 8.5 for the entire region of interest and is suitable for comparison with other long-term models in the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP).

  12. The Kinematics of Central American Fore-Arc Motion in Nicaragua: Geodetic, Geophysical and Geologic Study of Magma-Tectonic Interactions

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.

    2017-12-01

    A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the volcanic arc.

  13. Geomorphic Proxies to Test Strain Accommodation in Southwestern Puerto Rico from Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Barrios Galindez, I. M.; Xue, L.; Laó-Dávila, D. A.

    2017-12-01

    The Puerto Rico and the Virgin Island microplate is located in at the northeastern corner of the Caribbean plate boundary with North America is placed within an oblique subduction zone in which strain patterns remain unresolved. Seismic hazard is a major concern in the region as seen from the seismic history of the Caribbean-North America plate boundary zone. Most of the tectonic models of the microplate show the accommodation of strain occurring offshore, despite evidence from seismic activity, trench studies, and geodetic studies suggesting the existence of strain accomodation in southwest Puerto Rico. These studies also suggest active faulting specially in the western part of the island, but limited work has been done regarding their mechanism. Therefore, this work aims to define and map these active faults in western Puerto Rico by integrating data from analysis of fluvial terrains, and detailed mapping using digital elevation model (DEM) extracted from Shuttle Radar Topography Mission (SRTM) and LIDAR data. The goal is to (1) identify structural features such as surface lineaments and fault scarps for the Cerro Goden fault, South Lajas fault, and other active faults in the western of Puerto Rico, (2) correlate these information with the distribution pattern and values of the geomorphic proxies, including Chi integral (χ), normalized steepness (ksn) and Asymmetric factor (AF). Our preliminary results from geomorphic proxies and Lidar data provide some insight of the displacement and stage of activities of these faults (e.g. Boqueron-Punta Malva Fault and Cerro Goden fault). Also, the anomaly of the geomorphic proxies generally correlate with the locations of the landslides in the southwestern Puerto Rico. The geomorphic model of this work include new information of active faulting fundamental to produce better seismic hazards maps. Additionally, active tectonics studies are vital to issue and adjust construction buildings codes and zonification codes.

  14. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    NASA Astrophysics Data System (ADS)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances fracturing and earthquake production.

  15. Preliminary assessment of a previously unknown fault zone beneath the Daytona Beach sand blow cluster near Marianna, Arkansas

    USGS Publications Warehouse

    Odum, Jackson K.; Williams, Robert; Stephenson, William J.; Tuttle, Martitia P.; Al-Shukri, Hadar

    2016-01-01

    We collected new high‐resolution P‐wave seismic‐reflection data to explore for possible faults beneath a roughly linear cluster of early to mid‐Holocene earthquake‐induced sand blows to the south of Marianna, Arkansas. The Daytona Beach sand blow deposits are located in east‐central Arkansas about 75 km southwest of Memphis, Tennessee, and about 80 km south of the southwestern end of the New Madrid seismic zone (NMSZ). Previous studies of these sand blows indicate that they were produced between 10,500 and 5350 yr B.P. (before A.D. 1950). The sand blows are large and similar in size to those in the heart of the NMSZ produced by the 1811–1812 earthquakes. The seismic‐reflection profiles reveal a previously unknown zone of near‐vertical faults imaged in the 100–1100‐m depth range that are approximately coincident with a cluster of earthquake‐induced sand blows and a near‐linear surface lineament composed of air photo tonal anomalies. These interpreted faults are expressed as vertical discontinuities with the largest displacement fault showing about 40 m of west‐side‐up displacement at the top of the Paleozoic section at about 1100 m depth. There are about 20 m of folding on reflections within the Eocene strata at 400 m depth. Increasing fault displacement with depth suggests long‐term recurrent faulting. The imaged faults within the vicinity of the numerous sand blow features could be a causative earthquake source, although it does not rule out the possibility of other seismic sources nearby. These newly located faults add to a growing list of potentially active Pleistocene–Holocene faults discovered over the last two decades that are within the Mississippi embayment region but outside of the historical NMSZ.

  16. Imaging the North Anatolian Fault using the scattered teleseismic wavefield

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Houseman, G. A.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Frederiksen, A. W.; Rondenay, S.

    2013-12-01

    The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault system, similar in size and scale to the San Andreas system, that extends ˜1200 km across Turkey. In 2012, a new multidisciplinary project (FaultLab) was instigated to better understand deformation throughout the entire crust in the NAFZ, in particular the expected transition from narrow zones of brittle deformation in the upper crust to possibly broader shear zones in the lower crust/upper mantle and how these features contribute to the earthquake loading cycle. This contribution will discuss the first results from the seismic component of the project, a 73 station network encompassing the northern and southern branches of the NAFZ in the Sakarya region. The Dense Array for North Anatolia (DANA) is arranged as a 6×11 grid with a nominal station spacing of 7 km, with a further 7 stations located outside of the main grid. With the excellent resolution afforded by the DANA network, we will present images of crustal structure using the technique of teleseismic scattering tomography. The method uses a full waveform inversion of the teleseismic scattered wavefield coupled with array processing techniques to infer the properties and location of small-scale heterogeneities (with scales on the order of the seismic wavelength) within the crust. We will also present preliminary results of teleseismic scattering migration, another powerful method that benefits from the dense data coverage of the deployed seismic network. Images obtained using these methods together with other conventional imaging techniques will provide evidence for how the deformation is distributed within the fault zone at depth, providing constraints that can be used in conjunction with structural analyses of exhumed fault segments and models of geodetic strain-rate across the fault system. By linking together results from the complementary techniques being employed in the FaultLab project, we aim to produce a comprehensive picture of fault structure and dynamics throughout the crust and shallow upper mantle of this major active fault zone.

  17. Ground Surface Deformation in Unconsolidated Sediments Caused by Bedrock Fault Movements: Dip-Slip and Strike-Slip Fault Model Test and Field Survey

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Tani, K.

    2001-12-01

    Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.

  18. Seismic and Aseismic Behavior of the Altotiberina Low-angle Normal Fault System (Northern Apennines, Italy) through High-resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.

    2017-12-01

    Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.

  19. Tidal triggering of low frequency earthquakes near Parkfield, California: Implications for fault mechanics within the brittle-ductile transition

    USGS Publications Warehouse

    Thomas, A.M.; Burgmann, R.; Shelly, David R.; Beeler, Nicholas M.; Rudolph, M.L.

    2012-01-01

    Studies of nonvolcanic tremor (NVT) have established the significant impact of small stress perturbations on NVT generation. Here we analyze the influence of the solid earth and ocean tides on a catalog of ∼550,000 low frequency earthquakes (LFEs) distributed along a 150 km section of the San Andreas Fault centered at Parkfield. LFE families are identified in the NVT data on the basis of waveform similarity and are thought to represent small, effectively co-located earthquakes occurring on brittle asperities on an otherwise aseismic fault at depths of 16 to 30 km. We calculate the sensitivity of each of these 88 LFE families to the tidally induced right-lateral shear stress (RLSS), fault-normal stress (FNS), and their time derivatives and use the hypocentral locations of each family to map the spatial variability of this sensitivity. LFE occurrence is most strongly modulated by fluctuations in shear stress, with the majority of families demonstrating a correlation with RLSS at the 99% confidence level or above. Producing the observed LFE rate modulation in response to shear stress perturbations requires low effective stress in the LFE source region. There are substantial lateral and vertical variations in tidal shear stress sensitivity, which we interpret to reflect spatial variation in source region properties, such as friction and pore fluid pressure. Additionally, we find that highly episodic, shallow LFE families are generally less correlated with tidal stresses than their deeper, continuously active counterparts. The majority of families have weaker or insignificant correlation with positive (tensile) FNS. Two groups of families demonstrate a stronger correlation with fault-normal tension to the north and with compression to the south of Parkfield. The families that correlate with fault-normal clamping coincide with a releasing right bend in the surface fault trace and the LFE locations, suggesting that the San Andreas remains localized and contiguous down to near the base of the crust. The deep families that have high sensitivity to both shear and tensile normal stress perturbations may be indicative of an increase in effective fault contact area with depth. Synthesizing our observations with those of other LFE-hosting localities will help to develop a comprehensive understanding of transient fault slip below the “seismogenic zone” by providing constraints on parameters in physical models of slow slip and LFEs.

  20. Deep Tectonic Tremor in Haiti triggered by the 2010/02/27 Mw8.8 Maule, Chile earthquake

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Douilly, R.; Calais, E.; Deschamps, A.; Haase, J. S.

    2013-05-01

    Tectonic tremors have been observed along major plate-boundary faults around the world. In most of these regions, tremors occur spontaneously (i.e. ambient) or as a result of small stress perturbations from passing surface waves (i.e. triggered). Because tremors are located below the seismogenic zone, a detailed study of their behavior could help to better understand how tectonic movement is accommodated in the deep root of major faults, and the relationship with large earthquakes. Here, we present evidence of triggered tremor in southern Haiti around the aftershock zone of the 2010/01/12 Mw7.0 Haiti earthquake. Following the January mainshock, several groups have installed land and ocean bottom seismometers to record aftershock activity (e.g., De Lepinay et al., 2011). In the following month, the 2010/02/27 Mw8.8 Maule, Chile earthquake occurred and was recorded in the southern Haiti region by these seismic stations. We apply a 5-15 Hz band-pass filter to all seismograms to identify local high-frequency signals during the Chile teleseismic waves. Tremor is identified as non-impulsive bursts with 10-20 s durations that is coherent among different stations and is modulated by surface waves. We also convert the seismic data into audible sounds and use them to distinguish between local aftershocks and deep tremor. We locate the source of the tremor bursts using an envelope cross-correlation method based on travel time differences. Because tremor depth is not well constrained with this method, we set it to 20 km, close to the recent estimate of Moho depth in this region (McNamara et al., 2012). Most tremors are located south of the surface expression of the Enriquillo-Plantain Garden Fault (EPGF), a high-angle southward dipping left-lateral strike-slip fault that marks the boundary between the Gonave microplate and the Caribbean plate, although the location errors are large. Tremor peaks are mostly modulated by Love wave velocity, which is consistent with left-lateral shear motion induced by the normal incidence of Love wave on a near-vertical strike-slip fault. Our ongoing efforts include comparing tremor and aftershock locations with the same envelope techniques, and identifying tremor at other times. If the tremor locations are reliable, the results pose interesting questions about stress changes following the Haiti mainshock that lead to triggered seismicity on the shallow south dipping Trois Baies fault (De Lepinay et al., 2011, Douilly et al, 2013), and triggered tremor on the EPGF, where no aftershocks were recorded.

  1. An ocean bottom seismometer study of shallow seismicity near the Mid- America Trench offshore Guatemala ( Pacific).

    USGS Publications Warehouse

    Ambos, E.L.; Hussong, D.M.; Holman, C.E.

    1985-01-01

    Five ocean bottom seismometers recorded seismicity near the Mid-America Trench offshore Guatemala for 27 days in 1979. The array was emplaced in the lower slope region, just above the topographic trench. Approximately 170 events were recorded by 3 or more seismometers, and almost half were located with statistical hypocentral errors of <10 km. Most epicenters were located immediately landward of the trench axis, and many were further confined to a zone NW of the array. In terms of depth, most events were located within the subducting Cocos plate rather than in the overlying plate or at the plate-plate boundary. Most magnitudes ranged between 3.0 and 4.0 mb, and the threshold magnitude of locatable events was about 2.8 mb. Two distinct composite focal mechanisms were determined. One appears to indicate high- angle reverse faulting in the subducting plate, in a plane parallel to trench axis strike. The other, constructed for some earthquakes in the zone NW of the array, seems to show normal faulting along possible fault planes oriented quasi-perpendicular to the trench axis. Projection of our seismicity sample and of well-located WWSSN events from 1954 to 1980 onto a plane perpendicular to the trench axis shows a distinct gap between the shallow seismicity located by our array, and the deeper Wadati-Benioff zone seismicity located by the WWSSN. We tentatively ascribe this gap to inadequate sampling.-from Authors

  2. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture

    NASA Astrophysics Data System (ADS)

    Harbor, D. J.; Barnhart, W. D.

    2017-12-01

    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in the NE is consistent with regional uplift due to ball-and-socket rotations superimposed on the Hoshab fault. These results indicate that the styles of fault slip in the Makran change in time and space in response to ongoing convergence and block rotations despite negligible uplift during the 2013 earthquake.

  3. Shallow seismic reflection profiles and geological structure in the Benton Hills, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Hoffman, D.; Stephenson, W.J.; Odum, J.K.; Williams, R.A.

    1997-01-01

    During late May and early June of 1993, we conducted two shallow, high-resolution seismic reflection surveys (Mini-Sosie method) across the southern escarpment of the Benton Hills segment of Crowleys Ridge. The reflection profiles imaged numerous post-late Cretaceous faults and folds. We believe these faults may represent a significant earthquake source zone. The stratigraphy of the Benton Hills consists of a thin, less than about 130 m, sequence of mostly unconsolidated Cretaceous, Tertiary and Quaternary sediments which unconformably overlie a much thicker section of Paleozoic carbonate rocks. The survey did not resolve reflectors within the upper 75-100 ms of two-way travel time (about 60-100 m), which would include all of the Tertiary and Quaternary and most of the Cretaceous. However, the Paleozoic-Cretaceous unconformity (Pz) produced an excellent reflection, and, locally a shallower reflector within the Cretaceous (K) was resolved. No coherent reflections below about 200 ms of two-way travel time were identified. Numerous faults and folds, which clearly offset the Paleozoic-Cretaceous unconformity reflector, were imaged on both seismic reflection profiles. Many structures imaged by the reflection data are coincident with the surface mapped locations of faults within the Cretaceous and Tertiary succession. Two locations show important structures that are clearly complex fault zones. The English Hill fault zone, striking N30??-35??E, is present along Line 1 and is important because earlier workers indicated it has Pleistocene Loess faulted against Eocene sands. The Commerce fault zone striking N50??E, overlies a major regional basement geophysical lineament, and is present on both seismic lines at the southern margin of the escarpment. The fault zones imaged by these surveys are 30 km from the area of intense microseismicity in the New Madrid seismic zone (NMSZ). If these are northeast and north-northeast oriented fault zones like those at Thebes Gap they are favorably oriented in the modern stress field to be reactivated as right-lateral strike slip faults. Currently, earthquake hazards assessments are most dependent upon historical seismicity, and there are little geological data available to evaluate the earthquake potential of fault zones outside of the NMSZ. We anticipate that future studies will provide evidence that seismicity has migrated between fault zones well beyond the middle Mississippi Valley. The potential earthquake hazards represented by faults outside the NMSZ may be significant.

  4. Recent deformation on the San Diego Trough and San Pedro Basin fault systems, offshore Southern California: Assessing evidence for fault system connectivity.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.

    2016-12-01

    The seismic hazard posed by offshore faults for coastal communities in Southern California is poorly understood and may be considerable, especially when these communities are located near long faults that have the ability to produce large earthquakes. The San Diego Trough fault (SDTF) and San Pedro Basin fault (SPBF) systems are active northwest striking, right-lateral faults in the Inner California Borderland that extend offshore between San Diego and Los Angeles. Recent work shows that the SDTF slip rate accounts for 25% of the 6-8 mm/yr of deformation accommodated by the offshore fault network, and seismic reflection data suggest that these two fault zones may be one continuous structure. Here, we use recently acquired CHIRP, high-resolution multichannel seismic (MCS) reflection, and multibeam bathymetric data in combination with USGS and industry MCS profiles to characterize recent deformation on the SDTF and SPBF zones and to evaluate the potential for an end-to-end rupture that spans both fault systems. The SDTF offsets young sediments at the seafloor for 130 km between the US/Mexico border and Avalon Knoll. The northern SPBF has robust geomorphic expression and offsets the seafloor in the Santa Monica Basin. The southern SPBF lies within a 25-km gap between high-resolution MCS surveys. Although there does appear to be a through-going fault at depth in industry MCS profiles, the low vertical resolution of these data inhibits our ability to confirm recent slip on the southern SPBF. Empirical scaling relationships indicate that a 200-km-long rupture of the SDTF and its southern extension, the Bahia Soledad fault, could produce a M7.7 earthquake. If the SDTF and the SPBF are linked, the length of the combined fault increases to >270 km. This may allow ruptures initiating on the SDTF to propagate within 25 km of the Los Angeles Basin. At present, the paleoseismic histories of the faults are unknown. We present new observations from CHIRP and coring surveys at three locations where thin lenses of sediment mantle the SDTF, providing the ideal sedimentary record to constrain the timing of the most recent event. Characterizing the paleoseismic histories is a key step toward defining the extent and variability of past ruptures, which in turn, will improve maximum magnitude estimates for the SDTF and SPBF systems.

  5. Source character of microseismicity in the San Francisco Bay block, California, and implications for seismic hazard

    USGS Publications Warehouse

    Olson, J.A.; Zoback, M.L.

    1998-01-01

    We examine relocated seismicity within a 30-km-wide crustal block containing San Francisco Bay and bounded by two major right-lateral strike-slip fault systems, the Hayward and San Andreas faults, to determine seismicity distribution, source character, and possible relationship to proposed faults. Well-located low-level seismicity (Md ??? 3.0) has occurred persistently within this block throughout the recording interval (1969 to 1995), with the highest levels of activity occurring along or directly adjacent to (within ???5 km) the bounding faults and falling off toward the long axis of the bay. The total seismic moment release within the interior of the Bay block since 1969 is equivalent to one ML 3.8 earthquake, one to two orders of magnitude lower than activity along and within 5 km of the bounding faults. Focal depths of reliably located events within the Bay block are generally less than 13 km with most seismicity in the depth range of 7 to 12 km, similar to focal depths along both the adjacent portions of the San Andreas and Hayward faults. Focal mechanisms for Md 2 to 3 events within the Bay block mimic focal mechanisms along the adjacent San Andreas fault zone and in the East Bay, suggesting that Bay block is responding to a similar regional stress field. Two potential seismic source zones have been suggested within the Bay block. Our hypocentral depths and focal mechanisms suggest that a proposed subhorizontal detachment fault 15 to 18 km beneath the Bay is not seismically active. Several large-scale linear NW-trending aeromagnetic anomalies within the Bay block were previously suggested to represent large through-going subvertical fault zones. The two largest earthquakes (both Md 3.0) in the Bay block since 1969 occur near two of these large-scale linear aeromagnetic anomalies; both have subvertical nodal planes with right-lateral slip subparallel to the magnetic anomalies, suggesting that structures related to the anomalies may be capable of brittle failure. Geodetic, focal mechanism and seismicity data all suggest the Bay block is responding elastically to the same regional stresses affecting the bounding faults; however, continuous Holocene reflectors across the proposed fault zones suggest that if the magnetic anomalies represent basement fault zones, then these faults must have recurrence times one to several orders of magnitude longer than on the bounding faults.

