Sample records for fault slip behaviors

  1. Structural Controls of the Friction Constitutive Properties of Carbonate-bearing Faults

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Collettini, C.; Scuderi, M.; Marone, C.

    2012-12-01

    The identification of hetereogenous and complex post-seismic slip for the 2009, Mw = 6.3, L'Aquila earthquake highlights the importance of fault zone structure and frictional behavior. Many of the Mw 6 to 7 earthquakes that occur on normal faults in the active Apennines, such as L'Aquila, nucleate at depths where the lithology is dominated by carbonate rocks. Due to the complex structure observed in exhumed faults (i.e. the presence of highly polished principal slip surfaces, cemented cataclasites, and phyllosilicate-bearing, foliated fault gouge) as well as the large spectrum of fault slip behaviors identified world wide, we designed a suite of experiments using intact and powdered samples to better constrain the possible slip behaviors of these carbonate bearing faults. We collected samples from the exposed Rocchetta Fault, a ~10km long, normal fault with approximately 600m of total offset. The exposed principal slip surface cuts through the Calcare Massiccio formation, which is present throughout central Italy at depths of earthquake nucleation. We collected intact specimens of the natural slip surface and cemented cataclasite, as well as fragments of both which were later pulverized. Furthermore, we collected an intact sample of the hanging wall cataclasite and footwall limestone that contained the principal slip surface. We performed friction experiments in a variety of different configurations (slip surface on slip surface, slip surface on powdered cataclasite, etc.) in order to investigate heterogeneity in frictional behavior as controlled by fault structure. We sheared saturated samples at a constant normal stress of 10 MPa at room temperature. Velocity-stepping tests were performed from 1 to 300 μm/s to identify the friction constitutive parameters of this fault material. Furthermore, a series slide-hold-slide tests were performed (holds of 3 to 1000 seconds) to measure the amount of frictional healing and determine the frictional healing rate. Results from experiments designed to reactivate slip between the principal slip surface and cemented cataclasite show a peak friction value of ~0.95 followed by a ~3 MPa stress drop as the fault surface fails. Our other results suggest that earthquakes will easily nucleate in areas of the fault where two slip surfaces are in contact and are likely to propagate in areas where pulverized fault gouge is in contact with the slip surface. Our data show that samples collected from a single fault can exhibit a large range of slip behaviors. Heterogeneous frictional behavior documented in the lab must be combined with field observations of complex fault structure and seismological observations of the different modes of fault slip to further our understanding of fault slip. Future work will consist of thin section and XRD analysis of all experimental material.

  2. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons of geologic and geodetic slip rates. As such, detailed studies such as this will play a continuing vital role in the accurate assessment of short- and long-term fault slip kinematics.

  3. Various Slip Behaviors in the Frictionally Heterogeneous Fault Model

    NASA Astrophysics Data System (ADS)

    Yabe, S.; Ide, S.

    2017-12-01

    Diverse slip behaviors have been observed on the fault, including regular earthquakes followed by afterslip, and slow earthquakes. In Southwest Japan and Cascadia, hypocenters of slow earthquakes seem to be separated from the locked region of megathrust earthquakes (e.g., Liu et al., 2010). In contrary, M7 earthquakes and their afterslips and repeating occurrences of slow slip events were reported in the coseismic slip area of 2011 M9 earthquake in Tohoku region (Ohta et al., 2012; Ito et al., 2013). Understanding the physical mechanism of diverse slip behavior is important to understand the strain accumulation and release cycle in a whole subduction zone. Among various candidates to explain the slip diversity, including dynamic weakening (e.g., Noda and Lapusta, 2013), fluid-slip interactions (e.g., Segall, 2010), and along-dip variation of frictional property (e.g., Tse and Rice, 1986), we consider in this study frictional heterogeneity on the fault (e.g., Ando et al., 2010, 2012; Nakata et al., 2011; Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have considered the finite linear fault governed by rate and state friction law on which velocity-weakening zone and velocity-strengthening zone are alternately distributed. The fault outside the model space slips stably, which loads stress to the model space. Such frictionally heterogeneous fault shows diverse slip behavior which cannot be observed in the frictionally homogeneous fault. In some parameter space, the entire faults including velocity-strengthening zones slips seismically (Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have sometimes observed foreshocks and aftershocks within the mainshock slip area. We have also sometimes observed repeating slow slip events during the inter-seismic period around the rupture initiation point of the mainshock. We will report parameter studies to clarify the relation between diverse slip behavior and frictional heterogeneity.

  4. Stability of faults with heterogeneous friction properties and effective normal stress

    NASA Astrophysics Data System (ADS)

    Luo, Yingdi; Ampuero, Jean-Paul

    2018-05-01

    Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional fault interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework to reproduce the full spectrum of fault behaviors observed in natural faults: from fast earthquakes, to slow transients, to stable sliding. In particular, this model constitutes a building block for models of episodic tremor and slow slip events.

  5. Fault rocks as indicators of slip behavior

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.

    2017-12-01

    Forty years ago, Sibson ("Fault rocks and fault mechanisms", J. Geol. Soc. Lon., 1977) explored plastic flow mechanisms in the upper and lower crust which he attributed to deformation rates faster than tectonic ones, but slower than earthquakes. We can now combine observations of natural fault rocks with insights from experiments to interpret a broad range of length and time scales of fault slip in more detail. Fault rocks are generally weak, with predominantly frictionally stable materials in some fault segments, and more unstable materials in others. Both upper and lower crustal faults contain veins and mineralogical signatures of transiently elevated fluid pressure, and some contain relicts of pseudotachylite and bear other thermal-mechanical signatures of seismic slip. Varying strain rates and episodic-tremor-and-slip (ETS) have been attributed to fault zones with varying widths filled with irregular foliations, veins, and dismembered blocks of varying sizes. Particle-size distributions and orientations in gouge appear to differ between locked and creeping faults. These and other geologic observations can be framed in terms of constitutive behaviors derived from experiments and modeling. The experimental correlation of velocity-dependence with microstructure and the behavior of natural fault-rocks under shear suggest that friction laws may be applied liberally to fault-zone interpretation. Force-chains imaged in stress-sensitive granular aggregates or in numerical simulations show that stick-slip behavior with stress drops far below that of earthquakes can occur during quasi-periodic creep, yet localize shear in larger, aperiodic events; perhaps the systematic relationship between sub-mm shear bands and surrounding gouge and/or cataclasites causes such slip partitioning in nature. Fracture, frictional sliding, and viscous creep can experimentally produce a range of slip behavior, including ETS-like events. Perhaps a similar mechanism occurs to cause ETS at the up-dip limit of faults where water-saturated, highly porous sedimentary aggregates are incorporated into fault zones. Forty years on, fault-rock studies continue to refine a model for fault slip that continuously encompasses the full range of lithospheric depths and seismic to geologic time scales.

  6. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  7. Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.

    2016-12-01

    Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better constrain fault zone rheology and physical properties, having implications for the overall understanding of earthquake physics, fault interactions, plate boundary deformation and earthquake hazard, preparedness and risk reduction.

  8. The Slip Behavior and Source Parameters for Spontaneous Slip Events on Rough Faults Subjected to Slow Tectonic Loading

    NASA Astrophysics Data System (ADS)

    Tal, Yuval; Hager, Bradford H.

    2018-02-01

    We study the response to slow tectonic loading of rough faults governed by velocity weakening rate and state friction, using a 2-D plane strain model. Our numerical approach accounts for all stages in the seismic cycle, and in each simulation we model a sequence of two earthquakes or more. We focus on the global behavior of the faults and find that as the roughness amplitude, br, increases and the minimum wavelength of roughness decreases, there is a transition from seismic slip to aseismic slip, in which the load on the fault is released by more slip events but with lower slip rate, lower seismic moment per unit length, M0,1d, and lower average static stress drop on the fault, Δτt. Even larger decreases with roughness are observed when these source parameters are estimated only for the dynamic stage of the rupture. For br ≤ 0.002, the source parameters M0,1d and Δτt decrease mutually and the relationship between Δτt and the average fault strain is similar to that of a smooth fault. For faults with larger values of br that are completely ruptured during the slip events, the average fault strain generally decreases more rapidly with roughness than Δτt.

  9. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    USGS Publications Warehouse

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  10. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.

    2015-06-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  11. Fault geometric complexity and how it may cause temporal slip-rate variation within an interacting fault system

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; Arrowsmith, Ramon

    2010-05-01

    Slip-rates along individual faults may differ as a function of measurement time scale. Short-term slip-rates may be higher than the long term rate and vice versa. For example, vertical slip-rates along the Wasatch Fault, Utah are 1.7+/-0.5 mm/yr since 6ka, <0.6 mm/yr since 130ka, and 0.5-0.7 mm/yr since 10Ma (Friedrich et al., 2003). Following conventional earthquake recurrence models like the characteristic earthquake model, this observation implies that the driving strain accumulation rates may have changed over the respective time scales as well. While potential explanations for such slip-rate variations may be found for example in the reorganization of plate tectonic motion or mantle flow dynamics, causing changes in the crustal velocity field over long spatial wavelengths, no single geophysical explanation exists. Temporal changes in earthquake rate (i.e., event clustering) due to elastic interactions within a complex fault system may present an alternative explanation that requires neither variations in strain accumulation rate or nor changes in fault constitutive behavior for frictional sliding. In the presented study, we explore this scenario and investigate how fault geometric complexity, fault segmentation and fault (segment) interaction affect the seismic behavior and slip-rate along individual faults while keeping tectonic stressing-rate and frictional behavior constant in time. For that, we used FIMozFric--a physics-based numerical earthquake simulator, based on Okada's (1992) formulations for internal displacements and strains due to shear and tensile faults in a half-space. Faults are divided into a large number of equal-sized fault patches which communicate via elastic interaction, allowing implementation of geometrically complex, non-planar faults. Each patch has assigned a static and dynamic friction coefficient. The difference between those values is a function of depth--corresponding to the temperature-dependence of velocity-weakening that is observed in laboratory friction experiments and expressed in an [a-b] term in Rate-State-Friction (RSF) theory. Patches in the seismic zone are incrementally loaded during the interseismic phase. An earthquake initiates if shear stress along at least one (seismic) patch exceeds its static frictional strength and may grow in size due to elastic interaction with other fault patches (static stress transfer). Aside from investigating slip-rate variations due to the elastic interactions within a fault system with this tool, we want to show how such modeling results can be very useful in exploring the physics underlying the patterns that the paleoseismology sees and that those methods (simulation and observations) can be merged, with both making important contributions. Using FIMozFric, we generated synthetic seismic records for a large number of fault geometries and structural scenarios to investigate along-fault slip accumulation patterns and the variability of slip at a point. Our simulations show that fault geometric complexity and the accompanied fault interactions and multi-fault ruptures may cause temporal deviations from the average fault slip-rate, in other words phases of earthquake clustering or relative quiescence. Slip-rates along faults within an interacting fault system may change even when the loading function (stressing rate) remains constant and the magnitude of slip rate change is suggested to be proportional to the magnitude of fault interaction. Thus, spatially isolated and structurally mature faults are expected to experience less slip-rate changes than strongly interacting and less mature faults. The magnitude of slip-rate change may serve as a proxy for the magnitude of fault interaction and vice versa.

  12. Slip-pulse rupture behavior on a 2 meter granite fault

    USGS Publications Warehouse

    McLaskey, Gregory C.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe observations of dynamic rupture events that spontaneously arise on meter-scale laboratory earthquake experiments. While low-frequency slip of the granite sample occurs in a relatively uniform and crack-like manner, instruments capable of detecting high frequency motions show that some parts of the fault slip abruptly (velocity >100 mm∙s-1, acceleration >20 km∙s-2) while the majority of the fault slips more slowly. Abruptly slipping regions propagate along the fault at nearly the shear wave speed. We propose that the dramatic reduction in frictional strength implied by this pulse-like rupture behavior has a common mechanism to the weakening reported in high velocity friction experiments performed on rotary machines. The slip pulses can also be identified as migrating sources of high frequency seismic waves. As observations from large earthquakes show similar propagating high frequency sources, the pulses described here may have relevance to the mechanics of larger earthquakes.

  13. Pulsed strain release on the Altyn Tagh fault, northwest China

    USGS Publications Warehouse

    Gold, Ryan D.; Cowgill, Eric; Arrowsmith, J. Ramón; Friedrich, Anke M.

    2017-01-01

    Earthquake recurrence models assume that major surface-rupturing earthquakes are followed by periods of reduced rupture probability as stress rebuilds. Although purely periodic, time- or slip-predictable rupture models are known to be oversimplifications, a paucity of long records of fault slip clouds understanding of fault behavior and earthquake recurrence over multiple ruptures. Here, we report a 16 kyr history of fault slip—including a pulse of accelerated slip from 6.4 to 6.0 ka—determined using a Monte Carlo analysis of well-dated offset landforms along the central Altyn Tagh strike-slip fault (ATF) in northwest China. This pulse punctuates a median rate of 8.1+1.2/−0.9 mm/a and likely resulted from either a flurry of temporally clustered ∼Mw 7.5 ground-rupturing earthquakes or a single large >Mw 8.2 earthquake. The clustered earthquake scenario implies rapid re-rupture of a fault reach >195 km long and indicates decoupled rates of elastic strain energy accumulation versus dissipation, conceptualized as a crustal stress battery. If the pulse reflects a single event, slip-magnitude scaling implies that it ruptured much of the ATF with slip similar to, or exceeding, the largest documented historical ruptures. Both scenarios indicate fault rupture behavior that deviates from classic time- or slip-predictable models.

  14. Repetition of large stress drop earthquakes on Wairarapa fault, New Zealand, revealed by LiDAR data

    NASA Astrophysics Data System (ADS)

    Delor, E.; Manighetti, I.; Garambois, S.; Beaupretre, S.; Vitard, C.

    2013-12-01

    We have acquired high-resolution LiDAR topographic data over most of the onland trace of the 120 km-long Wairarapa strike-slip fault, New Zealand. The Wairarapa fault broke in a large earthquake in 1855, and this historical earthquake is suggested to have produced up to 18 m of lateral slip at the ground surface. This would make this earthquake a remarkable event having produced a stress drop much higher than commonly observed on other earthquakes worldwide. The LiDAR data allowed us examining the ground surface morphology along the fault at < 50 cm resolution, including in the many places covered with vegetation. In doing so, we identified more than 900 alluvial features of various natures and sizes that are clearly laterally offset by the fault. We measured the about 670 clearest lateral offsets, along with their uncertainties. Most offsets are lower than 100 m. Each measurement was weighted by a quality factor that quantifies the confidence level in the correlation of the paired markers. Since the slips are expected to vary along the fault, we analyzed the measurements in short, 3-5 km-long fault segments. The PDF statistical analysis of the cumulative offsets per segment reveals that the alluvial morphology has well recorded, at every step along the fault, no more than a few (3-6), well distinct cumulative slips, all lower than 80 m. Plotted along the entire fault, the statistically defined cumulative slip values document four, fairly continuous slip profiles that we attribute to the four most recent large earthquakes on the Wairarapa fault. The four slip profiles have a roughly triangular and asymmetric envelope shape that is similar to the coseismic slip distributions described for most large earthquakes worldwide. The four slip profiles have their maximum slip at the same place, in the northeastern third of the fault trace. The maximum slips vary from one event to another in the range 7-15 m; the most recent 1855 earthquake produced a maximum coseismic slip of 15 × 2 m at the ground surface. Our results thus confirm that the Wairarapa fault breaks in remarkably large stress drop earthquakes. Those repeating large earthquakes share both similar (rupture length, slip-length distribution, location of maximum slip) and distinct (maximum slip amplitudes) characteristics. Furthermore, the seismic behavior of the Wairarapa fault is markedly different from that of nearby large strike-slip faults (Wellington, Hope). The reasons for those differences in rupture behavior might reside in the intrinsic properties of the broken faults, especially in their structural maturity.

  15. The influence of fault geometry and frictional contact properties on slip surface behavior and off-fault damage: insights from quasi-static modeling of small strike-slip faults from the Sierra Nevada, CA

    NASA Astrophysics Data System (ADS)

    Ritz, E.; Pollard, D. D.

    2011-12-01

    Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.

  16. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  17. Constraining fault constitutive behavior with slip and stress heterogeneity

    USGS Publications Warehouse

    Aagaard, Brad T.; Heaton, T.H.

    2008-01-01

    We study how enforcing self-consistency in the statistical properties of the preshear and postshear stress on a fault can be used to constrain fault constitutive behavior beyond that required to produce a desired spatial and temporal evolution of slip in a single event. We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain these conditions following rupture, so that the stress field is compatible with the generation of aftershocks and facilitates heterogeneous slip in subsequent events. Our three-dimensional fmite element simulations of magnitude 7 events on a vertical, planar strike-slip fault show that the conditions that lead to slip heterogeneity remain in place after large events when the dynamic stress drop (initial shear stress) and breakdown work (fracture energy) are spatially heterogeneous. In these models the breakdown work is on the order of MJ/m2, which is comparable to the radiated energy. These conditions producing slip heterogeneity also tend to produce narrower slip pulses independent of a slip rate dependence in the fault constitutive model. An alternative mechanism for generating these confined slip pulses appears to be fault constitutive models that have a stronger rate dependence, which also makes them difficult to implement in numerical models. We hypothesize that self-consistent ruptures could also be produced by very narrow slip pulses propagating in a self-sustaining heterogeneous stress field with breakdown work comparable to fracture energy estimates of kJ/M2. Copyright 2008 by the American Geophysical Union.

  18. Multi-asperity models of slow slip and tremor

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean Paul; Luo, Yingdi; Lengline, Olivier; Inbal, Asaf

    2016-04-01

    Field observations of exhumed faults indicate that fault zones can comprise mixtures of materials with different dominant deformation mechanisms, including contrasts in strength, frictional stability and hydrothermal transport properties. Computational modeling helps quantify the potential effects of fault zone heterogeneity on fault slip styles from seismic to aseismic slip, including slow slip and tremor phenomena, foreshocks sequences and swarms, high- and low-frequency radiation during large earthquakes. We will summarize results of ongoing modeling studies of slow slip and tremor in which fault zone structure comprises a collection of frictionally unstable patches capable of seismic slip (tremorgenic asperities) embedded in a frictionally stable matrix hosting aseismic transient slips. Such models are consistent with the current view that tremors result from repeated shear failure of multiple asperities as Low Frequency Earthquakes (LFEs). The collective behavior of asperities embedded in creeping faults generate a rich spectrum of tremor migration patterns, as observed in natural faults, whose seismicity rate, recurrence time and migration speed can be mechanically related to the underlying transient slow slip rate. Tremor activity and slow slip also responds to periodic loadings induced by tides or surface waves, and models relate tremor tidal sensitivity to frictional properties, fluid pressure and creep rate. The overall behavior of a heterogeneous fault is affected by structural parameters, such as the ratio of stable to unstable materials, but also by time-dependent variables, such as pore pressure and loading rate. Some behaviors are well predicted by homogenization theory based on spatially-averaged frictional properties, but others are somewhat unexpected, such as seismic slip behavior found in asperities that are much smaller than their nucleation size. Two end-member regimes are obtained in rate-and-state models with velocity-weakening asperities embedded in a matrix with either (A) velocity-strengthening friction or (B) a transition from velocity-weakening to velocity-strengthening at increasing slip velocity. The most conventional regime is tremor driven by slow slip. However, if the interaction between asperities mediated by intervening transient creep is strong enough, a regime of slow slip driven by tremors emerges. These two regimes lead to different statistics of inter-event times of LFE sequences, which we confront to observations from LFE catalogs in Mexico, Cascadia and Parkfield. These models also suggest that the depth dependence of tremor and slow slip behavior, for instance their shorter recurrence time and weaker amplitude with increasing depth, are not necessarily related to depth dependent size distribution of asperities, but could be due to depth-dependence of the properties of the intervening creep materials. Simplified fracture mechanics models illustrate how the resistance of the fault zone matrix can control the effective distance of interaction between asperities, and lead to transitions between Gutenberg-Richter to size-bounded (exponential) frequency-magnitude distributions. Structural fault zone properties such as the thickness of the damage zone can also introduce characteristic length scales that may affect the size distribution of tremors. Earthquake cycle simulations on heterogeneous faults also provide insight into the conditions that allow asperities to generate foreshock activity and high-frequency radiation during large earthquakes.

  19. A renormalization group model for the stick-slip behavior of faults

    NASA Technical Reports Server (NTRS)

    Smalley, R. F., Jr.; Turcotte, D. L.; Solla, S. A.

    1983-01-01

    A fault which is treated as an array of asperities with a prescribed statistical distribution of strengths is described. For a linear array the stress is transferred to a single adjacent asperity and for a two dimensional array to three ajacent asperities. It is shown that the solutions bifurcate at a critical applied stress. At stresses less than the critical stress virtually no asperities fail on a large scale and the fault is locked. At the critical stress the solution bifurcates and asperity failure cascades away from the nucleus of failure. It is found that the stick slip behavior of most faults can be attributed to the distribution of asperities on the fault. The observation of stick slip behavior on faults rather than stable sliding, why the observed level of seismicity on a locked fault is very small, and why the stress on a fault is less than that predicted by a standard value of the coefficient of friction are outlined.

  20. Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Lavier, L. L.; Wallace, L.

    2016-12-01

    Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.

  1. Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Rockwell, Thomas K.; Klinger, Yann

    2018-01-01

    We resolved displacement on buried stream channels that record the past 3400 years of slip history for the Jordan Gorge (JGF) section of the Dead Sea fault in Israel. Based on three-dimensional (3D) trenching, slip in the past millennium amounts to only 2.7 m, similar to that determined in previous studies, whereas the previous millennium experienced two to three times this amount of displacement with nearly 8 m of cumulative slip, indicating substantial short term variations in slip rate. The slip rate averaged over the past 3400 years, as determined from 3D trenching, is 4.1 mm/yr, which agrees well with geodetic estimates of strain accumulation, as well as with longer-term geologic slip rate estimates. Our results indicate that: 1) the past 1200 years appear to significantly lack slip, which may portend a significant increase in future seismic activity; 2) short-term slip rates for the past two millennia have varied by more than a factor of two and suggest that past behavior is best characterized by clustering of earthquakes. From these observations, the earthquake behavior of the Jordan Gorge fault best fits is a "weak segment model" where the relatively short fault section (20 km), bounded by releasing steps, fails on its own in moderate earthquakes, or ruptures with adjacent segments.

  2. Velocity Gradient Across the San Andreas Fault and Changes in Slip Behavior as Outlined by Full non Linear Tomography

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.

    2017-12-01

    The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.

  3. Simulating subduction zone earthquakes using discrete element method: a window into elusive source processes

    NASA Astrophysics Data System (ADS)

    Blank, D. G.; Morgan, J.

    2017-12-01

    Large earthquakes that occur on convergent plate margin interfaces have the potential to cause widespread damage and loss of life. Recent observations reveal that a wide range of different slip behaviors take place along these megathrust faults, which demonstrate both their complexity, and our limited understanding of fault processes and their controls. Numerical modeling provides us with a useful tool that we can use to simulate earthquakes and related slip events, and to make direct observations and correlations among properties and parameters that might control them. Further analysis of these phenomena can lead to a more complete understanding of the underlying mechanisms that accompany the nucleation of large earthquakes, and what might trigger them. In this study, we use the discrete element method (DEM) to create numerical analogs to subduction megathrusts with heterogeneous fault friction. Displacement boundary conditions are applied in order to simulate tectonic loading, which in turn, induces slip along the fault. A wide range of slip behaviors are observed, ranging from creep to stick slip. We are able to characterize slip events by duration, stress drop, rupture area, and slip magnitude, and to correlate the relationships among these quantities. These characterizations allow us to develop a catalog of rupture events both spatially and temporally, for comparison with slip processes on natural faults.

  4. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori

    2018-05-01

    We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.

  5. Incremental slip rate and paleoseismic data from the eastern Hope fault, New Zealand: the Hossack and Green Burn sites

    NASA Astrophysics Data System (ADS)

    Hatem, A. E.; Dolan, J. F.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Rhodes, E.; Van Dissen, R. J.

    2016-12-01

    We present incremental slip rate and paleo-earthquake data from the Conway segment of the eastern Hope fault, within the Marlborough Fault System (MFS) in the northern South Island of New Zealand. Our incremental slip rate site at Hossack Station is located near the western boundary of the Conway segment (near the Hanmer pull-apart basin), and preserves four offsets of the Hossack Stream channel that range in size from c. 11 to 190 m. Channel cut and fill deposits were exposed in several fault-parallel (channel perpendicular) trenches, and the initiation and abandonment of these offset channels are constrained by >60 radiocarbon ages, yielding four incremental slip rates spanning the Holocene. Our paleoseismologic trench at Green Burn, at the eastern end of the Conway segment near Kaikoura, was excavated across the 5-m-high fault scarp into the adjacent bog deposits. This fault-perpendicular trench revealed evidence for at least four paleo-earthquakes with age constraints provided by >40 radiocarbon dates. These results add to a growing body of slip rate and paleo-earthquake age and displacement data from all four main strike-slip faults that comprise the MFS. Collectively, these observations from the Hope fault are beginning to reveal the detailed system-level behavior of the four main faults in the MFS, with fundamental implications for, among other things, earthquake occurrence and behavior, as well as seismic hazard assessment.

  6. Constraining the Distribution of Vertical Slip on the South Heli Shan Fault (Northeastern Tibet) From High-Resolution Topographic Data

    NASA Astrophysics Data System (ADS)

    Bi, Haiyun; Zheng, Wenjun; Ge, Weipeng; Zhang, Peizhen; Zeng, Jiangyuan; Yu, Jingxing

    2018-03-01

    Reconstruction of the along-fault slip distribution provides an insight into the long-term rupture patterns of a fault, thereby enabling more accurate assessment of its future behavior. The increasing wealth of high-resolution topographic data, such as Light Detection and Ranging and photogrammetric digital elevation models, allows us to better constrain the slip distribution, thus greatly improving our understanding of fault behavior. The South Heli Shan Fault is a major active fault on the northeastern margin of the Tibetan Plateau. In this study, we built a 2 m resolution digital elevation model of the South Heli Shan Fault based on high-resolution GeoEye-1 stereo satellite imagery and then measured 302 vertical displacements along the fault, which increased the measurement density of previous field surveys by a factor of nearly 5. The cumulative displacements show an asymmetric distribution along the fault, comprising three major segments. An increasing trend from west to east indicates that the fault has likely propagated westward over its lifetime. The topographic relief of Heli Shan shows an asymmetry similar to the measured cumulative slip distribution, suggesting that the uplift of Heli Shan may result mainly from the long-term activity of the South Heli Shan Fault. Furthermore, the cumulative displacements divide into discrete clusters along the fault, indicating that the fault has ruptured in several large earthquakes. By constraining the slip-length distribution of each rupture, we found that the events do not support a characteristic recurrence model for the fault.

  7. Temporal slip rate variability in the Lower Rhine Embayment, Northwest Europe

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Kuebler, Simon; Friedrich, Anke

    2016-04-01

    Low strain regions may be characterized by long periods of seismic quiescence, punctuated by periods of clustered earthquake activity. This type of non-periodic recurrence behavior challenges accurate seismic hazard analysis. The Lower Rhine Embayment in the German-Belgium-Netherland border region presents a unique opportunity to characterize the long-term record of faulting to evaluate the periodicity of earthquake occurrence in a low strain region. The Lower Rhine Embayment is covered by a high-resolution record of Quaternary terraces associated with the Rhine and Maas (Meuse) Rivers and their tributaries. These terraces are cut by numerous NW-trending faults and record cumulative displacements that exceed 100 m in numerous locations. In this study, we exploit this rich record of faulted fluvial terraces and find convincing evidence for temporally varying rates of Quaternary fault movement across the Lower Rhine Embayment. First, we document a significant increase in vertical fault slip rates since 700 ka, compared to the average slip rate since the start of the Quaternary using the top and base of the Main Terrace, respectively. Increases in slip rate exceed 500% along many of the faults, including the Swist/Erft, Stockheim, Viersen, Sandgewand, and Kirspenich fault systems. This increase in fault slip rate corresponds to a regional period of increased tectonic uplift of the Rhenish Massif, increased volcanism in Eifel, and incision of the Rhine River. In a second and related analysis, we synthesize terrace offset and age information from the Feldbiss fault system along the western boundary of the Lower Rhine Embayment, which transects a flight of Quaternary terraces associated with the Mass river. This analysis reveals evidence for secular variation in slip rate. In particular, we identify two periods of higher slip rate (800-400 ka and 130-100 ka), where fault slip rate exceeds the longer-term average slip rate of 0.04-0.05 mm/yr by as much as a factor of two. These results show that in the Lower Rhine Embayment low-strain region, the tempo of strain release (and therefore earthquakes) is non-steady. This variable slip behavior should be incorporated into future efforts to characterize seismic hazard across the region.

  8. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates

    PubMed Central

    Ikari, Matt J.; Kopf, Achim J.

    2017-01-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected. PMID:29202027

  9. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  10. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  11. Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models

    NASA Astrophysics Data System (ADS)

    Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang

    2014-05-01

    Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike-slip faults.

  12. Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Peltzer, Gilles

    2007-01-01

    The deformation in the Asal Rift (Djibouti) is characterized by magmatic inflation, diking, distributed extension, fissure opening, and normal faulting. An 8 yr time line of surface displacement maps covering the rift, constructed using radar interferometry data acquired by the Canadian satellite Radarsat between 1997 and 2005, reveals the aseismic behavior of faults and its relation with bursts of microseismicity. The observed ground movements show the asymmetric subsidence of the inner floor of the rift with respect to the bordering shoulders accommodated by slip on three of the main active faults. Fault slip occurs both as steady creep and during sudden slip events accompanied by an increase in the seismicity rate around the slipping fault and the Fieale volcanic center. Slip distribution along fault strike shows triangular sections, a pattern not explained by simple elastic dislocation theory. These observations suggest that the Asal Rift faults are in a critical failure state and respond instantly to small pressure changes in fluid-filled fractures connected to the faults, reducing the effective normal stress on their locked section at depth.

  13. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.

  14. Secular Variation in Slip (Invited)

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Gold, R. D.

    2010-12-01

    Faults show temporal variations in slip rate at time scales ranging from the hours following a major rupture to the millions of years over which plate boundaries reorganize. One such behavior is secular variation in slip (SVS), which we define as a pulse of accelerated strain release along a single fault that occurs at a frequency that is > 1 order of magnitude longer than the recurrence interval of earthquakes within the pulse. Although numerous mechanical models have been proposed to explain SVS, it has proven much harder to measure long (5-500 kyr) records of fault displacement as a function of time. Such fault-slip histories may be obtained from morphochronologic data, which are measurements of offset and age obtained from faulted landforms. Here we describe slip-history modeling of morphochronologic data and show how this method holds promise for obtaining long records of fault slip. In detail we place SVS in the context of other types of time-varying fault-slip phenomena, explain the importance of measuring fault-slip histories, summarize models proposed to explain SVS, review current approaches for measuring SVS in the geologic record, and illustrate the slip-history modeling approach we advocate here using data from the active, left-slip Altyn Tagh fault in NW Tibet. In addition to SVS, other types of temporal variation in fault slip include post-seismic transients, discrepancies between geologic slip rates and those derived from geodetic and/or paleoseismic data, and single changes in slip rate resulting from plate reorganization. Investigating secular variation in slip is important for advancing understanding of long-term continental deformation, fault mechanics, and seismic risk. Mechanical models producing such behavior include self-driven mode switching, changes in pore-fluid pressure, viscoelasticity, postseismic reloading, and changes in local surface loads (e.g., ice sheets, large lakes, etc.) among others. However, a key problem in testing these models is the paucity of long records of fault slip. Paleoseismic data are unlikely to yield such histories because measurements of the slip associated with each event are generally unavailable and long records require large accumulated offsets, which can result in structural duplication or omission of the stratigraphic records of events. In contrast, morphochronologic data capture both the age and offset of individual piercing points, although this approach generally does not resolve individual earthquake events. Because the uncertainties in both age and offset are generally large (5-15%) for individual markers, SVS is best resolved by obtaining suites of such measurements, in which case the errors can be used to reduce the range of slip histories common to all such data points. A suite of such data from the central Altyn Tagh fault reveals a pulse of accelerated strain release in the mid Holocene, with ~20 m of slip being released from ~6.7 to ~5.9 ka at a short-term rate (~28 mm/yr) that is 3 times greater than the average rate (~9 mm/yr). We interpret this pulse to represent a cluster of two to six, Mw > 7.2 earthquakes. To our knowledge, this is the first possible earthquake cluster detected using morphochronologic techniques.

  15. How Long Is Long Enough? Estimation of Slip-Rate and Earthquake Recurrence Interval on a Simple Plate-Boundary Fault Using 3D Paleoseismic Trenching

    NASA Astrophysics Data System (ADS)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.; Agnon, A.; Marco, S.

    2012-12-01

    Models used to forecast future seismicity make fundamental assumptions about the behavior of faults and fault systems in the long term, but in many cases this long-term behavior is assumed using short-term and perhaps non-representative observations. The question arises - how long of a record is long enough to represent actual fault behavior, both in terms of recurrence of earthquakes and of moment release (aka slip-rate). We test earthquake recurrence and slip models via high-resolution three-dimensional trenching of the Beteiha (Bet-Zayda) site on the Dead Sea Transform (DST) in northern Israel. We extend the earthquake history of this simple plate boundary fault to establish slip rate for the past 3-4kyr, to determine the amount of slip per event and to study the fundamental behavior, thereby testing competing rupture models (characteristic, slip-patch, slip-loading, and Gutenberg Richter type distribution). To this end we opened more than 900m of trenches, mapped 8 buried channels and dated more than 80 radiocarbon samples. By mapping buried channels, offset by the DST on both sides of the fault, we obtained for each an estimate of displacement. Coupled with fault crossing trenches to determine event history, we construct earthquake and slip history for the fault for the past 2kyr. We observe evidence for a total of 9-10 surface-rupturing earthquakes with varying offset amounts. 6-7 events occurred in the 1st millennium, compared to just 2-3 in the 2nd millennium CE. From our observations it is clear that the fault is not behaving in a periodic fashion. A 4kyr old buried channel yields a slip rate of 3.5-4mm/yr, consistent with GPS rates for this segment. Yet in spite of the apparent agreement between GPS, Pleistocene to present slip rate, and the lifetime rate of the DST, the past 800-1000 year period appears deficit in strain release. Thus, in terms of moment release, most of the fault has remained locked and is accumulating elastic strain. In contrast, the preceding 1200 years or so experienced a spate of earthquake activity, with large events along the Jordan Valley segment alone in 31 BCE, 363, 749, and 1033 CE. Thus, the return period appears to vary by a factor of two to four during the historical period in the Jordan Valley as well as at our site. The Beteiha site seems to be affected by both its southern and northern neighboring segments, and there is tentative evidence that earthquakes nucleating in the Jordan Valley (e.g. 749 CE) can rupture through the Galilee step-over to the south of Beteiha, or trigger a smaller event on the Jordan Gorge segment, in which case the historical record will tend to amalgamate any evidence for it into one large event. We offer a model of earthquake slip for this segment, in which the overall slip rate remains constant, yet differing earthquake sizes can occur, depending on the segment from which they originated and the time since the last large event. The rate of earthquake production in this model does not produce a time predictable pattern over a period of 2kyr, and the slip rate varies between the 1st and 2nd millennia CE, as a result of the interplay between coalescing fault segments to the north.

  16. Slow Earthquakes and The Mechanics of Slow Frictional Stick-Slip

    NASA Astrophysics Data System (ADS)

    Marone, Chris; Scuderi, Marco; Leeman, John; Saffer, Demian; Collettini, Cristiano; Johnson, Paul

    2015-04-01

    Slow earthquakes represent one mode of the spectrum of fault slip behaviors ranging from steady aseismic slip to normal earthquakes. Like normal earthquakes, slow earthquakes can occur repetitively, such that a fault fails in a form of stick-slip failure defined by interseismic strain accumulation and slow, quasidynamic slip. The mechanics of frictional stick-slip and seismogenic faulting appear to apply to slow earthquakes, however, the mechanisms that limit dynamic slip velocity, rupture propagation speed, and the scaling between moment and duration of slow earthquakes are poorly understood. Here, we describe laboratory experiments that explore the mechanics of repetitive, slow frictional stick-slip failure. We document the role of loading stiffness and friction constitutive behavior in dictating the properties of repetitive, frictional stick-slip. Our results show that a spectrum of dynamic and quasidynamic slip velocities can occur in stick-slip events depending on the relation between loading stiffness k and the rheologic critical stiffness kc given, in the context of rate and state friction, by the ratio of the friction rate parameter (b-a) divided by the critical friction distance Dc. Slow slip is favored by conditions for which k is ~ equal to kc, whereas normal, fast stick slip occurs when k/kc < 1. We explore the role of elastic coupling and spatially extended slip propagation by comparing slow slip results for shear in a layer driven by forcing blocks of varying stiffness. We evaluate our data in the framework of rate and state friction laws and focus on the frictional mechanics of slow stick-slip failure with special attention paid to the connections between quasidynamic failure and mechanisms of the brittle-ductile transition in fault rocks.

  17. Data-driven fault mechanics: Inferring fault hydro-mechanical properties from in situ observations of injection-induced aseismic slip

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Viesca, R. C.

    2017-12-01

    In the absence of in situ field-scale observations of quantities such as fault slip, shear stress and pore pressure, observational constraints on models of fault slip have mostly been limited to laboratory and/or remote observations. Recent controlled fluid-injection experiments on well-instrumented faults fill this gap by simultaneously monitoring fault slip and pore pressure evolution in situ [Gugleilmi et al., 2015]. Such experiments can reveal interesting fault behavior, e.g., Gugleilmi et al. report fluid-activated aseismic slip followed only subsequently by the onset of micro-seismicity. We show that the Gugleilmi et al. dataset can be used to constrain the hydro-mechanical model parameters of a fluid-activated expanding shear rupture within a Bayesian framework. We assume that (1) pore-pressure diffuses radially outward (from the injection well) within a permeable pathway along the fault bounded by a narrow damage zone about the principal slip surface; (2) pore-pressure increase ativates slip on a pre-stressed planar fault due to reduction in frictional strength (expressed as a constant friction coefficient times the effective normal stress). Owing to efficient, parallel, numerical solutions to the axisymmetric fluid-diffusion and crack problems (under the imposed history of injection), we are able to jointly fit the observed history of pore-pressure and slip using an adaptive Monte Carlo technique. Our hydrological model provides an excellent fit to the pore-pressure data without requiring any statistically significant permeability enhancement due to the onset of slip. Further, for realistic elastic properties of the fault, the crack model fits both the onset of slip and its early time evolution reasonably well. However, our model requires unrealistic fault properties to fit the marked acceleration of slip observed later in the experiment (coinciding with the triggering of microseismicity). Therefore, besides producing meaningful and internally consistent bounds on in-situ fault properties like permeability, storage coefficient, resolved stresses, friction and the shear modulus, our results also show that fitting the complete observed time history of slip requires alternative model considerations, such as variations in fault mechanical properties or friction coefficient with slip.

  18. The balance of frictional heat production, thermal pressurization, and slip resistance on exhumed mid-crustal faults (Adamello batholith, Southern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; di Toro, G.; Pollard, D. D.

    2005-12-01

    Exhumed faults cutting the Adamello batholith (Italian Alps) were active ca. 30 Ma at seismogenic depths of 9-11 km. The faults "exploited preexisting joints and can be classified into three groups containing: (A) only cataclasite (a fault rock with no evidence of melting), (B) cataclasite and pseudotachylyte (solidified friction-induced melts produced during earthquakes), and (C) only pseudotachylyte. The majority of pseudotachylyte-bearing faults in this outcrop overprint pre-existing cataclasites (Type B), suggesting a transition between slip styles; however, some faults exhibiting pseudotachylyte and no cataclasite (Type C) display evidence of only one episode of slip. Faults of Type A never transitioned to frictional melting. We attempt to compare faults of type A, B, and C in terms of a simple one-dimensional thermo-mechanical model introduced by Lachenbruch (1980) describing the interaction between frictional heating, pore fluid pressure, and shear resistance during slip. The interaction of these three parameters influences how much elastic strain is relieved during an earthquake. For a conceptualized fault zone of finite thickness, the interplay between the shear resistance, heat production, and pore fluid pressure can be expressed as a non-linear partial differential equation relating these processes to the strain rate acting within a fault zone during a slip event. The behavior of fault zones in terms of these coupled processes during an earthquake depends on a number of parameters, such as thickness of the principal slipping zone, net coseismic slip, fault rock permeability and thermal diffusivity. Ideally, the governing equations should be testable on real fault zones if the requisite parameters can be measured or reasonably estimated. The model can be further simplified if the peak temperature reached during slip and the coseismic slip rate can be constrained. The contrasting nature of slip on the three Adamello fault types highlights (1) important differences between slip processes on cataclastic and melt-producing faults at depth and (2) some limitations of applicability of such models to real faults.

  19. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  20. Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications

    NASA Astrophysics Data System (ADS)

    Han, Raehee; Hirose, Takehiro; Jeong, Gi Young; Ando, Jun-ichi; Mukoyoshi, Hideki

    2014-08-01

    Clayey gouges are common in fault slip zones at shallow depths. Thus, the fault zone processes and frictional behaviors of the gouges are critical to understanding seismic slip at these depths. We conducted rotary shear tests on clayey gouge (~41 wt % clay minerals) at a seismic slip rate of 1.3 m/s. Here we report that the gouge was melted at 5 MPa of normal stress and room humidity conditions. The initial local melting was followed by melt layer formation. Clay minerals (e.g., smectite and illite) and plagioclase were melted and quenched to glass with numerous vesicles. Both flash heating and bulk temperature increases appear to be responsible for the melting. This observation of clayey gouge melting is comparable to that of natural faults (e.g., Chelungpu fault, Taiwan). Due to heterogeneous fault zone properties (e.g., permeability), frictional melting may be one of the important processes in clayey slip zones at shallow depths.

  1. The Mechanics of Transient Fault Slip and Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Marone, C.; Leeman, J.; Scuderi, M.; Saffer, D. M.; Collettini, C.

    2015-12-01

    Earthquakes are understood as frictional stick-slip instabilities in which stored elastic energy is released suddenly, driving catastrophic failure. In normal (fast) earthquakes the rupture zone expands at a rate dictated by elastic wave speeds, a few km/s, and fault slip rates reach 1-10 m/s. However, tectonic faults also fail in slow earthquakes with rupture durations of months and fault slip speeds of ~100 micron/s or less. We know very little about the mechanics of slow earthquakes. What determines the rupture propagation velocity in slow earthquakes and in other forms of quasi-dynamic rupture? What processes limit stress drop and fault slip speed in slow earthquakes? Existing lab studies provide some help via observations of complex forms of stick-slip, creep-slip, or, in a few cases, slow slip. However, these are mainly anecdotal and rarely include examples of repetitive slow slip or systematic measurements that could be used to isolate the underlying mechanisms. Numerical studies based on rate and state friction also shed light on transiently accelerating slip, showing that slow slip can occur if: 1) fault rheology involves a change in friction rate dependence (a-b) with velocity or unusually large values of the frictional weakening distance Dc, or 2) fault zone elastic stiffness equals the critical frictional weakening rate kc = (b-a)/Dc. Recent laboratory work shows that the latter can occur much more commonly that previously thought. We document the complete spectrum of stick-slip behaviors from transient slow slip to fast stick-slip for a narrow range of conditions around k/kc = 1.0. Slow slip occurs near the threshold between stable and unstable failure, controlled by the interplay of fault zone frictional properties, normal stress, and elastic stiffness of the surrounding rock. Our results provide a generic mechanism for slow earthquakes, consistent with the wide range of conditions for which slow slip has been observed.

  2. Foreshocks during the nucleation of stick-slip instability

    USGS Publications Warehouse

    McLaskey, Gregory C.; Kilgore, Brian D.

    2013-01-01

    We report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ −6.5 to −5.0) can occur in this slowly slipping zone 5–50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  3. Frictional constraints on crustal faulting

    USGS Publications Warehouse

    Boatwright, J.; Cocco, M.

    1996-01-01

    We consider how variations in fault frictional properties affect the phenomenology of earthquake faulting. In particular, we propose that lateral variations in fault friction produce the marked heterogeneity of slip observed in large earthquakes. We model these variations using a rate- and state-dependent friction law, where we differentiate velocity-weakening behavior into two fields: the strong seismic field is very velocity weakening and the weak seismic field is slightly velocity weakening. Similarly, we differentiate velocity-strengthening behavior into two fields: the compliant field is slightly velocity strengthening and the viscous field is very velocity strengthening. The strong seismic field comprises the seismic slip concentrations, or asperities. The two "intermediate" fields, weak seismic and compliant, have frictional velocity dependences that are close to velocity neutral: these fields modulate both the tectonic loading and the dynamic rupture process. During the interseismic period, the weak seismic and compliant regions slip aseismically, while the strong seismic regions remain locked, evolving into stress concentrations that fail only in main shocks. The weak seismic areas exhibit most of the interseismic activity and aftershocks but can also creep seismically. This "mixed" frictional behavior can be obtained from a sufficiently heterogenous distribution of the critical slip distance. The model also provides a mechanism for rupture arrest: dynamic rupture fronts decelerate as they penetrate into unloaded complaint or weak seismic areas, producing broad areas of accelerated afterslip. Aftershocks occur on both the weak seismic and compliant areas around a fault, but most of the stress is diffused through aseismic slip. Rapid afterslip on these peripheral areas can also produce aftershocks within the main shock rupture area by reloading weak fault areas that slipped in the main shock and then healed. We test this frictional model by comparing the seismicity and the coseismic slip for the 1966 Parkfield, 1979 Coyote Lake, and 1984 Morgan Hill earthquakes. The interevent seismicity and aftershocks appear to occur on fault areas outside the regions of significant slip: these regions are interpreted as either weak seismic or compliant, depending on whether or not they manifest interevent seismicity.

  4. Numerical simulations of stick-slip in fluid saturated granular fault gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, O.; Johnson, P. A.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2016-12-01

    Fluids play a key role in determining the frictional strength and stability of faults. For example, fluid flow and fluid-solid interaction in fault gouge can trigger seismicity, alter earthquake nucleation properties and cause fault zone weakening. We present results of 3D numerical simulations of stick-slip behavior in dry and saturated granular fault gouge. In the saturated case, the gouge is fully saturated and drainage is possible through the boundaries. We model the solid phase (particles) with the discrete element method (DEM) while the fluid is described by the Navier-Stokes equations and solved by computational fluid dynamics (CFD). In our model, granular gouge is sheared between two rough plates under boundary conditions of constant normal stress and constant shearing velocity at the layer boundaries. A phase-space study including shearing velocity and normal stress is taken to identify the conditions for stick-slip regime. We analyzed slip events for dry and saturated cases to determine shear stress drop, released kinetic energy and compaction. The presence of fluid tends to cause larger slip events. We observe a close correlation between the kinetic energy of the particles and of the fluid. In short, during slip, fluid flow induced by the failure and compaction of the granular system, mobilizes the particles, which increases their kinetic energy, leading to greater slip. We further observe that the solid-fluid interaction forces are equal or larger than the solid-solid interaction forces during the slip event, indicating the important influence of the fluid on the granular system. Our simulations can explain the behaviors observed in experimental studies and we are working to apply our results to tectonic faults.

  5. Frictional power dissipation on plate boundary faults: Implications for coseismic slip propagation at near-surface depths

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.

    2013-12-01

    The general lack of earthquake slip at shallow (< ~4 km) depths on plate-boundary faults suggests that they creep stably, a behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone. We also explore the role of absolute shear stress level before arrival of a propagating rupture. Preliminary results show that weak, velocity-strengthening fault zones have a low net power density, but are unlikely to contribute to instability via dynamic stress drops unless they are initially very close to failure. By contrast, strong and velocity-weakening faults will tend to resist coseismic slip by consuming energy if stresses are initially low; however their velocity-weakening nature means that they can support a stress drop even if relatively far below their failure strength.

  6. Surface slip and off-fault deformation patterns in the 2013 MW 7.7 Balochistan, Pakistan earthquake: Implications for controls on the distribution of near-surface coseismic slip

    NASA Astrophysics Data System (ADS)

    Zinke, Robert; Hollingsworth, James; Dolan, James F.

    2014-12-01

    Comparison of 398 fault offsets measured by visual analysis of WorldView high-resolution satellite imagery with deformation maps produced by COSI-Corr subpixel image correlation of Landsat-8 and SPOT5 imagery reveals significant complexity and distributed deformation along the 2013 Mw 7.7 Balochistan, Pakistan earthquake. Average slip along the main trace of the fault was 4.2 m, with local maximum offsets up to 11.4 m. Comparison of slip measured from offset geomorphic features, which record localized slip along the main strand of the fault, to the total displacement across the entire width of the surface deformation zone from COSI-Corr reveals ˜45% off-fault deformation. While previous studies have shown that the structural maturity of the fault exerts a primary control on the total percentage of off-fault surface deformation, large along-strike variations in the percentage of strain localization observed in the 2013 rupture imply the influence of important secondary controls. One such possible secondary control is the type of near-surface material through which the rupture propagated. We therefore compared the percentage off-fault deformation to the type of material (bedrock, old alluvium, and young alluvium) at the surface and the distance of the fault to the nearest bedrock outcrop (a proxy for sediment thickness along this hybrid strike slip/reverse slip fault). We find significantly more off-fault deformation in younger and/or thicker sediments. Accounting for and predicting such off-fault deformation patterns has important implications for the interpretation of geologic slip rates, especially for their use in probabilistic seismic hazard assessments, the behavior of near-surface materials during coseismic deformation, and the future development of microzonation protocols for the built environment.

  7. Conjugated π electron engineering of generalized stacking fault in graphene and h-BN.

    PubMed

    Ouyang, Bin; Chen, Cheng; Song, J

    2018-03-02

    Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.

  8. Conjugated π electron engineering of generalized stacking fault in graphene and h-BN

    NASA Astrophysics Data System (ADS)

    Ouyang, Bin; Chen, Cheng; Song, J.

    2018-03-01

    Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.

  9. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  10. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE PAGES

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban; ...

    2018-06-20

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  11. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  12. Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

    USGS Publications Warehouse

    Toke, N.A.; Arrowsmith, J.R.; Rymer, M.J.; Landgraf, A.; Haddad, D.E.; Busch, M.; Coyan, J.; Hannah, A.

    2011-01-01

    Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1??) for the main trace of the San Andreas fault at Park-field, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (~35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the upper-most stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. ?? 2011 Geological Society of America.

  13. Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales

    NASA Astrophysics Data System (ADS)

    Collettini, C.; Scuderi, M. M.; Marone, C.

    2017-12-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  14. Experimental study on propagation of fault slip along a simulated rock fault

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.

    2015-12-01

    Around pre-existing geological faults in the crust, we have often observed off-fault damage zone where there are many fractures with various scales, from ~ mm to ~ m and their density typically increases with proximity to the fault. One of the fracture formation processes is considered to be dynamic shear rupture propagation on the faults, which leads to the occurrence of earthquakes. Here, I have conducted experiments on propagation of fault slip along a pre-cut rock surface to investigate the damaging behavior of rocks with slip propagation. For the experiments, I used a pair of metagabbro blocks from Tamil Nadu, India, of which the contacting surface simulates a fault of 35 cm in length and 1cm width. The experiments were done with the similar uniaxial loading configuration to Rosakis et al. (2007). Axial load σ is applied to the fault plane with an angle 60° to the loading direction. When σ is 5kN, normal and shear stresses on the fault are 1.25MPa and 0.72MPa, respectively. Timing and direction of slip propagation on the fault during the experiments were monitored with several strain gauges arrayed at an interval along the fault. The gauge data were digitally recorded with a 1MHz sampling rate and 16bit resolution. When σ is 4.8kN is applied, we observed some fault slip events where a slip nucleates spontaneously in a subsection of the fault and propagates to the whole fault. However, the propagation speed is about 1.2km/s, much lower than the S-wave velocity of the rock. This indicates that the slip events were not earthquake-like dynamic rupture ones. More efforts are needed to reproduce earthquake-like slip events in the experiments. This work is supported by the JSPS KAKENHI (26870912).

  15. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available for further slip and for subsequent earthquakes. This suite of models reveals that efficiency may be a useful tool for determining the relative seismic hazard of different segmented fault systems, while accounting for coseismic damage zone production is critical in assessing fault interactions and the associated energy budgets of specific systems.

  16. Is the co-seismic slip distribution fractal?

    NASA Astrophysics Data System (ADS)

    Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James

    2015-04-01

    Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large cumulative displacement faults and compare these slip distributions to those from immature fault systems. Our results have fundamental implications for an understanding of slip heterogeneity and the behavior of the rupture process.

  17. Attempting to bridge the gap between laboratory and seismic estimates of fracture energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Beeler, N.M.

    2004-01-01

    To investigate the behavior of the fracture energy associated with expanding the rupture zone of an earthquake, we have used the results of a large-scale, biaxial stick-slip friction experiment to set the parameters of an equivalent dynamic rupture model. This model is determined by matching the fault slip, the static stress drop and the apparent stress. After confirming that the fracture energy associated with this model earthquake is in reasonable agreement with corresponding laboratory values, we can use it to determine fracture energies for earthquakes as functions of stress drop, rupture velocity and fault slip. If we take account of the state of stress at seismogenic depths, the model extrapolation to larger fault slips yields fracture energies that agree with independent estimates by others based on dynamic rupture models for large earthquakes. For fixed stress drop and rupture speed, the fracture energy scales linearly with fault slip.

  18. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.

    2010-01-01

    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as a negative flower structure. This structure implies some continuing strike slip on the Silver Creek Fault in the late Quaternary as well, with a transtensional component but no dip slip. Our only basis for estimating the rate of this later Quaternary strike slip on the Silver Creek Fault is to assume continuation of the inferred early Quaternary rate of less than 2 mm/yr. Faulting evident in a detailed seismic reflection profile across the Silver Creek Fault extends up to the limit of data at a depth of 50 m and age of about 140 ka, and the course of Coyote Creek suggests Holocene capture in a structural depression along the fault. No surface trace is evident on the alluvial plain, however, and convincing evidence of Holocene offset is lacking. Few instrumentally recorded earthquakes are located near the fault, and those that are near its southern end represent cross-fault shortening, not strike slip. The fault might have been responsible, however, for two poorly located moderate earthquakes that occurred in the area in 1903. Its southeastern end does mark an abrupt change in the pattern of abundant instrumentally recorded earthquakes along the Calaveras Fault-in both its strike and in the depth distribution of hypocenters-that could indicate continuing influence by the Silver Creek Fault. In the absence of convincing evidence to the contrary, and as a conservative estimate, we presume that the Silver Creek Fault has continued its strike-slip movement through the Holocene, but at a very slow rate. Such a slow rate would, at most, yield very infrequent damaging earthquakes. If the 1903 earthquakes did, in fact, occur on the Silver Creek Fault, they would have greatly reduced the short-term future potential for large earthquakes on the fault.

  19. Continuous borehole strain in the San Andreas fault zone before, during, and after the 28 June 1992, MW 7.3 Landers, California, earthquake

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Agnew, D.C.

    1994-01-01

    High-precision strain was observed with a borehole dilational strainmeter in the Devil's Punchbowl during the 11:58 UT 28 June 1992 MW 7.3 Landers earthquake and the large Big Bear aftershock (MW 6.3). The strainmeter is installed at a depth of 176 m in the fault zone approximately midway between the surface traces of the San Andreas and Punchbowl faults and is about 100 km from the 85-km-long Landers rupture. We have questioned whether unusual amplified strains indicating precursive slip or high fault compliance occurred on the faults ruptured by the Landers earthquake, or in the San Andreas fault zone before and during the earthquake, whether static offsets for both the Landers and Big Bear earthquakes agree with expectation from geodetic and seismologic models of the ruptures and with observations from a nearby two-color geodimeter network, and whether postseismic behavior indicated continued slip on the Landers rupture or local triggered slip on the San Andreas. We show that the strain observed during the earthquake at this instrument shows no apparent amplification effects. There are no indications of precursive strain in these strain data due to either local slip on the San Andreas or precursive slip on the eventual Landers rupture. The observations are generally consistent with models of the earthquake in which fault geometry and slip have the same form as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. Finally, there are some indications of minor postseismic behavior, particularly during the month following the earthquake.

  20. Late quaternary slip-rate variations along the Warm Springs Valley fault system, northern Walker Lane, California-Nevada border

    USGS Publications Warehouse

    Gold, Ryan; dePolo, Craig; Briggs, Richard W.; Crone, Anthony

    2013-01-01

    The extent to which faults exhibit temporally varying slip rates has important consequences for models of fault mechanics and probabilistic seismic hazard. Here, we explore the temporal behavior of the dextral‐slip Warm Springs Valley fault system, which is part of a network of closely spaced (10–20 km) faults in the northern Walker Lane (California–Nevada border). We develop a late Quaternary slip record for the fault using Quaternary mapping and high‐resolution topographic data from airborne Light Distance and Ranging (LiDAR). The faulted Fort Sage alluvial fan (40.06° N, 119.99° W) is dextrally displaced 98+42/-43 m, and we estimate the age of the alluvial fan to be 41.4+10.0/-4.8 to 55.7±9.2  ka, based on a terrestrial cosmogenic 10Be depth profile and 36Cl analyses on basalt boulders, respectively. The displacement and age constraints for the fan yield a slip rate of 1.8 +0.8/-0.8 mm/yr to 2.4 +1.2/-1.1 mm/yr (2σ) along the northern Warm Springs Valley fault system for the past 41.4–55.7 ka. In contrast to this longer‐term slip rate, shorelines associated with the Sehoo highstand of Lake Lahontan (~15.8  ka) adjacent to the Fort Sage fan are dextrally faulted at most 3 m, which limits a maximum post‐15.8 ka slip rate to 0.2  mm/yr. These relations indicate that the post‐Lahontan slip rate on the fault is only about one‐tenth the longer‐term (41–56 ka) average slip rate. This apparent slip‐rate variation may be related to co‐dependent interaction with the nearby Honey Lake fault system, which shows evidence of an accelerated period of mid‐Holocene earthquakes.

  1. Mechanical Evolution and Dynamics of Decollement Slip in Contractional Systems: Correlating Macro- and Micro-Scale Processes in Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.

    2014-12-01

    Particle-based numerical simulations allow detailed investigations of small-scale processes and mechanisms associated with fault initiation and slip, which emerge naturally in such models. This study investigates the evolving mechanical conditions and associated micro-mechanisms during transient slip on a weak decollement propagating beneath a growing contractional wedge (e.g., accretionary prism, fold and thrust belt). The models serve as analogs of the seismic cycle, although lacking full earthquake dynamics. Nonetheless, the mechanical evolution of both decollement and upper plate can be monitored, and correlated with the particle-scale physical and contact properties, providing insights into changes that accompany such stick-slip behavior. In this study, particle assemblages consolidated under gravity and bonded to impart cohesion, are pushed at a constant velocity above a weak, unbonded decollement surface. Forward propagation of decollement slip occurs in discrete pulses, modulated by heterogeneous stress conditions (e.g., roughness, contact bridging) along the fault. Passage of decollement slip resets the stress along this horizon, producing distinct patterns: shear stress is enhanced in front of the slipped decollement due to local contact bridging and fault locking; shear stress minima occur immediately above the tip, denoting local stress release and contact reorganization following slip; more mature portions of the fault exhibit intermediate shear stress, reflecting more stable contact force distributions and magnitudes. This pattern of shear stress pre-conditions the decollement for future slip events, which must overcome the high stresses at the fault tip. Long-term slip along the basal decollement induces upper plate contraction. When upper plate stresses reach critical strength conditions, new thrust faults break through the upper plate, relieving stresses and accommodating horizontal shortening. Decollement activity retreats back to the newly formed thrust fault. The cessation of upper plate fault slip causes gradual increases in upper plate stresses, rebuilding shear stresses along the decollement and enabling renewed pulses of decollement slip. Thus, upper plate deformation occurs out of phase with decollement propagation.

  2. Spatial and temporal patterns of fault creep across an active salt system, Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Kravitz, K.; Mueller, K. J.; Furuya, M.; Tiampo, K. F.

    2017-12-01

    First order conditions that control creeping behavior on faults include the strength of faulted materials, fault maturity and stress changes associated with seismic cycles. We present mapping of surface strain from differential interferometric synthetic aperture radar (DInSAR) of actively creeping faults in Eastern Utah that form by reactivation of older joints and faults. A nine-year record of displacement across the region using descending ERS scenes from 1992-2001 suggests maximum slip rates of 1 mm/yr. Time series analysis shows near steady rates across the region consistent with the proposed ultra-weak nature of these faults as suggested by their dilating nature, based on observations of sinkholes, pit chains and recently opened fissures along their lengths. Slip rates along the faults in the main part of the array are systematically faster with closer proximity to the Colorado River Canyon, consistent with mechanical modeling of the boundary conditions that control the overall salt system. Deeply incised side tributaries coincide with and control the edges of the region with higher strain rates. Comparison of D:L scaling at decadal scales in fault bounded grabens (as defined by InSAR) with previous measurements of total slip (D) to length (L) is interpreted to suggest that faults reached nearly their current lengths relatively quickly (i.e. displaying low displacement to length scaling). We argue this may then have been followed by along strike slip distributions where the centers of the grabens slip more rapidly than their endpoints, resulting in a higher D:L ratio over time. InSAR mapping also points to an increase in creep rates in overlap zones where two faults became hard-linked at breached relay ramps. Additionally, we see evidence for soft-linkage, where displacement profiles along a graben coincide with obvious fault segments. While an endmember case (ultra-weak faults sliding above a plastic substrate), structures in this region highlight mechanical behavior driven by rheological conditions that promote steady state slip in a complex array of extensional faults. Besides defining how creep varies along strike on individual faults, our work also hints at how strain rates may vary within the context of ongoing strain and fault linkage in a complex fault array.

  3. Clay-clast aggregates: A new textural evidence for seismic fault sliding?

    NASA Astrophysics Data System (ADS)

    Boutareaud, Sébastien; Calugaru, Dan-Gabriel; Han, Raehee; Fabbri, Olivier; Mizoguchi, Kazuo; Tsutsumi, Akito; Shimamoto, Toshihiko

    2008-03-01

    To determine the processes responsible for slip-weakening in clayey gouge zones, rotary-shear experiments were conducted at seismic slip rates (equivalent to 0.9 and 1.3 m/s) at 0.6 MPa normal stress on a natural clayey gouge for saturated and non-saturated initial conditions. The mechanical behavior of the simulated faults shows a reproducible slip-weakening behavior, whatever initial moisture conditions. Examination of gouge obtained at the residual friction stage in saturated and non-saturated initial conditions allows the definition of two types of microstructures: a foliated type reflecting strain localization, and a non-foliated type composed of spherical aggregates. Friction experiments demonstrate that liquid-vapor transition of water within gouge due to frictional heating has a high capacity to explain the formation of spherical aggregates in the first meters of displacement. This result suggests that the occurrence of spherical aggregates in natural clayey fault gouges can constitute a new textural evidence for shallow depth pore water phase transition at seismic slip velocity and consequently for past seismic fault sliding.

  4. Irregular earthquake recurrence patterns and slip variability on a plate-boundary Fault

    NASA Astrophysics Data System (ADS)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.

    2015-12-01

    The Dead Sea fault in the Levant represents a simple, segmented plate boundary from the Gulf of Aqaba northward to the Sea of Galilee, where it changes its character into a complex plate boundary with multiple sub-parallel faults in northern Israel, Lebanon and Syria. The studied Jordan Gorge (JG) segment is the northernmost part of the simple section, before the fault becomes more complex. Seven fault-crossing buried paleo-channels, offset by the Dead Sea fault, were investigated using paleoseismic and geophysical methods. The mapped offsets capture the long-term rupture history and slip-rate behavior on the JG fault segment for the past 4000 years. The ~20 km long JG segment appears to be more active (in term of number of earthquakes) than its neighboring segments to the south and north. The rate of movement on this segment varies considerably over the studied period: the long-term slip-rate for the entire 4000 years is similar to previously observed rates (~4 mm/yr), yet over shorter time periods the rate varies from 3-8 mm/yr. Paleoseismic data on both timing and displacement indicate a high COV >1 (clustered) with displacement per event varying by nearly an order of magnitude. The rate of earthquake production does not produce a time predictable pattern over a period of 2 kyr. We postulate that the seismic behavior of the JG fault is influenced by stress interactions with its neighboring faults to the north and south. Coulomb stress modelling demonstrates that an earthquake on any neighboring fault will increase the Coulomb stress on the JG fault and thus promote rupture. We conclude that deriving on-fault slip-rates and earthquake recurrence patterns from a single site and/or over a short time period can produce misleading results. The definition of an adequately long time period to resolve slip-rate is a question that needs to be addressed and requires further work.

  5. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault systems support the prediction for constant shear strength (˜10 MPa) throughout the lithosphere; the stress magnitude is controlled by the shear strength of the upper crustal faults. Fault rupture in the upper crust induces displacement rate loading of the upper mantle, which in turn, causes strain localization in the mantle shear zone beneath the strike-slip fault. Such forced localization leads to higher stresses and strain rates in the shear zone compared to the surrounding rocks. Low mantle viscosity within the shear zone is critical for facilitating mantle flow, which induces widespread crustal deformation and displacement loading. The lithospheric feedback model suggests that strike-slip fault zones are not mechanically stratified in terms of shear stress, and that it is the time-dependent interaction of the different lithospheric layers - rather than their relative strengths - that governs the rheological behavior of the plate boundary, strike-slip fault zones.

  6. Paleoearthquakes on the Denali-Totschunda Fault system: Preliminary Observations of Slip and Timing

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Denali Fault Earthquake Geology Wp, .

    2003-12-01

    Understanding the behavior of large strike-slip fault systems requires information about the amount of slip and timing of past earthquakes at different locations along a fault. A historical surface rupture adds a critically important baseline for calibration. During July 2003 we performed additional mapping of the 2002 Denali-Totschunda surface rupture with the goal of also measuring and dating slip during previous earthquakes. We were able to obtain slip values for prior events at a dozen locations along Denali-Totschunda strike-slip rupture. We focused on the penultimate event, which is easiest to distinguish (slip from individual older events can eventually be measured). On the Denali fault just west of the intersection with the Susitna Glacier thrust 2002 slip was low, 1.0 m to 1.5 m; cumulative slip from two events was 2.5-3.0, which is essentially double. On the 100-km-long section between Black Rapids Glacier and Gillett Pass, where 2002 slip averaged 5 m, three measurements indicate penultimate-event slip was about the same as 2002. The 7-8 m offset section east of Gillett Pass has the clearest paleoevent slip history. We measured three locations where 2002 slip was 7-8m and cumulative offset on channels was 14.5-16 m. Along this section previous workers noted gullies with 15 m offsets before the 2002 earthquake, suggesting the past three events here had similar slip. On the Totschunda fault paleo offsets appear to be similar in amount to 2002. At one locality we measured 2.8 m in 2002 and 5.4 m for two events. A second site had 1.0-1.4 m of offset in 2002 and 3.1 m for two events. A third location yielded 3.3 m in 2002 and 10.8 m on a paleochannel, which could represent three events with similar slip. A location in the Denali-Totschunda transition zone had a 5-6 m-high scarp and a well-developed sag pond, indicating that this complex part of the fault system has been active in previous events. The major observation is that the paleo offset measurements, though presently limited in number, indicate that penultimate event slip was very similar to the 2002 offset along the length of the ruptured Denali and Totschundafaults, and may have been similar for at least a third event back. For most of the it's length the 2002 rupture is expressed as a narrow mole track (typically 1m to 3m wide) but locally it has produced pull aparts and large fissures. These features contain a variety of organic deposits associated with the ground surface at the time of the penultimate earthquake(s) on the Denali and Totschunda faults. We sampled five of these, and recovered peat, pine needles, and trees that were toppled during the penultimate event(s). Including a test pit west of the Delta River, we have six sample sites that span the 5m and 7-8m rupture segments of the Denali, the Denali-Totschunda transition zone, and the Totschunda fault. Preliminary radiocarbon dates indicate that the timing of the penultimate event on the Denali fault is younger than 1400 to 1289 yr BP and may have occurred as recently as 520 to 310 yr BP. The penultimate event on the Totschunda fault occurred after 1340 to 1130 yr BP and most likely occurred shortly after 660 to 530 years BP. The Denali-Totschunda fault system is a remarkable laboratory, particularly in terms of preservation of fault geomorphology and organic material, for studying large strike-slip faults. These initial observations of paleoslip and event dates are the first steps in unraveling the behavior of this major strike-slip zone. Denali Fault Earthquake Geology Working Group: T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome), G. Carver. G.Plafker (Alyeska)

  7. Permeability evolution associated to creep and episodic slow slip of a fault affecting clay formations: Results from the FS fault activation experiment in Mt Terri (Switzerland).

