Nearly frictionless faulting by unclamping in long-term interaction models
Parsons, T.
2002-01-01
In defiance of direct rock-friction observations, some transform faults appear to slide with little resistance. In this paper finite element models are used to show how strain energy is minimized by interacting faults that can cause long-term reduction in fault-normal stresses (unclamping). A model fault contained within a sheared elastic medium concentrates stress at its end points with increasing slip. If accommodating structures free up the ends, then the fault responds by rotating, lengthening, and unclamping. This concept is illustrated by a comparison between simple strike-slip faulting and a mid-ocean-ridge model with the same total transform length; calculations show that the more complex system unclapms the transforms and operates at lower energy. In another example, the overlapping San Andreas fault system in the San Francisco Bay region is modeled; this system is complicated by junctions and stepovers. A finite element model indicates that the normal stress along parts of the faults could be reduced to hydrostatic levels after ???60-100 k.y. of system-wide slip. If this process occurs in the earth, then parts of major transform fault zones could appear nearly frictionless.
Reliability computation using fault tree analysis
NASA Technical Reports Server (NTRS)
Chelson, P. O.
1971-01-01
A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.
Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran
NASA Astrophysics Data System (ADS)
Walker, Richard Thomas; Talebian, Morteza; Saiffori, Sohei; Sloan, Robert Alastair; Rasheedi, Ali; MacBean, Natasha; Ghassemi, Abbas
2010-08-01
We provide descriptions of strike-slip and reverse faulting, active within the late Quaternary, in the vicinity of Kerman city in southeastern Iran. The faults accommodate north-south, right-lateral, shear between central Iran and the Dasht-e-Lut depression. The regions that we describe have been subject to numerous earthquakes in the historical and instrumental periods, and many of the faults that are documented in this paper constitute hazards for local populations, including the city of Kerman itself (population ˜200,000). Faults to the north and east of Kerman are associated with the transfer of slip from the Gowk to the Kuh Banan right-lateral faults across a 40 km-wide restraining bend. Faults south and west of the city are associated with oblique slip on the Mahan and Jorjafk systems. The patterns of faulting observed along the Mahan-Jorjafk system, the Gowk-Kuh Banan system, and also the Rafsanjan-Rayen system further to the south, appear to preserve different stages in the development of these oblique-slip fault systems. We suggest that the faulting evolves through time. Topography is initially generated on oblique slip faults (as is seen on the Jorjafk fault). The shortening component then migrates to reverse faults situated away from the high topography whereas strike-slip continues to be accommodated in the high, mountainous, regions (as is seen, for example, on the Rafsanjan fault). The reverse faults may then link together and eventually evolve into new, through-going, strike-slip faults in a process that appears to be occurring, at present, in the bend between the Gowk and Kuh Banan faults.
NASA Astrophysics Data System (ADS)
Li, Shuanghong; Cao, Hongliang; Yang, Yupu
2018-02-01
Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.
Timing of activity of two fault systems on Mercury
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Guzzetta, L.; Giacomini, L.; Ferranti, L.; Massironi, M.; Palumbo, P.
2015-10-01
Here we discuss about two fault systems found in the Victoria and Shakespeare quadrangles of Mercury. The two fault sets intersect each other and show probable evidence for two stages of deformation. The most prominent system is N-S oriented and encompasses several tens to hundreds of kilometers long and easily recognizable fault segments. The other system strikes NE- SW and encompasses mostly degraded and short fault segments. The structural framework of the studied area and the morphological appearance of the faults suggest that the second system is older than the first one. We intend to apply the buffered crater counting technique on both systems to make a quantitative study of their timing of activity that could confirm the already clear morphological evidence.
Fault tolerant architectures for integrated aircraft electronics systems, task 2
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.
1984-01-01
The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.
A footwall system of faults associated with a foreland thrust in Montana
NASA Astrophysics Data System (ADS)
Watkinson, A. J.