  6. PV System Component Fault and Failure Compilation and Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  7. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  8. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  9. Mechanisms for landscape evolution: Correlations between topography, lithology, erosion, and rock uplift in the central Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Walsh, L. S.; Martin, A. J.; Ojha, T. P.; Fedenczuk, T.

    2009-12-01

    To investigate feedbacks between tectonics and erosion in the Himalaya-Tibet orogen we compare high resolution digital topography with detailed geologic maps of the Modi Khola valley in central Nepal. We examine the influence of lithologic contacts and structures on river steepness and concavity. The trace of the Bhanuwa fault, a large normal fault in Greater Himalayan rocks, coincides with the steepest location on the river profile where river steepness (ksn) reaches 884 m0.9. Transitions in ksn also occur at 1) the Romi fault, another normal fault, 2) within the Kuncha formation, 3) within Greater Himalayan rocks at the Formation I - Formation II boundary, and 4) between quartzite- and phyllite-rich parts of the Fagfog Formation. We assess mechanisms for ksn transitions on the Modi Khola by examining the influence of precipitation variability, glacial and landslide dams, tributary junctions, changes in lithology, and rock uplift on the topography. Although changes in lithology and/or landslide dams potentially explain all ksn extrema and transitions, these changes in river steepness consistently occur at normal faults suggesting possible recent motion on some of them. In detail, the Main Central thrust appears not to be the location of a major steepness change. Correlations of ksn with normal faults and lithologic contacts exhibit an important component of the landscape evolution process occurring in central Nepal and potentially other mountain belts.

  10. Magnetometric and gravimetric surveys in fault detection over Acambay System

    NASA Astrophysics Data System (ADS)

    García-Serrano, A.; Sanchez-Gonzalez, J.; Cifuentes-Nava, G.

    2013-05-01

    In commemoration of the centennial of the Acambay intraplate earthquake of November 19th 1912, we carry out gravimetric and magnetometric surveys to define the structure of faults caused by this event. The study area is located approximately 11 km south of Acambay, in the Acambay-Tixmadeje fault system, where we performed two magnetometric surveys, the first consisting of 17 lines with a spacing of 35m between lines and 5m between stations, and the second with a total of 12 lines with the same spacing, both NW. In addition to these two lines we performed gravimetric profiles located in the central part of each magnetometric survey, with a spacing of 25m between stations, in order to correlate the results of both techniques, the lengths of such profiles were of 600m and 550m respectively. This work describes the data processing including directional derivatives, analytical signal and inversion, by means of which we obtain results of magnetic variations and anomaly traits highly correlated with those faults. It is of great importance to characterize these faults given the large population growth in the area and settlement houses on them, which involves a high risk in the security of the population, considering that these are active faults and cannot be discard earthquakes associated with them, so it is necessary for the authorities and people have relevant information to these problem.

  11. Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Zhang, H.; Baher, S.; Ellsworth, W.

    2004-01-01

    We present results from the tomographic analysis of seismic data from the Parkfield area using three different inversion codes. The models provide a consistent view of the complex velocity structure in the vicinity of the San Andreas, including a sharp velocity contrast across the fault. We use the inversion results to assess our confidence in the absolute location accuracy of a potential target earthquake. We derive two types of accuracy estimates, one based on a consideration of the location differences from the three inversion methods, and the other based on the absolute location accuracy of "virtual earthquakes." Location differences are on the order of 100-200 m horizontally and up to 500 m vertically. Bounds on the absolute location errors based on the "virtual earthquake" relocations are ??? 50 m horizontally and vertically. The average of our locations places the target event epicenter within about 100 m of the SAF surface trace. Copyright 2004 by the American Geophysical Union.

  12. Faulting, Seismicity and Stress Interaction in the Salton Sea Region of Southern California

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.

    2009-12-01

    The Salton Sea region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal interaction of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton Sea transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton Sea reveal that the majority of faults under the southern Salton Sea trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton Sea. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between processes at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton Sea can modulate the stress field in the BSZ and along the SAF. These tests include exploring sensitivity of the results to parameter uncertainties. In general, we find rupture of the normal faults produces a butterfly pattern of static stress changes on the SAF with decreases along the southernmost portion below latitude 33.3±0.1 and increases on segments above these latitudes. Additionally, simulated ruptures on the normal faults predict optimally oriented sinistral faults that align with the “rungs” in the BSZ and optimally oriented dextral faults that are parallel to the SAF. Given these observations and results, we favor the scenario that normal faults beneath the Salton Sea accommodate most of the strain budget, rupturing as magnitude ~6.0-6.6 events every 100 years or so, and the consequent stress field generated within the relatively weak crust shapes the orientation of the short faults in the BSZ.

  13. Relocation of the 2012 Ms 7.0 Lushan Earthquake Aftershock Sequences and Its Implications

    NASA Astrophysics Data System (ADS)

    Fang, L.; Wu, J.; Sun, Z.; Su, J.; Du, W.

    2013-12-01

    At 08:02 am on 20 April 2013 (Beijing time), an Ms 7.0 earthquake occurred in Lushan County, Sichuan Province. Lushan earthquake is another devastating earthquake occurred in Sichuan Province after 12 May 2008 Ms 8.0 Wenchuan earthquake. 193 people were killed, 25 people were missing and more than ten thousand people were injured in the earthquake. Direct economic losses were estimated to be more than 80 billion yuan (RMB). Lushan earthquake occurred in the southern part of the Longmenshan fault zone. The distance between the epicenters of Lushan earthquake and Wenchuan earthquake is about 87 km. In an effort to maximize observations of the aftershock sequence and study the seismotetonic model, we deployed 35 temporal seismic stations around the source area. The earthquake was followed by a productive aftershock sequence. By the end of 20 July more than 10,254 aftershocks were recorded by the temporal seismic network. The magnitude of the aftershock ranges from ML-0.5 to ML5.6. We first located the aftershocks using Hypo2000 (Kevin, 2000) and refined the location results with HYPODD (Waldhauser & Ellsworth, 2000). The 1-D velocity model used in relocation is modified from a deep seismic sounding profile near Lushan earthquake (Wang et al., 2007). The Vp/Vs ratio is set to 1.83 according to receiver function h-k study. A total of 8,129 events were relocated. The average location error in N-S, E-W and U-D direction is 0.30, 0.29 and 0.59 km, respectively. The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width. The dominant distribution of the focal depth ranges from 10 to 20 km. A few earthquakes occurred in the shallow crust. Focal depth sections crossing the source area show that the seismogenic fault dips to the northwest, manifested itself as a listric thrust fault. The dip angle of the seismogenic fault is approximately 63° in the shallow crust, about 41° near the source of the mainshock, and about 17° at the bottom of the fault. The focal depths of 28 aftershocks with ML≥4.0 were determined using Himalaya Seismic Array and sPn phase. The focal depths obtained from sPn phase are consistent with HYPODD, which also reveals a northwest-dipping fault. Since the earthquake did not cause significant surface rupture, the seismogenic structure of Lushan earthquake remains controversial. On the basis of aftershock relocation results, we speculate that the seismogenic fault of Lushan earthquake may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault. The relocation results also reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape. We infer that it is a back thrust fault that often appears in a thrust fault system. Lushan earthquake triggered the seismic activity of the back thrust fault.

  14. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    NASA Astrophysics Data System (ADS)

    Prejean, Stephanie; Ellsworth, William; Zoback, Mark; Waldhauser, Felix

    2002-12-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (˜20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  15. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    USGS Publications Warehouse

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  16. Development of a Converter-Based Transmission Line Emulator with Three-Phase Short-Circuit Fault Emulation Capability

    DOE PAGES

    Zhang, Shuoting; Liu, Bo; Zheng, Sheng; ...

    2018-01-01

    A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less

  17. Development of a Converter-Based Transmission Line Emulator with Three-Phase Short-Circuit Fault Emulation Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuoting; Liu, Bo; Zheng, Sheng

    A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less

  18. A study of microseismicity in northern Baja California, Mexico

    NASA Technical Reports Server (NTRS)

    Johnson, T. L.; Koczynski, T.; Madrid, J.

    1976-01-01

    Five microearthquake instruments were operated for 2 months in 1974 in a small mobile array deployed at various sites near the Agua Blanca and San Miguel faults. An 80-km-long section of the San Miguel fault zone is presently active seismically, producing the vast majority of recorded earthquakes. Very low activity was recorded on the Agua Blanca fault. Events were also located near normal faults forming the eastern edge of the Sierra Juarez suggesting that these faults are active. Hypocenters on the San Miguel fault range in depth from 0 to 20 km although two-thirds are in the upper 10 km. A composite focal mechanism showing a mixture of right-lateral and dip slip, east side up, is similar to a solution obtained for the 1956 San Miguel earthquake which proved consistent with observed surface deformation.

  19. Infrared thermography based diagnosis of inter-turn fault and cooling system failure in three phase induction motor

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Naikan, V. N. A.

    2017-12-01

    Thermography has been widely used as a technique for anomaly detection in induction motors. International Electrical Testing Association (NETA) proposed guidelines for thermographic inspection of electrical systems and rotating equipment. These guidelines help in anomaly detection and estimating its severity. However, it focus only on location of hotspot rather than diagnosing the fault. This paper addresses two such faults i.e. inter-turn fault and failure of cooling system, where both results in increase of stator temperature. Present paper proposes two thermal profile indicators using thermal analysis of IRT images. These indicators are in compliance with NETA standard. These indicators help in correctly diagnosing inter-turn fault and failure of cooling system. The work has been experimentally validated for healthy and with seeded faults scenarios of induction motors.

  20. Tracer Transport Along a Vertical Fault Located in Welded Tuffs

    NASA Astrophysics Data System (ADS)

    Salve, R.; Liu, H.; Hu, Q.

    2002-12-01

    A near-vertical fault that intercepts the fractured welled tuff formation in the underground Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada, has provided a unique opportunity to evaluate important hydrological parameters associated with faults (e.g., flow velocity, matrix diffusion, fault-fracture-matrix interactions). Alcove 8, which intersects the fault is located in the cross drift of the ESF, has been excavated for liquid releases through this fault and a network of fractures. Located 25 m below Alcove 8 in the main drift of the ESF, Niche 3 which also intercepts the fault, serves as the site for monitoring the wetting front and for collecting seepage following liquid releases in Alcove 8. To investigate the importance of matrix diffusion and the extent of area subject to fracture-matrix interactions, we released a mix of conservative tracers (pentafluorobenzoic acid [PFBA] and lithium bromide [LiBr]) along the fault. The ceiling of Niche 3 was blanketed with an array of trays to capture seepage, and seepage rates were continuously monitored by a water collection system connected to the trays. Additionally, a water sampling device, the passive-discreet water sampler (PDWS), was connected to three of the collections trays in Niche 3 into which water was seeping. The PDWS, designed to isolate continuous seepage from each tray into discreet samples for chemical analysis, remained connected to the trays over a period of three months. During this time, all water that seeped into the three trays was captured sequentially into sampling bottles and analyzed for concentrations of PFBA and LiBr. Water released along the fault initially traveled the 25 m vertical distance over a period of 36 days (at a velocity ~0.7 m/day). The seepage recovered in Niche 3 was less than 10% of the injected water with significant spatial and temporal fluctuations in seepage rates. Along a fast flow path, the benzoic tracer (PFBA) and LiBr were first detected ~12 days after they were released into the fault. Along slower flow paths the tracers appeared ~ two weeks later, with PFBA preceding the LiB. The differing travel times of the two conservative tracers suggests the impact of matrix diffusion in the transport process. This work was supported by the Director, Office of Civilian Radioactive Waste Management, U.S. Department of Energy, through Memorandum Purchase Order EA9013MC5X between Bechtel SAIC Company, LLC, and the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab). The support is provided to Berkeley Lab through the U.S. Department of Energy Contract No. DE-AC03-76SF00098.

  1. Using focal mechanism solutions to correlate earthquakes with faults in the Lake Tahoe-Truckee area, California and Nevada, and to help design LiDAR surveys for active-fault reconnaissance

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Lindsay, R. D.

    2011-12-01

    Geomorphic analysis of hillshade images produced from aerial LiDAR data has been successful in identifying youthful fault traces. For example, the recently discovered Polaris fault just northwest of Lake Tahoe, California/Nevada, was recognized using LiDAR data that had been acquired by local government to assist land-use planning. Subsequent trenching by consultants under contract to the US Army Corps of Engineers has demonstrated Holocene displacement. The Polaris fault is inferred to be capable of generating a magnitude 6.4-6.9 earthquake, based on its apparent length and offset characteristics (Hunter and others, 2011, BSSA 101[3], 1162-1181). Dingler and others (2009, GSA Bull 121[7/8], 1089-1107) describe paleoseismic or geomorphic evidence for late Neogene displacement along other faults in the area, including the West Tahoe-Dollar Point, Stateline-North Tahoe, and Incline Village faults. We have used the seismo-lineament analysis method (SLAM; Cronin and others, 2008, Env Eng Geol 14[3], 199-219) to establish a tentative spatial correlation between each of the previously mentioned faults, as well as with segments of the Dog Valley fault system, and one or more earthquake(s). The ~18 earthquakes we have tentatively correlated with faults in the Tahoe-Truckee area occurred between 1966 and 2008, with magnitudes between 3 and ~6. Given the focal mechanism solution for a well-located shallow-focus earthquake, the nodal planes can be projected to Earth's surface as represented by a DEM, plus-or-minus the vertical and horizontal uncertainty in the focal location, to yield two seismo-lineament swaths. The trace of the fault that generated the earthquake is likely to be found within one of the two swaths [1] if the fault surface is emergent, and [2] if the fault surface is approximately planar in the vicinity of the focus. Seismo-lineaments from several of the earthquakes studied overlap in a manner that suggests they are associated with the same fault. The surface trace of both the Polaris fault and the Dog Valley fault system are within composite swaths defined by overlapping seismo-lineaments. Composite seismo-lineaments indicate that multiple historic earthquakes might be associated with a fault. This apparently successful correlation of earthquakes with faults in an area where geologic mapping is good suggests another use for SLAM in areas where fault mapping is incomplete, inadequate or made particularly difficult because of vegetative cover. If no previously mapped fault exists along a composite swath generated using well constrained focal mechanism solutions, the swath might be used to guide the design of a LiDAR survey in support of reconnaissance for the causative fault. The acquisition and geomorphic analysis of LiDAR data along a compound seismo-lineament swath might reveal geomorphic evidence of a previously unrecognized fault trace that is worthy of additional field study.

  2. Remotely-triggered Slip in Mexico City Induced by the September 2017 Mw=7.1 Puebla Earthquake.

    NASA Astrophysics Data System (ADS)

    Solano Rojas, D. E.; Havazli, E.; Cabral-Cano, E.; Wdowinski, S.

    2017-12-01

    Although the epicenter of the September 19th, 2017 Mw=7.1 Puebla earthquake is located 100 km from Mexico City, the earthquake caused severe destruction in the city, leading to life loss and property damage. Mexico City is built on a thick clay-rich sedimentary sequence and, hence, is susceptible to seismic acceleration during earthquakes. The sediment layer also causes land subsidence, at rates as high as 350 mm/yr, and surface faulting. The earthquake damage in the eastern part of the city, characterized by the collapse of several buildings, can be explained by seismic amplification. However, the damage in the southern part of the city, characterized by the collapse of small houses and surface faulting, requires a different explanation. We present here geodetic observations suggesting that the surface faulting in Mexico City triggered by the Puebla earthquake occurred in areas already experiencing differential displacements. Our study is based on Sentinel-1A satellite data from before and after the earthquake (September 17th and 29th, 2017). We process the data using Interferometric Synthetic Aperture Radar (InSAR) to produce a coseismic interferogram. We also identify phase discontinuities that can be interpreted as surface faulting using the phase gradient technique (Price and Sandwell, 1998). The results of our analysis reveal the locations and patterns of coseismic phase discontinuities, mainly in the piedmont of the Sierra de Santa Catarina, which agree with the location of earthquake's damage reported by official and unofficial sources (GCDMX, 2017; OSM, 2017). The observed phase discontinuities also agree well with the location of preexisting, subsidence-related faults identified during 10 years of field surveys (GCDMX, 2017) and coincide with differential displacements identified using a Fast Fourier Transform residual technique on high-resolution InSAR results from 2012 (Solano-Rojas et. al, 2017). We propose that the seismic energy released by the 2017 Mw=7.1 Puebla earthquake induced fast soil consolidation, which remotely triggered slip on the preexisting subsidence-related faults. The slip observed during this earthquake represents a hazard that needs to be considered in future urban development plans of Mexico City.

  3. Application of Subspace Detection to the 6 November 2011 M5.6 Prague, Oklahoma Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Benz, H.; Johnson, C. E.; Aster, R. C.; McNamara, D. E.

    2015-12-01

    Subspace detection is a powerful tool for the identification of small seismic events. Subspace detectors improve upon single-event matched filtering techniques by using multiple orthogonal waveform templates whose linear combinations characterize a range of observed signals from previously identified earthquakes. Subspace detectors running on multiple stations can significantly increasing the number of locatable events, lowering the catalog's magnitude of completeness and thus providing extraordinary detail on the kinematics of the aftershock process. The 6 November 2011 M5.6 earthquake near Prague, Oklahoma is the largest earthquake instrumentally recorded in Oklahoma history and the largest earthquake resultant from deep wastewater injection. A M4.8 foreshock on 5 November 2011 and the M5.6 mainshock triggered tens of thousands of detectable aftershocks along a 20 km splay of the Wilzetta Fault Zone known as the Meeker-Prague fault. In response to this unprecedented earthquake, 21 temporary seismic stations were deployed surrounding the seismic activity. We utilized a catalog of 767 previously located aftershocks to construct subspace detectors for the 21 temporary and 10 closest permanent seismic stations. Subspace detection identified more than 500,000 new arrival-time observations, which associated into more than 20,000 locatable earthquakes. The associated earthquakes were relocated using the Bayesloc multiple-event locator, resulting in ~7,000 earthquakes with hypocentral uncertainties of less than 500 m. The relocated seismicity provides unique insight into the spatio-temporal evolution of the aftershock sequence along the Wilzetta Fault Zone and its associated structures. We find that the crystalline basement and overlying sedimentary Arbuckle formation accommodate the majority of aftershocks. While we observe aftershocks along the entire 20 km length of the Meeker-Prague fault, the vast majority of earthquakes were confined to a 9 km wide by 9 km deep surface striking N54°E and dipping 83° to the northwest near the junction of the splay with the main Wilzetta fault structure. Relocated seismicity shows off-fault stress-related interaction to distances of 10 km or more from the mainshock, including clustered seismicity to the northwest and southeast of the mainshock.

  4. Stresses, deformation, and seismic events on scaled experimental faults with heterogeneous fault segments and comparison to numerical modeling

    NASA Astrophysics Data System (ADS)

    Buijze, Loes; Guo, Yanhuang; Niemeijer, André R.; Ma, Shengli; Spiers, Christopher J.