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Nussbaum, C.; Birkholzer, J. T.; De Barros, L.; Cappa, F.

    2017-12-01

    There is a large spectrum of fault slow rupture processes such as stable creep and slow slip that radiate no or little seismic energy, and which relationships to normal earthquakes and fault permeability variations are enigmatic. Here we present measurements of a fault slow rupture, permeability variation and seismicity induced by fluid-injection in a fault affecting the Opalinus clay (Mt Terri URL, Switzerland) at a depth of 300 m. We observe multiple dilatant slow slip events ( 0.1-to-30 microm/s) associated with factor-of-1000 increase of permeability, and terminated by a magnitude -2.5 main seismic event associated with a swarm of very small magnitude ones. Using fully coupled numerical modeling, we calculate that the short term velocity strengthening behavior observed experimentally at laboratory scale is overcome by longer slip weakening that may be favored by slip induced dilation. Two monitoring points set across the fault allow estimating that, at the onset of the seismicity, the radius of the fault patch invaded by pressurized fluid is 9-to-11m which is in good accordance with a fault instability triggering when the dimensions of the critical slip distance are overcome. We then observe that the long term slip weakening is associated to an exponential permeability increase caused by a cumulated effective normal stress drop of about 3.4MPa which controls the successive slip activation of multiple fracture planes inducing a 0.1MPa shear stress drop in the fault zone. Therefore, our data suggest that the induced earthquake that terminated the rupture sequence may have represented enough dynamic stress release to arrest the fault permeability increase, suggesting the high sensitivity of the slow rupture processes to the structural heterogeneity of the fault zone hydromechanical properties.

  8. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling

    NASA Astrophysics Data System (ADS)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley

    2017-09-01

    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented subsidiary faults serve as magma pathways, particularly where they are close to the intersection with a master fault. Also, the slip of a fault segment is enhanced when an adjacent fault kinematics is superimposed on the regional tectonic loading. Hence, finite element models help to understand coupled tectonics and volcanic processes, demonstrating that geological and geophysical observations can be accounted for by a small number of key first order boundary conditions.

  9. Secular Variation in the Storage and Dissipation of Elastic Strain Energy Along the Central Altyn Tagh Fault (86-88.5°E), NW China

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Gold, R. D.; Arrowsmith, R.; Friedrich, A. M.

    2015-12-01

    In elastic rebound theory, hazard increases as interseismic strain rebuilds after rupture. This model is challenged by the temporal variation in the pacing of major earthquakes that is both predicted by mechanical models and suggested by some long paleoseismic records (e.g., 1-3). However, the extent of such behavior remains unclear due to a lack of long (5-25 ky) records of fault slip. Using Monte Carlo analysis of 11 offset landforms, we determined a 16-ky record of fault slip for the active, left-lateral Altyn Tagh fault, which bounds the NW margin of the Tibetan Plateau. This history reveals a pulse of accelerated slip between 6.4 and 6.0 ka, during which the fault slipped 9 +14/-2 m at a rate of 23 +35/-5 mm/y, or ~3x the 16 ky average of 8.1 +1.2/-0.9mm/y. These two modes of earthquake behavior suggest temporal variation in the rates of stress storage and release. The simplest explanation for the pulse is a cluster of 2-8 Mw > 7.5 earthquakes. Such supercyclicity has been reported for the Sunda (4) and Cascadia (3) megathrusts, but contrasts with steady slip along the strike-slip Alpine fault (5), for example. A second possibility is that the pulse reflects a single, unusually large rupture. However, this Black Swan event is unlikely: empirical scaling relationships require a Mw 8.2 rupture of the entire 1200-km-long ATF to produce 7 m of average slip. Likewise, Coulomb stress change from rupture on the adjacent North Altyn fault is of modest magnitude and overlap with the ATF. Poor temporal correlation between precipitation and the slip pulse argues against climatically modulated changes in surface loading (lakes/ice) or pore-fluid pressure. "Paleoslip" studies such as this sacrifice the single-event resolution of paleoseismology in exchange for long records that quantify both the timing and magnitude of fault slip averaged over multiple ruptures, and are essential for documenting temporal variations in fault slip as we begin to use calibrated physical models of the earthquake cycle to forecast time-dependent earthquake hazard (e.g., 6,7). 1. Weldon et al., 2004 GSA Today 14, 4; 2. Rockwell et al., 2015, PAGEOPH, 172, 1143; 3. Goldfinger et al., 2013, SRL, 84, 24; 4. Sieh et al., 2008, Science, 322, 1674; 5. Berryman et l., 2012, Science, 336, 1690; 6. Barbot et al., 2012, Science, 336, 707; 7. Field, 2015, BSSA, 105, 544.

  10. Influence of Fault Surface Heterogeneity on Apparent Frictional Strength, Slip Mode and Rupture Mode: Insights from Meter-Scale Rock Friction Experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Fukuyama, E.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.

    2016-12-01

    Influence of fault zone heterogeneity on the behavior of fault motion has been studied in many aspects, such as strain partitioning, heat generation, slip mode, rupture mode, and effective friction law. However, a multi-scale investigation of fault behavior due to heterogeneity was difficult in nature, because of the limited access to natural fault zones at the seismogenic depth and the lack of in situ high-resolution observations. To overcome these difficulties, we study the behavior of a meter-scale synthetic fault made of Indian metagabbro during laboratory direct shear experiments, utilizing high-density arrays of strain gauges mounted close to the fault. We focus on two target experiments that are loaded under the same normal stress of 6.7 MPa and loading rate of 0.01 mm/s, but with different initial surface conditions. To change the surface condition, we applied a fast loading experiment under a rate of 1 mm/s between the two target experiments. It turned out the fast loading activated many foreshocks before the mainshock and caused a roaming of the mainshock nucleation site. These features were closely related to the re-distribution of the real contact area and surface wear, which together reflected a more heterogeneous state of the surface condition. During the first target experiment before the fast loading, the synthetic fault moved in a classic stick-slip fashion and the typical rupture mode was subshear within the range of the fault length. However, during the second target experiment, the synthetic fault inherited the heterogeneous features generated from the previous fast loading, showing a macroscopic creep-like behavior that actually consisted of many small stick-slip events. The apparent frictional strength increased while the recurrence interval and the stress drop decreased, compared to the levels seen in the first target experiment. The rupture mode became more complicated; supershear phases sometimes emerged but may only exist transiently. Their occurrence or termination showed a strong correlation with the local stress field characterized by short-range coherence. These observations highlight the role of surface heterogeneity in influencing fault motion, both macroscopically and locally, and have important implications for understanding the behavior of natural faults.

  11. Identification of the meta-instability stage via synergy of fault displacement: An experimental study based on the digital image correlation method

    NASA Astrophysics Data System (ADS)

    Zhuo, Yan-Qun; Ma, Jin; Guo, Yan-Shuang; Ji, Yun-Tao

    In stick-slip experiments modeling the occurrence of earthquakes, the meta-instability stage (MIS) is the process that occurs between the peak differential stress and the onset of sudden stress drop. The MIS is the final stage before a fault becomes unstable. Thus, identification of the MIS can help to assess the proximity of the fault to the earthquake critical time. A series of stick-slip experiments on a simulated strike-slip fault were conducted using a biaxial servo-controlled press machine. Digital images of the sample surface were obtained via a high speed camera and processed using a digital image correlation method for analysis of the fault displacement field. Two parameters, A and S, are defined based on fault displacement. A, the normalized length of local pre-slip areas identified by the strike-slip component of fault displacement, is the ratio of the total length of the local pre-slip areas to the length of the fault within the observed areas and quantifies the growth of local unstable areas along the fault. S, the normalized entropy of fault displacement directions, is derived from Shannon entropy and quantifies the disorder of fault displacement directions along the fault. Based on the fault displacement field of three stick-slip events under different loading rates, the experimental results show the following: (1) Both A and S can be expressed as power functions of the normalized time during the non-linearity stage and the MIS. The peak curvatures of A and S represent the onsets of the distinct increase of A and the distinct reduction of S, respectively. (2) During each stick-slip event, the fault evolves into the MIS soon after the curvatures of both A and S reach their peak values, which indicates that the MIS is a synergetic process from independent to cooperative behavior among various parts of a fault and can be approximately identified via the peak curvatures of A and S. A possible application of these experimental results to field conditions is provided. However, further validation is required via additional experiments and exercises.

  12. Elastic stress transfer as a diffusive process due to aseismic fault slip in response to fluid injection

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.

    2015-12-01

    Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure increase.

  13. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  14. Numerical Modeling Describing the Effects of Heterogeneous Distributions of Asperities on the Quasi-static Evolution of Frictional Slip

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.

    2017-12-01

    A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.

  15. Frictional properties of Alpine Fault gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Morgan, C.; Reches, Z.

    2015-12-01

    The Alpine Fault, New Zealand, is a plate boundary with slip rate of ~ 37 mm/yr, with major historic seismic events. The Deep Fault Drilling Program (DFDP) into the Alpine Fault had two phases in 2011 and 2014, with main objectives of fault-zone sampling and borehole instrumentations. As complementary work to the drilling, we analyze the frictional properties of the Alpine Fault gauge on samples collected at three field exposures (Waikukupa, Cataclasite, and Gaunt) at distances up to 70 km away from DFDP-2. The bulk samples (1-3 kg) were first manually disintegrated without shear, and then sieved to the 250-350 micron fraction. The gouge was sheared in a Confined Rotary Cell (CROC) in the natural, moisture conditions, at slip-velocity range of 0.01 m/s to 0.5 m/s (constant and stepped) with a constant normal stress of 2-3 MPa. Runs included monitoring the CO2 and H2O emission, in addition to the standard mechanical parameters. The preliminary results show an initial friction coefficient ~0.6. Initial slip at low velocities (0.01 m/s) display gentle velocity strengthening, that changed to a drastic weakening (~50%) at velocity of 0.5 m/s. This weakening was associated with intense slip localization along a hard, dark slip surface within the gouge zone. After the establishment of this slip surface, the low friction remains for the following low slip-velocity steps. Future work will include: (1) systematic investigation of the dynamic friction dependence on the slip-velocity and slip-distance; (2) analysis of the relations between friction, mineralogy and the release of CO2/H2O; and (3) application of the experimental results to characterize natural fault behavior.

  16. Geometric and thermal controls on normal fault seismicity from rate-and-state friction models

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Behn, M. D.; Olive, J. A. L.; Liu, Y.

    2017-12-01

    Seismic and geodetic observations from the last two decades have led to a growing realization that a significant amount of fault slip at plate boundaries occurs aseismically, and that the amount of aseismic displacement varies across settings. Here we investigate controls on the seismogenic behavior of crustal-scale normal faults that accommodate extensional strain at mid-ocean ridges and continental rifts. Seismic moment release rates measured along the fast-spreading East Pacific Rise suggest that the majority of fault growth occurs aseismically with almost no seismic slip. In contrast, at the slow-spreading Mid-Atlantic Ridge seismic slip may represent up to 60% of the total fault displacement. Potential explanations for these variations include heterogeneous distributions of frictional properties on fault surfaces, effects of variable magma supply associated with seafloor spreading, and/or differences in fault geometry and thermal structure. In this study, we use rate-and-state friction models to study the seismic coupling coefficient (the fraction of total fault slip that occurs seismically) for normal faults at divergent plate boundaries, and investigate controls on fault behavior that might produce the variations in the coupling coefficient observed in natural systems. We find that the seismic coupling coefficient scales with W/h*, where W is the downdip width of the seismogenic area of the fault and h* is the critical earthquake nucleation size. At mid-ocean ridges, W is expected to increase with decreasing spreading rate. Thus, the observed relationship between seismic coupling and W/h* explains to first order variations in seismic coupling coefficient as a function of spreading rate. Finally, we use catalog data from the Gulf of Corinth to show that this scaling relationship can be extended into the thicker lithosphere of continental rift systems.

  17. Seismic and Aseismic Behavior of the Altotiberina Low-angle Normal Fault System (Northern Apennines, Italy) through High-resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.

    2017-12-01

    Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.

  18. Dynamic Simulations for the Seismic Behavior on the Shallow Part of the Fault Plane in the Subduction Zone during Mega-Thrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Dorjapalam, S.; Dan, K.; Ogawa, S.; Watanabe, T.; Uratani, H.; Iwase, S.

    2012-12-01

    The 2011 Tohoku-Oki earthquake (M9.0) produced some distinct features such as huge slips on the order of several ten meters around the shallow part of the fault and different areas with radiating seismic waves for different periods (e.g., Lay et al., 2012). These features, also reported during the past mega-thrust earthquakes in the subduction zone such as the 2004 Sumatra earthquake (M9.2) and the 2010 Chile earthquake (M8.8), get attentions as the distinct features if the rupture of the mega-thrust earthquakes reaches to the shallow part of the fault plane. Although various kinds of observations for the seismic behavior (rupture process and ground motion characteristics etc.) on the shallow part of the fault plane during the mega-trust earthquakes have been reported, the number of analytical or numerical studies based on dynamic simulation is still limited. Wendt et al. (2009), for example, revealed that the different distribution of initial stress produces huge differences in terms of the seismic behavior and vertical displacements on the surface. In this study, we carried out the dynamic simulations in order to get a better understanding about the seismic behavior on the shallow part of the fault plane during mega-thrust earthquakes. We used the spectral element method (Ampuero, 2009) that is able to incorporate the complex fault geometry into simulation as well as to save computational resources. The simulation utilizes the slip-weakening law (Ida, 1972). In order to get a better understanding about the seismic behavior on the shallow part of the fault plane, some parameters controlling seismic behavior for dynamic faulting such as critical slip distance (Dc), initial stress conditions and friction coefficients were changed and we also put the asperity on the fault plane. These understandings are useful for the ground motion prediction for future mega-thrust earthquakes such as the earthquakes along the Nankai Trough.

  19. Beyond Brittle Deformation: Insights into Seismogenic Slip Processes from Natural and Experimental Faults

    NASA Astrophysics Data System (ADS)

    Holdsworth, R.; De Paola, N.; Bullock, R. J.; Collettini, C.; Viti, C.; Nielsen, S. B.

    2015-12-01

    Shear displacements in upper crustal faults are typically localized within cm- to m-thick high strain fault cores composed of interlayered tabular domains of cataclasite and gouge. Evidence from exhumed/exposed seismic faults shows that the great majority of co-seismic slip is taken up along narrow (<10 cm) ultracataclasite slip zones, containing thin (<100μm) principal slip zones (PSZ) bounded by sharp, polished and striated principal slip surfaces (PSS). Even in unconsolidated materials deformed near to the surface, seismogenic slip is observed to localize within discrete, narrow PSZs. Theoretical studies suggest that in all but the shallowest settings, the natural PSZs may be sufficiently thin to generate localised frictional heating that potentially promotes thermally-activated dynamic weakening mechanisms. We can recreate these processes in the laboratory using displacement-controlled friction experiments performed in a rotary shear apparatus on fault gouges of known composition deformed at seismic slip rates (v > 1ms-1) and normal stresses of up to 20 MPa. A sequential sampling approach is used in which slip is arrested at different stages of the observed friction evolution (e.g. post-compaction, peak friction, steady state after weakening). This allows the evolution of gouge microstructures and deformation mechanisms in the experimental samples to be: a) related to the evolving temperature regimes in the PSZ and changing mechanical behavior; and b) compared to natural PSZ/PSSs. Using this approach we have investigated the behavior and deformation mechanisms of gouges made of common, rock-forming minerals (calcite, clays, olivine, quartz) both in pure form and, in some cases, as mixed compositions deformed under a range of experimental conditions. We have studied the effects of varying confining pressure, fluid content (room humidity vs water saturated) and composition (de-ionized water vs brine) and slip rate (e.g. seismic vs. sub-seismic). Our findings - and those of others - reveal a startling diversity of 'non-brittle' micro- to nano-scale deformation processes (e.g. viscous GBS, particulate flow). This has implications for our understanding of the frictional strength of faults, the recognition of past seismogenic events in natural examples and the forecasting of future earthquakes.

  20. Slip-accumulation patterns and earthquake recurrences along the Talas-Fergana Fault - Contributions of high-resolution geomorphic offsets.

    NASA Astrophysics Data System (ADS)

    Rizza, M.; Dubois, C.; Fleury, J.; Abdrakhmatov, K.; Pousse, L.; Baikulov, S.; Vezinet, A.

    2017-12-01

    In the western Tien-Shan Range, the largest intracontinental strike-slip fault is the Karatau-Talas Fergana Fault system. This dextral fault system is subdivided into two main segments: the Karatau fault to the north and the Talas-Fergana fault (TFF) to the south. Kinematics and rates of deformation for the TFF during the Quaternary period are still debated and are poorly constrained. Only a few paleoseismological investigations are availabe along the TFF (Burtman et al., 1996; Korjenkov et al., 2010) and no systematic quantifications of the dextral displacements along the TFF has been undertaken. As such, the appraisal of the TFF behavior demands new tectonic information. In this study, we present the first detailed analysis of the morphology and the segmentation of the TFF and an offset inventory of morphological markers along the TFF. To discuss temporal and spatial recurrence patterns of slip accumulated over multiple seismic events, our study focused on a 60 km-long section of the TFF (Chatkal segment). Using tri-stereo Pleiades satellite images, high-resolution DEMs (1*1 m pixel size) have been generated in order to (i) analyze the fine-scale fault geometry and (ii) thoroughly measure geomorphic offsets. Photogrammetry data obtained from our drone survey on high interest sites, provide higher-resolution DEMs of 0.5 * 0.5 m pixel size.Our remote sensing mapping allows an unprecedented subdivision - into five distinct segments - of the study area. About 215 geomorphic markers have been measured and offsets range from 4.5m to 180 m. More than 80% of these offsets are smaller than 60 m, suggesting landscape reset during glacial maximum. Calculations of Cumulative Offset Probability Density (COPD) for the whole 60 km-long section as well as for each segments support distinct behavior from a segment to another and thus variability in slip-accumulation patterns. Our data argue for uniform slip model behavior along this section of the TFF. Moreover, we excavated a trench and found evidence for two earthquakes. Analysis of radiocarbon and OSL samples collected in the excavation will provide constraints on the timing of those two events. We also collected some surficial samples for cosmogenic dating to determine the geological slip-rate at two sites and to discuss some spatial slip-rate variations along the TFF.

  1. A complex systems analysis of stick-slip dynamics of a laboratory fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less

  2. Evolution of Friction, Wear, and Seismic Radiation Along Experimental Bi-material Faults

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Zu, X.; Shadoan, T.; Self, A.; Reches, Z.

    2017-12-01

    Faults are commonly composed by rocks of different lithologies and mechanical properties that are positioned against one another by fault slip; such faults are referred to as bimaterial-faults (BF). We investigate the mechanical behavior, wear production, and seismic radiation of BF via laboratory experiments on a rotary shear apparatus. In the experiments, two rock blocks of dissimilar or similar lithology are sheared against each other. We used contrasting rock pairs of a stiff, igneous block (diorite, granite, or gabbro) against a more compliant, sedimentary block (sandstone, limestone, or dolomite). The cylindrical blocks have a ring-shaped contact, and are loaded under conditions of constant normal stress and shear velocity. Fault behavior was monitored with stress, velocity and dilation sensors. Acoustic activity is monitored with four 3D accelerometers mounted at 2 cm distance from the experimental fault. These sensors can measure accelerations up to 500 g, and their full waveform output is recorded at 1MHz for periods up to 14 sec. Our preliminary results indicate that the bi-material nature of the fault has a strong affect on slip initiation, wear evolution, and acoustic emission activity. In terms of wear, we observe enhanced wear in experiments with a sandstone block sheared against a gabbro or limestone block. Experiments with a limestone or sandstone block produced distinct slickenline striations. Further, significant differences appeared in the number and amplitude of acoustic events depending on the bi-material setting and slip-distance. A gabbro-gabbro fault showed a decrease in both amplitude and number of acoustic events with increasing slip. Conversely, a gabbro-limestone fault showed a decrease in the number of events, but an increase in average event amplitude. Ongoing work focuses on advanced characterization of mechanical, dynamic weakening, and acoustic, frequency content, parameters.

  3. Structural controls on Eocene to Pliocene tectonic and metallogenic evolution of the southernmost Lesser Caucasus, Armenia: paleostress field reconstruction and fault-slip analysis

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik

    2017-04-01

    The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors. During the Eocene, dextral displacement along the NS-oriented strike-slip faults were favorable for the opening of NE-oriented en-échelon normal faults. The NS-oriented faults, in particular at their intersection with EW- and NE-oriented faults, were important ore-controlling structures for the emplacement of major porphyry Cu-Mo (Dastakert, Aygedzor and Agarak) and epithermal (Tey-Lichkvaz and Terterasar) deposits. In summary, we conclude that from the Eocene to the Oligocene the dominant structural system consisted essentially in dextral strike-slip tectonics along the major NS-oriented faults. During the Oligocene to Miocene, NS-oriented compression and EW-oriented extension predominated, which is consistent with the collisional and post-collisional geodynamic evolution of the study area. This setting resulted in renewed dextral displacement along the NS-oriented ore-controlling faults, and sinistral displacement along the EW-oriented antithetic faults. This setting created the favorable geometry for opening NS- EW- and NE-oriented extension fractures, and the adequate conditions for the emplacement of vein-, stockwork-type porphyry deposits, including the giant Kadjaran deposit. During the Lower Miocene to Pliocene there was a rotation in the main regional stress components according to progressive regional evolution. Paleostress reconstructions indicate a change in compression from NS during the Miocene to NNW during the Pliocene. The Tashtun transcurrent fault had an oblique-slip behavior. It formed a negative flower structure with a sinistral strike-slip component, which resulted in the development of a pull-apart basin and the formation of the Lichk porphyry-epithermal system.

  4. Variability of Slip Behavior in Simulations of Dynamic Rupture Interaction With Stronger Fault Patches Over Long-Term Deformation Histories

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Liu, Y.

    2007-12-01

    Heterogeneity in fault properties can have significant effect on dynamic rupture propagation and aseismic slip. It is often assumed that a fixed heterogeneity would have similar effect on fault slip throughout the slip history. We investigate dynamic rupture interaction with a fault patch of higher normal stress over several earthquake cycles in a three-dimensional model. We find that the influence of the heterogeneity on dynamic events has significant variation and depends on prior slip history. We consider a planar strike-slip fault governed by rate and state friction and driven by slow tectonic loading on deeper extension of the fault. The 30 km by 12 km velocity-weakening region, which is potentially seismogenic, is surrounded by steady-state velocity-strengthening region. The normal stress is constant over the fault, except in a circular patch of 2 km in diameter located in the seismogenic region, where normal stress is higher than on the rest of the fault. Our simulations employ the methodology developed by Lapusta and Liu (AGU, 2006), which is able to resolve both dynamic and quasi-static stages of spontaneous slip accumulation in a single computational procedure. The initial shear stress is constant on the fault, except in a small area where it is higher and where the first large dynamic event initiates. For patches with 20%, 40%, 60% higher normal stress, the first event has significant dynamic interaction with the patch, creating a rupture speed decrease followed by a supershear burst and larger slip around the patch. Hence, in the first event, the patch acts as a seismic asperity. For the case of 100% higher stress, the rupture is not able to break the patch in the first event. In subsequent dynamic events, the behavior depends on the strength of heterogeneity. For the patch with 20% higher normal stress, dynamic rupture in subsequent events propagates through the patch without any noticeable perturbation in rupture speed or slip. In particular, supershear propagation and additional slip accumulation around the patch are never repeated in the simulated history of the fault, and the patch stops manifesting itself as a seismic asperity. This is due to higher shear stress that is established at the patch after the first earthquake cycle. For patches with higher normal stress, shear stress redistribution also occurs, but it is less effective. The patches with 40% and 60% higher normal stress continue to affect rupture speed and fault slip in some of subsequent events, although the effect is much diminished with respect to the first event. For example, there are no supershear bursts. The patch with 100% higher normal stress is first broken in the second large event, and it retains significant influence on rupture speed and slip throughout the fault history, occasionally resulting in supershear bursts. Additional slip complexity emerges for patches with 40% and higher normal stress contrast. Since higher normal stress corresponds to a smaller nucleation size, nucleation of some events moves from the rheological transitions (where nucleation occurs in the cases with no stronger patch and with the patch of 20% higher normal stress) to the patches of higher normal stress. The patches nucleate both large, model-spanning, events, and small events that arrest soon after exiting the patch. Hence not every event that originates at the location of a potential seismic asperity is destined to be large, as its subsequent propagation is significantly influenced by the state of stress outside the patch.

  5. Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M.

    2018-01-01

    The strength of fault zones is strongly dependent on pore fluid pressures within them. Moreover, transient changes in pore fluid pressure can lead to a variety of slip behavior from creep to unstable slip manifested as earthquakes or slow slip events. The frictional properties of low-permeability fault gouge in nature and experiment can be affected by pore fluid pressure development through compaction within the gouge layer, even when the boundaries are drained. Here the conditions under which significant pore fluid pressures develop are analyzed analytically, numerically, and experimentally. Friction experiments on low-permeability fault gouge at different sliding velocities show progressive weakening as slip rate is increased, indicating that faster experiments are incapable of draining the pore fluid pressure produced by compaction. Experiments are used to constrain the evolution of the permeability and pore volume needed for numerical modeling of pore fluid pressure build up. The numerical results are in good agreement with the experiments, indicating that the principal physical processes have been considered. The model is used to analyze the effect of pore fluid pressure transients on the determination of the frictional properties, illustrating that intrinsic velocity-strengthening behavior can appear velocity weakening if pore fluid pressure is not given sufficient time to equilibrate. The results illustrate that care must be taken when measuring experimentally the frictional characteristics of low-permeability fault gouge. The contribution of compaction-induced pore fluid pressurization leading to weakening of natural faults is considered. Cyclic pressurization of pore fluid within fault gouge during successive earthquakes on larger faults may reset porosity and hence the capacity for compaction weakening.

  6. Limiting the Magnitude of Potential Injection-Induced Seismicity Associated With Waste-Water Disposal, Hydraulic Fracturing and CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Zoback, Mark

    2017-04-01

    In this talk, I will address the likelihood for fault slip to occur in response to fluid injection and the likely magnitude of potentially induced earthquakes. First, I will review a methodology that applies Quantitative Risk Assessment to calculate the probability of a fault exceeding Mohr-Coulomb slip criteria. The methodology utilizes information about the local state of stress, fault strike and dip and the estimated pore pressure perturbation to predict the probability of the fault slip as a function of time. Uncertainties in the input parameters are utilized to assess the probability of slip on known faults due to the predictable pore pressure perturbations. Application to known faults in Oklahoma has been presented by Walsh and Zoback (Geology, 2016). This has been updated with application to the previously unknown faults associated with M >5 earthquakes in the state. Second, I will discuss two geologic factors that limit the magnitudes of earthquakes (either natural or induced) in sedimentary sequences. Fundamentally, the layered nature of sedimentary rocks means that seismogenic fault slip will be limited by i) the velocity strengthening frictional properties of clay- and carbonate-rich rock sequences (Kohli and Zoback, JGR, 2013; in prep) and ii) viscoplastic stress relaxation in rocks with similar composition (Sone and Zoback, Geophysics, 2013a, b; IJRM, 2014; Rassouli and Zoback, in prep). In the former case, if fault slip is triggered in these types of rocks, it would likely be aseismic due the velocity strengthening behavior of faults. In the latter case, the stress relaxation could result in rupture termination in viscoplastic formations. In both cases, the stratified nature of sedimentary rock sequences could limit the magnitude of potentially induced earthquakes. Moreover, even when injection into sedimentary rocks initiates fault slip, earthquakes large enough to cause damage will usually require slip on faults sufficiently large that they extend into basement. This suggests that an important criterion for large-scale CO2 sequestration projects is that the injection zone is isolated from crystalline basement rocks by viscoplastic shales to prevent rupture propagation from extending down into basement.

  7. Plate-rate laboratory friction experiments reveal potential slip instability on weak faults

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.

    2016-12-01

    In earthquake science, it is commonly assumed that earthquakes nucleate on strong patches or "asperities", and data from laboratory friction experiments indicate a tendency for unstable slip (exhibited as velocity-weakening frictional behavior) in strong geologic materials. However, an overwhelming amount of these experiments were conducted at driving velocities ranging from 0.1 µm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities on the order of cm/yr (nm/s), approximating plate tectonic rates which represent the natural driving condition on plate boundary faults. Recent laboratory work using samples recovered from the Tohoku region at the Japan Trench, within the high coseismic slip region of the 2011 M9 Tohoku earthquake, showed that the fault is extremely weak with a friction coefficient < 0.2. At sliding velocities of at least 0.1 µm/s mostly velocity-strengthening friction is observed, which is favorable for stable creep, consistent with earlier work. However, shearing at an imposed rate of 8.5 cm/yr produced both velocity-weakening friction and discrete slow slip events, which are likely instances of frictional instabilities or quasi-instabilities. Here, we expand on the Tohoku experiment by conducting cm/yr friction experiments on natural gouges obtained from a variety of other major fault zones obtained by scientific drilling; these include the San Andreas Fault, Costa Rica subduction zone, Nankai Trough (Japan), Barbados subduction zone, Alpine Fault (New Zealand), southern Cascadia, and Woodlark Basin (Papua New Guinea). We focus here on weak fault materials having a friction coefficient of < 0.5. At conventional laboratory driving rates of 0.1-30 µm/s, velocity strengthening is common. However, at cm/yr driving rates we commonly observe velocity-weakening friction and slow slip events, with most samples exhibit both behaviors. These results demonstrate when fault samples are sheared at plate tectonic rates in the laboratory, which best replicates natural forcing conditions, a tendency for unstable slip is revealed. Thus, weak faults should not be considered frictionally stable, but have the ability to participate in earthquake rupture or generate events themselves.

  8. Characterizing Slow Slip Applying Machine Learning

    NASA Astrophysics Data System (ADS)

    Hulbert, C.; Rouet-Leduc, B.; Bolton, D. C.; Ren, C. X.; Marone, C.; Johnson, P. A.

    2017-12-01

    Over the last two decades it has become apparent from strain and GPS measurements, that slow slip on earthquake faults is a widespread phenomenon. Slow slip is also inferred from small amplitude seismic signals known as tremor and low frequency earthquakes (LFE's) and has been reproduced in laboratory studies, providing useful physical insight into the frictional properties associated with the behavior. From such laboratory studies we ask whether we can obtain quantitative information regarding the physics of friction from only the recorded continuous acoustical data originating from the fault zone. We show that by applying machine learning to the acoustical signal, we can infer upcoming slow slip failure initiation as well as the slip termination, and that we can also infer the magnitudes by a second machine learning procedure based on predicted inter-event times. We speculate that by applying this or other machine learning approaches to continuous seismic data, new information regarding the physics of faulting could be obtained.

  9. Bayesian explorations of fault slip evolution over the earthquake cycle

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Jolivet, R.; Benoit, A.; Gombert, B.

    2017-12-01

    The ever-increasing amount of geophysical data continuously opens new perspectives on fundamental aspects of the seismogenic behavior of active faults. In this context, the recent fleet of SAR satellites including Sentinel-1 and COSMO-SkyMED permits the use of InSAR for time-dependent slip modeling with unprecedented resolution in time and space. However, existing time-dependent slip models rely on spatial smoothing regularization schemes, which can produce unrealistically smooth slip distributions. In addition, these models usually do not include uncertainty estimates thereby reducing the utility of such estimates. Here, we develop an entirely new approach to derive probabilistic time-dependent slip models. This Markov-Chain Monte Carlo method involves a series of transitional steps to predict and update posterior Probability Density Functions (PDFs) of slip as a function of time. We assess the viability of our approach using various slow-slip event scenarios. Using a dense set of SAR images, we also use this method to quantify the spatial distribution and temporal evolution of slip along a creeping segment of the North Anatolian Fault. This allows us to track a shallow aseismic slip transient lasting for about a month with a maximum slip of about 2 cm.

  10. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    der Woerd, J v; Klinger, Y; Sieh, K

    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposuremore » history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.« less

  11. A kinematic model of patchy slip at depth explains observed tremor waveforms on the San Andreas fault near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Gottschaemmer, E.; Harrington, R. M.; Cochran, E. S.; Bohlen, T.

    2011-12-01

    Recent observations of both triggered and ambient tremor suggest that tremor results from simple shear-failure. Tremor episodes on the San Andreas fault near Parkfield are thought to be comprised of clusters of individual events with frequencies between 2-8 Hz. Such low frequency earthquakes (LFEs) occur at depths where the frictional properties of the fault surface are primarily slip-strengthening with imbedded patches of slip weakening material that slip seismically when the surrounding fault creeps in a slow-slip event. Here we show new tremor waveforms from a temporary deployment of 13 broadband seismometers spaced at a maximum on the order of 30 km near Cholame, California are consistent with a series of small seismically slipping patches surrounded by an aseismic region along a fault surface. We model individual seismic events kinematically as small shear failures (M ~ 1) at depths exceeding 15 km. We use stress drop values of 1 MPa, based on a slip to fault area ratio. We simulate tremor recorded at the surface by our temporary array centered near Cholame, for frequencies up to 8 Hz using a staggered-grid finite-difference scheme to solve the elastic equations of motion, and the 3D velocity and density model from Thurber et al. (2006). Our simulations indicate that multiple seismically slipping patches in an aseismic region successfully recreate tremor characteristics observed in multiple studies, including individual tremor bursts, individual events, and episodic behavior. The kinematic model presented here will help to constrain the distribution and amplitude of the seismically slipping patches at depth, which will then be used in a dynamic model with variable frictional properties.

  12. Slip localization on the southern Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Barth, N. C.; Boulton, C.; Carpenter, B. M.; Batt, G. E.; Toy, V. G.

    2013-06-01

    of a detailed field study of the southern onshore portion of New Zealand's Alpine Fault reveal that for 75 km along-strike, dextral-normal slip on this long-lived structure is highly localized in phyllosilicate-rich fault core gouges and along their contact with more competent rocks. At three localities (Martyr River, McKenzie Creek, and Hokuri Creek), we document complete cross sections through the fault. New 40Ar/39Ar dates on mylonites, combined with microstructural and mechanical data on phyllosilicate-rich fault core gouges show that modern slip is localized onto a single, steeply dipping 1 to 12 m-thick fault core composed of impermeable (k = 10-20 to 10-22 m2), frictionally weak (μs = 0.12-0.37), velocity-strengthening, illite-chlorite, and saponite-chlorite-lizardite fault gouges. Fault core materials are (1) comparable to those of other major weak-cored faults (e.g., San Andreas Fault) and (2) most compatible with fault creep, despite paleoseismic evidence of quasiperiodic large magnitude earthquakes (Mw > 7) on this portion of the Alpine Fault. We conclude that frictional properties of gouges at the surface do not characterize the overall seismogenic behavior of the southern Alpine Fault.

  13. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    NASA Astrophysics Data System (ADS)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a first non-planar oblique slip fault, strain energy density is greatest where the first fault is steepest, as less convergence is accommodated along this portion of the fault. The addition of a second slip-partitioning fault to the system decreases external work indicating that these faults increase the mechanical efficiency of the system.

  14. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault-parallel motion distributed between the San Andreas fault system and Eastern California Shear Zone. Copyright 2001 by the American Geophysical Union.

  15. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    NASA Astrophysics Data System (ADS)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  16. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  17. Frictional `non-aging' of fault mirror surfaces?: Insight from friction experiments on Carrara marble

    NASA Astrophysics Data System (ADS)

    Park, Y.; Ree, J. H.; Hirose, T.

    2016-12-01

    Mirror-like fault surfaces (or fault mirror: FM) have recently been suggested as a precursor of unstable slip (thus indicative of seismic slip). Frictional aging of fault surfaces (increase in static friction during interseismic period) is a common phenomenon of fault surfaces, resulting from increase in contact area or in bond strength between asperities with time. Despite the importance of FM in earthquake faulting, the frictional-aging behavior of FM has never been studied. To understand the frictional-aging behavior of FM, slide-hold-slide friction experiments were done on carbonate FM and powdered gouge of former carbonate FM (PG hereafter) using low-to-high-velocity-rotary-shear apparatus, at a slip rate of 1 μm s-1 a normal stress of 1.5 MPa, room temperature and room humidity condition. The sheared PG specimens showed a logarithmic positive relationship between static friction and holding time, consistent with Dieterich-type healing behavior. In contrast, the sheared FM specimens showed little effect of holding time on static friction. The slip surface of FM specimens consists of densely-packed and sintered nano-particles while that of PG specimens is composed of loose nano-particles. It has been known that yield strength of a material increases dramatically with size-decreasing grains being nano-particles. Since FM is a layer of densely-packed and sintered nanoparticles, enhanced strength of FM may inhibit growth of real contact area of fault surfaces during hold time. Furthermore, sintered particles composing FM have less pore space than loose gouge layer, and thus there would be a less chance of strengthening by pore space reduction, inter-particle meniscus formation or water adsorption onto the particles surface in the FM layer. Our preliminary result suggests that carbonate FM's may impede the recovery of fault strength during interseismic period, resulting in less possibility of earthquake nucleation. Reduced frictional healing may be a common phenomenon of FM's in other materials too once they are composed of sintered nano-particles.

  18. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Hino, R.; Kido, M.; Fujimoto, H.; Osada, Y.; Inazu, D.; Ohta, Y.; Iinuma, T.; Ohzono, M.; Mishina, M.; Miura, S.; Suzuki, K.; Tsuji, T.; Ashi, J.

    2012-12-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  19. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ito, Yoshihiro; Hino, Ryota; Kido, Motoyuki; Fujimoto, Hiromi; Osada, Yukihito; Inazu, Daisuke; Ohta, Yusaku; Iinuma, Takeshi; Ohzono, Mako; Miura, Satoshi; Mishina, Masaaki; Suzuki, Kensuke; Tsuji, Takeshi; Ashi, Juichiro

    2013-07-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  20. Structure and lithology of the Japan Trench subduction plate boundary fault

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James D.; Rowe, Christie D.; Ujiie, Kohtaro; Moore, J. Casey; Regalla, Christine; Remitti, Francesca; Toy, Virginia; Wolfson-Schwehr, Monica; Kameda, Jun; Bose, Santanu; Chester, Frederick M.

    2015-01-01

    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ˜7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ˜5-15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin.

  1. Dynamic rupture modeling with laboratory-derived constitutive relations

    USGS Publications Warehouse

    Okubo, P.G.

    1989-01-01

    A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author

  2. Alaska Crustal Deformation: Finite Element Modeling Constrained by Geologic and Very Long Baseline Interferometry Data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul; Saucier, Fraancois; Palmer, Randy; Langon, Marc

    1995-01-01

    We compute crustal motions in Alaska by calculating the finite element solution for an elastic spherical shell problem. The method we use allows the finite element mesh to include faults and very long baseline interferometry (VLBI) baseline rates of change. Boundary conditions include Pacific-North American (PA-NA) plate motions. The solution is constrained by the oblique orientation of the Fairweather-Queen Charlotte strike-slip faults relative to the PA-NA relative motion direction and the oblique orientation from normal convergence of the eastern Aleutian trench fault systems, as well as strike-shp motion along the Denali and Totschunda fault systems. We explore the effects that a range of fault slip constraints and weighting of VLBI rates of change has on the solution. This allows us to test the motion on faults, such as the Denali fault, where there are conflicting reports on its present-day slip rate. We find a pattern of displacements which produce fault motions generally consistent with geologic observations. The motion of the continuum has the general pattern of radial movement of crust to the NE away from the Fairweather-Queen Charlotte fault systems in SE Alaska and Canada. This pattern of crustal motion is absorbed across the Mackenzie Mountains in NW Canada, with strike-slip motion constrained along the Denali and Tintina fault systems. In south central Alaska and the Alaska forearc oblique convergence at the eastern Aleutian trench and the strike-shp motion of the Denali fault system produce a counterclockwise pattern of motion which is partially absorbed along the Contact and related fault systems in southern Alaska and is partially extruded into the Bering Sea and into the forearc parallel the Aleutian trench from the Alaska Peninsula westward. Rates of motion and fault slip are small in western and northern Alaska, but the motions we compute are consistent with the senses of strike-slip motion inferred geologically along the Kaltag, Kobuk Trench, and Thompson Creek faults and with the normal faulting observed in NW Alaska near Nome. The nonrigid behavior of our finite element solution produces patterns of motion that would not have been expected from rigid block models: strike-slip faults can exist in a continuum that has motion mostly perpendicular to their strikes, and faults can exhibit along-strike differences in magnitudes and directions.

  3. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    NASA Astrophysics Data System (ADS)

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122(5):3689-3700, 2017.[2] James R Rice. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), 2006.[3] Jean Sulem, Ioannis Stefanou, and Emmanuil Veveakis. Stability analysis of undrained adiabatic shearing of a rock layer with cosserat microstructure. Granular Matter, 13(3):261-268,2011.

  4. Short-and-long-term Slip Rates Along the Carboneras Fault in the Betic Cordillera, Spain

    NASA Astrophysics Data System (ADS)

    Khazaradze, G.; López, R.; Pallàs, R.; Ortuño, M.; Bordonau, J.; Masana, E.

    2017-12-01

    We present the new results from our long-standing studies to understand the geodynamic behavior of the Carboneras fault, located in the SE Betic Cordilleras of Spain. Specifically, we quantify the geodetic and geologic slip rates for the onland section of the fault. As a result of our previous GPS observations, we have been able to confirm the continuing tectonic activity of the Carboneras fault: we were able to quantify that the geodetic slip rate of the fault equals 1.3±0.2 mm/yr, expressed mainly as a left-lateral strike slip motion (Echeverria et al., 2015). In autumn 2017, with the purpose of revealing a detailed nature of the crustal deformation and its partitioning between different structures, 3 new continuous GPS stations will be established along the fault-perpendicular profile. In addition, since summer 2016, we have conducted surveys of the nearby CuaTeNeo and IGN Regente campaign points. We have also established and measured several new geodetic points in the vicinity of the fault, with the aim of increasing the spatial coverage around it. The GPS measured, short-term slip rates are in surprising agreement with the estimates of the long-term, geologic slip rates based on paleoseismic studies, which indicate a minimum strike-slip rate of 1.31 mm/yr and dip-slip rate of 0.05 mm/yr since 110.3 ka (Moreno et al. 2015). In order to increase the paleoseismic event database, several new sites have been identified along the fault, where further paleoseismic trenching surveys will be performed within the coming year or two. At the site of Tostana, located at the central part of the fault, in winter 2017 seven trenches have been opened and clear evidence of past earthquakes has been encountered. These new data, combined with the findings of the recent geomorphological study of river offsets (Ferrater, 2016) and new GPS observations, should improve the reliability of the existent deformation data and therefore, will help to better understand the seismic hazard posed by the Carbonears fault in the SE Betics. Project PREVENT (CGL2015-66263-R) financed by the Ministry of Economy, Industry and Competitiveness.

  5. Slip complexity and frictional heterogeneities in dynamic fault models

    NASA Astrophysics Data System (ADS)

    Bizzarri, A.

    2005-12-01

    The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.

  6. Capturing Postseismic Processes of the 2016 Mw 7.1 Kumamoto Earthquake, Japan, Using Dense, Continuous GPS and Short-repeat Time ALOS-2 InSAR Data: Implications for the Shallow Slip Deficit Problem

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.

    2017-12-01

    Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of < 3 km, a minimum resolvable value), that could account for the 1 m of coseismic deficit of shallow slip inferred from our static finite-fault inversion. Our results show, aside from significant volumetric changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.

  7. Reconciling geodetic and geologic slip rates along the Carboneras fault in the Betics: work in progress

    NASA Astrophysics Data System (ADS)

    Khazaradze, Giorgi; López, Robert; Pallàs, Raimon; Bordonau, Jaume; Masana, Eulàlia

    2017-04-01

    As part of the recently initiated research project we are in the process of studying in detail the geodynamic behavior of the Carboneras fault in the SE Betics in Spain. Specifically, we plan to quantify the geodetic and geologic slip rates for the onland section of the fault, as well as getting some insight on the state of locking of the fault. As a result of our previous GPS observations, we have been able to illustrate the continuing tectonic activity of the Carboneras fault, expressed mainly as a left-lateral strike slip motion of 1.3±0.2 mm/yr (Echeverria et al., 2015). To reveal how the deformation is partitioned between different structures, 3 new continuous GPS points are being established along fault-perpendicular profile. In addition, since summer 2016, we have conducted surveys of the nearby CuaTeNeo and IGN Regente points. We have also established and measured several new geodetic points in the vicinity of the fault, with the aim of increasing the spatial coverage around it. The above-mentioned geodetic, short-term, slip rates are in surprisingly good agreement with the estimates of geologic slip rates based on paleoseismic studies, which indicate a minimum strike-slip rate of 1.31 mm/yr and a dip-slip rate of 0.05 mm/yr since 110.3 ka (Moreno et al. 2015). In order to increase the paleoseismic event database, 6 new sites have been identified along the fault, where further paleoseismic trenching surveys will be conducted within the coming years. These new data, combined with the findings of the recent geomorphological study of river offsets (Ferrater, 2016) and new GPS observations, should significantly improve the reliability of the existent deformation data and as a consequence, contribute to better understanding the seismic hazard posed by the Carbonears fault in the SE Betics. This work is funded by the project PREVENT (CGL2015-66263-R), financed by the Ministry of Economy, Industry and Competitiveness.

  8. Slow slip and self-similar asymptotics of rate-strengthening faults

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Dublanchet, P.

    2016-12-01

    We examine how slow slip progresses on rate-strengthening faults. We consider that the source of rate-strengthening may be a linear or non-linear (power-law) viscous fault rheology, a logarithmic rate-dependence, or a Dieterich-Ruina dependence on slip rate and its history. We show the existence of self-similar asymptotic solutions for slip rate of the form V = t^alpha f(x/t^beta). The exponent beta is determined by the nature of the elastic interaction (for slip between elastic half-spaces in contact, beta = 1; and for layer sliding above a substrate, beta = 1/2). The similarity exponent alpha is determined by the type of initial or boundary conditions. Such conditions may be, for example, an imposed (i) boundary slip rate or (ii) a sudden change in stress on the fault. We consider in-plane or anti-plane slip for examples (i) and (ii) and present the asymptotic solutions thereof, which may be found numerically or in closed form. The self-similar behavior of scenario (i) is, for a step increase in stress, that of an initially elevated slip rate decaying in time while spreading in space; and of scenario (ii) is that an elevated slip rate propagating along the fault. Under scenario (i) we show that the disparate fault rheologies share a common closed-form similarity solution for the decay of slip rate following the initial stress change. For comparison, we compute numerical solutions to the evolution equation for slip rate (and state, when applicable) and find precise agreement with the above analysis. We illustrate how the above solutions provide robust, low-parameter models to test whether there is a frictional basis for spatio-temporal observations indicating the accumulation of post-seismic slip or the occurrence of slow slip event. Such observations include those derived from (a) geodetic observations [e.g., Hsu et al., Science 2006], or migration of (b) low-frequency earthquakes and tremor [e.g., Obara and Hirose, Tectonophys. 2006], and of (c) micro-seismicity [e.g., Bourouis and Bernard, Geophys. J. Int., 2007].

  9. Synthetic velocity gradient map of the San Francisco Bay region, California, supports use of average block velocities to estimate fault slip rate where effective locking depth is small relative to inter-fault distance

    NASA Astrophysics Data System (ADS)

    Graymer, R. W.; Simpson, R. W.

    2014-12-01

    Graymer and Simpson (2013, AGU Fall Meeting) showed that in a simple 2D multi-fault system (vertical, parallel, strike-slip faults bounding blocks without strong material property contrasts) slip rate on block-bounding faults can be reasonably estimated by the difference between the mean velocity of adjacent blocks if the ratio of the effective locking depth to the distance between the faults is 1/3 or less ("effective" locking depth is a synthetic parameter taking into account actual locking depth, fault creep, and material properties of the fault zone). To check the validity of that observation for a more complex 3D fault system and a realistic distribution of observation stations, we developed a synthetic suite of GPS velocities from a dislocation model, with station location and fault parameters based on the San Francisco Bay region. Initial results show that if the effective locking depth is set at the base of the seismogenic zone (about 12-15 km), about 1/2 the interfault distance, the resulting synthetic velocity observations, when clustered, do a poor job of returning the input fault slip rates. However, if the apparent locking depth is set at 1/2 the distance to the base of the seismogenic zone, or about 1/4 the interfault distance, the synthetic velocity field does a good job of returning the input slip rates except where the fault is in a strong restraining orientation relative to block motion or where block velocity is not well defined (for example west of the northern San Andreas Fault where there are no observations to the west in the ocean). The question remains as to where in the real world a low effective locking depth could usefully model fault behavior. Further tests are planned to define the conditions where average cluster-defined block velocities can be used to reliably estimate slip rates on block-bounding faults. These rates are an important ingredient in earthquake hazard estimation, and another tool to provide them should be useful.

  10. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    NASA Astrophysics Data System (ADS)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.

  11. Machine Learning of Fault Friction

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025: Earthquake source: from the laboratory to the fieldHulbert, C., Characterizing slow slip applying machine learning (2017), AGU Fall Meeting Session S019: Slow slip, Tectonic Tremor, and the Brittle-to-Ductile Transition Zone: What mechanisms control the diversity of slow and fast earthquakes?

  12. The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Wei, Shengji; Shi, Xuhua; Qiu, Qiang; Li, Linlin; Peng, Dongju; Weldon, Ray J.; Barbot, Sylvain

    2018-01-01

    The distribution of slip during an earthquake and how it propagates among faults in the subduction system play a major role in seismic and tsunami hazards, yet they are poorly understood because offshore observations are often lacking. Here we derive the slip distribution and rupture evolution during the 2016 Mw 7.9 Kaikōura (New Zealand) earthquake that reconcile the surface rupture, space geodetic measurements, seismological and tsunami waveform records. We use twelve fault segments, with eleven in the crust and one on the megathrust interface, to model the geodetic data and match the major features of the complex surface ruptures. Our modeling result indicates that a large portion of the moment is distributed on the subduction interface, making a significant contribution to the far field surface deformation and teleseismic body waves. The inclusion of local strong motion and teleseismic waveform data in the joint inversion reveals a unilateral rupture towards northeast with a relatively low averaged rupture speed of ∼1.5 km/s. The first 30 s of the rupture took place on the crustal faults with oblique slip motion and jumped between fault segments that have large differences in strike and dip. The peak moment release occurred at ∼65 s, corresponding to simultaneous rupture of both plate interface and the overlying splay faults with rake angle changes progressively from thrust to strike-slip. The slip on the Papatea fault produced more than 2 m of offshore uplift, making a major contribution to the tsunami at the Kaikōura station, while the northeastern end of the rupture can explain the main features at the Wellington station. Our inversions and simulations illuminate complex up-dip rupture behavior that should be taken into consideration in both seismic and tsunami hazard assessment. The extreme complex rupture behavior also brings new challenges to the earthquake dynamic simulations and understanding the physics of earthquakes.

  13. An empirically based steady state friction law and implications for fault stability

    NASA Astrophysics Data System (ADS)

    Spagnuolo, E.; Nielsen, S.; Violay, M.; Di Toro, G.

    2016-04-01

    Empirically based rate-and-state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1-20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest.

  14. Paper 58714 - Exploring activated faults hydromechanical processes from semi-controled field injection experiments

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Nussbaum, C.

    2015-12-01

    The appreciation of the sensitivity of fractures and fault zones to fluid-induced-deformations in the subsurface is a key question in predicting the reservoir/caprock system integrity around fluid manipulations with applications to reservoir leakage and induced seismicity. It is also a question of interest in understanding earthquakes source, and recently the hydraulic behavior of clay faults under a potential reactivation around nuclear underground depository sites. Fault and fractures dynamics studies face two key problems (1) the up-scaling of laboratory determined properties and constitutive laws to the reservoir scale which is not straightforward when considering faults and fractures heterogeneities, (2) the difficulties to control both the induced seismicity and the stimulated zone geometry when a fault is reactivated. Using instruments dedicated to measuring coupled pore pressures and deformations downhole, we conducted field academic experiments to characterize fractures and fault zones hydromechanical properties as a function of their multi-scale architecture, and to monitor their dynamic behavior during the earthquake nucleation process. We show experiments on reservoir or cover rocks analogues in underground research laboratories where experimental conditions can be optimized. Key result of these experiments is to highlight how important the aseismic fault activation is compared to the induced seismicity. We show that about 80% of the fault kinematic moment is aseismic and discuss the complex associated fault friction coefficient variations. We identify that the slip stability and the slip velocity are mainly controlled by the rate of the permeability/porosity increase, and discuss the conditions for slip nucleation leading to seismic instability.

  15. Cascadia subduction tremor muted by crustal faults

    USGS Publications Warehouse

    Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew

    2017-01-01

    Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.

  16. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    USGS Publications Warehouse

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  17. Long term fault system reorganization of convergent and strike-slip systems

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.

    2017-12-01

    Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that irregularities can persist along active fault systems without reorganization of the fault system. Consequently, steady state behavior, for example with constant fault slip rates, may arise either in systems with high degree of stress-relaxation or occur only within the intervals between episodes of fault reorganization.

  18. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Principal fault displacements -

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Tonagi, M.

    2016-12-01

    The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault. This result indicates that the fault displacement is difficult to appear at the edge of the fault displacement in Japan. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (NRA), Japan.

  19. Coseismic and postseismic slip distribution of the 2003 Mw = 6.5 Chengkung earthquake in eastern Taiwan: Elastic modeling from inversion of GPS data

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Wei; Lee, Jian-Cheng; Hu, Jyr-Ching; Chen, Horng-Yue

    2009-03-01

    The Chengkung earthquake with ML = 6.6 occurred in eastern Taiwan at 12:38 local time on December 10th 2003. Based on the main shock relocation and aftershock distribution, the Chengkung earthquake occurred along the previously recognized N20°E trending Chihshang fault. This event did not cause human loss, but significant cracks developed at the ground surface and damaged some buildings. After 1951 Taitung earthquake, there was no larger ML > 6 earthquake occurred in this region until the Chengkung earthquake. As a result, the Chengkung earthquake is a good opportunity to study the seismogenic structure of the Chihshang fault. The coseismic displacements recorded by GPS show a fan-shaped distribution with maximal displacement of about 30 cm near the epicenter. The aftershocks of the Chengkung earthquake revealing an apparent linear distribution helps us to construct the clear fault geometry of the Chihshang fault. In this study, we employ a half-space angular elastic dislocation model with GPS observations to figure out the slip distribution and seismological behavior of the Chengkung earthquake on the Chihshang fault. The elastic half-space dislocation model reveals that the Chengkung earthquake is a thrust event with minor left-lateral strike-slip component. The maximum coseismic slip is located around the depth of 20 km and up to 1.1 m. The slips are gradually decreased to less than 10 cm near the surface part of the Chihshang fault. The seismogenic fault plane, which is constructed by the delineation of the aftershocks, demonstrates that the Chihshang fault is a high-angle fault. However the fault plane changes to a flat plane at depth of 20 km. In addition, a significant part of the measured deformation across the surface fault zone for this earthquake can be attributed to postseismic creep. The postseismic elastic dislocation model shows that most afterslips are distributed to the upper level of the Chihshang fault. And most afterslips consist of both of dip- and left-lateral slip. The model results show that the Chihshang fault may be partially locked or damped near surface during coseismic slip. After the mainshock, the strain, which cumulated near the surface, was released by postseismic creep resulting in significant postseismic deformation.

  20. Production of nanoparticles during experimental deformation of smectite and implications for seismic slip

    NASA Astrophysics Data System (ADS)

    Aretusini, S.; Mittempergher, S.; Plümper, O.; Spagnuolo, E.; Gualtieri, A. F.; Di Toro, G.

    2017-04-01

    Nanoparticles and amorphous materials are common constituents of the shallow sections of active faults. Understanding the conditions at which nanoparticles are produced and their effects on friction can further improve our understanding of fault mechanics and earthquake energy budgets. Here we present the results of 59 rotary shear experiments conducted at room humidity conditions on gouge consisting of mixtures of smectite (Ca-montmorillonite) and quartz. Experiments with 60, 50, 25, 0 wt.% Ca-montmorillonite, were performed to investigate the influence of variable clay content on nanoparticle production and their influence on frictional processes. All experiments were performed at a normal stress of 5 MPa, slip rate of 0.0003 ≤ V ≤ 1.5 ms-1, and at a displacement of 3 m. To monitor the development of fabric and the mineralogical changes during the experiments, we investigated the deformed gouges using scanning and transmission electron microscopy combined with X-ray powder diffraction quantitative phase analysis. This integrated analytical approach reveals that, at all slip rates and compositions, the nanoparticles (grain size of 10-50 nm) are partly amorphous and result from cataclasis, wear and mechanical solid-state amorphization of smectite. The maximum production of amorphous nanoparticle occurs in the intermediate slip rate range (0.0003 ≤ V ≤ 0.1 ms-1), at the highest frictional work, and is associated to diffuse deformation and slip strengthening behavior. Instead, the lowest production of amorphous nanoparticles occurs at co-seismic slip rates (V ≥ 1.3 ms-1), at the highest frictional power and is associated with strain and heat localization and slip weakening behavior. Our findings suggest that, independently of the amount of smectite nanoparticles, they produce fault weakening only when typical co-seismic slip rates (>0.1 ms-1) are achieved. This implies that estimates of the fracture surface energy dissipated during earthquakes in natural faults might be extremely difficult to constrain.

  1. 2D Simulations of Earthquake Cycles at a Subduction Zone Based on a Rate and State Friction Law -Effects of Pore Fluid Pressure Changes-

    NASA Astrophysics Data System (ADS)

    Mitsui, Y.; Hirahara, K.

    2006-12-01

    There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of earthquake cycle. Further, the existence of heterogeneity in the permeability along the plate interface can bring about other slip behaviors, such as slow slip events. Our simulations indicate that, in addition to the frictional parameters, the permeability within the fault damage zone is one of essential parameters, which controls the whole earthquake cycle.

  2. Surface displacements and energy release rates for constant stress drop slip zones in joined elastic quarter spaces

    NASA Astrophysics Data System (ADS)

    Rodgers, Michael J.; Wen, Shengmin; Keer, Leon M.

    2000-08-01

    A three-dimensional quasi-static model of faulting in an elastic half-space with a horizontal change of material properties (i.e., joined elastic quarter spaces) is considered. A boundary element method is used with a stress drop slip zone approach so that the fault surface relative displacements as well as the free surface displacements are approximated in elements over their respective domains. Stress intensity factors and free surface displacements are calculated for a variety of cases to show the phenomenological behavior of faulting in such a medium. These calculations showed that the behavior could be distinguished from a uniform half-space. Slip in a stiffer material increases, while slip in a softer material decreases the energy release rate and the free surface displacements. Also, the 1989 Kalapana earthquake was located on the basis of a series of forward searches using this method and leveling data. The located depth is 8 km, which is the closer to the seismically inferred depth than that determined from other models. Finally, the energy release rate, which can be used as a fracture criterion for fracture at this depth, is calculated to be 11.1×106 J m-2.

  3. Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps

    NASA Astrophysics Data System (ADS)

    Frost, Erik; Dolan, James; Ratschbacher, Lothar; Hacker, Bradley; Seward, Gareth

    2011-02-01

    Structural analysis of two key exposures reveals the architecture of the brittle-ductile transition (BDT) of the subvertical, strike-slip Salzachtal fault. At Lichtensteinklamm, the fault zone is dominantly brittle, with a ˜70 m wide, high-strain fault core highlighted by a 50 m thick, highly foliated gouge zone. In contrast, at Kitzlochklamm, deformation is dominantly ductile, albeit with relatively low strain indicated by weak lattice-preferred orientations (LPOs). The marked contrast in structural style indicates that these sites span the BDT. The close proximity of the outcrops, coupled with Raman spectroscopy indicating similar maximum temperatures of ˜400°C, suggests that the difference in exhumation depth is small, with a commensurately small difference in total downdip width of the BDT. The small strains indicated by weak LPOs at Kitzlochklamm, coupled with evidence for brittle slip at the main fault contact and along the sides of a 5 m wide fault-bounded sliver of Klammkalk exposed 30 m into the Grauwacken zone rocks, suggest the possibility that this exposure may record hybrid behavior at different times during the earthquake cycle, with ductile deformation occurring during slow interseismic slip and brittle deformation occurring during earthquakes, as dynamic coseismic stresses induced a strain rate-dependent shift to brittle fault behavior within the nominally ductile regime in the lower part of the BDT. A key aspect of both outcrops is evidence of a high degree of strain localization through the BDT, with high-strain fault cores no wider than a few tens of meters.

  4. What can friction tell us about shallow megathrust slip behavior?

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.; Hirose, T.

    2012-12-01

    In subduction zones, the updip propagation of great earthquake ruptures on plate boundary megathrusts is currently one of the most important questions in earth science, primarily because rupture that approaches the surface causes seafloor displacement, resulting in enormous tsunamis. Moreover, the extent of updip rupture propagation is a key factor in defining the magnitude of the earthquake itself. Within the depth limits of the seismogenic zone, velocity-weakening frictional behavior is essential for the nucleation of large-magnitude earthquake rupture. Results of friction experiments at low slip velocities (~10-6-10-4 m/s) have suggested that velocity-weakening tends to occur in frictionally strong materials (typically non-clay), which may act as asperities on fault surfaces. However, the role of frictional strength and velocity dependence in controlling the extent of rupture propagation beyond the updip limit of the seismogenic zone is still unclear. Low to high-velocity friction experiments have provided insights into fault strength evolution over slip velocities spanning ~10 orders of magnitude, from plate convergence rates to coseismic slip rates. Results using primarily non-clay materials typically exhibit high friction at low velocities that progressively weakens at higher velocities (velocity-weakening), becoming nearly frictionless at coseismic slip rates [Di Toro et al., 2011]. However, the shallow near-trench regions of subduction zones are typically rich in clay minerals which are weak (friction coefficient ≤ ~0.4) and velocity-strengthening at slip rates < 10-3 m/s. A compilation of friction experiments using samples from the Nankai Trough region offshore Japan obtained by scientific ocean drilling shows that this material exhibits such behavior at low to intermediate slip velocities. However, after reaching peak values at ~10-2 m/s, these materials also exhibit a precipitous drop in friction toward near-zero values at coseismic slip rates. This suggests that all geologic materials, regardless of composition, are extremely weak when coseismic slip rates are enforced. Therefore, the likelihood of near-trench rupture propagation in subduction zones depends critically on whether slip can reach velocities ≥ ~10-2 m/s, where dynamic weakening becomes dominant. This depends on whether the propagating earthquake rupture can overcome the overall strength of the fault gouge and/or velocity-strengthening behavior at low to intermediate slip rates. We discuss here the possibility of near-trench earthquake rupture at Nankai and other subduction zones on the basis of laboratory friction measurements.

  5. Effect of stress perturbation on frictional instability: an experimental study

    NASA Astrophysics Data System (ADS)

    Yuanmin, H.; Shengli, M.

    2017-12-01

    We have performed a series of frictional experiments with direct shear configuration of three granite blocks by using a servo-controlled biaxial loading machine. In the experiments, a small- amplitude sine wave is modulated to shear and normal loading in order to study the effects of stress perturbation on stick-slip instability. The main results are as follows. Under the constant average normal stress and the constant loading point velocity in shear direction, the sample shows regular stick-slip behavior. After the stress perturbation is modulated, the correlation between the timing of stick-slip events and the perturbation increases with increasing the perturbation amplitude, and stress drop and interval time of stick-slip events tend to be discrete. This results imply that the change in Coulomb stress caused by stress perturbation may obviously change not only the occurrence time of earthquakes but also the earthquake magnitude. Both shear and normal stress perturbation can affect the stick-slip behavior, shear stress perturbation can only change the driving stress along fault, while the normal stress perturbation can change the contact state of asperities on the fault, so it's effect is more obviously. The stress perturbation can obviously affect acoustic emission (AE) activity during fault friction, which can trigger some AE events so that AE activity before stick-slip becomes stronger and occurs earlier. The perturbation in shear stress is more evident than that in normal stress in affecting AE activity, so we should not only pay attention to the magnitude of Coulomb stress changes caused by the perturbation, but also try to distinguish the stress changes are the shear stress changes or the normal stress changes, when study the effect of stress perturbation on fault friction.

  6. Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake

    USGS Publications Warehouse

    Michael Floyd,; Richard Walters,; John Elliot,; Funning, Gareth J.; Svarc, Jerry L.; Murray, Jessica R.; Andy Hooper,; Yngvar Larsen,; Petar Marinkovic,; Bürgmann, Roland; Johanson, Ingrid; Tim Wright,

    2016-01-01

    Following earthquakes, faults are often observed to continue slipping aseismically. It has been proposed that this afterslip occurs on parts of the fault with rate-strengthening friction that are stressed by the mainshock, but our understanding has been limited by a lack of immediate, high-resolution observations. Here we show that the behavior of afterslip following the 2014 South Napa earthquake varied over distances of only a few kilometers. This variability cannot be explained by coseismic stress changes alone. We present daily positions from continuous and survey GPS sites that we re-measured within 12 hours of the mainshock, and surface displacements from the new Sentinel-1 radar mission. This unique geodetic data set constrains the distribution and evolution of coseismic and postseismic fault slip with exceptional resolution in space and time. We suggest that the observed heterogeneity in behavior is caused by lithological controls on the frictional properties of the fault plane.

  7. An Application of the Geo-Semantic Micro-services in Seamless Data-Model Integration

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Elag, M.; Kumar, P.; Liu, R.; Hu, Y.; Marini, L.; Peckham, S. D.; Hsu, L.

    2016-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025: Earthquake source: from the laboratory to the fieldHulbert, C., Characterizing slow slip applying machine learning (2017), AGU Fall Meeting Session S019: Slow slip, Tectonic Tremor, and the Brittle-to-Ductile Transition Zone: What mechanisms control the diversity of slow and fast earthquakes?

  8. Textural development of clayey and quartzofeldspathic fault gouges relative to their sliding behavior

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.D.