1993-05-01
Some recent structural geology models of faulting have promoted the idea of a rigid footwall behaviour or response under the main thrust fault, especially for fault ramps or fault-bend folds. However, a very well-exposed thrust fault in the Montana fold and thrust belt shows an intricate but well-ordered system of subsidiary minor faults in the footwall position with respect to the main thrust fault plane. Considerable shortening has occurred off the main fault in this footwall collapse zone and the distribution and style of the minor faults accord well with published patterns of aftershock foci associated with thrust faults. In detail, there appear to be geometrically self-similar fault systems from metre length down to a few centimetres. The smallest sets show both slip and dilation. The slickensides show essentially two-dimensional displacements, and three slip systems were operative—one parallel to the bedding, and two conjugate and symmetric about the bedding (acute angle of 45-50°). A reconstruction using physical analogue models suggests one possible model for the evolution and sequencing of slip of the thrust fault system.
NASA Technical Reports Server (NTRS)
Nielsen, K. C.; Stern, R. J.
1985-01-01
The Anadarko Basin of western Oklahoma is a WNW-ESE elongated trough filled with of Paleozoic sediments. Most models call for tectonic activity to end in Pennsylvanian times. NASA Shuttle Imaging Radar revealed a distinctive and very straight lineament set extending virtually the entire length of the Anadarko Basin. The lineaments cut across the relatively flat-lying Permian units exposed at the surface. The character of these lineaments is seen most obviously as a tonal variation. Major streams, including the Washita and Little Washita rivers, appear to be controlled by the location of the lineaments. Subsurface data indicate the lineaments may be the updip expression of a buried major fault system, the Mountain View fault. Two principal conclusions arise from this analysis: (1) the complex Mountain View Fault system appears to extend southeast to join the Reagan, Sulphur, and/or Mill Creek faults of the Arbuckle Mountains, and (2) this fault system has been reactivated in Permian or younger times.
Faulting and hydration of the Juan de Fuca plate system
NASA Astrophysics Data System (ADS)
Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.
2009-06-01
Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.
Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data
Faulds, James E.
2011-12-31
Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.
NASA Astrophysics Data System (ADS)
Bialas, Jörg; Dannowski, Anke; Reston, Timothy J.
2015-12-01
A wide-angle seismic section across the Mid-Atlantic Ridge just south of the Ascension transform system reveals laterally varying crustal thickness, and to the east a strongly distorted Moho that appears to result from slip along a large-offset normal fault, termed an oceanic detachment fault. Gravity modelling supports the inferred crustal structure. We investigate the interplay between magmatism, detachment faulting and the changing asymmetry of crustal accretion, and consider several possible scenarios. The one that appears most likely is remarkably simple: an episode of detachment faulting which accommodates all plate divergence and results in the westward migration of the ridge axis, is interspersed with dominantly magmatic and moderately asymmetric (most on the western side) spreading which moves the spreading axis back towards the east. Following the runaway weakening of a normal fault and its development into an oceanic detachment fault, magma both intrudes the footwall to the fault, producing a layer of gabbro (subsequently partially exhumed).
Earthquake epicenters and fault intersections in central and southern California
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Silverstein, J.
1972-01-01
The author has identifed the following significant results. ERTS-1 imagery provided evidence for the existence of short transverse fault segments lodged between faults of the San Andreas system in the Coast Ranges, California. They indicate that an early episode of transverse shear has affected the Coast Ranges prior to the establishment of the present San Andreas fault. The fault has been offset by transverse faults of the Transverse Ranges. It appears feasible to identify from ERTS-1 imagery geomorphic criteria of recent fault movements. Plots of historic earthquakes in the Coast Ranges and western Transverse Ranges show clusters in areas where structures are complicated by interaction of tow active fault systems. A fault lineament apparently not previously mapped was identified in the Uinta Mountains, Utah. Part of the lineament show evidence of recent faulting which corresponds to a moderate earthquake cluster.
New Madrid Seismotectonic Study: activities during fiscal year 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buschbach, T.C.
1985-04-01
The New Madrid Seismotectonic Study is a coordinated program of geological, geophysical, and seismological investigations of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. Our studies concentrated on defining boundaries of a proposed rift complex in the area, as well as establishing the relationships of the east-west trending fault systems with the northwest-trending faults of the Wabash Valley and New Madrid areas. There were 204 earthquakes located in 1983. Inmore » addition, the earthquake swarm in north-central Arkansas continued throughout the year, and 45,000 earthquakes have been recorded there since January, 1982. Current seismic activity in the Anna, Ohio, area appears to be related to the northwest-trending Fort Wayne rift and possibly with the rift's contact with a low-density pluton. Fault studies of the Rough Creek-Shawneetown Fault System showed mostly high-angle normal faults with a master fault that is a high-angle south-dipping reverse fault. Trenching of terrace deposits along the Kentucky River Fault System confirmed some anomalous conditions in terrace deposits previously indicated by electrical resistivity and augering programs. Thermal and chemical data from groundwater in the Mississippi Embayment appear to be useful in localizing deep faults that cut through the aquifers. Early indications from studies of jointing in Indiana are that the direction of major joint sets will be useful in determining regional stress directions. No Quaternary faulting was found in the Indiana or Illinois fault studies.« less
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.