    2017-04-01

    Faults in the upper crust cross-cut many different lithologies, which cause the composition of the fault rocks to vary. Each different fault rock segment may have specific mechanical properties, e.g. there may be stronger and weaker segments, and segments prone to unstable slip or creeping. This leads to heterogeneous deformation and stresses along such faults, and a heterogeneous distribution of seismic events. We address the influence of fault variability on stress, deformation, and seismicity using a combination of scaled laboratory fault and numerical modeling. A vertical fault was created along the diagonal of a 30 x 20 x 5 cm block of PMMA, along which a 2 mm thick gouge layer was deposited. Gouge materials of different characteristics were used to create various segments along the fault; quartz (average strength, stable sliding), kaolinite (weak, stable sliding), and gypsum (average strength, unstable sliding). The sample assembly was placed in a horizontal biaxial deformation apparatus, and shear displacement was enforced along the vertical fault. Multiple observations were made: 1) Acoustic emissions were continuously recorded at 3 MHz to observe the occurrence of stick-slips (micro-seismicity), 2) Photo-elastic effects (indicative of the differential stress) were recorded in the transparent set of PMMA wall-rocks using a high-speed camera, and 3) particle tracking was conducted on a speckle painted set of PMMA wall-rocks to study the deformation in the wall-rocks flanking the fault. All three observation methods show how the heterogeneous fault gouge exerts a strong control on the fault behavior. For example, a strong, unstable segment of gypsum flanked by two weaker kaolinite segments show strong stress concentrations develop near the edges of the strong segment, with at the same time most of acoustic emissions being located at the edge of this strong segment. The measurements of differential stress, strain and acoustic emissions provide a strong means to compare the scaled experiment to modeling results. In a finite-element model we reproduce the laboratory experiments, and compare the modeled stresses and strains to the observations and we compare the nucleation of seismic instability to the location of acoustic emissions. The model aids in understanding how the stresses and strains may vary as a result of fault heterogeneity, but also as a result of the boundary conditions inherent to a laboratory setup. The scaled experimental setup and modeling results also provide a means explain and compare with observations made at a larger scale, for example geodetic and seismological measurements along crustal scale faults.

  5. Geologic map of the Sunshine 7.5' quadrangle, Taos County, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens and is preserved as poorly exposed fault scarps that cut lava flows of Ute Mountain volcano, north of the map area. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in relatively young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations.

  6. Snake River Plain Geothermal Play Fairway Analysis - Phase 1 KMZ files

    DOE Data Explorer

    John Shervais

    2015-10-10

    This dataset contain raw data files in kmz files (Google Earth georeference format). These files include volcanic vent locations and age, the distribution of fine-grained lacustrine sediments (which act as both a seal and an insulating layer for hydrothermal fluids), and post-Miocene faults compiled from the Idaho Geological Survey, the USGS Quaternary Fault database, and unpublished mapping. It also contains the Composite Common Risk Segment Map created during Phase 1 studies, as well as a file with locations of select deep wells used to interrogate the subsurface.

  7. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.

    2012-12-01

    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the SGFZ. Projection of this low-velocity zone to the surface location of the Frijoles strand suggests a 45° southwest dip on the fault. We also stacked the seismic data to generate a reflection image of the subsurface along the profile. Our seismic reflection image also shows evidence of a southwest-dipping main trace, as well as a second fault located approximately 183 m west of the main Frijoles strand. It appears that there is a component of reverse motion in the upper 200 m. Due to the presence of offset reflectors near the top of the image, we infer that faulting extends to the near surface, but the age of the most recent ruptures cannot be determined without additional paleoseismic investigations. The width and complexity (including reverse motion) of the faults inferred in our seismic images suggests that rupture and strong shaking may occur over a relatively wide area during the next large-magnitude earthquake on the Frijoles strand of the SGFZ.

  8. Geometry and earthquake potential of the shoreline fault, central California

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2013-01-01

    The Shoreline fault is a vertical strike‐slip fault running along the coastline near San Luis Obispo, California. Much is unknown about the Shoreline fault, including its slip rate and the details of its geometry. Here, I study the geometry of the Shoreline fault at seismogenic depth, as well as the adjacent section of the offshore Hosgri fault, using seismicity relocations and earthquake focal mechanisms. The Optimal Anisotropic Dynamic Clustering (OADC) algorithm (Ouillon et al., 2008) is used to objectively identify the simplest planar fault geometry that fits all of the earthquakes to within their location uncertainty. The OADC results show that the Shoreline fault is a single continuous structure that connects to the Hosgri fault. Discontinuities smaller than about 1 km may be undetected, but would be too small to be barriers to earthquake rupture. The Hosgri fault dips steeply to the east, while the Shoreline fault is essentially vertical, so the Hosgri fault dips towards and under the Shoreline fault as the two faults approach their intersection. The focal mechanisms generally agree with pure right‐lateral strike‐slip on the OADC planes, but suggest a non‐planar Hosgri fault or another structure underlying the northern Shoreline fault. The Shoreline fault most likely transfers strike‐slip motion between the Hosgri fault and other faults of the Pacific–North America plate boundary system to the east. A hypothetical earthquake rupturing the entire known length of the Shoreline fault would have a moment magnitude of 6.4–6.8. A hypothetical earthquake rupturing the Shoreline fault and the section of the Hosgri fault north of the Hosgri–Shoreline junction would have a moment magnitude of 7.2–7.5.

  9. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  10. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  11. Southeastern extension of the Lake Basin fault zone in south- central Montana: implications for coal and hydrocarbon exploration ( USA).

    USGS Publications Warehouse

    Robinson, L.N.; Barnum, B.E.

    1986-01-01

    The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors

  12. Implications of a localized zone of seismic activity near the Inner Piedmont-Blue Ridge boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S.; Powell, C.

    1994-03-01

    A small but distinct cluster of earthquake activity is located in Henderson County, NC, near the boundary of the Inner Piedmont and Blue Ridge physiographic provinces. Over twenty events have occurred within the cluster since 1776 and four had body-wave magnitudes exceeding 3.0. Average focal depth for instrumentally recorded events is 7.7 km. Epicenters plot within the Inner Piedmont, roughly 13 km from the surface expression of the Brevard fault zone. The reason for sustained earthquake activity in Henderson County is not known but the close spatial association of the events with the Brevard fault suggests a causal relationship. Themore » Brevard zone dips steeply to the SE and the events could be associated with the fault at depth. An even more intriguing possibility is that the events are associated with the intersection of the Brevard zone and the decollemont; this possibility is compatible with available information concerning the depth to the decollemont and the dip on the Brevard zone. An association of seismic activity with the Brevard zone at depth is supported by the presence of another small cluster of activity located in Rutherford County, NC. This cluster is located in the Inner Piedmont, roughly 30 km NE of the Henderson cluster and 16 km from the Brevard fault zone. Association of seismic activity with known faults is very rare in the eastern US and has implications for tectonic models and hazard evaluation. Additional research must be conducted to determine the feasibility that activity is associated with the Brevard zone.« less

  13. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  14. Aftershocks of microearthquakes as probes of the mechanics of rupture

    NASA Astrophysics Data System (ADS)

    Rubin, Allan M.

    2002-07-01

    Using a waveform cross-correlation technique, Rubin and Gillard [2000] obtained precise relative locations for 4300 0.5 < M < 3.5 earthquakes occurring along 50 km of the San Andreas fault. This study adds to that another 5000 earthquakes distributed along 10 km of the San Andreas fault and 20 km of the Calaveras fault. Errors in relative location are typically tens of meters for earthquakes separated by hundreds of meters and, after correcting for time-dependent station delays, meters for earthquakes separated by tens of meters. Along both faults, the minimum separation between consecutive earthquakes scales with magnitude in a manner consistent with a magnitude-independent stress drop. By treating each earthquake on the San Andreas as if it were a main shock, scaling the distances to all subsequent earthquakes by main shock size, and stacking the results, a ``composite'' aftershock sequence is produced that has many of the characteristics predicted by rate-and-state friction models. Projected onto the fault surface, these aftershocks outline a quasi-elliptical, roughly 4-MPa stress drop main shock elongate in the slip-parallel direction by ~40%. At the ends of the major axes of this ellipse over twice as many aftershocks occur to the NW than to the SE, an asymmetry attributed to the contrast in material properties across the fault. Unlike the San Andreas, the Calaveras fault exhibits little P wave velocity contrast and no discernible aftershock asymmetry; however, the earliest part of the aftershock sequence on the Calaveras might be truncated by the ~30-s ``blind'' time of the network following a triggering event.

  15. First-order and subsidiary faults controlling the time-space evolution of the Central Italy 2016 seismic sequence - a multi-source data detailed 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Lavecchia, Giusy; de nardis, Rita; Ferrarini, Federica; Cirillo, Daniele; Brozzetti, Francesco

    2017-04-01

    The Central Italy 2016 seismic sequence, with its three major events (24 August, Mw 6.0/6.2; 26 October Mw5.9/6.0; 30 October Mw6.5/6.6), activated a well-known active west-dipping extensional fault alignment of central Italy (Vettore-Gorzano faults, VEGO). Soon after the first event, based on geological, interferometric and at that moment available seismological data, a preliminary 3D fault model of VEGO was built. Such a model is here updated and improved at the light of a large amount of relocated earthquake data (time interval 24 August to 30 November 2016, 0.1≤ML ≤6.5, Chiaraluce at al., submitted to SRL) plus additional geological information. The 3D modeling was done using the software package MOVE from the Midland Valley. All the available data were taken into consideration (surface traces, fault-slip data, primary co-seismic surface fractures, geological maps and cross-sections, hypocentral locations and focal mechanisms of both background seismicity and seismic sequences). The VEGO geometric configuration did not substantially changed with respect to the previous model, but some additional structures involved in the sequence were reconstructed. In particular, four additional faults are well evident: a NE-dipping normal fault (dip-angle 50˚ ) antithetic to Vettore Fault, located at depths between 1 and 5 km; a WNW dipping plane (dip-angle 30˚ ) located at depth between 1 and 4 km within the Vettore footwall volume; this structure represents a splay of the late Miocene Sibillini thrust, which is evidently cross-cut and dislocated by the Vettore normal fault; a SW-dipping normal fault representing an unknown northward prosecution of the VEGO alignment, where since 26 October a relevant seismic activity was released; an unknown east-dipping low-angle detachment, where VEGO detaches at a depth of about 10-11 km. An uninterrupted microseismic activity has illuminated such a detachment not only during the overall sequence, but also in the previous months. At the light of the reconstructed geometric pattern integrated with the evidences of primary co-seismic fractures, it results evident that the Central Italy seismic sequence represents a "classic", although complex, intra-Apennine normal-faulting event, reactivating a long-term quiescent seismogenic alignment (e.g. VEGO). The reactivated and inverted compressional structures are confined at shallow depth within the Vettore footwall, and in no way control the major events of the sequence. Conversely, an important regional role is played by the east-dipping detachment. It represents the missing geometric link between the Altotiberina LANF of northern Umbria and the recently discovered LANF of Latium-Abruzzi.

  16. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    NASA Astrophysics Data System (ADS)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as representative of the VBFS behavior, a discussion on the fault system boundaries persistence, and on the significance of the repeated surface faulting at same location.

  17. The Proterozoic Mount Isa Fault Zone, northeastern Australia: is it really a ca. 1.9 Ga terrane-bounding suture?

    NASA Astrophysics Data System (ADS)

    Bierlein, Frank P.; Betts, Peter G.

    2004-09-01

    In marked contrast to Palaeoproterozoic Laurentia, the location of sutures and boundaries of discrete crustal fragments amalgamated during Palaeoproterozoic formation of the North Australian Craton remain highly speculative. Interpretations of suture locations have relied heavily on the analysis of regional geophysical datasets because of sparse exposure of rocks of the appropriate age. The Mount Isa Fault Zone has been interpreted as one such Palaeoproterozoic terrane-bounding suture. Furthermore, the coincidence of this fault zone with major shale-hosted massive sulphide Pb-Zn-Ag orebodies has led to speculations that trans-lithospheric faults may be an important ingredient for the development of this deposit type. This study has integrated geophysical and geochemical data to test the statute of the Mount Isa Fault as a terrane-bounding suture. Forward modelling of gravity data shows that basement rocks on either side of the Mount Isa Fault have similar densities. These interpretations are consistent with geochemical observations and Sm-Nd data that suggest that basement lithologies on either side of the Mount Isa Fault are geochemically and isotopically indistinguishable from each other, and that the Mount Isa Fault is unlikely to represent a suture zone that separates different Palaeoproterozoic terranes. Our data indicate that the crustal blocks on both sides of the Mount Isa Fault Zone must have been in within close proximity of each other since the Palaeoproterozoic, and that the Western Fold Belt was part of the (ancestral) North Australian Craton well before the ˜1.89-1.87 Ga Barramundi Orogeny. It appears that deep crustal variations in density may be related to the boundary between a shallowly west-dipping high-density mafic to ultramafic plate and low-density basement rocks. This interpretation in turn impacts on crustal-scale models for the development of shale-hosted massive sulphide Pb-Zn mineralisation, which do not require trans-lithospheric faults to tap deep-seated metal reservoirs and/or mantle plumbing systems. The approach applied herein demonstrates the value of multi-disciplinary investigations to the critical assessment of long-lived Proterozoic fault systems which, in the absence of methodical analysis, are commonly assumed to represent terrane-bounding sutures.

  18. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, H.W.; Sikora, R.F.

    1994-12-31

    Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identifiedmore » within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am{sup {minus}1} needed to produce the 400 nT low observed at the surface.« less

  19. Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.

    2015-12-01

    Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.

  20. Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data

    NASA Astrophysics Data System (ADS)

    Nie, Zhaosheng; Wang, Di-Jin; Jia, Zhige; Yu, Pengfei; Li, Liangfa

    2018-04-01

    On August 8, 2017, the Jiuzhaigou Mw 6.5 earthquake occurred in Sichuan province, southwestern China, along the eastern margin of the Tibetan Plateau. The epicenter is surrounded by the Minjiang, Huya, and Tazang Faults. As the seismic activity and tectonics are very complicated, there is controversy regarding the accurate location of the epicenter and the seismic fault of the Jiuzhaigou earthquake. To investigate these aspects, first, the coseismic deformation field was derived from Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) measurements. Second, the fault geometry, coseismic slip model, and Coulomb stress changes around the seismic region were calculated using a homogeneous elastic half-space model. The coseismic deformation field derived from InSAR measurements shows that this event was mainly dominated by a left-lateral strike-slip fault. The maximal and minimal displacements were approximately 0.15 m and - 0.21 m, respectively, along line-of-sight observation. The whole deformation field follows a northwest-trending direction and is mainly concentrated west of the fault. The coseismic slip is 28 km along the strike and 18 km along the dip. It is dominated by a left-lateral strike-slip fault. The average and maximal fault slip is 0.18 and 0.85 m, respectively. The rupture did not fully reach the ground surface. The focal mechanism derived from GPS and InSAR data is consistent with the kinematics and geometry of the Huya Fault. Therefore, we conclude that the northern section or the Shuzheng segment of the Huya Fault is the seismogenic fault. The maximal fault slip is located at 33.25°N and 103.82°E at a depth of 11 km, and the release moment is approximately 6.635 × 1018 Nm, corresponding to a magnitude of Mw 6.49, which is consistent with results reported by the US Geological Survey, Global Centroid Moment Tensor, and other researchers. The coseismic Coulomb stress changes enhanced the stress on the northwest and southeast edges of the northern extension of the Huya Fault. Seismic risks cannot be ignored in the future although aftershocks are fewer in number in these regions.[Figure not available: see fulltext.

  1. A fault injection experiment using the AIRLAB Diagnostic Emulation Facility

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Mangum, Scott; Scheper, Charlotte

    1988-01-01

    The preparation for, conduct of, and results of a simulation based fault injection experiment conducted using the AIRLAB Diagnostic Emulation facilities is described. An objective of this experiment was to determine the effectiveness of the diagnostic self-test sequences used to uncover latent faults in a logic network providing the key fault tolerance features for a flight control computer. Another objective was to develop methods, tools, and techniques for conducting the experiment. More than 1600 faults were injected into a logic gate level model of the Data Communicator/Interstage (C/I). For each fault injected, diagnostic self-test sequences consisting of over 300 test vectors were supplied to the C/I model as inputs. For each test vector within a test sequence, the outputs from the C/I model were compared to the outputs of a fault free C/I. If the outputs differed, the fault was considered detectable for the given test vector. These results were then analyzed to determine the effectiveness of some test sequences. The results established coverage of selt-test diagnostics, identified areas in the C/I logic where the tests did not locate faults, and suggest fault latency reduction opportunities.

  2. Cross-sections and maps showing double-difference relocated earthquakes from 1984-2000 along the Hayward and Calaveras faults, California

    USGS Publications Warehouse

    Simpson, Robert W.; Graymer, Russell W.; Jachens, Robert C.; Ponce, David A.; Wentworth, Carl M.

    2004-01-01

    We present cross-section and map views of earthquakes that occurred from 1984 to 2000 in the vicinity of the Hayward and Calaveras faults in the San Francisco Bay region, California. These earthquakes came from a catalog of events relocated using the double-difference technique, which provides superior relative locations of nearby events. As a result, structures such as fault surfaces and alignments of events along these surfaces are more sharply defined than in previous catalogs.

  3. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new outcrops in this area where the surface ruptures of the 1891 Nobi earthquake have not been known. These outcrops have active fault which cut the layer of terrace deposit and slope deposit to the bottom of present soil layer in common. At the locality of Ogotani outcrop, the humic layer which age is from14th century to 15th century by 14C age dating is deformed by the active fault. The vertical displacement of the humic layer is 0.8-0.9m and the terrace deposit layer below the humic layer is ca. 1.3m. For this reason and the existence of fain grain deposit including AT tephra (28ka) in the footwall of the fault, this fault movement occurred more than once since the last glacial age. We conclude that the surface rupture of Nukumi fault in the 1891 Nobi earthquake is continuous to 9km southeast of Nukumi pass. In other words, these findings indicate that there is 10km parallel overlap zone between the surface rupture of the southeastern end of Nukumi fault and the northwestern end of Neodani fault.

  4. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  5. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  6. Results of Gravity Fieldwork Conducted in March 2008 in the Moapa Valley Region of Clark County, Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Andreasen, Arne Dossing

    2008-01-01

    In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.

  7. Outward-dipping ring-fault structure at rabaul caldera as shown by earthquake locations.

    PubMed

    Mori, J; McKee, C

    1987-01-09

    The locations of a large number of earthquakes recorded at Rabaul caldera in Papua New Guinea from late 1983 to mid-1985 have produced a picture of this active caldera's structural boundary. The earthquake epicenters form an elliptical annulus about 10 kilometers long by 4 kilometers wide, centered in the southern part of the Rabaul volcanic complex. A set of events with well-constrained depth determinations shows a ring-fault structure that extends from the surface to a depth of about 4 kilometers and slopes steeply outward from the center of the caldera. This is the first geophysical data set that clearly outlines the orientation of an active caldera's bounding faults. This orientation, however, conflicts with the configuration of many other calderas and is not in keeping with currently preferred models of caldera formation.