    1990-01-01

    Many of the secondary fault structures developed during triaxial friction experiments have been generally correlated with the structures of natural fault zones. Therefore, any physical differences that can be found between laboratory samples that slide stably and those that show stick-slip motion may help to identify the cause of earthquakes. We have examined petrographically the run products of many triaxial friction experiments using clayey and quartzofeldspathic gouges, which comprise the principal types of natural fault gouge material. The examined samples were tested under a wide range of temperature, confining and fluid pressure, and velocity conditions. The clayey and quartzofeldspathic gouges show some textural differences, owing to their different mineral contents and grain sizes and shapes. In the clayey gouges, for example, a clay mineral fabric and kink band sets are commonly developed, whereas in the quartzofeldspathic gouges fracturing and crushing of the predominately quartz and feldspar grains are important processes. For both types of gouge, however, and whatever the pressure-temperature-velocity conditions of the experiments, the transition from stable sliding to stick-slip motion is correlated with: (i) a change from pervasive deformation of the gouge layer to localized slip in subsidiary shears; and (ii) an increase in the angle betweem the shears that crosscut the gouge layer (Riedel shears) and ones that form along the gouge-rock cylinder boundaries (boundary shears). This suggests that the localization of shear within a fault zone combined with relatively high Riedel-shear angles are somehow connected with earthquakes. Secondary fracture sets similar to Riedel shears have been identified at various scales in major strike-slip faults such as the San Andreas of the western United States (Wallace, 1973) and the Luhuo and Fuyun earthquake faults of China (Deng and Zhang, 1984; Deng et al., 1986). The San Andreas also contains locked and creeping sections that correspond to the stick-slip and stably sliding experimental samples, respectively. We plan to study the physical structure of the San Andreas fault, to see if the experimentally observed differences related to sliding behavior can also be distinguished in the field. ?? 1990.

  9. The role of bed-parallel slip in the development of complex normal fault zones

    NASA Astrophysics Data System (ADS)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  10. Slip accumulation and lateral propagation of active normal faults in Afar

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.

    2001-01-01

    We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.

  11. Pore pressure control on faulting behavior in a block-gouge system

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2016-12-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides of the fault. We conclude that the stability of the fault should be evaluated separately for both sides of the gouge layer, a result that sheds new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  12. An empirically based steady state friction law and implications for fault stability

    PubMed Central

    Nielsen, S.; Violay, M.; Di Toro, G.

    2016-01-01

    Abstract Empirically based rate‐and‐state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1–20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest. PMID:27667875

  13. Frictional properties of low-angle normal fault gouges and implications for low-angle normal fault slip

    NASA Astrophysics Data System (ADS)

    Haines, Samuel; Marone, Chris; Saffer, Demian

    2014-12-01

    The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along LANFs, they provide a mechanically viable explanation for slip on faults with dips <20°, requiring only moderate (Pf <σ3) overpressures and/or correcting for ∼5° of footwall tilting. Furthermore, the low rates of frictional strength recovery and velocity-strengthening frictional behavior we observe provide an explanation for the lack of observed seismicity on these structures. We suggest that LANFs in the upper crust (depth <8 km) slip via a combination of a) reaction-weakening of initially high-angle fault zones by the formation of neoformed clay-rich gouges, and b) regional tectonic accommodation of rotating fault blocks.

  14. Seismogenic Potential of a Gouge-filled Fault and the Criterion for Its Slip Stability: Constraints From a Microphysical Model

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Niemeijer, A. R.

    2017-12-01

    Physical constraints for the parameters of the rate-and-state friction (RSF) laws have been mostly lacking. We presented such constraints based on a microphysical model and demonstrated the general applicability to granular fault gouges deforming under hydrothermal conditions in a companion paper. In this paper, we examine the transition velocities for contrasting frictional behavior (i.e., strengthening to weakening and vice versa) and the slip stability of the model. The model predicts a steady state friction coefficient that increases with slip rate at very low and high slip rates and decreases in between. This allows the transition velocities to be theoretically obtained and the unstable slip regime (Vs→w < V < Vw→s) to be defined. In a spring-slider configuration, linear perturbation analysis provides analytical expressions of the critical stiffness (Kc) below which unstable slip occurs and of the critical recurrence wavelength (Wc) and static stress drop (Δμs) associated with self-sustained oscillations or stick slips. Numerical implementation of the model predicts frictional behavior that exhibits consecutive transitions from stable sliding, via periodic oscillations, to unstable stick slips with decreasing elastic stiffness or loading rate, and gives Kc, Wc, Δμs, Vs→w, and Vw→s values that are consistent with the analytical predictions. General scaling relations of these parameters given by the model are consistent with previous interpretations in the context of RSF laws and agree well with previous experiments, testifying to high validity. From these physics-based expressions that allow a more reliable extrapolation to natural conditions, we discuss the seismological implications for natural faults and present topics for future work.

  15. Effects of slip, slip rate, and shear heating on the friction of granite

    USGS Publications Warehouse

    Blanpied, M.L.; Tullis, T.E.; Weeks, J.D.

    1998-01-01

    The stability of fault slip is sensitive to the way in which frictional strength responds to changes in slip rate and in particular to the effective velocity dependence of steady state friction ????ss/?? ln V. This quantity can vary substantially with displacement, temperature and slip rate. To investigate the physical basis for this behavior and the possible influence of shear heating, we slid initially bare granite surfaces in unconfined rotary shear to displacements of hundreds of millimeters at normal stresses, ??n, of 10 and 25 MPa and at room temperature. We imposed step changes in slip rate within the range 10-2 to 103.5 ??m/s and also monitored frictional heating with thermistors embedded in the granite. The transient response of ?? to slip rate steps was fit to a rate- and state-dependent friction law using two state variables to estimate the values of several parameters in the constitutive law. The first 20 mm of slip shows rising friction and falling ????ss/?? ln V; further slip shows roughly constant friction, ????ss/?? ln V and parameter values, suggesting that a steady state condition is reached on the fault surface. At V ??? 10 ??m/s, ????ss/?? ln V = -0.004 ?? 0.001. At higher rates the response is sensitive to normal stress: At ??n = 25 MPa granite shows a transition to effective velocity strengthening (????ss/?? ln V = 0.008 ?? 0.004) at the highest slip rates tested. At 10 MPa granite shows a less dramatic change to ????ss/?? ln V ??? 0 at the highest rates. The maximum temperature measured in the granite is ???60??C at 25 MPa and 103.5 ??m/s. Temperatures are in general agreement with a numerical model of heat conduction which assumes spatially homogeneous frictional heating over the sliding surface. The simplest interpretation of our measurements of ????ss/?? ln V is that the granite is inherently veocity weakening (?????ss/??? In V 0 mimics velocity strengthening. These results have implications for the frictional behavior of faults during earthquakes. High slip rates may cause a switch to effective velocity strengthening which could limit peak coseismic slip rate and stress drop. For fluid-saturated faults, strengthening by this mechanism may be partly or fully offset by weakening due to thermal pressurization of a poorly drained pore fluid.

  16. Source characterization and dynamic fault modeling of induced seismicity

    NASA Astrophysics Data System (ADS)

    Lui, S. K. Y.; Young, R. P.

    2017-12-01

    In recent years there are increasing concerns worldwide that industrial activities in the sub-surface can cause or trigger damaging earthquakes. In order to effectively mitigate the damaging effects of induced seismicity, the key is to better understand the source physics of induced earthquakes, which still remain elusive at present. Furthermore, an improved understanding of induced earthquake physics is pivotal to assess large-magnitude earthquake triggering. A better quantification of the possible causes of induced earthquakes can be achieved through numerical simulations. The fault model used in this study is governed by the empirically-derived rate-and-state friction laws, featuring a velocity-weakening (VW) patch embedded into a large velocity-strengthening (VS) region. Outside of that, the fault is slipping at the background loading rate. The model is fully dynamic, with all wave effects resolved, and is able to resolve spontaneous long-term slip history on a fault segment at all stages of seismic cycles. An earlier study using this model has established that aseismic slip plays a major role in the triggering of small repeating earthquakes. This study presents a series of cases with earthquakes occurring on faults with different fault frictional properties and fluid-induced stress perturbations. The effects to both the overall seismicity rate and fault slip behavior are investigated, and the causal relationship between the pre-slip pattern prior to the event and the induced source characteristics is discussed. Based on simulation results, the subsequent step is to select specific cases for laboratory experiments which allow well controlled variables and fault parameters. Ultimately, the aim is to provide better constraints on important parameters for induced earthquakes based on numerical modeling and laboratory data, and hence to contribute to a physics-based induced earthquake hazard assessment.

  17. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California

    USGS Publications Warehouse

    Fitzenz, D.D.; Miller, S.A.

    2004-01-01

    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.

  18. Stress accumulated mechanisms on strike-slip faults

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1980-01-01

    The tectonic framework causing seismicity on the San Andreas and North Anatolian faults can be understood in terms of plate tectonics. However, the mechanisms responsible for the distribution of seismicity in space and time on these faults are poorly understood. The upper part of the crust apparently behaves elastically in storing energy that is released during an earthquake. The relatively small distances from the fault in which stress is stored argue in favor of a plate with a thickness of 5-10 km. The interaction of this plate with a lower crust that is behaving as a fluid damps the seismic cycling in distances of the order of 10 km from the fault. Low measured heat flow also argues in favor of a thin plate with a low stress level on the fault. Future measurements of stress, strain, and heat flow should help to provide a better understanding of the basic mechanisms governing the behavior of strike-slip faults.

  19. Comparison of GPS and Quaternary slip rates: Insights from a new Quaternary fault database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd; Bendick, Rebecca; Mutz, Sebastian

    2016-04-01

    Previous studies related to the kinematics of deformation within the India-Asia collision zone have relied on slip rate data for major active faults to test kinematic models that explain the deformation of the region. The slip rate data, however, are generally disputed for many of the first-order faults in the region (e.g., Altyn Tagh and Karakorum faults). Several studies have also challenged the common assumption that geodetic slip rates are representative of Quaternary slip rates. What has received little attention is the degree to which geodetic slip rates relate to Quaternary slip rates for active faults in the India-Asia collision zone. In this study, we utilize slip rate data from a new Quaternary fault database for Central Asia to determine the overall relationship between Quaternary and GPS-derived slip rates for 18 faults. The preliminary analysis investigating this relationship uses weighted least squares and a re-sampling analysis to test the sensitivity of this relationship to different data point attributes (e.g., faults associated with data points and dating methods used for estimating Quaternary slip rates). The resulting sample subsets of data points yield a maximum possible Pearson correlation coefficient of ~0.6, suggesting moderate correlation between Quaternary and GPS-derived slip rates for some faults (e.g., Kunlun and Longmen Shan faults). Faults with poorly correlated Quaternary and GPS-derived slip rates were identified and dating methods used for the Quaternary slip rates were examined. Results indicate that a poor correlation between Quaternary and GPS-derived slip rates exist for the Karakorum and Chaman faults. Large differences between Quaternary and GPS slip rates for these faults appear to be connected to qualitative dating of landforms used in the estimation of the Quaternary slip rates and errors in the geomorphic and structural reconstruction of offset landforms (e.g., offset terrace riser reconstructions for Altyn Tagh fault). Other factors such as a low density in the GPS network (e.g., GPS rate based on data from a single station for the Karakorum fault) appear to also contribute to the mismatch observed between the slip rates. Taken together, these results suggest that GPS-derived slip rates are often (but not always) representative of Quaternary slip rates and that the dating methods and sampling approaches used to identify transients in a fault slip rate history should be heavily scrutinized before interpreting the seismic hazards for a region.

  20. Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Pollard, David D.

    1989-07-01

    We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.

  1. Effect of induced cohesion on stick-slip dynamics in weakly saturated, sheared granular fault gouge

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul Allan; ...

    2018-02-28

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8000 spherical particles with a poly-disperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces betweenmore » wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with two orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior, we show however, that at low confining stresses the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.« less

  2. Effect of induced cohesion on stick-slip dynamics in weakly saturated, sheared granular fault gouge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul Allan

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8000 spherical particles with a poly-disperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces betweenmore » wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with two orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior, we show however, that at low confining stresses the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.« less

  3. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  4. Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Henrys, S.; Pecher, I.; Wallace, L.; Klaeschen, D.

    2016-12-01

    Prestack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure, and seismic velocities resolved to ˜14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration, and short-term geodetically determined slow slip events. The subduction interface is a shallow dipping thrust at <7 km depth near the trench and steps down to 14 km depth along an ˜18 km long ramp, beneath Porangahau Ridge. This apparent step in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, updip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid-rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip.

  5. Paleoseismic investigations in the Santa Cruz mountains, California: Implications for recurrence of large-magnitude earthquakes on the San Andreas fault

    USGS Publications Warehouse

    Schwartz, D.P.; Pantosti, D.; Okumura, K.; Powers, T.J.; Hamilton, J.C.

    1998-01-01

    Trenching, microgeomorphic mapping, and tree ring analysis provide information on timing of paleoearthquakes and behavior of the San Andreas fault in the Santa Cruz mountains. At the Grizzly Flat site alluvial units dated at 1640-1659 A.D., 1679-1894 A.D., 1668-1893 A.D., and the present ground surface are displaced by a single event. This was the 1906 surface rupture. Combined trench dates and tree ring analysis suggest that the penultimate event occurred in the mid-1600s, possibly in an interval as narrow as 1632-1659 A.D. There is no direct evidence in the trenches for the 1838 or 1865 earthquakes, which have been proposed as occurring on this part of the fault zone. In a minimum time of about 340 years only one large surface faulting event (1906) occurred at Grizzly Flat, in contrast to previous recurrence estimates of 95-110 years for the Santa Cruz mountains segment. Comparison with dates of the penultimate San Andreas earthquake at sites north of San Francisco suggests that the San Andreas fault between Point Arena and the Santa Cruz mountains may have failed either as a sequence of closely timed earthquakes on adjacent segments or as a single long rupture similar in length to the 1906 rupture around the mid-1600s. The 1906 coseismic geodetic slip and the late Holocene geologic slip rate on the San Francisco peninsula and southward are about 50-70% and 70% of their values north of San Francisco, respectively. The slip gradient along the 1906 rupture section of the San Andreas reflects partitioning of plate boundary slip onto the San Gregorio, Sargent, and other faults south of the Golden Gate. If a mid-1600s event ruptured the same section of the fault that failed in 1906, it supports the concept that long strike-slip faults can contain master rupture segments that repeat in both length and slip distribution. Recognition of a persistent slip rate gradient along the northern San Andreas fault and the concept of a master segment remove the requirement that lower slip sections of large events such as 1906 must fill in on a periodic basis with smaller and more frequent earthquakes.

  6. Links Between Clay Dehydration and Plate Boundary Earthquakes Along the Costa Rica Subduction Megathrust

    NASA Astrophysics Data System (ADS)

    Lauer, R. M.; Saffer, D. M.; Harris, R. N.

    2016-12-01

    The transformation of smectite to illite is one leading hypothesis to explain the upper transition from stable aseismic slip to seismogenesis along subduction megathrusts, through its influence on both fluid pressure and fault zone frictional properties. Here, we document a well-defined spatial correlation between plate boundary seismicity and smectite transformation at the Costa Rican subduction zone, consistent with the idea that clay transformation and associated silica deposition condition the fault for locking and stick-slip behavior. Previous efforts to explore this relationship have been impeded by a lack of studies that precisely locate seismicity at margins where the thermal structure is well-constrained. We take advantage of new results from Costa Rica that together provide a clear view of both seismicity and thermal conditions on the Middle-America megathrust. These results allow a thorough evaluation of the links between smectite dehydration and fault-slip behavior. We simulate smectite transformation using a kinetic model to assess reaction progress and quantify fluid production at the plate boundary, along 16-transects that span a 500-km length along strike. We find that large (Mw≥7.0) earthquakes are located down-dip of peak fluid production and in regions where the reaction is >50% complete. The earthquake ruptures, however, extend up-dip into the zone of peak reaction. We suggest that silica cementation that accompanies the reaction promotes lithification, embrittlement, and slip-weakening behavior that together enable the initiation of unstable slip, which can then propagate updip into fluid-rich and weak regions of the megathrust that coincide with the peak dehydration window.

  7. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  8. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower transtensional zone of long offset strike-slip faults and intervening basins (the modern Gulf of California basin and transform fault system). Within and adjacent to this zone the fault patterns continued to evolve, with new plate boundary strike-slip faults breaking into previously intact blocks of continent. These new strike-slip faults were not accompanied by any widespread zones of tectonic rotation. This suggests that if widespread rotations are occurring, plate boundary transtension has not yet localized and the strike-slip faults are not yet accommodating most of the plate boundary slip. The cessation of widespread and significant vertical axis rotations could indicate strain localization and the increasing importance of throughgoing strike-slip faults (a precursor to fully oceanic rifting) along a transtensional plate boundary.

  9. Enigmatic rift-parallel, strike-slip faults around Eyjafjörður, Northern Iceland

    NASA Astrophysics Data System (ADS)

    Proett, J. A.; Karson, J. A.

    2014-12-01

    Strike-slip faults along mid-ocean ridge spreading centers are generally thought to be restricted to transform boundaries connecting rift segments. Faults that are parallel to spreading centers are generally assumed to be normal faults associated with tectonic extension. However, clear evidence of north-south (rift-parallel), strike-slip displacements occur widely around the southern portion of Eyjafjörður, northern Iceland about 50 km west of the Northern Rift Zone. The area is south of the southernmost strand (Dalvík Lineament) of the NW-SE-trending, dextral-slip, Tjӧrnes Fracture Zone (where N-S, sinistral, strike-slip "bookshelf" faulting occurs). Faults in the Eyjafjörður area cut 8.5-10 m.y. basaltic crust and are parallel to spreading-related dikes and are commonly concentrated along dike margins. Fault rocks range from fault breccia to gouge. Riedel shears and other kinematic indicators provide unambiguous evidence of shear sense. Most faults show evidence of sinistral, strike-slip movement but smaller proportions of normal and oblique-slip faults also are present. Cross cutting relations among the different types of faults are inconsistent and appear to be related to a single deformation event. Fault slip-line kinematic analysis yields solutions indicating sinistral-normal oblique-slip overall. These results may be interpreted in terms of either previously unrecognized transform-fault bookshelf faulting or slip accommodating block rotation associated with northward propagation of the Northern Rift Zone.

  10. Some comparisons between mining-induced and laboratory earthquakes

    USGS Publications Warehouse

    McGarr, A.

    1994-01-01

    Although laboratory stick-slip friction experiments have long been regarded as analogs to natural crustal earthquakes, the potential use of laboratory results for understanding the earthquake source mechanism has not been fully exploited because of essential difficulties in relating seismographic data to measurements made in the controlled laboratory environment. Mining-induced earthquakes, however, provide a means of calibrating the seismic data in terms of laboratory results because, in contrast to natural earthquakes, the causative forces as well as the hypocentral conditions are known. A comparison of stick-slip friction events in a large granite sample with mining-induced earthquakes in South Africa and Canada indicates both similarities and differences between the two phenomena. The physics of unstable fault slip appears to be largely the same for both types of events. For example, both laboratory and mining-induced earthquakes have very low seismic efficiencies {Mathematical expression} where ??a is the apparent stress and {Mathematical expression} is the average stress acting on the fault plane to cause slip; nearly all of the energy released by faulting is consumed in overcoming friction. In more detail, the mining-induced earthquakes differ from the laboratory events in the behavior of ?? as a function of seismic moment M0. Whereas for the laboratory events ?????0.06 independent of M0, ?? depends quite strongly on M0 for each set of induced earthquakes, with 0.06 serving, apparently, as an upper bound. It seems most likely that this observed scaling difference is due to variations in slip distribution over the fault plane. In the laboratory, a stick-slip event entails homogeneous slip over a fault of fixed area. For each set of induced earthquakes, the fault area appears to be approximately fixed but the slip is inhomogeneous due presumably to barriers (zones of no slip) distributed over the fault plane; at constant {Mathematical expression}, larger events correspond to larger??a as a consequence of fewer barriers to slip. If the inequality ??a/ {Mathematical expression} ??? 0.06 has general validity, then measurements of ??a=??Ea/M0, where ?? is the modulus of rigidity and Ea is the seismically-radiated energy, can be used to infer the absolute level of deviatoric stress at the hypocenter. ?? 1994 Birkha??user Verlag.

  11. Permeability Evolution of Slowly Slipping Faults in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Reece, Julia S.; Gensterblum, Yves; Zoback, Mark D.

    2017-11-01

    Slow slip on preexisting faults during hydraulic fracturing is a process that significantly influences shale gas production in extremely low permeability "shale" (unconventional) reservoirs. We experimentally examined the impacts of mineralogy, surface roughness, and effective stress on permeability evolution of slowly slipping faults in Eagle Ford shale samples. Our results show that fault permeability decreases with slip at higher effective stress but increases with slip at lower effective stress. The permeabilities of saw cut faults fully recover after cycling effective stress from 2.5 to 17.5 to 2.5 MPa and increase with slip at constant effective stress due to asperity damage and dilation associated with slip. However, the permeabilities of natural faults only partially recover after cycling effective stress returns to 2.5 MPa and decrease with slip due to produced gouge blocking fluid flow pathways. Our results suggest that slowly slipping faults have the potential to enhance reservoir stimulation in extremely low permeability reservoirs.

  12. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    NASA Astrophysics Data System (ADS)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that buried by the debris-flow lobe, exhibit progressively larger displacement (up to 10-12 m). Well-preserved bar and swale morphology, incipient varnishing of surface boulders, and weak soil development all suggest that this surface is Late Holocene in age. We are working to confirm this inference, but if correct, it suggests that this fault system may have experienced ~3-4 events in the relatively recent past. Finally, preliminary surface ages from even older surfaces along this portion of the fault zone place limits on the slip rate over Late Pleistocene time. Cosmogenic 10Be surface clast dating of an alluvial surface with well-developed pavement and moderate soil development near Happy Canyon suggests a surface age of 30-35 kyr. We are working to refine this estimate with new dating and soil characterization, but our preliminary reconstructions of displacement of this surface across the two primary fault strands are consistent with slip rates that exceed ~3 mm/yr. Overall, these results are consistent with the inference that the Panamint Valley fault zone is the primary structure that accomplishes transfer of right-lateral shear across the Garlock Fault.

  13. Co-seismic Static Stress Drops for Earthquake Ruptures Nucleated on Faults After Progressive Strain Localization

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Nielsen, S.; di Toro, G.; Pollard, D. D.; Pennacchioni, G.

    2007-12-01

    We estimate the coseismic static stress drop on small exhumed strike-slip faults in the Mt. Abbot quadrangle of the central Sierra Nevada (California). The sub-vertical strike-slip faults cut ~85 Ma granodiorite, were exhumed from 7-10 km depth, and were chosen because they are exposed along their entire lengths, ranging from 8 to 13 m. Net slip is estimated using offset aplite dikes and shallowly plunging slickenlines on the fault surfaces. The faults show a record of progressive strain localization: slip initially nucleated on joints and accumulated from ductile shearing (quartz-bearing mylonites) to brittle slipping (epidote-bearing cataclasites). Thin (< 1 mm) pseudotachylytes associated with the cataclasites have been identified along some faults, suggesting that brittle slip may have been seismic. The brittle contribution to slip may be distinguished from the ductile shearing because epidote-filled, rhombohedral dilational jogs opened at bends and step-overs during brittle slip, are distributed periodically along the length of the faults. We argue that brittle slip occurred along the measured fault lengths in single slip events based on several pieces of evidence. 1) Epidote crystals are randomly oriented and undeformed within dilational jogs, indicating they did not grow during aseismic slip and were not broken after initial opening and precipitation. 2) Opening-mode splay cracks are concentrated near fault tips rather than the fault center, suggesting that the reactivated faults ruptured all at once rather than in smaller slip patches. 3) The fact that the opening lengths of the dilational jogs vary systematically along the fault traces suggests that brittle reactivation occurred in a single slip event along the entire fault rather than in multiple slip events. This unique combination of factors distinguishes this study from previous attempts to estimate stress drop from exhumed faults because we can constrain the coseismic rupture length and slip. The static stress drop is calculated for a circular fault using the length of the mapped faults and their slip distributions as well as the shear modulus of the host granodiorite measured in the laboratory. Calculations yield stress drops on the order of 100-200 MPa, one to two orders of magnitude larger than typical seismological estimates. The studied seismic ruptures occurred along small, deep-seated faults (10 km depth), and, given the fault mineral filling (quartz-bearing mylonites) these were "strong" faults. Our estimates are consistent with static stress drops estimated by Nadeau and Johnson (1998) for small repeated earthquakes.

  14. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  15. Slip rate and earthquake recurrence along the central Septentrional fault, North American-Caribbean plate boundary, Dominican Republic

    USGS Publications Warehouse

    Prentice, C.S.; Mann, P.; Pena, L.R.; Burr, G.

    2003-01-01

    The Septentrional fault zone (SFZ) is the major North American-Caribbean, strike-slip, plate boundary fault at the longitude of eastern Hispaniola. The SFZ traverses the densely populated Cibao Valley of the Dominican Republic, forming a prominent scarp in alluvium. Our studies at four sites along the central SFZ are aimed at quantifying the late Quaternary behavior of this structure to better understand the seismic hazard it represents for the northeastern Caribbean. Our investigations of excavations at sites near Rio Cenovi show that the most recent ground-rupturing earthquake along this fault in the north central Dominican Republic occurred between A.D. 1040 and A.D. 1230, and involved a minimum of ???4 m of left-lateral slip and 2.3 m of normal dip slip at that site. Our studies of offset stream terraces at two locations, Rio Juan Lopez and Rio Licey, provide late Holocene slip rate estimates of 6-9 mm/yr and a maximum of 11-12 mm/yr, respectively, across the Septentrional fault. Combining these results gives a best estimate of 6-12 mm/yr for the slip rate across the SFZ. Three excavations, two near Tenares and one at the Rio Licey site, yielded evidence for the occurrence of earlier prehistoric earthquakes. Dates of strata associated with the penultimate event suggest that it occurred post-A.D. 30, giving a recurrence interval of 800-1200 years. These studies indicate that the SFZ has likely accumulated elastic strain sufficient to generate a major earthquake during the more than 800 years since it last slipped and should be considered likely to produce a destructive future earthquake.

  16. Origin and structure of major orogen-scale exhumed strike-slip

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San Andreas Fault, Alpine Fault in New Zealand) and transtensional rift zones such as the East African rift. In many cases, subsequent shortening exhumes such faults from depth to the surface. A major aspect of many exhumed strike-slip faults is its lateral thermal gradient induced by the juxtaposition of hot and cool levels of the crust controlling relevant properties of such fault zones, e.g. the overall fault architecture (e.g., fault core, damage zone, shear lenses, fault rocks) and the thermal structure. These properties and the overall fault architecture include strength of fault rocks, permeability and porosity, the hydrological regime, as well as the nature and origin of circulating hydrothermal fluids.

  17. High-velocity frictional properties of chert in the Jurassic accretionary complex, central Japan

    NASA Astrophysics Data System (ADS)

    Motohashi, G.; Oohashi, K.; Ujiie, K.

    2017-12-01

    Chert is one of the main components in accretionary complexes. Previous friction experiments on quartz-rich rocks at slip rates of 0.1-100 mm/s revealed that fault weakening was caused by a thixotropic behavior of silica gel [Goldsby and Tullis, 2002; Di Toro et al., 2004; Hayashi and Tsutsumi, 2010]. We conducted high-velocity friction experiments on chert at a slip rate of 1.3 m/s and normal stresses of 5-13 MPa under room humidity conditions and examined the resultant microstructures. During experiments, temperatures were measured using a high-resolution infrared thermal-imaging camera, and the process of shearing was monitored by a digital video camera. The samples for experiments were collected from the host rock (gray chert) of the thrust fault in the Jurassic accretionary complex, central Japan. Experimental data indicated that slip strengthening occurred after first slip weakening. This was followed by second slip weakening toward a steady-state friction, with maximum temperature being less than 1200 °C. The melt patches developed during slip strengthening, while the growth of melt layer was recognized during and after second slip weakening. The melt patches included little chert fragments, and the color of the chert surrounding melt patches was changed to dark, possibly representing thermal alteration of quartz grains. After second slip weakening, the volume fraction of chert fragments in the melt layer increased, and the chert fragments and the wall rocks adjacent to the melt layer were intensely cracked. These features indicated that the growth of melt layer was accompanied by the incorporation of cracked wall rocks, suggesting that off-fault damage may be linked to the slip behavior during and after second slip weakening. Goldsby, D. L., T. E. Tullis (2002), Geophys. Res. Lett., 29(17), 1844. Di Toro, G., D. L. Goldsby, T. E. Tullis (2004), Nature, 427, 436-439. Hayashi, N., A. Tsutsumi (2010), Geophys. Res. Lett., 37, L12305.

  18. An integrated perspective of the continuum between earthquakes and slow-slip phenomena

    USGS Publications Warehouse

    Peng, Zhigang; Gomberg, Joan

    2010-01-01

    The discovery of slow-slip phenomena has revolutionized our understanding of how faults accommodate relative plate motions. Faults were previously thought to relieve stress either through continuous aseismic sliding, or as earthquakes resulting from instantaneous failure of locked faults. In contrast, slow-slip events proceed so slowly that slip is limited and only low-frequency (or no) seismic waves radiate. We find that slow-slip phenomena are not unique to the depths (tens of kilometres) of subduction zone plate interfaces. They occur on faults in many settings, at numerous scales and owing to various loading processes, including landslides and glaciers. Taken together, the observations indicate that slowly slipping fault surfaces relax most of the accrued stresses through aseismic slip. Aseismic motion can trigger more rapid slip elsewhere on the fault that is sufficiently fast to generate seismic waves. The resulting radiation has characteristics ranging from those indicative of slow but seismic slip, to those typical of earthquakes. The mode of seismic slip depends on the inherent characteristics of the fault, such as the frictional properties. Slow-slip events have previously been classified as a distinct mode of fault slip compared with that seen in earthquakes. We conclude that instead, slip modes span a continuum and are of common occurrence.

  19. Multi-scale investigation into the mechanisms of fault mirror formation in seismically active carbonate rocks

    NASA Astrophysics Data System (ADS)

    Ohl, Markus; Chatzaras, Vasileios; Niemeijer, Andre; King, Helen; Drury, Martyn; Plümper, Oliver

    2017-04-01

    Mirror surfaces along principal slip zones in carbonate rocks have recently received considerable attention as they are thought to form during fault slip at seismic velocities and thus may be a marker for paleo-seismicity (Siman-Tov et al., 2013). Therefore, these structures represent an opportunity to improve our understanding of earthquake mechanics in carbonate faults. Recent investigations reported the formation of fault mirrors in natural rocks as well as in laboratory experiments and connected their occurrence to the development of nano-sized granular material (Spagnuolo et al., 2015). However, the underlying formation and deformation mechanisms of these fault mirrors are still poorly constrained and warrant further research. In order to understand the influence and significance of these fault products on the overall fault behavior, we analysed the micro-, and nanostructural inventory of natural fault samples containing mirror slip surfaces. Here we present first results on the possible formation mechanisms of fault mirrors and associated deformation mechanisms operating in the carbonate fault gouge from two seismically active fault zones in central Greece. Our study specifically focuses on mirror slip surfaces obtained from the Arkitsa fault in the Gulf of Evia and the Schinos fault in the Gulf of Corinth. The Schinos fault was reactivated by a magnitude 6.7 earthquake in 1981 while the Arkitsa fault is thought to have been reactivated by a magnitude 6.9 earthquake in 1894. Our investigations encompass a combination of state-of-the-art analytical techniques including X-ray computed tomography, focused ion beam scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using this multiscale analytical approach, we report decarbonation-reaction structures, considerable calcite twinning and grain welding immediately below the mirror slip surface. Grains or areas indicating decarbonation reactions show a foam-like, grainy texture. Some areas show a lamellar structure of decarbonated and intact calcite, representing former calcite twins. The average grain size of welded grains is between 100 - 200 nm. In addition, we identified the formation of an amorphous calcium-bearing phase that is enriched in Al, Fe, Si and Mg compared to the host calcite. This phase covers the coarser calcite grains as a thin film and welds them together as well as infiltrating cleavage planes, cracks and surface corrugations on top of the principal mirror slip surface. Thus, it contributes to creating a highly smooth slip surface. References: Siman-Tov et al., 2013, Nanograins form carbonate fault mirrors: Geology, v. 41; no. 6; p. 703-706. Spagnuolo et al., 2015, Fast-moving dislocations trigger flash weakening in carbonate bearing faults during earthquakes: Nature Scientific Reports 5:1611

  20. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  1. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    NASA Astrophysics Data System (ADS)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a multi-scale wear model to explain the evolution of faults with displacement. We suggest that together, asperity failure as a scale invariant process, and the stochastic strength of host rocks are consistent with qualitative and quantitative observational constraints made in this study.

  2. Subaqueous tectonic geomorphology along a 400 km stretch of the Queen Charlotte-Fairweather Fault System, southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.; Kluesner, J.; Haeussler, P. J.; Watt, J. T.; Dartnell, P.; Miller, N. C.; Conrad, J. E.; East, A. E.; Maier, K. L.; Balster-Gee, A.; Ebuna, D. R.

    2016-12-01

    Seismic and geodetic monitoring of active fault systems does not typically extend beyond one seismic cycle, hence it is challenging to link the characteristics of individual earthquakes with long-term fault behavior. A compelling place to examine such linkages is the right-lateral Queen Charlotte-Fairweather Fault (QCFF), a 1200 km dextral strike-slip fault offshore southeastern Alaska and western British Columbia. The QCFF defines the North America-Pacific transform plate boundary and has experienced at least eight M>7 earthquakes in the last 130 years. During 2015-2016, the USGS conducted four high-resolution marine geophysical surveys (multibeam bathymetry, sparker multichannel seismic and Chirp) along a 400-km-long section of the QCFF from Icy Point to Noyes Canyon. The QCFF displays a nearly linear and continuous fault trace from Icy Point to the southern tip of Baranof Island, a distance of 315 km. Subtle changes in fault strike, particularly the 200 km section fault south of Sitka Sound, are associated with pull-apart basins and compressional pop-up structures. Bathymetric imagery provides stunning views of strike-slip fault morphology along the continental shelf-edge and slope, including linear fault valleys and knife-edge lateral offset of submarine canyons, gullies, and ridges. We also observe pervasive evidence for small-scale (<1 km^2) submarine landslides along the margin and propose that they were seismically triggered. The glacially scoured southern wall of the Yakobi Sea Valley, formed 17 ka, is offset 925±25 m by the QCFF, providing a late Pleistocene-present slip-rate estimate of approximately 54 mm/yr. This suggests nearly the entire plate boundary motion is localized to a single, relatively narrow fault zone. We also constructed and analyzed a catalog of lateral piercing points along the fault to better understand long-term fault behavior, particularly along segments that have generated large historical earthquakes.

  3. Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system

    USGS Publications Warehouse

    Haeussler, Peter J.; Matmon, Ari; Schwartz, David P.; Seitz, Gordon G.

    2017-01-01

    The neotectonics of southern Alaska (USA) are characterized by a several hundred kilometers–wide zone of dextral transpressional that spans the Alaska Range. The Denali fault system is the largest active strike-slip fault system in interior Alaska, and it produced a Mw 7.9 earthquake in 2002. To evaluate the late Quaternary slip rate on the Denali fault system, we collected samples for cosmogenic surface exposure dating from surfaces offset by the fault system. This study includes data from 107 samples at 19 sites, including 7 sites we previously reported, as well as an estimated slip rate at another site. We utilize the interpreted surface ages to provide estimated slip rates. These new slip rate data confirm that the highest late Quaternary slip rate is ∼13 mm/yr on the central Denali fault near its intersection with the eastern Denali and the Totschunda faults, with decreasing slip rate both to the east and west. The slip rate decreases westward along the central and western parts of the Denali fault system to 5 mm/yr over a length of ∼575 km. An additional site on the eastern Denali fault near Kluane Lake, Yukon, implies a slip rate of ∼2 mm/yr, based on geological considerations. The Totschunda fault has a maximum slip rate of ∼9 mm/yr. The Denali fault system is transpressional and there are active thrust faults on both the north and south sides of it. We explore four geometric models for southern Alaska tectonics to explain the slip rates along the Denali fault system and the active fault geometries: rotation, indentation, extrusion, and a combination of the three. We conclude that all three end-member models have strengths and shortcomings, and a combination of rotation, indentation, and extrusion best explains the slip rate observations.

  4. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.

    PubMed

    Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J

    2014-12-12

    Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis. Copyright © 2014, American Association for the Advancement of Science.

  5. A 15 year catalog of more than 1 million low-frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Shelly, David R.

    2017-05-01

    Low-frequency earthquakes (LFEs) are small, rapidly recurring slip events that occur on the deep extensions of some major faults. Their collective activation is often observed as a semicontinuous signal known as tectonic (or nonvolcanic) tremor. This manuscript presents a catalog of more than 1 million LFEs detected along the central San Andreas Fault from 2001 to 2016. These events have been detected via a multichannel matched-filter search, cross-correlating waveform templates representing 88 different LFE families with continuous seismic data. Together, these source locations span nearly 150 km along the central San Andreas Fault, ranging in depth from 16 to 30 km. This accumulating catalog has been the source for numerous studies examining the behavior of these LFE sources and the inferred slip behavior of the deep fault. The relatively high temporal and spatial resolutions of the catalog have provided new insights into properties such as tremor migration, recurrence, and triggering by static and dynamic stress perturbations. Collectively, these characteristics are inferred to reflect a very weak fault likely under near-lithostatic fluid pressure, yet the physical processes controlling the stuttering rupture observed as tremor and LFE signals remain poorly understood. This paper aims to document the LFE catalog assembly process and associated caveats, while also updating earlier observations and inferred physical constraints. The catalog itself accompanies this manuscript as part of the electronic supplement, with the goal of providing a useful resource for continued future investigations.

  6. Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones

    NASA Astrophysics Data System (ADS)

    Sparks, D. W.; Higby, K.

    2016-12-01

    The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.

  7. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    USGS Publications Warehouse

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    Triggered slip in the Yuha Desert area occurred along more than two dozen faults, only some of which were recognized before the April 4, 2010, El Mayor-Cucapah earthquake. From east to northwest, slip occurred in seven general areas: (1) in the Northern Centinela Fault Zone (newly named), (2) along unnamed faults south of Pinto Wash, (3) along the Yuha Fault (newly named), (4) along both east and west branches of the Laguna Salada Fault, (5) along the Yuha Well Fault Zone (newly revised name) and related faults between it and the Yuha Fault, (6) along the Ocotillo Fault (newly named) and related faults to the north and south, and (7) along the southeasternmost section of the Elsinore Fault. Faults that slipped in the Yuha Desert area include northwest-trending right-lateral faults, northeast-trending left-lateral faults, and north-south faults, some of which had dominantly vertical offset. Triggered slip along the Ocotillo and Elsinore Faults appears to have occurred only in association with the June 14, 2010 (Mw5.7), aftershock. This aftershock also resulted in slip along other faults near the town of Ocotillo. Triggered offset on faults in the Yuha Desert area was mostly less than 20 mm, with three significant exceptions, including slip of about 50–60 mm on the Yuha Fault, 40 mm on a fault south of Pinto Wash, and about 85 mm on the Ocotillo Fault. All triggered slips in the Yuha Desert area occurred along preexisting faults, whether previously recognized or not.

  8. Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.

    2013-12-01

    A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF was stressed sufficiently to fail at that time. The Bear River fault zone (BRFZ) is a young normal fault along the eastern margin of basin-range extension that appears to have reactivated a ramp in the Laramide-age Darby-Hogsback thrust. The entire Cenozoic history of the BRFZ may consist of only two surface-rupturing events in the late Holocene (one at ~5 ka and the most recent at ~2.5 ka). The 40-km-long fault comprises synthetic and antithetic scarps extending across a zone up to 5 km wide. Remote sensing, including airborne LiDAR, and field studies show that, despite the complexity, the pattern of faulting was similar (in location and amount) for each of the two events and, at the south end, was strongly influenced by the east-west-trending Uinta Arch. Pre-existing structure clearly has exerted a first-order control on moment release on this immature fault. As shown by these examples, data on timing of surface ruptures, coseismic slip, slip rate, and fault geometry can provide a basis to constrain lengths of past and future earthquake ruptures, including possible alternative rupture scenarios. The difficult question for hazard analysis is whether the available data capture the full range of behavior and with what relative frequency do the alternatives occur?

  9. Surface fault slip associated with the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.

    2006-01-01

    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  10. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  11. Intermittent tremor migrations beneath Guerrero, Mexico, and implications for fault healing within the slow slip zone

    NASA Astrophysics Data System (ADS)

    Peng, Yajun; Rubin, Allan M.

    2017-01-01

    Slow slip events exhibit significant complexity in slip evolution and variations in recurrence intervals. Behavior that varies systematically with recurrence interval is likely to reflect different extents of fault healing between these events. Here we use high-resolution tremor catalogs beneath Guerrero, Mexico, to investigate the mechanics of slow slip. We observe complex tremor propagation styles, including rapid tremor migrations propagating either along the main tremor front or backward, reminiscent of those in northern Cascadia. We also find many migrations that originate well behind the front and repeatedly occupy the same source region during a tremor episode, similar to those previously reported from Shikoku, Japan. These migrations could be driven by slow slip in the surrounding regions, with recurrence intervals possibly modulated by tides. The propagation speed of these migrations decreases systematically with time since the previous migration over the same source area. Tremor amplitudes seem consistent with changes in the propagation speeds being controlled primarily by changes in the slip speeds. One interpretation is that the high propagation speeds and inferred high slip speeds during the migrations with short recurrence intervals are caused by incomplete healing within the host rock adjacent to the shear zone, which could lead to high permeability and reduced dilatant strengthening of the fault gouge. Similar processes may operate in other slow slip source regions such as Cascadia.

  12. Fault connectivity, distributed shortening, and impacts on geologic- geodetic slip rate discrepancies in the central Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Selander, J.; Oskin, M. E.; Cooke, M. L.; Grette, K.

    2015-12-01

    Understanding off-fault deformation and distribution of displacement rates associated with disconnected strike-slip faults requires a three-dimensional view of fault geometries. We address problems associated with distributed faulting by studying the Mojave segment of the East California Shear Zone (ECSZ), a region dominated by northwest-directed dextral shear along disconnected northwest- southeast striking faults. We use a combination of cross-sectional interpretations, 3D Boundary Element Method (BEM) models, and slip-rate measurements to test new hypothesized fault connections. We find that reverse faulting acts as an important means of slip transfer between strike-slip faults, and show that the impacts of these structural connections on shortening, uplift, strike-slip rates, and off-fault deformation, help to reconcile the overall strain budget across this portion of the ECSZ. In detail, we focus on the Calico and Blackwater faults, which are hypothesized to together represent the longest linked fault system in the Mojave ECSZ, connected by a restraining step at 35°N. Across this restraining step the system displays a pronounced displacement gradient, where dextral offset decreases from ~11.5 to <2 km from south to north. Cross-section interpretations show that ~40% of this displacement is transferred from the Calico fault to the Harper Lake and Blackwater faults via a set of north-dipping thrust ramps. Late Quaternary dextral slip rates follow a similar pattern, where 1.4 +0.8/-0.4 mm/yr of slip along the Calico fault south of 35°N is distributed to the Harper Lake, Blackwater, and Tin Can Alley faults. BEM model results using revised fault geometries for the Mojave ECSZ show areas of uplift consistent with contractional structures, and fault slip-rates that more closely match geologic data. Overall, revised fault connections and addition of off-fault deformation greatly reduces the discrepancy between geodetic and geologic slip rates.

  13. Spatial and temporal variations in creep rate along the El Pilar fault at the Caribbean-South American plate boundary (Venezuela), from InSAR

    NASA Astrophysics Data System (ADS)

    Pousse Beltran, Léa.; Pathier, Erwan; Jouanne, François; Vassallo, Riccardo; Reinoza, Carlos; Audemard, Franck; Doin, Marie Pierre; Volat, Matthieu

    2016-11-01

    In eastern Venezuela, the Caribbean-South American plate boundary follows the El Pilar fault system. Previous studies based on three GPS campaigns (2003-2005-2013) demonstrated that the El Pilar fault accommodates the whole relative displacement between the two tectonic plates (20 mm/yr) and proposed that 50-60% of the slip is aseismic. In order to quantify the possible variations of the aseismic creep in time and space, we conducted an interferometric synthetic aperture radar (InSAR) time series analysis, using the (NSBAS) New Small BAseline Subset method, on 18 images from the Advanced Land Observing Satellite (ALOS-1) satellite spanning the 2007-2011 period. During this 3.5 year period, InSAR observations show that aseismic slip decreases eastward along the fault: the creep rate of the western segment reaches 25.3 ± 9.4 mm/yr on average, compared to 13.4 ± 6.9 mm/yr on average for the eastern segment. This is interpreted, through slip distribution models, as being related to coupled and uncoupled areas between the surface and 20 km in depth. InSAR observations also show significant temporal creep rate variations (accelerations) during the considered time span along the western segment. The transient behavior of the creep is not consistent with typical postseismic afterslip following the 1997 Ms 6.8 earthquake. The creep is thus interpreted as persistent aseismic slip during an interseismic period, which has a pulse- or transient-like behavior.

  14. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.

  15. Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Abercrombie, R. E.; Smith, K. D.; Zaliapin, I.

    2016-11-01

    After approximately 2 months of swarm-like earthquakes in the Mogul neighborhood of west Reno, NV, seismicity rates and event magnitudes increased over several days culminating in an Mw 4.9 dextral strike-slip earthquake on 26 April 2008. Although very shallow, the Mw 4.9 main shock had a different sense of slip than locally mapped dip-slip surface faults. We relocate 7549 earthquakes, calculate 1082 focal mechanisms, and statistically cluster the relocated earthquake catalog to understand the character and interaction of active structures throughout the Mogul, NV earthquake sequence. Rapid temporary instrument deployment provides high-resolution coverage of microseismicity, enabling a detailed analysis of swarm behavior and faulting geometry. Relocations reveal an internally clustered sequence in which foreshocks evolved on multiple structures surrounding the eventual main shock rupture. The relocated seismicity defines a fault-fracture mesh and detailed fault structure from approximately 2-6 km depth on the previously unknown Mogul fault that may be an evolving incipient strike-slip fault zone. The seismicity volume expands before the main shock, consistent with pore pressure diffusion, and the aftershock volume is much larger than is typical for an Mw 4.9 earthquake. We group events into clusters using space-time-magnitude nearest-neighbor distances between events and develop a cluster criterion through randomization of the relocated catalog. Identified clusters are largely main shock-aftershock sequences, without evidence for migration, occurring within the diffuse background seismicity. The migration rate of the largest foreshock cluster and simultaneous background events is consistent with it having triggered, or having been triggered by, an aseismic slip event.

  16. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.

  17. Frictional Properties of Main Fault Gouge of Mont Terri, Switzerland

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Seshimo, K.; Guglielmi, Y.; Nussbaum, C.; Shimamoto, T.; Ma, S.; Yao, L.; Kametaka, M.; Sakai, T.

    2016-12-01

    JAEA participated in the Fault Slip Experiment of Mont Terri Project which aims at understanding (i) the conditions for slip activation and stability of clay faults, and (ii) the evolution of the coupling between fault slip, pore pressure and fluids migration. The experiment uses SIMFIP probe to estimate (i) the hydraulic and elastic properties of fault zone elements, (ii) the state of stresses across the fault zone and (iii) the fault zone apparent strength properties (friction coefficient and cohesion). To elaborate on the Fault Slip Experiment, JAEA performed friction experiment of borehole cores of depths 47.2m and 37.3m using a rotary-shear low to high-velocity friction apparatus at Institute of Geology, China Earthquake Administration. Friction experiments were performed either dry with room humidity or with 30wt% of H2O, at a normal stress of 1.38 MPa and at low to intermediate slip rates ranging 0.21 microns/s to 2.1mm/s. Sample from a depth of 37.3 m is a fault rock with scaly fabric with calcite veins, whereas that from 47.2 m in depth is a pelitic rock that disaggregates easily with water. Main experimental results are summarized as follows. (1) Gouge samples from both depths exhibit slight velocity-strengthening at V below 0.021 mm/s and notable velocity strengthening at V above approximately 0.021 mm/s. Frictional regimes can be classified into low-velocity and intermediate-velocity regimes, characterized by slight and clear velocity-strengthening behaviors, respectively. (2) Wet gouge from a depth of 47.2 m has mss of 0.12 0.2 at low V and 0.11 0.24 at intermediate V, while dry gouge from the same depth has mss two to three times as high as that for the wet gouge from the same depth. (3) In contrast, both dry and wet gouges from a depth of 37.3 m has mss of around 0.4 to 0.74 at low V and from around 0.45 to 0.75 at intermediate V. There are almost no differences between the dry and wet gouges from this depth (4) The wet gouge from 47.2 m depths has clear slip zone at the gouge-moving piston interface, but clear slip zones are missing in wet gouge from 37.3 m depth. (5) It is hoped that the frictional strength from the present experiments would give some insight on the initiation conditions of fault slip during fluid injection. Results of four other depths will be discussed at the session.

  18. Afterslip behavior following the M6.0, 2014 South Napa earthquake with implications for afterslip forecasting on other seismogenic faults

    USGS Publications Warehouse

    Lienkaemper, James J.; DeLong, Stephen B.; Domrose, Carolyn J; Rosa, Carla M.

    2016-01-01

    The M6.0, 24 Aug. 2014 South Napa, California, earthquake exhibited unusually large slip for a California strike-slip event of its size with a maximum coseismic surface slip of 40-50 cm in the north section of the 15 km-long rupture. Although only minor (<10 cm) surface slip occurred coseismically in the southern 9-km section of the rupture, there was considerable postseismic slip, so that the maximum total slip one year after the event approached 40-50 cm, about equal to the coseismic maximum in the north. We measured the accumulation of postseismic surface slip on four, ~100-m-long alignment arrays for one year following the event. Because prolonged afterslip can delay reconstruction of fault-damaged buildings and infrastructure, we analyzed its gradual decay to estimate when significant afterslip would likely end. This forecasting of Napa afterslip suggests how we might approach the scientific and engineering challenges of afterslip from a much larger M~7 earthquake anticipated on the nearby, urban Hayward Fault. However, we expect its afterslip to last much longer than one year.The M6.0, 24 Aug. 2014 South Napa, California, earthquake exhibited unusually large slip for a California strike-slip event of its size with a maximum coseismic surface slip of 40-50 cm in the north section of the 15 km-long rupture. Although only minor (<10 cm) surface slip occurred coseismically in the southern 9-km section of the rupture, there was considerable postseismic slip, so that the maximum total slip one year after the event approached 40-50 cm, about equal to the coseismic maximum in the north. We measured the accumulation of postseismic surface slip on four, ~100-m-long alignment arrays for one year following the event. Because prolonged afterslip can delay reconstruction of fault-damaged buildings and infrastructure, we analyzed its gradual decay to estimate when significant afterslip would likely end. This forecasting of Napa afterslip suggests how we might approach the scientific and engineering challenges of afterslip from a much larger M~7 earthquake anticipated on the nearby, urban Hayward Fault. However, we expect its afterslip to last much longer than one year.

  19. Structures associated with strike-slip faults that bound landslide elements

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, A.M.

    1989-01-01

    Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment is typically oriented 45?? to the trend of the underlying fault. Fault segments are also typically arranged en echelon above the upward-propagating strike-slip fault. Continued displacement of the landslide causes the ground to buckle between the tension crack portions of the compound cracks. Still more displacement produces a thrust fault on one or both limbs of the buckle fold. These compressional structures form at right angles to the short tension cracks at the tips of the fault segments. Thus, the compressional structures are bounded on their ends by one face of a tension crack and detached from underlying material by thrusting or buckling. The tension cracks, fault segments, compound cracks, folds, and thrusts are ephemeral; they are created and destroyed with continuing displacement of the landslide. Ultimately, the structures are replaced by a throughgoing strike-slip fault. At one landslide, we observed the creation and destruction of the ephemeral structures as the landslide enlarged. Displacement of a few centimeters to about a decimeter was sufficient to produce scattered tension cracks and fault segments. Sets of compound cracks with associated folds and thrusts were produced by displacements of up to 1 m, and 1 to 2 m of displacement was required to produce a throughgoing strike-slip fault. The type of first-formed structure above an upward-propagating strike-slip fault is apparently controlled by the rheology of the material. Brittle material such as dry topsoil or the compact surface of a gravel road produces echelon tension cracks and sets of tension cracks and compressional structures, wherein the cracks and compressional structures are normal to each other and 45?? to the strike-slip fault at depth. First-formed structures in more ductile material such as moist cohesive soil are fault segments. In very ductile material such as soft clay and very wet soil in swampy areas, the first-formed structure is a throughgoing strike-slip fault. There are othe

  20. Temporal variation in fault friction and its effects on the slip evolution of a thrust fault over several earthquake cycles

    NASA Astrophysics Data System (ADS)

    Hampel, Andrea; Hetzel, Ralf

    2013-04-01

    The friction coefficient is a key parameter for the slip evolution of faults, but how temporal changes in friction affect fault slip is still poorly known. By using three-dimensional numerical models with a thrust fault that is alternately locked and released, we show that variations in the friction coefficient affect both coseismic and long-term fault slip (Hampel and Hetzel, 2012). Decreasing the friction coefficient by 5% while keeping the duration of the interseismic phase constant leads to a four-fold increase in coseismic slip, whereas a 5% increase nearly suppresses slip. A gradual decrease or increase of friction over several earthquake cycles (1-5% per earthquake) considerably alters the cumulative fault slip. In nature, the slip deficit (surplus) resulting from variations in the friction coefficient would presumably be compensated by a longer (shorter) interseismic phase, but the magnitude of the changes required for compensation render variations of the friction coefficient of >5% unlikely. Reference Hampel, A., R. Hetzel (2012) Temporal variation in fault friction and its effects on the slip evolution of a thrust fault over several earthquake cycles. Terra Nova, 24, 357-362, doi: 10.1111/j.1365-3121.2012.01073.x.

  1. Laboratory experiment of seismic cycles using compliant viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.

    2016-12-01

    It is well known that surface asperities at fault interfaces play an essential role in stick-slip friction. There have been many laboratory experiments conducted using rocks and some analogue materials to understand the effects of asperities and the underlying mechanisms. Among such materials, soft polymer gels have great advantages of slowing down propagating rupture front speed as well as shear wave speed: it facilitates observation of the dynamic rupture behavior. However, most experiments were done with bimaterial interfaces (combination of soft and hard materials) and there are few experiments with an identical (gel on gel) setup. Furthermore, there have been also few studies mentioning the link between local asperity contact and macroscopic dynamic rupture behavior. In this talk, we report our experimental studies on stick-slip friction between gels having controlled artificial asperities. We show that, depending on number density and configuration randomness of the asperities, the rupture behavior greatly changes: when the asperities are located periodically with optimum number densities, fast rupture propagation occurs, while slow and heterogeneous slip behavior is observed for samples having randomly located asperities. We discuss the importance of low frequency (large wavelength) excitation of the normal displacement contributing to weakening the fault interface. We also discuss the observed regular to slow slip transition with a simple model.

  2. Slip triggered on southern California faults by the 1992 Joshua Tree, Landers, and big bear earthquakes

    USGS Publications Warehouse

    Bodin, Paul; Bilham, Roger; Behr, Jeff; Gomberg, Joan; Hudnut, Kenneth W.

    1994-01-01

    Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction.

  3. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.

  4. Growth of Fault-Cored Anticlines by Flexural Slip Folding: Analysis by Boundary Element Modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Kaj M.

    2018-03-01

    Fault-related folds develop due to a combination of slip on the associated fault and distributed deformation off the fault. Under conditions that are sufficient for sedimentary layering to act as a stack of mechanical layers with contact slip, buckling can dramatically amplify the folding process. We develop boundary element models of fault-related folding of viscoelastic layers embedded with a reverse fault to examine the influence of such layering on fold growth. The strength of bedding contacts, the thickness and stiffness of layering, and fault geometry all contribute significantly to the resulting fold form. Frictional contact strength between layers controls the degree of localization of slip within fold limbs; high contact friction in relatively thin bedding tends to localize bedding slip within narrow kink bands on fold limbs, and low contact friction tends to produce widespread bedding slip and concentric fold form. Straight ramp faults tend to produce symmetric folds, whereas listric faults tend to produce asymmetric folds with short forelimbs and longer backlimbs. Fault-related buckle folds grow exponentially with time under steady loading rates. At early stages of folding, fold growth is largely attributed to slip on the fault, but as the fold increases amplitude, a larger portion of the fold growth is attributed to distributed slip across bedding contacts on the limbs of the fold. An important implication for geologic and earthquake studies is that not all surface deformation associated with blind reverse faults may be attributed to slip on the fault during earthquakes.

  5. Evolution of Microroughness with Increasing Slip Magnitude on Pseudotachylyte-Bearing Fault Surfaces

    NASA Astrophysics Data System (ADS)

    Bessey, S.; Resor, P. G.; Di Toro, G.

    2013-12-01

    High velocity rock friction experiments reproducing seismic slip deformation conditions have shown that there is an initial shear strengthening prior to a significant weakening with slip. This change in shear resistance is inferred to occur due to the development of melt patches, which initially strengthen the fault, and is associated with the evolution of microroughness of the melt-wall rock interface (Hirose and Shimamoto, 2003). Additional melting leads to a continuous layer of melt, allowing easier sliding and weakening. Once there is a balance between formation and extrusion of melt, a steady state shear resistance (and associated effective friction coefficient) is reached (Nielsen et al. 2008). In natural fault zones, the process of frictional melting, slip weakening, and steady state is both recorded and influenced by the microroughness of the fault surface. Our study explores natural faults over a range of slip magnitudes from mm to m of slip, the magnitudes over which this process is most likely to occur during earthquakes. The Gole Larghe fault zone (Italy) is an exhumed strike-slip fault zone in tonalite of the Adamello batholith. The fault zone is characterized by multiple fault strands containing pseudotachylyte or pseudotachylyte overprinting cataclasite. We have sampled several individual faults segments from within the fault zone, with slips ranging from 23 mm to 1.9 m. The smaller scale samples are from pseudotachylyte-only fault strands and therefore probably record single-slip events. The two largest slip faults have pseudotachylyte and cataclasite, indicating that they may have more complicated slip histories. Individual samples consist of cores (2-3.5 cm diameter, 2-6 cm length) drilled parallel to the fault surface and ~perpendicular to the slip. Samples were scanned with an Xradia MicroCT scanner to image the 3D geometry of the fault and wall rocks. Fault surfaces (contact between the pseudotachylyte-bearing slipping zone and the wall rock) were extracted from the CT volume using an edge detection algorithm and their roughness was quantified using Fourier spectral and spatial analysis methods. At very small slip (<30 mm), roughness analysis showed anisotropy in the form of striations with smoothing in the direction of slip coupled with a lack of visible pseudotachylyte (i.e., the volume of pseudotachylyte produced was below the resolution of the MicroCT method), suggesting that the frictional work did not exchange sufficient heat to significantly melt the host rock along the fault surface. With increasing slip (~35mm-310mm), a trend of decreasing anisotropy is in evidence, as is a strong increase in local topography associated with recessed biotite grains. We infer that samples in this range of slip magnitude experienced significant wear due to melting. Microroughness shows a clear, albeit somewhat complicated, relationship with slip and may be used to infer the evolution of shear resistance with seismic slip.

  6. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.

  7. Inferring Fault Frictional and Reservoir Hydraulic Properties From Injection-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Jagalur-Mohan, Jayanth; Jha, Birendra; Wang, Zheng; Juanes, Ruben; Marzouk, Youssef

    2018-02-01

    Characterizing the rheological properties of faults and the evolution of fault friction during seismic slip are fundamental problems in geology and seismology. Recent increases in the frequency of induced earthquakes have intensified the need for robust methods to estimate fault properties. Here we present a novel approach for estimation of aquifer and fault properties, which combines coupled multiphysics simulation of injection-induced seismicity with adaptive surrogate-based Bayesian inversion. In a synthetic 2-D model, we use aquifer pressure, ground displacements, and fault slip measurements during fluid injection to estimate the dynamic fault friction, the critical slip distance, and the aquifer permeability. Our forward model allows us to observe nonmonotonic evolutions of shear traction and slip on the fault resulting from the interplay of several physical mechanisms, including injection-induced aquifer expansion, stress transfer along the fault, and slip-induced stress relaxation. This interplay provides the basis for a successful joint inversion of induced seismicity, yielding well-informed Bayesian posterior distributions of dynamic friction and critical slip. We uncover an inverse relationship between dynamic friction and critical slip distance, which is in agreement with the small dynamic friction and large critical slip reported during seismicity on mature faults.

  8. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

    NASA Astrophysics Data System (ADS)

    Yue, Han; Simons, Mark; Duputel, Zacharie; Jiang, Junle; Fielding, Eric; Liang, Cunren; Owen, Susan; Moore, Angelyn; Riel, Bryan; Ampuero, Jean Paul; Samsonov, Sergey V.

    2017-09-01

    On April 25th 2015, the Mw 7.8 Gorkha (Nepal) earthquake ruptured a portion of the Main Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03-0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture, while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquake may have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Paul A.

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less

  10. Role of microstructure and thermal pressurization on the energy budget of an earthquake

    NASA Astrophysics Data System (ADS)

    Rattez, H.; Stefanou, I.; Sulem, J.

    2017-12-01

    The common understanding for earthquakes mechanics is that they occur by sudden slippage along a pre-existing fault (Brace and Byerlee, 1966). They are, thus, considered as frictional instabilities and can be explained by a simple spring-slider model. In this model, the stability of the block is determined by the difference between the stiffness of the spring, proxy for the elastic properties of the surrounding rock mass, and the rate of decrease of the frictional resisting force along with sliding. Therefore, it is primordial to correctly capture the softening behavior of the fault. Exhumed samples and outcrops show the presence of a principal slip zone (PSZ) inside the gouge that accommodates most of the slip in the fault. The localization process is associated with a strong weakening of the fault zone. In this study, the gouge is modelled as a saturated infinite sheared layer under thermo-hydro-mechanical couplings with Cosserat continuum. The nonlinear system of equations is integrated numerically using a Finite Element Code to study the softening regime. The use of Cosserat enables to regularizes the problem of localization and obtain a shear band thickness, and thus a softening behavior, that depends only on the constitutive parameters of the model. Cosserat continuum is also particularly interesting as it can explicitly take into account for the grain size of the fault gouge, which is an information accessible from exhumed samples (Sulem et al., 2011). From these simulations, we can estimate the evolution of fracture energy with slip and investigate the influence of the size of the microstructure or the thermal pressurization coefficient on its value. The results are compared with seismological and laboratory estimates of fracture energy under coseismic slip conditions (Viesca and Garagash, 2015).

  11. Numerical Modeling of the Deformation Behavior of Fault Bounded Lens Shaped Bodies in 2D

    NASA Astrophysics Data System (ADS)

    van der Zee, W.; Urai, J. L.

    2001-12-01

    Fault zones cause dramatic discontinuous changes in mechanical properties. The early stages of evolution of fault zones are important for its long-term behavior. We consider faults which develop from deformation bands or pre-existing joints which are the initially unconnected discontinuities. With further deformation, these coalesce into a connected network, and develop into a 'mature' fault gouge. When segments are not coplanar, soft linkage or bends in the fault plane (releasing and restraining bends, fault bounded lens-shaped bodies etc) necessarily occurs. Further movement causes additional deformation, and the fault zone has a strongly variable thickness. Here, we present the results of detailed fieldwork combined with numerical modeling on the deformation of fault bounded lens-shaped bodies in the fault zone. Detailed study of a number of lenses in the field shows that the lens is invariably more deformed than the surrounding material. This observation can be explained in several ways. In one end member most of the deformation in the future lens occurs before full coalescence of the slip planes and the formation of the lens. The other end member is that the slip planes coalesce before plastic deformation of the lens is occurring. The internal deformation of the lens occurs after the lens is formed, due to the redistributed stresses in the structure. If this is the case, then lens shaped bodies can be always expected to deform preferentially. Finite element models were used to investigate the shear behavior of a planar fault with a lens shaped body or a sinus-shaped asperity. In a sensitivity analysis, we consider different lens shapes and fault friction coefficients. Results show that 1) during slip, the asperity shears off to form a lens shaped body 2) lens interior deforms more than the surroundings, due to the redistribution of stresses 3) important parameters in this system are the length-thickness ratio of the lens and the fault friction coefficient 4) lens structures can evolve in different ways, but in the final stage the result is a lens with deformed interior In the later stages after further displacement, these zones of preferential deformation evolve into sections containing thick gouge, and the initial lens width controls long term fault gouge thickness.

  12. Suppression of slip and rupture velocity increased by thermal pressurization: Effect of dilatancy

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2013-11-01

    investigated the effect of dilatancy on dynamic rupture propagation on a fault where thermal pressurization (TP) is in effect, taking into account permeability varying with porosity; the study is based on three-dimensional (3-D) numerical simulations of spontaneous ruptures obeying a slip-weakening friction law and Coulomb failure criterion. The effects of dilatancy on dynamic ruptures interacting with TP have been often investigated in one- or two-dimensional numerical simulations. The sole 3-D numerical simulation gave attention only to the behavior at a single point on a fault. Moreover, with the sole exception based on a single-degree-freedom spring-slider model, the previous simulations including dilatancy and TP have not considered changes in hydraulic diffusivity. However, the hydraulic diffusivity, which strongly affects TP, can vary as a power of porosity. In this study, we apply a power law relationship between permeability and porosity. We consider both reversible and irreversible changes in porosity, assuming that the irreversible change is proportional to the slip rate and dilatancy coefficient ɛ. Our numerical simulations suggest that the effects of dilatancy can suppress slip and rupture velocity increased by TP. The results reveal that the amount of slip on the fault decreases with increasing ɛ or exponent of the power law, and the rupture velocity is predominantly suppressed by ɛ. This was observed regardless of whether the applied stresses were high or low. The deficit of the final slip in relation to ɛ can be smaller as the fault size is larger.

  13. Phanerozoic strike-slip faulting in the continental interior platform of the United States: Examples from the Laramide Orogen, midcontinent, and Ancestral Rocky Mountains

    USGS Publications Warehouse

    Marshak, S.; Nelson, W.J.; McBride, J.H.

    2003-01-01

    The continental interior platform of the United States is that part of the North American craton where a thin veneer of Phanerozoic strata covers Precambrian crystalline basement. N- to NE-trending and W- to NW-trending fault zones, formed initially by Proterozoic/Cambrian rifting, break the crust of the platform into rectilinear blocks. These zones were reactivated during the Phanerozoic, most notably in the late Palaeozoic Ancestral Rockies event and the Mesozoic-Cenozoic Laramide orogeny - some remain active today. Dip-slip reactivation can be readily recognized in cross section by offset stratigraphic horizons and monoclinal fault-propagation folds. Strike-slip displacement is hard to document because of poor exposure. Through offset palaeochannels, horizontal slip lineations, and strain at fault bends locally demonstrate strike-slip offset, most reports of strike-slip movements for interior-platform faults are based on occurrence of map-view belts of en echelon faults and anticlines. Each belt overlies a basement-penetrating master fault, which typically splays upwards into a flower structure. In general, both strike-slip and dip-slip components of displacement occur in the same fault zone, so some belts of en echelon structures occur on the flanks of monoclinal folds. Thus, strike-slip displacement represents the lateral components of oblique fault reactivation: dip-slip and strike-slip components are the same order of magnitude (tens of metres to tens of kilometres). Effectively, faults with strike-slip components of displacement act as transfers accommodating jostling of rectilinear crustal blocks. In this context, the sense of slip on an individual strike-slip fault depends on block geometry, not necessarily on the trajectory of regional ??1. Strike-slip faulting in the North American interior differs markedly from that of southern and central Eurasia, possibly because of a contrast in lithosphere strength. Weak Eurasia strained significantly during the Alpine-Himalayan collision, forcing crustal blocks to undergo significant lateral escape. The strong North American craton strained relatively little during collisional-convergent orogeny, so crustal blocks underwent relatively small displacements.

  14. Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro

    2017-01-01

    Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.

  15. Earthquake scaling laws for rupture geometry and slip heterogeneity

    NASA Astrophysics Data System (ADS)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip distributions. To further characterize the spatial correlations of slip heterogeneity, we analyze the power spectral decay of slip applying the 2-D von Karman auto-correlation function (parameterized by the Hurst exponent, H, and correlation lengths along strike and down-slip). The Hurst exponent is scale invariant, H = 0.83 (± 0.12), while the correlation lengths scale with source dimensions (seismic moment), thus implying characteristic physical scales of earthquake ruptures. Our self-consistent scaling relationships allow constraining the generation of slip-heterogeneity scenarios for physics-based ground-motion and tsunami simulations.