2010-12-01
The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading us to speculate towards the role of obliquity of plate tectonic convergence for the along-strike evolution of extra-regional strike-slip systems. Highly-oblique initiation of the DFS encourages detachment of fault-bounded terranes and provides a driver that encourages a westward-fanning pattern of extrusion towards the free face of the Beringian margin. Plausibly, its less-oblique central segment promotes vertical pathway exhumation observed at (for example) Denali itself. A more orthogonal regime drives the entire LOFZ, precluding slivering at its initiation and promoting upstream buttressing (Beck et al., 1993). The convergent plate boundary setting opens a window through time and space on the evolution of large-magnitude fault-systems. Escape, or not to escape ~ what best answers the question ? Citations Redfield, T. F., Scholl, D. W., Fitzgerald, P. G., and Beck, M. E., & 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology. 35, 11, 1039-1042 Beck, M.E., Rojas, C. and Cembrano, J. (1993). “On the nature of buttressing in margin-parallel strike-fault systems.” Geology, Vol. 21, pp. 755-758.
Clustering of GPS velocities in the Mojave Block, southeastern California
Savage, James C.; Simpson, Robert W.
2013-01-01
We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].
Stafford fault system: 120 million year fault movement history of northern Virginia
Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.
2015-01-01
The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.
Investigation of lineaments on Skylab and ERTS images of Peninsular Ranges, Southwestern California
NASA Technical Reports Server (NTRS)
Merifield, P. M. (Principal Investigator); Lamar, D. L.
1974-01-01
The author has identified the following significant results. Northwest trending faults such as the Elsinore and San Jacinto are prominently displayed on Skylab and ERTS images of the Peninsular Ranges, southern California. Northeast, north-south, and west-north-west trending lineaments and faults are also apparent on satellite imagery. Several of the lineaments represent previously unmapped faults. Other lineaments are due to erosion along foliation directions and sharp bends in basement rock contacts rather than faulting. The northeast trending Thing Valley fault appears to be offset by the south branch of the Elsinore fault near Agua Caliente Hot Springs. Larger horizontal displacement along the Elsinore fault further northwest may be distributed along several faults which branch from the Elsinore fault in the Peninsular Ranges. The northeast and west-northwest trending faults are truncated by the major northwest trending faults and appear to be restricted to basement terrane. Limited data on displacement direction suggests that the northeast and west-northwest trending faults formed in response to an earlier period of east-northeast, west-southwest crustal shortening. Such a stress system is consistent with the plate tectonic model of a subduction zone parallel to the continental margin suggested in the late Mesozoic and early Tertiary.
Clustering of GPS velocities in the Mojave Block, southeastern California
NASA Astrophysics Data System (ADS)
Savage, J. C.; Simpson, R. W.
2013-04-01
find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager []. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. []. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].
NASA Astrophysics Data System (ADS)
Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.
1994-10-01
The two branches of the East African Rift system include numerous hydrothermal fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza hydrothermal fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil hydrothermal systems and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault System and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault systems trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The hydrothermal area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both hydrothermal areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the hydrothermal activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba hydrothermal fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between the eastern and western branches of the East African Rift system, perhaps related to a difference in stage of evolution of the two branches.
A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems
NASA Astrophysics Data System (ADS)
Dijoux, Etienne; Steiner, Nadia Yousfi; Benne, Michel; Péra, Marie-Cécile; Pérez, Brigitte Grondin
2017-08-01
Fuel cells are powerful systems for power generation. They have a good efficiency and do not generate greenhouse gases. This technology involves a lot of scientific fields, which leads to the appearance of strongly inter-dependent parameters. This makes the system particularly hard to control and increases fault's occurrence frequency. These two issues call for the necessity to maintain the system performance at the expected level, even in faulty operating conditions. It is called "fault tolerant control" (FTC). The present paper aims to give the state of the art of FTC applied to the proton exchange membrane fuel cell (PEMFC). The FTC approach is composed of two parts. First, a diagnosis part allows the identification and the isolation of a fault; it requires a good a priori knowledge of all the possible faults. Then, a control part allows an optimal control strategy to find the best operating point to recover/mitigate the fault; it requires the knowledge of the degradation phenomena and their mitigation strategies.