  8. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  9. Low-angle normal faulting in the Basin and Range-Colorado Plateau transition zone during the January 3, 2011 Circleville, UT earthquake sequence

    NASA Astrophysics Data System (ADS)

    Gammans, Christine Naomi Louise

    On January 3, 2011, an Mw 4.5 earthquake occurred in the Tushar Mountains near Circleville, Utah (38.248°N, -112.329°W, 7.75 km depth, and origin time of 12:06:36.58). The Tushar Mountains are located in the transition zone between the stable Colorado Plateau (CP) to the east and the deforming Basin and Range (BR) province to the west. In this area, seismicity associated with the Intermountain Seismic Belt is relatively common. The University of Utah Seismograph Stations (UUSS) detected and located 97 aftershocks in the 33 weeks following the mainshock. On January 6, UUSS installed a portable station in the source region. Using three aftershocks recorded by the portable station as master events, including the largest (Mw 3.8), we relocated the mainshock/aftershock sequence. These refined locations were used as initial locations for the HypoDD method of Waldhauser and Ellsworth [2001] to produce a second, improved set of relocations. In addition to P- and S-arrival time picks, we used the lag-times from waveform cross-correlations as input to HypoDD. We analyzed the fault geometry apparent in the final locations by comparing them to known moment-tensor focal planes and by applying principal component analysis to measure the degree of planarity and orientation of the sequence as a whole. Additionally, using cross-correlation analysis, we identified aftershocks best suited for an empirical Green's function analysis of the mainshock and a strike-slip aftershock that occurred on January 6. From the events chosen by cross-correlation, we were able to obtain source-time functions that were used to obtain fault dimensions, stress drops, and evidence for or against directivity. Lastly, we determined focal mechanisms for ten of the events using first-motion methods. The results of the combined analyses indicate that the mainshock occurred on a low-angle normal fault and that the entire sequence occurred on at least two different fault planes.

  10. The role of inherited structures in the evolution of the Meknassy Basin, Central Tunisia, based on geological-geophysical transects

    NASA Astrophysics Data System (ADS)

    Haji, Taoufik; Zouaghi, Taher; Boukadi, Noureddine

    2014-08-01

    This paper uses seismic data, well data, and surface geologic data to present a detailed description of the Meknassy Basin in the Atlas fold and thrust belt of central Tunisia. These data reveal that the Meknassy Basin is bounded by major faults, along which Triassic evaporites have been intruded. The anticlines and synclines of the basin are delimited by two N-S main faults (the North-South Axis and the Sidi Ali Ben Oun fault) and are subdivided by associated N120° and N45° trending fault-related anticlines. The Meknassy Basin is characterized by brittle structures associated with a deep asymmetric geometry that is organized into depressions and uplifts. Halokinesis of Triassic evaporites began during the Jurassic and continued during the Cretaceous period. During extensional deformation, salt movement controlled the sediment accumulation and the location of pre-compressional structures. During compressional deformation, the remobilization of evaporites accentuated the folded uplifts. A zone of decollement is located within the Triassic evaporites. The coeval strike-slip motion along the bounding master faults suggests that the Meknassy Basin was initiated as a pull-apart basin with intrusion of Triassic evaporites. The lozenge structure of the basin was caused by synchronous movements of the Sidi Ali Ben Oun fault and the North-South Axis (sinistral wrench faults) with movement of NW-SE first-order dextral strike-slip faults. Sediment distribution and structural features indicate that a major tectonic inversion has occurred at least since Late Cretaceous and Cenozoic. The transpressional movements are marked by reverse faults and folds associated with unconformities and with remobilization of Triassic evaporites. The formation of different structural features and the evolution of the Meknassy Basin and its neighboring uplifts have been controlled by conjugate dextral and sinistral strike-slip movements and thrust displacement.

  11. Effects of Arabia-Eurasia Collision on Strike-slip Faults in Central Anatolia?

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Lefebvre, C.; Thomson, S. N.; Idleman, L.; Cosca, M. A.; Kaymakci, N.; Teyssier, C. P.; Umhoefer, P. J.

    2013-12-01

    The North and East Anatolian faults accommodate much of the tectonic escape of Anatolia in response to Arabia-Eurasia collision and building of the Turkish-Iranian plateau, but these structures formed <10 m.y. ago, at least 25 m.y. after the onset of collision at ~35 Ma. Some of the major strike-slip fault zones located between the North and East Anatolian faults have had long and complex histories of displacement. These faults have deformed, and in some cases exhumed, metamorphic massifs located between fault strands. One example is the Nigde Massif, which was initially exhumed in the Late Cretaceous, then reburied and reheated, along with its overlying sedimentary basin, to a depth of ~10 km at 30 × 5 Ma. Final exhumation and cooling occurred by ~15-17 Ma (massif margin) to ~12 Ma (structurally deepest levels). This depth-temperature-time-deformation history is tracked by a combination of thermobarometric methods, structural and stratigraphic analysis, and geo/thermochronometry (U-Pb zircon, monazite; 40Ar/39Ar hornblende, muscovite, biotite, K-feldspar; zircon and apatite fission-track in metamorphic rocks and basin deposits; and apatite (U-Th)/He). Recent mapping shows the presence of at least two oblique-thrust slices; the structurally higher one accounts for the resetting of detrital apatite fission track and AHe ages in the basin rocks as well as metamorphic apatite near the margin of the massif. The structurally deeper one cuts through the metamorphic basement and explains why mineral lineations and metamorphic assemblages are different along the eastern margin relative to those in the core of the massif. Although the timing of displacement has not been dated directly, low-T thermochronology age and modeling results document a perturbation at ~30 Ma, consistent with the idea that the Ecemis Fault of the Central Anatolian Fault Zone, and probably other pre-existing strike-slip faults in central Anatolia, experienced Late Eocene-Oligocene displacement in response to Arabia-Eurasia collision to the south and SE.

  12. Rupture preparation process controlled by surface roughness on meter-scale laboratory fault

    NASA Astrophysics Data System (ADS)

    Yamashita, Futoshi; Fukuyama, Eiichi; Xu, Shiqing; Mizoguchi, Kazuo; Kawakata, Hironori; Takizawa, Shigeru

    2018-05-01

    We investigate the effect of fault surface roughness on rupture preparation characteristics using meter-scale metagabbro specimens. We repeatedly conducted the experiments with the same pair of rock specimens to make the fault surface rough. We obtained three experimental results under the same experimental conditions (6.7 MPa of normal stress and 0.01 mm/s of loading rate) but at different roughness conditions (smooth, moderately roughened, and heavily roughened). During each experiment, we observed many stick-slip events preceded by precursory slow slip. We investigated when and where slow slip initiated by using the strain gauge data processed by the Kalman filter algorithm. The observed rupture preparation processes on the smooth fault (i.e. the first experiment among the three) showed high repeatability of the spatiotemporal distributions of slow slip initiation. Local stress measurements revealed that slow slip initiated around the region where the ratio of shear to normal stress (τ/σ) was the highest as expected from finite element method (FEM) modeling. However, the exact location of slow slip initiation was where τ/σ became locally minimum, probably due to the frictional heterogeneity. In the experiment on the moderately roughened fault, some irregular events were observed, though the basic characteristics of other regular events were similar to those on the smooth fault. Local stress data revealed that the spatiotemporal characteristics of slow slip initiation and the resulting τ/σ drop for irregular events were different from those for regular ones even under similar stress conditions. On the heavily roughened fault, the location of slow slip initiation was not consistent with τ/σ anymore because of the highly heterogeneous static friction on the fault, which also decreased the repeatability of spatiotemporal distributions of slow slip initiation. These results suggest that fault surface roughness strongly controls the rupture preparation process, and generally increases its complexity with the degree of roughness.

  13. Structural Analysis of Ogygis Rupes Lobate Scarp on Mars.

    NASA Astrophysics Data System (ADS)

    Herrero-Gil, A.; Ruiz, J.; Romeo, I.; Egea-González, I.

    2016-12-01

    Ogygis Rupes is a 200 kilometers long lobate scarp, striking N30ºE, with approximately 2km of maximum structural relief. It is located in Aonia Terra, in the southern hemisphere of Mars near the northeast margin of Argyre impact basin. Similar to other large lobate scarps on Mercury or Mars, it shows a roughly arcuate to linear form, and an asymmetric cross section with a steeply rising scarp face and a gently declining back scarp. This asymmetry suggests that Ogygis Rupes is the topographic expression of a ESE-vergent thrust fault. By using the Mars Orbiter Laser Altimeter data and the Mars imagery available we have measure the horizontal shortening on impact craters cross-cut by this lobate scarp to obtain a minimum value for the horizontal offset of the underling fault. Two complementary methods were used to estimate fault geometry parameters as fault displacement, dip angle and depth of faulting: (i) analyzing topographic profiles together with the horizontal shortening estimations from cross-cut craters to create balanced cross sections on the basis of the thrust fault propagation folding [1]; (ii) using a forward mechanical dislocation method [2], which predicts fault geometry by comparing model outputs with real topography. The significant size of the fault underlying this lobate scarp suggests that its detachment is located at a main rheological change, for which we have obtained a preliminary depth value of around 30 kilometers by the methods listed above. Estimates of the depth of faulting in similar lobate scarps [3] have been associated to the depth of the brittle-ductile transition. [1] Suppe (1983), Am. J. Sci., 283, 648-721; Seeber and Sorlien (2000), Geol. Soc. Am. Bull., 112, 1067-1079. [2] Toda et al. (1998) JGR, 103, 24543-24565. [3] i.e. Schultz and Watters (2001) Geophys. Res. Lett., 28, 4659-4662; Ruiz et al. (2008) EPSL, 270, 1-12; Egea-Gonzalez et al. (2012) PSS, 60, 193-198; Mueller et al. (2014) EPSL, 408, 100-109.

  14. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my, are located. The GIS based autocorrelation method, applied to the trace orientation, length, frequency, and spatial distribution for each age-defined fault set, revealed spatial homogeneity for each specific set. The results of the method of Moran`sI and Geary`s C show no spatial autocorrelation among the trend of the fault traces and their location. Our results suggest that while lineaments of similar age define a clustered pattern in each domain, the overall distribution pattern of lineaments with different ages seems to be non-uniform (random). The directional distribution analysis reveals a distinct range of variation for fault traces of different ages (i.e., some displaying ellipsis behavior). Among the Quaternary normal fault sets, the youngest lineament set (i.e., last 150 years) defines the greatest ellipticity (eccentricity) and the least lineaments distribution variation. The frequency rose diagram for the entire Quaternary normal faults, shows four major modes (around 360o, 330o, 300o, and 270o), and two minor modes (around 235 and 205).

  15. A Geophysical Study of the Cadell Fault Scarp for Earthquake Hazard Assessment in Southeast Australia

    NASA Astrophysics Data System (ADS)

    Collins, C. D.

    2004-12-01

    The historical record of seismicity in Australia is too short (less than 150 years) to confidently define seismic source zones, particularly the recurrence rates for large, potentially damaging earthquakes, and this leads to uncertainty in hazard assessments. One way to extend this record is to search for evidence of earthquakes in the landscape, including Quaternary fault scarps, tilt blocks and disruptions to drainage patterns. A recent Geoscience Australia compilation of evidence of Quaternary tectonics identified over one hundred examples of potentially recent structures in Australia, testifying to the fact that a greater hazard may exist from large earthquakes than is evident from the recorded history alone. Most of these structures have not been studied in detail and have not been dated, so the recurrence rate for damaging events is unknown. One example of recent tectonic activity lies on the Victoria-New South Wales border, where geologically recent uplift has resulted in the formation of the Cadell Fault Scarp, damming Australia's largest river, the Murray River, and diverting its course. The scarp extends along a north-south strike for at least 50 km and reaches a maximum height of about 13 metres. The scarp displaces sands and clays of the Murray Basin sediments which overlie Palaeozoic bedrock at a depth of 100 to 250 m. There is evidence that the river system has eroded the scarp and displaced the topographic expression away from the location where the fault, or faults, meets the surface. Thus, to locate potential sites for trenching which intersect the faults, Geoscience Australia acquired ground-penetrating radar, resistivity and multi-channel high-resolution seismic reflection and refraction data along traverses across the scarp. The seismic data were acquired using an IVI T15000 MiniVib vibrator operating in p-wave mode, and a 24-channel Stratavisor acquisition system. Four 10-second sweeps, with a frequency range of 10-240 Hz, were carried out every 10 m at each receiver location; the receivers comprised groups of four vertical component 10 Hz geophones. Additional sources were located at offsets of up to a kilometre to record refraction data from the basement. A hammer source was also used for comparison. As the resolution of the seismic data precludes imaging at very shallow depths, GPR and resistivity data were acquired at selected locations to sample the upper 3 metres. The data are currently being processed, and a synthesis of recent geophysical and geological investigations will be presented to describe the architecture of the Cadell Fault Scarp. The results will be used to constrain earthquake hazard assessments for the region and for south east Australia in general.

  16. Implications for stress changes along the Motagua fault and other nearby faults using GPS and seismic constraints on the M=7.3 2009 Swan Islands earthquake

    NASA Astrophysics Data System (ADS)

    Graham, S. E.; Rodriguez, M.; Rogers, R. D.; Strauch, W.; Hernandez, D.; Demets, C.

    2010-12-01

    The May 28, 2009 M=7.3 Swan Islands earthquake off the north coast of Honduras caused significant damage in the northern part of the country, including seven deaths. This event, the largest in the region for several decades, ruptured the offshore continuation of the Motagua-Polochic fault system, whose 1976 earthquake (located several hundred kilometers to the southwest of the 2009 epicenter) caused more than 23,000 deaths in Central America and left homeless 20% of Guatemala’s population. We use elastic half-space modeling of coseismic offsets measured at 39 GPS stations in Honduras, El Salvador, and Guatemala to better understand the slip source of the recent Swan Islands earthquake. Measured offsets range from .32 meters at a campaign site near the Motagua fault in northern Honduras to 4 millimeters at five continuous sites in El Salvador. Coulomb stress calculations based on the estimated distribution of coseismic slip will be presented and compared to earthquake focal mechanisms and aftershock locations determined from a portable seismic network that was installed in northern Honduras after the main shock. Implications of the Swan Islands rupture for the seismically hazardous Motagua-Polochic fault system will be described.

  17. Resonant slow fault slip in subduction zones forced by climatic load stress.

    PubMed

    Lowry, Anthony R

    2006-08-17

    Global Positioning System (GPS) measurements at subduction plate boundaries often record fault movements similar to earthquakes but much slower, occurring over timescales of approximately 1 week to approximately 1 year. These 'slow slip events' have been observed in Japan, Cascadia, Mexico, Alaska and New Zealand. The phenomenon is poorly understood, but several observations hint at the processes underlying slow slip. Although slip itself is silent, seismic instruments often record coincident low-amplitude tremor in a narrow (1-5 cycles per second) frequency range. Also, modelling of GPS data and estimates of tremor location indicate that slip focuses near the transition from unstable ('stick-slip') to stable friction at the deep limit of the earthquake-producing seismogenic zone. Perhaps most intriguingly, slow slip is periodic at several locations, with recurrence varying from 6 to 18 months depending on which subduction zone (or even segment) is examined. Here I show that such periodic slow fault slip may be a resonant response to climate-driven stress perturbations. Fault slip resonance helps to explain why slip events are periodic, why periods differ from place to place, and why slip focuses near the base of the seismogenic zone. Resonant slip should initiate within the rupture zone of future great earthquakes, suggesting that slow slip may illuminate fault properties that control earthquake slip.

  18. Transmission line relay mis-operation detection based on time-synchronized field data

    DOE PAGES

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less

  19. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.

    2002-01-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  20. Map and database of Quaternary faults and folds in Colombia and its offshore regions

    USGS Publications Warehouse

    Paris, Gabriel; Machette, Michael N.; Dart, Richard L.; Haller, Kathleen M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey (USGS) is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. Top date, the project has published fault and fold maps for Costa Rica (Montero and others, 1998), Panama (Cowan and others, 1998), Venezuela (Audemard and others, 2000), Bolovia/Chile (Lavenu, and others, 2000), and Argentina (Costa and others, 2000). The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.

  1. Deformation of the 2002 Denali Fault earthquakes, mapped by Radarsat-1 interferometry

    USGS Publications Warehouse

    Lu, Zhong; Wright, Tim; Wicks, Chuck

    2003-01-01

    The magnitude 7.9 earthquake that struck central Alaska on 3 November 2002 was the largest strike-slip earthquake in North America for more than 150 years. The earthquake ruptured about 340 km of the Denali Fault system with observed right-lateral offsets of up to 9 m [Eberhart-Phillips et al., 2003] (Figure l). The rupture initiated with slip on a previously unknown thrust fault, the 40-km-long Susitna Glacier Fault. The rupture propagated eastward for about 220 km along the right-lateral Denali Fault where right-lateral slip averaged ˜5 m, before stepping southeastward onto the Totschunda Fault for about 70 km, with offsets as large as 2 m. The 3 November earthquake was preceded by a magnitude 6.7 shock on 23 October—the Nenana Mountain Earthquake—which was located about 25 km to the west of the 3 November earthquake.

  2. Recurrence Interval and Event Age Data for Type A Faults

    USGS Publications Warehouse

    Dawson, Timothy E.; Weldon, Ray J.; Biasi, Glenn P.

    2008-01-01

    This appendix summarizes available recurrence interval, event age, and timing of most recent event data for Type A faults considered in the Earthquake Rate Model 2 (ERM 2) and used in the ERM 2 Appendix C analysis as well as Appendix N (time-dependent probabilities). These data have been compiled into an Excel workbook named Appendix B A-fault event ages_recurrence_V5.0 (herein referred to as the Appendix B workbook). For convenience, the Appendix B workbook is attached to the end of this document as a series of tables. The tables within the Appendix B workbook include site locations, event ages, and recurrence data, and in some cases, the interval of time between earthquakes is also reported. The Appendix B workbook is organized as individual worksheets, with each worksheet named by fault and paleoseismic site. Each worksheet contains the site location in latitude and longitude, as well as information on event ages, and a summary of recurrence data. Because the data has been compiled from different sources with different presentation styles, descriptions of the contents of each worksheet within the Appendix B spreadsheet are summarized.

  3. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia

    NASA Astrophysics Data System (ADS)

    Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry

    2005-04-01

    Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.

  4. A simulation of the San Andreas fault experiment

    NASA Technical Reports Server (NTRS)

    Agreen, R. W.; Smith, D. E.