  16. Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; McBeck, J.; Cooke, M. L.

    2013-12-01

    Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in efficiency provided by both hard-linkage and soft-linkage to be quantified and compared. Specialized models of interactions over the past 1 Ma between the Clark and Coyote Creek faults within the San Jacinto system reveal increasing mechanical efficiency as these fault structures change over time. Alongside this increasing efficiency is an increasing likelihood for single, larger earthquakes that rupture multiple fault segments. These models reinforce the sensitivity of mechanical efficiency to both fault structure and the regional tectonic stress orientation controlled by plate motions and provide insight into how slip may have been partitioned between the San Andreas and San Jacinto systems over the past 1 Ma.

  17. SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi

    2018-05-01

    By applying conventional cross-track synthetic aperture radar interferometry (InSAR) and multiple aperture InSAR techniques to ALOS-2 data acquired before and after the 2014 Northern Nagano, central Japan, earthquake, a three-dimensional ground displacement field has been successfully mapped. Crustal deformation is concentrated in and around the northern part of the Kamishiro Fault, which is the northernmost section of the Itoigawa-Shizuoka tectonic line. The full picture of the displacement field shows contraction in the northwest-southeast direction, but northeastward movement along the fault strike direction is prevalent in the northeast portion of the fault, which suggests that a strike-slip component is a significant part of the activity of this fault, in addition to a reverse faulting. Clear displacement discontinuities are recognized in the southern part of the source region, which falls just on the previously known Kamishiro Fault trace. We inverted the SAR and GNSS data to construct a slip distribution model; the preferred model of distributed slip on a two-plane fault surface shows a combination of reverse and left-lateral fault motions on a bending east-dipping fault surface with a dip of 30° in the shallow part and 50° in the deeper part. The hypocenter falls just on the estimated deeper fault plane where a left-lateral slip is inferred, whereas in the shallow part, a reverse slip is predominant, which causes surface ruptures on the ground. The slip partitioning may be accounted for by shear stress resulting from a reverse fault slip with left-lateral component at depth, for which a left-lateral slip is suppressed in the shallow part where the reverse slip is inferred. The slip distribution model with a bending fault surface, instead of a single fault plane, produces moment tensor solution with a non-double couple component, which is consistent with the seismically estimated mechanism.

  18. Evolving geometrical heterogeneities of fault trace data

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari

    2010-08-01

    We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.

  19. Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Scuderi, Marco; Marone, Chris

    2017-04-01

    Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.

  20. Rupture dynamics with energy loss outside the slip zone

    USGS Publications Warehouse

    Andrews, D.J.

    2005-01-01

    Energy loss in a fault damage zone, outside the slip zone, contributes to the fracture energy that determines rupture velocity of an earthquake. A nonelastic two-dimensional dynamic calculation is done in which the slip zone is modeled as a fault plane and material off the fault is subject to a Coulomb yield condition. In a mode 2 crack-like solution in which an abrupt uniform drop of shear traction on the fault spreads from a point, Coulomb yielding occurs on the extensional side of the fault. Plastic strain is distributed with uniform magnitude along the fault, and it has a thickness normal to the fault proportional to propagation distance. Energy loss off the fault is also proportional to propagation distance, and it can become much larger than energy loss on the fault specified by the fault constitutive relation. The slip velocity function could be produced in an equivalent elastic problem by a slip-weakening friction law with breakdown slip Dc increasing with distance. Fracture energy G and equivalent Dc will be different in ruptures with different initiation points and stress drops, so they are not constitutive properties; they are determined by the dynamic solution that arrives at a particular point. Peak slip velocity is, however, a property of a fault location. Nonelastic response can be mimicked by imposing a limit on slip velocity on a fault in an elastic medium.

  1. The geometry of slip surfaces in the hanging-wall of the Sierra Madre fault, La-Canada, California

    NASA Astrophysics Data System (ADS)

    Dor, O.; Sammis, C. G.; Ben-Zion, Y.

    2009-12-01

    Fault-slip data from the granitic hanging-wall of the Sierra Madre fault near La-Canada, California, show a steeply dipping conjugate set of cm- to decimeter scale slip surfaces (115 data samples) with moderate to strong inclinations of slip vectors. These off-fault damage elements may be associated with Mohr-Coulomb slip in the stress field of a propagating earthquake rupture. At the microscale, we identified two dominant fracture orientations. The first appears both near and far from the fault and is compatible with Andersonian failure on the main fault. The second appears only within meters from the fault and may be associated with the formation of the slip surfaces. Characterization of damage fabric in the microscale suggests that in-situ failure of grains under tension with minimal strain immediately above the fault plane may be associated with an opening mode of rupture. We conclude that the architecture of the slip surfaces was developed during slip events over a finite displacement history with fairly stable faulting conditions, and that with continuing displacement, as the rock mass approached the surface, a dynamic opening mode could have led to the shattering of grains in the immediate vicinity of the slip zone.

  2. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  3. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.

  4. Spontaneous non-volcanic tremor detected in the Anza Seismic Gap of San Jacinto Fault

    NASA Astrophysics Data System (ADS)

    Hutchison, A. A.; Ghosh, A.

    2017-12-01

    Non-volcanic tremor (NVT), a type of slow earthquake, is becoming more frequently detected along plate boundaries, particularly in subduction zones, and is also observed along the San Andreas Fault [e.g. Nadeau & Dolenc, 2005]. NVT is typically associated with transient deformation (i.e. slow slip) in the transition zone [e.g. Ide et al., 2007], and at times it is observed with deep creep along faults [e.g. Beroza & Ide, 2011]. Using several independent location and detection methods including multi-beam backprojection [Ghosh et al., 2009a; 2012], envelope cross correlation [Wech & Creager, 2008], spectral analyses and visual inspection of existing network stations and high-density mini seismic array data, we detect multiple discrete spontaneous tremor events in the Anza Gap of the San Jacinto Fault (SJF) in June, 2011. The events occur on the SJF where the Hot Springs Fault terminates, on the northwestern boundary of the Anza Gap, below the inferred seismogenic zone characterized by velocity weakening frictional behavior [e.g. Lindsay et al., 2014]. The location methods provide consistent locations for each event in our catalog. Low slowness values help rule-out surface noise that may result in false detections. Analyses of frequency spectra show these time windows are depleted in high frequency energy in the displacement amplitude spectrum compared to small local regular (fast) earthquakes. This spectral pattern is characteristic of tremor [Shelly et al., 2007]. We interpret this tremor to be a seismic manifestation of slow-slip events below the seismogenic zone. Recently, an independent geodetic study suggests that the 2010 El Mayor-Cucupah earthquake triggered a slow-slip event in the Anza Gap [Inbal et al., 2017]. In addition, multiple studies infer deep creep in the SJF [e.g. Meng & Peng et al., 2016; Jiang & Fialko, 2016] indicating that this fault is capable of producing slow slip events. Transient tectonic behavior like tremor and slow slip may be playing an important role in seismic cycle of the Anza Gap in particular, and the SJF in general. [Hutchison & Ghosh, 2017

  5. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.

  6. Spontaneous Aseismic and Seismic Slip Transients on Evolving Faults Simulated in a Continuum-Mechanics Framework

    NASA Astrophysics Data System (ADS)

    Herrendoerfer, R.; Gerya, T.; van Dinther, Y.

    2016-12-01

    The convergent plate motion in subduction zones is accommodated by different slip modes: potentially dangerous seismic slip and imperceptible, but instrumentally detectable slow slip transients or steady slip. Despite an increasing number of observations and insights from laboratory experiments, it remains enigmatic which local on- and off-fault conditions favour slip modes of different source characteristics (i.e., slip velocity, duration, seismic moment). Therefore, we are working towards a numerical model that is able to simulate different slip modes in a consistent way with the long-term evolution of the fault system. We extended our 2D, continuum mechanics-based, visco-elasto-plastic seismo-thermo-mechanical (STM) model, which simulated cycles of earthquake-like ruptures, albeit only at plate tectonic slip rates (van Dinther et al, JGR, 2013). To model a wider slip spectrum including seismic slip rates, we, besides improving the general numerical approach, implemented an invariant reformulation of the conventional rate-and state dependent friction (RSF) and an adaptive time-stepping scheme (Lapusta and Rice, JGR, 2001). In a simple setup with predominantly elastic plates that are juxtaposed along a predefined fault of certain width, we vary the characteristic slip distance, the mean normal stress and the size of the rate-weakening zone. We show that the resulting stability transitions from decaying oscillations, periodic slow slip, complex periodic to seismic slip agree with those of conventional RSF seismic cycle simulations (e.g. Liu and Rice, JGR, 2007). Additionally, we will present results of the investigation concerning the effect of the fault width and geometry on the generation of different slip modes. Ultimately, instead of predefining a fault, we simulate the spatio-temporal evolution of a complex fault system that is consistent with the plate motions and rheology. For simplicity, we parametrize the fault development through linear slip-weakening of cohesion and apply RSF friction only in cohesionless material. We report preliminary results of the interaction between slip modes and the fault growth during different fault evolution stages.

  7. Effects of structural heterogeneity on frictional heating from biomarker thermal maturity analysis of the Muddy Mountain thrust, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Coffey, G. L.; Savage, H. M.; Polissar, P. J.; Rowe, C. D.

    2017-12-01

    Faults are generally heterogeneous along-strike, with changes in thickness and structural complexity that should influence coseismic slip. However, observational limitations (e.g. limited outcrop or borehole samples) can obscure this complexity. Here we investigate the heterogeneity of frictional heating determined from biomarker thermal maturity and microstructural observations along a well-exposed fault to understand whether coseismic stress and frictional heating are related to structural complexity. We focus on the Muddy Mountain thrust, Nevada, a Sevier-age structure that has continuous exposure of its fault core and considerable structural variability for up to 50 m, to explore the distribution of earthquake slip and temperature rise along strike. We present new biomarker thermal maturity results that capture the heating history of fault rocks. Biomarkers are organic molecules produced by living organisms and preserved in the rock record. During heating, their structure is altered systematically with increasing time and temperature. Preliminary results show significant variability in thermal maturity along-strike at the Muddy Mountain thrust, suggesting differences in coseismic temperature rise on the meter- scale. Temperatures upwards of 500°C were generated in the principal slip zone at some locations, while in others, no significant temperature rise occurred. These results demonstrate that stress or slip heterogeneity occurred along the Muddy Mountain thrust at the meter-scale and considerable along-strike complexity existed, highlighting the importance of careful interpretation of whole-fault behavior from observations at a single point on a fault.

  8. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, Earthquakes

    USGS Publications Warehouse

    Rymer, M.J.

    2000-01-01

    The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (<3 m thick) veneer of alluvium in contrast to earlier documented triggered slip events in this region, all in the deep basins of the Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right-lateral; only locally was there a minor (~1 mm) vertical component of slip. Measured dextral displacement values ranged from 1 to 20 mm, with the largest amounts found in the Mecca Hills where large slip values have been measured following past triggered-slip events.

  9. Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary

    USGS Publications Warehouse

    ten Brink, Uri S.; Lin, J.

    2004-01-01

    Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.

  10. The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault

    NASA Astrophysics Data System (ADS)

    Avouac, Jean-Philippe; Ayoub, Francois; Wei, Shengji; Ampuero, Jean-Paul; Meng, Lingsen; Leprince, Sebastien; Jolivet, Romain; Duputel, Zacharie; Helmberger, Don

    2014-04-01

    We analyse the Mw 7.7 Balochistan earthquake of 09/24/2013 based on ground surface deformation measured from sub-pixel correlation of Landsat-8 images, combined with back-projection and finite source modeling of teleseismic waveforms. The earthquake nucleated south of the Chaman strike-slip fault and propagated southwestward along the Hoshab fault at the front of the Kech Band. The rupture was mostly unilateral, propagated at 3 km/s on average and produced a 200 km surface fault trace with purely strike-slip displacement peaking to 10 m and averaging around 6 m. The finite source model shows that slip was maximum near the surface. Although the Hoshab fault is dipping by 45° to the North, in accordance with its origin as a thrust fault within the Makran accretionary prism, slip was nearly purely strike-slip during that earthquake. Large seismic slip on such a non-optimally oriented fault was enhanced possibly due to the influence of the free surface on dynamic stresses or to particular properties of the fault zone allowing for strong dynamic weakening. Strike-slip faulting on thrust fault within the eastern Makran is interpreted as due to eastward extrusion of the accretionary prism as it bulges out over the Indian plate. Portions of the Makran megathrust, some thrust faults in the Kirthar range and strike-slip faults within the Chaman fault system have been brought closer to failure by this earthquake. Aftershocks cluster within the Chaman fault system north of the epicenter, opposite to the direction of rupture propagation. By contrast, few aftershocks were detected in the area of maximum moment release. In this example, aftershocks cannot be used to infer earthquake characteristics.

  11. Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Nicol, Andrew; Van Dissen, Russell

    2002-09-01

    Active strike-slip faults in New Zealand occur within an obliquely-convergent plate boundary zone. Although the traces of these faults commonly delineate the base of mountain ranges, they do not always accommodate significant shortening at the free surface. Along the active trace of Clarence Fault in northeastern South Island, New Zealand, displaced landforms and slickenside striations indicate predominantly horizontal displacements at the ground surface, and a right-lateral slip rate of ca. 3.5-5 mm/year during the Holocene. The Inland Kaikoura mountain range occupies the hanging wall of the fault and rises steeply from the active trace to altitudes of ca. 3 km. The geomorphology of the range indicates active uplift and mountain building, which is interpreted to result, in part, from a vertical component of fault slip at depth. These data are consistent with the fault accommodating oblique-slip at depth aligned parallel to the plate-motion vector and compatible with regional geodetic data and earthquake focal-mechanisms. Oblique-slip on the Clarence Fault at depth is partitioned at the free surface into: (1) right-lateral displacement on the fault, and (2) hanging wall uplift produced by distributed displacement on small-scale faults parallel to the main fault. Decoupling of slip components reflects an up-dip transfer of fault throw to an off-fault zone of distributed uplift. Such zones are common in the hanging walls of thrusts and reverse faults, and support the idea that the dip of the oblique-slip Clarence Fault steepens towards the free surface.

  12. The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.

    2016-12-01

    We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.

  13. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors?

    NASA Astrophysics Data System (ADS)

    Dolan, James F.; Meade, Brendan J.

    2017-12-01

    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  14. New constraints on the late Quaternary slip rate and earthquake history of the Kalabagh fault from geomorphic mapping: Implications for slip rate and earthquake potential of the western Salt Range thrust

    NASA Astrophysics Data System (ADS)

    Madugo, C. M.; Meigs, A.; Ramzan, S.

    2013-12-01

    Whether the basal décollement ruptures in great earthquakes and at what rate it slips are open questions for the Pakistani Himalaya. The fact that the southern expression of the décollement, the Salt Range thrust (SRT) is localized in a thick evaporate deposit implies the fault has low strength. The lack of a strong motion event in historic records suggests no large earthquakes have struck this region in the past 2000 years. Because 101 year GPS geodetic slip rates for the SRT (~3 mm/yr) are up to four times lower than 106 year geologic rates (9-14 mm/yr), it is unknown whether the convergence rate has decreased over time, or whether the geodetic data reflect a transient phenomenon such as fault creep on the SRT. To evaluate these end members, we obtained intermediate term (104 yr) slip rates from offset geomorphic markers along the Kalabagh fault (KF). The KF is a structurally complex tear fault and lateral ramp that bounds the western side of the SRT. The bending of the western end of the SRT into the KF, and their similar geologic slip rates, suggest the faults are kinematically linked. Thus intermediate-scale slip rates and perhaps earthquake history for the KF represent a proxy for behavior of the SRT. On a section of the KF that exhibits geomorphic evidence of primarily strike slip motion, we identify two partially eroded alluvial fan apexes that are offset up to 300×25 m and 210×30 m from their source channels. Fan reconstructions suggest the offsets are probably not significantly lower than these values. Optically stimulated luminescence (OSL) ages of 23×3 ka and 16×2 ka constrain fan surface abandonment. Assuming that fan abandonment accompanied offset by the KF, both fans yield nearly identical slip rates of 13×3 mm/yr and 13×4 mm/yr for the KF. Within uncertainty, these rates are at the high end of the geologic rate for the KF and SRT, and at least several times higher than the geodetic rate for the SRT. We also identify evidence of liquefaction and fissuring in natural exposures of the KF in the walls of alluvial stream cuts. An OSL age of 6×1 ka for a sand layer that fills fault tip fissures and is cut by other fault strands indicates that the KF has experienced multiple mid-late Holocene surface ruptures. Our results favor the model where the KF and SRT are linked and that the SRT ruptures during large earthquakes, similar to behavior of the thrust front in the central Himalaya. An outstanding question not reconciled by these data is why existing GPS data are markedly lower than intermediate and long-term slip rates. One potential way to reconcile the low geodetic with the high geologic rates is to interpret the 3 mm/yr geodetic velocity as the creep rate, which implies that the ~11 mm/yr discrepancy represents the loading rate of the Main Himalaya thrust (the décollement to the north of the evaporate deposits) which is relieved in large infrequent earthquakes.

  15. Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.

    2002-01-01

    Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip ranged from 1 to 19 mm. Locally there was a minor (~1-2 mm) vertical component of slip; larger proportions of vertical slip (up to 10 mm) occurred in Mesquite basin, where scarps indicate long-term oblique-slip motion for this part of the Imperial fault. Slip triggered on the Imperial fault appears randomly distributed relative to location along the fault and source direction. Multiple surface slips, both primary and triggered slip, indicate that slip repeatedly is small at locations of structural complexity.

  16. Global strike-slip fault distribution on Enceladus reveals mostly left-lateral faults

    NASA Astrophysics Data System (ADS)

    Martin, E. S.; Kattenhorn, S. A.

    2013-12-01

    Within the outer solar system, normal faults are a dominant tectonic feature; however, strike-slip faults have played a role in modifying the surfaces of many icy bodies, including Europa, Ganymede, and Enceladus. Large-scale tectonic deformation in icy shells develops in response to stresses caused by a range of mechanisms including polar wander, despinning, volume changes, orbital recession/decay, diurnal tides, and nonsynchronous rotation (NSR). Icy shells often preserve this record of tectonic deformation as patterns of fractures that can be used to identify the source of stress responsible for creating the patterns. Previously published work on Jupiter's moon Europa found that right-lateral strike-slip faults predominantly formed in the southern hemisphere and left-lateral strike-slip faults in the northern hemisphere. This pattern suggested they were formed in the past by stresses induced by diurnal tidal forcing, and were then rotated into their current longitudinal positions by NSR. We mapped the distribution of strike-slip faults on Enceladus and used kinematic indicators, including tailcracks and en echelon fractures, to determine their sense of slip. Tailcracks are secondary fractures that form as a result of concentrations of stress at the tips of slipping faults with geometric patterns dictated by the slip sense. A total of 31 strike-slip faults were identified, nine of which were right-lateral faults, all distributed in a seemingly random pattern across Enceladus's surface, in contrast to Europa. Additionally, there is a dearth of strike-slip faults within the tectonized terrains centered at 90°W and within the polar regions north and south of 60°N and 60°S, respectively. The lack of strike-slip faults in the north polar region may be explained, in part, by limited data coverage. The south polar terrain (SPT), characterized by the prominent tiger stripes and south polar dichotomy, yielded no discrete strike-slip faults. This does not suggest that the SPT is devoid of shear: previous work has indicated that the tiger stripes may be undergoing strike-slip motions and the surrounding regions may be experiencing shear. The fracture patterns and geologic activity within the SPT have been previously documented to be the result of stresses induced by both NSR and diurnal tidal deformation. As these same mechanisms are the main controls on strike-slip fault patterns on Europa, the lack of a match between strike-slip patterns on Europa and Enceladus is intriguing. The pattern of strike-slip faults on Enceladus suggests a different combination of stress mechanisms is required to produce the observed distributions. We will present models of global stress mechanisms to consider how the global-scale pattern of strike-slip faults on Enceladus may have been produced. This problem will be investigated further by measuring the angles at which tailcracks have formed on Enceladus. Tailcracks produced by simple shear form at 70.5° to the fault. Any deviation from this angle indicates some ratio of concomitant shear and dilation, which may provide insights into elucidating the stresses controlling strike-slip formation on Enceladus.

  17. The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Haeussler, Peter J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; Dawson, T.E.; Fletcher, H.; Hansen, R.; Harp, E.L.; Harris, R.A.; Hill, D.P.; Hreinsdottir, S.; Jibson, R.W.; Jones, L.M.; Kayen, R.; Keefer, D.K.; Larsen, C.F.; Moran, S.C.; Personius, S.F.; Plafker, G.; Sherrod, B.; Sieh, K.; Sitar, N.; Wallace, W.K.

    2003-01-01

    The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

  18. Quasi-dynamic versus fully dynamic simulations of earthquakes and aseismic slip with and without enhanced coseismic weakening

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Lapusta, Nadia; Noda, Hiroyuki; Avouac, Jean-Philippe

    2014-03-01

    Physics-based numerical simulations of earthquakes and slow slip, coupled with field observations and laboratory experiments, can, in principle, be used to determine fault properties and potential fault behaviors. Because of the computational cost of simulating inertial wave-mediated effects, their representation is often simplified. The quasi-dynamic (QD) approach approximately accounts for inertial effects through a radiation damping term. We compare QD and fully dynamic (FD) simulations by exploring the long-term behavior of rate-and-state fault models with and without additional weakening during seismic slip. The models incorporate a velocity-strengthening (VS) patch in a velocity-weakening (VW) zone, to consider rupture interaction with a slip-inhibiting heterogeneity. Without additional weakening, the QD and FD approaches generate qualitatively similar slip patterns with quantitative differences, such as slower slip velocities and rupture speeds during earthquakes and more propensity for rupture arrest at the VS patch in the QD cases. Simulations with additional coseismic weakening produce qualitatively different patterns of earthquakes, with near-periodic pulse-like events in the FD simulations and much larger crack-like events accompanied by smaller events in the QD simulations. This is because the FD simulations with additional weakening allow earthquake rupture to propagate at a much lower level of prestress than the QD simulations. The resulting much larger ruptures in the QD simulations are more likely to propagate through the VS patch, unlike for the cases with no additional weakening. Overall, the QD approach should be used with caution, as the QD simulation results could drastically differ from the true response of the physical model considered.

  19. The relationship between oceanic transform fault segmentation, seismicity, and thermal structure

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, Monica

    Mid-ocean ridge transform faults (RTFs) are typically viewed as geometrically simple, with fault lengths readily constrained by the ridge-transform intersections. This relative simplicity, combined with well-constrained slip rates, make them an ideal environment for studying strike-slip earthquake behavior. As the resolution of available bathymetric data over oceanic transform faults continues to improve, however, it is being revealed that the geometry and structure of these faults can be complex, including such features as intra-transform pull-apart basins, intra-transform spreading centers, and cross-transform ridges. To better determine the resolution of structural complexity on RTFs, as well as the prevalence of RTF segmentation, fault structure is delineated on a global scale. Segmentation breaks the fault system up into a series of subparallel fault strands separated by an extensional basin, intra-transform spreading center, or fault step. RTF segmentation occurs across the full range of spreading rates, from faults on the ultraslow portion of the Southwest Indian Ridge to faults on the ultrafast portion of the East Pacific Rise (EPR). It is most prevalent along the EPR, which hosts the fastest spreading rates in the world and has undergone multiple changes in relative plate motion over the last couple of million years. Earthquakes on RTFs are known to be small, to scale with the area above the 600°C isotherm, and to exhibit some of the most predictable behaviors in seismology. In order to determine whether segmentation affects the global RTF scaling relations, the scalings are recomputed using an updated seismic catalog and fault database in which RTF systems are broken up according to their degree of segmentation (as delineated from available bathymetric datasets). No statistically significant differences between the new computed scaling relations and the current scaling relations were found, though a few faults were identified as outliers. Finite element analysis is used to model 3-D RTF fault geometry assuming a viscoplastic rheology in order to determine how segmentation affects the underlying thermal structure of the fault. In the models, fault segment length, length and location along fault of the intra-transform spreading center, and slip rate are varied. A new scaling relation is developed for the critical fault offset length (OC) that significantly reduces the thermal area of adjacent fault segments, such that adjacent segments are fully decoupled at ~4 OC . On moderate to fast slipping RTFs, offsets ≥ 5 km are sufficient to significantly reduce the thermal influence between two adjacent transform fault segments. The relationship between fault structure and seismic behavior was directly addressed on the Discovery transform fault, located at 4°S on the East Pacific Rise. One year of microseismicity recorded on an OBS array, and 24 years of Mw ≥ 5.4 earthquakes obtained from the Global Centroid Moment Tensor catalog, were correlated with surface fault structure delineated from high-resolution multibeam bathymetry. Each of the 15 Mw ≥ 5.4 earthquakes was relocated into one of five distinct repeating rupture patches, while microseismicity was found to be reduced within these patches. While the endpoints of these patches appeared to correlate with structural features on the western segment of Discovery, small step-overs in the primary fault trace were not observed at patch boundaries. This indicates that physical segmentation of the fault is not the primary control on the size and location of large earthquakes on Discovery, and that along-strike heterogeneity in fault zone properties must play an important role.

  20. Evolving transpressional strain fields along the San Andreas fault in southern California: implications for fault branching, fault dip segmentation and strain partitioning

    NASA Astrophysics Data System (ADS)

    Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil

    2014-05-01

    The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.

  1. The Hills are Alive: Dynamic Ridges and Valleys in a Strike-Slip Environment

    NASA Astrophysics Data System (ADS)

    Duvall, A. R.; Tucker, G. E.

    2014-12-01

    Strike-slip fault zones have long been known for characteristic landforms such as offset and deflected rivers, linear strike-parallel valleys, and shutter ridges. Despite their common presence, questions remain about the mechanics of how these landforms arise or how their form varies as a function of slip rate, geomorphic process, or material properties. We know even less about what happens far from the fault, in drainage basin headwaters, as a result of strike-slip motion. Here we explore the effects of horizontal fault slip rate, bedrock erodibility, and hillslope diffusivity on river catchments that drain across an active strike-slip fault using the CHILD landscape evolution model. Model calculations demonstrate that lateral fault motion induces a permanent state of landscape disequilibrium brought about by fault offset-generated river lengthening alternating with abrupt shortening due to stream capture. This cycle of shifting drainage patterns and base level change continues until fault motion ceases thus creating a perpetual state of transience unique to strike-slip systems. Our models also make the surprising prediction that, in some cases, hillslope ridges oriented perpendicular to the fault migrate laterally in conjunction with fault motion. Ridge migration happens when slip rate is slow enough and/or diffusion and river incision are fast enough that the hillslopes can respond to the disequilibrium brought about by strike-slip motion. In models with faster slip rates, stronger rocks or less-diffusive hillslopes, ridge mobility is limited or arrested despite the fact that the process of river lengthening and capture continues. Fast-slip cases also develop prominent steep fault-facing hillslope facets proximal to the fault valley and along-strike topographic profiles with reduced local relief between ridges and valleys. Our results demonstrate the dynamic nature of strike-slip landscapes that vary systematically with a ratio of bedrock erodibility (K) and hillslope diffusivity (D) to the rate of horizontal advection of topography (v). These results also reveal a potential set of recognizable geomorphic signatures within strike-slip systems that should be looked to as indicators of fault activity and/or material properties.

  2. Simulating spontaneous aseismic and seismic slip events on evolving faults

    NASA Astrophysics Data System (ADS)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare the slip spectrum in our simulations to conventional RSF simulations (Liu and Rice, JGR, 2007). We further demonstrate the capability of simulating the evolution of a fault zone and simultaneous occurrence of slip transients. From small random initial distributions of the state variable in an otherwise homogeneous medium, deformation localizes and forms curved zones of reduced states. These spontaneously formed fault zones host slip transients, which in turn contribute to the growth of the fault zone.

  3. Constraints and inferences of conditions of seismic slip from analyses of exhumed faults

    NASA Astrophysics Data System (ADS)

    Evans, J. P.

    2008-12-01

    The study of exhumed faults, where constrained by geochemical or geochronologic evidence for depth of deformation, has provided abundant insights into the processes by which the upper crust accommodates strain. What remains elusive in these studies are: a] what evidence do we have for diagnosing [paleo] seismic slip, b ] how do we extrapolate the textures and composition of formerly active faults to constraining the conditions at depth, c] determining the conditions that promote seismic vs. aseismic slip, and d] to what degree do interseismic [healing] and post-slip processes exhumation affect what we see at the surface. Field evidence for the conditions that promote or are of diagnostic seismic vs. aseismic slip, is elusive, as there are few ways to determine seismic rates of slip in faults other than the presence of pseudotachylytes. Recent work on these rocks in a variety of settings and the increase in recognition of the presence of fault- related melts document the relationships between pseudotachylytes and cataclastically deformed rocks in what is thought to be the frictional regime, or with ductily deformed rocks at the base of a fault. Conditions that appear to promote seismic slip are alteration of granitic host rock to lower melting temperature phases and the presence of geometric complexities that may act as stress risers in the faults. Drilling into portions of faults where earthquakes occur at the top of the seismogenic zone have sampled fault-related rocks that have striking similarities to exhumed faults, exhibiting narrow slip surfaces, foliated cataclasites, injected gouge textures, polished slip surfaces, and thermally altered rocks along slip surfaces. We review the recent work from a wide range of studies to suggest that relatively small changes in conditions may initiate seismic slip, and suggest further avenues of investigation.

  4. Unravelling the Mysteries of Slip Histories, Validating Cosmogenic 36Cl Derived Slip Rates on Normal Faults

    NASA Astrophysics Data System (ADS)

    Goodall, H.; Gregory, L. C.; Wedmore, L.; Roberts, G.; Shanks, R. P.; McCaffrey, K. J. W.; Amey, R.; Hooper, A. J.

    2017-12-01

    The cosmogenic isotope chlorine-36 (36Cl) is increasingly used as a tool to investigate normal fault slip rates over the last 10-20 thousand years. These slip histories are being used to address complex questions, including investigating slip clustering and understanding local and large scale fault interaction. Measurements are time consuming and expensive, and as a result there has been little work done validating these 36Cl derived slip histories. This study aims to investigate if the results are repeatable and therefore reliable estimates of how normal faults have been moving in the past. Our approach is to test if slip histories derived from 36Cl are the same when measured at different points along the same fault. As normal fault planes are progressively exhumed from the surface they accumulate 36Cl. Modelling these 36Cl concentrations allows estimation of a slip history. In a previous study, samples were collected from four sites on the Magnola fault in the Italian Apennines. Remodelling of the 36Cl data using a Bayesian approach shows that the sites produced disparate slip histories, which we interpret as being due to variable site geomorphology. In this study, multiple sites have been sampled along the Campo Felice fault in the central Italian Apennines. Initial results show strong agreement between the sites we have processed so far and a previous study. This indicates that if sample sites are selected taking the geomorphology into account, then 36Cl derived slip histories will be highly similar when sampled at any point along the fault. Therefore our study suggests that 36Cl derived slip histories are a consistent record of fault activity in the past.

  5. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as a localized conduit to hydrocarbon-bearing calcite veins. The results of this study show that fault-zone character may change dramatically over short, deposit- or reservoir-scale distances. The presence of damage zones may not be well correlated at the fine scale with geochemically defined regions of the fault, even though a gross spatial correlation may exist.

  6. Importance of weak minerals on earthquake mechanics

    NASA Astrophysics Data System (ADS)

    Kaneki, S.; Hirono, T.

    2017-12-01

    The role of weak minerals such as smectite and talc on earthquake mechanics is one of the important issues, and has been debated for recent several decades. Traditionally weak minerals in fault have been reported to weaken fault strength causing from its low frictional resistance. Furthermore, velocity-strengthening behavior of such weak mineral (talc) is considered to responsible for fault creep (aseismic slip) in the San Andreas fault. In contrast, recent studies reported that large amount of weak smectite in the Japan Trench could facilitate gigantic seismic slip during the 2011 Tohoku-oki earthquake. To investigate the role of weak minerals on rupture propagation process and magnitude of slip, we focus on the frictional properties of carbonaceous materials (CMs), which is the representative weak materials widely distributed in and around the convergent boundaries. Field observation and geochemical analyses revealed that graphitized CMs-layer is distributed along the slip surface of a fossil plate-subduction fault. Laboratory friction experiments demonstrated that pure quartz, bulk mixtures with bituminous coal (1 wt.%), and quartz with layered coal samples exhibited almost similar frictional properties (initial, yield, and dynamic friction). However, mixtures of quartz (99 wt.%) and layered graphite (1 wt.%) showed significantly lower initial and yield friction coefficient (0.31 and 0.50, respectively). Furthermore, the stress ratio S, defined as (yield stress-initial stress)/(initial stress-dynamic stress), increased in layered graphite samples (1.97) compared to quartz samples (0.14). Similar trend was observed in smectite-rich fault gouge. By referring the reported results of dynamic rupture propagation simulation using S ratio of 1.4 (typical value for the Japan Trench) and 2.0 (this study), we confirmed that higher S ratio results in smaller slip distance by approximately 20 %. On the basis of these results, we could conclude that weak minerals have lower initial/yield strength and higher S ratio, and thus restrain magnitude of slip during earthquake.

  7. The nucleation of "fast" and "slow" stick slip instabilities in sheared granular aggregates

    NASA Astrophysics Data System (ADS)

    Korkolis, Evangelos; Ampuero, Jean-Paul; Niemeijer, André

    2017-04-01

    Seismological observations in the past few decades have revealed a diversity of slip behaviors of faults, involving interactions and transition between slow to fast slip phenomena. Field studies show that exhumed fault zones comprise mixtures of materials with variable frictional strength and stability. Emergent models of slip diversity emphasize the role of heterogeneities of fault zone properties and the potential interactions between seismic and aseismic deformation. Here, we develop analog laboratory experiments to study the mechanics of heterogeneous faults with the goal to identify factors controlling their slip stability and rupture style. We report on results from room temperature sliding experiments using a rotary shear apparatus. We simulated gouge heterogeneity by using materials with different frictional strength and stability. At room temperature conditions, dry glass beads typically stick slip, whereas dry granular calcite exhibits stable sliding. The peak strength of glass beads aggregates is typically lower than that of granular calcite aggregates. Our samples consisted of a layer of glass beads sandwiched between two layers of granular calcite. The initial particle size was between 100 and 200 μm for both materials and the initial thickness of each layer was about 1.5 mm. We tested our layered aggregates under 1 to 7 MPa normal stress and at sliding velocities between 1 and 100 μm/s. Within that range of conditions, high normal stress and slow sliding velocities promoted fast, regular stick slip. For normal stress values of less than about 4 MPa, the recurrence time and stress drop of stick slips became irregular, particularly at sliding rates above 20 μm/s. As the accumulated shear displacement increased, slip events became slower and the magnitudes of their stress drop, compaction and slip distance decreased. We recorded acoustic emissions (AEs) associated with each slip event (fast and slow) and estimated their source azimuth. AE activity was distributed in several clusters, some of which remained stationary, whereas others appeared to migrate with increasing shear displacement. We performed post-mortem microstructural analysis (tabletop SEM) of select AE nucleation sites and found significant mixing of glass beads with the calcite layer abutting the rotating piston ring. No mixing was observed between the glass beads and the calcite layer on the opposite side, nor any features that would indicate strain localization along the interface of the calcite and the adjacent stationary piston. These results show that the frictional behavior of our aggregates changed from fast to slow slip as the amount of glass beads mixed with granular calcite increased. Migrating AE clusters imply that nucleation occurred within the mixed calcite-glass beads layer, where most of the shear strain appears to have been accommodated, whereas stationary clusters probably originated within the adjacent, more slowly deforming layer of glass beads. This suggests that AEs belonging to migrating clusters were perhaps triggered by stress changes due to the gradual mixing of the two sample constituents. This process may explain migrating seismicity in natural fault zones.

  8. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    PubMed Central

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna M.; Dawson, Tim; Rubin, Ron; Ericksen, Todd L.; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests. PMID:28782026

  9. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy.

    PubMed

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-07-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  10. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    USGS Publications Warehouse

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna; Dawson, Timothy E.; Rubin, Ron S.; Ericksen, Todd; Lockner, David A.; Hudnut, Kenneth W.; Langenheim, Victoria; Lutz, Andrew; Murray, Jessica R.; Schwartz, David P.; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  11. Intrinsic And Extrinsic Controls On Unsteady Deformation Rates, Northern Apennine Mountains, Italy

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Gunderson, K. L.; Pazzaglia, F. J.; Kodama, K. P.

    2017-12-01

    The slip rates of faults in the Northern Apennine Mountains were unsteady at 104-105 year timescales during the Neogene and Quaternary. Fault slip rates were recovered from growth strata and uplifted fluvial terraces associated with the Salsomaggiore, Quatto Castella, and Castevetro fault-related folds, sampled along the Stirone, Enza, and Panaro Rivers, respectively. The forelimb stratigraphy of each anticline was dated using rock magnetic-based cyclostratigraphy, which varies with Milankovitch periodicity, multispecies biostratigraphy, magnetostratigraphy, OSL luminescence dating, TCN burial dating, and radiocarbon dating of uplifted and folded fluvial terraces. Fault slip magnitudes were constrained with trishear forward models. We observed decoupled deformation and sediment accumulation rates at each structure. From 3.5Ma deformation of a thick and thin-skinned thrusts was temporally variable and controlled by intrinsic rock processes, whereas, the more regional Pede-Apenninic thrust fault, a thick-skinned thrust underlying the mountain front, was likely activated because of extrinsic forcing from foreland basin sedimentation rate accelerations since 1.4Ma. We found that reconstructed slip rate variability increased as the time resolution increased. The reconstructed slip history of the thin-skinned thrust faults was characterized relatively long, slow fold growth and associated fault slip, punctuated by shorter, more rapid periods limb rotation, and slip on the underlying thrust fault timed asynchronously. Thrust fault slip rates slip rates were ≤ 0.1 to 6 mm/yr at these intermediate timescales. The variability of slip rates on the thrusts is likely related to strain partitioning neighboring faults within the orogenic wedge. The studied structures slowed down at 1Ma when there was a switch to slower synchronous fault slip coincident with orogenic wedge thickening due to the emplacement of the out of sequence Pene-Apenninic thrust fault that was emplaced at 1.4±0.7 mm/yr. Both tectonic control and climate controlled variability on syntectonic sedimentation was observed in the growth sections.

  12. Influence of fault geometry and tectonic driving stress orientation on the mechanics of multifault earthquakes

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Maerten, F.; Pollard, D. D.

    2012-12-01

    The M 7.3 28 June 1992 Landers, California earthquake was a well-documented event that highlighted the complex relationship between the earthquake and the multiple faults on which it occurred. Not only was fault slip data mapped in the field in detail, due to good exposure in the arid conditions of the Mojave Desert, but also it was one of the first earthquakes for which the surface displacement field was captured by satellite technology. In addition, precise aftershock relocations and fault plane solutions provide information about stress and fault behavior at depth. Study of fault interactions leading to the linkage of five right-lateral, strike-slip faults at Landers is aided by this abundance of available surface and subsurface data. While mapped near-field surface data often are restricted to the realm of the geologist, and subsurface data, such as aftershocks, often are restricted to the realm of the geophysicist, we find that integrating these data in mechanical forward models provides good constraint on the three-dimensional structures of the faults involved. Mechanical models also reveal that fault geometry and the orientation of the tectonic driving stress greatly influence whether or not slip is promoted across the extensional step between two of the faults along the southern-central rupture and elucidate the role of a crossing fault located within the step. Unfortunately, the orientation of the principal stresses are not well constrained near Landers or in many regions around the world. Previous determinations of the tectonic driving stress at Landers range from 7 degrees to 45 degrees, measured clockwise from North. We introduce a new stress inversion method that honors mechanical relationships among the remote stress state that is being inverted for, mainshock fault slip, the resulting total stress field following fault slip, and aftershocks. Use of the principal of superposition in this new algorithm obviates the need for the prohibitive computation times associated with running successive forward models. We apply the inverse method using aftershock, Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data associated with the Landers earthquake and address how fault geometry and aftershock size, timing, and focal mechanism quality influence inversion results. The advantages of this new method are that: (1) coseismic displacement data can be used, (2) the underlying model is better constrained to find a solution in the parameter space in the presence of fault slip perturbations, (3) absolute magnitudes can be recovered when using data with magnitude information such as GPS, InSAR and stress tensors inferred from aftershocks with known magnitudes. In addition, while one can choose to invert for an Andersonian fault regime, the method is not restricted to that particular case with one vertical principal stress.

  13. Late Pleistocene, Holocene, and decadal constancy of slip-rate of the Doruneh strike-slip fault, Iran.

    NASA Astrophysics Data System (ADS)

    Walker, R. T.; Fattahi, M.; Mousavi, Z.; Pathier, E.; Sloan, R. A.; Talebian, M.; Thomas, A. L.; Walpersdorf, A.

    2014-12-01

    The Doruneh left-lateral strike-slip fault of NE Iran has a prominent expression in the landscape, showing that the fault is active in the late Quaternary. Existing estimates of its slip-rate vary, however, which has led to suggestions that it may exhibit temporal changes in activity. Using high-resolution optical satellite imagery we make reconstructions of displacement across four alluvial fans that cross the Doruneh fault, and determine the ages of these fans using luminescence dating, combined with U-series dating of pedogenic carbonates in one case. The four fans, which vary in age from 10-100 kyr, yield estimates of slip rate of ~2-3 mm/yr. We compare the average slip-rate measurements to the rate of accumulation of strain across the Doruneh fault using GPS and InSAR measurements, and find that the slip-rate is likely to have remained constant - within the uncertainty of our measurements - over the last ~100 ka. The slip-rate that we measure is consistent with the E-W left-lateral Doruneh fault accommodating N-S right-lateral faulting by 'bookshelf' faulting, with clockwise rotation about a vertical axis, in a similar manner to the Eastern California Shear Zone.

  14. Seismic cycle feedbacks in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  15. Constraints on Eruption Dynamics, Mount St. Helens, WA, 2004-2008

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Rempel, A. W.; Cashman, K. V.

    2009-12-01

    Different models have been proposed for the “drumbeat” earthquakes that accompanied recent eruptive behavior at Mount St. Helens. Debate continues as to whether seismicity is related to brittle failure during the extrusion of solid dacite spines, or is the result of hydrothermal fluids interacting with a crack buried in the volcanic edifice. The thermomechanical properties at the interface between conduit magma and the solid plug play a central role in governing the extrusive behavior. To constrain predictions of conditions at this interface, we model the three-phase magma transport from chamber to plug using pMELTS to account for partial crystallization caused by gas exsolution and degassing during ascent. The model predicts that magma compressibility beneath the plug is lower than necessary to release accommodated elastic strain at intervals that match the periods of the drumbeat earthquakes. While our results are not consistent with episodic whole-plug slip, they may nevertheless be compatible with stick-slip behavior on discrete patches of the bounding fault. We supplement our conduit modeling with a quantitative examination of the roughness of slip surfaces. Power spectral analysis of high-resolution digital elevation models yield a power-law relationship, that is similar to results from tectonic faults that have experienced only limited (typically less than 1 meter) amounts of slip. Structural evidence for expansion at different scales may indicate high-temperature deformation near the brittle-ductile transition. Our results suggest that simultaneous magma fracture and expansion may have generated key seismic characteristics including the observed dilatational first motions and moment magnitude-corner frequency scaling consistent with brittle tectonic faults.

  16. Fault Geometry and Slip Distribution at Depth of the 1997 Mw 7.2 Zirkuh Earthquake: Contribution of Near-Field Displacement Data

    NASA Astrophysics Data System (ADS)

    Marchandon, Mathilde; Vergnolle, Mathilde; Sudhaus, Henriette; Cavalié, Olivier

    2018-02-01

    In this study, we reestimate the source model of the 1997 Mw 7.2 Zirkuh earthquake (northeastern Iran) by jointly optimizing intermediate-field Interferometry Synthetic Aperture Radar data and near-field optical correlation data using a two-step fault modeling procedure. First, we estimate the geometry of the multisegmented Abiz fault using a genetic algorithm. Then, we discretize the fault segments into subfaults and invert the data to image the slip distribution on the fault. Our joint-data model, although similar to the Interferometry Synthetic Aperture Radar-based model to the first order, highlights differences in the fault dip and slip distribution. Our preferred model is ˜80° west dipping in the northern part of the fault, ˜75° east dipping in the southern part and shows three disconnected high slip zones separated by low slip zones. The low slip zones are located where the Abiz fault shows geometric complexities and where the aftershocks are located. We interpret this rough slip distribution as three asperities separated by geometrical barriers that impede the rupture propagation. Finally, no shallow slip deficit is found for the overall rupture except on the central segment where it could be due to off-fault deformation in quaternary deposits.

  17. Re-Evaluation of Event Correlations in Virtual California Using Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Heflin, M. B.; Granat, R. A.; Yikilmaz, M. B.; Heien, E.; Rundle, J.; Donnellan, A.

    2010-12-01

    Fusing the results of simulation tools with statistical analysis methods has contributed to our better understanding of the earthquake process. In a previous study, we used a statistical method to investigate emergent phenomena in data produced by the Virtual California earthquake simulator. The analysis indicated that there were some interesting fault interactions and possible triggering and quiescence relationships between events. We have converted the original code from Matlab to python/C++ and are now evaluating data from the most recent version of Virtual California in order to analyze and compare any new behavior exhibited by the model. The Virtual California earthquake simulator can be used to study fault and stress interaction scenarios for realistic California earthquakes. The simulation generates a synthetic earthquake catalog of events with a minimum size of ~M 5.8 that can be evaluated using statistical analysis methods. Virtual California utilizes realistic fault geometries and a simple Amontons - Coulomb stick and slip friction law in order to drive the earthquake process by means of a back-slip model where loading of each segment occurs due to the accumulation of a slip deficit at the prescribed slip rate of the segment. Like any complex system, Virtual California may generate emergent phenomena unexpected even by its designers. In order to investigate this, we have developed a statistical method that analyzes the interaction between Virtual California fault elements and thereby determine whether events on any given fault elements show correlated behavior. Our method examines events on one fault element and then determines whether there is an associated event within a specified time window on a second fault element. Note that an event in our analysis is defined as any time an element slips, rather than any particular “earthquake” along the entire fault length. Results are then tabulated and then differenced with an expected correlation, calculated by assuming a uniform distribution of events in time. We generate a correlation score matrix, which indicates how weakly or strongly correlated each fault element is to every other in the course of the VC simulation. We calculate correlation scores by summing the difference between the actual and expected correlations over all time window lengths and normalizing by the time window size. The correlation score matrix can focus attention on the most interesting areas for more in-depth analysis of event correlation vs. time. The previous study included 59 faults (639 elements) in the model, which included all the faults save the creeping section of the San Andreas. The analysis spanned 40,000 yrs of Virtual California-generated earthquake data. The newly revised VC model includes 70 faults, 8720 fault elements, and spans 110,000 years. Due to computational considerations, we will evaluate the elements comprising the southern California region, which our previous study indicated showed interesting fault interaction and event triggering/quiescence relationships.

  18. Fault-slip directions in central and southern Greece measured from striated and corrugated fault planes: Comparison with focal mechanism and geodetic data

    NASA Astrophysics Data System (ADS)

    Roberts, Gerald P.; Ganas, Athanassios

    2000-10-01

    Fault-slip directions recorded by outcropping striated and corrugated fault planes in central and southern Greece have been measured for comparison with extension directions derived from focal mechanism and Global Positioning System (GPS) data for the last ˜100 years to test how far back in time velocity fields and deformation dynamics derived from the latter data sets can be extrapolated. The fault-slip data have been collected from the basin-bounding faults to Plio-Pleistocene to recent extensional basins and include data from arrays of footwall faults formed during the early stages of fault growth. We show that the orientation of the inferred stress field varies along faults and earthquake ruptures, so we use only slip-directions from the centers of faults, where dip-slip motion occurs, to constrain regionally significant extension directions. The fault-slip directions for the Peloponnese and Gulfs of Evia and Corinth are statistically different at the 99% confidence level but statistically the same as those implied by earthquake focal mechanisms for each region at the 99% confidence level; they are also qualitatively similar to the principal strain axes derived from GPS studies. Extension directions derived from fault-slip data are 043-047° for the southern Peloponnese, 353° for the Gulf of Corinth, and 015-014° for the Gulf of Evia. Extension on active normal faults in the two latter areas appears to grade into strike-slip along the North Anatolian Fault through a gradual change in fault-slip directions and fault strikes. To reconcile the above with 5° Myr-1 clockwise rotations suggested for the area, we suggest that the faults considered formed during a single phase of extension. The deformation and formation of the normal fault systems examined must have been sufficiently rapid and recent for rotations about vertical axes to have been unable to disperse the fault-slip directions from the extension directions implied by focal mechanisms and GPS data. Thus, in central and southern Greece the velocity fields derived from focal mechanism and GPS data may help explain the dynamics of the deformation over longer time periods than the ˜100 years over which they were measured; this may include the entire deformation history of the fault systems considered, a time period that may exceed 1-2 Myr.

  19. Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand's Alpine Fault

    NASA Astrophysics Data System (ADS)

    Schuck, B.; Janssen, C.; Schleicher, A. M.; Toy, V. G.; Dresen, G.

    2018-05-01

    The Alpine Fault is capable of generating large (MW > 8) earthquakes and is the main geohazard on South Island, NZ, and late in its 250-291-year seismic cycle. To minimize its hazard potential, it is indispensable to identify and understand the processes influencing the geomechanical behavior and strength-evolution of the fault. High-resolution microstructural, mineralogical and geochemical analyses of the Alpine Fault's core demonstrate wall rock fragmentation, assisted by mineral dissolution, and cementation resulting in the formation of a fine-grained principal slip zone (PSZ). A complex network of anastomosing and mutually cross-cutting calcite veins implies that faulting occurred during episodes of dilation, slip and sealing. Fluid-assisted dilatancy leads to a significant volume increase accommodated by vein formation in the fault core. Undeformed euhedral chlorite crystals and calcite veins that have cut footwall gravels demonstrate that these processes occurred very close to the Earth's surface. Microstructural evidence indicates that cataclastic processes dominate the deformation and we suggest that powder lubrication and grain rolling, particularly influenced by abundant nanoparticles, play a key role in the fault core's velocity-weakening behavior rather than frictional sliding. This is further supported by the absence of smectite, which is reasonable given recently measured geothermal gradients of more than 120 °C km-1 and the impermeable nature of the PSZ, which both limit the growth of this phase and restrict its stability to shallow depths. Our observations demonstrate that high-temperature fluids can influence authigenic mineral formation and thus control the fault's geomechanical behavior and the cyclic evolution of its strength.

  20. Fault geometry and cumulative offsets in the central Coast Ranges, California: Evidence for northward increasing slip along the San Gregorio-San Simeon-Hosgri fault

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Graymer, R.W.; Colgan, J.P.; Wentworth, C.M.; Stanley, R.G.

    2012-01-01

    Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.

  1. Dynamic rupture modeling of the transition from thrust to strike-slip motion in the 2002 Denali fault earthquake, Alaska

    USGS Publications Warehouse

    Aagaard, Brad T.; Anderson, G.; Hudnut, K.W.

    2004-01-01

    We use three-dimensional dynamic (spontaneous) rupture models to investigate the nearly simultaneous ruptures of the Susitna Glacier thrust fault and the Denali strike-slip fault. With the 1957 Mw 8.3 Gobi-Altay, Mongolia, earthquake as the only other well-documented case of significant, nearly simultaneous rupture of both thrust and strike-slip faults, this feature of the 2002 Denali fault earthquake provides a unique opportunity to investigate the mechanisms responsible for development of these large, complex events. We find that the geometry of the faults and the orientation of the regional stress field caused slip on the Susitna Glacier fault to load the Denali fault. Several different stress orientations with oblique right-lateral motion on the Susitna Glacier fault replicate the triggering of rupture on the Denali fault about 10 sec after the rupture nucleates on the Susitna Glacier fault. However, generating slip directions compatible with measured surface offsets and kinematic source inversions requires perturbing the stress orientation from that determined with focal mechanisms of regional events. Adjusting the vertical component of the principal stress tensor for the regional stress field so that it is more consistent with a mixture of strike-slip and reverse faulting significantly improves the fit of the slip-rake angles to the data. Rotating the maximum horizontal compressive stress direction westward appears to improve the fit even further.

  2. Volcanic facies architecture of an intra-arc strike-slip basin, Santa Rita Mountains, Southern Arizona

    NASA Astrophysics Data System (ADS)

    Busby, Cathy J.; Bassett, Kari N.

    2007-09-01

    The three-dimensional arrangement of volcanic deposits in strike-slip basins is not only the product of volcanic processes, but also of tectonic processes. We use a strike-slip basin within the Jurassic arc of southern Arizona (Santa Rita Glance Conglomerate) to construct a facies model for a strike-slip basin dominated by volcanism. This model is applicable to releasing-bend strike-slip basins, bounded on one side by a curved and dipping strike-slip fault, and on the other by curved normal faults. Numerous, very deep unconformities are formed during localized uplift in the basin as it passes through smaller restraining bends along the strike-slip fault. In our facies model, the basin fill thins and volcanism decreases markedly away from the master strike-slip fault (“deep” end), where subsidence is greatest, toward the basin-bounding normal faults (“shallow” end). Talus cone-alluvial fan deposits are largely restricted to the master fault-proximal (deep) end of the basin. Volcanic centers are sited along the master fault and along splays of it within the master fault-proximal (deep) end of the basin. To a lesser degree, volcanic centers also form along the curved faults that form structural highs between sub-basins and those that bound the distal ends of the basin. Abundant volcanism along the master fault and its splays kept the deep (master fault-proximal) end of the basin overfilled, so that it could not provide accommodation for reworked tuffs and extrabasinally-sourced ignimbrites that dominate the shallow (underfilled) end of the basin. This pattern of basin fill contrasts markedly with that of nonvolcanic strike-slip basins on transform margins, where clastic sedimentation commonly cannot keep pace with subsidence in the master fault-proximal end. Volcanic and subvolcanic rocks in the strike-slip basin largely record polygenetic (explosive and effusive) small-volume eruptions from many vents in the complexly faulted basin, referred to here as multi-vent complexes. Multi-vent complexes like these reflect proximity to a continuously active fault zone, where numerous strands of the fault frequently plumb small batches of magma to the surface. Releasing-bend extension promotes small, multivent styles of volcanism in preference to caldera collapse, which is more likely to form at releasing step-overs along a strike-slip fault.

  3. Flower-strucutre deformation pattern of theTian Shan mountains as revealed by Late Quaternary geological and modern Geodesy slip rates

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, P.; Zheng, W.; Wang, H.; Zhang, Z.; Ren, Z.; Zheng, D.; Yu, J.; Wu, G.

    2017-12-01

    The deformation pattern and strain distribution of the Tian Shan is a hot issue.Previous studies mainly focus on the thrust-fold systems on both sides of Tian Shan, the strike-slip faults within the mountains are rarely reported. The understanding about the deformation characteristics of Tian Shan is not complete for lacking information of these strike-slip faults.Our studies show the NEE trending structures of Maidan fault and Nalati fault in the southwestern Tian Shan are all active during the Holence. These faults are characterized by sinistral strike-slip and thrust movement. The minimum average sinistral strike-slip rate of the Maidan fault is 1.07 ± 0.13 mm/yr. During the late Quaternary, the average shortening rate and sinistral strike-slip rate of the Nalati fault are 2.1 ±0.4 mm/yr and 2.56 ±0.25 mm/yr, respectively . In the interior of the Tian Shan area, two groups of strike-slip faults were developed. The NEE trending faults with sinistral strike-slipmovement, and the NWW trending faults with dextral strike-slip movement show the shape of "X"in geometrical structure. The piedmont thrust faults and the thrust strike-slip faults in the interior mountain constitute the tectonic framework of Tian Shan. Threegroups of active fault systems are the main seismogenic and geological structures, which control the current tectonic deformation pattern of Tian Shan (Figure 1). GPS observation data also showthe similar deformation characteristics with the geological results (Figures 2, 3). In addition to the crustal shortening, there is a certain strike-slip shear movement in the interior of the Tian Shan.The strike-slip rate defined by the geological and GPS data is approximately consistent with each other near the same longitude. We suggest the two groups of strike-slip faults in the interior of mountains is a set of conjugate structures. The whole Tian Shan forms a large flower-structure in a profile view. The complete tectonic deformation of the Tian Shan mountains consists ofthe shortening deformationof the N-S direction and the lateral extrusion of the E-W direction (Figure 2). The late Cenozoic deformation of the Tian Shan mountains is due to the northward subduction of Tarim Block. Although the activedeformation of the Tian Shan decrease eastward, the geological sturcutrein eastern Tian Shan is similar.

  4. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...

  5. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer

    Faulds, James E.

    2013-09-30

    Slip and dilation tendency on the Great Basin fault surfaces (from the USGS Quaternary Fault Database) were calculated using 3DStress (software produced by Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by the measured ambient stress field. - Values range from a maximum of 1 (a fault plane ideally oriented to slip or dilate under ambient stress conditions) to zero (a fault plane with no potential to slip or dilate). - Slip and dilation tendency values were calculated for each fault in the Great Basin. As dip is unknown for many faults in the USGS Quaternary Fault Database, we made these calculations using the dip for each fault that would yield the maximum slip or dilation tendency. As such, these results should be viewed as maximum slip and dilation tendency. - The resulting along‐fault and fault‐to‐fault variation in slip or dilation potential is a proxy for along fault and fault‐to‐fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson‐Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike‐slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east‐west trending throughout much of the Great Basin. As such, north‐ to northeast‐striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local‐scale exploration efforts for blind or hidden geothermal resources.

  6. Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium.

    PubMed

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Tsuru, Tomohito

    2016-06-03

    Compared to cubic metals, whose primary slip mode includes twelve equivalent systems, the lower crystalline symmetry of hexagonal close-packed metals results in a reduced number of equivalent primary slips and anisotropy in plasticity, leading to brittleness at the ambient temperature. At higher temperatures, the ductility of hexagonal close-packed metals improves owing to the activation of secondary ⟨c+a⟩ pyramidal slip systems. Thus, understanding the fundamental properties of corresponding dislocations is essential for the improvement of ductility at the ambient temperature. Here, we present the results of large-scale ab initio calculations for ⟨c+a⟩ pyramidal screw dislocations in magnesium and show that their slip behavior is a stark counterexample to the conventional wisdom that a slip plane is determined by the stacking fault plane of dislocations. A stacking fault between dissociated partial dislocations can assume a nonplanar shape with a negligible energy cost and can migrate normal to its plane by a local shuffling of atoms. Partial dislocations dissociated on a {21[over ¯]1[over ¯]2} plane "slither" in the {011[over ¯]1} plane, dragging the stacking fault with them in response to an applied shear stress. This finding resolves the apparent discrepancy that both {21[over ¯]1[over ¯]2} and {011[over ¯]1} slip traces are observed in experiments while ab initio calculations indicate that dislocations preferably dissociate in the {21[over ¯]1[over ¯]2} planes.

  7. Change in Frictional Behavior during Olivine Serpentinization

    NASA Astrophysics Data System (ADS)

    Xing, T.; Zhu, W.; French, M. E.; Belzer, B.

    2017-12-01

    Hydration of mantle peridotites (serpentinization) is pervasive at plate boundaries. It is widely accepted that serpentinization is intrinsically linked to hydromechanical processes within the sub-seafloor, where the interplay between cracking, fluid supply and chemical reactions is responsible for a spectrum of fault slip, from earthquake swarms at the transform faults, to slow slip events at the subduction zone. Previous studies demonstrate that serpentine minerals can either promote slip or creep depend on many factors that include sliding velocity, temperature, pressure, interstitial fluids, etc. One missing link from the experimental investigation of serpentine to observations of tectonic faults is the extent of alteration necessary for changing the frictional behaviors. We quantify changes in frictional behavior due to serpentinization by conducting experiments after in-situ serpentinization of olivine gouge. In the sample configuration a layer of powder is sandwiched between porous sandstone blocks with 35° saw-cut surface. The starting material of fine-grained (63 120 µm) olivine powder is reacted with deionized water for 72 hours at 150°C before loading starts. Under the conventional triaxial configuration, the sample is stressed until sliding occurs within the gouge. A series of velocity-steps is then performed to measure the response of friction coefficient to variations of sliding velocity from which the rate-and-state parameters are deduced. For comparison, we measured the frictional behavior of unaltered olivine and pure serpentine gouges.Our results confirm that serpentinization causes reduced frictional strength and velocity weakening. In unaltered olivine gouge, an increase in frictional resistance with increasing sliding velocity is observed, whereas the serpentinized olivine and serpentine gouges favor velocity weakening behaviors at the same conditions. Furthermore, we observed that high pore pressures cause velocity weakening in olivine but velocity strengthening in serpentine. The alteration of frictional behavior is considerable even though the fraction of altered olivine is miniscule. Contrasting frictional responses between olivine and serpentine gouges in response to high pore pressure shed some light on faulting in ultramafic chemical environments.

  8. Denali fault slip rates and Holocene-late Pleistocene kinematics of central Alaska

    USGS Publications Warehouse

    Matmon, A.; Schwartz, D.P.; Haeussler, Peter J.; Finkel, R.; Lienkaemper, J.J.; Stenner, Heidi D.; Dawson, T.E.

    2006-01-01

    The Denali fault is the principal intracontinental strike-slip fault accommodating deformation of interior Alaska associated with the Yakutat plate convergence. We obtained the first quantitative late Pleistocene-Holocene slip rates on the Denali fault system from dating offset geomorphic features. Analysis of cosmogenic 10Be concentrations in boulders (n = 27) and sediment (n = 13) collected at seven sites, offset 25-170 m by the Denali and Totschunda faults, gives average ages that range from 2.4 ± 0.3 ka to 17.0 ± 1.8 ka. These offsets and ages yield late Pleistocene-Holocene average slip rates of 9.4 ± 1.6, 12.1 ± 1.7, and 8.4 ± 2.2 mm/yr-1 along the western, central, and eastern Denali fault, respectively, and 6.0 ± 1.2 mm/yr-1 along the Totschunda fault. Our results suggest a westward decrease in the mean Pleistocene-Holocene slip rate. This westward decrease likely results from partitioning of slip from the Denali fault system to thrust faults to the north and west. 2006 Geological Society of America.

  9. Mixed-Mode Slip Behavior of the Altotiberina Low-Angle Normal Fault System (Northern Apennines, Italy) through High-Resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo

    2017-12-01

    We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.

  10. How does damage affect rupture propagation across a fault stepover?

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; Savage, H. M.

    2011-12-01

    We investigate the potential for fault damage to influence earthquake rupture at fault step-overs using a mechanical numerical model that explicitly includes the generation of cracks around faults. We compare the off-fault fracture patterns and slip profiles generated along faults with a variety of frictional slip-weakening distances and step-over geometry. Models with greater damage facilitate the transfer of slip to the second fault. Increasing separation and decreasing the overlap distance reduces the transfer of slip across the step over. This is consistent with observations of rupture stopping at step-over separation greater than 4 km (Wesnousky, 2006). In cases of slip transfer, rupture is often passed to the second fault before the damage zone cracks of the first fault reach the second fault. This implies that stresses from the damage fracture tips are transmitted elastically to the second fault to trigger the onset of slip along the second fault. Consequently, the growth of damage facilitates transfer of rupture from one fault to another across the step-over. In addition, the rupture propagates along the damage-producing fault faster than along the rougher fault that does not produce damage. While this result seems counter to our understanding that damage slows rupture propagation, which is documented in our models with pre-existing damage, these model results are suggesting an additional process. The slip along the newly created damage may unclamp portions of the fault ahead of the rupture and promote faster rupture. We simulate the M7.1 Hector Mine Earthquake and compare the generated fracture patterns to maps of surface damage. Because along with the detailed damage pattern, we also know the stress drop during the earthquake, we may begin to constrain parameters like the slip-weakening distance along portions of the faults that ruptured in the Hector Mine earthquake.

  11. Scale dependency of fracture energy and estimates thereof via dynamic rupture solutions with strong thermal weakening

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Garagash, D.

    2013-12-01

    Seismological estimates of fracture energy show a scaling with the total slip of an earthquake [e.g., Abercrombie and Rice, GJI 2005]. Potential sources for this scale dependency are coseismic fault strength reductions that continue with increasing slip or an increasing amount of off-fault inelastic deformation with dynamic rupture propagation [e.g., Andrews, JGR 2005; Rice, JGR 2006]. Here, we investigate the former mechanism by solving for the slip dependence of fracture energy at the crack tip of a dynamically propagating rupture in which weakening takes place by strong reductions of friction via flash heating of asperity contacts and thermal pressurization of pore fluid leading to reductions in effective normal stress. Laboratory measurements of small characteristic slip evolution distances for friction (~10 μm at low slip rates of μm-mm/s, possibly up to 1 mm for slip rates near 0.1 m/s) [e.g., Marone and Kilgore, Nature 1993; Kohli et al., JGR 2011] imply that flash weakening of friction occurs at small slips before any significant thermal pressurization and may thus have a negligible contribution to the total fracture energy [Brantut and Rice, GRL 2011; Garagash, AGU 2011]. The subsequent manner of weakening under thermal pressurization (the dominant contributor to fracture energy) spans a range of behavior from the deformation of a finite-thickness shear zone in which diffusion is negligible (i.e., undrained-adiabatic) to that in which large-scale diffusion obscures the existence of a thin shear zone and thermal pressurization effectively occurs by the heating of slip on a plane. Separating the contribution of flash heating, the dynamic rupture solutions reduce to a problem with a single parameter, which is the ratio of the undrained-adiabatic slip-weakening distance (δc) to the characteristic slip-on-a-plane slip-weakening distance (L*). However, for any value of the parameter, there are two end-member scalings of the fracture energy: for small slip, the undrained-adiabatic behavior expectedly results in fracture energy scaling as G ~ δ^2, and for large slip (where TP approaches slip on a plane) we find that G ~ δ^(2/3). This last result is a slight correction to estimates made assuming a constant, kinematically imposed slip rate and slip-on-a-plane TP resulting in G ~ δ^(1/2) [Rice, JGR 2006]. We compile fracture energy estimates of both continental and subduction zone earthquakes. In doing so, we incorporate independent estimates of fault prestress to distinguish fracture energy G from the parameter G' defined by Abercrombie and Rice [2005], which represents the energetic quantity that is most directly inferred following seismological estimates of radiated energy, seismic moment and source radius. We find that the dynamic rupture solutions (which account for the variable manner of thermal pressurization and result in a self-consistent slip rate history) allow for a close match of the estimated fracture energy over several orders of total event slip, further supporting the proposed explanation that fracture energy scaling may largely be attributed to a fault strength that weakens gradually with slip, and additionally, the potential prevalence of thermal pressurization.

  12. Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran

    NASA Astrophysics Data System (ADS)

    Walker, Richard Thomas; Talebian, Morteza; Saiffori, Sohei; Sloan, Robert Alastair; Rasheedi, Ali; MacBean, Natasha; Ghassemi, Abbas

    2010-08-01

    We provide descriptions of strike-slip and reverse faulting, active within the late Quaternary, in the vicinity of Kerman city in southeastern Iran. The faults accommodate north-south, right-lateral, shear between central Iran and the Dasht-e-Lut depression. The regions that we describe have been subject to numerous earthquakes in the historical and instrumental periods, and many of the faults that are documented in this paper constitute hazards for local populations, including the city of Kerman itself (population ˜200,000). Faults to the north and east of Kerman are associated with the transfer of slip from the Gowk to the Kuh Banan right-lateral faults across a 40 km-wide restraining bend. Faults south and west of the city are associated with oblique slip on the Mahan and Jorjafk systems. The patterns of faulting observed along the Mahan-Jorjafk system, the Gowk-Kuh Banan system, and also the Rafsanjan-Rayen system further to the south, appear to preserve different stages in the development of these oblique-slip fault systems. We suggest that the faulting evolves through time. Topography is initially generated on oblique slip faults (as is seen on the Jorjafk fault). The shortening component then migrates to reverse faults situated away from the high topography whereas strike-slip continues to be accommodated in the high, mountainous, regions (as is seen, for example, on the Rafsanjan fault). The reverse faults may then link together and eventually evolve into new, through-going, strike-slip faults in a process that appears to be occurring, at present, in the bend between the Gowk and Kuh Banan faults.