3-D Structure and Morphology of the S-reflector Detachment Fault, Offshore Galicia, Spain
NASA Astrophysics Data System (ADS)
Schuba, C. N.; Sawyer, D. S.; Gray, G. G.; Morgan, J.; Bull, J.; Shillington, D. J.; Jordan, B.; Reston, T. J.
2017-12-01
The crustal architecture of passive continental margins provides valuable clues for understanding rift initiation and evolution. The Galicia margin is an archetypal magma-poor margin displaying exhumed serpentinized mantle, and is an optimal setting in which to examine rift-related processes. A new 3-D seismic reflection volume images this margin in great detail. The S-reflector detachment fault, one of the most prominent structural features associated with the Galicia margin, is imaged as a continuous interface over an area of 600 km2. The top and base of the fault zone can be mapped independently, which enables seismic attribute analysis of this significant structure. RMS amplitude maps extracted from this interface show localized patches of high amplitude stripes that coincide with thickness variations of the fault zone and undulations in the bounding surfaces of the fault. These variations bear similarities to grooves on the fault surface such as slickensides, and appear to have developed as the fault zone evolved. These features thus represent good indicators of the kinematics of the fault system. In general, there is good correlation between S-reflector morphology and the overriding fault intersections; however this relationship does not appear to be present with the fault gouge thickness.
Pratt, Thomas L.; Horton, J. Wright; Spear, D.B.; Gilmer, A.K.; McNamara, Daniel E.
2015-01-01
The Mineral, Virginia (USA), earthquake of 23 August 2011 occurred at 6– 8 km depth within the allochthonous terranes of the Appalachian Piedmont Province, rupturing an ~N36°E striking reverse fault dipping ~50° southeast. This study used the Interstate Highway 64 seismic refl ection profi le acquired ~6 km southwest of the hypocenter to examine the structural setting of the earthquake. The profi le shows that the 2011 earthquake and its aftershocks are almost entirely within the early Paleozoic Chopawamsic volcanic arc terrane, which is bounded by listric thrust faults dipping 30°–40° southeast that sole out into an ~2-km-thick, strongly refl ective zone at 7– 12 km depth. Refl ectors above and below the southward projection of the 2011 earthquake focal plane do not show evidence for large displacement, and the updip projection of the fault plane does not match either the location or trend of a previously mapped fault or lithologic boundary. The 2011 earthquake thus does not appear to be a simple reactivation of a known Paleozoic thrust fault or a major Mesozoic rift basin-boundary fault. The fault that ruptured appears to be a new fault, a fault with only minor displacement, or to not extend the ~3 km from the aftershock zone to the seismic profi le. Although the Paleozoic structures appear to infl uence the general distribution of seismicity in the area, Central Virginia seismic zone earthquakes have yet to be tied directly to specifi c fault systems mapped at the surface or imaged on seismic profiles.
Zhang, Edward; Fuis, Gary S.; Catchings, Rufus D.; Scheirer, Daniel S.; Goldman, Mark; Bauer, Klaus
2018-06-13
We reexamine the geometry of the causative fault structure of the 1989 moment-magnitude-6.9 Loma Prieta earthquake in central California, using seismic-reflection, earthquake-hypocenter, and magnetic data. Our study is prompted by recent interpretations of a two-part dip of the San Andreas Fault (SAF) accompanied by a flower-like structure in the Coachella Valley, in southern California. Initially, the prevailing interpretation of fault geometry in the vicinity of the Loma Prieta earthquake was that the mainshock did not rupture the SAF, but rather a secondary fault within the SAF system, because network locations of aftershocks defined neither a vertical plane nor a fault plane that projected to the surface trace of the SAF. Subsequent waveform cross-correlation and double-difference relocations of Loma Prieta aftershocks appear to have clarified the fault geometry somewhat, with steeply dipping faults in the upper crust possibly connecting to the more moderately southwest-dipping mainshock rupture in the middle crust. Examination of steep-reflection data, extracted from a 1991 seismic-refraction profile through the Loma Prieta area, reveals three robust fault-like features that agree approximately in geometry with the clusters of upper-crustal relocated aftershocks. The subsurface geometry of the San Andreas, Sargent, and Berrocal Faults can be mapped using these features and the aftershock clusters. The San Andreas and Sargent Faults appear to dip northeastward in the uppermost crust and change dip continuously toward the southwest with depth. Previous models of gravity and magnetic data on profiles through the aftershock region also define a steeply dipping SAF, with an initial northeastward dip in the uppermost crust that changes with depth. At a depth 6 to 9 km, upper-crustal faults appear to project into the moderately southwest-dipping, planar mainshock rupture. The change to a planar dipping rupture at 6–9 km is similar to fault geometry seen in the Coachella Valley.