    1973-01-01

    The San Andreas Fault Experiment, which employs two laser tracking systems for measuring the relative motion of two points on opposite sides of the fault, was simulated for an eight year observation period. The two tracking stations are located near San Diego on the western side of the fault and near Quincy on the eastern side; they are roughly 900 kilometers apart. Both will simultaneously track laser reflector equipped satellites as they pass near the stations. Tracking of the Beacon Explorer C Spacecraft was simulated for these two stations during August and September for eight consecutive years. An error analysis of the recovery of the relative location of Quincy from the data was made, allowing for model errors in the mass of the earth, the gravity field, solar radiation pressure, atmospheric drag, errors in the position of the San Diego site, and laser systems range biases and noise. The results of this simulation indicate that the distance of Quincy from San Diego will be determined each year with a precision of about 10 centimeters. This figure is based on the accuracy of earth models and other parameters available in 1972.

  5. Development of fluid overpressures in crustal faults and implications for earthquakes mechanics

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Armitage, Peter; Blake, Oshaine; Fabbri, Olivier

    2013-04-01

    The development and maintenance of fluid overpressures strongly influence the mechanical behavior of the crust and especially crustal fault zones. The mechanisms allowing fluid pressure build-up are still open questions, and their influence on tectonic and fault weakening processes remain unclear. The determination of the hydraulic and mechanical properties of crustal fault zone elements is a key aspect to improve our understanding of the fluid-tectonic interactions and more particularly the role of fluids in fault mechanics and earthquake triggering. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault-zone in the Ubaye-Argentera area (southeastern France). Previous studies showed that the fluids located in the fault zone developed overpressures between 7 and 26 MPa, that triggered intense seismic swarms (i.e. 16,000 events in 2003-2004) (Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012). The fault-zone studied here is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and minor muscovite. It exposes several anastomosed core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The permeability and elastic moduli of the host rock, damage zone and fault core were measured from plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a variation of the permeability values of one order of magnitude between host rock and fault zone and a decrease of 50% of the elastic properties between host rock and core zone. The heterogeneity of properties is related to the development of different microstructures across the fault-zone during the tectonic history. From these physical property values and the fault zone architecture, we analyze the effects of sudden mechanical loading on the development of fluid overpressures in fault-zone. To do this, we use a series of 1-D hydromechanical numerical models to show that sudden mechanical stress increase is a viable mechanism for fluid overpressuring in fault-zone with spatially-varying elastic and hydraulic properties. Based on these results, we discuss the implications for earthquake triggering.on crustal-scale faults.

  6. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    USGS Publications Warehouse

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  7. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, R.P.; Drake, R.M. II

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less

  8. Potential fault region detection in TFDS images based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Sun, Junhua; Xiao, Zhongwen

    2016-10-01

    In recent years, more than 300 sets of Trouble of Running Freight Train Detection System (TFDS) have been installed on railway to monitor the safety of running freight trains in China. However, TFDS is simply responsible for capturing, transmitting, and storing images, and fails to recognize faults automatically due to some difficulties such as such as the diversity and complexity of faults and some low quality images. To improve the performance of automatic fault recognition, it is of great importance to locate the potential fault areas. In this paper, we first introduce a convolutional neural network (CNN) model to TFDS and propose a potential fault region detection system (PFRDS) for simultaneously detecting four typical types of potential fault regions (PFRs). The experimental results show that this system has a higher performance of image detection to PFRs in TFDS. An average detection recall of 98.95% and precision of 100% are obtained, demonstrating the high detection ability and robustness against various poor imaging situations.

  9. Self-constrained inversion of microgravity data along a segment of the Irpinia fault

    NASA Astrophysics Data System (ADS)

    Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella

    2016-01-01

    A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.

  10. Digital Database of Recently Active Traces of the Hayward Fault, California

    USGS Publications Warehouse

    Lienkaemper, James J.

    2006-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Hayward Fault Zone, California. The mapped traces represent the integration of the following three different types of data: (1) geomorphic expression, (2) creep (aseismic fault slip),and (3) trench exposures. This publication is a major revision of an earlier map (Lienkaemper, 1992), which both brings up to date the evidence for faulting and makes it available formatted both as a digital database for use within a geographic information system (GIS) and for broader public access interactively using widely available viewing software. The pamphlet describes in detail the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map. [Last revised Nov. 2008, a minor update for 2007 LiDAR and recent trench investigations; see version history below.

  11. Seismic tomography of the area of the 2010 Beni-Ilmane earthquake sequence, north-central Algeria.

    PubMed

    Abacha, Issam; Koulakov, Ivan; Semmane, Fethi; Yelles-Chaouche, Abd Karim

    2014-01-01

    The region of Beni-Ilmane (District of M'sila, north-central Algeria) was the site of an earthquake sequence that started on 14 May 2010. This sequence, which lasted several months, was triggered by conjugate E-W reverse and N-S dextral faulting. To image the crustal structure of these active faults, we used a set of 1406 well located aftershocks events and applied the local tomography software (LOTOS) algorithm, which includes absolute source location, optimization of the initial 1D velocity model, and iterative tomographic inversion for 3D seismic P- and S-wave velocities (and the Vp/Vs ratio), and source parameters. The patterns of P-wave low-velocity anomalies correspond to the alignments of faults determined from geological evidence, and the P-wave high-velocity anomalies may represent rigid blocks of the upper crust that are not deformed by regional stresses. The S-wave low-velocity anomalies coincide with the aftershock area, where relatively high values of Vp/Vs ratio (1.78) are observed compared with values in the surrounding areas (1.62-1.66). These high values may indicate high fluid contents in the aftershock area. These fluids could have been released from deeper levels by fault movements during earthquakes and migrated rapidly upwards. This hypothesis is supported by vertical sections across the study area show that the major Vp/Vs anomalies are located above the seismicity clusters.

  12. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.

  13. Numerical simulation of the stress distribution in a coal mine caused by a normal fault

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Wu, Jiwen; Zhai, Xiaorong

    2017-06-01

    Luling coal mine was used for research using FLAC3D software to analyze the stress distribution characteristics of the two sides of a normal fault zone with two different working face models. The working faces were, respectively, on the hanging wall and the foot wall; the two directions of mining were directed to the fault. The stress distributions were different across the fault. The stress was concentrated and the influenced range of stress was gradually larger while the working face was located on the hanging wall. The fault zone played a negative effect to the stress transmission. Obviously, the fault prevented stress transmission, the stress concentrated on the fault zone and the hanging wall. In the second model, the stress on the two sides decreased at first, but then increased continuing to transmit to the hanging wall. The concentrated stress in the fault zone decreased and the stress transmission was obvious. Because of this, the result could be used to minimize roadway damage and lengthen the time available for coal mining by careful design of the roadway and working face.

  14. Mixed-Mode Slip Behavior of the Altotiberina Low-Angle Normal Fault System (Northern Apennines, Italy) through High-Resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo

    2017-12-01

    We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.

  15. Why is the central area of the Alburni Mts in southern Italy so full of caves?

    NASA Astrophysics Data System (ADS)

    Cafaro, Simona; Gueguen, Erwan; Parise, Mario; Schiattarella, Marcello

    2016-04-01

    The Alburni Mts represent one of the most important karst area of southern Italy, with about 250 registered caves. Located in the southern Apennines, they constitute an impressive carbonate massif within the Mesozoic-Cenozoic Campania-Lucania platform. The study area is located inside the National Park of Cilento, Vallo di Diano and Alburni, and is bounded by two major rivers: the Calore and Tanagro rivers. This area has been repeatedly affected during Pleistocene by the activity of a regional, partly blind, NW-SE-striking fault system responsible for several huge earthquakes. The massif is limited to the north by an important normal fault zone (Alburni Line), whereas towards the E-SE it is bounded by a complex fault system linking the Alburni Mts to the Maddalena Mts across the Auletta basin and the Vallo di Diano valley. The entire massif is structured by NW-SE trending transtensional faults delimiting half-graben basins, and offset also by NE-SW trending faults. In particular, structural and geomorphological data have shown that the central area of the calcareous ridge is characterized by a relative structural low rhombic-shaped in planimetric view. Approximately 180 karst caves of the known 250, including some of the most significant from a speleological viewpoint, are located in this area. Is this simply due to repeated exploration activity in the last 25 years in this specific sector or might it be related to geological matter? New morphometric and structural data suggest that a relevant transversal structure, consisting of a complex NE-SW fault system, responsible for the genesis of the downthrown area in the central sector of the flat-topped ridge, was able to create the tectonic framework for the development of a great number of karst caves which present peculiar features and hydrological behaviour due to such structural controls. In this contribution we present and discuss these data, aimed at contributing to increase the knowledge on an area of sure karst and speleological interest.

  16. Structural features of the Pernicana Fault (M. Etna, Sicily, Italy) inferred by high precise location of the microseismicity

    NASA Astrophysics Data System (ADS)

    Alparone, S.; Gambino, S.; Mostaccio, A.; Spampinato, S.; Tuvè, T.; Ursino, A.

    2009-04-01

    The north-eastern flank of Mt. Etna is crossed by an important and active tectonic structure, the Pernicana Fault having a mean strike WNW-ESE. It links westward to the active NE Rift and seems to have an important role in controlling instability processes affecting the eastern flank of the volcano. Recent studies suggest that Pernicana Fault is very active through sinistral, oblique-slip movements and is also characterised by frequent shallow seismicity (depth < 2 km bsl) on the uphill western segment and by remarkable creeping on the downhill eastern one. The Pernicana Fault earthquakes, which can reach magnitudes up to 4.2, sometimes with coseismic surface faulting, caused severe damages to tourist resorts and villages along or close this structure. In the last years, a strong increase of seismicity, also characterized by swarms, was recorded by INGV-CT permanent local seismic network close the Pernicana Fault. A three-step procedure was applied to calculate precise hypocentre locations. In a first step, we chose to apply cross-correlation analysis, in order to easily evaluate the similarity of waveforms useful to identify earthquakes families. In a second step, we calculate probabilistic earthquake locations using the software package NONLINLOC, which includes systematic, complete grid search and global, non-linear search methods. Subsequently, we perform relative relocation of correlated event pairs using the double-difference earthquake algorithm and the program HypoDD. The double-difference algorithm minimizes the residuals between observed and calculated travel time difference for pairs of earthquakes at common stations by iteratively adjusting the vector difference between the hypocenters. We show the recognized spatial seismic clusters identifying the most active and hazarding sectors of the structure, their geometry and depth. Finally, in order to clarify the geodynamic framework of the area, we associate these results with calculated focal mechanisms for the most energetic earthquakes.

  17. Earthquake-triggered liquefaction in Southern Siberia and surroundings: a base for predictive models and seismic hazard estimation

    NASA Astrophysics Data System (ADS)

    Lunina, Oksana

    2016-04-01

    The forms and location patterns of soil liquefaction induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in 1950 through 2014 have been investigated, using field methods and a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. Statistical analysis of the data has revealed regional relationships between the magnitude (Ms) of an earthquake and the maximum distance of its environmental effect to the epicenter and to the causative fault (Lunina et al., 2014). Estimated limit distances to the fault for the Ms = 8.1 largest event are 130 km that is 3.5 times as short as those to the epicenter, which is 450 km. Along with this the wider of the fault the less liquefaction cases happen. 93% of them are within 40 km from the causative fault. Analysis of liquefaction locations relative to nearest faults in southern East Siberia shows the distances to be within 8 km but 69% of all cases are within 1 km. As a result, predictive models have been created for locations of seismic liquefaction, assuming a fault pattern for some parts of the Baikal rift zone. Base on our field and world data, equations have been suggested to relate the maximum sizes of liquefaction-induced clastic dikes (maximum width, visible maximum height and intensity index of clastic dikes) with Ms and local shaking intensity corresponding to the MSK-64 macroseismic intensity scale (Lunina and Gladkov, 2015). The obtained results make basis for modeling the distribution of the geohazard for the purposes of prediction and for estimating the earthquake parameters from liquefaction-induced clastic dikes. The author would like to express their gratitude to the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences for providing laboratory to carry out this research and Russian Scientific Foundation for their financial support (Grant 14-17-00007).

  18. Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation

    NASA Astrophysics Data System (ADS)

    Licciardi, A.; Eken, T.; Taymaz, T.; Piana Agostinetti, N.; Yolsal-Çevikbilen, S.

    2018-04-01

    We investigate the crustal seismic structure and anisotropy around the central portion of the North Anatolian Fault Zone, a major plate boundary, using receiver function analysis. The characterization of crustal seismic anisotropy plays a key role in our understanding of present and past deformation processes at plate boundaries. The development of seismic anisotropy in the crust arises from the response of the rocks to complicated deformation regimes induced by plate interaction. Through the analysis of azimuthally-varying signals of teleseismic receiver functions, we map the anisotropic properties of the crust as a function of depth, by employing the harmonic decomposition technique. Although the Moho is located at a depth of about 40 km, with no major offset across the area, our results show a clear asymmetric distribution of crustal properties between the northern and southern blocks, divided by the North Anatolian Fault Zone. Heterogeneous and strongly anisotropic crust is present in the southern block, where complex intra-crustal signals are the results of strong deformation. In the north, a simpler and weakly anisotropic crust is typically observed. The strongest anisotropic signal is located in the first 15 km of the crust and is widespread in the southern block. Stations located on top of the main active faults in the area indicate the highest amplitudes, together with fault-parallel strikes of the fast plane of anisotropy. We interpret the origin of this signal as due to structure-induced anisotropy, and roughly determine its depth extent up to 15-20 km for these stations. Away from the faults, we suggest the contribution of previously documented uplifted basement blocks to explain the observed anisotropy at upper and middle crustal depths. Finally, we interpret coherent NE-SW orientations below the Moho as a result of frozen-in anisotropy in the upper mantle, as suggested by previous studies.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian, E-mail: andridn104@gmail.com; Widiyantoro, Sri; Shiddiqi, Hasbi Ash

    Indonesian archipelago region is located in active tectonic setting and high seismicity zone. During the last decade, Indonesian was experienced with destructive major earthquakes causing damage and victims. The information of precise earthquake location parameters are very important in partular for earthquake early warning to the society and for advance seismic studies. In this study, we attempted to improve hypocenter location compiled by BMKG for time periods of April, 2009 up to June, 2014 for about 22,000 earthquake events around Indonesian region. For the firts time, we applied teleseismic double-difference relocation algorithm (teletomoDD) to improve hypocenter region in Indonesia regionmore » combining regional and teleseismic stations. Hypocenter relocation was performed utilizing local, regional, and teleseismic P-wave arrival time data. Our relocation result show that travel-time RMS errors were greatly reduced compared to the BMKG catalog. Seismicity at shallower depth (less than 50 km) shows significantly improvement especially in depth, and refined shallow geological structures, e.g. trench and major strike slip faults. Clustered seismicity is also detected beneath volcanic region, and probably related volcano activities and also major faults nearby. In the Sunda arc region, seismicity at shallower depth centered at two major distributions parallel to the trench strike direction, i.e. around fore-arc and in mainland that related to major fault, e.g. the Sumatran fault, and volcanic fronts. Below Central Java region, relocated hypocenter result showed double seismic zone pattern. A seismic gap is detected around the Sunda-Banda transition zone where transition between oceanic subduction to continental crust collision of Australian plate occurs. In Eastern Indonesia region, shallow earthquakes are observed related to major strike slip faults, e.g. Sorong and Palu-Koro fault, volcanism, and shallow part of subduction and collision zones. We also compare our result in the Sunda Arc region with slab1.0 model and our relocated seismicity shows good agreement with the previous slab geometry. Horizontal position shift of relocated events are mostly perpendicular to the trench directions.« less

  20. Paleoseismological Study of the Eastern Part of Venta de Bravo Fault, Acambay Graben, Central Mexico

    NASA Astrophysics Data System (ADS)

    León Loya, R. A.; Lacan, P.; Ortuňo, M.; Ana Paula, H.; Štěpančíková, P.; Stemberk, J.; Zuniga, R. R.; Aguirre-Diaz, G. J.

    2016-12-01

    Intraplate earthquakes represent a significant risk to the cities located within the central part of the Transmexican Volcanic Belt as illustrated by the 1912 6.9 Mw Acambay earthquake. The epicenter was located 80 km northeast from Mexico City. The Acambay Graben is a part of a tectonic active intra-arc graben and bounded to the north by the 42 km south-dipping Acambay-Tixmadejé fault and to the south by the 73 km north-dipping Pastores (PF) and Venta de Bravo fault (VBF) zone. This last fault system has been linked to a 5.3 mb earthquake in 1979. In this study four trenches were dug exposing volcanic deposits, fluvio-lacustrine sediments, colluvial deposits and paleosols in the eastern part of the Venta de Bravo fault. We present evidence for two paleoearthquakes in the last 30 ka. The correlation of the events identified in a previous work in the western tip of the PF and our results in the eastern tip of the VBF is still an open question. However, using empirical relationships the expected maximum magnitude for joint rupture of these two faults with a 73 km trace is Mw=7, this magnitude is above the average of magnitudes estimations done in the other seismogenic sources in the region studied before, suggesting that the south border of the graben could be one of the most dangerous seismogenic source in the surrounding area of Mexico City.

  1. A structural scheme proposal derived from geophysical data in the epicentral area of the Boumerdes (Algeria) earthquake of May 21, 2003

    NASA Astrophysics Data System (ADS)

    Samai, Saddek; Idres, Mouloud; Ouyed, Merzouk; Bourmatte, Amar; Boughacha, Mohamed Salah; Bezzeghoud, Mourad; Borges, José Fernando

    2017-09-01

    In this study, we processed and interpreted gravity and aeromagnetic data of the epicentral area of the Boumerdes earthquake (May 21, 2003). The joint interpretation of both data allowed the development of a structural scheme that shows the basement undulations offshore and onshore. The shape of the eastern part of the Mitidja Basin is better defined; its northern edge is represented by a large ;sub-circular; uplifted basement located offshore. The rise of this basement indicates that this basin does not extend towards the sea. At the eastern part of the study area, aeromagnetic data have revealed that the Sid-Ali-Bounab basement is individualized in a ;sub-circular; shape, while the Dellys basement, located in the NE part, is elongated in the NE-SW direction and extends offshore. The aeromagnetic data also highlighted two EW basement uplifts which divide Isser depression into three parts. The northern part of this depression extends offshore. The southernmost uplift is an extension of the Thenia Fault (TF), suggesting the continuity of this fault to the east. It is important to note that the active Reghaia Fault (RF), which runs through the Boudouaou and Reghaia urban centers, is bounded by two faults suggesting that its length does not exceed 12 km. Moreover, alluvial terraces observed west of the active Zemmouri Fault (ZF) are in agreement with the reverse component of this fault.