  13. Modelling the role of basement block rotation and strike-slip faulting on structural pattern in the cover units of fold-and-thrust belts

    NASA Astrophysics Data System (ADS)

    Koyi, Hemin; Nilfouroushan, Faramarz; Hessami, Khaled

    2015-04-01

    A series of scaled analogue models are run to study the degree of coupling between basement block kinematics and cover deformation. In these models, rigid basal blocks were rotated about vertical axis in a "bookshelf" fashion, which caused strike-slip faulting along the blocks and, to some degrees, in the overlying cover units of loose sand. Three different combinations of cover basement deformations are modeled; cover shortening prior to basement fault movement; basement fault movement prior to shortening of cover units; and simultaneous cover shortening with basement fault movement. Model results show that the effect of basement strike-slip faults depends on the timing of their reactivation during the orogenic process. Pre- and syn-orogen basement strike-slip faults have a significant impact on the structural pattern of the cover units, whereas post-orogenic basement strike-slip faults have less influence on the thickened hinterland of the overlying fold-and-thrust belt. The interaction of basement faulting and cover shortening results in formation of rhomb features. In models with pre- and syn-orogen basement strike-slip faults, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strike-slip faulting. These rhombic blocks, which have resemblance to flower structures, differ in kinematics, genesis and structural extent. They are bounded by strike-slip faults on two opposite sides and thrusts on the other two sides. In the models, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strke-slip faulting. Such rhomb features are recognized in the Alborz and Zagros fold-and-thrust belts where cover units are shortened simultaneously with strike-slip faulting in the basement. Model results are also compared with geodetic results obtained from combination of all available GPS velocities in the Zagros and Alborz FTBs. Geodetic results indicate domains of clockwise and anticlockwise rotation in these two FTBs. The typical pattern of structures and their spatial distributions are used to suggest clockwise block rotation of basement blocks about vertical axes and their associated strike-slip faulting in both west-central Alborz and the southeastern part of the Zagros fold-and-thrust belt.

  14. The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features

    NASA Astrophysics Data System (ADS)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.

    2016-12-01

    Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our model and field results, we conclude that vertical relief is important for generating and preserving offset features that are viewed as characteristic of a strike-slip fault. Therefore, the geomorphic expression of a fault may be dependent on characteristics of the surrounding landscape rather than primarily a function of the nature of slip on the fault.

  15. The seismic velocity structure of a foreshock zone on an oceanic transform fault: Imaging a rupture barrier to the 2008 Mw 6.0 earthquake on the Gofar fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Lizarralde, D.; Collins, J. A.

    2010-12-01

    East Pacific Rise (EPR) oceanic transform faults are known to exhibit a number of unique seismicity characteristics, including abundant seismic swarms, a prevalence of aseismic slip, and high rates of foreshock activity. Until recently the details of how this behavior fits into the seismic cycle of large events that occur periodically on transforms have remained poorly understood. In 2008 the most recent seismic cycle of the western segment (G3) of the Gofar fault (4 degrees South on the EPR) ended with a Mw 6.0 earthquake. Seismicity associated with this event was recorded by a local array of ocean bottom seismometers, and earthquake locations reveal several distinct segments with unique slip behavior on the G3 fault. Preceding the Mw 6.0 event, a significant foreshock sequence was recorded just to the east of the mainshock rupture zone that included more than 20,000 detected earthquakes. This foreshock zone formed the eastern barrier to the mainshock rupture, and following the mainshock, seismicity rates within the foreshock zone remained unchanged. Based on aftershock locations of events following the 2007 Mw 6.0 event that completed the seismic cycle on the eastern end of the G3 fault, it appears that the same foreshock zone may have served as the western rupture barrier for that prior earthquake. Moreover, mainshock rupture associated with each of the last 8 large (~ Mw 6.0) events on the G3 fault seems to terminate at the same foreshock zone. In order to elucidate some of the structural controls on fault slip and earthquake rupture along transform faults, we present a seismic P-wave velocity profile crossing the center of the foreshock zone of the Gofar fault, as well as a profile for comparison across the neighboring Quebrada fault. Although tectonically similar, Quebrada does not sustain large earthquakes and is thought to accommodate slip primarily aseismically and with small magnitude earthquake swarms. Velocity profiles were obtained using data collected from ~100 km refraction profiles crossing the two faults, each using 8 short period ocean bottom seismometers from OBSIP and over 900 shots from the RV Marcus Langseth. These data are modeled using a 2-D tomographic code that allows joint inversion of the Pg, PmP, and Pn arrivals. We resolve a significant low velocity zone associated with the faults, which likely indicates rocks that have undergone intensive brittle deformation. Low velocities may also signify the presence of metamorphic alteration and/or elevated fluid pressures, both of which could have a significant affect on the friction laws that govern fault slip in these regions. A broad low velocity zone is apparent in the shallow crust (< 3km) at both faults, with velocities that are reduced by more than 1 km/s relative to the surrounding oceanic crust. A narrower zone of reduced seismic velocity appears to extend to mantle depths, and particularly on the Gofar fault, this corresponds with the seismogenic zone inferred from located foreshock seismicity, spanning depths of 3-9 km beneath the seafloor.

  16. Earthquake rupture process recreated from a natural fault surface

    USGS Publications Warehouse

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  17. Frictional properties of the Nankai frontal thrust explain recurring shallow slow slip events

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Ikari, M.; Kopf, A.; Roesner, A.

    2017-12-01

    Recent observations provide evidence for shallow slip reaching to the trench on subduction megathrusts, both in earthquakes and slow slip events (SSE). This is at odds with existing friction studies, which report primarily velocity-strengthening behavior (friction increases with slip velocity) for subduction fault material and synthetic analogs, which leads only to stable sliding. We report on direct shearing experiments on fault rocks from IODP Site C0007, which sampled the frontal thrust of the Nankai accretionary prism. This fault has been implicated in both coseimic slip and recurring SSE. We focus on material from 437.2 meters below seafloor, immediately above a localized shear zone near the base of the fault. In our experiments, a 25 mm diameter cylindrical specimen is loaded in an assembly of two steel plates. After application of normal stress (3, 10, or 17 MPa) and subsequent equilibration, the lower plate is driven at a constant velocity while the upper plate remains stationary; this configuration forces shear to localize between the two plates. After reaching a steady state residual friction coefficient (µss), we conducted velocity-stepping tests to measure the friction rate parameter (a-b), defined as the change in friction for a change in velocity: (a-b) = Δuss/ln(V/Vo), over a range of velocities from 0.1-100 µm s-1. We find that µss ranges from 0.26 to 0.32 and exhibits a slight decrease with normal stress. We observe velocity-weakening behavior at low normal stresses (3-10 MPa) and for low sliding velocities (< 3-10 µm s-1). Values of (a-b)_increase systematically from -0.007 to -0.005 at velocities of 0.3-1 µm s-1, to 0.001-0.045 at velocities >30 µm s-1. At higher normal stress (17 MPa), we observe dominantly velocity-strengthening, consistent with previously reported measurements for 25 MPa normal stress. Our observation of rate weakening at slip rates matching those of SSE in the outer Nankai forearc provide a potential explanation for periodic strain accumulation and subsequent release during SSE near the trench. The observation of rate weakening behavior only at low normal stresses also suggests that nucleation of these SSE should be restricted to shallow depths (< 2-5 km) or zones of elevated pore fluid pressure.

  18. Frictional properties of the Nankai frontal thrust explain recurring shallow slow slip events

    NASA Astrophysics Data System (ADS)

    Scholz, J. R.; Davy, C.; Barruol, G.; Fontaine, F. R.; Cordier, E.

    2016-12-01

    Recent observations provide evidence for shallow slip reaching to the trench on subduction megathrusts, both in earthquakes and slow slip events (SSE). This is at odds with existing friction studies, which report primarily velocity-strengthening behavior (friction increases with slip velocity) for subduction fault material and synthetic analogs, which leads only to stable sliding. We report on direct shearing experiments on fault rocks from IODP Site C0007, which sampled the frontal thrust of the Nankai accretionary prism. This fault has been implicated in both coseimic slip and recurring SSE. We focus on material from 437.2 meters below seafloor, immediately above a localized shear zone near the base of the fault. In our experiments, a 25 mm diameter cylindrical specimen is loaded in an assembly of two steel plates. After application of normal stress (3, 10, or 17 MPa) and subsequent equilibration, the lower plate is driven at a constant velocity while the upper plate remains stationary; this configuration forces shear to localize between the two plates. After reaching a steady state residual friction coefficient (µss), we conducted velocity-stepping tests to measure the friction rate parameter (a-b), defined as the change in friction for a change in velocity: (a-b) = Δuss/ln(V/Vo), over a range of velocities from 0.1-100 µm s-1. We find that µss ranges from 0.26 to 0.32 and exhibits a slight decrease with normal stress. We observe velocity-weakening behavior at low normal stresses (3-10 MPa) and for low sliding velocities (< 3-10 µm s-1). Values of (a-b)_increase systematically from -0.007 to -0.005 at velocities of 0.3-1 µm s-1, to 0.001-0.045 at velocities >30 µm s-1. At higher normal stress (17 MPa), we observe dominantly velocity-strengthening, consistent with previously reported measurements for 25 MPa normal stress. Our observation of rate weakening at slip rates matching those of SSE in the outer Nankai forearc provide a potential explanation for periodic strain accumulation and subsequent release during SSE near the trench. The observation of rate weakening behavior only at low normal stresses also suggests that nucleation of these SSE should be restricted to shallow depths (< 2-5 km) or zones of elevated pore fluid pressure.

  19. Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems

    NASA Astrophysics Data System (ADS)

    Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei

    2017-04-01

    Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could partly explain the faster rates on the western single stranded Haiyuan fault. In addition we constrained 0.55±0.1 mm/yr of uplift rate along the Hasi Shan, where the fault strike veers southward, indicating slip partitioning. Our slip rate along the Hasi Shan segment is consistent with most of the long-term and short-term slip rates ( 5 mm/yr) measured along the central and eastern parts of the Haiyuan fault. However the discrepancy with other studies to the west highlights the major implication of complex geometries on the slip distribution over large fault systems.

  20. Large-scale fault interactions at the termination of a subduction margin

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, V.; Nicol, A., , Prof; Moreno, M.; Oncken, O.; Begg, J.; Kufner, S. K.

    2017-12-01

    Active subduction margins terminate against, and transfer their slip onto, plate-boundary transform faults. The manner in which plate motion is accommodated and partitioned across such kinematic transitions from thrust to strike-slip faulting over earthquake timescales, is poorly documented. The 2016 November 14th, Mw 7.8 Kaikoura Earthquake provides a rare snapshot of how seismic-slip may be accommodated at the tip of an active subduction margin. Analysis of uplift data collected using a range of techniques (field measurements, GPS, LiDAR) and published mapping coupled with 3D dislocation modelling indicates that earthquake-slip ruptured multiple faults with various orientations and slip mechanisms. Modelled and measured uplift patterns indicate that slip on the plate-interface was minor. Instead, a large offshore thrust fault, modelled to splay-off the plate-interface and to extend to the seafloor up to 15 km east of the South Island, appears to have released subduction-related strain and to have facilitated slip on numerous, strike-slip and oblique-slip faults on its hanging-wall. The Kaikoura earthquake suggests that these large splay-thrust faults provide a key mechanism in the transfer of plate motion at the termination of a subduction margin and represent an important seismic hazard.

  1. Pseudotachylyte increases the post-slip strength of faults

    USGS Publications Warehouse

    Proctor, Brooks; Lockner, David A.

    2016-01-01

    Solidified frictional melts, or pseudotachylytes, are observed in exhumed faults from across the seismogenic zone. These unique fault rocks, and many experimental studies, suggest that frictional melting can be an important process during earthquakes. However, it remains unknown how melting affects the post-slip strength of the fault and why many exhumed faults do not contain pseudotachylyte. Analyses of triaxial stick-slip events on Westerly Granite (Rhode Island, USA) sawcuts at confining pressures from 50 to 400 MPa show evidence for frictional heating, including some events energetic enough to generate surface melt. Total and partial stress drops were observed with slip as high as 6.5 mm. We find that in dry samples following melt-producing stick slip, the shear failure strength increased as much as 50 MPa, while wet samples had <10 MPa strengthening. Microstructural analysis indicates that the strengthening is caused by welding of the slip surface during melt quenching, suggesting that natural pseudotachylytes may also strengthen faults after earthquakes. These results predict that natural pseudotachylyte will inhibit slip reactivation and possibly generate stress heterogeneities along faults. Wet samples do not exhibit melt welding, possibly because of thermal pressurization of water reducing frictional heating during slip.

  2. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...

  3. An example of slip instability resulting from displacement-varying strength

    USGS Publications Warehouse

    Lockner, D.; Byerlee, J.

    1990-01-01

    A rock cylinder, containing a clay-filled sawcut making an angle of 30?? to the sample axis, was deformed at constant confining and pore pressures and constant remote shortening rate. The sawcut surfaces contained a series of regularly spaced ridges and grooves oriented perpendicular to the direction of shear. The interaction of these grooved surfaces resulted in a sliding strength which varied periodically with displacement. By varying the effective machine stiffness through the use of an electronic feedback circuit, a range of stable and unstable slip behavior was achieved. In this way, we examined fault slip behavior which was dominated by displacement-dependent strength. ?? 1990 Birkha??user Verlag.

  4. The evolving interaction of low-frequency earthquakes during transient slip.

    PubMed

    Frank, William B; Shapiro, Nikolaï M; Husker, Allen L; Kostoglodov, Vladimir; Gusev, Alexander A; Campillo, Michel

    2016-04-01

    Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.

  5. Slip re-orientation in the oblique Abiquiu embayment, northern Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Murphy, M. A.; Andrea, R. A.

    2015-12-01

    Traditional models of oblique rifting predict that an oblique fault accommodates both dip-slip and strike-slip kinematics. However, recent analog experiments suggest that slip can be re-oriented to almost pure dip-slip on oblique faults if a preexisting weak zone is present at the onset of oblique extension. In this study, we use fault slip data from the Abiquiu embayment in northern Rio Grande rift to test the new model. The Rio Grande rift is a Cenozoic oblique rift extending from southern Colorado to New Mexico. From north to south, it comprises three major half grabens (San Luis, Española, and Albuquerque). The Abiquiu embayment is a sub-basin of the San Luis basin in northern New Mexico. Rift-border faults are generally older and oblique to the trend of the rift, whereas internal faults are younger and approximately N-S striking, i.e. orthogonal to the regional extension direction. Rift-border faults are deep-seated in the basement rocks while the internal faults only cut shallow stratigraphic sections. It has been suggested by many that inherited structures may influence the Rio Grande rifting. Particularly, Laramide structures (and possibly the Ancestral Rockies as well) that bound the Abiquiu embayment strike N- to NW. Our data show that internal faults in the Abiquiu embayment exhibit almost pure dip-slip (rake of slickenlines = 90º ± 15º), independent of their orientations with respect to the regional extension direction. On the contrary, border faults show two sets of rakes: almost pure dip-slip (rake = 90º ± 15º) where the fault is sub-parallel to the foliation, and moderately-oblique (rake = 30º ± 15º) where the fault is high angle to the foliation. We conclude that slip re-orientation occurs on most internal faults and some oblique border faults under the influence of inherited structures. Regarding those border faults on which slip is not re-oriented, we hypothesize that it may be caused by the Jemez volcanism or small-scale mantle convection.

  6. Recent state of stress change in the Walker Lane zone, western Basin and Range province, United States

    NASA Astrophysics Data System (ADS)

    Bellier, Olivier; Zoback, Mary Lou

    1995-06-01

    The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts <300,000 years old and is consistent with the dominantly strike-slip earthquake focal mechanisms and the youngest striae observed on faults in Plio-Quaternary deposits. Geologic control on the timing of the change is poor; it is impossible to determine if there has been a single recent absolute change or if there is, rather, an alternating or cyclical variation in stress magnitudes. Our slip data, in particular, the cross-cutting normal and strike-slip striae on the same fault plane, are inconsistent with postulated simple strain partitioning of deformation within a single regional stress field suggested for the WLZ by Wesnousky and Jones [1994]. The location of the WLZ between the deep-seated regional extension of the Basin and Range and the right-lateral strike-slip regional tectonics of the San Andreas fault zone is probably responsible for the complex interaction of tectonic regimes in this transition zone. In early to mid-Tertiary time the WLZ appears to have had a similarly complex deformational history, in this case as a back arc or intra-arc region, accommodating at least part of the right-lateral component of oblique convergence as well as a component of extension.

  7. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  8. Resonant slow fault slip in subduction zones forced by climatic load stress.

    PubMed

    Lowry, Anthony R

    2006-08-17

    Global Positioning System (GPS) measurements at subduction plate boundaries often record fault movements similar to earthquakes but much slower, occurring over timescales of approximately 1 week to approximately 1 year. These 'slow slip events' have been observed in Japan, Cascadia, Mexico, Alaska and New Zealand. The phenomenon is poorly understood, but several observations hint at the processes underlying slow slip. Although slip itself is silent, seismic instruments often record coincident low-amplitude tremor in a narrow (1-5 cycles per second) frequency range. Also, modelling of GPS data and estimates of tremor location indicate that slip focuses near the transition from unstable ('stick-slip') to stable friction at the deep limit of the earthquake-producing seismogenic zone. Perhaps most intriguingly, slow slip is periodic at several locations, with recurrence varying from 6 to 18 months depending on which subduction zone (or even segment) is examined. Here I show that such periodic slow fault slip may be a resonant response to climate-driven stress perturbations. Fault slip resonance helps to explain why slip events are periodic, why periods differ from place to place, and why slip focuses near the base of the seismogenic zone. Resonant slip should initiate within the rupture zone of future great earthquakes, suggesting that slow slip may illuminate fault properties that control earthquake slip.

  9. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  10. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    PubMed Central

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  11. The Possible Decapitation of a Megathrust Indenter: Evidence from Imaging of Time-dependent Microseismic Structures before and after the 2012 Mw 7.6 Nicoya, Costa Rica

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Yao, D.; Kyriakopoulos, C.; Moore-Driskell, M. M.; Hobbs, T. E.; Peng, Z.; Schwartz, S. Y.; Protti, M.; Gonzalez, V.

    2016-12-01

    We normally view the subduction megathrust surface as a constant structure throughout the seismic cycle, with the elastic loading, microseismicity, and slip occurring along it. However, using small events recorded from a uniquely dense seismic network directly over the active megathrust below Nicoya, Costa Rica, we find two different seismogenic structures with near exclusive time-dependent behavior immediately in the region of maximum coseismic slip. Microseismicity recorded at intervals between 1999 and 2009 showed an elevated topographic indenter beneath central Nicoya, and associated with a suture marking transition between Cocos-Nazca Spreading Center and East-Pacific Rise crusts [Kyriakopoulos et al., JGR 2015]. This indenter is located as a focus of interseismic locking and coseismic rupture [Feng et al., JGR 2012; Yue et al., JGR 2013; Protti et al., Nat. Geosc. 2014; Xue et al., JGR 2015; Kyriakopoulos & Newman, JGR 2016]. However, aftershocks recorded in the months following an MW 7.6 earthquake in 2012 define an entirely different structure about 5 km deeper and differing only in the area of maximum coseismic slip. The location of seismicity switches entirely between these faults from the shallow indenter structure beforehand to the deeper and near-linear feature after. To improve our imaging of the behavior and associated slab structure, we perform a detailed joint seismic relocation and tomographic inversion using TomoDD [Zhang and Thurber, PAGEOPH 2003]. We analyze the new locations relative to the imaged slab geometry, and compare automated formulations of the interfaces using the Maximum Seismicity Method [Kyriakopoulos et al., 2015], with data existing before and after the earthquake. Lastly, we show the sensitivity of using either surface in models for fault slip from regional GPS. We hypothesize that the bifurcated fault structure signifies either active decapitation of the indenter, possibly along the crust-mantle interface of the downgoing slab, or aftershock activity represents the true plate interface, with prior seismic activity dominantly in the hanging wall along a well-defined fault. Either case has implications for understanding the relationship between interseismic and coseismic fault behavior through the seismic cycle.

  12. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  13. Shallow and deep creep events observed and quantified with strainmeters along the San Andreas Fault near Parkfield

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Hodgkinson, K. M.; Mattioli, G. S.; Johnson, W.; Gottlieb, M. H.; Meertens, C. M.

    2016-12-01

    Three-component strainmeter data from numerous borehole strainmeters (BSM) along the San Andreas Fault (SAF), including those that were installed and maintained as part of the EarthScope Plate Boundary Observatory (PBO), demonstrate that the characteristics of creep propagation events with sub-cm slip amplitudes can be quantified for slip events at 10 km source-to-sensor distances. The strainmeters are installed at depths of approximately 100 - 250 m and record data at a rate of 100 samples per second. Noise levels at periods of less than a few minutes are 10-11 strain, and for periods in the bandwidth hours to weeks, the periods of interest in the search for slow slip events, are of the order of 10-8 to 10-10 strain. Strainmeters, creepmeters, and tiltmeters have been operated along the San Andreas Fault, observing creep events for decades. BSM data proximal to the SAF cover a significant temporal portion of the inferred earthquake cycle along this portion of the fault. A single instrument is capable of providing broad scale constraints of creep event asperity size, location, and depth and moreover can capture slow slip, coseismic rupture as well as afterslip. The synthesis of these BSM data presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that the creepmeters confirm that creep events that are imaged by the strainmeters, previously catalogued by the authors, are indeed occurring on the SAF, and are simultaneously being recorded on local creepmeters. We further show that simple models allow us to loosely constrain the location and depth of the creep event on the fault, even with a single instrument, and to image the accumulation and behavior of surface as well as crustal creep with time.

  14. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Schwartz, David P.; Dawson, Timothy E.; Stenner, Heidi D.; Lienkaemper, James J.; Sherrod, Brian; Cinti, Francesca R.; Montone, Paola; Craw, Patricia; Crone, Anthony J.; Personius, Stephen F.

    2004-01-01

    The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slip-distribution data can be used to infer moment release along other active fault traces.

  15. A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake

    NASA Astrophysics Data System (ADS)

    Lay, Thorne

    2018-05-01

    The 2011 March 11 Tohoku-oki great (Mw 9.1) earthquake ruptured the plate boundary megathrust fault offshore of northern Honshu with estimates of shallow slip of 50 m and more near the trench. Non-uniform slip extended 220 km across the width and 400 km along strike of the subduction zone. Extensive data provided by regional networks of seismic and geodetic stations in Japan and global networks of broadband seismic stations, regional and global ocean bottom pressure sensors and sea level measurement stations, seafloor GPS/Acoustic displacement sites, repeated multi-channel reflection images, extensive coastal runup and inundation observations, and in situ sampling of the shallow fault zone materials and temperature perturbation, make the event the best-recorded and most extensively studied great earthquake to date. An effort is made here to identify the more robust attributes of the rupture as well as less well constrained, but likely features. Other issues involve the degree to which the rupture corresponded to geodetically-defined preceding slip-deficit regions, the influence of re-rupture of slip regions for large events in the past few centuries, and relationships of coseismic slip to precursory slow slip, foreshocks, aftershocks, afterslip, and relocking of the megathrust. Frictional properties associated with the slip heterogeneity and in situ measurements of frictional heating of the shallow fault zone support low stress during shallow sliding and near-total shear stress drop of 10-30 MPa in large-slip regions in the shallow megathrust. The roles of fault morphology, sediments, fluids, and dynamical processes in the rupture behavior continue to be examined; consensus has not yet been achieved. The possibility of secondary sources of tsunami excitation such as inelastic deformation of the sedimentary wedge or submarine slumping remains undemonstrated; dislocation models in an elastic continuum appear to sufficiently account for most mainshock observations, although afterslip and viscoelastic processes remain contested.

  16. Late Cretaceous through Cenozoic strike-slip tectonics of southwestern Alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; McClelland, W.

    2002-01-01

    New geologic mapping and geochronology show that margin-parallel strike-slip faults on the western limb of the southern Alaska orocline have experienced multiple episodes of dextral motion since ~100 Ma. These faults are on the upper plate of a subduction zone ~350-450 km inboard of the paleotrench. In southwestern Alaska, dextral displacement is 134 km on the Denali fault, at least 88-94 km on the Iditarod-Nixon Fork fault, and perhaps tens of kilometers on the Dishna River fault. The strike-slip regime coincided with Late Cretaceous sedimentation and then folding in the Kuskokwim basin, and with episodes of magmatism and mineralization at ~70, ~60, and ~30 Ma. No single driving mechanism can explain all of the ~95 million-year history of strike-slip faulting. Since ~40 Ma, the observed dextral sense of strike slip has run contrary to the sense of subduction obliquity. This may be explained by northward motion of the Pacific plate driving continental margin slivers into and/or around the oroclinal bend. From 44 to 66 Ma, oroclinal rotation, perhaps involving large-scale flexural slip, may have been accompanied by westward escape of crustal blocks along strike-slip faults. However, reconstructions of this period involve unproven assumptions about the identity of the subducting plate, the position of subducting ridges, and the exact timing of oroclinal bending, thus obscuring the driving mechanisms of strike slip. Prior to 66 Ma, oblique subduction is the most plausible driving mechanism for dextral strike slip. Cumulative displacement on all faults of the western limb of the orocline is at least 400 km, about half that on the eastern limb; this discrepancy might be explained by a combination of thrusting and unrecognized strike-slip faulting.

  17. Near-fault peak ground velocity from earthquake and laboratory data

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.

    2007-01-01

    We test the hypothesis that peak ground velocity (PGV) has an upper bound independent of earthquake magnitude and that this bound is controlled primarily by the strength of the seismogenic crust. The highest PGVs, ranging up to several meters per second, have been measured at sites within a few kilometers of the causative faults. Because the database for near-fault PGV is small, we use earthquake slip models, laboratory experiments, and evidence from a mining-induced earthquake to investigate the factors influencing near-fault PGV and the nature of its scaling. For each earthquake slip model we have calculated the peak slip rates for all subfaults and then chosen the maximum of these rates as an estimate of twice the largest near-fault PGV. Nine slip models for eight earthquakes, with magnitudes ranging from 6.5 to 7.6, yielded maximum peak slip rates ranging from 2.3 to 12 m/sec with a median of 5.9 m/sec. By making several adjustments, PGVs for small earthquakes can be simulated from peak slip rates measured during laboratory stick-slip experiments. First, we adjust the PGV for differences in the state of stress (i.e., the difference between the laboratory loading stresses and those appropriate for faults at seismogenic depths). To do this, we multiply both the slip and the peak slip rate by the ratio of the effective normal stresses acting on fault planes measured at 6.8 km depth at the KTB site, Germany (deepest available in situ stress measurements), to those acting on the laboratory faults. We also adjust the seismic moment by replacing the laboratory fault with a buried circular shear crack whose radius is chosen to match the experimental unloading stiffness. An additional, less important adjustment is needed for experiments run in triaxial loading conditions. With these adjustments, peak slip rates for 10 stick-slip events, with scaled moment magnitudes from -2.9 to 1.0, range from 3.3 to 10.3 m/sec, with a median of 5.4 m/sec. Both the earthquake and laboratory results are consistent with typical maximum peak slip rates averaging between 5 and 6 m/sec or corresponding maximum near-fault PGVs between 2.5 and 3 m/sec at seismogenic depths, independent of magnitude. Our ability to replicate maximum slip rates in the fault zones of earthquakes by adjusting the corresponding laboratory rates using the ratio of effective normal stresses acting on the fault planes suggests that the strength of the seismogenic crust is the important factor limiting the near-fault PGV.

  18. The vertical slip rate of the Sertengshan piedmont fault, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; He, Zhongtai; Ma, Baoqi; Long, Jianyu; Liang, Kuan; Wang, Jinyan

    2017-08-01

    The vertical slip rate of a normal fault is one of the most important parameters for evaluating its level of activity. The Sertengshan piedmont fault has been studied since the 1980s, but its absolute vertical slip rate has not been determined. In this paper, we calculate the displacements of the fault by measuring the heights of piedmont terraces on the footwall and the stratigraphic depths of marker strata in the hanging wall. We then calculate the vertical slip rate of the fault based on the displacements and ages of the marker strata. We selected nine sites uniformly along the fault to study the vertical slip rates of the fault. The results show that the elevations of terraces T3 and T1 are approximately 1060 m and 1043 m, respectively. The geological boreholes in the basin adjacent to the nine study sites reveal that the elevation of the bottom of the Holocene series is between 1017 and 1035 m and that the elevation of the top of the lacustrine strata is between 925 and 1009 m. The data from the terraces and boreholes also show that the top of the lacustrine strata is approximately 65 ka old. The vertical slip rates are calculated at 0.74-1.81 mm/a since 65 ka and 0.86-2.28 mm/a since the Holocene. The slip rate is the highest along the Wujiahe segment and is lower to the west and east. Based on the findings of a previous study on the fault system along the northern margin of the Hetao graben basin, the vertical slip rates of the Daqingshan and Langshan faults are higher than those of the Sertengshan and Wulashan faults, and the strike-slip rates of these four northern Hetao graben basin faults are low. These results agree with the vertical slip components of the principal stress field on the faults. The results of our analysis indicate that the Langshankou, Wujiahe, and Wubulangkou areas and the eastern end of the Sertengshan fault are at high risk of experiencing earthquakes in the future.

  19. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake

    NASA Astrophysics Data System (ADS)

    Donnellan, Andrea; Parker, Jay; Hensley, Scott; Pierce, Marlon; Wang, Jun; Rundle, John

    2014-03-01

    4 April 2010 M 7.2 El Mayor-Cucapah earthquake that occurred in Baja California, Mexico and terminated near the U.S. Mexican border caused slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults. The pattern of slip was observed using radar interferometry from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument collected on 20-21 October 2009 and 12-13 April 2010. Right-lateral slip of 36 ± 9 and 14 ± 2 mm occurred on the Imperial and Superstition Hills Faults, respectively. Left-lateral slip of 9 ± 2 mm occurred on the East Elmore Ranch Fault. The widths of the zones of displacement increase northward suggesting successively more buried fault motion to the north. The observations show a decreasing pattern of slip northward on a series of faults in the Salton Trough stepping between the El Mayor-Cucapah rupture and San Andreas Fault. Most of the motion occurred at the time of the M 7.2 earthquake and the UAVSAR observations are consistent with field, creepmeter, GPS, and Envisat observations. An additional 28 ± 1 mm of slip at the southern end of the Imperial Fault over a <1 km wide zone was observed over a 1 day span a week after the earthquake suggesting that the fault continued to slip at depth following the mainshock. The total moment release on the three faults is 2.3 × 1023-1.2 × 1024 dyne cm equivalent to a moment magnitude release of 4.9-5.3, assuming shallow slip depths ranging from 1 to 5 km.

  20. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  1. Holocene slip rate along the northern Kongur Shan extensional system: insights on the large pull-apart structure in the NE Pamir

    NASA Astrophysics Data System (ADS)

    Pan, J.; Li, H.; Chevalier, M.; Liu, D.; Sun, Z.; Pei, J.; Wu, F.; Xu, W.

    2013-12-01

    Located at the northwestern end of the Himalayan-Tibetan orogenic belt, the Kongur Shan extensional system (KES) is a significant tectonic unit in the Chinese Pamir. E-W extension of the KES accommodates deformation due to the India/Asia collision in this area. Cenozoic evolution of the KES has been extensively studied, whereas Late Quaternary deformation along the KES is still poorly constrained. Besides, whether the KES is the northern extension of the Karakorum fault is still debated. Well-preserved normal fault scarps are present all along the KES. Interpretation of satellite images as well as field investigation allowed us to map active normal faults and associated vertically offset geomorphological features along the KES. At one site along the northern Kongur Shan detachment fault, in the eastern Muji basin, a Holocene alluvial fan is vertically offset by the active fault. We measured the vertical displacement of the fan with total station, and collected quartz cobbles for cosmogenic nuclide 10Be dating. Combining the 5-7 m offset and the preliminary surface-exposure ages of ~2.7 ka, we obtain a Holocene vertical slip-rate of 1.8-2.6 mm/yr along the fault. This vertical slip-rate is comparable to the right-lateral horizontal-slip rate along the Muji fault (~4.5 mm/yr, which is the northern end of the KES. Our result is also similar to the Late Quaternary slip-rate derived along the KES around the Muztagh Ata as well as the Tashkurgan normal fault (1-3 mm/yr). Geometry, kinematics, and geomorphology of the KES combined with the compatible slip-rate between the right-lateral strike-slip Muji fault and the Kongur Shan normal fault indicate that the KES may be an elongated pull-apart basin formed between the EW-striking right-lateral strike-slip Muji fault and the NW-SE-striking Karakorum fault. This unique elongated pull-apart structure with long normal fault in the NS direction and relatively short strike-slip fault in the ~EW direction seems to still be in formation, with the Karakorum fault still propagating to the north.

  2. Late Quaternary paleoearthquakes along the northern segment of the Nantinghe fault on the southeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sun, Haoyue; He, Honglin; Wei, Zhanyu; Shi, Feng; Gao, Wei

    2017-05-01

    The strong earthquake behaviors of faults are significant for learning crustal deformation mechanisms and for assessing regional seismic risk. To date, faults that bound tectonic blocks have attracted considerable concern and many studies; however, scant attention has been paid to faults within blocks that can also host devastating earthquakes. The Nantinghe fault is a left-lateral strike-slip fault within the Southwestern Yunnan Block, and it slips at ∼4 mm/yr suggesting strong activity in the late Quaternary. Nevertheless, no earthquake greater than 6 has ever been recorded along it, except for the 1941 M ∼7 earthquake near the Myanmar-China border region. In contrast, many earthquakes have occurred in the near region, delineating a seismic gap near the Nantinghe fault. Although several studies have been conducted upon it, the activity of its northern segment is confusing, and whether this fault segment has loaded sufficient stress to fail remains debatable. Furthermore, previous work failed to conduct any paleoseismological studies bringing out great uncertainty in learning its activity and faulting behavior, as well as in assessing the regional seismic risk. To solve these problems, we mapped the fault traces utilizing high-resolution satellite images and aerial photographs, and conducted three paleoseismological trenches along the northern segment of the Nantinghe fault. The trench excavations revealed a ∼45,000-year incomplete paleoearthquake history and confirmed that this fault segment has been active since the late Pleistocene but was not ruptured during the 1941 earthquake. Additionally, at least five paleoearthquakes are identified with their respective age ranges of before 39,030 BCE; 38,500-37,220 BCE; 28,475-5445 BCE; 3535 BCE-800 CE; and 1320-1435 CE based on radiocarbon dating. Among the paleoearthquakes, the latest is suggested to have generated a surface rupture much longer than 14 km with a magnitude likely up to Ms 7.0. Furthermore, based on the elapsed time since the latest paleoearthquake and the sinistral slip rate along the fault, it is proposed that the northern segment of the Nantinghe fault has accumulated a seismic energy equivalent to Ms 7.0, and it is in a high seismic risk along this fault segment and in the neighboring area.

  3. Ground Surface Deformation in Unconsolidated Sediments Caused by Bedrock Fault Movements: Dip-Slip and Strike-Slip Fault Model Test and Field Survey

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Tani, K.

    2001-12-01

    Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.

  4. Secondary Fracturing of Europa's Crust in Response to Combined Slip and Dilation Along Strike-Slip Faults

    NASA Technical Reports Server (NTRS)

    Kattenhorn, S. A.

    2003-01-01

    A commonly observed feature in faulted terrestrial rocks is the occurrence of secondary fractures alongside faults. Depending on exact morphology, such fractures have been termed tail cracks, wing cracks, kinks, or horsetail fractures, and typically form at the tip of a slipping fault or around small jogs or steps along a fault surface. The location and orientation of secondary fracturing with respect to the fault plane or the fault tip can be used to determine if fault motion is left-lateral or right-lateral.

  5. Passive bookshelf faulting driven by gravitational spreading as the cause of the tiger-stripe-fracture formation and development in the South Polar Terrain of Enceladus

    NASA Astrophysics Data System (ADS)

    Yin, A.; Pappalardo, R. T.

    2013-12-01

    Detailed photogeologic mapping of the tiger-stripe fractures in the South Polar Terrain (SPT) of Enceladus indicates that these structures are left-slip faults and terminate at hook-shaped fold-thrust zones and/or Y-shaped horsetail splay-fault zones. The semi-square-shaped tectonic domain that hosts the tiger-stripe faults is bounded by right-slip and left-slip faults on the north and south edges and fold-thrust and extensional zones on the western and eastern edges. We explain the above observations by a passive bookshelf-faulting model in which individual tiger-stripe faults are bounded by deformable wall rocks accommodating distributed deformation. Based on topographic data, we suggest that gravitational spreading had caused the SPT to spread unevenly from west to east. This process was accommodated by right-slip and left-slip faulting on the north and south sides and thrusting and extension along the eastern and southern margins of the tiger-stripe tectonic domain. The uneven spreading, expressed by a gradual northward increase in the number of extensional faults and thrusts/folds along the western and eastern margins, was accommodated by distributed right-slip simple shear across the whole tiger-stripe tectonic domain. This mode of deformation in turn resulted in the development of a passive bookshelf-fault system characterized by left-slip faulting on individual tiger-stripe fractures.

  6. The damage is done: Low fault friction recorded in the damage zone of the shallow Japan Trench décollement

    NASA Astrophysics Data System (ADS)

    Keren, Tucker T.; Kirkpatrick, James D.

    2016-05-01

    Fault damage zones record the integrated deformation caused by repeated slip on faults and reflect the conditions that control slip behavior. To investigate the Japan Trench décollement, we characterized the damage zone close to the fault from drill core recovered during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project (JFAST)). Core-scale and microscale structures include phyllosilicate bands, shear fractures, and joints. They are most abundant near the décollement and decrease in density sharply above and below the fault. Power law fits describing the change in structure density with distance from the fault result in decay exponents (n) of 1.57 in the footwall and 0.73 in the hanging wall. Microstructure decay exponents are 1.09 in the footwall and 0.50 in the hanging wall. Observed damage zone thickness is on the order of a few tens of meters. Core-scale structures dip between ~10° and ~70° and are mutually crosscutting. Compared to similar offset faults, the décollement has large decay exponents and a relatively narrow damage zone. Motivated by independent constraints demonstrating that the plate boundary is weak, we tested if the observed damage zone characteristics could be consistent with low-friction fault. Quasi-static models of off-fault stresses and deformation due to slip on a wavy, frictional fault under conditions similar to the JFAST site predict that low-friction fault produces narrow damage zones with no preferred orientations of structures. These results are consistent with long-term frictional weakness on the décollement at the JFAST site.

  7. Limit on slip rate and timing of recent seismic ground-ruptures on the Jinghong fault, SE of the eastern Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Shi, Xuhua; Weldon, Ray; Liu-Zeng, Jing; Wang, Yu; Weldon, Elise; Sieh, Kerry; Li, Zhigang; Zhang, Jinyu; Yao, Wenqian; Li, Zhanfei

    2018-06-01

    Quantifying slip rates and earthquake occurrence of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to assessing the seismic hazard and understanding the kinematics and geodynamics of this region. Most previous estimates of slip rates are averaged over either many millions of years using offset geological markers or decades using GPS. Well-constrained millennial slip rates of these faults remain sparse and constraints on recurrence rates of damaging earthquakes exist only for a few faults. Here we investigate the millennial slip rate and timing of recent earthquakes on the Jinghong fault, one of the geomorphically most significant sinistral-slip faults on the central Shan Plateau. We map and reconstruct fault offset (18 ± 5 m) of alluvial fan features at Manpa on the central Jinghong fault, using a 0.1 m-resolution digital surface model obtained from an unmanned aerial vehicle survey. We establish a slip rate, ≤2.5 ± 0.7 mm/yr over the past 7000 years, using pit-exposed stratigraphy. This millennial slip rate is consistent with rates averaged over both decadal and million-year timescales. Excavations at three sites near the town of Gelanghe on the northeastern Jinghong fault demonstrate 1) that the last seismic ground-rupture occurred between 482 and 889 cal yr BP, most likely in the narrower window 824-767 cal yr BP, if the lack of large earthquakes in the historical earthquake record is reliable, and 2) that multiple fault ruptures have occurred since 3618 cal yr BP. Combining this finding with a lack of large earthquakes in the 800-year-long Chinese historic record in this region, we suggest an average recurrence interval of seismic ground-ruptures on the order of 1000 years. This recurrence interval is consistent with the slip rate of the Jinghong fault and the size and earthquake frequency on other sinistral faults on the Shan Plateau.

  8. Frictional properties of relic fore arc metasediments from Kodiak Island, AK: Implications for slip in the upper accretionary prism

    NASA Astrophysics Data System (ADS)

    Miller, P.; Rabinowitz, H. S.; Saffer, D. M.; Savage, H. M.

    2017-12-01

    The slip behavior of subduction megathrusts is controlled by the mechanical and frictional properties of the material entrained along the plate interface. The shallow reaches of subduction thrusts (i.e. <20 km) commonly exhibit a stability transition from an updip aseismic zone, where earthquakes typically do not nucleate, to a deeper seismogenic zone. Recent observations indicate that the transitional region hosts a spectrum of slow earthquake phenomena, including Slow Slip Events (SSE's), tremor, and very low frequency earthquakes (VLFE). However, there remain few detailed experimental studies of relevant fault materials under in situ conditions to probe the connections between rock frictional properties and fault slip behavior. To quantitatively understand the evolution of frictional properties along the upper part of the megathrust, we conducted a suite of shearing experiments at pressures and temperatures similar to in situ conditions, using exhumed subduction zone fault rocks composed of metamorphosed clay-rich sediments from Kodiak Island, Alaska. The metasediments we tested have experienced maximum burial depths ranging from 4-6 to 10-15 km, and peak temperatures ranging from 100-125 to 280 oC, making them ideal analogs for investigating the evolution of friction across the stability transition and into the seismogenic zone. These samples were powdered and sheared in a triaxial deformation apparatus at conditions ranging from 25 MPa and 20 oC, to 195 MPa and 200 oC. Preliminary results at room temperature show steady state friction values of 0.56 and rate strengthening behavior (a-b 0.002) with Dc of 19 mm. Ongoing work is characterizing the frictional properties across the stability transition in greater detail.

  9. A crack between two big pieces of rock is made up of different pieces. This controlled how much the rocks slipped last year.

    NASA Astrophysics Data System (ADS)

    Hubbard, J.; Almeida, R. V.; Foster, A. E.; Sapkota, S. N.; Burgi, P.; Tapponnier, P.

    2016-12-01

    The outside layer of the world is broken up into pieces that move. Some of these pieces are moving towards each other. For a very long time, two of these pieces of rock have been pushing together. This has pushed the ground up and has made the highest land in the world. When two big pieces of rock push together, the rocks between them move and change without breaking, because rocks are strong. But eventually, the force is too much, so they break and slip. The place where they slip is called a fault. Try this with a stick - you can force the two ends closer together without breaking it. But if you push the ends together too much, it will snap. Like your stick, when the rocks slip, it happens very suddenly. This makes the ground shake. Last year, the rocks under the highest land in the world broke and slipped. This made the ground shake. Houses and rocks fell down. It killed a lot of people. People knew that this was possible. For years, they have tried to understand how big the shaking might be in this area. To do this, they tried to figure out what the fault looks like. This was hard. They did not agree. They did not know enough about the fault. When the slip happened last year, people used boxes with things inside to learn more about it. Some boxes tell us how the ground moved. Others tell us how the ground shook. We used this to figure out what the fault is like. We think that the fault is made up of different pieces that join together. We colored the fault by how much the rocks slipped. In some places, the rocks slipped only a little bit. In other places, they slipped more than two times as far as a grown-up is tall. When we look at the colors on the fault, we can see that the area that slipped fits onto one piece. The slip stopped at the edges of this piece, where it is joined to other pieces of fault. We think that the way that the pieces of fault are joined controlled how the slip happened. If the slip on a fault stops at the edges of fault pieces both here and in other places, this is important. We need to look all over the world at different faults. We need to learn how the faults are made up of different pieces. Figuring out what controls slip on faults is important. Rocks that break and slip make the ground shake. If we can figure out how much shaking there can be, we can help people get ready. In places where the ground shaking will shake a lot, people can build stronger houses. This will make them safer.

  10. Strike-slip faulting of ridged plains near Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1989-10-01

    This paper identifies and documents several well-preserved examples of Martian strike-slip faults and examines their relationships to wrinkle-ridges. The strike-slip faulting predates or overlaps periods of wrinkle-ridge growth southeast of Valles Marineris, and some wrinkle ridges may have nucleated and grown as a result of strike-slip displacements along the echelon fault arrays. Lateral displacements of several km inferred along these arrays may be related to tectonism in Tharsis.

  11. Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.

    2013-12-01

    It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid Tarim vs. eastern China moving eastward relative to Eurasia), which results in the development of thrust and extensional belts. These zones heterogeneously deform the wall-rock of the major strike-slip faults, causing the faults to stretch (an idea described by W.D. Means 1989 GEOLOGY). This effect is further enhanced by differential fault rotation, leading to more slip in the west, where the effect of India's indentation is more pronounced, than in the east. To investigate the feasibility of this model, we have examined geologic offsets, Quaternary fault slip rates, and GPS velocities, both from existing literature and our own observations. We compare offsets with the estimated shortening and extensional strain in the wall-rocks of the strike-slip faults. For example, if this model is valid, the slip on the eastern segment of the Haiyuan fault (i.e., ~25 km) should be compatible with shortening in the Liupan Shan and extension in the Yinchuan graben. We also present simple analogue model experiments to document the strain accumulated in bookshelf fault systems under different initial and boundary conditions (e.g., rigid vs. free vs. moving boundaries, heterogeneous or homogenous materials, variable strain rates). Comparing these experimentally derived strain distributions with those observed within the plateau can help elucidate which factors dominantly control regional deformation.

  12. An Integrated Geophysical and Geological Investigation of the Transition Zone between the Colorado Plateau, Rio Grande Rift and Basin and Range Provinces: Arizona and New Mexico

    DTIC Science & Technology

    1990-12-01

    The thrust faults often contain enough strike- slip motion to be termed oblique faults (Seager and...Chapin cites the presence of left-lateral 160 oblique slip faults at its northern and southern boundaries, that the down- faulted section almost...and Bilodeau (1984) report that strike- slip motion may involve pre-existing faults , possibly faults associated with the Antler orogeny (Coney,

  13. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    NASA Astrophysics Data System (ADS)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  14. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault

    NASA Astrophysics Data System (ADS)

    Scuderi, M. M.; Collettini, C.; Marone, C.

    2017-11-01

    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  15. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  16. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    USGS Publications Warehouse

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  17. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.

    2004-01-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ???1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales. Copyright 2004 by the American Geophysical Union.

  18. Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...

  19. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake

    USGS Publications Warehouse

    Shen, Z.-K.; Sun, Jielun; Zhang, P.; Wan, Y.; Wang, M.; Burgmann, R.; Zeng, Y.; Gan, Weijun; Liao, H.; Wang, Q.

    2009-01-01

    The disastrous 12 May 2008 Wenchuan earthquake in China took the local population as well as scientists by surprise. Although the Longmen Shan fault zonewhich includes the fault segments along which this earthquake nucleatedwas well known, geologic and geodetic data indicate relatively low (<3 mm yr -1) deformation rates. Here we invert Global Positioning System and Interferometric Synthetic Aperture Radar data to infer fault geometry and slip distribution associated with the earthquake. Our analysis shows that the geometry of the fault changes along its length: in the southwest, the fault plane dips moderately to the northwest but becomes nearly vertical in the northeast. Associated with this is a change in the motion along the fault from predominantly thrusting to strike-slip. Peak slip along the fault occurs at the intersections of fault segments located near the towns of Yingxiu, Beichuan and Nanba, where fatalities and damage were concentrated. We suggest that these locations represent barriers that failed in a single event, enabling the rupture to cascade through several fault segments and cause a major moment magnitude (Mw) 7.9 earthquake. Using coseismic slip distribution and geodetic and geological slip rates, we estimate that the failure of barriers and rupture along multiple segments takes place approximately once in 4,000 years. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  20. Earthquake behavior along the Levant fault from paleoseismology (Invited)

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Le Beon, M.; Wechsler, N.; Rockwell, T. K.

    2013-12-01

    The Levant fault is a major continental structure 1200 km-long that bounds the Arabian plate to the west. The finite offset of this left-lateral strike-slip fault is estimated to be 105 km for the section located south of the restraining bend corresponding roughly to Lebanon. Along this southern section the slip-rate has been estimated over a large range of time scales, from few years to few hundreds thousands of years. Over these different time scales, studies agree for the slip-rate to be 5mm/yr × 2 mm/yr. The southern section of the Levant fault is particularly attractive to study earthquake behavior through time for several reasons: 1/ The fault geometry is simple and well constrained. 2/ The fault system is isolated and does not interact with obvious neighbor fault systems. 3/ The Middle-East, where the Levant fault is located, is the region in the world where one finds the longest and most complete historical record of past earthquakes. About 30 km north of the city of Aqaba, we opened a trench in the southern part of the Yotvata playa, along the Wadi Araba fault segment. The stratigraphy presents silty sand playa units alternating with coarser sand sediments from alluvial fans flowing westwards from the Jordan plateau. Two fault zones can be recognized in the trench and a minimum of 8 earthquakes can be identified, based on upward terminations of ground ruptures. Dense 14C dating through the entire exposure allows matching the 4 most recent events with historical events in AD1458, AD1212, AD1068 and AD748. Size of the ground rupture suggests a bi-modal distribution of earthquakes with earthquakes rupturing the entire Wadi Araba segment and earthquakes ending in the extensional jog forming the playa. Timing of earthquakes shows that no earthquakes occurred at this site since about 600 years, suggesting earthquake clustering along this section of the fault and potential for a large earthquake in the near future. 3D paleoseismological trenches at the Beteiha site, north of the lake Tiberias, show that there the earthquake activity varies significantly through time, with periods of intense seismic activity associated to small horizontal offsets and periods of bigger earthquakes with larger offsets. Hence, earthquake clustering also seems to govern earthquake occurrence along this segment of the Levant fault. On the contrary, further north, where the fault bends and deformation is spread between several parallel faults, paleoseismological trenches at the Yammouneh site show that earthquakes seem to be fairly regular every 800 years. Such difference in behavior along different sections of the fault suggests that the fault geometry might play an important role in the way earthquakes are distributed through time.

  1. Character and Significance of Surface Rupture Near the Intersection of the Denali and Totschunda Faults, M7.9 Denali Fault Earthquake, Alaska, November 3, 2002

    NASA Astrophysics Data System (ADS)

    Wallace, W. K.; Sherrod, B. L.; Dawson, T. E.

    2002-12-01

    Preliminary observations suggest that right-lateral strike-slip on the Denali fault is transferred to the Totschunda fault via an extensional bend in the Little Tok River valley. Most of the surface rupture during the Denali fault earthquake was along an east- to east-southeast striking, gently curved segment of the Denali fault. However, in the Little Tok River valley, rupture transferred to the southeast-striking Totschunda fault and continued to the southeast for another 75 km. West of the Little Tok River valley, 5-7 m of right-lateral slip and up to 2 m of vertical offset occurred on the main strand of the Denali fault, but no apparent displacement occurred on the Denali fault east of the valley. Rupture west of the intersection also occurred on multiple discontinuous strands parallel to and south of the main strand of the Denali fault. In the Little Tok River valley, the northern part of the Totschunda fault system consists of multiple discontinuous southeast-striking strands that are connected locally by south-striking stepover faults. Faults of the northern Totschunda system display 0-2.5 m of right-lateral slip and 0-2.75 m of vertical offset, with the largest vertical offset on a dominantly extensional stepover fault. The strands of the Totschunda system converge southeastward to a single strand that had up to 2 m of slip. Complex and discontinuous faulting may reflect in part the immaturity of the northern Totschunda system, which is known to be younger and have much less total slip than the Denali. The Totschunda fault forms an extensional bend relative to the dominantly right-lateral Denali fault to the west. The fault geometry and displacements at the intersection suggest that slip on the Denali fault during the earthquake was accommodated largely by extension in the northern Totschunda fault system, allowing a significant decrease in strike-slip relative to the Denali fault. Strands to the southwest in the area of the bend may represent shortcut faults that have reduced the curvature at the intersection of the two fault systems.

  2. Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa

    NASA Astrophysics Data System (ADS)

    Heesakkers, V.; Murphy, S.; Reches, Z.

    2011-12-01

    We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in oblique-normal slip. The mechanical analysis of this rupture-zone is presented in Part II (H eesakkers et al., Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona mine, South Africa 2011, this volume).

  3. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  4. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, Jian

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  5. Transpressional Rupture Cascade of the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Feng, Guangcai; Meng, Lingsen; Zhang, Ailin; Ampuero, Jean Paul; Bürgmann, Roland; Fang, Lihua

    2018-03-01

    Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. Teleseismic back projection imaging shows that rupture speed was overall slow (1.4 km/s) but faster on individual fault segments (approximately 2 km/s) and that the conjugate, oblique-reverse, north striking faults released the largest high-frequency energy. We show that the linking Conway-Charwell faults aided in propagation of rupture across the step over from the Humps fault zone to the Hope fault. Fault slip cascaded along the Jordan Thrust, Kekerengu, and Needles faults, causing stress perturbations that activated two major conjugate faults, the Hundalee and Papatea faults. Our results shed important light on the study of earthquakes and seismic hazard evaluation in geometrically complex fault systems.

  6. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .

  7. Focal Mechanisms of Recent Earthquakes in the Southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, W.; Chung, T.; Baag, C.; Ree, J.

    2005-12-01

    There has been a lack of seismic data in the Korean Peninsula mainly because it is in a seismically stable area within the Eurasian plate (or Amurian microplate) and because a network of seismic stations has been poor until recently. Consequently, first motion studies on the peninsula showed a large uncertainty or covered only local areas. Also, a tectonic province map constructed based on pre-Cenozoic tectonic events in Korea has been used for a seismic zonation. To solve these problems, we made focal mechanism solutions for 71 earthquakes (ML = 1.9 to 5.2) occurred in and around the peninsula from 1999 to 2004 and collected by a new dense seismic network established since 1995. For this, we relocated the hypocenters and obtained fault plane solutions with errors of fault parameter less than 15° from the data set of 1,270 clear P-wave polarities and from 46 SH/P amplitude ratios. The focal mechanism solutions show that subhorizontal ENE P- and subhorizontal NNW T-axes are predominant, representing the common direction of P- and T-axes within the Amurian plate. The faulting mechanisms are mostly strike-slip faulting or strike-slip-dominant-oblique-slip faulting with a reverse-slip component, although normal-slip-dominant-oblique-slip faultings occur locally probably due to a local reorientation of stress. These results incorporated with those from the kinematic studies of the Quaternary faults imply that NNE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea. The spatial distribution of the maximum horizontal stress direction and faulting types does not correlate with the preexisting tectonic province map of Korea, and a new construction of seismic zonation map is required for a better seismic evaluation.

  8. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data

    USGS Publications Warehouse

    Schmidt, D.A.; Burgmann, R.; Nadeau, R.M.; d'Alessio, M.

    2005-01-01

    We solve for the slip rate distribution on the Hayward fault by performing a least squares inversion,of geodetic and seismic data sets. Our analysis focuses on the northern 60 km of the fault. Interferometric synthetic aperture radar (InSAR) data from 13 independent ERS interferograms are stacked to obtain range change rates from 1992 to 2000. Horizontal surface displacement rates at 141 bench marks are measured using GPS from 1994 to 2003. Surface creep observations and estimates of deep slip rates determined from characteristic repeating earthquake sequences are also incorporated in the inversion. The fault is discretized into 283 triangular dislocation elements that approximate the nonplanar attributes of the fault surface. South of the city of Hayward, a steeply, east dipping fault geometry accommodates the divergence of the surface trace and the microseismicity at depth. The inferred slip rate distribution is consistent with a fault that creeps aseismically at a rate of ???5 mm/yr to a depth of 4-6 km. The interferometric synthetic aperture radar (InSAR) data require an aseismic slip rate that approaches the geologic slip rate on the northernmost fault segment beneath Point Pinole, although the InSAR data might be complicated by a small dip-slip component at this location. A low slip rate patch of <1 mm/yr is inferred beneath San Leandro consistent with the source location of the 1868 earthquake. We calculate that the entire fault is accumulating a slip rate deficit equivalent to a Mw = 6.77 ?? 0.05 per century. However, this estimate of potential coseismic moment represents an upper bound because we do not know how much of the accumulated strain will be released through aseismic processes such as afterslip. Copyright 2005 by the American Geophysical Union.

  9. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...

  10. Source model and Coulomb stress change of 2017 Mw 6.5 Philippine (Ormoc) Earthquake revealed by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tsai, M. C.; Hu, J. C.; Yang, Y. H.; Hashimoto, M.; Aurelio, M.; Su, Z.; Escudero, J. A.

    2017-12-01

    Multi-sight and high spatial resolution interferometric SAR data enhances our ability for mapping detailed coseismic deformation to estimate fault rupture model and to infer the Coulomb stress change associated with a big earthquake. Here, we use multi-sight coseismic interferograms acquired by ALOS-2 and Sentinel-1A satellites to estimate the fault geometry and slip distribution on the fault plane of the 2017 Mw 6.5 Ormoc Earthquake in Leyte island of Philippine. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 325.8º and dip of 78.5ºE. This model infers that the rupture of 2017 Ormoc earthquake is dominated by left-lateral slip with minor dip-slip motion, consistent with the left-lateral strike-slip Philippine fault system. The fault tip has propagated to the ground surface, and the predicted coseismic slip on the surface is about 1 m located at 6.5 km Northeast of Kananga city. Significant slip is concentrated on the fault patches at depth of 0-8 km and an along-strike distance of 20 km with varying slip magnitude from 0.3 m to 2.3 m along the southwest segment of this seismogenic fault. Two minor coseismic fault patches are predicted underneath of the Tononan geothermal field and the creeping segment of the northwest portion of this seismogenic fault. This implies that the high geothermal gradient underneath of the Tongonan geothermal filed could prevent heated rock mass from the coseismic failure. The seismic moment release of our preferred fault model is 7.78×1018 Nm, equivalent to Mw 6.6 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the northwest segment of the Philippine fault in Leyte Island which has coseismic slip deficit and is absent from aftershocks. Consequently, this segment should be considered to have increasing of risk for future seismic hazard.

  11. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Allen, M. B.; Kheirkhah, M.; Emami, M.

    2009-04-01

    New offset determinations for right-lateral strike-slip faults in Iran redefine the kinematics of the Arabia-Eurasia collision. A series of right-lateral strike-slip faults is present across Iran between 48° and 57° E. Fault strikes vary between NW-SE and NNW-SSE. Individual faults west of ~53° E were active in the late Tertiary, but have limited evidence of activity. Faults east of ~53° E are seismically active and/or have geomorphic evidence for Holocene slip. None of the faults affects the GPS-derived regional velocity field, indicating active slip rates are ≤2 mm/yr. We estimate overall slip on these faults from offset geological and geomorphic markers, based on observations from satellite imagery, digital topography, geology maps and our own fieldwork observations, and combine these results with published estimates for fault slip in the east of the study area. Total offset of the Takab, Soltanieh, Indes, Bid Hand, Qom, Kashan, Deh Shir, Anar, Daviran, Kuh Banan and Dehu faults is at least 270 km and possibly higher. Other faults (e.g. Rafsanjan) have unknown amounts of right-lateral slip. Collectively, these faults are inferred to have accommodated part of the Arabia-Eurasia convergence by two mechanisms: (1) anti-clockwise, vertical axis rotations; (2) strain partitioning with coeval NE-SW crustal thickening in the Turkish-Iranian plateau to produce ~350 km of north-south plate convergence. The strike-slip faulting across Iran requires along-strike lengthening of the deformation zone. This was possible until the Pliocene, when the Afghan crust collided with the western margin of the Indian plate, thereby sealing off a free face at the eastern side of the Arabia-Eurasia collision zone. Continuing Arabia-Eurasia plate convergence had to be accommodated in new ways and new areas, leading to the present pattern of faulting from eastern Iran to western Turkey.

  12. Coseismic displacement caused by the Mw 6.1 Mashhad earthquake in NE Iran from Sentinel-1A TOPS radar images

    NASA Astrophysics Data System (ADS)

    Su, Z.; Hu, J. C.; Talebian, M.

    2017-12-01

    Determining the relationship between crustal movement and associated slip partitioning is essential for understanding earthquake source and addressing the proposed models of a potential earthquake hazard. An Mw 6.1 earthquake struck the southeastern margin of the Mashhad valley in the northeast of Iran on 5 April 2017. In this study, we use both the ascending and descending mode of Sentinel-1A TOPS satellite data to characterize coseismic deformation pattern and to inverse the coseismic slip distribution on the fault patches. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 324.4º and dip of 28.1ºE. Our results show the fault tip does not propagate to the ground surface, and the predicted coseismic slip on the surface is about 0.11 m located on the hanging wall of the fault. Significant slip is concentrated on the fault patches at depth of 4-8 km and an along-strike distance of 10 km with varying slip magnitude from 0.1 m to 0.9 m. The fault slip is composed by thrusting with right-lateral strike slip, which is consistent with the focal mechanism solution. The over-thrusting was occurred from the depth of 14 km and terminated at the 4 km depth. While the right-lateral strike slip was only concentrated at a shallower depth of 4 to 8 km depth with the maximum slip of 0.9 m. The seismic moment release of our preferred fault model is 1.71×1018 Nm, equivalent to Mw 6.16 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the three paralleled subsidiary faults of the southernmost Mashhad and Kashafrud fault, the Tus, Sorkhdeh and Natu faults. Consequently, these segments should be considered to have increasing of risk for future seismic hazard. Although most of the northward motion of the Lut and Central Iranian Blocks have been absorbed by the crustal shortening (e.g. thrusting and folding along the Binalud and Kopeh Dagh), simple strike-slip faulting also play an important role in the slip partitioning from the north to the south in NE Iran.

  13. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  14. Unified law of evolution of experimental gouge-filled fault for fast and slow slip events at slider frictional experiments

    NASA Astrophysics Data System (ADS)

    Ostapchuk, Alexey; Saltykov, Nikolay

    2017-04-01

    Excessive tectonic stresses accumulated in the area of rock discontinuity are released while a process of slip along preexisting faults. Spectrum of slip modes includes not only creeps and regular earthquakes but also some transitional regimes - slow-slip events, low-frequency and very low-frequency earthquakes. However, there is still no agreement in Geophysics community if such fast and slow events have mutual nature [Peng, Gomberg, 2010] or they present different physical phenomena [Ide et al., 2007]. Models of nucleation and evolution of fault slip events could be evolved by laboratory experiments in which regularities of shear deformation of gouge-filled fault are investigated. In the course of the work we studied deformation regularities of experimental fault by slider frictional experiments for development of unified law of evolution of fault and revelation of its parameters responsible for deformation mode realization. The experiments were conducted as a classic slider-model experiment, in which block under normal and shear stresses moves along interface. The volume between two rough surfaces was filled by thin layer of granular matter. Shear force was applied by a spring which deformed with a constant rate. In such experiments elastic energy was accumulated in the spring, and regularities of its releases were determined by regularities of frictional behaviour of experimental fault. A full spectrum of slip modes was simulated in laboratory experiments. Slight change of gouge characteristics (granule shape, content of clay), viscosity of interstitial fluid and level of normal stress make it possible to obtained gradual transformation of the slip modes from steady sliding and slow slip to regular stick-slip, with various amplitude of 'coseismic' displacement. Using method of asymptotic analogies we have shown that different slip modes can be specified in term of single formalism and preparation of different slip modes have uniform evolution law. It is shown that shear stiffness of experimental fault is the parameter, which control realization of certain slip modes. It is worth to be mentioned that different serious of transformation is characterized by functional dependences, which have general view and differ only in normalization factors. Findings authenticate that slow and fast slip events have mutual nature. Determination of fault stiffness and testing of fault gouge allow to estimate intensity of seismic events. The reported study was funded by RFBR according to the research project № 16-05-00694.

  15. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    NASA Astrophysics Data System (ADS)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow and fault interaction changes due to geometrical effects.

  16. Slip Behavior of the Queen Charlotte Plate Boundary Before and After the 2012, MW 7.8 Haida Gwaii Earthquake: Evidence From Repeating Earthquakes

    NASA Astrophysics Data System (ADS)

    Hayward, Tim W.; Bostock, Michael G.

    2017-11-01

    The Queen Charlotte plate boundary, near Haida Gwaii, B.C., includes the dextral, strike-slip, Queen Charlotte Fault (QCF) and the subduction interface between the downgoing Pacific and overriding North American plates. In this study, we present a comprehensive repeating earthquake catalog that represents an effective slip meter for both structures. The catalog comprises 712 individual earthquakes (0.3≤MW≤3.5) arranged into 224 repeating earthquake families on the basis of waveform similarity and source separation estimates from coda wave interferometry. We employ and extend existing relationships for repeating earthquake magnitudes and slips to provide cumulative slip histories for the QCF and subduction interface in six adjacent zones within the study area between 52.3°N and 53.8°N. We find evidence for creep on both faults; however, creep rates are significantly less than plate motion rates, which suggests partial locking of both faults. The QCF exhibits the highest degrees of locking south of 52.8°N, which indicates that the seismic hazard for a major strike-slip earthquake is highest in the southern part of the study area. The 28 October 2012, MW 7.8 Haida Gwaii thrust earthquake occurred in our study area and altered the slip dynamics of the plate boundary. The QCF is observed to undergo accelerated, right-lateral slip for 1-2 months following the earthquake. The subduction interface exhibits afterslip thrust motion that persists for the duration of the study period (i.e., 3 years and 2 months after the Haida Gwaii earthquake). Afterslip is greatest (5.7-8.4 cm/yr) on the periphery of the main rupture zone of the Haida Gwaii event.

  17. Evidence for a high slip rate of the Calico fault in the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Xie, S.; Wetmore, P. H.; Owen, L. A.; Gallant, E.; Dixon, T. H.

    2016-12-01

    Fault slip rates provide important constraint on seismic hazard assessments. Geologic and geodetic estimates of slip rates across the Eastern California Shear Zone (ECSZ) reveal a discrepancy between the two data sets. Most studies attempting to reconcile the discrepancy have focused on off-fault deformation and the technique limitation of short-term geodetic measurements, while there is less concern about the relatively small number of cited geologic slip rates. The Calico fault is central fault in the Mojave Desert portion of the ECSZ, where published geologic slip rates are between 1 and 2 mm/yr. We determine new geologic slip rates of the Calico fault by dating two offset alluvial fans near the town of Newberry Springs, California. Correlation of the offset fans was based on geomorphic and soil development characteristics. Offset magnitudes are based on high-resolution topography and orthoimagery, and by cropping and matching the alluvial fans along the fault trace. Surface displacements of the two offset fans are 80 m and 1120 m. Surface exposure ages of alluvial fan samples are dated using the production of 10Be terrestrial cosmogenic nuclide (TCN). The fan with an 80 m offset produced an age of 40 ka, yielding a slip rate of 2 mm/yr, consistent with previous studies. The fan with displacement of 1120 m produced an age of 290 ka, yielding a slip rate of 4 mm/yr, indicating that the Calico fault likely had a much higher slip rate early and has decreased more recently.