  2. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 5–24, San Andreas Fault Zone, southern California (2010–2012)

    USGS Publications Warehouse

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2015-08-24

    The Frazier Mountain paleoseismic site is located within the northern Big Bend of the southern San Andreas Fault (lat 34.8122° N., lon 118.9034° W.), in a small structural basin formed by the fault (fig. 1). The site has been the focus of over a decade of paleoseismic study due to high stratigraphic resolution and abundant dateable material. Trench 1 (T1) was initially excavated as a 50-m long, fault-perpendicular trench crossing the northern half of the basin (Lindvall and others, 2002; Scharer and others, 2014a). Owing to the importance of a high-resolution trench site at this location on a 200-km length of the fault with no other long paleoseismic records, later work progressively lengthened and deepened T1 in a series of excavations, or cuts, that enlarged the original excavation. Scharer and others (2014a) provide the photomosaics and event evidence for the first four cuts, which largely show the upper section of the site, represented by alluvial deposits that date from about A.D. 1500 to present. Scharer and others (2014b) discuss the earthquake evidence and dating at the site within the context of prehistoric rupture lengths and magnitudes on the southern San Andreas Fault. Here we present the photomosaics and event evidence for a series of cuts from the lower section, covering sediments that were deposited from about A.D. 500 to 1500 (fig. 2).

  3. Microearthquake detection at 2012 M4.9 Qiaojia earthquake source area , the north of the Xiaojiang Fault in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, H.; Zhou, S.; Yan, C.

    2016-12-01

    We perform a comprehensive analysis in Yunnan area based on continuous seismic data of 38 stations of Qiaojia Network in Xiaojiang Fault from 2012.3 to 2015.2. We use an effective method: Match and Locate (M&L, Zhang&Wen, 2015) to detect and locate microearthquakes to conduct our research. We first study dynamic triggering around the Xiaojiang Fault in Yunnan. The triggered earthquakes are identified as two impulsive seismic arrivals in 2Hz-highpass-filtered velocity seismograms during the passage of surface waves of large teleseismic earthquakes. We only find two earthquakes that may have triggered regional earthquakes through inspecting their spectrograms: Mexico Mw7.4 earthquake in 03/20/2012 and El Salvador Mw7.3 earthquake in 10/14/2014. To confirm the two earthquakes are triggered instead of coincidence, we use M&L to search if there are any repeating earthquakes. The result of the coefficients shows that it is a coincidence during the surface waves of El Salvador earthquake and whether 2012 Mexico have triggered earthquake is under discussion. We then visually inspect the 2-8Hz-bandpass-filterd velocity envelopes of these years to search for non-volcanic tremor. We haven't detected any signals similar to non-volcanic tremors yet. In the following months, we are going to study the 2012 M4.9 Qiaojia earthquake. It occurred only 30km west of the epicenter of the 2014 M6.5 Ludian earthquake. We use Match and Locate (M&L) technique to detect and relocate microearthquakes that occurred 2 days before and 3 days after the mainshock. Through this, we could obtain several times more events than listed in the catalogs provided by NEIC and reduce the magnitude of completeness Mc. We will also detect microearthquakes along Xiaojiang Fault using template earthquakes listed in the catalogs to learn more about fault shape and other properties of Xiaojiang Fault. Analyzing seismicity near Xiaojiang Fault systematically may cast insight on our understanding of the features of its nearby faults, geological structure in this area and rupture process of the typical earthquake. We will also try to compare its features with 2014 M6.5 Ludian earthquake.

  4. Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany

    NASA Astrophysics Data System (ADS)

    Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.

    2012-04-01

    3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and faults in the resulting grid of parallel balanced sections are then interpolated into a gOcad model containing stratigraphic boundaries and faults as triangulated surfaces. The interpolation is also controlled by borehole data located off the sections and the surface traces of stratigraphic boundaries. We have written customized scripts to largely automatize this step, with particular attention to a seamless fit between stratigraphic surfaces and fault planes which share the same nodes and segments along their contacts. Additional attention was paid to the creation of a uniform triangulated grid with maximized angles. This ensures that uniform triangulated volumes can be created for further use in numerical flow modelling. An as yet unsolved problem is the implementation of the fault zones and their hydraulic properties in a large-scale model of the entire basin. Short-wavelength folds and subsidiary faults control which aquifers and seals are juxtaposed across the fault zones. It is impossible to include these structures in the regional model, but neglecting them would result in incorrect assessments of hydraulic links or barriers. We presently plan to test and calibrate the hydraulic properties of the fault zones in smaller, high-resolution models and then to implement geometrically simple "equivalent" fault zones with appropriate, variable transmissivities between specific aquifers.

  5. The 2011 Hawthorne, Nevada, Earthquake Sequence; Shallow Normal Faulting

    NASA Astrophysics Data System (ADS)

    Smith, K. D.; Johnson, C.; Davies, J. A.; Agbaje, T.; Knezevic Antonijevic, S.; Kent, G.

    2011-12-01

    An energetic sequence of shallow earthquakes that began in early March 2011 in western Nevada, near the community of Hawthorne, has slowly decreased in intensity through mid-2011. To date about 1300 reviewed earthquake locations have been compiled; we have computed moment tensors for the larger earthquakes and have developed a set of high-precision locations for all reviewed events. The sequence to date has included over 50 earthquakes ML 3 and larger with the largest at Mw 4.6. Three 6-channel portable stations configured with broadband sensors and accelerometers were installed by April 20. Data from the portable instruments is telemetered through NSL's microwave backbone to Reno where it is integrated with regional network data for real-time notifications, ShakeMaps, and routine event analysis. The data is provided in real-time to NEIC, CISN and the IRIS DMC. The sequence is located in a remote area about 15-20 km southwest of Hawthorne in the footwall block of the Wassuk Range fault system. An initial concern was that the sequence might be associated with volcanic processes due to the proximity of late Quaternary volcanic flows; there have been no volcanic signatures observed in near source seismograms. An additional concern, as the sequence has proceeded, was a clear progression eastward toward the Wassuk Range front fault. The east dipping range bounding fault is capable of M 7+ events, and poses a significant hazard to the community of Hawthorne and local military facilities. The Hawthorne Army Depot is an ordinance storage facility and the nation's storage site for surplus mercury. The sequence is within what has been termed the 'Mina Deflection' of the Central Walker Lane Belt. Faulting along the Whiskey Flat section of the Wassuk front fault would be primarily down-to-the-east, with an E-W extension direction; moment tensors for the 2011 earthquake show a range of extension directions from E-W to NW-SE, suggesting a possible dextral component to the Wassuk Range front fault at this latitude. At least two faults have been imaged within the sequence; these structures are at shallow depth (3-6 km), strike NE, and dip ~NW. Prior to temporary station installation event depths were poorly constrained, with the nearest network station 25 km from the source area. Early sequence moment tensor solutions show depths are on the order of 2-6 km and locations using the near source stations also confirm the shallow depths of the Hawthorne sequence. S-P times of 0.5 sec and less have been observed on a near-source station, illustrating extremely shallow source depths for some events. Along with the 2011 Hawthorne activity, very shallow depths in Nevada have been observed from near source stations in the 2008 west Reno earthquake sequence (primarily strike-slip faulting; main shock Mw 5.0) and the 1993 Rock Valley sequence in southern NNSS (strike-slip faulting; main shock Mw 4.0). These shallow sequences tend to include high rates of low magnitude earthquakes continuing over several months duration.

  6. Association of the 1886 Charleston, South Carolina, earthquake and seismicity near Summervile with a 12º bend in the East Coast fault system and triple-fault junctions

    USGS Publications Warehouse

    Marple, R.; Miller, R.

    2006-01-01

    Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.

  7. Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Aydin, Orhun; Caers, Jef Karel

    2017-08-01

    Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed methodology generates realistic fault network models conditioned to data and a conceptual model of the underlying tectonics.

  8. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.

    2010-01-01

    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as a negative flower structure. This structure implies some continuing strike slip on the Silver Creek Fault in the late Quaternary as well, with a transtensional component but no dip slip. Our only basis for estimating the rate of this later Quaternary strike slip on the Silver Creek Fault is to assume continuation of the inferred early Quaternary rate of less than 2 mm/yr. Faulting evident in a detailed seismic reflection profile across the Silver Creek Fault extends up to the limit of data at a depth of 50 m and age of about 140 ka, and the course of Coyote Creek suggests Holocene capture in a structural depression along the fault. No surface trace is evident on the alluvial plain, however, and convincing evidence of Holocene offset is lacking. Few instrumentally recorded earthquakes are located near the fault, and those that are near its southern end represent cross-fault shortening, not strike slip. The fault might have been responsible, however, for two poorly located moderate earthquakes that occurred in the area in 1903. Its southeastern end does mark an abrupt change in the pattern of abundant instrumentally recorded earthquakes along the Calaveras Fault-in both its strike and in the depth distribution of hypocenters-that could indicate continuing influence by the Silver Creek Fault. In the absence of convincing evidence to the contrary, and as a conservative estimate, we presume that the Silver Creek Fault has continued its strike-slip movement through the Holocene, but at a very slow rate. Such a slow rate would, at most, yield very infrequent damaging earthquakes. If the 1903 earthquakes did, in fact, occur on the Silver Creek Fault, they would have greatly reduced the short-term future potential for large earthquakes on the fault.

  9. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Bonali, F. L.; Corazzato, C.; Tibaldi, A.

    2012-06-01

    We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the CF might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system.

  10. Structure, Frictional Melting and Fault Weakening during the 2008 Mw 7.9 Wenchuan Earthquake Slip: Observation from the WFSD Drilling Core Samples

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Li, C.; Zhang, J.; Sun, Z.; Si, J.; Liu, D.; Chevalier, M. L.; Han, L.; Yun, K.; Zheng, Y.

    2015-12-01

    The 2008 Mw7.9 Wenchuan earthquake produced two co-seismic surface ruptures along Yingxiu-Beichuan fault (~270 km) and the Guanxian-Anxian fault (~80 km) simultaneously in the Longmen Shan thrust belt. Besides, two surface rupture zones were tracked in the southern segment of the Yingxiu-Beichuan rupture zone, one along the Yingxiu fault, the other along the Shenxigou-Longchi fault, which both converged into one rupture zone at the Bajiaomiao village, Hongkou town, where one distinct fault plane with two striation orientations was exposed. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) was carried out right after the earthquake to investigate its faulting mechanisms and rupture process. Six boreholes were drilled along the rupture zones with depths ranging from 600 to 2400 m. WFSD-1 and WFSD-2 are located at the Bajiaomiao area, the southern segment of the Yingxiu-Beichuan rupture zone, while WFSD-4 and WFSD-4S are in the Nanba town area, in the northern part of the rupture zone. Detailed research showed that ~1 mm thick Principal Slip Zone (PSZ) of the Wenchuan earthquake is located at ~589 m-depth in the WFSD-1 cores. Graphite present in the PSZ indicates a low fault strength. Long-term temperature monitoring shows an extremely low fault friction coefficient during the earthquake. Recently, another possible PSZ was found in WFSD-1 cores at ~732 m-depth, with a ~2 mm thick melt layer in the fault gouge, where feldspar was melted but quartz was not, indicating that the frictional melting temperature was 1230°C < T < 1720°C. These two PSZs at depth may correspond to the two co-seismic surface rupture zones. Besides, the Wenchuan earthquake PSZ was also recognized in the WFSD-4S cores, at ~1084 m-depth. About 200-400 μm thick melt layer (fault vein, mainly feldspar), as well as melt injection veins, were observed in the slip zone, where oblique distinct striations were visible on the slip surface. Therefore, there are two PSZs in the shallow crust at the southern segment along the Yingxiu-Beichuan fault, and another one along the northern segment. Melt and graphite in the PSZs indicate that the frictional melting and thermal pressurization are the main fault mechanisms during the Wenchuan earthquake. The melt and graphite can be considered as markers of large earthquakes.

  11. The great 1933 Sanriku-oki earthquake: reappraisal of the main shock and its aftershocks and implications for its tsunami using regional tsunami and seismic data

    NASA Astrophysics Data System (ADS)

    Uchida, Naoki; Kirby, Stephen H.; Umino, Norihito; Hino, Ryota; Kazakami, Tomoe

    2016-09-01

    The aftershock distribution of the 1933 Sanriku-oki outer trench earthquake is estimated by using modern relocation methods and a newly developed velocity structure to examine the spatial extent of the source-fault and the possibility of a triggered interplate seismicity. In this study, we first examined the regional data quality of the 1933 earthquake based on smoked-paper records and then relocated the earthquakes by using the 3-D velocity structure and double-difference method. The improvements of hypocentre locations using these methods were confirmed by the examination of recent earthquakes that are accurately located based on ocean bottom seismometer data. The results show that the 1933 aftershocks occurred under both the outer- and inner-trench-slope regions. In the outer-trench-slope region, aftershocks are distributed in a ˜280-km-long area and their depths are shallower than 50 km. Although we could not constrain the fault geometry from the hypocentre distribution, the depth distribution suggests the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks under the inner trench slope was also confirmed by an investigation of waveform frequency difference between outer and inner trench earthquakes as recorded at Mizusawa. The earthquakes under the inner trench slope were shallow (depth ≦30 km) and the waveforms show a low-frequency character similar to the waveforms of recent, precisely located earthquakes in the same area. They are also located where recent activity of interplate thrust earthquakes is high. These suggest that the 1933 outer-trench-slope main shock triggered interplate earthquakes, which is an unusual case in the order of occurrence in contrast with the more common pairing of a large initial interplate shock with subsequent outer-slope earthquakes. The off-trench earthquakes are distributed about 80 km width in the trench perpendicular direction. This wide width cannot be explained from a single high-angle fault confined at a shallow depth (depth ≦50 km). The upward motion of the 1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the outer trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001-2012) seismicity by the same method. The results show that the present seismicity in the outer-trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cut the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represent an important deformation styles for off-trench and shallow megathrust zones.

  12. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  13. Rupture dynamics with energy loss outside the slip zone

    USGS Publications Warehouse

    Andrews, D.J.

    2005-01-01

    Energy loss in a fault damage zone, outside the slip zone, contributes to the fracture energy that determines rupture velocity of an earthquake. A nonelastic two-dimensional dynamic calculation is done in which the slip zone is modeled as a fault plane and material off the fault is subject to a Coulomb yield condition. In a mode 2 crack-like solution in which an abrupt uniform drop of shear traction on the fault spreads from a point, Coulomb yielding occurs on the extensional side of the fault. Plastic strain is distributed with uniform magnitude along the fault, and it has a thickness normal to the fault proportional to propagation distance. Energy loss off the fault is also proportional to propagation distance, and it can become much larger than energy loss on the fault specified by the fault constitutive relation. The slip velocity function could be produced in an equivalent elastic problem by a slip-weakening friction law with breakdown slip Dc increasing with distance. Fracture energy G and equivalent Dc will be different in ruptures with different initiation points and stress drops, so they are not constitutive properties; they are determined by the dynamic solution that arrives at a particular point. Peak slip velocity is, however, a property of a fault location. Nonelastic response can be mimicked by imposing a limit on slip velocity on a fault in an elastic medium.

  14. Clustering of GPS velocities in the Mojave Block, southeastern California

    USGS Publications Warehouse

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  15. Relationships between the geometry of seismogenic faults and observed seismicty: a contribute from reflection seismic

    NASA Astrophysics Data System (ADS)

    Ciaccio, M. G.; Mirabella, F.; Stucchi, E.

    2003-04-01

    We analyze the seismogenic structures of the the Colfiorito area (central Italy), strucked by the 1997-98 relevant seismic sequence. This area has been used as a test site to investigate the possible interactions between earthquake seismology, reflection seismology and structural geology. Here we show the results obtained from the interpretation of the re-processed seismic reflection profile, acquired in the 80' for hydrocarbon exploration by ENI-Agip, crossing the epicentral area and the relationships between relating hypocentral locations and geological features derived from surface and from seismic data. The dense distribution of seismic stations connected to a temporary network installed after the occurrence of the first two large shocks (Mw=5.7 and Mw=6.0) provided high quality data showing earthquakes located at depth varying from 3 to 9 km and characterised by normal faulting mechanisms, with a NE-SW tension axis oriented about N55^o. The non conventional reprocessing sequence adopted was aimed to the early removal of the coherent and random noise and to the optimal definition of fault systems. The obtained profile shows an outstanding increase in the resolution of the geological structures with a better evidence of the faults and allows a much better correlation of surface geology features with the reflectors and the banning of parts of the profiles which run along the strike of the geological structures. The profile also shows a good image of the deep structure which has been interpreted as the depth image of the major fault of the Colfiorito fault system. A first attempt of projection of the earthquakes of the 1997-98 sequence shows a basic consistence with the inferred extensional structures at depth. The study also evidences that at least the upper part of the basement is involved in the thrust sheets, with a stepping and deepening of the basement from west to east from 5.5, to 9 km depth. The average dip at depth of the active faults is about 40^o fitting with the slip plane inferred from the focal mechanism of the main shocks and with the aftershocks distribution alignment in cross section of the aftershock sequence. At a depth of about 8 km, the trace of the active normal fault corresponds to the position of a Basement step, hence suggesting that the position of the Basement steps, generated by Miocene-Pliocene thrust tectonics, may have controlled the location of the subsequent normal faults.

  16. A multidisciplinary approach to characterize the geometry of active faults: the example of Mt. Massico, Southern Italy

    NASA Astrophysics Data System (ADS)

    Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M.

    2018-06-01

    We present the results of a multidisciplinary and multiscale study at Mt. Massico, Southern Italy. Mt. Massico is a carbonate horst located along the Campanian-Latial margin of the Tyrrhenian basin, bordered by two main NE-SW systems of faults, and by NW-SE and N-S trending faults. Our analysis deals with the modelling of the main NE-SW faults. These faults were capable during Plio-Pleistocene and are still active today, even though with scarce and low-energy seismicity (Mw maximum = 4.8). We inferred the pattern of the fault planes through a combined interpretation of 2-D hypocentral sections, a multiscale analysis of gravity field and geochemical data. This allowed us to characterize the geometry of these faults and infer their large depth extent. This region shows very striking gravimetric signatures, well-known Quaternary faults, moderate seismicity and a localized geothermal fluid rise. Thus, this analysis represents a valid case study for testing the effectiveness of a multidisciplinary approach, and employing it in areas with buried and/or silent faults of potential high hazard, such as in the Apennine chain.

  17. Fault Identification by Unsupervised Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Nandan, S.; Mannu, U.

    2012-12-01

    Contemporary fault identification techniques predominantly rely on the surface expression of the fault. This biased observation is inadequate to yield detailed fault structures in areas with surface cover like cities deserts vegetation etc and the changes in fault patterns with depth. Furthermore it is difficult to estimate faults structure which do not generate any surface rupture. Many disastrous events have been attributed to these blind faults. Faults and earthquakes are very closely related as earthquakes occur on faults and faults grow by accumulation of coseismic rupture. For a better seismic risk evaluation it is imperative to recognize and map these faults. We implement a novel approach to identify seismically active fault planes from three dimensional hypocenter distribution by making use of unsupervised learning algorithms. We employ K-means clustering algorithm and Expectation Maximization (EM) algorithm modified to identify planar structures in spatial distribution of hypocenter after filtering out isolated events. We examine difference in the faults reconstructed by deterministic assignment in K- means and probabilistic assignment in EM algorithm. The method is conceptually identical to methodologies developed by Ouillion et al (2008, 2010) and has been extensively tested on synthetic data. We determined the sensitivity of the methodology to uncertainties in hypocenter location, density of clustering and cross cutting fault structures. The method has been applied to datasets from two contrasting regions. While Kumaon Himalaya is a convergent plate boundary, Koyna-Warna lies in middle of the Indian Plate but has a history of triggered seismicity. The reconstructed faults were validated by examining the fault orientation of mapped faults and the focal mechanism of these events determined through waveform inversion. The reconstructed faults could be used to solve the fault plane ambiguity in focal mechanism determination and constrain the fault orientations for finite source inversions. The faults produced by the method exhibited good correlation with the fault planes obtained by focal mechanism solutions and previously mapped faults.

  18. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.

    2012-04-01

    The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.2 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the Chorrillos fault might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system. Cumulative effects of fault reactivation disadvantage future Tuzgle eruptions.

  19. Earthquake behavior along the Levant fault from paleoseismology (Invited)

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Le Beon, M.; Wechsler, N.; Rockwell, T. K.

    2013-12-01

    The Levant fault is a major continental structure 1200 km-long that bounds the Arabian plate to the west. The finite offset of this left-lateral strike-slip fault is estimated to be 105 km for the section located south of the restraining bend corresponding roughly to Lebanon. Along this southern section the slip-rate has been estimated over a large range of time scales, from few years to few hundreds thousands of years. Over these different time scales, studies agree for the slip-rate to be 5mm/yr × 2 mm/yr. The southern section of the Levant fault is particularly attractive to study earthquake behavior through time for several reasons: 1/ The fault geometry is simple and well constrained. 2/ The fault system is isolated and does not interact with obvious neighbor fault systems. 3/ The Middle-East, where the Levant fault is located, is the region in the world where one finds the longest and most complete historical record of past earthquakes. About 30 km north of the city of Aqaba, we opened a trench in the southern part of the Yotvata playa, along the Wadi Araba fault segment. The stratigraphy presents silty sand playa units alternating with coarser sand sediments from alluvial fans flowing westwards from the Jordan plateau. Two fault zones can be recognized in the trench and a minimum of 8 earthquakes can be identified, based on upward terminations of ground ruptures. Dense 14C dating through the entire exposure allows matching the 4 most recent events with historical events in AD1458, AD1212, AD1068 and AD748. Size of the ground rupture suggests a bi-modal distribution of earthquakes with earthquakes rupturing the entire Wadi Araba segment and earthquakes ending in the extensional jog forming the playa. Timing of earthquakes shows that no earthquakes occurred at this site since about 600 years, suggesting earthquake clustering along this section of the fault and potential for a large earthquake in the near future. 3D paleoseismological trenches at the Beteiha site, north of the lake Tiberias, show that there the earthquake activity varies significantly through time, with periods of intense seismic activity associated to small horizontal offsets and periods of bigger earthquakes with larger offsets. Hence, earthquake clustering also seems to govern earthquake occurrence along this segment of the Levant fault. On the contrary, further north, where the fault bends and deformation is spread between several parallel faults, paleoseismological trenches at the Yammouneh site show that earthquakes seem to be fairly regular every 800 years. Such difference in behavior along different sections of the fault suggests that the fault geometry might play an important role in the way earthquakes are distributed through time.

  20. Short-and-long-term Slip Rates Along the Carboneras Fault in the Betic Cordillera, Spain

    NASA Astrophysics Data System (ADS)

    Khazaradze, G.; López, R.; Pallàs, R.; Ortuño, M.; Bordonau, J.; Masana, E.

    2017-12-01

    We present the new results from our long-standing studies to understand the geodynamic behavior of the Carboneras fault, located in the SE Betic Cordilleras of Spain. Specifically, we quantify the geodetic and geologic slip rates for the onland section of the fault. As a result of our previous GPS observations, we have been able to confirm the continuing tectonic activity of the Carboneras fault: we were able to quantify that the geodetic slip rate of the fault equals 1.3±0.2 mm/yr, expressed mainly as a left-lateral strike slip motion (Echeverria et al., 2015). In autumn 2017, with the purpose of revealing a detailed nature of the crustal deformation and its partitioning between different structures, 3 new continuous GPS stations will be established along the fault-perpendicular profile. In addition, since summer 2016, we have conducted surveys of the nearby CuaTeNeo and IGN Regente campaign points. We have also established and measured several new geodetic points in the vicinity of the fault, with the aim of increasing the spatial coverage around it. The GPS measured, short-term slip rates are in surprising agreement with the estimates of the long-term, geologic slip rates based on paleoseismic studies, which indicate a minimum strike-slip rate of 1.31 mm/yr and dip-slip rate of 0.05 mm/yr since 110.3 ka (Moreno et al. 2015). In order to increase the paleoseismic event database, several new sites have been identified along the fault, where further paleoseismic trenching surveys will be performed within the coming year or two. At the site of Tostana, located at the central part of the fault, in winter 2017 seven trenches have been opened and clear evidence of past earthquakes has been encountered. These new data, combined with the findings of the recent geomorphological study of river offsets (Ferrater, 2016) and new GPS observations, should improve the reliability of the existent deformation data and therefore, will help to better understand the seismic hazard posed by the Carbonears fault in the SE Betics. Project PREVENT (CGL2015-66263-R) financed by the Ministry of Economy, Industry and Competitiveness.

  1. Improving the resolution of the 2010 Haiti earthquake fault geometry using temporary seismometer deployments

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Haase, J. S.; Ellsworth, W. L.; Bouin, M.; Calais, E.; Armbruster, J. G.; Mercier De Lepinay, B. F.; Deschamps, A.; Saint Louis, M.; Meremonte, M. E.; Hough, S. E.

    2011-12-01

    Haiti has several active faults that are capable of producing large earthquakes such as the 2010 Mw 7.0 Haiti earthquake. This earthquake was not unexpected, given geodetic measurements showing strain accumulation on the Enriquillo Plantain Garden Fault Zone, the major fault system in southern Haiti (Manaker et al. 2008). GPS and INSAR data (Calais et al., 2010) show, however, that this rupture occurred on the previously unmapped Léogâne fault, a 60° north dipping oblique blind thrust located immediately north of the Enriquillo Fault. Following the earthquake, several groups installed temporary seismic stations to record aftershocks. Natural Resources Canada installed three broadband seismic stations, Géoazur installed 21 ocean bottom seismometers, L'Institut de Physique du Globe de Paris installed 5 broadband seismometers, and the United States Geological Survey deployed 17 short period and strong motion seismometers in and around Port-au-Prince. We use data from this complete set of stations, along with data from permanent regional stations, to relocate all of the events from March 17 to June 24, to determine the regional one-dimensional crustal structure and determine focal mechanisms. The aftershock locations from the combined data set clearly delineate the Léogâne fault. The strike and dip closely agrees with that of the global centroid moment tensor solution, but appears to be more steeply dipping than the finite fault inversions. The aftershocks also delineate a flat structure on the west side of the rupture zone and may indicate triggered seismicity on the Trois Baies fault, although the depths of these events are not as well constrained. There is no clear evidence for aftershocks on the other rupture segments inferred in the Hayes et al. (2010) mainshock rupture model. There is a cluster of aftershocks in the hanging wall near the western patch of high slip identified by Calais et al. (2010) and Meng et al. (2011), or central patch in the Hayes et al. (2010) model. We use first-motion focal mechanism solutions to clarify the relationship of the fault geometry to the mechanisms of the larger events.

  2. The North Tanganyika hydrothermal fields, East African Rift system: Their tectonic control and relationship to volcanism and rift segmentation

    NASA Astrophysics Data System (ADS)

    Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.

    1994-10-01

    The two branches of the East African Rift system include numerous hydrothermal fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza hydrothermal fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil hydrothermal systems and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault System and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault systems trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The hydrothermal area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both hydrothermal areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the hydrothermal activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba hydrothermal fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between the eastern and western branches of the East African Rift system, perhaps related to a difference in stage of evolution of the two branches.

  3. Crustal structure of the Ionian basin and eastern Sicily margin : results from a wide angle seismic survey and implication for the crustal nature and origin of the basin, and the recent tear fault location

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Moretti, M.

    2017-12-01

    In the Ionian Sea (Central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust and lithosphere of the subducting plate remain debated and could represent the last remnants of the Neo-Tethys ocean. The rifting mechanism that produced the Ionian basin are also still under discussion with the Malta escarpment representing a possible remnant of this opening. At present, this subduction is still retreating to the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian Basin. In order to accommodate slab roll-back, a major lateral slab tear fault is required. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the Eastern-Sicily margin and the Malta Escarpment by presenting two wide-angle velocity profiles crossing these structures roughly orthogonally. The data used for the forward velocity modeling were acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened in between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.

  4. Foreshocks and aftershocks of the Great 1857 California earthquake

    USGS Publications Warehouse

    Meltzner, A.J.; Wald, D.J.

    1999-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segments of the fault. We began by searching archived first-hand accounts from 1857 through 1862, by grouping felt reports temporally, and by assigning modified Mercalli intensities to each site. We then used a modified form of the grid-search algorithm of Bakum and Wentworth, derived from empirical analysis of modern earthquakes, to find the location and magnitude most consistent with the assigned intensities for each of the largest events. The result confirms a conclusion of Sieh that at least two foreshocks ('dawn' and 'sunrise') located on or near the Parkfield segment of the San Andreas fault preceded the mainshock. We estimate their magnitudes to be M ~ 6.1 and M ~ 5.6, respectively. The aftershock rate was below average but within one standard deviation of the number of aftershocks expected based on statistics of modern southern California mainshock-aftershock sequences. The aftershocks included two significant events during the first eight days of the sequence, with magnitudes M ~ 6.25 and M ~ 6.7, near the southern half of the rupture; later aftershocks included a M ~ 6 event near San Bernardino in December 1858 and a M ~ 6.3 event near the Parkfield segment in April 1860. From earthquake logs at Fort Tejon, we conclude that the aftershock sequence lasted a minimum of 3.75 years.

  5. Composite Bending Box Section Modal Vibration Fault Detection

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy

    2002-01-01

    One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.

  6. Non-Pilot Protection of the HVDC Grid

    NASA Astrophysics Data System (ADS)

    Badrkhani Ajaei, Firouz

    This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.

  7. Rifting mechanisms constrained by InSAR, seismicity, GPS, and surface rupture from the Karonga earthquake sequence in northern Lake Malawi (Nyasa)

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Pritchard, M. E.; Henderson, S. T.; Gaherty, J. B.; Shillington, D. J.; Oliva, S. J.; Ebinger, C.; Nooner, S. L.; Elliott, J.; Saria, E.; Ntambila, D.; Chindandali, P. R. N.

    2017-12-01

    The Malawi rift is part of the archetypal East African rift where early-stage crustal extension is dominated by faulting. In the Karonga region of northern Malawi, a sequence of earthquakes in late 2009, with 15 teleseismically detected (Mw 4.5-6.0) over 13 days, provides a uniqueopportunity to evaluate faulting processes controlling present-day extension in an early-stage rift. We describe observations of this sequence including hundreds of aftershocks located by a temporary seismic array installed in 2010, ground deformation from satellite interferograms, and surface rupture from field surveys published by others. We use all of these data to model fault geometry and slip. The aftershocks from January-May 2010 suggest the involvement of multiple faults, and we test the extent that this can be resolved by the InSAR data. The InSAR and surface rupture both suggest that the major slip occurred at shallow depth (<5 km). Our preferred aftershock locations appear to correlate with this principal slip zone, although uncertainty in the shallow velocity structure can allow for a bulk of the events to fall down-dip of the geodetically constrained slip. Subsequent deformation, including that associated with a December 2014 Mw 5.1 earthquake, can be constrained from multidisciplinary data collected during the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project, which includes the Karonga region and spans 2013-2015. We find 3 cm of potential ground movement at the location of the earthquake as determined by the SEGMeNT seismic array from Sentinel-1. Geodetic fault slip is consistent with the focal mechanism and depth determined by the local array. The location is at the northern end of the 2009-2010 aftershock zone, and aftershocks suggest some linkage with faults that slipped in 2009. InSAR observations do not provide any evidence for large aseismic slip or fluid movements during or after the 2014 sequence, which had <200 aftershocks above the network threshold. For example, we do not observe any deformation at Rungwe volcano above the 2 cm/yr detection threshold with InSAR time series from ALOS (2007-2010) or Sentinel-1 (10/2014 - 04/2017). The time series from SEGMeNT and other continuous GPS stations do not show transients related to the earthquakes, but are not optimally located in space or time.

  8. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    USGS Publications Warehouse

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  9. Fault detection technique for wavelength division multiplexing passive optical network using chaotic fiber laser

    NASA Astrophysics Data System (ADS)

    Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian

    2014-03-01

    We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.

  10. Sedimentary record of relay zone evolution, Central Corinth Rift (Greece): Role of fault propagation and structural inheritance.

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas

    2013-04-01

    Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is characterised by the successive deposition of the northward prograding Platanos Gilbert-type delta (Middle group; deposited in hangingwall of the Pirgaki-Mamoussia fault) and the NE to E prograding Akrata Gilbert-type delta (Upper group). The Akrata Gilbert-type delta records progressive rotation and lengthening of the relay ramp as the East Helike fault and Derveni fault propagated laterally (from around 0.8 Ma) and started to overlap. The relay ramp was then breached by the Krathis fault (around 0.45 Ma) and the latter reactivated a NW-SE oriented inherited structure. Onshore-offshore correlation and profile restoration of the Upper group demonstrate the presence of this pre-existing structure (detachment fault?) below the Akrata relay zone that was responsible for significant eastward thickening in early rift sediments (Lower to Middle group). Our evolution model is consistent with the 'isolated fault' model where a fault array initially develops from growth of kinematically independent fault segments and fault displacement gradually accumulates during pre- and post-linkage stages. Despite the prominent control of pre-existing fabrics on the location of the transfer zone, lateral fault propagation and interaction can be well documented.

  11. A shifting rift—Geophysical insights into the evolution of Rio Grande rift margins and the Embudo transfer zone near Taos, New Mexico

    USGS Publications Warehouse

    Grauch, V.J.S.; Bauer, Paul W.; Drenth, Benjamin J.; Kelson, Keith I.

    2017-01-01

    We present a detailed example of how a subbasin develops adjacent to a transfer zone in the Rio Grande rift. The Embudo transfer zone in the Rio Grande rift is considered one of the classic examples and has been used as the inspiration for several theoretical models. Despite this attention, the history of its development into a major rift structure is poorly known along its northern extent near Taos, New Mexico. Geologic evidence for all but its young rift history is concealed under Quaternary cover. We focus on understanding the pre-Quaternary evidence that is in the subsurface by integrating diverse pieces of geologic and geophysical information. As a result, we present a substantively new understanding of the tectonic configuration and evolution of the northern extent of the Embudo fault and its adjacent subbasin.We integrate geophysical, borehole, and geologic information to interpret the subsurface configuration of the rift margins formed by the Embudo and Sangre de Cristo faults and the geometry of the subbasin within the Taos embayment. Key features interpreted include (1) an imperfect D-shaped subbasin that slopes to the east and southeast, with the deepest point ∼2 km below the valley floor located northwest of Taos at ∼36° 26′N latitude and 105° 37′W longitude; (2) a concealed Embudo fault system that extends as much as 7 km wider than is mapped at the surface, wherein fault strands disrupt or truncate flows of Pliocene Servilleta Basalt and step down into the subbasin with a minimum of 1.8 km of vertical displacement; and (3) a similar, wider than expected (5–7 km) zone of stepped, west-down normal faults associated with the Sangre de Cristo range front fault.From the geophysical interpretations and subsurface models, we infer relations between faulting and flows of Pliocene Servilleta Basalt and older, buried basaltic rocks that, combined with geologic mapping, suggest a revised rift history involving shifts in the locus of fault activity as the Taos subbasin developed. We speculate that faults related to north-striking grabens at the end of Laramide time formed the first west-down master faults. The Embudo fault may have initiated in early Miocene southwest of the Taos region. Normal-oblique slip on these early fault strands likely transitioned in space and time to dominantly left-lateral slip as the Embudo fault propagated to the northeast. During and shortly after eruption of Servilleta Basalt, proto-Embudo fault strands were active along and parallel to the modern, NE-aligned Rio Pueblo de Taos, ∼4–7 km basinward of the modern, mapped Embudo fault zone. Faults along the northeastern subbasin margin had northwest strikes for most of the period of subbasin formation and were located ∼5–7 km basinward of the modern Sangre de Cristo fault. The locus of fault activity shifted to more northerly striking faults within 2 km of the modern range front sometime after Servilleta volcanism had ceased. The northerly faults may have linked with the northeasterly proto-Embudo faults at this time, concurrent with the development of N-striking Los Cordovas normal faults within the interior of the subbasin. By middle Pleistocene(?) time, the Los Cordovas faults had become inactive, and the linked Embudo–Sangre de Cristo fault system migrated to the south, to the modern range front.

  12. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    NASA Astrophysics Data System (ADS)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a series of transpressional faults that splay northwards across the Snares Fault, and terminate at the top of the Puysegur trench slope. Between ca. 48°S and 46°30'S, the relative plate motion appears to be distributed over the Puysegur subduction zone and the strike-slip faults located on the edge of the upper plate. Conversely, north of ca. 46°S, a lack of active strike-slip faulting along the MFS and across most of Puysegur Bank indicates that the subduction in the northern part of Puysegur Trench accounts for most of the oblique convergence. Hence, active transpression in the Snares fault zone indicates that the relative PAC-AUS plate motion is transferred from strike-slip faulting along the Puysegur Fault to subduction at Puysegur Trench. The progressive transition from thrusts at Puysegur Trench and strike-slip faulting at the Puysegur Fault to oblique subduction at Puysegur Trench suggests that the subduction interface progressively developed from a western shallow splay of the Puysegur Fault. It implies that the transfer fault links the subduction interface at depth. A tectonic sliver is identified between Puysegur Trench and the Puysegur Fault. Its northwards motion relative to the Pacific Plate implies that is might collide with Puysegur Bank.

  13. Seismic Hazard Analysis for Armenia and its Surrounding Areas

    NASA Astrophysics Data System (ADS)

    Klein, E.; Shen-Tu, B.; Mahdyiar, M.; Karakhanyan, A.; Pagani, M.; Weatherill, G.; Gee, R. C.

    2017-12-01

    The Republic of Armenia is located within the central part of a large, 800 km wide, intracontinental collision zone between the Arabian and Eurasian plates. Active deformation occurs along numerous structures in the form of faulting, folding, and volcanism distributed throughout the entire zone from the Bitlis-Zargos suture belt to the Greater Caucasus Mountains and between the relatively rigid Back Sea and Caspian Sea blocks without any single structure that can be claimed as predominant. In recent years, significant work has been done on mapping active faults, compiling and reviewing historic and paleoseismological studies in the region, especially in Armenia; these recent research contributions have greatly improved our understanding of the seismogenic sources and their characteristics. In this study we performed a seismic hazard analysis for Armenia and its surrounding areas using the latest detailed geological and paleoseismological information on active faults, strain rates estimated from kinematic modeling of GPS data and all available historic earthquake data. The seismic source model uses a combination of characteristic earthquake and gridded seismicity models to take advantage of the detailed knowledge of the known faults while acknowledging the distributed deformation and regional tectonic environment of the collision zone. In addition, the fault model considers earthquake ruptures that include single and multi-segment or fault rupture scenarios with earthquakes that can rupture any part of a multiple segment fault zone. The ground motion model uses a set of ground motion prediction equations (GMPE) selected from a pool of GMPEs based on the assessment of each GMPE against the available strong motion data in the region. The hazard is computed in the GEM's OpenQuake engine. We will present final hazard results and discuss the uncertainties associated with various input data and their impact on the hazard at various locations.