  18. The 1999 Hector Mine Earthquake, Southern California: Vector Near-Field Displacements from ERS InSAR

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Sichoix, Lydie; Smith, Bridget

    2002-01-01

    Two components of fault slip are uniquely determined from two line-of-sight (LOS) radar interferograms by assuming that the fault-normal component of displacement is zero. We use this approach with ascending and descending interferograms from the ERS satellites to estimate surface slip along the Hector Mine earthquake rupture. The LOS displacement is determined by visually counting fringes to within 1 km of the outboard ruptures. These LOS estimates and uncertainties are then transformed into strike- and dip-slip estimates and uncertainties; the transformation is singular for a N-S oriented fault and optimal for an E-W oriented fault. In contrast to our previous strike-slip estimates, which were based only on a descending interferogram, we now find good agreement with the geological measurements, except at the ends of the rupture. The ascending interferogram reveals significant west-sidedown dip-slip (approximately 1.0 m) which reduces the strike-slip estimates by 1 to 2 m, especially along the northern half of the rupture. A spike in the strike-slip displacement of 6 m is observed in central part of the rupture. This large offset is confirmed by subpixel cross correlation of features in the before and after amplitude images. In addition to strike slip and dip slip, we identify uplift and subsidence along the fault, related to the restraining and releasing bends in the fault trace, respectively. Our main conclusion is that at least two look directions are required for accurate estimates of surface slip even along a pure strike-slip fault. Models and results based only on a single look direction could have major errors. Our new estimates of strike slip and dip slip along the rupture provide a boundary condition for dislocation modeling. A simple model, which has uniform slip to a depth of 12 km, shows good agreement with the observed ascending and descending interferograms.

  19. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    USGS Publications Warehouse

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  20. The frictional strength of talc gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofeng; Elwood Madden, Andrew S.; Reches, Ze'ev

    2017-05-01

    Talc is present in several large-scale fault zones worldwide and is mineralogically stable at temperature of the upper crust. It is therefore necessary to gain a better understanding of the frictional behavior of talc under a wide range of slip velocity conditions occurring during the seismic cycle. We analyzed the frictional and structural characteristics of room-dry and water-saturated talc gouge by shear experiments on a confined gouge layer at slip velocity range of 0.002-0.66 m/s and normal stress up to 4.1 MPa. Room-dry talc showed a distinct slip-strengthening with the initial friction coefficient of μ 0.4 increased systematically to μ 1 at slip distance D > 1 m. Room-dry talc also displayed velocity-strengthening at slip distances shorter than 1 m. The water-saturated talc gouge displayed systematic low frictional strength of μ = 0.1-0.3 for the entire experimental range, with clear velocity-strengthening behavior with positive (a-b) values (rate dependence parameter of rate and state friction) of 0.01-0.04. The microstructural analyses revealed distributed shear and systematic dilation (up to 50%) for the room-dry talc, in contrast to the extreme slip localization and strong shear compaction for water-saturated talc. We propose that talc frictional strength is controlled by lubrication along cleavage surfaces that is facilitated by adsorbed water (room-dry) and surplus water (water-saturated). This mechanism can explain our experimental observations of slip-strengthening and velocity-strengthening for both types of talc gouge, as well as other clay minerals. It is thus expected that talc presence in fault zones would enhance creep and inhibit unstable slip.

  1. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Lin, J. C.

    2015-12-01

    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip fault systems, both on Earth and throughout the solar system (e.g., the Tiger Stripe Fractures on Enceladus).

  2. Pore fluid pressure and the seismic cycle

    NASA Astrophysics Data System (ADS)

    French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.

    2017-12-01

    In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes seismogenesis in the brittle shallow crust where fluid pressures are elevated but sub-lithostatic and promote slow, stable failure near seismic to aseismic transitions and under near-lithostatic fluid pressures.

  3. Extensional tectonics and collapse structures in the Suez Rift (Egypt)

    NASA Technical Reports Server (NTRS)

    Chenet, P. Y.; Colletta, B.; Desforges, G.; Ousset, E.; Zaghloul, E. A.

    1985-01-01

    The Suez Rift is a 300 km long and 50 to 80 km wide basin which cuts a granitic and metamorphic shield of Precambrian age, covered by sediments of Paleozoic to Paleogene age. The rift structure is dominated by tilted blocks bounded by NW-SE normal faults. The reconstruction of the paleostresses indicates a N 050 extension during the whole stage of rifting. Rifting began 24 My ago with dikes intrusions; main faulting and subsidence occurred during Early Miocene producing a 80 km wide basin (Clysmic Gulf). During Pliocene and Quaternary times, faulting is still active but subsidence is restricted to a narrower area (Present Gulf). On the Eastern margin of the gulf, two sets of fault trends are predominant: (1) N 140 to 150 E faults parallel to the gulf trend with pure dip-slip displacement; and (2) cross faults, oriented NOO to N 30 E that have a strike-slip component consistent with the N 050 E distensive stress regime. The mean dip cross fault is steeper (70 to 80 deg) than the dip of the faults parallel to the Gulf (30 to 70 deg). These two sets of fault define diamond shaped tilted block. The difference of mechanical behavior between the basement rocks and the overlying sedimentary cover caused structural disharmony and distinct fault geometries.

  4. Steady, modest slip over multiple earthquake cycles on the Owens Valley and Little Lake fault zones

    NASA Astrophysics Data System (ADS)

    Amos, C. B.; Haddon, E. K.; Burgmann, R.; Zielke, O.; Jayko, A. S.

    2015-12-01

    A comprehensive picture of current plate-boundary deformation requires integration of short-term geodetic records with longer-term geologic strain. Comparing rates of deformation across these time intervals highlights potential time-dependencies in both geodetic and geologic records and yields critical insight into the earthquake deformation process. The southern Walker Lane Belt in eastern California represents one location where short-term strain recorded by geodesy apparently outpaces longer-term geologic fault slip measured from displaced rocks and landforms. This discrepancy persists both for individual structures and across the width of the deforming zone, where ~1 cm/yr of current dextral shear exceeds Quaternary slip rates summed across individual faults. The Owens Valley and Little Lake fault systems form the western boundary of the southern Walker Lane and host a range of published slip rate estimates from ~1 - 7 mm/yr over varying time intervals based on both geodetic and geologic measurements. New analysis of offset geomorphic piercing lines from airborne lidar and field measurements along the Owens Valley fault provides a snapshot of deformation during individual earthquakes and over many seismic cycles. Viewed in context of previously reported ages from pluvial and other landforms in Owens Valley, these offsets suggest slip rates of ~0.6 - 1.6 mm/yr over the past 103 - 105 years. Such rates agree with similar estimates immediately to the south on the Little Lake fault, where lidar measurements indicate dextral slip averaging ~0.6 - 1.3 mm/yr over comparable time intervals. Taken together, these results suggest steady, modest slip in the absence of significant variations over the Mid-to-Late Quaternary for a ~200 km span of the southwestern Walker Lane. Our findings argue against the presence of long-range fault interactions and slip-rate variations for this portion of the larger, regional fault network. This result also suggests that faster slip-rate estimates from geodetic measurements reflect transients over much shorter time scales. Additionally, the persistence of relatively faster geodetic shear in comparison with time-averaged fault slip leaves open the possibility of significant off-fault deformation or slip on subsidiary structures across the Owens Valley.

  5. Surface Creep along the Chaman Fault on the Pakistan-Afghanistan Border imaged by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Furuya, M.; Satyabala, S.; Bilham, R.

    2006-12-01

    The Chaman fault system is an on-land transform separating the Indian and Asian plates. From the Arabia/Asia/India triple junction on the Makran coast it passes north through Baluchistan, trending NNE into Afghanistan before merging with the Himalayan arc in the North West Frontier province of Pakistan. Geological and plate closure estimates of slip on the system suggest sinistral slip of between 1.9 and 3.5 cm/yr over the last 25 Ma. Oblique convergence occurs near and north of Quetta, Pakistan where it is accommodated by thrust faulting in ranges to the east of the apparently pure strike-slip Chaman fault. We present InSAR analyses that suggest that a 110 km segment of the Chaman fault system north of Quetta may be experiencing shallow aseismic slip (creep). ERS-1/-2 data indicate a change in range along a 110 km segment of the Chaman fault by as much as 7.8 mm/yr. The absence of ascending pass scenes means that we cannot exclude the possibility that some or all of this sinistral slip occurs as vertical displacement, although we suspect that slip partitioning may rule out a substantial vertical component to the observed slip. The trend of the Chaman fault lies nearly perpendicular to the satellite range direction reducing the signal to noise ratio and rendering the data too noisy to assess the locking depth of creep on the fault, although it would appear to be locked at least 5 km beneath the surface. We note the length and rate of slip of the creeping segment of the Chaman fault is similar to that of the Hayward fault in California.

  6. Strike-slip Fault Structure in the Salton Trough and Deformation During and After the 2010 M7.2 El Mayor-Cucapah Earthquake from Geodetic and Seismic Data

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Sun, J.; Gonzalez-Ortega, A.; González-Escobar, M.; Freed, A. M.; Burgmann, R.; Samsonov, S. V.; Gonzalez-Garcia, J.; Fletcher, J. M.; Hinojosa, A.

    2013-12-01

    The Pacific-North America plate boundary character changes southward from the strike-slip and transpressional configuration along most of California to oblique rifting in the Gulf of California, with a transitional zone of transtension beneath the Salton Trough in southernmost California and northern Mexico. The Salton Trough is characterized by extremely high heat flow and thin lithosphere with a thick fill of sedimentary material delivered by the Colorado River during the past 5-6 million years. Because of the rapid sedimentation, most of the faults in Salton Trough are buried and reveal themselves when they slip either seismically or aseismically. They can also be located by refraction and reflection of seismic waves. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in Baja California and Sonora, Mexico is probably the largest earthquake in the Salton Trough for at least 120 years, and had primarily right-lateral strike-slip motion. The earthquake ruptured a complex set of faults that lie to the west of the main plate boundary fault, the Cerro Prieto Fault, and shows that the strike-slip fault system in the southern Salton Trough has multiple sub-parallel active faults, similar to southern California. The Cerro Prieto Fault is still likely absorbing the majority of strain in the plate boundary. We study the coseismic and postseismic deformation of the 2010 earthquake with interferometric analysis of synthetic aperture radar (SAR) images (InSAR) and pixel tracking by subpixel correlation of SAR and optical images. We combine sampled InSAR and subpixel correlation results with GPS (Global Positioning System) offsets at PBO (Plate Boundary Observatory) stations to estimate the likely subsurface geometry of the major faults that slipped during the earthquake and to derive a static coseismic slip model. We constrained the surface locations of the fault segments to mapped locations in the Sierra Cucapah to the northwest of the epicenter. SAR along-track offsets, especially on ALOS images, show that there is a large amount of right-lateral slip (1-3 m) on a previously unmapped system of faults extending about 60 km to the southeast of the epicenter beneath the Colorado River Delta named the Indiviso Fault system. The finite fault slip modeling shows a bilateral rupture with coseismic fault slip shallower than 10 km on the faults to the NW (dipping NE) and SE (dipping SW) of the epicenter. The southeastern end of the coseismic ruptures has complex fault geometry, including both east- and west-dipping faults revealed by recently reprocessed seismic reflection profiles. This new coseismic fault geometry will be the basis for a new finite element model of the crust and mantle for modeling of the coseismic slip with realistic 3D elastic structure and the viscoelastic postseismic relaxation. Postseismic InSAR, including new Uninhabited Aerial Vehicle SAR (UAVSAR) data, and GPS show rapid shallow afterslip on faults at the north and south ends of the main coseismic rupture and down-dip from the area of largest coseismic slip. Longer wavelength postseismic relaxation will be best measured by GPS.

  7. Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust

    NASA Astrophysics Data System (ADS)

    Baize, Stéphane; Audin, Laurence; Winter, Thierry; Alvarado, Alexandra; Pilatasig Moreno, Luis; Taipe, Mercedes; Reyes, Pedro; Kauffmann, Paul; Yepes, Hugo

    2015-05-01

    The Pallatanga fault (PF) is a prominent NNE-SSW strike-slip fault crossing Central Ecuador. This structure is suspected to have hosted large earthquakes, including the 1797 Riobamba event which caused severe destructions to buildings and a heavy death toll (more than 12,000 people), as well as widespread secondary effects like landsliding, liquefaction and surface cracking. The scope of this study is to evaluate the seismic history of the fault through a paleoseismological approach. This work also aims at improving the seismotectonic map of this part of the Andes through a new mapping campaign and, finally, aims at improving the seismic hazard assessment. We show that the PF continues to the north of the previously mapped fault portion in the Western Cordillera (Rumipamba-Pallatanga portion) into the Inter-Andean Valley (Riobamba basin). Field evidences of faulting are numerous, ranging from a clear geomorphological signature to fault plane outcrops. Along the western side of the Riobamba basin, the strike-slip component seems predominant along several fault portions, with a typical landscape assemblage (dextral offsets of valleys, fluvial terrace risers and generation of linear pressure ridges). In the core of the inter-Andean valley, the main fault portion exhibits a vertical component along the c. 100 m-high cumulative scarp. The presence of such an active fault bounding the western suburbs of Riobamba drastically increases the seismic risk for this densely inhabited and vulnerable city. To the east (Peltetec Massif, Cordillera Real), the continuation of the Pallatanga fault is suspected, but not definitely proved yet. Based on the analysis of three trenches, we state that the Rumipamba-Pallatanga section of the PF experienced 4 (maybe 5) Holocene to Historical strong events (Mw > 7). The coseismic behavior of the fault is deduced from the occurrence of several colluvial wedges and layers associated with the fault activity and interbedded within the organic black soil sequence. According to a series of 14C datings, we document that these events occurred during the last 6500 years. The clear deformation of the shallowest layer (14C: 1633 AD) is most likely associated with the 1797 Riobamba earthquake. After retrodeforming one of the 3 trenches, we estimate coseismic vertical throws (0.70 to 0.90 m). Because of bad outcrop conditions, we could not determine the horizontal component of slip and we used the slip vector determined in a previous work with a tectonic geomorphology study. Assuming this slip vector, we obtain total coseismic offsets between 3.5 and 4.5 m, indicative of earthquake magnitudes around c. Mw 7.5. The estimated recurrence time intervals range between 1300 and 3000 years, indicating an average slip rate of c. 2.5 mm/a for the Rumipamba-Pallatanga section of the fault.

  8. Erosion controls transpressional wedge kinematics

    NASA Astrophysics Data System (ADS)

    Leever, K. A.; Oncken, O.

    2012-04-01

    High resolution digital image analysis of analogue tectonic models reveals that erosion strongly influences the kinematics of brittle transpressional wedges. In the basally-driven experimental setup with low-angle transpression (convergence angle of 20 degrees) and a homogeneous brittle rheology, a doubly vergent wedge develops above the linear basal velocity discontinuity. In the erosive case, the experiment is interrupted and the wedge topography fully removed at displacement increments of ~3/4 the model thickness. The experiments are observed by a stereo pair of high resolution CCD cameras and the incremental displacement field calculated by Digital Particle Image Velocimetry (DPIV). From this dataset, fault slip on individual fault segments - magnitude and angle on the horizontal plane relative to the fault trace - is extracted using the method of Leever et al. (2011). In the non-erosive case, after an initial stage of strain localization, the wedge experiences two transient stages of (1) oblique slip and (2) localized strain partitioning. In the second stage, the fault slip angle on the pro-shear(s) rotates by some 30 degrees from oblique to near-orthogonal. Kinematic steady state is attained in the third stage when a through-going central strike-slip zone develops above the basal velocity discontinuity. In this stage, strain is localized on two main faults (or fault zones) and fully partitioned between plate boundary-parallel displacement on the central strike-slip zone and near-orthogonal reverse faulting at the front (pro-side) of the wedge. The fault slip angle on newly formed pro-shears in this stage is stable at 60-65 degrees (see also Leever et al., 2011). In contrast, in the erosive case, slip remains more oblique on the pro-shears throughout the experiment and a separate central strike-slip zone does not form, i.e. strain partitioning does not fully develop. In addition, more faults are active simultaneously. Definition of stages is based on slip on the retro-side of the wedge. In the first stage, the slip angle on the retro-shear is 27 +/- 12 degrees. In a subsequent stage, slip on the retro-side is partitioned between strike-slip and oblique (~35 degrees) faulting. In the third stage, the slip angle on the retro side stabilizes at ~10 degrees. The pro-shears are characterized by very different kinematics. Two pro-shears tend to be active simultaneously, the extinction of the older fault shortly followed by the initiation of a new one in a forelandward breaking sequence. Throughout the experiment, the fault slip on the pro-shears is 40-60 degrees at their initiation, gradually decreasing to nearly strike-slip at the moment of fault extinction. This is a rotation of similar magnitude but in the reverse direction compared to the non-erosive case. The fault planes themselves do not rotate. Leever, K. A., R. H. Gabrielsen, D. Sokoutis, and E. Willingshofer (2011), The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis, Tectonics, 30(2), TC2013.

  9. Net dextral slip, Neogene San Gregorio–Hosgri fault zone, coastal California: Geologic evidence and tectonic implications

    USGS Publications Warehouse

    Dickinson, William R.; Ducea, M.; Rosenberg, Lewis I.; Greene, H. Gary; Graham, Stephan A.; Clark, Joseph C.; Weber, Gerald E.; Kidder, Steven; Ernst, W. Gary; Brabb, Earl E.

    2005-01-01

    Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio–Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system.San Gregorio–Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western fl ank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio–Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range.Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salinian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Campanian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Mesozoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin.Slivering of the Salinian block by San Gregorio–Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio–Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio–Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio–Hosgri slip restored, there remains an unresolved proto–San Andreas mismatch of ∼100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block.On the south, San Gregorio–Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio–Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.

  10. Do mesoscale faults near the tip of an active strike-slip fault indicate regional or local stress?

    NASA Astrophysics Data System (ADS)

    Yamaji, Atsushi

    2017-04-01

    Fault-slip analysis is used in Japan after the Great Tohoku Earthquake (2011) to judge the stability of fractures in the foundations of nuclear power plants. In case a fault-slip datum from a fracture surface is explained by the present stress condition, the fracture is thought to have a risk to be activated as a fault. So, it is important to understand the relative significance of regional and local stresses. To answer the question whether mesoscale faults indicate regional or local stress, fault-slip data were collected from the walls of a trenching site of the Nojima Fault in central Japan—an active, dextral, strike-slip fault. The fault gave rise to the 1995 Kobe earthquake, which killed more than 6000 people. The trench was placed near the fault tip, which produced compressional and extensional local stress conditions on the sides of the fault near the tip. A segment of the fault, which ruptured the surface in 1995, bounded Cretaceous granite and latest Pliocene sediments in the trench. As a result, the stress inversion of the data from the mesoscale faults observed in the trench showed both the local stresses. The present WNW-ESE regional compression was found from the compressive side, but was not in the extensional side, probably because local extension surpassed the regional compression. Instead, the regional N-S compression of the Early Pleistocene was found from the extensional side. From this project, we got the lesson that fault-slip analysis reveals regional and local stresses, and that local stress sometimes masks regional one. This work was supported by a science project of "Drilling into Fault Damage Zone" (awarded to A. Lin) of the Secretariat of Nuclear Regulation Authority (Japan).

  11. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    USGS Publications Warehouse

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  12. Post-seismic and interseismic fault creep I: model description

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Simons, M.; Dunham, E. M.

    2010-04-01

    We present a model of localized, aseismic fault creep during the full interseismic period, including both transient and steady fault creep, in response to a sequence of imposed coseismic slip events and tectonic loading. We consider the behaviour of models with linear viscous, non-linear viscous, rate-dependent friction, and rate- and state-dependent friction fault rheologies. Both the transient post-seismic creep and the pattern of steady interseismic creep rates surrounding asperities depend on recent coseismic slip and fault rheologies. In these models, post-seismic fault creep is manifest as pulses of elevated creep rates that propagate from the coseismic slip, these pulses feature sharper fronts and are longer lived in models with rate-state friction compared to other models. With small characteristic slip distances in rate-state friction models, interseismic creep is similar to that in models with rate-dependent friction faults, except for the earliest periods of post-seismic creep. Our model can be used to constrain fault rheologies from geodetic observations in cases where the coseismic slip history is relatively well known. When only considering surface deformation over a short period of time, there are strong trade-offs between fault rheology and the details of the imposed coseismic slip. Geodetic observations over longer times following an earthquake will reduce these trade-offs, while simultaneous modelling of interseismic and post-seismic observations provide the strongest constraints on fault rheologies.

  13. Recognition on space photographs of structural elements of Baja California

    NASA Technical Reports Server (NTRS)

    Hamilton, W.

    1971-01-01

    Gemini and Apollo photographs provide illustrations of known structural features of the peninsula and some structures not recognized previously. An apparent transform relationship between strike-slip and normal faulting is illustrated by the overlapping vertical photographs of northern Baja California. The active Agua Blanca right-lateral strike-slip fault trends east-southeastward to end at the north end of the Valle San Felipe and Valle Chico. The uplands of the high Sierra San Pedro Martir are a low-relief surface deformed by young faults, monoclines, and warps, which mostly produce west-facing steps and slopes; the topography is basically structural. The Sierra Cucapas of northeasternmost Baja California and the Colorado River delta of northwesternmost Sonora are broken by northwest-trending strike-slip faults. A strike-slip fault is inferred to trend northward obliquely from near Cabo San Lucas to La Paz, thence offshore until it comes ashore again as the Bahia Concepcion strike-slip fault.

  14. Experimental Measurements of Permeability Evolution along Faults during Progressive Slip

    NASA Astrophysics Data System (ADS)

    Strutz, M.; Mitchell, T. M.; Renner, J.

    2010-12-01

    Little is currently known about the dynamic changes in fault-parallel permeability along rough faults during progressive slip. With increasing slip, asperities are worn to produce gouge which can dramatically reduce along fault permeability within the slip zone. However, faults can have a range of roughness which can affect both the porosity and both the amount and distribution of fault wear material produced in the slipping zone during the early stages of fault evolution. In this novel study we investigate experimentally the evolution of permeability along a fault plane in granite sawcut sliding blocks with a variety of intial roughnesses in a triaxial apparatus. Drillholes in the samples allow the permeability to be measured along the fault plane during loading and subsequent fault displacement. Use of the pore pressure oscillation technique (PPO) allows the continuous measurement of permeability without having to stop loading. To achieve a range of intial starting roughnesses, faults sawcut surfaces were prepared using a variety of corundum powders ranging from 10 µm to 220 µm, and for coarser roughness were air-blasted with glass beads up to 800µm in size. Fault roughness has been quantified with a laser profileometer. During sliding, we measure the acoustic emissions in order to detect grain cracking and asperity shearing which may relate to both the mechanical and permeability data. Permeability shows relative reductions of up to over 4 orders of magnitude during stable sliding as asperities are sheared to produce a fine fault gouge. This variation in permeability is greatest for the roughest faults, reducing as fault roughness decreases. The onset of permeability reduction is contemporaneous with a dramatic reduction in the amount of detected acoustic emissions, where a continuous layer of fault gouge has developed. The amount of fault gouge produced is related to the initial roughness, with the rough faults showing larger fault gouge layers at the end of slip. Following large stress drops and stick slip events, permeability can both increase and decrease due to dynamic changes in pore pressure during fast sliding events. We present a summary of preliminary data to date, and discuss some of the problems and unknowns when using the PPO method to measure permeability.

  15. Fault geometry and slip distribution of the 2008 Mw 7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Wan, Yongge; Shen, Zheng-Kang; Bürgmann, Roland; Sun, Jianbao; Wang, Min

    2017-02-01

    We revisit the problem of coseismic rupture of the 2008 Mw7.9 Wenchuan earthquake. Precise determination of the fault structure and slip distribution provides critical information about the mechanical behaviour of the fault system and earthquake rupture. We use all the geodetic data available, craft a more realistic Earth structure and fault model compared to previous studies, and employ a nonlinear inversion scheme to optimally solve for the fault geometry and slip distribution. Compared to a homogeneous elastic half-space model and laterally uniform layered models, adopting separate layered elastic structure models on both sides of the Beichuan fault significantly improved data fitting. Our results reveal that: (1) The Beichuan fault is listric in shape, with near surface fault dip angles increasing from ˜36° at the southwest end to ˜83° at the northeast end of the rupture. (2) The fault rupture style changes from predominantly thrust at the southwest end to dextral at the northeast end of the fault rupture. (3) Fault slip peaks near the surface for most parts of the fault, with ˜8.4 m thrust and ˜5 m dextral slip near Hongkou and ˜6 m thrust and ˜8.4 m dextral slip near Beichuan, respectively. (4) The peak slips are located around fault geometric complexities, suggesting that earthquake style and rupture propagation were determined by fault zone geometric barriers. Such barriers exist primarily along restraining left stepping discontinuities of the dextral-compressional fault system. (5) The seismic moment released on the fault above 20 km depth is 8.2×1021 N m, corresponding to an Mw7.9 event. The seismic moments released on the local slip concentrations are equivalent to events of Mw7.5 at Yingxiu-Hongkou, Mw7.3 at Beichuan-Pingtong, Mw7.2 near Qingping, Mw7.1 near Qingchuan, and Mw6.7 near Nanba, respectively. (6) The fault geometry and kinematics are consistent with a model in which crustal deformation at the eastern margin of the Tibetan plateau is decoupled by differential motion across a decollement in the mid crust, above which deformation is dominated by brittle reverse faulting and below which deformation occurs by viscous horizontal shortening and vertical thickening.

  16. Mw7.7 2013 Balochistan Earthquake. Slip-Distribution and Deformation Field in Oblique Tectonic Context

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.

    2014-12-01

    The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.

  17. Frictional behavior and BET surface-area changes of SAFOD gouge at intermediate to seismic slip rates

    NASA Astrophysics Data System (ADS)

    Sawai, Michiyo; Shimamoto, Toshihiko; Mitchell, Thomas; Kitajima, Hiroko; Hirose, Takehiro

    2013-04-01

    The San Andreas Fault Observatory at Depth (SAFOD) Drilling site is located near the southern end of the creeping section of the San Andreas fault. Experimental studies on the frictional properties of fault gouge from SAFOD drill cores may provide valuable information on the cause of diverse fault motion. We conducted friction experiments on gouge from the southwest deformation zone (SDZ, Phase III core; Hole G-Run 2-Section 8) where creep is confirmed by ongoing borehole casing deformation, at intermediate to high slip rates (10-5 to 1.3 m/s), at a normal stress of about 1 MPa, and under both dry (room humidity) and wet (25 wt% of H2O added, drained tests) conditions. Experiments were performed with two rotary-shear friction apparatuses. One gram of gouge was placed between specimens of Belfast gabbro 25 mm in diameter surrounded by a Teflon sleeve to confine the gouge. Slip rate was first decreased and then increased in a step-wise manner to obtain the steady-state friction at intermediate slip rates. The friction coefficient increases from about 0.13 to 0.37 as the slip rate increases from 0.8 x 10-5 to 9.7 x 10-3 m/s. Our results agree with frictional strength measured at higher effective normal stress (100 MPa) by the Brown University group in the same material. Data shows pronounced velocity strengthening at intermediate slip rates, which is unfavorable for rupture nucleation and may be a reason for having creep behavior. On the other hand, the steady-state friction markedly decreases at high velocity, and such weakening may allow earthquake rupture to propagate into the creeping section, once the intermediate strength barrier is overcome. Gouge temperature, measured at the edge of the stationary sample during seismic fault motion, increased to around 175oC under dry conditions, but increased up to 100oC under wet conditions. We measured BET surface area of gouge before and after deformation to determine the energy used for grain crushing. The initial specific surface area (2.6-3.4 m2/g) increases to 14-24 m2/g for dry gouge deformed at intermediate slip rates and to 45-60 m2/g for wet gouge deformed at subseismic to seismic slip rates. The results suggest that approximately 2 % and less than 1 % of the frictional work is absorbed in grain crushing for dry and wet gouges, respectively, if the fracture surface energy of muscovite (0.38 J/m2) is used as the surface energy of phyllosilicate-rich SAFOD gouge. Thus grain crushing cannot be an important energy sink during seismic fault motion. The surface area tends to be lower for gouge deformed at high slip rates for both dry and wet gouges. This results and SEM observations of gouge strongly suggests that welding of grains takes place at high slip rate due to frictional heating and counteracts the surface-area increase due to grain crushing. Thus intrafault processes are more complex than in a simple scenario of "grain crushing and surface-area increase" assumed in recent studies. Surface area is greater for wet gouge than for dry gouge suggesting that pore water separating gouge particles suppresses grain welding.

  18. Surface rupture of the 2002 Denali fault, Alaska, earthquake and comparison with other strike-slip ruptures

    USGS Publications Warehouse

    Haeussler, Peter J.; Schwartz, D.P.; Dawson, T.E.; Stenner, Heidi D.; Lienkaemper, J.J.; Cinti, F.; Montone, Paola; Sherrod, B.; Craw, P.

    2004-01-01

    On 3 November 2002, an M7.9 earthquake produced 340 km of surface rupture on the Denali and two related faults in Alaska. The rupture proceeded from west to east and began with a 40-km-long break on a previously unknown thrust fault. Estimates of surface slip on this thrust are 3-6 m. Next came the principal surface break along ???218 km of the Denali fault. Right-lateral offsets averaged around 5 m and increased eastward to a maximum of nearly 9 m. The fault also ruptured beneath the trans-Alaska oil pipeline, which withstood almost 6 m of lateral offset. Finally, slip turned southeastward onto the Totschunda fault. Right-lateral offsets are up to 3 m, and the surface rupture is about 76 km long. This three-part rupture ranks among the longest strike-slip events of the past two centuries. The earthquake is typical when compared to other large earthquakes on major intracontinental strike-slip faults. ?? 2004, Earthquake Engineering Research Institute.

  19. Characterizing the Alpine Fault Strike Slip System Using a Novel Method for Analyzing GPS Data

    NASA Astrophysics Data System (ADS)

    Haines, A. J.; Dimitrova, L. L.; Wallace, L. M.; Williams, C. A.

    2013-12-01

    Plate motion across the South Island is dominated by right-lateral strike-slip (38-39 mm/yr total in the direction parallel to the Alpine Fault), with a small convergent component (8-10 mm/yr). The Alpine Fault is the most active fault in the region taking up 27×5 mm/yr in right-lateral strike-slip and ~10 mm/yr in dip-slip. It fails in large >=7 Mw earthquakes with recurrence time of 200-400 years and last ruptured around 1717. A significant component of the plate motion budget must occur on faults other than the Alpine Fault, but this is not fully accounted for in catalogues of known active faults. In the central part of the South Island, low slip rate active faults are not well-expressed due to the rapid erosion of the Southern Alps and deposition of these sediments onto the Canterbury plains; the devastating 2010 Darfield earthquake sequence occurred on such previously unknown faults. We apply a novel inversion technique (Dimitrova et al. 2012, 2013) to dense campaign GPS velocities in the region to solve for the vertical derivatives of horizontal stress (VDoHS) rates which are a substantially higher resolution expression of subsurface sources of ongoing deformation than the GPS velocities or GPS derived strain rates. Integrating the VDoHS rates gives us strain rates. Relationships between the VDoHS and strain rates allow us to calculate the variation in fault slip rate and locking depth for the identified faults; e.g., we estimate along fault variations for locking depth and slip rate for the Alpine Fault in the South Island in good agreement with previous estimates, and provide first estimates for those properties on the smaller, previously-uncharacterized faults which account for as much as 50% of the plate motion depending on location. For the first time, we note that the area between the Alpine Fault and the Main Divide of the Southern Alps is undergoing extensional areal strain, potentially indicative of gravitational collapse of the Southern Alps. The Arthur's Pass section of the Alpine Fault exhibits no shear component in the spatial derivatives of the VDoHS rates, in marked contrast to the Alpine Fault segments just northeast and southwest, suggesting that post-seismic deformation related to the 1994 Arthur's Pass earthquake is masking the signal from the Alpine Fault beneath. We characterize in detail the transfer of slip further north into the Marlborough Fault System, where we find much of the slip on the Alpine Fault passes onto the Kelly and Hope Faults, in accord with previous geological studies.

  20. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, David A.

    2009-01-01

    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  1. Numerical Simulation of Slow Slip and Dynamic Rupture in the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Segall, P.; Bradley, A. M.

    2010-12-01

    Seismic and geodetic observations are consistent with slow-slip events (SSE) occurring down-dip of the locked megathrust in regions of anomalously high pore pressure p. We hypothesize that at low effective normal stress (σ -p), dilatancy stabilizes velocity weakening faults, whereas at higher (σ -p), thermal pressurization overwhelms dilatancy, which leads to dynamic slip. We present two-dimensional half-space simulations that include rate-state friction, dilatancy (following Segall and Rice [1995]), and heat and pore-fluid flow normal to the fault. The system of equations is an index-1 differential algebraic equation (DAE) in slip δ , state θ , fault zone porosity φ , p, and T. We integrate θ , φ , and δ explicitly; solve the stress-balance equation on the fault; and integrate p and T implicitly. Numerical methods are discussed in Bradley and Segall [this meeting]. We take depth-variable frictional properties (based on lab experiments on gabbro, similar to Liu and Rice [2009]) that yield a transition from velocity strengthening to weakening friction at ˜ 33 km depth. We assume low effective stress, presumed to be driven by dehydration reactions, in the ˜ 25 to ˜ 40 km depth range. Simulations reveal generic behavior: dynamic events (DE) repeat every few hundred years, and between each DE is a quiescent period and then a long sequence of SSE. If the width of the low effective stress region exceeds a critical dimension, the SSE penetrate up-dip with time. During this period, the SSE moment rates generally (but not monotonically) increase with time. Eventually slip speeds become high enough to induce thermal pressurization, which nucleates a DE. The predicted behavior, in terms of SSE slip, stress drop, and repeat time bear many similarities to SSE in Cascadia. In related experiments [Chen et al, this meeting] we explore the role of heterogeneous permeability in generating low-frequency earthquakes and tremor. In all cases examined, slow slip fails to accommodate plate motion, and DE propagate through the SSE zone. To test model predictions against GPS data, we develop a pseudo-3D method that accounts for the markedly non-2D geometry of the plate interface. The approach employs 3D elastic Green's functions but assumes that slip rate is a function of depth only, as computed in the physics based model. We discuss whether or not steady creep is required above the SSE region to satisfy the inter-ETS GPS velocities, and the distribution of physical parameters that might permit this to occur (without artificially requiring an additional velocity strengthening region).

  2. History of fault slip and interaction with deltaic depostion from the middle Miocene to the Present - Barataria Fault, coastal Louisiana

    NASA Astrophysics Data System (ADS)

    McLindon, C.

    2017-12-01

    The Barataria fault is a major component of the Terrebonne Trough, a structural system of faults and salt domes underlying coastal Louisiana. High-quality 3-D seismic reflection data, industry well logs, micro-paleontological data and published literature on regional depositional patterns are integrated to provide an evolutionary history of the Barataria fault. The fault is a segment within a series of south-dipping normal faults that define the northern boundary of the Terrebonne Trough. The fault segment tips at depth interact with the Lake Washington and Bay de Chene salt domes, which appear to have limited its along-strike length. This study shows that the Barataria fault has exhibited continuous but episodic slip since at least the middle Miocene and through the present. Periods of maximum rates of fault slip are related to periods of maximum rates of sediment accumulation associated with Miocene deltaic deposition. The expansion of interval thickness between biostratigraphic markers in the hanging wall section of the fault relative to the footwall section (expansion index) indicate that rates of subsidence on the footwall during active fault slip were substantially greater than on the footwall. Pliocene-Pleistocene stratigraphic intervals exhibiting lower expansion indexes indicate that the fault remained active, but with a pattern of slower slip rate in which stratigraphic thickening was more limited to the area immediately adjacent to the fault. The Barataria fault defines the modern-day width of Barataria Bay, and also has a surface expression in the coastal marsh indicating that recent episodic slip has been associated with patterns of Holocene deltaic deposition.

  3. Microphysically derived expressions for rate-and-state friction and fault stability parameters

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Niemeijer, Andre; Spiers, Christopher

    2017-04-01

    Rate-and-state friction (RSF) laws and associated parameters are extensively applied to fault mechanics, mainly on an empirical basis with a limited understanding of the underlying physical mechanisms. We recently established a general microphysical model [Chen and Spiers, 2016], for describing both steady-state and transient frictional behavior of any granular fault gouge material undergoing deformation by granular flow plus an arbitrary creep mechanism at grain contacts, such as pressure solution. We further showed that the model is able to reproduce typical experimental frictional results, namely "velocity stepping" and "slide-hold-slide" sequences, in satisfactory agreement with the main features and trends observed. Here, we extend our model, which we explored only numerically thus far, to obtain analytical solutions for the classical rate and state friction parameters from a purely microphysical modelling basis. By analytically solving the constitutive equations of the model under various boundary conditions, physically meaningful, theoretical expressions for the RSF parameters, i.e. a, b and Dc, are obtained. We also apply linear stability analysis to a spring-slider system, describing interface friction using our model, to yield analytical expressions of the critical stiffness (Kc) and critical recurrence wavelength (Wc) of the system. The values of a , b and Dc, as well as Kc and Wc, predicted by these expressions agree well with the numerical modeling results and acceptably with values obtained from experiments, on calcite for instance. Inserting the parameters obtained into classical RSF laws (slowness and slip laws) and conducting forward modelling gives simulated friction behavior that is fully consistent with the direct predictions of our numerically implemented model. Numerical tests with friction obeying our model show that the slip stability of fault motion exhibits a transition from stable sliding, via self-sustained oscillations, to stick slips with decreasing elastic stiffness, decreasing loading rate, and increasing normal stress, which is fully consistent with our linear stability analysis and also with previous RSF models that employed constant values of the RSF parameters. Importantly, our analytical expressions for. a, b, Dc, Kc and Wc, are functions of the internal microstructure of the fault (porosity, grain size and shear zone thickness), the material properties of the fault gouge (e.g. creep law parameters like activation energy, stress sensitivity, grain size sensitivity), and the ambient conditions the fault is subjected to (temperature and normal stress). The expressions obtained thus have clear physical meaning allowing a more meaningful extrapolation to natural conditions. On the basis of these physics-based expressions, seismological implications for slip on natural faults (e.g. subduction zone interfaces, faults in carbonate terrains) are discussed. Reference Chen, J., and C. J. Spiers (2016), Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model, J. Geophys. Res., 121, doi:10.1002/2016JB013470.

  4. A Non-linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault With an Unknown dip Angle

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Wright, T. J.

    2006-12-01

    We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.

  5. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    USGS Publications Warehouse

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  6. Does velocity-strengthening to velocity-weakening transition really determine the updip limit of the seismogenic zone in subduction megathrusts?

    NASA Astrophysics Data System (ADS)

    Shimamoto, T.

    2009-12-01

    Understanding the mechanisms of thrust-type earthquakes in subduction zones is the primary target of seismogenic-zone drilling project in Nankai Trough. Drilling into the upper part of the seismogenic zone is attempted, so that understanding the processes controlling the updip limit of the seismogenic zone is becoming a more specific target. A commonly accepted notion is that the onset of seismic behavior is due to a change in velocity strengthening to velocity weakening property of fault zone (see Saffer & Marone, 2003, EPSL ). Smectite-illite transformation had been a fashionable hypothesis for such a transition because the transformation is likely to occur near the updip limit of the seismogenic zone. However, Saffer & Marone recognized velocity-strengthening behavior of illite gouge questioning the smectite-illite transformation as the primary cause for the updip limit of seismic zone. They explored other possibilities that might cause a change in the velocity dependency of friction. I want to address the problem from a different angle. Progress in high-velocity friction in the last 15 years has demonstrated that nearly all faults exhibit dramatic weakening at high slip rates and large displacements. The weakening is indeed greater than the changes in friction at slow slip rates by more than one order of magnitude, and the slip- and velocity-weakening of faults at high velocities is likely to control the dynamic fault motion during large earthquakes. Thus by combining abundant work on rate-and-state dependent friction at slow slip rates and recent high-velocity friction studies, a possibility emerges in that the rate-and-state friction at slow slip rates controls the earthquake nucleation, whereas intermediate to high-velocity friction dictates the growth processes into a large earthquake. Taiwan Chi-Chi earthquake in 1999 is very interesting in this regard because Tanikawa & Shimamoto (2008, JGR ) recognized velocity-strengthening properties for gouge from the northern part of the Chelungpu fault (velocity weakening for gouge from the south). The northern part of the fault should be aseismic according to a traditional view for earthquakes in velocity-weakening regime, whereas the northern part displaced much more at higher slip rates with lower frequencies than in southern part. Permeability of fault gouge is lower in the north than in the south by one to two orders of magnitude, so that high-velocity weakening is more pronounced in the north due to more effective thermal pressurization than in the south. Thus Tanikawa & Shimamoto proposed a scenario that the Chi-Chi earthquake started from the southern part of Chelungpu fault with velocity-weakening property and that the earthquake rupture grew more in the north due to high-velocity weakening. Noda & Lapusta (2009, JPGU meeting ) demonstrated by dynamic modeling that such a scenario is indeed possible. I propose that such a scenario is applicable to shallow subduction zone where earthquake rupture comes from deeper parts. This change in view will change the scope of laboratory work, modeling, and even ways of looking at faults in accretionary prism such as Shimanto belt. Those problems will be elaborated in my presentation.

  7. Kinetic effect of heating rate on the thermal maturity of carbonaceous material as an indicator of frictional heat during earthquakes

    NASA Astrophysics Data System (ADS)

    Kaneki, Shunya; Hirono, Tetsuro

    2018-06-01

    Because the maximum temperature reached in the slip zone is significant information for understanding slip behaviors during an earthquake, the maturity of carbonaceous material (CM) is widely used as a proxy for detecting frictional heat recorded by fault rocks. The degree of maturation of CM is controlled not only by maximum temperature but also by the heating rate. Nevertheless, maximum slip zone temperature has been estimated previously by comparing the maturity of CM in natural fault rocks with that of synthetic products heated at rates of about 1 °C s-1, even though this rate is much lower than the actual heating rate during an earthquake. In this study, we investigated the kinetic effect of the heating rate on the CM maturation process by performing organochemical analyses of CM heated at slow (1 °C s-1) and fast (100 °C s-1) rates. The results clearly showed that a higher heating rate can inhibit the maturation reactions of CM; for example, extinction of aliphatic hydrocarbon chains occurred at 600 °C at a heating rate of 1 °C s-1 and at 900 °C at a heating rate of 100 °C s-1. However, shear-enhanced mechanochemical effects can also promote CM maturation reactions and may offset the effect of a high heating rate. We should thus consider simultaneously the effects of both heating rate and mechanochemistry on CM maturation to establish CM as a more rigorous proxy for frictional heat recorded by fault rocks and for estimating slip behaviors during earthquake.

  8. An experimental study of the influence of stress history on fault slip during injection of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.

    2018-04-01

    The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.

  9. Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Falcone, Giuseppe; Karakostas, Vassilis; Murru, Maura; Papadimitriou, Eleftheria; Rhoades, David

    2013-07-01

    model interevent times and Coulomb static stress transfer on the rupture segments along the Corinth Gulf extension zone, a region with a wealth of observations on strong-earthquake recurrence behavior. From the available information on past seismic activity, we have identified eight segments without significant overlapping that are aligned along the southern boundary of the Corinth rift. We aim to test if strong earthquakes on these segments are characterized by some kind of time-predictable behavior, rather than by complete randomness. The rationale for time-predictable behavior is based on the characteristic earthquake hypothesis, the necessary ingredients of which are a known faulting geometry and slip rate. The tectonic loading rate is characterized by slip of 6 mm/yr on the westernmost fault segment, diminishing to 4 mm/yr on the easternmost segment, based on the most reliable geodetic data. In this study, we employ statistical and physical modeling to account for stress transfer among these fault segments. The statistical modeling is based on the definition of a probability density distribution of the interevent times for each segment. Both the Brownian Passage-Time (BPT) and Weibull distributions are tested. The time-dependent hazard rate thus obtained is then modified by the inclusion of a permanent physical effect due to the Coulomb static stress change caused by failure of neighboring faults since the latest characteristic earthquake on the fault of interest. The validity of the renewal model is assessed retrospectively, using the data of the last 300 years, by comparison with a plain time-independent Poisson model, by means of statistical tools including the Relative Operating Characteristic diagram, the R-score, the probability gain and the log-likelihood ratio. We treat the uncertainties in the parameters of each examined fault source, such as linear dimensions, depth of the fault center, focal mechanism, recurrence time, coseismic slip, and aperiodicity of the statistical distribution, by a Monte Carlo technique. The Monte Carlo samples for all these parameters are drawn from a uniform distribution within their uncertainty limits. We find that the BPT and the Weibull renewal models yield comparable results, and both of them perform significantly better than the Poisson hypothesis. No clear performance enhancement is achieved by the introduction of the Coulomb static stress change into the renewal model.

  10. Origins of oblique-slip faulting during caldera subsidence

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan P.; Walter, Thomas R.; Schöpfer, Martin P. J.; Walsh, John J.; van Wyk de Vries, Benjamin; Troll, Valentin R.

    2013-04-01

    Although conventionally described as purely dip-slip, faults at caldera volcanoes may have a strike-slip displacement component. Examples occur in the calderas of Olympus Mons (Mars), Miyakejima (Japan), and Dolomieu (La Reunion). To investigate this phenomenon, we use numerical and analog simulations of caldera subsidence caused by magma reservoir deflation. The numerical models constrain mechanical causes of oblique-slip faulting from the three-dimensional stress field in the initial elastic phase of subsidence. The analog experiments directly characterize the development of oblique-slip faulting, especially in the later, non-elastic phases of subsidence. The combined results of both approaches can account for the orientation, mode, and location of oblique-slip faulting at natural calderas. Kinematically, oblique-slip faulting originates to resolve the following: (1) horizontal components of displacement that are directed radially toward the caldera center and (2) horizontal translation arising from off-centered or "asymmetric" subsidence. We informally call these two origins the "camera iris" and "sliding trapdoor" effects, respectively. Our findings emphasize the fundamentally three-dimensional nature of deformation during caldera subsidence. They hence provide an improved basis for analyzing structural, geodetic, and geophysical data from calderas, as well as analogous systems, such as mines and producing hydrocarbon reservoirs.

  11. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    2014-05-01

    Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.

  12. Géométrie et cinématique post-oligocène des failles d'Aix et de la moyenne Durance (Provence, France)

    NASA Astrophysics Data System (ADS)

    Guignard, Pierre; Bellier, Olivier; Chardon, Dominique

    2005-02-01

    The southern termination of the left-lateral 'Moyenne Durance' Fault (FMD) consists in several segments, some being connected to WSW-trending south-verging reverse faults. To the south, the Aix fault is reactivated in a post-Oligocene strike-slip movement showing that these two faults might belong to the same system. This system seems to transfer, in turn, slip to the east-trending, south-verging Trévaresse reverse fault, allowing southward propagation of the Alpine deformation front in western Provence. Fault kinematics analysis shows lateral stress field change between the two faults. Strike-slip stress state is characterized by an average N150°E trending σ1 near the FMD termination, whilst strike-slip and reverse faulting stress states show north-trending σ to the south. To cite this article: P. Guignard et al., C. R. Geoscience 337 (2005).

  13. Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter

    USGS Publications Warehouse

    Kusky, Timothy M.

    1997-01-01

    The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.

  14. San Andreas fault geometry in the Parkfield, California, region

    USGS Publications Warehouse

    Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.

    2006-01-01

    In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.

  15. Geotribology - Friction, wear, and lubrication of faults

    NASA Astrophysics Data System (ADS)

    Boneh, Yuval; Reches, Ze'ev

    2018-05-01

    We introduce here the concept of Geotribology as an approach to study friction, wear, and lubrication of geological systems. Methods of geotribology are applied here to characterize the friction and wear associated with slip along experimental faults composed of brittle rocks. The wear in these faults is dominated by brittle fracturing, plucking, scratching and fragmentation at asperities of all scales, including 'effective asperities' that develop and evolve during the slip. We derived a theoretical model for the rate of wear based on the observation that the dynamic strength of brittle materials is proportional to the product of load stress and loading period. In a slipping fault, the loading period of an asperity is inversely proportional to the slip velocity, and our derivations indicate that the wear-rate is proportional to the ratio of [shear-stress/slip-velocity]. By incorporating the rock hardness data into the model, we demonstrate that a single, universal function fits wear data of hundreds of experiments with granitic, carbonate and sandstone faults. In the next step, we demonstrate that the dynamic frictional strength of experimental faults is well explained in terms of the tribological parameter PV factor (= normal-stress · slip-velocity). This factor successfully delineates weakening and strengthening regimes of carbonate and granitic faults. Finally, our analysis revealed a puzzling observation that wear-rate and frictional strength have strikingly different dependencies on the loading conditions of normal-stress and slip-velocity; we discuss sources for this difference. We found that utilization of tribological tools in fault slip analyses leads to effective and insightful results.

  16. The 2014 Mw6.9 Gokceada and 2017 Mw6.3 Lesvos Earthquakes in the Northern Aegean Sea: The Transition from Right-Lateral Strike-Slip Faulting on the North Anatolian Fault to Extension in the Central Aegean

    NASA Astrophysics Data System (ADS)

    Cetin, S.; Konca, A. O.; Dogan, U.; Floyd, M.; Karabulut, H.; Ergintav, S.; Ganas, A.; Paradisis, D.; King, R. W.; Reilinger, R. E.

    2017-12-01

    The 2014 Mw6.9 Gokceada (strike-slip) and 2017 Mw6.3 Lesvos (normal) earthquakes represent two of the set of faults that accommodate the transition from right-lateral strike-slip faulting on the North Anatolian Fault (NAF) to normal faulting along the Gulf of Corinth. The Gokceada earthquake was a purely strike-slip event on the western extension of the NAF where it enters the northern Aegean Sea. The Lesvos earthquake, located roughly 200 km south of Gokceada, occurred on a WNW-ESE-striking normal fault. Both earthquakes respond to the same regional stress field, as indicated by their sub-parallel seismic tension axis and far-field coseismic GPS displacements. Interpretation of GPS-derived velocities, active faults, crustal seismicity, and earthquake focal mechanisms in the northern Aegean indicates that this pattern of complementary faulting, involving WNW-ESE-striking normal faults (e.g. Lesvos earthquake) and SW-NE-striking strike-slip faults (e.g. Gokceada earthquake), persists across the full extent of the northern Aegean Sea. The combination of these two "families" of faults, combined with some systems of conjugate left-lateral strike-slip faults, complement one another and culminate in the purely extensional rift structures that form the large Gulfs of Evvia and Corinth. In addition to being consistent with seismic and geodetic observations, these fault geometries explain the increasing velocity of the southern Aegean and Peloponnese regions towards the Hellenic subduction zone. Alignment of geodetic extension and seismic tension axes with motion of the southern Aegean towards the Hellenic subduction zone suggests a direct association of Aegean extension with subduction, possibly by trench retreat, as has been suggested by prior investigators.

  17. Improving Ms Estimates by Calibrating Variable-Period Magnitude Scales at Regional Distances

    DTIC Science & Technology

    2008-09-01

    TF), or oblique - slip variations of normal and thrust faults using the Zoback (1992) classification scheme. For normal faults , 2008 Monitoring...between the observed and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with...between true and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with other

  18. Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Donnellan, A.; Pickering, A.

    2017-12-01

    Aseismic fault creep, coseismic fault displacement, distributed deformation, and the relative contribution of each have important bearing on infrastructure resilience, risk reduction, and the study of earthquake physics. Furthermore, the impact of interseismic fault creep in rupture propagation scenarios, and its impact and consequently on fault segmentation and maximum earthquake magnitudes, is poorly resolved in current rupture forecast models. The creeping section of the San Andreas Fault (SAF) in Central California is an outstanding area for establishing methodology for future scientific response to damaging earthquakes and for characterizing the fine details of crustal deformation. Here, we describe how data from airborne and terrestrial laser scanning, airborne interferometric radar (UAVSAR), and optical data from satellites and UAVs can be used to characterize rates and map patterns of deformation within fault zones of varying complexity and geomorphic expression. We are evaluating laser point cloud processing, photogrammetric structure from motion, radar interferometry, sub-pixel correlation, and other techniques to characterize the relative ability of each to measure crustal deformation in two and three dimensions through time. We are collecting new and synthesizing existing data from the zone of highest interseismic creep rates along the SAF where a transition from a single main fault trace to a 1-km wide extensional stepover occurs. In the stepover region, creep measurements from alignment arrays 100 meters long across the main fault trace reveal lower rates than those in adjacent, geomorphically simpler parts of the fault. This indicates that deformation is distributed across the en echelon subsidiary faults, by creep and/or stick-slip behavior. Our objectives are to better understand how deformation is partitioned across a fault damage zone, how it is accommodated in the shallow subsurface, and to better characterize the relative amounts of fault creep and potential stick-slip fault behavior across the plate boundary at these sites in order to evaluate the potential for rupture propagation in large earthquakes.

  19. Thermo-mechanical pressurization of experimental faults in cohesive rocks during seismic slip

    NASA Astrophysics Data System (ADS)

    Violay, M.; Di Toro, G.; Nielsen, S.; Spagnuolo, E.; Burg, J. P.

    2015-11-01

    Earthquakes occur because fault friction weakens with increasing slip and slip rates. Since the slipping zones of faults are often fluid-saturated, thermo-mechanical pressurization of pore fluids has been invoked as a mechanism responsible for frictional dynamic weakening, but experimental evidence is lacking. We performed friction experiments (normal stress 25 MPa, maximal slip-rate ∼3 ms-1) on cohesive basalt and marble under (1) room-humidity and (2) immersed in liquid water (drained and undrained) conditions. In both rock types and independently of the presence of fluids, up to 80% of frictional weakening was measured in the first 5 cm of slip. Modest pressurization-related weakening appears only at later stages of slip. Thermo-mechanical pressurization weakening of cohesive rocks can be negligible during earthquakes due to the triggering of more efficient fault lubrication mechanisms (flash heating, frictional melting, etc.).

  20. Strike-slip faults in the Moroccan Rif: Their geophysical signatures and hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jobidon, G.P.; Dakki, M.

    1994-12-31

    The Rif Domain in Northern Morocco includes major movements along left-lateral strike-slips faults that created various structures and influenced depositional systems. The major ones are the Jebha fault in the Rif`s northwest area, and the Nekkor fault that extends southwesterly from the Mediterranean sea toward the Meseta. Although identified by surface geology in the east, the western extent of the faults is ambiguous. Detail interpretation of gravity and magnetic maps provide a better definition of their locations and related structures. The Rif`s geology is a mirror image of the right-lateral strike-slip fault system of Venezuela and Trinidad. Most features associatedmore » with the Rif`s strike-slip faults have not been explored to data and hydrocarbon potential remains a good possibility.« less

  1. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Rizza, M.; Ritz, J.-F.; Braucher, R.; Vassallo, R.; Prentice, C.; Mahan, S.; McGill, S.; Chauvet, A.; Marco, S.; Todbileg, M.; Demberel, S.; Bourles, D.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans-particularly well preserved in the arid environment of the Gobi region-allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is ~1 mm yr-1 along the WIB and EIB segments and ~0.5 mm yr-1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78-7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of ~2500-5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a 'characteristic earthquake' mode. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  2. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500–5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a ‘characteristic earthquake’ mode.

  3. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications

    NASA Astrophysics Data System (ADS)

    Bai, Mingkun; Chevalier, Marie-Luce; Pan, Jiawei; Replumaz, Anne; Leloup, Philippe Hervé; Métois, Marianne; Li, Haibing

    2018-03-01

    The left-lateral strike-slip Xianshuihe fault system located in the eastern Tibetan Plateau is considered as one of the most tectonically active intra-continental fault system in China, along which more than 20 M > 6.5 and more than 10 M > 7 earthquakes occurred since 1700. Therefore, studying its activity, especially its slip rate at different time scales, is essential to evaluate the regional earthquake hazard. Here, we focus on the central segment of the Xianshuihe fault system, where the Xianshuihe fault near Kangding city splays into three branches: the Selaha, Yalahe and Zheduotang faults. In this paper we use precise dating together with precise field measurements of offsets to re-estimate the slip rate of the fault that was suggested without precise age constraints. We studied three sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. We measured horizontal offsets of 96 ± 20 m at Tagong levees (TG), 240 ± 15 m at Selaha moraine (SLH) and 80 ± 5 m at Yangjiagou moraine (YJG). Using 10Be cosmogenic dating, we determined abandonment ages at Tagong, Selaha and Yangjiagou of 12.5 (+ 2.5 / - 2.2) ka, 22 ± 2 ka, and 18 ± 2 ka, respectively. By matching the emplacement age of the moraines or levees with their offsets, we obtain late Quaternary horizontal average slip-rates of 7.6 (+ 2.3 / - 1.9) mm/yr at TG and 10.7 (+ 1.3 / - 1.1) mm/yr at SLH, i.e., 5.7-12 mm/yr or between 9.6 and 9.9 mm/yr assuming that the slip rate should be constant between the nearby TG and SLH sites. At YJG, we obtain a lower slip rate of 4.4 ± 0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a ∼5 mm/yr slip rate along the Zheduotang fault. The ∼10 mm/yr late Quaternary rate along the Xianshuihe fault is higher than that along the Ganzi fault to the NW (6-8 mm/yr). This appears to be linked to the existence of the Longriba fault system that separates the Longmenshan and Bayan Har blocks north of the Xianshuihe fault system. A higher slip rate along the short (∼60 km) and discontinuous Selaha fault compared to that along the long (∼300 km) and linear Ganzi fault suggests a high hazard for a M > 6 earthquake in the Kangding area in the near future, which could devastate that densely populated city.

  4. A New Geological Slip Rate Estimate for the Calico Fault, Eastern California: Implications for Geodetic Versus Geologic Rate Estimates in the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Wetmore, P. H.; Xie, S.; Gallant, E.; Owen, L. A.; Dixon, T. H.

    2017-12-01

    Fault slip rate is fundamental to accurate seismic hazard assessment. In the Mojave Desert section of the Eastern California Shear Zone previous studies have suggested a discrepancy between short-term geodetic and long-term geologic slip rate estimates. Understanding the origin of this discrepancy could lead to better understanding of stress evolution, and improve earthquake hazard estimates in general. We measured offsets in alluvial fans along the Calico fault near Newberry Springs, California, and used exposure age dating based on the cosmogenic nuclide 10Be to date the offset landforms. We derive a mean slip rate of 3.6 mm/yr, representing an average over the last few hundred thousand years, significantly faster than previous estimates. Considering numerous faults in the Mojave Desert and limited geologic slip rate estimates, it is premature to claim a geologic versus geodetic "discrepancy" for the ECSZ. More slip rate data, from all faults with the ECSZ, are needed to provide a statistically meaningful assessment of the geologic rates for each of the faults comprising the ECSZ.

  5. The Mechanisms and Spatiotemporal Behavior of the 2011 Mw7.1 Van, Eastern Turkey Earthquake Aftershocks

    NASA Astrophysics Data System (ADS)

    Ezgi Guvercin Isik, Sezim; Ozgun Konca, A.; Karabulut, Hayrullah

    2016-04-01

    We studied the mechanisms and spatiotemporal distribution of the aftershocks of the Mw7.1 Van Earthquake, in Eastern Turkey. The 2011 Van Earthquake occurred on a E-W trending blind thrust fault in Eastern Turkey which is under N-S compression due to convergence of the Arabian plate toward the Eurasia. In this study, we relocated and studied the mechanisms of the M3.5-5.5 aftershocks from regional Pnl and surface waves using the "Cut and Paste" algorithm of Zhu and Helmberger (1996). Our results reveal that the aftershocks in the first day following the mainshock are in the vicinity of the co-seismic slip and have mostly thrust mechanism consistent with the mainshock. In the following day, a second cluster of activity at the northeast termination of the fault ( North of Lake Erçek) has started. These aftershocks have approximately N-S lineation and left lateral source mechanisms. The aftershocks surrounding the mainshock rupture are deeper (>20 km) than the aftershocks triggered on the north (<15km). We also observe strike slip earthquakes on the south of the mainshock. Both of delayed activities (north of the mainshock and south of the mainshock) are consistent with the Coulomb stress increase due to slip on the mainshock. We propose that the Van Fault is truncated by two strike-slip faults at each end, which has determined the along-strike rupture extent of the 2011 mainshock.

  6. Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: Rupture of a blind reserve-slip fault near the Eastern Kopeh Dagh

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu; Xu, Caijun; Wen, Yangmao

    2018-04-01

    New satellites are now revealing InSAR-based surface deformation within a week after natural hazard events. Quick hazard responses will be more publically accessible and provide information to responding agencies. Here we used Sentinel-1 interferometric synthetic aperture radar (InSAR) data to investigate coseismic deformation associated with the 2017 Sangsefid earthquake, which occurred in the southeast margin of the Kopeh Dagh fault system. The ascending and descending interferograms indicate thrust-dominated slip, with the maximum line-of-sight displacement of 10.5 and 13.7 cm, respectively. The detailed slip-distribution of the 2017 Sangsefid Mw6.1 earthquake inferred from geodetic data is presented here for the first time. Although the InSAR interferograms themselves do not uniquely constrain what the primary slip surface is, we infer that the source fault dips to southwest by analyzing the 2.5 D displacement field decomposed from the InSAR observations. The determined uniform slip fault model shows that the dip angle of the seimogenic fault is approximately 40°, with a strike of 120° except for a narrower fault width than that predicted by the empirical scaling law. We suggest that geometric complexities near the Kopeh Dagh fault system obstruct the rupture propagation, resulting in high slip occurred within a small area and much higher stress drop than global estimates. The InSAR-determined moment is 1.71 × 1018 Nm with a shear modulus of 3.32 × 1010 N/m2, equivalent to Mw 6.12, which is consistent with seismological results. The finite fault model (the west-dipping fault plane) reveals that the peak slip of 0.90 m occurred at a depth of 6.3 km, with substantial slip at a depth of 4-10 km and a near-uniform slip of 0.1 m at a depth of 0-2.5 km. We suggest that the Sangsefid earthquake occurred on an unknown blind reverse fault dipping southwest, which can also be recognised through observing the long-term surface effects due to the existence of the blind fault.

  7. A general law of fault wear and its implication to gouge zone evolution

    NASA Astrophysics Data System (ADS)

    Boneh, Yuval; Reches, Ze'ev

    2017-04-01

    Fault wear and gouge production are universal components of frictional sliding. Wear models commonly consider fault roughness, normal stress and rock strength, but ignore the effects of gouge presence and slip-velocity. In contrast, our experimental observations indicate that wear continues while gouge layer is fully developed, and that wear-rates vary by orders-of-magnitude during slip along experimental faults made of carbonites, sandstones and granites (Boneh et al., 2013, 2014). We derive here a new universal law for fault wear by incorporating the gouge layer and slip-velocity. Slip between two rock-blocks undergoes a transition from a 'two-body' mode, during which the blocks interact at surface roughness contacts, to 'three-body' mode, during which a gouge layer separates the two blocks. Our wear model considers 'effective roughness' as the mechanism for failure at resisting, interacting sites that control the global wear. The effective roughness is comprised of a time dependent, dynamic asperities which are different in population and scale from original surfaces asperities. The model assumes that the intensity of this failure is proportional to the mechanical impulse, which is the integrated force over loading time at the interacting sites. We use this concept to calculate the wear-rate as function of the impulse-density, which is the ratio [shear-stress/slip-velocity], during fault slip. The compilation of experimental wear-rates in a large range of slip-velocities (10 μm/s - 1 m/s) and normal stresses (0.2 - 200 MPa) reveal very good agreement with the model predictions. The model provides the first explanation why fault slip at seismic velocity, e.g., 1 m/s, generates significantly less wear and gouge than fault slip at creeping velocity. Thus, the model provides a tool to use the gouge thickness of fault-zones for estimation of paleo-velocity. Boneh, Y., Sagy, A., Reches, Z., 2013. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth and Planetary Science Letters 381, 127-137. Boneh, Y., Chang, J.C., Lockner, D.A., Reches, Z., 2014. Evolution of Wear and Friction Along Experimental Faults. Pure and Applied Geophysics, 1-17.

  8. Unraveling the Earthquake History of the Denali Fault System, Alaska: Filling a Blank Canvas With Paleoearthquakes

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Haeussler, P. J.; Seitz, G. G.; Dawson, T. E.; Stenner, H. D.; Matmon, A.; Crone, A. J.; Personius, S.; Burns, P. B.; Cadena, A.; Thoms, E.

    2005-12-01

    Developing accurate rupture histories of long, high-slip-rate strike-slip faults is is especially challenging where recurrence is relatively short (hundreds of years), adjacent segments may fail within decades of each other, and uncertainties in dating can be as large as, or larger than, the time between events. The Denali Fault system (DFS) is the major active structure of interior Alaska, but received little study since pioneering fault investigations in the early 1970s. Until the summer of 2003 essentially no data existed on the timing or spatial distribution of past ruptures on the DFS. This changed with the occurrence of the M7.9 2002 Denali fault earthquake, which has been a catalyst for present paleoseismic investigations. It provided a well-constrained rupture length and slip distribution. Strike-slip faulting occurred along 290 km of the Denali and Totschunda faults, leaving unruptured ?140km of the eastern Denali fault, ?180 km of the western Denali fault, and ?70 km of the eastern Totschunda fault. The DFS presents us with a blank canvas on which to fill a chronology of past earthquakes using modern paleoseismic techniques. Aware of correlation issues with potentially closely-timed earthquakes we have a) investigated 11 paleoseismic sites that allow a variety of dating techniques, b) measured paleo offsets, which provide insight into magnitude and rupture length of past events, at 18 locations, and c) developed late Pleistocene and Holocene slip rates using exposure age dating to constrain long-term fault behavior models. We are in the process of: 1) radiocarbon-dating peats involved in faulting and liquefaction, and especially short-lived forest floor vegetation that includes outer rings of trees, spruce needles, and blueberry leaves killed and buried during paleoearthquakes; 2) supporting development of a 700-900 year tree-ring time-series for precise dating of trees used in event timing; 3) employing Pb 210 for constraining the youngest ruptures in sag ponds on the eastern and western Denali fault; and 4) using volcanic ashes in trenches for dating and correlation. Initial results are: 1) Large earthquakes occurred along the 2002 rupture section 350-700 yrb02 (2-sigma, calendar-corrected, years before 2002) with offsets about the same as 2002. The Denali penultimate rupture appears younger (350-570 yrb02) than the Totschunda (580-700 yrb02); 2) The western Denali fault is geomorphically fresh, its MRE likely occurred within the past 250 years, the penultimate event occurred 570-680 yrb02, and slip in each event was 4m; 3) The eastern Denali MRE post-dates peat dated at 550-680 yrb02, is younger than the penultimate Totschunda event, and could be part of the penultimate Denali fault rupture or a separate earthquake; 4) A 120-km section of the Denali fault between tNenana glacier and the Delta River may be a zone of overlap for large events and/or capable of producing smaller earthquakes; its western part has fresh scarps with small (1m) offsets. 2004/2005 field observations show there are longer datable records, with 4-5 events recorded in trenches on the eastern Denali fault and the west end of the 2002 rupture, 2-3 events on the western part of the fault in Denali National Park, and 3-4 events on the Totschunda fault. These and extensive datable material provide the basis to define the paleoseismic history of DFS earthquake ruptures through multiple and complete earthquake cycles.

  9. Crustal deformation associated with east Mediterranean strike-slip earthquakes: The 8 June 2008 Movri (NW Peloponnese), Greece, earthquake (M w6.4)

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Gerassimos A.; Karastathis, Vassilis; Kontoes, Charalambos; Charalampakis, Marinos; Fokaefs, Anna; Papoutsis, Ioannis

    2010-09-01

    The 2008 mainshock ( Mw = 6.4) was the first modern, strong strike-slip earthquake in the Greek mainland. The fault strikes NE-SW, dips ˜ 85°NW while the motion was right-lateral with small reverse component. Historical seismicity showed no evidence that the fault ruptured in the last 300 years. For rectangular planar fault we estimated fault dimensions from aftershock locations. Dimensions are consistent with that a buried fault was activated, lateral expansion occurred only along length and the rupture stopped at depth ˜ 20 km implying that more rupture along length was favoured. We concluded that no major asperities remained unbroken and that the aftershock activity was dominated rather by creeping mechanism than by the presence of locked patches. For Mo = 4.56 × 10 25 dyn cm we calculated average slip of 76 cm and stress drop Δσ ˜ 13 bars. This Δσ is high for Greek strike-slip earthquakes, due rather to increased rigidity because of the relatively long recurrence ( Τ > 300 years) of strong earthquakes in the fault, than to high slip. Values of Δσ and Τ indicated that the fault is neither a typical strong nor a typical weak fault. Dislocation modeling of a buried fault showed uplift of ˜ 8.0 cm in Kato Achaia ( Δ ˜ 20 km) at the hanging wall of the reverse fault component. DInSAR analysis detected co-seismic motion only in Kato Achaia where interferogram fringes pattern showed vertical displacement from 3.0 to 6.0 cm. From field-surveys we estimated maximum intensity of VIII in Kato Achaia. The most important liquefaction spots were also observed there. These observations are attributable neither to surface fault-breaks nor to site effects but possibly to high ground acceleration due to the co-seismic uplift. The causal association between displacement and earthquake damage in the hanging wall described for dip-slip faults in Taiwan, Greece and elsewhere, becomes possible also for strike-slip faults with dip-slip component, as the 2008 earthquake.

  10. Temporal evolution of surface rupture deduced from coseismic multi-mode secondary fractures: Insights from the October 8, 2005 (Mw 7.6) Kashmir earthquake, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Sayab, Mohammad; Khan, Muhammad Asif

    2010-10-01

    Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.

  11. Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake

    NASA Astrophysics Data System (ADS)

    Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.

    2012-12-01

    On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.

  12. High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation

    NASA Astrophysics Data System (ADS)

    Boulton, Carolyn; Yao, Lu; Faulkner, Daniel R.; Townend, John; Toy, Virginia G.; Sutherland, Rupert; Ma, Shengli; Shimamoto, Toshihiko

    2017-04-01

    The Alpine Fault in New Zealand is a major plate-bounding structure that typically slips in ∼M8 earthquakes every c. 330 years. To investigate the near-surface, high-velocity frictional behavior of surface- and borehole-derived Alpine Fault gouges and cataclasites, twenty-one rotary shear experiments were conducted at 1 MPa normal stress and 1 m/s equivalent slip velocity under both room-dry and water-saturated (wet) conditions. In the room-dry experiments, the peak friction coefficient (μp = τp/σn) of Alpine Fault cataclasites and fault gouges was consistently high (mean μp = 0.67 ± 0.07). In the wet experiments, the fault gouge peak friction coefficients were lower (mean μp = 0.20 ± 0.12) than the cataclasite peak friction coefficients (mean μp = 0.64 ± 0.04). All fault rocks exhibited very low steady-state friction coefficients (μss) (room-dry experiments mean μss = 0.16 ± 0.05; wet experiments mean μss = 0.09 ± 0.04). Of all the experiments performed, six experiments conducted on wet smectite-bearing principal slip zone (PSZ) fault gouges yielded the lowest peak friction coefficients (μp = 0.10-0.20), the lowest steady-state friction coefficients (μss = 0.03-0.09), and, commonly, the lowest specific fracture energy values (EG = 0.01-0.69 MJ/m2). Microstructures produced during room-dry and wet experiments on a smectite-bearing PSZ fault gouge were compared with microstructures in the same material recovered from the Deep Fault Drilling Project (DFDP-1) drill cores. The near-absence of localized shear bands with a strong crystallographic preferred orientation in the natural samples most resembles microstructures formed during wet experiments. Mechanical data and microstructural observations suggest that Alpine Fault ruptures propagate preferentially through water-saturated smectite-bearing fault gouges that exhibit low peak and steady-state friction coefficients.

  13. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.

  14. Rupture preparation process controlled by surface roughness on meter-scale laboratory fault

    NASA Astrophysics Data System (ADS)

    Yamashita, Futoshi; Fukuyama, Eiichi; Xu, Shiqing; Mizoguchi, Kazuo; Kawakata, Hironori; Takizawa, Shigeru

    2018-05-01

    We investigate the effect of fault surface roughness on rupture preparation characteristics using meter-scale metagabbro specimens. We repeatedly conducted the experiments with the same pair of rock specimens to make the fault surface rough. We obtained three experimental results under the same experimental conditions (6.7 MPa of normal stress and 0.01 mm/s of loading rate) but at different roughness conditions (smooth, moderately roughened, and heavily roughened). During each experiment, we observed many stick-slip events preceded by precursory slow slip. We investigated when and where slow slip initiated by using the strain gauge data processed by the Kalman filter algorithm. The observed rupture preparation processes on the smooth fault (i.e. the first experiment among the three) showed high repeatability of the spatiotemporal distributions of slow slip initiation. Local stress measurements revealed that slow slip initiated around the region where the ratio of shear to normal stress (τ/σ) was the highest as expected from finite element method (FEM) modeling. However, the exact location of slow slip initiation was where τ/σ became locally minimum, probably due to the frictional heterogeneity. In the experiment on the moderately roughened fault, some irregular events were observed, though the basic characteristics of other regular events were similar to those on the smooth fault. Local stress data revealed that the spatiotemporal characteristics of slow slip initiation and the resulting τ/σ drop for irregular events were different from those for regular ones even under similar stress conditions. On the heavily roughened fault, the location of slow slip initiation was not consistent with τ/σ anymore because of the highly heterogeneous static friction on the fault, which also decreased the repeatability of spatiotemporal distributions of slow slip initiation. These results suggest that fault surface roughness strongly controls the rupture preparation process, and generally increases its complexity with the degree of roughness.

  15. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates.

    PubMed

    Di Toro, Giulio; Goldsby, David L; Tullis, Terry E

    2004-01-29

    An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.

  16. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    PubMed

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  17. Paleomagnetic, structural, and seismological evidence for oblique-slip deformation in fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and central Coast Ranges

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya Liana

    The two geologic questions I address in this research are: do fault-related folds accommodate oblique-slip shortening, and how is oblique-slip deformation absorbed within the folded strata? If the strata is deforming as a strike-slip shear zone, then we should be able to observe material rotations produced by strike-slip shear by measuring paleomagnetic vertical-axis rotations. I have approached these problems by applying paleomagnetic vertical-axis rotations, minor fault analyses, and focal mechanism strain inversions to identify evidence of strike-slip shear and to quantify oblique-slip deformation within fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and the central Coast Ranges. Clockwise paleomagnetic vertical-axis rotations and compressive paleostress rotations of 15-40º in the forelimb of the Grayback Monocline, northeastern Front Range Colorado, indicate that this Laramide fold is absorbing right-lateral shear from a N90E regional shortening direction. This work shows that paleomagnetic vertical-axis rotations in folded strata can be used to identify strike-slip motion on an underlying fault, and that oblique-slip deformation is localized in the forelimb of the fold. I applied the same paleomagnetic methods to identify oblique-slip on the underlying faults of the Nacimiento, East Kaibab, San Rafael, and Grand Hogback monoclines of the Colorado Plateau. The absence of paleomagnetic rotations and structural evidence for small displacements at the Nacimiento and East Kaibab monoclines indicate minor (<1km) right-lateral slip is being accommodated in these folds. Paleomagnetic vertical-axis rotations are found in the forelimbs of the San Rafael and Grand Hogback monoclines, yielding strike-slip displacements of ˜5km within these two folds. These results are consistent with a northeast Laramide compressive stress direction. In the Coalinga anticline, central Coast Ranges, California, clockwise paleomagnetic rotations and an 8º counterclockwise deflection of the maximum shortening direction (derived from focal mechanisms strain inversions of the upper 7km) are compatible with right-lateral shear. The maximum shortening direction in the area of the mainshock rupture is fold-normal, indicating that strike-slip displacement is confined to the main fault plane and not distributed to the hanging wall. The San Andreas Fault is therefore partitioning a small amount of strike-slip to the Coalinga anticline.

  18. Is low-angle normal fault slip aided by local stress rotations?: Assessment of paleostress inversion methods

    NASA Astrophysics Data System (ADS)

    Luther, A. L.; Axen, G. J.; Selverstone, J.; Khalsa, N.

    2009-12-01

    Classical fault mechanic theory does not adequately explain slip on “weak” faults oriented at high angles to the regional maximum stress direction, such as the San Andreas Fault and low-angle normal faults. One hypothesis is that stress rotation due to fault-weakening mechanisms allows slip, which may be testable using detailed paleostress analyses of minor faults and tensile fractures. Preliminary data from the footwalls of the Whipple detachment (WD) and the West Salton detachment (WSD) suggest lateral and/or vertical stress rotations. Three inversion programs that use different fault-slip datasets are compared. 1) FaultKin (Marrett and Allmendinger ‘90; Cladouhos and Allmendinger ‘93) determines the principal strain directions using only faults with striae and known slip senses; principal stress orientations are determined assuming coaxiality. To date, FaultKin results appear to be the most reproducible, but it is difficult to find enough faults with striae and slip sense in the small outcrop areas of our study. 2) Slick.bas (Ramsey and Lisle ‘00) uses a grid search to find the best-fit stress tensor from fault and striae orientations, but does not accept slip sense. This program can yield erroneous stress fields that predict slip senses opposite those known for some faults (particularly faults at a high angle to sigma 1). 3) T-TECTO 2.0 (Zalohar and Vrabec ‘07) applies a Gaussian approach, using orientations of faults and striae, the slip senses of any faults for which it is known, plus tensile fractures. We expect that this flexibility of input data types will be best, but testing is preliminary. Paleostress analyses assume that minor faults slipped in response to constant, homogeneous stress fields. We use shear and tensile fractures and cross-cutting relationships from the upper ~25 m of both footwalls to test for spatial and temporal changes to the paleostress field. Paleostress analysis of fractures ~0.3 - 2 m below the WSD on the N limb of an antiform suggests that sigma 3 plunges moderately (~45 degrees) W, sigma 1 plunges gently S, and sigma 2 is steep, consistent with wrench-related folding about E-W trends during WSD slip. However, tensile fractures in the immediately overlying ultracataclasite yield sigma 3 with a shallow W plunge (~4 degrees). In a synformal trough, Reidel shears in the upper 1-2 m of the WSD footwall suggest a moderately (~50 degrees) E plunging sigma 1. Deeper (2-10 m) in the footwall, shear fractures have different but consistent orientations, suggesting a change in the stress field. Preliminary results from several sets of shear fractures in the WD footwall suggest that sigma 1 is steep (~75-90 degrees) in the chlorite breccia zone (implying low shear traction) but is shallower (~45 degrees) in the deeper damage zone. Prior work (Axen & Selverstone ‘94) found that sigma 1 becomes steep again at greater depths. Continued testing of paleostress analysis methods and several other datasets are in progress to confirm our results.

  19. Active strike-slip faulting in El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  20. Elevation changes

    USGS Publications Warehouse

    Jayko, A. S.; Marshall, G.A.; Carver, G.A.

    1992-01-01

    Elevation changes, as well as horizontal displacements of the Earth's surface, are an expected consequence of dip-slip displacement on earthquake faults. the rock surrounding and overlying the fault is forced to stretch and bend to accommodate fault slip. Slip in the case of the April 25 mainshock is thought to have occurred on a gently inclined plane dipping to the northeast at a small angle (see article on preliminary seismological results in this issue).The associated fault-plane solution implies that rock overlying the fault plane (the hanging-wall block west and south of the epicenter) rose and shifted to the northeast. The map on the next page shows the location of the epicenter and approximate extent of uplift and subsidence derived from estimates of the geometry, location. and slip on the buried fault plane. 

  1. On the use of imaginary faults in palaeostress analysis

    NASA Astrophysics Data System (ADS)

    Shan, Yehua; Liang, Xinquan

    2017-11-01

    The imaginary fault refers to the counterpart of a certain given fault that has a similar expression about the Wallace-Bott hypothesis. It is included to further reduce the feasible fields for the principal stress directions using the right dihedra method. The given fault and its imaginary fault have a similar dip-slip sense under the extensional or compressional regime but, as proved in this paper, a different dip-slip sense under the strike-slip regime. Their relation in dip-slip sense does no change with the rotation of the coordinate system, thus making possible the general use in the reduction of the imaginary faults under any tectonic regime. A procedure for this use is proposed and applied to a real example to demonstrate the feasibility of this method.

  2. Mechanics of distributed fault and block rotation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Scotti, O.; Ron, H.

    1989-01-01

    Paleomagnetic data, structural geology, and rock mechanics are used to explore the validity and significance of the block rotation concept. The analysis is based on data from Northern Israel, where fault slip and spacing are used to predict block rotation; the Mojave Desert, with well documented strike-slip sets; the Lake Mead, Nevada fault system with well-defined sets of strike-slip faults; and the San Gabriel Mountains domain with a multiple set of strike-slip faults. The results of the analysis indicate that block rotations can have a profound influence on the interpretation of geodetic measurments and the inversion of geodetic data. Furthermore, the block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which may be responsible for the initiation and termination of earthquake rupture.

  3. Nucleation and growth of strike slip faults in granite.

    USGS Publications Warehouse

    Segall, P.; Pollard, D.P.

    1983-01-01

    Fractures within granodiorite of the central Sierra Nevada, California, were studied to elucidate the mechanics of faulting in crystalline rocks, with emphasis on the nucleation of new fault surfaces and their subsequent propagation and growth. Within the study area the fractures form a single, subparallel array which strikes N50o-70oE and dips steeply to the S. Some of these fractures are identified as joints because displacements across the fracture surfaces exhibit dilation but no slip. The joints are filled with undeformed minerals, including epidote and chlorite. Other fractures are identified as small faults because they display left-lateral strike slip separations of up to 2m. Slickensides, developed on fault surfaces, plunge 0o-20o to the E. The faults occur parallel to, and in the same outcrop with, the joints. The faults are filled with epidote, chlorite, and quartz, which exhibit textural evidence of shear deformation. These observations indicate that the strike slip faults nucleated on earlier formed, mineral filled joints. Secondary, dilational fractures propagated from near the ends of some small faults contemporaneously with the left-lateral slip on the faults. These fractures trend 25o+ or -10o from the fault planes, parallel to the direction of inferred local maximum compressive stress. The faults did not propagate into intact rock in their own planes as shear fractures. -from Authors

  4. Millennial strain partitioning and fault interaction revealed by 36Cl cosmogenic nuclide datasets from Abruzzo, Central Italy

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Phillips, R. J.; Roberts, G.; Cowie, P. A.; Shanks, R. P.; McCaffrey, K. J. W.; Wedmore, L. N. J.; Zijerveld, L.

    2015-12-01

    In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. The comparison of slip distributions on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with better-than-millennial resolution. In this presentation, we will use an extensive 36Cl dataset to characterise late Holocene activity across a complicated network of normal faults in Abruzzo, Italy, comparing the most recent fault behaviour with the historical earthquake record in the region. Extensional faulting in Abruzzo has produced scarps of exposed bedrock limestone fault planes that have been preserved since the last glacial maximum (LGM). 36Cl accumulates in bedrock fault scarps as the plane is progressively exhumed by earthquakes and thus the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. In this presentation, we will focus on the most recent record, revealed at the base of the fault. Utilising new Bayesian modelling techniques on new and previously collected data, we compare evidence for this most recent period of slip (over the last several thousands of years) across 5-6 fault zones located across strike from each other. Each sampling site is carefully characterised using LiDAR and GPR. We demonstrate that the rate of slip on individual fault strands varies significantly, between having periods of accelerated slip to relative quiescence. Where data is compared between across-strike fault zones and with the historical catalogue, it appears that slip is partitioned such that one fault zone takes up a significant portion of strain across the region for hundreds to thousands of years.

  5. Fethiye-Burdur Fault Zone (SW Turkey): a myth?

    NASA Astrophysics Data System (ADS)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan

    2017-04-01

    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault zone. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Fethiye Burdu Fault Zone, Paleomagnetism, paleostress inversion, normal fault, Strike-slip fault, SW Turkey

  6. Seismic Supercycles of Normal Faults in Central Italy over Various Time Scales Revealed by 36Cl Cosmogenic Dating

    NASA Astrophysics Data System (ADS)

    Benedetti, L. C.; Tesson, J.; Perouse, E.; Puliti, I.; Fleury, J.; Rizza, M.; Billant, J.; Pace, B.

    2017-12-01

    The use of 36Cl cosmogenic nuclide as a paleoseismological tool for normal faults in the Mediterranean has revolutionized our understanding of their seismic cycle (Gran Mitchell et al. 2001, Benedetti et al. 2002). Here we synthetized results obtained on 13 faults in Central Italy. Those records cover a period of 8 to 45 ka. The mean recurrence time of retrieved seismic events is 5.5 ±6 ka, with a mean slip per event of 2.5 ± 1.8 m and a mean slip-rate from 0.1 to 2.4 mm/yr. Most retrieved events correspond to single events according to scaling relationships. This is also supported by the 2 m-high co-seismic slip observed on the Mt Vettore fault after the October 30, 2016 M6.5 earthquake in Central Italy (EMERGEO working group). Our results suggest that all faults have experienced one or several periods of slip acceleration with bursts of seismic activity, associated with very high slip-rate of 1.7-9 mm/yr, corresponding to 2-20 times their long-term slip-rate. The duration of those bursts is variable from a fault to another (from < 2 kyr to 4-10 kyr). Those periods of acceleration are generally separated by longer periods of quiescence with no or very few events. Those alternating periods correspond to a long-term variation of the strain level with all faults oscillating between strain maximum and minimum, the length of strain loading and release being significantly different from one fault to another, those supercycles occurring over periods of 8 to 45 ka. We found relationships between the mean slip-rate, the mean slip per event and the mean recurrence time. This might suggest that the seismic activity of those faults could be controlled by their intrinsic properties (e.g. long-term slip-rate, fault-length, state of structural maturity). Our results also show events clustering with several faults rupturing in less than 500 yrs on adjacent or distant faults within the studied area. The Norcia-Amatrice seismic sequence, ≈ 50 km north of our study area, also evidenced this clustering behaviour, with over the last 20 yrs several successive events of Mw 5 to 6.5 (from north to south: Colfiorito 1997 Mw6.0, Norcia 2016 Mw6.5, L'Aquila 2009 Mw6.3), rupturing various fault systems, over a total length of ≈100 km. This sequence will allow to better understand earthquake kinematics and spatiotemporal slip distribution during those seismic bursts.

  7. A bottom-driven mechanism for distributed faulting in the Gulf of California rift

    NASA Astrophysics Data System (ADS)

    Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc

    2017-11-01

    Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.

  8. Effects of fault dip and slip rake angles on near-source ground motions: Why rupture directivity was minimal in the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Aagaard, Brad T.; Hall, J.F.; Heaton, T.H.

    2004-01-01

    We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km2 for the 30??-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60??- and 75??-dipping faults this velocity is exceeded over an area of 2700 km2 . These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter.

  9. Permeability of the San Andreas Fault Zone at Depth

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Song, I.; Saffer, D.

    2010-12-01

    Quantifying fault rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that affect fault mechanics by mediating effective stress. These include long-term fault strength as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. Despite its importance, measurements of fault zone permeability for relevant natural materials are scarce, owing to the difficulty of coring through active fault zones seismogenic depths. Most existing measurements of fault zone permeability are from altered surface samples or from thinner, lower displacement faults than the SAF. Here, we report on permeability measurements conducted on gouge from the actively creeping Central Deformation Zone (CDZ) of the San Andreas Fault, sampled in the SAFOD borehole at a depth of ~2.7 km (Hole G, Run 4, sections 4,5). The matrix of the gouge in this interval is predominantly composed of particles <10 µm, with ~5 vol% clasts of serpentinite, very fine-grained sandstone, and siltstone. The 2.6 m-thick CDZ represents the main fault trace and hosts ~90% of the active slip on the SAF at this location, as documented by repeated casing deformation surveys. We measured permeability in two different configurations: (1) in a uniaxial pressure cell, in which a sample is placed into a rigid steel ring which imposes a zero lateral strain condition and subjected to axial load, and (2) in a standard triaxial system under isostatic stress conditions. In the uniaxial configuration, we obtained permeabilities at axial effective stresses up to 90 MPa, and in the triaxial system up to 10 MPa. All experiments were conducted on cylindrical subsamples of the SAFOD core 25 mm in diameter, with lengths ranging from 18mm to 40mm, oriented for flow approximately perpendicular to the fault. In uniaxial tests, permeability is determined by running constant rate of strain (CRS) tests up to 90 MPa axial stress. In these tests, axial stress is increased via a constant rate of displacement, and the excess pore pressure build up at the base of the sample is measured. Stress, pore pressure and strain are monitored to calculate coefficient of consolidation and volumetric compressibility in addition to permeability. In triaxial experiments, permeability is measured from by flow through tests under constant head boundary conditions. Permeability of the CDZ rapidly decreases to ~10-19 m2 by 20 MPa axial stress in our CRS tests. Over axial stresses from 20-85 MPa, permeability decreases log-linearly with effective stress from 8x10-20 m2 to 1x10-20 m2. Flow-through tests in the triaxial system under isostatic conditions yield permeabilities of 2.2x10-19 m2 and 1x10-20 m2 at 5 and 10 MPa, respectively. Our results are consistent with published geochemical data from SAFOD mud gas samples and inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault is a barrier to regional fluid flow. Our results indicate that the permeability of the fault core is sufficiently low to result in effectively undrained behavior during slip, thus allowing dynamic processes including thermal pressurization and dilatancy hardening to affect slip behavior.

  10. Strain accumulation and rotation in the Eastern California Shear Zone

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Svarc, J.L.

    2001-01-01

    Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).

  11. The Effect of Earthquakes on Episodic Tremor and Slip Events on the Southern Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Sainvil, A. K.; Schmidt, D. A.; Nuyen, C.

    2017-12-01

    The goal of this study is to explore how slow slip events on the southern Cascadia Subduction Zone respond to nearby, offshore earthquakes by examining GPS and tremor data. At intermediate depths on the plate interface ( 40 km), transient fault slip is observed in the form of Episodic Tremor and Slip (ETS) events. These ETS events occur regularly (every 10 months), and have a longer duration than normal earthquakes. Researchers have been documenting slow slip events through data obtained by continuously running GPS stations in the Pacific Northwest. Some studies have proposed that pore fluid may play a role in these ETS events by lowering the effective stress on the fault. The interaction of earthquakes and ETS can provide constraints on the strength of the fault and the level of stress needed to alter ETS behavior. Earthquakes can trigger ETS events, but the connection between these events and earthquake activity is less understood. We originally hypothesized that ETS events would be affected by earthquakes in southern Cascadia, and could result in a shift in the recurrence interval of ETS events. ETS events were cataloged using GPS time series provided by PANGA, in conjunction with tremor positions, in Southern Cascadia for stations YBHB and DDSN from 1997 to 2017. We looked for evidence of change from three offshore earthquakes that occurred near the Mendocino Triple Junction with moment magnitudes of 7.2 in 2005, 6.5 in 2010, and 6.8 in 2014. Our results showed that the recurrence interval of ETS for stations YBHB and DDSN was not altered by the three earthquake events. Future is needed to explore whether this lack of interaction is explained by the non-optimal orientation of the receiver fault for the earthquake focal mechanisms.

  12. Splay Fault Branching from the Hikurangi Subduction Shear Zone: Implications for Slow Slip and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Henrys, S. A.; Plaza-Faverola, A. A.; Pecher, I. A.; Klaeschen, D.; Wallace, L.

    2016-12-01

    Seismic reflection data along the East Coast of the New Zealand North Island are used to map the offshore character and geometry of the central Hikurangi subduction thrust and outer wedge in a region of short term ( 2-3 weeks duration) geodetically determined slow-slip events (SSEs). Pre-stack depth migration of line 05CM-38 was used to derive subducting slab geometry and upper crustal structure together with a Vp image of the crust that is resolved to 14 km depth. The subduction interface is a shallow dipping thrust at < 7 km deep near the trench and steps down to 14 km depth along an approximately 18 km long ramp, beneath Porangahau Ridge. This bend in the subducted plate is associated with splay fault branching and coincides with the zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. We infer that the step down in the décollement transfers slip on the plate interface from the top of subducting sediments to the oceanic crust and drives underplating beneath the inner margin of central Hikurangi margin. Low-velocity subducting sediments (LVZ) beneath the plate interface, updip of the plate interface ramp, are interpreted as being capped with a low permeability condensed layer of chalk and interbedded mudstones. We interpret this LVZ as fluid-rich overpressured sediments that have been displaced and later imbricated by splay faults in a region that may mark the up-dip transition from seismic to aseismic behavior. Further, we hypothesize that fluids derived from the overpressured sediment are channeled along splay faults to the shallow sub-seafloor near Porangahau Ridge where seafloor seepage and an upwarping of the gas hydrate Bottom-Simulating Reflector have been documented.

  13. Microstructural, textural and thermal evolution of an exhumed strike-slip fault and insights into localization and rheological transition

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann

    2016-04-01

    The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological transition features and feedbacks between deformation, decreasing temperature and fluids.

  14. Foreshocks and Aftershocks Detected from Stick-slip Events on a 3 m Biaxial Apparatus and their Relationship to Quasistatic Nucleation and Wear Processes

    NASA Astrophysics Data System (ADS)

    Wu, S.; Mclaskey, G.

    2017-12-01

    We investigate foreshocks and aftershocks of dynamic stick-slip events generated on a newly constructed 3 m biaxial friction apparatus at Cornell University (attached figure). In a typical experiment, two rectangular granite blocks are squeezed together under 4 or 7 MPa of normal pressure ( 4 or 7 million N on a 1 m2 fault surface), and then shear stress is increased until the fault slips 10 - 400 microns in a dynamic rupture event similar to a M -2 to M -3 earthquake. Some ruptures nucleate near the north end of the fault, where the shear force is applied, other ruptures nucleate 2 m from the north end of the fault. The samples are instrumented with 16 piezoelectric sensors, 16 eddy current sensors, and 8 strain gage rosettes, evenly placed along the fault to measure vertical ground motion, local slip, and local stress, respectively. We studied sequences of tens of slip events and identified a total of 194 foreshocks and 66 aftershocks located within 6 s time windows around the stick-slip events and analyzed their timing and locations relative to the quasistatic nucleation process. We found that the locations of the foreshocks and aftershocks were distributed all along the length of the fault, with the majority located at the ends of the fault where local normal and shear stress is highest (caused by both edge effects and the finite stiffness of the steel frame surrounding the granite blocks). We also opened the laboratory fault and inspected the fault surface and found increased wear at the sample ends. To explore the foreshocks' and aftershocks' relationship to the nucleation and afterslip, we compared the occurrence of foreshocks to the local slip rate on the laboratory fault closest to each foreshock in space and time. We found that that majority of foreshocks were generated from local slip rates between 1 and 100 microns/s, though we were not able to resolve slip rate lower than about 1 micron/s. Our experiments provide insight into how foreshocks and aftershocks in natural earthquakes may be influenced both by fault structure and slow slip associated with nucleation or afterslip.

  15. Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China

    NASA Astrophysics Data System (ADS)

    Wu, Kongyou; Pei, Yangwen; Li, Tianran; Wang, Xulong; Liu, Yin; Liu, Bo; Ma, Chao; Hong, Mei

    2018-03-01

    The Daerbute fault zone, located in the northwestern margin of the Junggar basin, in the Central Asian Orogenic Belt, is a regional strike-slip fault with a length of 400 km. The NE-SW trending Daerbute fault zone presents a distinct linear trend in plain view, cutting through both the Zair Mountain and the Hala'alate Mountain. Because of the intense contraction and shearing, the rocks within the fault zone experienced high degree of cataclasis, schistosity, and mylonization, resulting in rocks that are easily eroded to form a valley with a width of 300-500 m and a depth of 50-100 m after weathering and erosion. The well-exposed outcrops along the Daerbute fault zone present sub-horizontal striations and sub-vertical fault steps, indicating sub-horizontal shearing along the observed fault planes. Flower structures and horizontal drag folds are also observed in both the well-exposed outcrops and high-resolution satellite images. The distribution of accommodating strike-slip splay faults, e.g., the 973-pluton fault and the Great Jurassic Trough fault, are in accordance with the Riedel model of simple shear. The seismic and time-frequency electromagnetic (TFEM) sections also demonstrate the typical strike-slip characteristics of the Daerbute fault zone. Based on detailed field observations of well-exposed outcrops and seismic sections, the Daerbute fault can be subdivided into two segments: the western segment presents multiple fault cores and damage zones, whereas the eastern segment only presents a single fault core, in which the rocks experienced a higher degree of rock cataclasis, schistosity, and mylonization. In the central overlapping portion between the two segments, the sediments within the fault zone are primarily reddish sandstones, conglomerates, and some mudstones, of which the palynological tests suggest middle Permian as the timing of deposition. The deformation timing of the Daerbute fault was estimated by integrating the depocenters' basinward migration and initiation of the splay faults (e.g., the Great Jurassic Trough fault and the 973-pluton fault). These results indicate that there were probably two periods of faulting deformation for the Daerbute fault. By integrating our study with previous studies, we speculate that the Daerbute fault experienced a two-phase strike-slip faulting deformation, commencing with the initial dextral strike-slip faulting in mid-late Permian, and then being inversed to sinistral strike-slip faulting since the Triassic. The results of this study can provide useful insights for the regional tectonics and local hydrocarbon exploration.

  16. Fault weakening and earthquake instability by powder lubrication

    USGS Publications Warehouse

    Reches, Z.; Lockner, D.A.

    2010-01-01

    Earthquake instability has long been attributed to fault weakening during accelerated slip1, and a central question of earthquake physics is identifying the mechanisms that control this weakening2. Even with much experimental effort2-12, the weakening mechanisms have remained enigmatic. Here we present evidence for dynamic weakening of experimental faults that are sheared at velocities approaching earthquake slip rates. The experimental faults, which were made of room-dry, solid granite blocks, quickly wore to form a fine-grain rock powder known as gouge. At modest slip velocities of 10-60mms-1, this newly formed gouge organized itself into a thin deforming layer that reduced the fault's strength by a factor of 2-3. After slip, the gouge rapidly 'aged' and the fault regained its strength in a matter of hours to days. Therefore, only newly formed gouge can weaken the experimental faults. Dynamic gouge formation is expected to be a common and effective mechanism of earthquake instability in the brittle crust as (1) gouge always forms during fault slip5,10,12-20; (2) fault-gouge behaves similarly to industrial powder lubricants21; (3) dynamic gouge formation explains various significant earthquake properties; and (4) gouge lubricant can form for a wide range of fault configurations, compositions and temperatures15. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  17. Determining on-fault earthquake magnitude distributions from integer programming

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  18. Fault geometry inversion and slip distribution of the 2010 Mw 7.2 El Mayor-Cucapah earthquake from geodetic data

    NASA Astrophysics Data System (ADS)

    Huang, Mong-Han; Fielding, Eric J.; Dickinson, Haylee; Sun, Jianbao; Gonzalez-Ortega, J. Alejandro; Freed, Andrew M.; Bürgmann, Roland

    2017-01-01

    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake in Baja, California, and Sonora, Mexico, had primarily right-lateral strike-slip motion and a minor normal-slip component. The surface rupture extended about 120 km in a NW-SE direction, west of the Cerro Prieto fault. Here we use geodetic measurements including near- to far-field GPS, interferometric synthetic aperture radar (InSAR), and subpixel offset measurements of radar and optical images to characterize the fault slip during the EMC event. We use dislocation inversion methods and determine an optimal nine-segment fault geometry, as well as a subfault slip distribution from the geodetic measurements. With systematic perturbation of the fault dip angles, randomly removing one geodetic data constraint, or different data combinations, we are able to explore the robustness of the inferred slip distribution along fault strike and depth. The model fitting residuals imply contributions of early postseismic deformation to the InSAR measurements as well as lateral heterogeneity in the crustal elastic structure between the Peninsular Ranges and the Salton Trough. We also find that with incorporation of near-field geodetic data and finer fault patch size, the shallow slip deficit is reduced in the EMC event by reductions in the level of smoothing. These results show that the outcomes of coseismic inversions can vary greatly depending on model parameterization and methodology.

  19. Earthquake slip weakening and asperities explained by thermal pressurization.

    PubMed

    Wibberley, Christopher A J; Shimamoto, Toshihiko

    2005-08-04

    An earthquake occurs when a fault weakens during the early portion of its slip at a faster rate than the release of tectonic stress driving the fault motion. This slip weakening occurs over a critical distance, D(c). Understanding the controls on D(c) in nature is severely limited, however, because the physical mechanism of weakening is unconstrained. Conventional friction experiments, typically conducted at slow slip rates and small displacements, have obtained D(c) values that are orders of magnitude lower than values estimated from modelling seismological data for natural earthquakes. Here we present data on fluid transport properties of slip zone rocks and on the slip zone width in the centre of the Median Tectonic Line fault zone, Japan. We show that the discrepancy between laboratory and seismological results can be resolved if thermal pressurization of the pore fluid is the slip-weakening mechanism. Our analysis indicates that a planar fault segment with an impermeable and narrow slip zone will become very unstable during slip and is likely to be the site of a seismic asperity.

  20. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures of a fault zone in understanding the effects of intrafault materials on the fault motion. Based on the present experimental results incorporated with some other experimental data, it is argued that although the stabilizing effect of montmorillonite and vermiculite is indeed remarkable at room temperature, the effect should be much less pronounced at elevated temperatures, due perhaps to the dewatering of the clays. In most geological environments where shallow earthquakes occur, the stabilizing effect of clays is probably not so conspicuous as to completely suppress the unstable motion of a fault.

  1. Seismotectonics and fault structure of the California Central Coast

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2010-01-01

    I present and interpret new earthquake relocations and focal mechanisms for the California Central Coast. The relocations improve upon catalog locations by using 3D seismic velocity models to account for lateral variations in structure and by using relative arrival times from waveform cross-correlation and double-difference methods to image seismicity features more sharply. Focal mechanisms are computed using ray tracing in the 3D velocity models. Seismicity alignments on the Hosgri fault confirm that it is vertical down to at least 12 km depth, and the focal mechanisms are consistent with right-lateral strike-slip motion on a vertical fault. A prominent, newly observed feature is an ~25 km long linear trend of seismicity running just offshore and parallel to the coastline in the region of Point Buchon, informally named the Shoreline fault. This seismicity trend is accompanied by a linear magnetic anomaly, and both the seismicity and the magnetic anomaly end where they obliquely meet the Hosgri fault. Focal mechanisms indicate that the Shoreline fault is a vertical strike-slip fault. Several seismicity lineations with vertical strike-slip mechanisms are observed in Estero Bay. Events greater than about 10 km depth in Estero Bay, however, exhibit reverse-faulting mechanisms, perhaps reflecting slip at the top of the remnant subducted slab. Strike-slip mechanisms are observed offshore along the Hosgri–San Simeon fault system and onshore along the West Huasna and Rinconada faults, while reverse mechanisms are generally confined to the region between these two systems. This suggests a model in which the reverse faulting is primarily due to restraining left-transfer of right-lateral slip.

  2. Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation

    NASA Astrophysics Data System (ADS)

    Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.

    2017-08-01

    Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.

  3. Earthquake nucleation on faults with rate-and state-dependent strength

    USGS Publications Warehouse

    Dieterich, J.H.

    1992-01-01

    Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 115-134. Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading conditions and constitutive parameters which include Dc, the characteristic slip distance. If slip starts on a patch that exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement are proportional to Dc, the moment of premonitory slip scales by D3c. The scaling of Dc is currently an open question. Unless Dc for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the possibility that Dc in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions of the smallest earthquakes in a region provide an upper limit for the size of the nucleation patch. ?? 1992.

  4. E-W strike slip shearing of Kinwat granitoid at South East Deccan Volcanic Province, Kinwat, Maharashtra, India

    NASA Astrophysics Data System (ADS)

    Kaplay, R. D.; Kumar, T. Vijay; Mukherjee, Soumyajit; Wesanekar, P. R.; Babar, Md; Chavan, Sumeet

    2017-07-01

    We study the margin of South East Deccan Volcanic Province around Kinwat lineament, Maharashtra, India, which is NW extension of the Kaddam Fault. Structural field studies document ˜ E-W strike-slip mostly brittle faults from the basement granite. We designate this as `Western boundary East Dharwar Craton Strike-slip Zone' (WBEDCSZ). At local level, the deformation regime from Kinwat, Kaddam Fault, micro-seismically active Nanded and seismically active Killari corroborate with the nearby lineaments. Morphometric analyses suggest that the region is moderately tectonically active. The region of intense strike-slip deformation lies between seismically active fault along Tapi in NW and Bhadrachalam in the SE part of the Kaddam Fault/lineament. The WBEDCSZ with the surface evidences of faulting, presence of a major lineaments and intersection of faults could be a zone of intraplate earthquake.

  5. Quaternary low-angle slip on detachment faults in Death Valley, California

    USGS Publications Warehouse

    Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.

    2003-01-01

    Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.

  6. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  7. Microphysically Derived Expressions for Rate-and-State Friction Parameters, a, b, and Dc

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Niemeijer, A. R.; Spiers, Christopher J.

    2017-12-01

    Rate-and-state friction (RSF) laws are extensively applied in fault mechanics but have a largely empirical basis reflecting only limited understanding of the underlying physical mechanisms. We recently proposed a microphysical model describing the frictional behavior of a granular fault gouge undergoing deformation in terms of granular flow accompanied by thermally activated creep and intergranular sliding at grain contacts. Numerical solutions reproduced typical experimental results well. Here we extend our model to obtain physically meaningful, analytical expressions for the steady state frictional strength and standard RSF parameters, a, b, and Dc. The frictional strength contains two components, namely, grain boundary friction and friction due to intergranular dilatation. The expressions obtained for a and b linearly reflect the rate dependence of these two terms. Dc scales with slip band thickness and varies only slightly with velocity. The values of a, b, and Dc predicted show quantitative agreement with previous experimental results, and inserting their values into classical RSF laws gives simulated friction behavior that is consistent with the predictions of our numerically implemented model for small departures from steady state. For large velocity steps, the model produces mixed RSF behavior that falls between the Slowness and Slip laws, for example, with an intermediate equivalent slip(-weakening) distance d0. Our model possesses the interesting property not only that a and b are velocity dependent but also that Dc and d0 scale differently from classical RSF models, potentially explaining behaviour seen in many hydrothermal friction experiments and having substantial implications for natural fault friction.

  8. Microstructural record of cataclastic and dissolution-precipitation processes from shallow crustal carbonate strike-slip faults, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Grasemann, Bernhard; Decker, Kurt

    2015-04-01

    The concept of coseismic slip and aseismic creep deformation along faults is supported by the variability of natural fault rocks and their microstructures. Faults in carbonate rocks are characterized by very narrow principal slip zones (cm to mm wide) containing (ultra)cataclastic fault rocks that accommodate most of the fault displacement. Fluidization of ultracataclastic sub layers and thermal decomposition of calcite due to frictional heating have been proposed as possible indicators for seismic slip. Dissolution-precipitation (DP) processes are possible mechanism of aseismic sliding, resulting in spaced cleavage solution planes and associated veins, indicating diffusive mass transfer and precipitation in pervasive vein networks. We investigated exhumed, sinistral strike-slip faults in carbonates of the Northern Calcareous Alps. The study presents microstructural investigations of natural carbonate fault rocks that formed by cataclastic and dissolution-precipitation related deformation processes. Faults belong to the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system that was formed during eastward lateral extrusion of the Eastern Alps in Oligocene to Lower Miocene. The investigated faults accommodated sinistral slip between several tens and few hundreds of meters. Microstructural analysis of fault rocks was done with scanning electron microscopy and optical microscopy. Deformation experiments of natural fault rocks are planned to be conducted at the Sapienza University of Roma and should be available at the meeting. The investigated fault rocks give record of alternating cataclastic deformation and DP creep. DP fault rocks reveal various stages of evolution including early stylolites, pervasive pressure solution seams and cleavage, localized shear zones with syn-kinematic calcite fibre growth and mixed DP/cataclastic microstructures, involving pseudo sc- and scc'-fabrics. Pressure solution seams host fine grained kaolinit, chlorite and illite while the protolith shows only weak evidence of detrital clay content. Our studies suggest that velocity weakening and strengthening mechanisms alternated during the accumulation of displacement along the SEMP fault zone.

  9. Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, P

    2001-10-01

    A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreasmore » Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this magnitude (equivalent to M{sub w} = 5.3 and 5.6 events on the Superstition Hills and San Andreas Faults respectively) are hitherto unknown and have not been captured previously by any geodetic technique.« less

  10. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The sidewall ripout model, as a mechanism for adhesive wear during fault zone deformation, can be useful in studies of fault zone geometry, kinematics and evolution from outcrop- to crustal-scales.

  11. Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms

    NASA Astrophysics Data System (ADS)

    Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.

    2017-05-01

    Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.

  12. Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms

    USGS Publications Warehouse

    Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.

    2017-01-01

    Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.

  13. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

    USGS Publications Warehouse

    Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.

    2014-01-01

    Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

  14. Constraining slip rates and spacings for active normal faults

    NASA Astrophysics Data System (ADS)

    Cowie, Patience A.; Roberts, Gerald P.

    2001-12-01

    Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.

  15. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  16. Anatomy of a Plate Boundary at Shallow Crustal Levels: a Composite Section from the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Barth, N. C.; Toy, V. G.; Boulton, C. J.; Carpenter, B. M.

    2010-12-01

    New Zealand's Alpine Fault is mostly a moderately SE-dipping dextral reverse plate boundary structure, but at its southern end, strike-slip-normal motion is indicated by offset of recent surfaces, juxtaposition of sediments, and both brittle and ductile shear sense indicators. At the location of uplift polarity reversal fault rocks exhumed from both the hangingwall Pacific and footwall Australian Plates are juxtaposed, offering a remarkably complete cross section of the plate boundary at shallow crustal levels. We describe Alpine Fault damage zone and fault core structures overprinted on Pacific and Australian plate mylonites of a variety of compositions, in a fault-strike perpendicular composite section spanning the reversal in dip-slip polarity. The damage zone is asymmetric; on the Australian Plate 160m of quartzose paragneiss-derived mylonites are overprinted by brittle faults and fractures that increase in density towards the principal slip surface (PSS). This damage zone fabric consists of 1-10m-spaced, moderately to steeply-dipping, 1-20cm-thick gouge-filled faults, overprinted on and sub-parallel to a mylonitic foliation sub-parallel to the PSS. On the Pacific Plate, only 40m of the 330m section of volcaniclastic-derived mylonites have brittle damage in the form of unhealed fractures and faults, as well as a pervasive greenschist facies hydrothermal alteration absent in the footwall. These damage-related structures comprise a network of small-offset faults and fractures with increasing density and intensity towards the PSS. The active Pacific Plate fault core is composed of ~1m of cataclasite grading into folded protocataclasite that is less folded and fractured with increasing distance from the PSS. The active Australian Plate fault core is <1.5m wide and consists of 3 distinct foliated clay gouges, as well as a 4cm thick brittle ultracataclasite immediately adjacent to the active PSS. The Australian Plate foliated clay gouge contains stringers of quartz that become less continuous and more sigmoidal toward the PSS, indicating a strain gradient across the gouge zone. Gouge textures are consistent with deformation by pressure solution. Intact wafers from one of the gouges, experimentally -sheared in a biaxial configuration under true-triaxial loading at σn’= 31MPa and Pf = 10MPa, yielded a friction coefficient, μss = 0.32 and displayed velocity strengthening behavior. No significant re-strengthening was observed during hold periods of slide-hold tests. Well-cemented glacial till (~8000 years old), which caps many outcrops, is a marker that shows that the damage zone is not active in the near-surface, but most of the fault core is. The active near-surface damage zone here is <40m wide and the active fault core is <2.5m wide. Both overprint a much wider, inactive damage zone. The combination of rheologically-weak Australian Plate fault rocks with surface rupture traces indicates distinctly different coseismic and interseismic behaviors along the southern strike-slip-normal segment of the Alpine Fault.

  17. The response of creeping parts of the San Andreas fault to earthquakes on nearby faults: Two examples

    USGS Publications Warehouse

    Simpson, R.W.; Schulz, S.S.; Dietz, L.D.; Burford, R.O.

    1988-01-01

    Rates of shallow slip on creeping sections of the San Andreas fault have been perturbed on a number of occasions by earthquakes occurring on nearby faults. One example of such perturbations occurred during the 26 January 1986 magnitude 5.3 Tres Pinos earthquake located about 10 km southeast of Hollister, California. Seven creepmeters on the San Andreas fault showed creep steps either during or soon after the shock. Both left-lateral (LL) and right-lateral (RL) steps were observed. A rectangular dislocation in an elastic half-space was used to model the coseismic fault offset at the hypocenter. For a model based on the preliminary focal mechanism, the predicted changes in static shear stress on the plane of the San Andreas fault agreed in sense (LL or RL) with the observed slip directions at all seven meters; for a model based on a refined focal mechanism, six of the seven meters showed the correct sense of motion. Two possible explanations for such coseismic and postseismic steps are (1) that slip was triggered by the earthquake shaking or (2) that slip occurred in response to the changes in static stress fields accompanying the earthquake. In the Tres Pinos example, the observed steps may have been of both the triggered and responsive kinds. A second example is provided by the 2 May 1983 magnitude 6.7 Coalinga earthquake, which profoundly altered slip rates at five creepmeters on the San Andreas fault for a period of months to years. The XMM1 meter 9 km northwest of Parkfield, California recorded LL creep for more than a year after the event. To simulate the temporal behavior of the XMM1 meter and to view the stress perturbation provided by the Coalinga earthquake in the context of steady-state deformation on the San Andreas fault, a simple time-evolving dislocation model was constructed. The model was driven by a single long vertical dislocation below 15 km in depth, that was forced to slip at 35 mm/yr in a RL sense. A dislocation element placed in the seismogenic layer under XMM1 was given a finite breaking strength of sufficient magnitude to produce a Parkfield-like earthquake every 22 years. When stress changes equivalent to a Coalinga earthquake were superposed on the model running in a steady state mode, the effect was to make a segment under XMM1, that could slip in a linear viscous fashion, creep LL and to delay the onset of the next Parkfield-like earthquake by a year or more. If static stress changes imposed by earthquakes off the San Andreas can indeed advance or delay earthquakes on the San Andreas by months or years, then such changes must be considered in intermediate-term prediction efforts. ?? 1988 Birkha??user Verlag.

  18. Prehistoric earthquakes on the Caribbean-South American plate boundary, central Range Fault, Trinidad

    USGS Publications Warehouse

    Prentice, Carol S.; Crosby, Christopher J.; Weber, John C.; Ragona, Daniel

    2010-01-01

    Recent geodetic studies suggest that the Central Range fault is the principal plate-boundary structure accommodating strike-slip motion between the Caribbean and South American plates. Our study shows that the fault forms a topographically prominent lineament in central Trinidad. Results from a paleoseismic investigation at a site where Holocene sediments have been deposited across the Central Range fault indicate that it ruptured the ground surface most recently between 2710 and 550 yr B.P. If the geodetic slip rate of 9–15 mm/yr is representative of Holocene slip rates, our paleoseismic data suggest that at least 4.9 m of potential slip may have accumulated on the fault and could be released during a future large earthquake (M > 7).

  19. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    NASA Astrophysics Data System (ADS)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  20. Frictional, Hydraulic, and Acoustic Properties of Alpine Fault DFDP-1 Core

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Ikari, M.; Kitajima, H.; Kopf, A.; Marone, C.; Saffer, D. M.

    2012-12-01

    The Alpine Fault, a transpressional plate-boundary fault transecting the South Island of New Zealand, is the current focus of the Deep Fault Drilling Project (DFDP), a major fault zone drilling initiative. Phase 1 of this project included 2 boreholes that penetrated the active fault at depths of ˜100 m and ˜150 m, and provided a suite of core samples crossing the fault. Here, we report on laboratory measurements of frictional strength and constitutive behavior, permeability, and ultrasonic velocities for a suite of the recovered core samples We conducted friction experiments on powdered samples in a double-direct shear configuration at room temperature and humidity. Our results show that over a range of effective normal stresses from 10-100 MPa, friction coefficients are ~0.60-0.70, and are similar for all of the materials we tested. Rate-stepping tests document velocity-weakening behavior in the majority of wall rock samples, whereas the principal slip surface (PSS) and an adjacent clay-rich cataclasite exhibit velocity-strengthening behavior. We observe significant rates of frictional healing in all of our samples, indicating that that the fault easily regains its strength during interseismic periods. Our results indicate that seismic slip is not likely to nucleate in the clay-rich PSS at shallow depths, but might nucleate and propagate on the gouge/wall rock interface. We measured permeability using a constant head technique, on vertically oriented cylindrical mini-cores (i.e. ˜45 degrees to the plane of the Alpine Fault). We conducted these tests in a triaxial configuration, under isotropic stress conditions and effective confining pressures from ~2.5 - 63.5 MPa. We conducted ultrasonic wavespeed measurements concurrently with the permeability measurements to determine P- and S-wave velocities from time-of-flight. The permeability of all samples decreases systematically with increasing effective stress. The clay-rich cataclasite (1.37 x 10-19 m2) and PSS (1.62 x 10-20 m2) samples exhibit the lowest permeabilities. The cataclasite, and wall rock mylonite and gravel samples, all exhibit permeabilities > 10-18 m2. We also observe that permeability of the cataclasites appears to decrease with proximity to the active fault zone. Our laboratory measurements are consistent with borehole slug tests that show the fault is a hydraulic barrier, and suggest that fault rock permeability is sufficiently low to facilitate transient pore pressure effects during rapid slip, including thermal pressurization and dilatancy hardening. Elastic wave velocity increases systematically with increasing effective stress. We find the lowest P-wave velocities in clay-rich, poorly lithified samples from within and near the active fault, including hanging wall cataclasite, fault gouge, and footwall gravel. Our results are consistent with borehole logging data that show an increase in P-wave velocity from the mylonite into the competent cataclasites, and a decrease in P-wave velocity through the clay-rich cataclasite and into the fault zone.

  1. Strength variation along the Altyn Tagh and the Kunlun fault, northern Tibetan plateau, inferred from 3D mechanical modeling

    NASA Astrophysics Data System (ADS)

    Zhu, X.; He, J.; Xiao, J.

    2017-12-01

    The Altyn Tagh (ATF) and the Kunlun (KLF) fault distribute around the northern Tibetan plateau from west to east about 2000 km and 1200 km in length, and deform predominately with left-lateral strike-slip motion. Previous geological and geodetic observations suggested that over at least 800-km length of the faults, the slip rate averaged on active deformation period is quite uniform, for the ATF being about 9-10 mm/yr and the KLF about 10-12mm/yr. Strike-slip deformation of these faults is undoubtedly result from regional loading by ongoing collision between the India and the Eurasia continent. Whereas, dense GPS measurements show that along the central Tibetan plateau from west to east, the GPS velocity field changes greatly both on magnitude and on direction, suggesting that tectonic loading to the ATF and the KLF could be changed along their strike directions. To investigate how a non-uniform tectonic loading condition as documented by the GPS velocity field could cause a relatively uniform slip rate of the two active faults, we built a three-dimensional viscoelastic finite element model, in which motion of the strike-slip fault is governed by frictional strength. Given a reasonable bound of model parameters, we at first test the numerical calculation with uniform frictional coefficient of the faults. At this condition, the predicted slip rate is inevitably largest near center of the faults and gradually decreasing to the fault ends. To better fitting the observed uniform slip rate along the faults over 1000km length, variation of fault strength along the ATF and the KLF must be invoked. By testing numerous models, an optimum result was obtained, among which the frictional coefficient for the ATF is varied from 0.02 to 0.12 between 820E and 1000E with its maximum at 840E, and for the KLF from 0.02 to 0.10 with its maximum between 950E and 970E. This means that the strength of the two large-scale strike-slip faults exists significant difference along their strikes. We believe that the predicted fault pattern could play an important role on partitioning strain aside the fault, together on determination of potential rupture during an earthquake.

  2. Fault and anthropogenic processes in central California constrained by satellite and airborne InSAR and in-situ observations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Lundgren, Paul

    2016-07-01

    The San Andreas Fault (SAF) system is the primary plate boundary in California, with the central SAF (CSAF) lying adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The CSAF displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where the fault transitions to being fully locked. At least six Mw ~6.0 events since 1857 have occurred near the Parkfield transition, most recently in 2004. Large earthquakes also occurred on secondary faults parallel to the SAF, the result of distributed deformation across the plate boundary zone. Recent studies have revealed the complex interaction between anthropogenic related groundwater depletion and the seismic activity on adjacent faults through stress interaction. Despite recent progress, many questions regarding fault and anthropogenic processes in the region still remain. For example, how is the relative plate motion accommodated between the CSAF and off-fault deformation? What is the distribution of fault creep and slip deficit at shallow depths? What are the spatiotemporal variations of fault slip? What are the spatiotemporal characteristics of anthropogenic and lithospheric processes and how do they interact with each other? To address these, we combine satellite InSAR and NASA airborne UAVSAR data to image on and off-fault deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using ERS-1/2, Envisat, ALOS and UAVSAR interferograms. The combined C-band ERS-1/2 and Envisat data provide a long time interval of SAR data over the region, but are subject to severe decorrelation. The L-band ALOS and UAVSAR SAR sensors provide improved coherence compared to the shorter wavelength radar data. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. Modeling selected fault transects reveals a distinct change in surface creep and shallow slip deficit from the central creeping section towards the Parkfield transition. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. Groundwater related deformation is spatially and temporally variable and is composed of both recoverable elastic and non-recoverable inelastic components. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We are currently developing poroelastic finite element method models to assess the influence of anthropogenic processes on surface deformation and fault mechanics. Ongoing work is to better constrain both tectonic and non-tectonic processes and understand their interaction and implication for regional earthquake hazard.

  3. Publications - PIR 2015-5-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet Authors: Betka, P.M., and Gillis, R.J strike-slip and reverse-slip faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet, in

  4. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault

    USGS Publications Warehouse

    Yue, Y.; Ritts, B.D.; Graham, S.A.; Wooden, J.L.; Gehrels, G.E.; Zhang, Z.

    2004-01-01

    Determination of long-term slip rate for the Altyn Tagh fault is essential for testing whether Asian tectonics is dominated by lateral extrusion or distributed crustal shortening. Previous slip-history studies focused on either Quaternary slip-rate measurements or pre-Early Miocene total-offset estimates and do not allow a clear distinction between rates based on the two. The magmatic and metamorphic history revealed by SHRIMP zircon dating of clasts from Miocene conglomerate in the Xorkol basin north of the Altyn Tagh fault strikingly matches that of basement in the southern Qilian Shan and northern Qaidam regions south of the fault. This match requires that the post-Early Miocene long-term slip rate along the Altyn Tagh fault cannot exceed 10 mm/year, supporting the hypothesis of distributed crustal thickening for post-Early Miocene times. This low long-term slip rate and recently documented large pre-Early Miocene cumulative offset across the fault support a two-stage evolution, wherein Asian tectonics was dominated by lateral extrusion before the end of Early Miocene, and since then has been dominated by distributed crustal thickening and rapid plateau uplift. ?? 2003 Elsevier B.V. All rights reserved.

  5. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism based on rapid sealing of faults. Nature 358, 574-576 Sibson, R.H., 1973. Interactions between temperature and pore fluid pressure during earthquake faulting: A mechanism for partial or total stress relief. Nature 243, 66-68. Sleep, N.H., Blanpied, M.L., 1992. Creep, compaction and the weak rheology of major faults. Nature 359, 687-692.

  6. Slip rates on San Francisco Bay area faults from anelastic deformation of the continental lithosphere

    USGS Publications Warehouse

    Geist, E.L.; Andrews, D.J.

    2000-01-01

    Long-term slip rates on major faults in the San Francisco Bay area are predicted by modeling the anelastic deformation of the continental lithosphere in response to regional relative plate motion. The model developed by Bird and Kong [1994] is used to simulate lithospheric deformation according to a Coulomb frictional rheology of the upper crust and a dislocation creep rheology at depth. The focus of this study is the long-term motion of faults in a region extending from the creeping section of the San Andreas fault to the south up to the latitude of Cape Mendocino to the north. Boundary conditions are specified by the relative motion between the Pacific plate and the Sierra Nevada - Great Valley microplate [Argus and Gordon, 2000]. Rheologic-frictional parameters are specified as independent variables, and prediction errors are calculated with respect to geologic estimates of slip rates and maximum compressive stress directions. The model that best explains the region-wide observations is one in which the coefficient of friction on all of the major faults is less than 0.15, with the coefficient of friction for the San Andreas fault being approximately 0.09, consistent with previous inferences of San Andreas fault friction. Prediction error increases with lower fault friction on the San Andreas, indicating a lower bound of ??SAF > 0.08. Discrepancies with respect to previous slip rate estimates include a higher than expected slip rate along the peninsula segment of the San Andreas fault and a slightly lower than expected slip rate along the San Gregorio fault.

  7. Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models

    USGS Publications Warehouse

    Savage, J.C.

    1990-01-01

    By virtue of the images used in the dislocation solution, the deformation at the free surface produced throughout the earthquake cycle by slippage on a long strike-slip fault in an Earth model consisting of an elastic plate (lithosphere) overlying a viscoelastic half-space (asthenosphere) can be duplicated by prescribed slip on a vertical fault embedded in an elastic half-space. Inversion of 1973-1988 geodetic measurements of deformation across the segment of the San Andreas fault in the Transverse Ranges north of Los Angeles for the half-space equivalent slip distribution suggests no significant slip on the fault above 30 km and a uniform slip rate of 36 mm/yr below 30 km. One equivalent lithosphere-asthenosphere model would have a 30-km thick lithosphere and an asthenosphere relaxation time greater than 33 years, but other models are possible. -from Author

  8. GPS Measurements of Crustal Deformation in San Diego, CA: Results from fixed-height monument network and implications for the Inner Continental Borderlands

    NASA Astrophysics Data System (ADS)

    Singleton, D. M.; Agnew, D. C.; Maloney, J. M.; Rockwell, T. K.

    2017-12-01

    The Newport-Inglewood-Rose Canyon fault zone is the easternmost fault in a system of strike-slip faults that together make up the Inner Continental Borderlands (ICB), a region offshore of Southern California that is thought to accommodate 10-15% of the total plate boundary slip. However, slip on individual faults is difficult to measure because of the offshore location and limited availability of geologic indicators. With a 30-km onshore segment, the southern Rose Canyon fault zone (RCF) provides an opportunity to employ geodetic techniques to quantify the slip rate for a fault within the ICB. Space geodetic techniques have significantly enhanced our ability to quantify tectonic motion. With a best-estimated geologic slip rate of 1.5 ± 0.5 mm/yr, the RCF, as with other low slip-rate faults, is a challenge to traditional survey GPS techniques. Here we present the results from surveys of a GPS network first constructed in 1998 to determine motion across the RCF. This network has four sites, each site consisting of three to five closely spaced benchmarks that employ novel fixed-height centering with submillimeter repeatability so as to reduce noise associated with monument stability. Data collected from 1998 to 2017 shows millimeter-level monument stability and repeatability of the network. We present the results of velocity inversion for slip using data spanning 19 years across the Rose Canyon fault zone and discuss the implications for broader motion across the Inner Continental Borderlands.

  9. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2005-01-01

    To investigate laboratory earthquakes, stick-slip events were induced on a saw-cut Westerly granite sample by triaxial loading at 150 MPa confining pressure. Acoustic emissions (AE) were monitored using an innovative continuous waveform recorder. The first motion of each stick slip was recorded as a large-amplitude AE signal. These events source locate onto the saw-cut fault plane, implying that they represent the nucleation sites of the dynamic failure stick-slip events. The precise location of nucleation varied between events and was probably controlled by heterogeneity of stress or surface conditions on the fault. The initial nucleation diameter of each dynamic instability was inferred to be less than 3 mm. A small number of AE were recorded prior to each macro slip event. For the second and third slip events, premonitory AE source mechanisms mimic the large scale fault plane geometry. Copyright 2005 by the American Geophysical Union.

  10. Geometry and Pore Pressure Shape the Pattern of the Tectonic Tremors Activity on the Deep San Andreas Fault with Periodic, Period-Multiplying Recurrence Intervals

    NASA Astrophysics Data System (ADS)

    Mele Veedu, D.; Barbot, S.

    2014-12-01

    A never before recorded pattern of periodic, chaotic, and doubled, earthquake recurrence intervals was detected in the sequence of deep tectonic tremors of the Parkfield segment of the San Andreas Fault (Shelly, 2010). These observations may be the most puzzling seismological observations of the last decade: The pattern was regularly oscillating with a period doubling of 3 and 6 days from mid-2003 until it was disrupted by the 2004 Mw 6.0 Parkfield earthquake. But by the end of 2007, the previous pattern resumed. Here, we assume that the complex dynamics of the tremors is caused by slip on a single asperity on the San Andreas Fault with homogeneous friction properties. We developed a three-dimensional model based on the rate-and-state friction law with a single patch and simulated fault slip during all stages of the earthquake cycle using the boundary integral method of Lapusta & Liu (2009). We find that homogeneous penny-shaped asperities cannot induce the observed period doubling, and that the geometry itself of the velocity-weakening asperity is critical in enabling the characteristic behavior of the Parkfield tremors. We also find that the system is sensitive to perturbations in pore pressure, such that the ones induced by the 2004 Parkfield earthquake are sufficient to dramatically alter the dynamics of the tremors for two years, as observed by Shelly (2010). An important finding is that tremor magnitude is amplified more by macroscopic slip duration on the source asperity than by slip amplitude, indicative of a time-dependent process for the breakage of micro-asperities that leads to seismic emissions. Our simulated event duration is in the range of 25 to 150 seconds, closely comparable to the event duration of a typical Parkfield tectonic tremor. Our simulations reproduce the unique observations of the Parkfield tremor activity. This study vividly illustrates the critical role of geometry in shaping the dynamics of fault slip evolution on a seismogenic fault.

  11. Refining the shallow slip deficit

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Tong, Xiaopeng; Sandwell, David T.; Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois

    2016-03-01

    Geodetic slip inversions for three major (Mw > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor-Cucapah) show a 15-60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4-6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3-19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could `make up' a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include accurate measurements of near-fault surface deformation to reliably constrain spatial patterns of slip during major strike-slip earthquakes.

  12. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake

    USGS Publications Warehouse

    Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.

    1998-01-01

    Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.

  13. Strike-slip faulting in the Inner California Borderlands, offshore Southern California.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.

    2015-12-01

    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident and potentially linked with the San Pedro Basin fault (SPBF). Kinematic linkage between the SDTF and the SPBF increases the potential rupture length for earthquakes on either fault and may allow events nucleating on the SDTF to propagate much closer to the LA Basin.

  14. Kinematics of wrench and divergent-wrench deformation along a central part of the Border Ranges Fault System, Northern Chugach Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Little, Timothy A.

    1990-08-01

    The Border Ranges fault system (BRFS) bounds the inboard edge of the subduction-accretion complex of southern Alaska. In Eocene time a central segment of this fault system was reactivated as a zone of dextral wrench- and oblique-slip faulting having a cumulative strike-slip offset of at least several tens of kilometers, but probably less than 100 km. Early wrench folds are upright, trend at less than 45° to the strike of adjacent faults and developed with fold axes oriented subparallel to the axis of maximum incremental stretch λ1. These en echelon folds rotated and tightened with progressive deformation and then were overprinted by younger wrench folds that trend at about 60° to adjacent throughgoing faults. The latter folds are interpreted as forming during a late increment of distributed wrench deformation within the BRFS that included a component of extension (divergence) orthogonal to the mean strike of the fault system. A sharp releasing bend in exposures of a strike-slip fault originally at >4 km depth today coincides with a narrow pull-apart graben bounded by oblique-normal faults that dip toward the basin. Widening of this pull-apart graben by brittle faulting and dike intrusion accommodated less than 2 km of strike-slip and was a late-stage phenomenon, possibly occurring at supracrustal levels. Prior to formation of this graben during a period of predominantly ductile deformation at deeper structural levels, wrench-folded rocks on one side of the nonplanar fault were translated around the releasing bend without significant faulting or loss of coherence. Kinematically, the earlier deformation was accomplished by fault-bend folding and rotation of a relatively deformable block as it passed through a system of upright megakinks. Such a ductile mechanism of fault block translation around a strike-slip bend may be typical of intermediate levels of the crust beneath pull-apart grabens and may be transitional downward into heterogeneous laminar flow occuring along curved segments of ductile shear zones. Some degree of fault-bend folding of strike-slip fault blocks around releasing bends may be one reason why the amount of extension measured across natural pull-apart basins is commonly observed to be less than the amount of strike-slip along their master faults.

  15. Geologic and structural controls on rupture zone fabric: A field-based study of the 2010 Mw 7.2 El Mayor–Cucapah earthquake surface rupture

    USGS Publications Warehouse

    Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander

    2015-01-01

    We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.

  16. New insights into the tectonic evolution of the Boconó Fault, Mérida Andes, Venezuela

    NASA Astrophysics Data System (ADS)

    Backé, G.

    2006-12-01

    The Boconó fault is a major right-lateral strike-slip fault that cuts along strike the Mérida Andes in Venezuela. The uplift of this mountain range started in the Miocene as a consequence of the relative oblique convergence between two lithospheric units named the Maracaibo block to the northwest and the Guyana shield to the southeast. Deformation in the Mérida Andes is partitioned between a strike-slip component along the Boconó fault and shortening perpendicular to the belt. Distinctive features define the Boconó fault: it is shifted southward relative to the chain axis and it does not have a continuous and linear trace but is composed of several fault segments of different orientations striking N35°E to N65°E. Quaternary fault strike-slip motion has been evidenced by various independent studies. However, onset of the strike-slip motion, fault offset and geometry at depth remains a matter of debate. Our work, based on morphostructural analyses of satellite and digital elevation model imagery, provides new data on both the geometry and the tectonic evolution of this major structure. We argue that the Boconó fault affects only the upper crust and connects at depth to a décollement. Consequently, it can not be considered as a plate boundary. The Boconó fault does however form the boundary between two different tectonic areas in the central part of the Mérida Andes as revealed by the earthquake focal mechanisms. South of the Boconó fault, the focal mechanisms are mainly compressional and reverse oblique-slip in agreement with NW SE shortening in the foothills. North of the Boconó fault, extensional and strike-slip deformation dominates. Microtectonic measurements collected in the central part of the Boconó fault are characterized by polyphased tectonics. The dextral shearing along the fault is superimposed to reverse oblique-slip to reverse motion, showing that initiation of transcurrent movement is more likely to have occurred after a certain amount of shortening. The present day strain partitioning along the Mérida Andes seems to be younger than the rise of the chain and coeval with the initiation of right-lateral shearing along the Boconó fault, which would have then initiated in the Pliocene. The Mérida Andes can be therefore considered as a case study of the kinematic evolution of a major strike-slip fault.

  17. Source parameters for the 1952 Kern County earthquake, California: A joint inversion of leveling and triangulation observations

    USGS Publications Warehouse

    Bawden, G.W.