  14. Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Key, K.; Atekwana, E. A.

    2016-12-01

    Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.

  15. Nucleation and kinematic rupture of the 2017 Mw 8.2 Chiapas Mexico earthquake

    NASA Astrophysics Data System (ADS)

    Meng, L.; Huang, H.; Xie, Y.; Feng, T.; Dominguez, L. A.; Han, J.; Davis, P. M.

    2017-12-01

    Integrated geophysical observations from the 2017 Mw 8.2 Oaxaca, Mexico earthquake allow the exploration of one of the largest recorded normal faulting events inside a subducting slab. In this study, we collect seismic data from regional and teleseismic stations, and regional tsunami recordings to better understand the preparation and rupture processes. The mainshock occurred on the steeply dipping plane of a mega-normal fault, confirmed by time reversal analysis of tsunami waves. We utilize a template matching approach to detect possible missing earthquakes within a 2-month period before the Oaxaca mainshock. The seismicity rate (M > 3.7) shows an abrupt increase in the last day within 30 km around the mainshock hypocenter. The largest one is a M 4.6 event with similar normal faulting as the mainshock located at about 18 km updip from the hypocenter. The waveforms of the subsequent foreshocks are not similar, supporting the diversity of their locations or focal mechanisms. The nucleation process can be explained by a cascading process which eventually triggers the mainshock. Back-projection using the USArray network in Alaska reveals that the mainshock rupture propagated northwestward unilaterally at a speed of 3.1 km/s, for about 200 km and terminated near the Tehuantepec Fracture Zone. We also document the tectonic fabric of bending related faulting of the incoming Cocos plate. The mainshock is likely a reactivation of subducted outer rise faults, supported by the similarity of the strike angle between the mainshock and the outer rise faults. The surprisingly large magnitude is consistent with the exceedingly large dimensions of outer rise faulting in this particular segment of the central Mexican trench.

  16. Are Geotehrmal Reservoirs Stressed Out?

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the correlation between the reservoir geometry and models of the local stress state.

  17. Geology of the platanares geothermal area, Departamento de Copan, Honduras

    USGS Publications Warehouse

    Heiken, G.; Ramos, N.; Duffield, W.; Musgrave, J.; Wohletz, K.; Priest, S.; Aldrich, J.; Flores, W.; Ritchie, A.; Goff, F.; Eppler, D.; Escobar, C.

    1991-01-01

    Platanares is located 16 km west of Santa Rosa de Copan, Honduras, along the Quebrada del Agua Caliente. The thermal manifestations are along faults in tuffs, tuffaceous sedimentary rocks, and lavas of the Padre Miguel Group. These tuffs are silicified near the faults, are fractured, and may provide the fracture permeability necessary for the hydrothermal system. Tuffs are overlain by a wedge of terrace gravels up to 60 m thick. Quaternary conglomerates of the Quebrada del Agua Caliente are cemented by silica sinter. The Platanares area contains numerous faults, all of which appear to be extensional. There are four groups of faults (N80/sup 0/E to N70/sup 0/W, N30/sup 0/ to 60/sup 0/W, N40/sup 0/ to 65/sup 0/E, and N00/sup 0/ to 05/sup 0/W). All hot springs at this site are located along faults that trend mostly northwest and north. Twenty-eight spring groups were described over an area of 0.2 km/sup 2/; half were boiling. Based on surface temperatures and flow rates, between 0.7 and 1.0 MW thermal energy is estimated for the area. The increased temperature of the stream flowing through the thermal area indicates that several megawatts of thermal energy are being added to the stream. We recommend that a dipole-dipole resistivity line be run along the Quebrada del Agua Caliente to identify zones of fracture permeability associated with buried faults and hot water reservoirs within those fault zones. A thermal gradient corehole should be drilled at Platanares to test temperatures, lithologies, and permeability of the hydrothermal system.

  18. Uplift rates of marine terraces as a constraint on fault-propagation fold kinematics: Examples from the Hawkswood and Kate anticlines, North Canterbury, New Zealand

    NASA Astrophysics Data System (ADS)

    Oakley, David O. S.; Fisher, Donald M.; Gardner, Thomas W.; Stewart, Mary Kate

    2018-01-01

    Marine terraces on growing fault-propagation folds provide valuable insight into the relationship between fold kinematics and uplift rates, providing a means to distinguish among otherwise non-unique kinematic model solutions. Here, we investigate this relationship at two locations in North Canterbury, New Zealand: the Kate anticline and Haumuri Bluff, at the northern end of the Hawkswood anticline. At both locations, we calculate uplift rates of previously dated marine terraces, using DGPS surveys to estimate terrace inner edge elevations. We then use Markov chain Monte Carlo methods to fit fault-propagation fold kinematic models to structural geologic data, and we incorporate marine terrace uplift into the models as an additional constraint. At Haumuri Bluff, we find that marine terraces, when restored to originally horizontal surfaces, can help to eliminate certain trishear models that would fit the geologic data alone. At Kate anticline, we compare uplift rates at different structural positions and find that the spatial pattern of uplift rates is more consistent with trishear than with a parallel-fault propagation fold kink-band model. Finally, we use our model results to compute new estimates for fault slip rates ( 1-2 m/ka at Kate anticline and 1-4 m/ka at Haumuri Bluff) and ages of the folds ( 1 Ma), which are consistent with previous estimates for the onset of folding in this region. These results are consistent with previous work on the age of onset of folding in this region, provide revised estimates of fault slip rates necessary to understand the seismic hazard posed by these faults, and demonstrate the value of incorporating marine terraces in inverse fold kinematic models as a means to distinguish among non-unique solutions.

  19. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  20. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    USGS Publications Warehouse

    Ben-Avraham, Z.; ten Brink, Uri S.; Bell, R.; Reznikov, M.

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  1. Photomosaics and logs of trenches on the San Andreas Fault at Mill Canyon near Watsonville, California

    USGS Publications Warehouse

    Fumal, Thomas E.; Dawson, Timothy E.; Flowers, Rebecca; Hamilton, John C.; Heingartner, Gordon F.; Kessler, James; Samrad, Laura

    2004-01-01

    We present photomosaics and logs of the walls of trenches excavated for a paleoseismic study at Mill Canyon, one of two sites along the San Andreas fault in the Santa Cruz Mtns. on the Kelley-Thompson Ranch. This site was a part of Rancho Salsipuedes begining in 1834. It was purchased by the present owner’s family in 1851. Remnants of a cabin/mill operations still exist up the canyon dating from 1908 when the area was logged. At this location, faulting has moved a shutter ridge across the mouth of Mill Canyon ponding Holocene sediment. Recent faulting is confined to a narrow zone near the break in slope.

  2. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching

    NASA Astrophysics Data System (ADS)

    Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus

    2018-03-01

    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

  3. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  4. New cooperative seismograph networks established in southern California

    USGS Publications Warehouse

    Hill, D.P.

    1974-01-01

    Southern California has more active faults located close to large, urban population centers than any other region in the United States. Reduction of risk to life and property posed by potential earthquakes along these active faults is a primary motivation for a cooperative earthquake research program between the U.S Geological Survey and major universities in Southern California. 

  5. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  6. Corridors of crestal and radial faults linking salt diapirs in the Espírito Santo Basin, SE Brazil

    NASA Astrophysics Data System (ADS)

    Mattos, Nathalia H.; Alves, Tiago M.

    2018-03-01

    This work uses high-quality 3D seismic data to assess the geometry of fault families around salt diapirs in SE Brazil (Espírito Santo Basin). It aims at evaluating the timings of fault growth, and suggests the generation of corridors for fluid migration linking discrete salt diapirs. Three salt diapirs, one salt ridge, and five fault families were identified based on their geometry and relative locations. Displacement-length (D-x) plots, Throw-depth (T-z) data and structural maps indicate that faults consist of multiple segments that were reactivated by dip-linkage following a preferential NE-SW direction. This style of reactivation and linkage is distinct from other sectors of the Espírito Santo Basin where the preferential mode of reactivation is by upwards vertical propagation. Reactivation of faults above a Mid-Eocene unconformity is also scarce in the study area. Conversely, two halokinetic episodes dated as Cretaceous and Paleogene are interpreted below a Mid-Eocene unconformity. This work is important as it recognises the juxtaposition of permeable strata across faults as marking the generation of fault corridors linking adjacent salt structures. In such a setting, fault modelling shows that fluid will migrate towards the shallower salt structures along the fault corridors first identified in this work.

  7. A broader classification of damage zones

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Dimmen, V.; Rotevatn, A.; Sanderson, D. J.

    2017-09-01

    Damage zones have previously been classified in terms of their positions at fault tips, walls or areas of linkage, with the latter being described in terms of sub-parallel and synchronously active faults. We broaden the idea of linkage to include structures around the intersections of non-parallel and/or non-synchronous faults. These interaction damage zones can be divided into approaching damage zones, where the faults kinematically interact but are not physically connected, and intersection damage zones, where the faults either abut or cross-cut. The damage zone concept is applied to other settings in which strain or displacement variations are taken up by a range of structures, such as at fault bends. It is recommended that a prefix can be added to a wide range of damage zones, to describe the locations in which they formed, e.g., approaching, intersection and fault bend damage zone. Such interpretations are commonly based on limited knowledge of the 3D geometries of the structures, such as from exposure surfaces, and there may be spatial variations. For example, approaching faults and related damage seen in outcrop may be intersecting elsewhere on the fault planes. Dilation in intersection damage zones can represent narrow and localised channels for fluid flow, and such dilation can be influenced by post-faulting stress patterns.

  8. Product quality management based on CNC machine fault prognostics and diagnosis

    NASA Astrophysics Data System (ADS)

    Kozlov, A. M.; Al-jonid, Kh M.; Kozlov, A. A.; Antar, Sh D.

    2018-03-01

    This paper presents a new fault classification model and an integrated approach to fault diagnosis which involves the combination of ideas of Neuro-fuzzy Networks (NF), Dynamic Bayesian Networks (DBN) and Particle Filtering (PF) algorithm on a single platform. In the new model, faults are categorized in two aspects, namely first and second degree faults. First degree faults are instantaneous in nature, and second degree faults are evolutional and appear as a developing phenomenon which starts from the initial stage, goes through the development stage and finally ends at the mature stage. These categories of faults have a lifetime which is inversely proportional to a machine tool's life according to the modified version of Taylor’s equation. For fault diagnosis, this framework consists of two phases: the first one is focusing on fault prognosis, which is done online, and the second one is concerned with fault diagnosis which depends on both off-line and on-line modules. In the first phase, a neuro-fuzzy predictor is used to take a decision on whether to embark Conditional Based Maintenance (CBM) or fault diagnosis based on the severity of a fault. The second phase only comes into action when an evolving fault goes beyond a critical threshold limit called a CBM limit for a command to be issued for fault diagnosis. During this phase, DBN and PF techniques are used as an intelligent fault diagnosis system to determine the severity, time and location of the fault. The feasibility of this approach was tested in a simulation environment using the CNC machine as a case study and the results were studied and analyzed.

  9. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  10. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  11. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    USGS Publications Warehouse

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  12. Optical fiber-fault surveillance for passive optical networks in S-band operation window

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chi, Sien

    2005-07-01

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  13. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  14. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  15. Geology and hydrostratigraphy of Guadalupe River State Park and Honey Creek State Natural Area, Kendall and Comal Counties, Texas

    USGS Publications Warehouse

    Clark, Allan K.; Blome, Charles D.; Morris, Robert R.

    2014-01-01

    The faulting and fracturing in the study area are part of the Miocene Balcones Fault Zone, which is an extensional system of faults that generally trend southwest to northeast in south-central Texas. An igneous dike, containing aphanitic texture, cuts through the center of the study area near the confluence of Honey Creek and the Guadalupe River. The dike penetrates the Cow Creek Limestone and the lower part of the Hensell Sand, which outcrops at three locations.

  16. GONAF - the borehole Geophysical Observatory at the North Anatolian Fault in the eastern Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Dresen, Georg; Ceken, Ulubey; Tuba Kadirioglu, Filiz; Feyiz Kartal, Recai; Kilic, Tugbay; Nurlu, Murat; Yanik, Kenan; Acarel, Digdem; Bulut, Fatih; Ito, Hisao; Johnson, Wade; Malin, Peter Eric; Mencin, Dave

    2017-05-01

    The Marmara section of the North Anatolian Fault Zone (NAFZ) runs under water and is located less than 20 km from the 15-million-person population center of Istanbul in its eastern portion. Based on historical seismicity data, recurrence times forecast an impending magnitude M>7 earthquake for this region. The permanent GONAF (Geophysical Observatory at the North Anatolian Fault) has been installed around this section to help capture the seismic and strain activity preceding, during, and after such an anticipated event.

  17. Optical fiber-fault surveillance for passive optical networks in S-band operation window.

    PubMed

    Yeh, Chien-Hung; Chi, Sien

    2005-07-11

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  18. Seismotectonics investigations in the internal Cottian Alps (Italian Western Alps)

    NASA Astrophysics Data System (ADS)

    Perrone, Gianluigi; Eva, Elena; Solarino, Stefano; Cadoppi, Paola; Balestro, Gianni; Fioraso, Gianfranco; Tallone, Sergio

    2010-05-01

    The inner Cottian Alps represent an area of a low- to moderate- magnitude seismicity (Eva et al., 1990) even though some historical earthquakes reached VIII degree of the Mercalli's scale. Although the frame of seismicity is quite well known, the relation between faults and earthquake sources is still under debate. The low deformation rates and the occurrence of several glacial-interglacial cycles during the Pleistocene partly masked the geomorphological evidences of the recent tectonic activity. Recent studies based on field mapping and structural analysis (Balestro et al., 2009; Perrone et al., 2009) allowed characterizing the size and extension of the regional-scale faults dissecting this area of the Western Alps. Here, we combine the results of these novel studies and updated seismological data with the aim to investigate the relations between mapped faults and seismic activity. In the analyzed area both continental crust and oceanic tectonic units, belonging to the Penninic Domain of the Western Alps, crop out. The main brittle tectonic feature of this area is represented by the Lis-Trana Deformation Zone (LTZ), an N-S striking, steep structure that extends for about 35 km from the Lower Lanzo valleys to the Lower Sangone Valley. The occurrence of steep faults displacing the metamorphic basement, showed in seismic sections carried out for oil exploration (Bertotti & Mosca, 2009), suggests that the LTZ may be prolonged Southward beneath the Plio-Quaternary deposits of the Po Plain. West of the LTZ some other minor E-W and N-S faults are also present. Zircon and apatite fission-track data indicate that the activity of these faults started since the Oligocene. Two main faulting stages characterize the post-metamorphic structural evolution of this area: the earlier (faulting stage A; Oligocene?-Early Miocene?) is associated to right-lateral movements along the LTZ and sinistral movements along E-W faults; the subsequent faulting stage (faulting stage B; post-Early Miocene) is related to transtensive/extensional movements along the LTZ and the development of minor sub-parallel N-S faults. This kinematic evolution fits in a model of dextral-transtension at regional scale. The more recent activity of the LTZ may have caused the development of Pleistocene lacustrine basin, several hundred metres thick, in the Lower Chisone and Pellice valleys, which did not hosted glacial tongues. Along the LTZ, however, Pleistocene deposits showing evidence of brittle deformation were also found. With the aim to better understand the relation between the current seismic activity and faults, an analysis was carried out by selecting the best located earthquakes (location error less than 3 km) recorded by the seismic network of the North Western Italy (RSNI). This selection is made necessary by the relatively small size of the structures under investigations in order to avoid fake attributions. In addition to get qualitative information about the seismogenic source, the focal mechanisms of four earthquakes occurring along the mapped faults were calculated sorting out the best locatable events among those occurred in the area. The good geometric and kinematic agreement between structural and seismological data indicates a possible dependence of the seismicity of the inner Cottian Alps with the current tectonic activity of the LTZ and its associated minor structures. Balestro G. et al. (2009) Ital. J. Geosci., 128(2), 331-339. Bertotti G., Mosca P. (2009) Tectonophysics, 475, 117-127. Eva C. et al. (1990) Atti del Convegno Gruppo Nazionale Difesa dai terremoti, Ed. Ambiente, Pisa, 1, 25-34. Perrone G. et al. (2009) Ital. J. Geosci., 128(2), 541-549.

  19. Optimal Design for Placements of Tsunami Observing Systems to Accurately Characterize the Inducing Earthquake

    NASA Astrophysics Data System (ADS)

    Mulia, Iyan E.; Gusman, Aditya Riadi; Satake, Kenji

    2017-12-01

    Recently, there are numerous tsunami observation networks deployed in several major tsunamigenic regions. However, guidance on where to optimally place the measurement devices is limited. This study presents a methodological approach to select strategic observation locations for the purpose of tsunami source characterizations, particularly in terms of the fault slip distribution. Initially, we identify favorable locations and determine the initial number of observations. These locations are selected based on extrema of empirical orthogonal function (EOF) spatial modes. To further improve the accuracy, we apply an optimization algorithm called a mesh adaptive direct search to remove redundant measurement locations from the EOF-generated points. We test the proposed approach using multiple hypothetical tsunami sources around the Nankai Trough, Japan. The results suggest that the optimized observation points can produce more accurate fault slip estimates with considerably less number of observations compared to the existing tsunami observation networks.

  20. Fault diagnosis for analog circuits utilizing time-frequency features and improved VVRKFA

    NASA Astrophysics Data System (ADS)

    He, Wei; He, Yigang; Luo, Qiwu; Zhang, Chaolong

    2018-04-01

    This paper proposes a novel scheme for analog circuit fault diagnosis utilizing features extracted from the time-frequency representations of signals and an improved vector-valued regularized kernel function approximation (VVRKFA). First, the cross-wavelet transform is employed to yield the energy-phase distribution of the fault signals over the time and frequency domain. Since the distribution is high-dimensional, a supervised dimensionality reduction technique—the bilateral 2D linear discriminant analysis—is applied to build a concise feature set from the distributions. Finally, VVRKFA is utilized to locate the fault. In order to improve the classification performance, the quantum-behaved particle swarm optimization technique is employed to gradually tune the learning parameter of the VVRKFA classifier. The experimental results for the analog circuit faults classification have demonstrated that the proposed diagnosis scheme has an advantage over other approaches.

Top