    2001-01-01

    Coseismic leveling and triangulation observations are used to determine the faulting geometry and slip distribution of the July 21, 1952, Mw 7.3 Kem County earthquake on the White Wolf fault. A singular value decomposition inversion is used to assess the ability of the geodetic network to resolve slip along a multisegment fault and shows that the network is sufficient to resolve slip along the surface rupture to a depth of 10 km. Below 10 km, the network can only resolve dip slip near the fault ends. The preferred source model is a two-segment right-stepping fault with a strike of 51?? and a dip of 75?? SW. The epicentral patch has deep (6-27 km) leftlateral oblique slip, while the northeastern patch has shallow (1-12.5 km) reverse slip. There is nearly uniform reverse slip (epicentral, 1.6 m; northeast, 1.9 m), with 3.6 m of left-lateral strike slip limited to the epicentral patch. The seismic moment is M0= 9.2 ?? 0.5 ?? 1019 N m (Mw= 7.2). The signal-to-noise ratio of the leveling and triangulation data is reduced by 96% and 49%, respectively. The slip distribution from the preferred model matches regional geomorphic features and may provide a driving mechanism for regional shortening across the Comanche thrust and structural continuity with the Scodie seismic lineament to the northeast.

  18. A comparison of long-baseline strain data and fault creep records obtained near Hollister, California

    USGS Publications Warehouse

    Slater, L.E.; Burford, R.O.

    1979-01-01

    A comparison of creepmeter records from nine sites along a 12-km segment of the Calaveras fault near Hollister, California and long-baseline strain changes for nine lines in the Hollister multiwavelength distance-measuring (MWDM) array has established that episodes of large-scale deformation both preceded and accompanied periods of creep activity monitored along the fault trace during 1976. A concept of episodic, deep-seated aseismic slip that contributes to loading and subsequent aseismic failure of shallow parts of the fault plane seems attractive, implying that the character of aseismic slip sensed along the surface trace may be restricted to a relatively shallow (~ 1-km) region on the fault plane. Preliminary results from simple dislocation models designed to test the concept demonstrate that extending the time-histories and amplitudes of creep events sensed along the fault trace to depths of up to 10 km on the fault plane cannot simulate adequately the character and amplitudes of large-scale episodic movements observed at points more than 1 km from the fault. Properties of a 2-3-km-thick layer of unconsolidated sediments present in Hollister Valley, combined with an essentially rigid-block behavior in buried basement blocks, might be employed in the formulation of more appropriate models that could predict patterns of shallow fault creep and large-scale displacements much more like those actually observed. ?? 1979.

  19. Fault Slip and GPS Velocities Across the Shan Plateau Define a Curved Southwestward Crustal Motion Around the Eastern Himalayan Syntaxis

    NASA Astrophysics Data System (ADS)

    Shi, Xuhua; Wang, Yu; Sieh, Kerry; Weldon, Ray; Feng, Lujia; Chan, Chung-Han; Liu-Zeng, Jing

    2018-03-01

    Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of 700 km followed by a decrease over the final 100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral-slip fault system on the Shan Plateau is 12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue-like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block-like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear-driven indentation from north of the Shan Plateau.

  20. Using regional moment tensors to constrain the kinematics and stress evolution of the 2010–2013 Canterbury earthquake sequence, South Island, New Zealand

    USGS Publications Warehouse

    Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.

    2014-01-01

    On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.

  1. Temporal slip-rate stability and variations on the Hope Fault, New Zealand, during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Khajavi, Narges; Nicol, Andrew; Quigley, Mark C.; Langridge, Robert M.

    2018-07-01

    The Hope Fault transfers slip from Hikurangi subduction to the Alpine Fault in the northern South Island of New Zealand. It accommodates mainly dextral strike slip and currently carries the highest slip rate in the Marlborough Fault System. Displacements, displacement rates and earthquake recurrence intervals have been determined using a combination of high resolution LiDAR for 59 dextral displacements ( 2.5-200 m) together with calibrated radiocarbon ages ( 130 yr to 13,000 yr) for abandoned stream channels, terrace risers and alluvial fans. Mean single-event displacement (SED) of 3 ± 0.6 m (2.2 to 4.6 m for 21 measurements) and mean recurrence interval of 266 ± 100 yr (range 128 to 560 yr) have been determined for the five most recent surface-rupturing earthquakes. On time scales ≥2300 yr the dextral slip rate is uniform at 12.2 ± 2.4 mm/yr, however, when averaged over time intervals of 230 to 1700 yr slip rates range from 4 to 46.4 mm/yr. This order-of-magnitude variability in slip rate over shorter timescales cannot be fully attributed to errors in displacement and age data, and is at least partly due to variations in earthquake recurrence interval and inferred SED. Short-term non-characteristic earthquake behaviour may be due to changes in fault loading arising from stress interactions between different segments of the Hope Fault and nearby faults.

  2. Determining on-fault earthquake magnitude distributions from integer programming

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  3. A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California

    USGS Publications Warehouse

    Zeng, Yuehua; Shen, Zheng-Kang

    2016-01-01

    We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by the UCERF3 deformation working group. The result of least‐squares inversion shows that the San Andreas fault slips at 19–22  mm/yr along Santa Cruz to the North Coast, 25–28  mm/yr along the central California creeping segment to the Carrizo Plain, 20–22  mm/yr along the Mojave, and 20–24  mm/yr along the Coachella to the Imperial Valley. Modeled slip rates are 7–16  mm/yr lower than the preferred geologic rates from the central California creeping section to the San Bernardino North section. For the Bartlett Springs section, fault slip rates of 7–9  mm/yr fall within the geologic bounds but are twice the preferred geologic rates. For the central and eastern Garlock, inverted slip rates of 7.5 and 4.9  mm/yr, respectively, match closely with the geologic rates. For the western Garlock, however, our result suggests a low slip rate of 1.7  mm/yr. Along the eastern California shear zone and southern Walker Lane, our model shows a cumulative slip rate of 6.2–6.9  mm/yr across its east–west transects, which is ∼1  mm/yr increase of the geologic estimates. For the off‐coast faults of central California, from Hosgri to San Gregorio, fault slips are modeled at 1–5  mm/yr, similar to the lower geologic bounds. For the off‐fault deformation, the total moment rate amounts to 0.88×1019  N·m/yr, with fast straining regions found around the Mendocino triple junction, Transverse Ranges and Garlock fault zones, Landers and Brawley seismic zones, and farther south. The overall California moment rate is 2.76×1019  N·m/yr, which is a 16% increase compared with the UCERF2 model.

  4. Hunting for shallow slow-slip events at Cascadia

    NASA Astrophysics Data System (ADS)

    Tan, Y. J.; Bletery, Q.; Fan, W.; Janiszewski, H. A.; Lynch, E.; McCormack, K. A.; Phillips, N. J.; Rousset, B.; Seyler, C.; French, M. E.; Gaherty, J. B.; Regalla, C.

    2017-12-01

    The discovery of slow earthquakes at subduction zones is one of the major breakthroughs of Earth science in the last two decades. Slow earthquakes involve a wide spectrum of fault slip behaviors and seismic radiation patterns, such as tremor, low-frequency earthquakes, and slow-slip events. The last of these are particularly interesting due to their large moment releases accompanied by minimal ground shaking. Slow-slip events have been reported at various subduction zones ; most of these slow-slip events are located down-dip of the megathrust seismogenic zone, while a few up-dip cases have recently been observed at Nankai and New Zealand. Up-dip slow-slip events illuminate the structure of faulting environments and rupture mechanisms of tsunami earthquakes. Their possible presence and location at a particular subduction zone can help assess earthquake and tsunami hazard for that region. However, their typical location distant from the coast requires the development of techniques using offshore instrumentation. Here, we investigate the absolute pressure gauges (APG) of the Cascadia Initiative, a four year amphibious seismic experiment, to search for possible shallow up-dip slow-slip events in the Cascadia subduction zone. These instruments are collocated with ocean bottom seismometers (OBS) and located close to buoys and onshore GPS stations, offering the opportunity to investigate the utility of multiple datasets. Ultimately, we aim to develop a protocol to analyze APG data for offshore shallow slow-slip event detections and quantify uncertainties, with direct applications to understanding the up-dip subduction interface system in Cascadia.

  5. Complex faulting in the Quetta Syntaxis: fault source modeling of the October 28, 2008 earthquake sequence in Baluchistan, Pakistan, based on ALOS/PALSAR InSAR data

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Furuya, Masato

    2015-09-01

    The Quetta Syntaxis in western Baluchistan, Pakistan, is the result of an oroclinal bend of the western mountain belt and serves as a junction for different faults. As this area also lies close to the left-lateral strike-slip Chaman fault, which marks the boundary between the Indian and Eurasian plates, the resulting seismological behavior of this regime is very complex. In the region of the Quetta Syntaxis, close to the fold and thrust belt of the Sulaiman and Kirthar Ranges, an earthquake with a magnitude of 6.4 (Mw) occurred on October 28, 2008, which was followed by a doublet on the very next day. Six more shocks associated with these major events then occurred (one foreshock and five aftershocks), with moment magnitudes greater than 4. Numerous researchers have tried to explain the source of this sequence based on seismological, GPS, and Environmental Satellite (ENVISAT)/Advanced Synthetic Aperture Radar (ASAR) data. Here, we used Advanced Land Observing Satellite (ALOS)/Phased Array-type L-band Synthetic Aperture Radar (PALSAR) InSAR data sets from both ascending and descending orbits that allow us to more completely detect the deformation signals around the epicentral region. The results indicated that the shock sequence can be explained by two right-lateral and two left-lateral strike-slip faults that also included reverse slip. The right-lateral faults have a curved geometry. Moreover, whereas previous studies have explained the aftershock crustal deformation with a different fault source, we found that the same left-lateral segment of the conjugate fault was responsible for the aftershocks. We thus confirmed the complex surface deformation signals from the moderate-sized earthquake. Intra-plate crustal bending and shortening often seem to be accommodated as conjugate faulting, without any single preferred fault orientation. We also detected two possible landslide areas along with the crustal deformation pattern.

  6. High resolution shallow co-seismic and post-seismic slip from the 2016 central Italy earthquake sequence captured using terrestrial laser scanning, structure from motion and low-cost near-field GNSS

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M.; Walters, R. J.

    2017-12-01

    Coseismic fault slip in the shallow crust is poorly constrained by many of the conventional tools used to record deformation during earthquakes. GNSS stations are often distributed too far from faults and radar images tend to decorrelate across earthquake surface ruptures. As a result, our understanding of near-field fault slip, shallow slip deficits, and off-fault deformation is limited. We present evidence from the 2016 central Italy earthquake sequence, during which we captured shallow coseismic and post-seismic slip using a combination of terrestrial laser scanning (TLS), structure-from-motion (SfM), and near-field low-cost GNSS recording at 1Hz. Three Mw>6 earthquakes on the 24th August, 26th and 30th October all involved slip on the Mt Vettore-Mt Bove fault system. We collected TLS and SfM point clouds across three separate segments of this system. Each segment experienced a different record of slip during the earthquake sequence; all three ruptured in the largest event (Mw 6.6. on October 30th) but two segments also ruptured during either the 24th August or the 26th October earthquakes. Following the Mw 6.6 earthquake, the faults were repeatedly surveyed using TLS, with the first scan collected c. 5 hours following the earthquake. This represents the first known instance where shallow co-seismic slip has been recorded by pre- and post-event terrestrial laser scanning. Displacement continuously measured across GNSS pairs at 1 Hz demonstrates that permanent near field displacement developed across the fault in the immediate seconds following the initiation of the rupture. However, a discrepancy between on-fault field measurements of surface displacement and the GNSS recorded displacement over 1km long baselines hints at a more complex rupture processes and the possibility of high slip gradients in the shallow subsurface. Displacement measured by differential TLS confirms the presence of these shallow slip deficits but suggests that shallow slip gradient may be controlled by the pattern and timing of slip in the preceding earthquakes. Postseismic afterslip captured by repeated TLS surveys hints at more complicated temporal evolution of nearfield afterslip than is currently predicted by logarithmic models for this process.

  7. The co-seismic slip distribution of the Landers earthquake

    USGS Publications Warehouse

    Freymueller, J.; King, N.E.; Segall, P.

    1994-01-01

    We derived a model for the co-seismic slip distribution on the faults which ruptured during the Landers earthquake sequence of 28 June 1992. The model is based on the inversion of surface geodetic measurements, primarily vector displacements measured using the Global Positioning System (GPS). The inversion procedure assumes that the slip distribution is to some extent smooth and purely right-lateral strike slip. For a given fault geometry, a family of solutions of varying smoothness can be generated.We choose the optimal model from this family based on cross-validation, which measures the predictive power of the data, and the trade-off of misfit and roughness. Solutions which give roughly equal weight to misfit and smoothness are preferred and have certain features in common: (1) there are two main patches of slip, on the Johnson Valley fault, and on the Homestead Valley, Emerson, and Camp Rock faults; (2) virtually all slip is in the upper 10 to 12 km; and (3) the model reproduces the general features of the geologically measured surface displacements, without prior constraints on the surface slip. In all models, regardless of smoothing, very little slip is required on the fault that represents the Big Bear event, and the total moment of the Landers event is 9 · 1019 N-m. The nearly simultaneous rupture of multiple distinct faults suggests that much of the crust in this region must have been close to failure prior to the earthquake.

  8. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    USGS Publications Warehouse

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (<15  km depth), and the deep fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  9. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yunhua; Zhang, Guohong; Zhang, Yingfeng; Shan, Xinjian

    2018-06-01

    On January 21st, 2016, a Ms 6.4 earthquake hit Menyuan County, Qinghai province, China. The nearest known fault is the Leng Long Ling (LLL) fault which is located approximately 7 km north of the epicenter. This fault has mainly shown sinistral strike-slip movement since the late Quaternary Period. However, the focal mechanism indicates that it is a thrust earthquake, which is different from the well-known strike-slip feature of the LLL fault. In this study, we determined the focal mechanism and primary nodal plane through multi-step inversions in the frequency and time domain by using the broadband regional seismic waveforms recorded by the China Digital Seismic Network (CDSN). Our results show that the rupture duration was short, within 0-2 s after the earthquake, and the rupture expanded upwards along the fault plane. Based on these fault parameters, we then solve for variable slip distribution on the fault plane using the InSAR data. We applied a three-segment fault model to simulate the arc-shaped structure of the northern LLL fault, and obtained a detailed slip distribution on the fault plane. The inversion results show that the maximum slip is 0.43 m, and the average slip angle is 78.8°, with a magnitude of Mw 6.0 and a focal depth of 9.38 km. With the geological structure and the inversion results taken into consideration, it can be suggested that this earthquake was caused by the arc-shaped secondary fault located at the north side of the LLL fault. The secondary fault, together with the LLL fault, forms a normal flower structure. The main LLL fault extends almost vertically into the base rock and the rocks between the two faults form a bulging fault block. Therefore, we infer that this earthquake is the manifestation of a neotectonics movement, in which the bulging fault block is lifted further up under the compresso-shear action caused by the Tibetan Plateau pushing towards the northwest direction.

  10. Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip

    NASA Astrophysics Data System (ADS)

    Tatard, L.; Grasso, J. R.

    2013-06-01

    compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.

  11. Coseismic slip variation assessed from terrestrial lidar scans of the El Mayor-Cucapah surface rupture

    NASA Astrophysics Data System (ADS)

    Gold, Peter O.; Oskin, Michael E.; Elliott, Austin J.; Hinojosa-Corona, Alejandro; Taylor, Michael H.; Kreylos, Oliver; Cowgill, Eric

    2013-03-01

    We analyze high-resolution (>103 points/m2) terrestrial lidar surveys of the 4 April 2010 El Mayor-Cucapah earthquake rupture (Baja California, Mexico), collected at three sites 12-18 days after the event. Using point cloud-based tools in an immersive visualization environment, we quantify coseismic fault slip for hundreds of meters along strike and construct densely constrained along-strike slip distributions from measurements of offset landforms. Uncertainty bounds for each offset, determined empirically by repeatedly measuring offsets at each site sequentially, illuminate measurement uncertainties that are difficult to quantify in the field. These uncertainties are used to define length scales over which variability in slip distributions may be assumed to reflect either recognizable earthquake mechanisms or measurement noise. At two sites characterized by 2-3 m of concentrated right-oblique slip, repeat measurements yield 2σ uncertainties of ±11-12%. Each site encompasses ∼200 m along strike, and a smoothed linear slip gradient satisfies all measurement distributions, implying along-fault strains of ∼10-3. Conversely, the common practice of defining the slip curve by the local slip maxima distorts the curve, overestimates along-fault strain, and may overestimate actual fault slip by favoring measurements with large, positive, uncertainties. At a third site characterized by 1-2.5 m of diffuse normal slip, repeat measurements of fault throw summed along fault-perpendicular profiles yield 2σ uncertainties of ±17%. Here, a low order polynomial fit through the measurement averages best approximates surface slip. However independent measurements of off-fault strain accommodated by hanging wall flexure suggest that over the ∼200 m length of this site, a linear interpolation through the average values for the slip maxima at either end of this site most accurately represents subsurface displacement. In aggregate, these datasets show that given uncertainties of greater than ±11% (2σ), slip distributions over shorter scales are likely to be less uneven than those derived from a single set of field- or lidar-based measurements. This suggests that the relatively smooth slip curves we obtain over ∼102 m distances reflect real physical phenomena, whereas short wavelength variability over ∼100-101 m distances can be attributed to measurement uncertainty.

  12. Holocene Geologic Slip Rate for the Banning Strand of the Southern San Andreas Fault near San Gorgonio Pass, Southern California

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D. H.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2014-12-01

    We present the first Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault in southern California. The southern San Andreas Fault splays into the sub-parallel Banning and Mission Creek strands in the northwestern Coachella Valley, and although it has long been surmised that the Banning strand eventually accommodates the majority of displacement and transfers it into San Gorgonio Pass, until now it has been uncertain how slip is actually partitioned between these two fault strands. Our new slip rate measurement, critically located at the northwestern end of the Banning strand, overlaps within errors with the published rate for the southern San Andreas Fault measured at Biskra Palms Oasis. This indicates that the majority of southern San Andreas Fault displacement transfers from the southeastern Mission Creek strand northwest to the Banning strand and into San Gorgonio Pass. Our result corroborates the UCERF3 hazard model, and is consistent with most previous interpretations of how slip is partitioned between the Banning and Mission Creek fault strands. To measure this slip rate, we used B4 airborne LiDAR to identify the apex of an alluvial fan offset laterally 30 ± 5 m from its source. We calculated the depositional age of the fan using 10Be in-situ cosmogenic exposure dating of 5 cobbles and a depth profile. We calculated a most probable fan age of 4.0 +2.0/-1.6 ka (1σ) by combining the inheritance-corrected cobble ages assuming Gaussian uncertainty. However, the probability density function yielded a multi-peaked distribution, which we attribute to variable 10Be inheritance in the cobbles, so we favor the depth profile age of 2.2-3.6 ka. Combined, these measurements yield a late Holocene slip rate for the Banning strand of the southern San Andreas Fault of 11.1 +3.1/-3.3 mm/yr. This slip rate does not preclude possibility that some slip transfers north along the Mission Creek strand and the Garnet Hill fault, but it does confirm that the Banning strand has been the most probable rupture path for earthquakes nucleated on the southern San Andreas Fault over the past few thousand years, and is likely to remain so in the near future. This clarification of slip partitioning within the northwest Coachella Valley is timely given that the southern San Andreas Fault is considered overdue for a large earthquake.

  13. Geomorphic and Structural Evidence for Rolling Hinge Style Deformation in the Footwall of an Active Low Angle Normal Fault, Mai'iu Fault, Woodlark Rift, SE Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.

    2016-12-01

    While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge-style accommodation structures on a continental MCC.

  14. Structure and mechanics of the Hayward-Rodgers Creek Fault step-over, San Francisco Bay, California

    USGS Publications Warehouse

    Parsons, T.; Sliter, R.; Geist, E.L.; Jachens, R.C.; Jaffe, B.E.; Foxgrover, A.; Hart, P.E.; McCarthy, J.

    2003-01-01

    A dilatational step-over between the right-lateral Hayward and Rodgers Creek faults lies beneath San Pablo Bay in the San Francisco Bay area. A key seismic hazard issue is whether an earthquake on one of the faults could rupture through the step-over, enhancing its maximum possible magnitude. If ruptures are terminated at the step-over, then another important issue is how strain transfers through the step. We developed a combined seismic reflection and refraction cross section across south San Pablo Bay and found that the Hayward and Rodgers Creek faults converge to within 4 km of one another near the surface, about 2 km closer than previously thought. Interpretation of potential field data from San Pablo Bay indicated a low likelihood of strike-slip transfer faults connecting the Hayward and Rodgers Creek faults. Numerical simulations suggest that it is possible for a rupture to jump across a 4-km fault gap, although special stressing conditions are probably required (e.g., Harris and Day, 1993, 1999). Slip on the Hayward and Rodgers Creek faults is building an extensional pull-apart basin that could contain hazardous normal faults. We investigated strain in the pull-apart using a finite-element model and calculated a ???0.02-MPa/yr differential stressing rate in the step-over on a least-principal-stress orientation nearly parallel to the strike-slip faults where they overlap. A 1- to 10-MPa stress-drop extensional earthquake is expected on normal faults oriented perpendicular to the strike-slip faults every 50-500 years. The last such earthquake might have been the 1898 M 6.0-6.5 shock in San Pablo Bay that apparently produced a small tsunami. Historical hydrographic surveys gathered before and after 1898 indicate abnormal subsidence of the bay floor within the step-over, possibly related to the earthquake. We used a hydrodynamic model to show that a dip-slip mechanism in north San Pablo Bay is the most likely 1898 rupture scenario to have caused the tsunami. While we find no strike-slip transfer fault between the Hayward and Rodgers Creek faults, a normal-fault link could enable through-going segmented rupture of both strike-slip faults and may pose an independent hazard of M ???6 earthquakes like the 1898 event.

  15. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    NASA Astrophysics Data System (ADS)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali-Totschunda fault junction. We estimate relatively low and shallow slip on the Totschunda fault.

  16. Prehistoric earthquakes on the Caribbean-South American plate boundary, central range fault, Trinidad

    USGS Publications Warehouse

    Prentice, C.S.; Weber, J.C.; Crosby, C.J.; Ragona, D.

    2010-01-01

    Recent geodetic studies suggest that the Central Range fault is the principal plate-boundary structure accommodating strike-slip motion between the Caribbean and South American plates. Our study shows that the fault forms a topographically prominent lineament in central Trinidad. Results from a paleoseismic investigation at a site where Holocene sediments have been deposited across the Central Range fault indicate that it ruptured the ground surface most recently between 2710 and 550 yr B.P. If the geodetic slip rate of 9-15 mm/yr is representative of Holocene slip rates, our paleoseismic data suggest that at least 4.9 m of potential slip may have accumulated on the fault and could be released during a future large earthquake (M > 7). ?? 2010 Geological Society of America.

  17. Insights into the relationship between surface and subsurface activity from mechanical modeling of the 1992 Landers M7.3 earthquake

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Pollard, D. D.

    2009-12-01

    Multi-fault, strike-slip earthquakes have proved difficult to incorporate into seismic hazard analyses due to the difficulty of determining the probability of these ruptures, despite collection of extensive data associated with such events. Modeling the mechanical behavior of these complex ruptures contributes to a better understanding of their occurrence by elucidating the relationship between surface and subsurface earthquake activity along transform faults. This insight is especially important for hazard mitigation, as multi-fault systems can produce earthquakes larger than those associated with any one fault involved. We present a linear elastic, quasi-static model of the southern portion of the 28 June 1992 Landers earthquake built in the boundary element software program Poly3D. This event did not rupture the extent of any one previously mapped fault, but trended 80km N and NW across segments of five sub-parallel, N-S and NW-SE striking faults. At M7.3, the earthquake was larger than the potential earthquakes associated with the individual faults that ruptured. The model extends from the Johnson Valley Fault, across the Landers-Kickapoo Fault, to the Homestead Valley Fault, using data associated with a six-week time period following the mainshock. It honors the complex surface deformation associated with this earthquake, which was well exposed in the desert environment and mapped extensively in the field and from aerial photos in the days immediately following the earthquake. Thus, the model incorporates the non-linearity and segmentation of the main rupture traces, the irregularity of fault slip distributions, and the associated secondary structures such as strike-slip splays and thrust faults. Interferometric Synthetic Aperture Radar (InSAR) images of the Landers event provided the first satellite images of ground deformation caused by a single seismic event and provide constraints on off-fault surface displacement in this six-week period. Insight is gained by comparing the density, magnitudes and focal plane orientations of relocated aftershocks for this time frame with the magnitude and orientation of planes of maximum Coulomb shear stress around the fault planes at depth.

  18. Black Butte Lake, Stony Creek, California Geologic and Seismologic Investigation.

    DTIC Science & Technology

    1986-01-01

    the tectonic basement. Using this fault mechanism , the folds result from drag on the reverse slip of the east block. Two other possible...trends and the few focal mechanisms that have been determined for earthquakes along them are suggestive of right-lateral, strike- slip fault - ing. Nearly...continuation of the Sites anticline, possibly offset eastward by high angle, lateral slip faulting . Fruto Syncline. The Fruto

  19. Refining fault slip rates using multiple displaced terrace risers-An example from the Honey Lake fault, NE California, USA

    NASA Astrophysics Data System (ADS)

    Gold, Ryan D.; Briggs, Richard W.; Crone, Anthony J.; DuRoss, Christopher B.

    2017-11-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4-1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced sites can refine slip-rate estimates on strike-slip faults.

  20. Refining fault slip rates using multiple displaced terrace risers—An example from the Honey Lake fault, NE California, USA

    USGS Publications Warehouse

    Gold, Ryan D.; Briggs, Richard; Crone, Anthony J.; Duross, Christopher

    2017-01-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4–1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced sites can refine slip-rate estimates on strike-slip faults.

  1. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    NASA Astrophysics Data System (ADS)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward shortening of the central Tibetan Plateau to accommodate the continuing penetration of the Indian plate into the Eurasian plate.

  2. Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture

    USGS Publications Warehouse

    Guatteri, Mariagiovanna; Spudich, P.

    1998-01-01

    We investigate the dynamics of rupture at low-stress level. We show that one main difference between the dynamics of high- and low-stress events is the amount of coseismic temporal rake rotation occurring at given points on the fault. Curved striations on exposed fault surfaces and earthquake dislocation models derived from ground-motion inversion indicate that the slip direction may change with time at a point on the fault during dynamic rupture. We use a 3D boundary integral method to model temporal rake variations during dynamic rupture propagation assuming a slip-weakening friction law and isotropic friction. The points at which the slip rotates most are characterized by an initial shear stress direction substantially different from the average stress direction over the fault plane. We show that for a given value of stress drop, the level of initial shear stress (i.e., the fractional stress drop) determines the amount of rotation in slip direction. We infer that seismic events that show evidence of temporal rake rotations are characterized by a low initial shear-stress level with spatially variable direction on the fault (possibly due to changes in fault surface geometry) and an almost complete stress drop.Our models motivate a new interpretation of curved and cross-cutting striations and put new constraints on their analysis. The initial rake is in general collinear with the initial stress at the hypocentral zone, supporting the assumptions made in stress-tensor inversion from first-motion analysis. At other points on the fault, especially away from the hypocenter, the initial slip rake may not be collinear with the initial shear stress, contradicting a common assumption of structural geology. On the other hand, the later part of slip in our models is systematically more aligned with the average stress direction than the early slip. Our modeling suggests that the length of the straight part of curved striations is usually an upper bound of the slip-weakening distance if this parameter is uniform over the fault plane, and the direction of the late part of slip of curved striations should have more weight in the estimate of initial stress direction.

  3. Aseismic and seismic slip induced by fluid injection from poroelastic and rate-state friction modeling

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Deng, K.; Harrington, R. M.; Clerc, F.

    2016-12-01

    Solid matrix stress change and pore pressure diffusion caused by fluid injection has been postulated as key factors for inducing earthquakes and aseismic slip on pre-existing faults. In this study, we have developed a numerical model that simulates aseismic and seismic slip in a rate-and-state friction framework with poroelastic stress perturbations from multi-stage hydraulic fracturing scenarios. We apply the physics-based model to the 2013-2015 earthquake sequences near Fox Creek, Alberta, Canada, where three magnitude 4.5 earthquakes were potentially induced by nearby hydraulic fracturing activity. In particular, we use the relocated December 2013 seismicity sequence to approximate the fault orientation, and find the seismicity migration spatiotemporally correlate with the positive Coulomb stress changes calculated from the poroelastic model. When the poroelastic stress changes are introduced to the rate-state friction model, we find that slip on the fault evolves from aseismic to seismic in a manner similar to the onset of seismicity. For a 15-stage hydraulic fracturing that lasted for 10 days, modeled fault slip rate starts to accelerate after 3 days of fracking, and rapidly develops into a seismic event, which also temporally coincides with the onset of induced seismicity. The poroelastic stress perturbation and consequently fault slip rate continue to evolve and remain high for several weeks after hydraulic fracturing has stopped, which may explain the continued seismicity after shut-in. In a comparison numerical experiment, fault slip rate quickly decreases to the interseismic level when stress perturbations are instantaneously returned to zero at shut-in. Furthermore, when stress perturbations are removed just a few hours after the fault slip rate starts to accelerate (that is, hydraulic fracturing is shut down prematurely), only aseismic slip is observed in the model. Our preliminary results thus suggest the design of fracturing duration and flow-back strategy, either allowing stress perturbations to passively dissipate in the medium or actively dropping to the pre-perturbation level, is essential to inducing seismic versus aseismic slip on pre-existing faults.

  4. Measuring slip in paleoearthquakes using high-resolution aerial lidar data: Combined analysis of the Wairau, Awatere, Clarence, and Hope faults, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Zinke, R. W.; Dolan, J. F.; Hatem, A. E.; Van Dissen, R. J.; Langridge, R.; Grenader, J.; McGuire, C. P.; Rhodes, E. J.; Nicol, A., , Prof

    2016-12-01

    Analysis of a large new high-resolution aerial lidar microtopographic data set provides > 500 measured fault offsets from sections of the four primary right-lateral strike-slip faults of the Marlborough Fault System (MFS), in northern South Island, New Zealand. With a shot density of >12 shots/m2 (and locally up to 18 shots/m2) these high-quality data allow us to resolve topographically defined geomorphic offsets with decimeter precision along 250 km of combined fault length. The measured offsets range in size from 2 m to > 100 m, and allow us to constrain displacements in the past one to several surface ruptures along stretches of the Wairau, Awatere, Clarence, and Hope faults. Our results reveal a number of important details of the rupture history of these faults, including: (1) the amount of slip and spatial variability (along and across strike) of strain released in the most recent event along sections of each of the four faults; (2) the consistency of slip throughout the past several ruptures on specific faults; and (3) suggestions of potential linkages and segment boundaries along each fault. The lidar data also facilitate precise measurements of larger offsets that, when combined with age data collected as part of our broader collaborative analyses of incremental fault slip rates and paleoearthquake ages, help to constrain the broader spatial and temporal patterns of strain release across the MFS during Holocene and latest Pleistocene time.

  5. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  6. InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts

    USGS Publications Warehouse

    Wicks, Charles; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P.

    2011-01-01

    In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energys Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agencys (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ???70mm of slip less than ???0.5km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process. Copyright 2011 by the American Geophysical Union.

  7. Evolution of wear and friction along experimental faults

    USGS Publications Warehouse

    Boneh, Yeval; Chang, Jefferson C.; Lockner, David A.; Reches, Zeev

    2014-01-01

    We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances <50 mm) of wear by failure of isolated asperities associated with roughening of the fault surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.

  8. Is Slow Slip a Cause or a Result of Tremor?

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ampuero, J. P.

    2017-12-01

    While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result of tremor activity. We also find that, despite important interactions between asperities, tremor activity rates are proportional to the underlying aseismic slip rate, supporting an approach to estimate SSE properties with high spatial-temporal resolutions via tremor activity.

  9. Tracking Local Spatiotemporal Microfracturing Processes and Stress Field Evolution Before and After Laboratory Fault Slip

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Orlecka-Sikora, B.; Goebel, T.; Martínez-Garzón, P.; Dresen, G.; Bohnhoff, M.

    2017-12-01

    In this study we investigate details of spatial and temporal evolution of the stress field and damage at a pre-existing fault plane in laboratory stick-slip friction experiments performed on Westerly Granite sample. Specimen of 10 cm height and 4 cm diameter was deformed at a constant strain rate of 3×10-6 s-1 and confining pressure of 150 MPa. Here we analyze a series of 6 macroscopic slip events occurring on a rough fault during the course of experiment. Each macroscopic slip was associated with an intense femtoseismic acoustic emission (AE) activity recorded using a 16-channel transient recording system. To monitor the the spatiotemporal damage evolution, and unravel the micromechanical processes governing nucleation and propagation of slip events, we analyzed AE source characteristics (magnitude, seismic moment tensors, focal mechanisms), as well as the statistical properties (b-, c-, d- value) of femtoseismicity. In addition, the calculated AE focal mechanisms were used to reveal the spatiotemporal evolution of local stress field orientations and stress shape ratio coefficients over the fault plane, as well as additional parameters quantifying proximity to failure of individual fault patches. The calculated characteristics are used to comprehensively describe the complexity of the spatial and temporal evolution of the stress over the fault plane, and properties of the corresponding seismicity before and after the macroscopic slips. The observed faulting processes and characteristics are discussed in the context of global strain and stress changes, fault maturation, and earthquake stress drop.

  10. The influence of topographic stresses on faulting, emphasizing the 2008 Wenchuan, China earthquake rupture

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.; Zhang, G.

    2013-12-01

    The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.

  11. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    USGS Publications Warehouse

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron

    2015-01-01

    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  12. Geodetically inferred coseismic and postseismic slip due to the M 5.4 31 October 2007 Alum Rock earthquake

    USGS Publications Warehouse

    Murray-Moraleda, J. R.; Simpson, R.W.

    2009-01-01

    On 31 October 2007 the M 5.4 Alum Rock earthquake occurred near the junction between the Hayward and Calaveras faults in the San Francisco Bay Area, producing coseismic and postseismic displacements recorded by 10 continuously operating Global Positioning System (GPS) instruments. The cumulative postseismic displacements over the four months following the earthquake are linearly related to the cumulative number of aftershocks and are comparable in magnitude to the coseis mic displacements. The postseismic signal suggests that, in addition to afterslip at seismogenic depths, localized right-lateral/reverse slip occurred on dipping shallow fault surfaces southwest of the Calaveras. The spatial distribution of slip inferred by inverting the GPS data is compatible with a model in which moderate Calaveras fault earthquakes rupture locked patches surrounded by areas of creep, afterslip, and microseismicity (Oppenheimer et al., 1990). If this model and existing Calaveras fault slip rate estimates are correct, a slip deficit remains on the 2007 Alum Rock rupture patch that may be made up by aseismic slip or slip in larger earthquakes. Recent studies (e.g., Manaker et al., 2005) suggest that at depth the Hayward and central Calaveras faults connect via a simple continuous surface illuminated by the Mission Seismic Trend (MST), implying that a damaging earthquake rupture could involve both faults (Graymer et al., 2008). If this geometry is correct, the combined coseismic and postseismic slip we infer for the 2007 Alum Rock event predicts static Coulomb stress increases of ???0:6 bar on the MST surface and on the northern Calaveras fault ???5 km northwest of the Alum Rock hypocenter.

  13. Kinematics and mechanics of tectonic block rotations

    NASA Technical Reports Server (NTRS)

    Nur, Amos; Scotti, Oona; Ron, Hagai

    1989-01-01

    Paleomagnetic, structural geology, and rock mechanics data are combined to explore the validity of the block rotation concept and its significance. The analysis is based on data from (1) Northern Israel, where fault slip and spacing are used to predict block rotation; (2) the Mojave Desert, with well-documented strike-slip fault sets, organized in at least three major domains; (3) the Lake Mead, Nevada, fault system with well-defined sets of strike-slip faults, which, in contrast to the Mojave region, are surrounded with domains of normal faults; and (4) the San Gabriel Mountains domain with a multiple set of strike-slip faults. It is found that block rotations can have a profound influence on the interpretation of geodetic measurements and the inversion of geodetic data, especially the type collected in GPS surveys. Furthermore, block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which are responsible for the initiation and termination of earthquake rupture.

  14. Spatiotemporal evolution of premonitory fault slip prior to stick-slip instability: New insight into the earthquake preparation

    NASA Astrophysics Data System (ADS)

    Zhuo, Y. Q.; Liu, P.; Guo, Y.; Ji, Y.; Ma, J.

    2017-12-01

    Premonitory fault slip, which begins with quasistatic propagation followed by quasidynamic propagation, may be a key clue bridging the "stick" state and "slip" state of a fault. More attentions have been paid for a long time to the temporal resolution of measurement than the spatial resolution, leading to the incomplete interpretation for the spatial evolution of premonitory slip, particularly during the quasistatic phase. In the present study, measurement of the quasistatic propagation of premonitory slip is achieved at an ultrahigh spatial resolution via a digital image correlation method. Multiple premonitory slip zones are observed and found to be controlled spatially by the fault contact heterogeneity, particularly the strong contact patches that prevent the propagation of premonitory slip and accumulate strain. As a result, premonitory slip is accelerated within constrained week contact spaces and consequently triggers the breakout of quasidynamic propagation. The results provide new insights into the quasistatic propagation of premonitory slip and may offer new interpretations for the earthquake nucleation process. This work is fund by the National Natural Science Foundation of China (Grant No. 41572181), the Basic Scientific Funding of Chinese National Nonprofit Institutes (Grant No. IGCEA1415, IGCEA1525), and the Early-Stage Work of Key Breakthrough Plan in Seismology from China Earthquake Administration.

  15. Teleseismic body waves from dynamically rupturing shallow thrust faults: Are they opaque for surface-reflected phases?

    USGS Publications Warehouse

    Smith, D.E.; Aagaard, Brad T.; Heaton, T.H.

    2005-01-01

    We investigate whether a shallow-dipping thrust fault is prone to waveslip interactions via surface-reflected waves affecting the dynamic slip. If so, can these interactions create faults that are opaque to radiated energy? Furthermore, in this case of a shallow-dipping thrust fault, can incorrectly assuming a transparent fault while using dislocation theory lead to underestimates of seismic moment? Slip time histories are generated in three-dimensional dynamic rupture simulations while allowing for varying degrees of wave-slip interaction controlled by fault-friction models. Based on the slip time histories, P and SH seismograms are calculated for stations at teleseismic distances. The overburdening pressure caused by gravity eliminates mode I opening except at the tip of the fault near the surface; hence, mode I opening has no effect on the teleseismic signal. Normalizing by a Haskell-like traditional kinematic rupture, we find teleseismic peak-to-peak displacement amplitudes are approximately 1.0 for both P and SH waves, except for the unrealistic case of zero sliding friction. Zero sliding friction has peak-to-peak amplitudes of 1.6 for P and 2.0 for SH waves; the fault slip oscillates about its equilibrium value, resulting in a large nonzero (0.08 Hz) spectral peak not seen in other ruptures. These results indicate wave-slip interactions associated with surface-reflected phases in real earthquakes should have little to no effect on teleseismic motions. Thus, Haskell-like kinematic dislocation theory (transparent fault conditions) can be safety used to simulate teleseismic waveforms in the Earth.

  16. Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements

    USGS Publications Warehouse

    Ching, K.-E.; Rau, R.-J.; Zeng, Y.

    2007-01-01

    A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.

  17. A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observations

    NASA Astrophysics Data System (ADS)

    Srivastava, D. C.

    2016-12-01

    A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.

  18. On relating apparent stress to the stress causing earthquake fault slip

    USGS Publications Warehouse

    McGarr, A.

    1999-01-01

    Apparent stress ??a is defined as ??a = ??????, where ???? is the average shear stress loading the fault plane to cause slip and ?? is the seismic efficiency, defined as Ea/W, where Ea is the energy radiated seismically and W is the total energy released by the earthquake. The results of a recent study in which apparent stresses of mining-induced earthquakes were compared to those measured for laboratory stick-slip friction events led to the hypothesis that ??a/???? ??? 0.06. This hypothesis is tested here against a substantially augmented data set of earthquakes for which ???? can be estimated, mostly from in situ stress measurements, for comparison with ??a. The expanded data set, which includes earthquakes artificially triggered at a depth of 9 km in the German Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB) borehole and natural tectonic earthquakes, covers a broad range of hypocentral depths, rock types, pore pressures, and tectonic settings. Nonetheless, over ???14 orders of magnitude in seismic moment, apparent stresses exhibit distinct upper bounds defined by a maximum seismic efficiency of ???0.06, consistent with the hypothesis proposed before. This behavior of ??a and ?? can be expressed in terms of two parameters measured for stick-slip friction events in the laboratory: the ratio of the static to the dynamic coefficient of friction and the fault slip overshoot. Typical values for these two parameters yield seismic efficiencies of ???0.06. In contrast to efficiencies for laboratory events for which ?? is always near 0.06, those for earthquakes tend to be less than this bounding value because Ea for earthquakes is usually underestimated due to factors such as band-limited recording. Thus upper bounds on ??a/???? appear to be controlled by just a few fundamental aspects of frictional stick-slip behavior that are common to shallow earthquakes everywhere. Estimates of ???? from measurements of ??a for suites of earthquakes, using ??a/???? ??? 0.06, are found to be comparable in magnitude to estimates of shear stress on the basis of extrapolating in situ stress data to seismogenic depths.

  19. Bayesian exploration of recent Chilean earthquakes

    NASA Astrophysics Data System (ADS)

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Liang, Cunren; Agram, Piyush; Owen, Susan; Ortega, Francisco; Minson, Sarah

    2016-04-01

    The South-American subduction zone is an exceptional natural laboratory for investigating the behavior of large faults over the earthquake cycle. It is also a playground to develop novel modeling techniques combining different datasets. Coastal Chile was impacted by two major earthquakes in the last two years: the 2015 M 8.3 Illapel earthquake in central Chile and the 2014 M 8.1 Iquique earthquake that ruptured the central portion of the 1877 seismic gap in northern Chile. To gain better understanding of the distribution of co-seismic slip for those two earthquakes, we derive joint kinematic finite fault models using a combination of static GPS offsets, radar interferograms, tsunami measurements, high-rate GPS waveforms and strong motion data. Our modeling approach follows a Bayesian formulation devoid of a priori smoothing thereby allowing us to maximize spatial resolution of the inferred family of models. The adopted approach also attempts to account for major sources of uncertainty in the Green's functions. The results reveal different rupture behaviors for the 2014 Iquique and 2015 Illapel earthquakes. The 2014 Iquique earthquake involved a sharp slip zone and did not rupture to the trench. The 2015 Illapel earthquake nucleated close to the coast and propagated toward the trench with significant slip apparently reaching the trench or at least very close to the trench. At the inherent resolution of our models, we also present the relationship of co-seismic models to the spatial distribution of foreshocks, aftershocks and fault coupling models.

  20. Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.; Hickman, Stephen H.

    2016-01-01

    We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.

  1. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    NASA Astrophysics Data System (ADS)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely occur every 1000-1500 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169887','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169887"><span>Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon</p> <p>2015-01-01</p> <p>The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029339','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029339"><span>Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>d'Alessio, M. A.; Johanson, I.A.; Burgmann, R.; Schmidt, D.A.; Murray, M.H.</p> <p>2005-01-01</p> <p>Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (BA??VU??, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ?? 0.6 mm yr-1 directed toward N30.4??W ?? 0.8?? at San Francisco (??2??). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ?? 1.0; West Napa fault, 4.0 ?? 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ?? 1.0; and Mount Diablo thrust, 3.9 ?? 1.0 of reverse slip and 4.0 ?? 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/ Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated. Copyright 2005 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S21B2730T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S21B2730T"><span>The effect of roughness on the nucleation and propagation of shear rupture on small faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tal, Y.; Hager, B. H.</p> <p>2016-12-01</p> <p>Faults are rough at all scales and can be described as self-affine fractals. This deviation from planarity results in geometric asperities and a locally heterogeneous stress field, which affect the nucleation and propagation of shear rupture. We study this effect numerically and aim to understand the relative effects of different fault geometries, remote stresses, and medium and fault properties, focusing on small earthquakes, in which realistic geometry and friction law parameters can be incorporated in the model. Our numerical approach includes three main features. First, to enable slip that is large relative to the size of the elements near the fault, as well as the variation of normal stress during slip, we implement slip-weakening and rate-and state-friction laws into the Mortar Finite Element Method, in which non-matching meshes are allowed across the fault and the contacts are continuously updated. Second, we refine the mesh near the fault using hanging nodes, thereby enabling accurate representation of the fault geometry. Finally, using a variable time step size, we gradually increase the remote stress and let the rupture nucleate spontaneously. This procedure involves a quasi-static backward Euler scheme for the inter-seismic stages and a dynamic implicit Newmark scheme for the co-seismic stages. In general, under the same range of external loads, rougher faults experience more events but with smaller slips, stress drops, and slip rates, where the roughest faults experience only slow-slip aseismic events. Moreover, the roughness complicates the nucleation process, with asymmetric expansion of the rupture and larger nucleation length. In the propagation phase of the seismic events, the roughness results in larger breakdown zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9471G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9471G"><span>Millennial strain partitioning revealed by 36Cl cosmogenic data on active bedrock fault scarps from Abruzzo, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gregory, Laura; Roberts, Gerald; Cowie, Patience; Wedmore, Luke; McCaffrey, Ken; Shanks, Richard; Zijerveld, Leo; Phillips, Richard</p> <p>2017-04-01</p> <p>In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. Measuring earthquake slip histories on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with millennial resolution. In this presentation, we present new 36Cl data combined with historical earthquake records to document orogen-wide changes in the distribution of seismicity on millennial timescales in Abruzzo, central Italy. Seismic activity due to extensional faulting was concentrated on the northwest side of the mountain range during the historical period, or since approximately the 14th century. Seismicity is more limited on the southwest side of Abruzzo during historical times. This pattern has led some to suggest that faults on the southwest side of Abruzzo are not active, however clear fault scarps cutting Holocene-aged slopes are well preserved across the whole of the orogen. These scarps preserve an excellent record of Late Pleistocene to Holocene earthquake activity, which can be quantified using cosmogenic isotopes that track the exposure of the bedrock fault scarps. 36Cl accumulates in the fault scarps as the plane is progressively exhumed by earthquakes and the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. We utilise Bayesian modelling techniques to estimate slip histories based on the cosmogenic data. Each sampling site is carefully characterised using LiDAR and GPR to ensure that fault plane exposure is due to slip during earthquakes and not sediment transport processes. In this presentation we will focus on new data from faults located across-strike in Abruzzo. Many faults in Abruzzo demonstrate slip rate variability on millennial timescales, with relatively fast slip interspersed between quiescent periods. We show that heightened activity is co-located and spatially migrates across Abruzzo over time. We highlight the importance of understanding this dynamic fault behaviour of migrating seismic activity, and in particular how our research is relevant to the 2016 Amatrice-Vettore seismic sequence in central Italy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAG...134..159S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAG...134..159S"><span>Back analysis of fault-slip in burst prone environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sainoki, Atsushi; Mitri, Hani S.</p> <p>2016-11-01</p> <p>In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T21A0537B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T21A0537B"><span>Earthquakes and aseismic creep associated with growing fault-related folds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burke, C. C.; Johnson, K. M.</p> <p>2017-12-01</p> <p>Blind thrust faults overlain by growing anticlinal folds pose a seismic risk to many urban centers in the world. A large body of research has focused on using fold and growth strata geometry to infer the rate of slip on the causative fault and the distribution of off-fault deformation. However, because we have had few recorded large earthquakes on blind faults underlying folds, it remains unclear how much of the folding occurs during large earthquakes or during the interseismic period accommodated by aseismic creep. Numerous kinematic and mechanical models as well as field observations demonstrate that flexural slip between sedimentary layering is an important mechanism of fault-related folding. In this study, we run boundary element models of flexural-slip fault-related folding to examine the extent to which energy is released seismically or aseismically throughout the evolution of the fold and fault. We assume a fault imbedded in viscoelastic mechanical layering under frictional contact. We assign depth-dependent frictional properties and adopt a rate-state friction formulation to simulate slip over time. We find that in many cases, a large percentage (greater than 50%) of fold growth is accomplished by aseismic creep at bedding and fault contacts. The largest earthquakes tend to occur on the fault, but a significant portion of the seismicity is distributed across bedding contacts through the fold. We are currently working to quantify these results using a large number of simulations with various fold and fault geometries. Result outputs include location, duration, and magnitude of events. As more simulations are completed, these results from different fold and fault geometries will provide insight into how much folding occurs from these slip events. Generalizations from these simulations can be compared with observations of active fault-related folds and used in the future to inform seismic hazard studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP51D0578G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP51D0578G"><span>Evidence of spatial and temporal slip partitioning in the northern Central Nevada Seismic Belt from ground-based imaging of offset landforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gold, P. O.; Cowgill, E.; Kreylos, O.</p> <p>2010-12-01</p> <p>Measurements derived from high-resolution terrestrial LiDAR (t-Lidar) surveys of landforms displaced during the 16 December 1954 Mw 6.8 Dixie Valley earthquake in central Nevada confirm the absence of historical strike slip north of latitude 39.5°N. This conclusion has implications for the effect of stress changes on the spatial and temporal evolution of the central Nevada seismic belt. The Dixie Valley fault is a low-angle, east-dipping, range-bounding normal fault located in the central-northern reach of the central Nevada seismic belt (CNSB), a ~N-S trending group of historical ruptures that may represent a migration of northwest trending right-lateral Pacific-North American plate motion into central Nevada. Migration of a component of right slip eastward from the eastern California shear zone/Walker lane to the CNSB is supported by the presence of pronounced right-lateral motion observed in most of the CNSB earthquakes south of the Dixie Valley fault and by GPS data spanning the CNSB. Such eastward migration and northward propagation of right-slip into the CNSB predicts a component of lateral slip on the Dixie Valley fault. However, landforms offsets have previously been reported to indicate only purely normal slip in the 1954 Dixie Valley event. To check the direction of motion during the Dixie Valley earthquake using higher precision methods than previously employed, we collected t-LiDAR data to quantify displacements of two well-preserved debris flow chutes separated along strike by ~10 km and at locations where the local fault strike diverges by >10° from the regional strike. Our highest confidence measurements yield a horizontal slip vector azimuth of ~107° at both sites, orthogonal to the average regional fault strike of ~17°. Thus, we find no compelling evidence for regional lateral motion in our other measurements. This result indicates that continued northward propagation of right lateral slip from its diffuse termination at the northern end of the 1954 Fairview Peak event, 4 minutes before the Dixie Valley event, and the Rainbow Mountain-Stillwater events six months earlier, must be accommodated by some other mechanism. We see several options for the spatial and temporal evolution of right slip propagation into the northern CNSB. 1) Lateral motion may be accommodated to the east by faults opposite the Dixie Valley fault along the base of Clan Alpine range, or to the west by faults at the western base of the Stillwater range-diffuse faults to the SW and SE of the Dixie Valley fault that also ruptured in 1954 accommodated right slip and could represent a west and/or east migration of lateral motion; 2) right lateral motion may activate an as yet unrecognized fault within the Dixie Valley; or 3) the Dixie Valley fault may be reactivated with a greater component of lateral slip in response to changes in stress, a phenomena that has been recognized on the Borrego Fault in northern Mexico between the penultimate event and the recent 4 April 2010 El Mayor-Cucapah earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoJI.141...43B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoJI.141...43B"><span>Effects induced by an earthquake on its fault plane:a boundary element study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonafede, Maurizio; Neri, Andrea</p> <p>2000-04-01</p> <p>Mechanical effects left by a model earthquake on its fault plane, in the post-seismic phase, are investigated employing the `displacement discontinuity method'. Simple crack models, characterized by the release of a constant, unidirectional shear traction are investigated first. Both slip components-parallel and normal to the traction direction-are found to be non-vanishing and to depend on fault depth, dip, aspect ratio and fault plane geometry. The rake of the slip vector is similarly found to depend on depth and dip. The fault plane is found to suffer some small rotation and bending, which may be responsible for the indentation of a transform tectonic margin, particularly if cumulative effects are considered. Very significant normal stress components are left over the shallow portion of the fault surface after an earthquake: these are tensile for thrust faults, compressive for normal faults and are typically comparable in size to the stress drop. These normal stresses can easily be computed for more realistic seismic source models, in which a variable slip is assigned; normal stresses are induced in these cases too, and positive shear stresses may even be induced on the fault plane in regions of high slip gradient. Several observations can be explained from the present model: low-dip thrust faults and high-dip normal faults are found to be facilitated, according to the Coulomb failure criterion, in repetitive earthquake cycles; the shape of dip-slip faults near the surface is predicted to be upward-concave; and the shallower aftershock activity generally found in the hanging block of a thrust event can be explained by `unclamping' mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.719...37V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.719...37V"><span>Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Wijk, J.; Axen, G.; Abera, R.</p> <p>2017-11-01</p> <p>We present a model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal elastic models of deformation, field observations, and fault theory, and is generally applicable to basin-scale features, but predicts some intra-basin structural features. Geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step-over, which results from the forming phase of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement, and the fault tips propagate beyond the rift basin, increasing the distance between the fault tips and pull-apart basin center. Because uplift is concentrated near the fault tips, the sediment source areas may rejuvenate and migrate over time. Rift flank uplift results from compression along the flank of the basin. With increasing strike-slip movement the basins deepen and lengthen. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because basin-bounding strike-slip systems tend to straighten and connect as they evolve. The models show that larger length-to-width ratios with overlapping faults are least likely to form basin-crossing faults, and pull-apart basins with this geometry are thus most likely to progress to continental rupture. In the Gulf of California, larger length-to-width ratios are found in the southern Gulf, which is the region where continental breakup occurred rapidly. The initial geometry in the northern Gulf of California and Salton Trough at 6 Ma may have been one of widely-spaced master strike-slip faults (lower length-to-width ratios), which our models suggest inhibits continental breakup and favors straightening of the strike-slip system by formation of basin-crossing faults within the step-over, as began 1.2 Ma when the San Jacinto and Elsinore - Cerro Prieto fault systems formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.appliedgeologybook.com/','USGSPUBS'); return false;" href="http://www.appliedgeologybook.com/"><span>Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.</p> <p>2016-01-01</p> <p>The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This is reflected by non-periodic coefficients of variation in earthquake recurrence of 0.4 to 0.7 for the various paleoseismic sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.S11B..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.S11B..02H"><span>Surface rupture and revised slip distribution on the Denali and Totschunda faults from the M 7.9 Denali fault earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haeussler, P. J.</p> <p>2003-12-01</p> <p>We revised the preliminary slip distribution (Science, 2003, v. 300, p. 1037ff) along the Denali and Totschunda faults after additional fieldwork this summer. Features of the surface trace had degraded in places due to melting of snow, permafrost, and soil. However, without snow cover, offset of fine-scale features was much clearer at many new localities. We were also able to add additional measurements on glaciers, where offset snow-filled crevasses could be observed. As a result, the revised slip distribution provides considerably more detail and a higher level of confidence than that inferred solely from measurements collected immediately after the earthquake. The primary features of the revised slip distribution are: 1) a broad plateau of roughly 5-m offsets extending from 70 to 170 km east of the epicenter along the central part of the Denali fault, 2) high-slip values of 6.5-8+ m between 170 and 212 km east of the epicenter, 3) the step up from the 5 m plateau to the higher is sharp, occurring over a lateral distance of one kilometer, 4) there are three new, and anomalously high, measurements of 7.2-8.2 m along a 7-km length of the fault within the plateau of 5-m slip values, 5) there was a maximum 3-m offset on the Totschunda fault, which is 0.9-m higher than previously measured; 6) A previously inferred region of high slip in the vicinity of the Trans Alaska Pipeline is less obvious or absent. However, slip in that area is higher than the region to the west of the Delta River, 7) In contrast to geodetic and seismologic slip models that infer low slip and moment release in a zone 100-160 km east of the epicenter, we find continuous surface offsets of about 5 m; 8) A drop to zero slip, previously inferred at the Totschunda-Denali junction appears to be a result of slip values obtained from transfer structures. The smallest robust measurements of lateral slip in the transition zone were about a meter. Denali Fault Earthquake Geology Working Group : T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1111713-new-constraints-slip-rates-recurrence-intervals-strain-partitioning-beneath-pyramid-lake-nevada','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1111713-new-constraints-slip-rates-recurrence-intervals-strain-partitioning-beneath-pyramid-lake-nevada"><span>New constraints on slip-rates, recurrence intervals, and strain partitioning beneath Pyramid Lake, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Eisses, Amy</p> <p></p> <p>A high-resolution CHIRP seismic survey of Pyramid Lake, Nevada, located within the northern Walker Lane Deformation Belt, was conducted in summer 2010. Seismic CHIRP data with submeter vertical accuracy, together with piston and gravity cores, were used to calculate Holocene vertical slip rates, relative earthquake timing, and produce the first complete fault map beneath the lake. More than 500 line-kilometers of CHIRP data imaged complex fault patterns throughout the basin. Fault architecture beneath Pyramid Lake highlights a polarity flip, where down-to-the west patterns of sedimentation near the dextral Pyramid Lake fault to the south give way to down-to-the-east geometries tomore » the north within a mostly normal (i.e., Lake Range fault) and transtensional environment. The Lake Range fault predominantly controls extensional deformation within the northern two-thirds of the basin and exhibits varying degrees of asymmetric tilting and divergence due to along-strike segmentation. This observation is likely a combination of fault segments splaying onshore moving the focus of extension away from the lake coupled with some true along-strike differences in slip-rate. The combination of normal and oblique-slip faults in the northern basin gives Pyramid Lake its distinctive “fanning open to the north” tectonic geometry. The dense network of oblique-slip faults in the northwestern region of the lake, in contrast to the well-defined Lake Range fault, are short and discontinuous in nature, and possible represent a nascent shear zone. Preliminary vertical slip-rates measured across the Lake Range and other faults provide new estimates on the extension across the Pyramid Lake basin. A minimum vertical slip rate of ~1.0 mm/yr is estimated along the Lake Range fault, which yields a potential earthquake magnitude range between M6.4 and M7.0. A rapid influx of sediment was deposited shortly after the end of the Tioga glaciation somewhere between 12.5 ka to 9.5 ka and provides a punctuated short-term record of little to no slip on the Lake Range fault. In contrast, for the past 9,500 years, the basin has experienced a decrease in sedimentation rate, but an escalation in earthquake activity on the Lake Range fault, with the potential of 3 or 4 major earthquakes assuming a characteristic offset of 2.5 m per event. Regionally, our CHIRP investigation helps to reveal how strain is partitioned along the boundary between the eastern edge of the Walker Lane Deformation Belt and the northwest Great Basin proper.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S33A2747H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S33A2747H"><span>Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, Y. J.; Yu, S. B.; Loveless, J. P.; Bacolcol, T.; Woessner, J.; Solidum, R., Jr.</p> <p>2015-12-01</p> <p>The Sunda plate converges obliquely with the Philippine Sea plate with a rate of ~100 mm/yr and results in the sinistral slip along the 1300 km-long Philippine fault. Using GPS data from 1998 to 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks and elastic deformation associated with fault slip at block boundaries. Our preferred model composed of 8 blocks, produces a mean residual velocity of 3.4 mm/yr at 93 GPS stations. Estimated long-term slip rates along the Manila subduction zone show a gradual southward decrease from 66 mm/yr at the northwest tip of Luzon to 60 mm/yr at the southern portion of the Manila Trench. We infer a low coupling fraction of 11% offshore northwest Luzon and a coupling fraction of 27% near the subduction of Scarborough Seamount. The accumulated strain along the Manila subduction zone at latitudes 15.5°~18.5°N could be balanced by earthquakes with composite magnitudes of Mw 8.7 and Mw 8.9 based on a recurrence interval of 500 years and 1000 years, respectively. Estimates of sinistral slip rates on the major splay faults of the Philippine fault system in central Luzon increase from east to west: sinistral slip rates are 2 mm/yr on the Dalton fault, 8 mm/yr on the Abra River fault, and 12 mm/yr on the Tubao fault. On the southern segment of the Philippine fault (Digdig fault), we infer left-lateral slip of ~20 mm/yr. The Vigan-Aggao fault in northwest Luzon exhibits significant reverse slip of up to 31 mm/yr, although deformation may be distributed across multiple offshore thrust faults. On the Northern Cordillera fault, we calculate left-lateral slip of ~7 mm/yr. Results of block modeling suggest that the majority of active faults in Luzon are fully locked to a depth of 15-20 km. Inferred moment magnitudes of inland large earthquakes in Luzon fall in the range of Mw 7.0-7.5 based on a recurrence interval of 100 years. Using the long-term plate convergence rate between the Sunda plate and Philippine Sea plate as well as seismic moment release rate, we calculate the moment budget for the entire Luzon plate boundary zone that could be balanced by earthquakes with a composite magnitude of ~Mw 9 based on recurrence intervals of 500-1000 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.733...57E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.733...57E"><span>Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elliott, A. J.; Oskin, M. E.; Liu-zeng, J.; Shao, Y.-X.</p> <p>2018-05-01</p> <p>Restraining double-bends along strike-slip faults inhibit or permit throughgoing ruptures depending on bend angle, length, and prior rupture history. Modeling predicts that for mature strike-slip faults in a regional stress regime characterized by simple shear, a restraining bend of >18° and >4 km length impedes propagating rupture. Indeed, natural evidence shows that the most recent rupture(s) of the Xorkoli section (90°-93°E) of the eastern Altyn Tagh fault (ATF) ended at large restraining bends. However, when multiple seismic cycles are considered in numerical dynamic rupture modeling, heterogeneous residual stresses enable some ruptures to propagate further, modulating whether the bends persistently serve as barriers. These models remain to be tested using observations of the cumulative effects of multiple earthquake ruptures. Here we investigate whether a large restraining double-bend on the ATF serves consistently as a barrier to rupture by measuring long-term slip rates around the terminus of its most recent surface rupture at the Aksay bend. Our results show a W-E decline in slip as the SATF enters the bend, as would be predicted from repeated rupture terminations there. Prior work demonstrated no Holocene slip on the central, most misoriented portion of the bend, while 19-79 m offsets suggest that multiple ruptures have occurred on the west side of the bend during the Holocene. Thus we conclude the gradient in the SATF's slip rate results from the repeated termination of earthquake ruptures there. However, a finite slip rate east of the bend represents the transmission of some slip, suggesting that a small fraction of ruptures may fully traverse or jump the double-bend. This agreement between natural observations of slip accumulation and multi-cycle models of fault rupture enables us to translate observed slip rates into insight about the dynamic rupture process of individual earthquakes as they encounter geometric complexities along faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSPTA.37550354S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSPTA.37550354S"><span>Micromechanics of sea ice frictional slip from test basin scale experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sammonds, Peter R.; Hatton, Daniel C.; Feltham, Daniel L.</p> <p>2017-02-01</p> <p>We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with ? (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue 'Microdynamics of ice'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000403','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000403"><span>Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.</p> <p>2008-01-01</p> <p>Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.S71E..11M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.S71E..11M"><span>Observations that Constrain the Scaling of Apparent Stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGarr, A.; Fletcher, J. B.</p> <p>2002-12-01</p> <p>Slip models developed for major earthquakes are composed of distributions of fault slip, rupture time, and slip velocity time function over the rupture surface, as divided into many smaller subfaults. Using a recently-developed technique, the seismic energy radiated from each subfault can be estimated from the time history of slip there and the average rupture velocity. Total seismic energies, calculated by summing contributions from all of the subfaults, agree reasonably well with independent estimates based on seismic energy flux in the far-field at regional or teleseismic distances. Two recent examples are the 1999 Izmit, Turkey and the 1999 Hector Mine, California earthquakes for which the NEIS teleseismic measurements of radiated energy agree fairly closely with seismic energy estimates from several different slip models, developed by others, for each of these events. Similar remarks apply to the 1989 Loma Prieta, 1992 Landers, and 1995 Kobe earthquakes. Apparent stresses calculated from these energy and moment results do not indicate any moment or magnitude dependence. The distributions of both fault slip and seismic energy radiation over the rupture surfaces of earthquakes are highly inhomogeneous. These results from slip models, combined with underground and seismic observations of slip for much smaller mining-induced earthquakes, can provide stronger constraint on the possible scaling of apparent stress with moment magnitude M or seismic moment. Slip models for major earthquakes in the range M6.2 to M7.4 show maximum slips ranging from 1.6 to 8 m. Mining-induced earthquakes at depths near 2000 m in South Africa are associated with peak slips of 0.2 to 0.37 m for events of M4.4 to M4.6. These maximum slips, whether derived from a slip model or directly observed underground in a deep gold mine, scale quite definitively as the cube root of the seismic moment. In contrast, peak slip rates (maximum subfault slip/rise time) appear to be scale invariant. A 1.25 m/s slip rate for one of the mining-induced earthquakes was estimated by dividing the corresponding slip observed at depth by the duration of the seismically-recorded slip pulse. Peak slip rates determined from the slip models for the major earthquakes are similar, ranging from about 0.8 to 4.8 m/s. Thus, for earthquakes in the moment magnitude range 4.4 to 7.4, the peak slip rate shows no dependence on M. Whatever variation there is in slip rate is probably due to factors related to the strength of the seismogenic rock mass such as depth. These observations support the idea that apparent stress does not vary systematically with seismic moment inasmuch as the apparent stress is determined by slip rate. Indeed, our finding that fault behavior of M4.4 earthquakes can be scaled readily to events of M greater than 7 with slips up to about 8 m suggests, quite persuasively, that the source physics for crustal earthquakes is much the same over this magnitude range. Interestingly, the mining-induced earthquakes involved brittle failure across very old pre-existing faults for which the cohesive strength is high and the pore pressure is zero, due to mining operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034408','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034408"><span>Superficial simplicity of the 2010 El Mayorg-Cucapah earthquake of Baja California in Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wei, S.; Fielding, E.; Leprince, S.; Sladen, A.; Avouac, J.-P.; Helmberger, D.; Hauksson, E.; Chu, R.; Simons, M.; Hudnut, K.; Herring, T.; Briggs, R.</p> <p>2011-01-01</p> <p>The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures1-6. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the Mw 7.2 2010 El Mayorg-Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130 ??E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone. ?? 2011 Macmillan Publishers Limited. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33B0470W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33B0470W"><span>Cyclic Stable-Unstable Slip Preserved along an Appalachian Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wells, R. K.; Newman, J.; Holyoke, C. W., III; Wojtal, S. F.</p> <p>2017-12-01</p> <p>The inactive Copper Creek thrust, southern Appalachians, TN, preserves evidence suggesting cyclic aseismic and unstable slip. The Copper Creek thrust is a low-temperature (4-6 km burial depth) foreland thrust with an estimated net slip of 15-20 km. Immediately below the 2 cm thick calcite-shale fault zone, the footwall is composed of shale with cross-cutting calcite veins and is separated from the fault zone by a 300 µm thick layered calcite vein. Optical and electron microscopy indicates that this complex vein layer experienced grain size reduction by plasticity-induced fracturing followed by aseismic diffusion creep. The fault zone calcite exhibits interpenetrating grain boundaries and four-grain junctions suggesting diffusion creep, but also contains nanoscale grains (7 nm), vesicular calcite, and partially-coated clasts indicating unstable, possibly seismic, slip. Well-preserved clasts of deformed calcite vein layer material within the fault zone indicate repeated cycle(s) of aseismic diffusion creep. In addition, nanoscale calcite grains, 30 nm, with straight grain boundaries that form triple junctions, may represent earlier nanoscale grains formed during unstable slip that have experienced grain growth during periods of aseismic creep. Based on the spatial and temporal relations of these preserved microstructures, we propose a sequence of deformation processes consistent with cyclic episodes of unstable slip separated by intervals of aseismic creep. Formation of calcite-filled veins is followed by grain size reduction in vein calcite by plasticity-induced fracturing and aseismic grain-size sensitive diffusion creep deformation in fine-grained calcite. During aseismic creep, the combination of grain growth, resulting in fault strengthening, and an increase in pore fluid pressure, reducing the effective fault strength, leads to new fractures and/or an unstable slip event. During unstable slip, nanograins and vesicular calcite form as a result of thermal decomposition and coated clasts form as a result of fluidization of the fault zone, and are then incorporated within ductilely deforming calcite during a new interval of aseismic creep.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>