Detection, isolation and diagnosability analysis of intermittent faults in stochastic systems
NASA Astrophysics Data System (ADS)
Yan, Rongyi; He, Xiao; Wang, Zidong; Zhou, D. H.
2018-02-01
Intermittent faults (IFs) have the properties of unpredictability, non-determinacy, inconsistency and repeatability, switching systems between faulty and healthy status. In this paper, the fault detection and isolation (FDI) problem of IFs in a class of linear stochastic systems is investigated. For the detection and isolation of IFs, it includes: (1) to detect all the appearing time and the disappearing time of an IF; (2) to detect each appearing (disappearing) time of the IF before the subsequent disappearing (appearing) time; (3) to determine where the IFs happen. Based on the outputs of the observers we designed, a novel set of residuals is constructed by using the sliding-time window technique, and two hypothesis tests are proposed to detect all the appearing time and disappearing time of IFs. The isolation problem of IFs is also considered. Furthermore, within a statistical framework, the definition of the diagnosability of IFs is proposed, and a sufficient condition is brought forward for the diagnosability of IFs. Quantitative performance analysis results for the false alarm rate and missing detection rate are discussed, and the influences of some key parameters of the proposed scheme on performance indices such as the false alarm rate and missing detection rate are analysed rigorously. The effectiveness of the proposed scheme is illustrated via a simulation example of an unmanned helicopter longitudinal control system.
NASA Astrophysics Data System (ADS)
Jiang, Fan; Zhu, Zhencai; Li, Wei; Zhou, Gongbo; Chen, Guoan
2014-07-01
Accurately identifying faults in rotor-bearing systems by analyzing vibration signals, which are nonlinear and nonstationary, is challenging. To address this issue, a new approach based on ensemble empirical mode decomposition (EEMD) and self-zero space projection analysis is proposed in this paper. This method seeks to identify faults appearing in a rotor-bearing system using simple algebraic calculations and projection analyses. First, EEMD is applied to decompose the collected vibration signals into a set of intrinsic mode functions (IMFs) for features. Second, these extracted features under various mechanical health conditions are used to design a self-zero space matrix according to space projection analysis. Finally, the so-called projection indicators are calculated to identify the rotor-bearing system's faults with simple decision logic. Experiments are implemented to test the reliability and effectiveness of the proposed approach. The results show that this approach can accurately identify faults in rotor-bearing systems.
NASA Astrophysics Data System (ADS)
Becel, A.; Shillington, D. J.; Nedimovic, M. R.; Keranen, K. M.; Li, J.; Webb, S. C.; Kuehn, H.
2013-12-01
Structure in the overriding plate is one of the parameters that may increase the tsunamigenic potential of a subduction zone but also influence the seismogenic behavior and segmentation of great earthquake rupture. The Alaska-Aleutian margin is characterized by along-strike changes in plate interface coupling over relatively small distances. Here, we present trench normal multichannel seismic (MCS) profiles acquired across the Shumagin gap that has not broken in many decades and appears to be weakly coupled. The high fold, deep penetration (636 channel, 8-km long streamer, 6600 cu.in airgun source) MCS data were acquired as part of the ALEUT project. This dataset gives us critical new constraints on the interplate boundary that can be traced over ~100 km distance beneath the forearc with high variation in its reflection response with depth. These profiles also reveal the detailed upper plate fault structure and forearc morphology. Clear reflections in the overriding plate appear to delineate one or more large faults that cross the shelf and the upper slope. These faults are observed 75 km back from the trench and seem to branch at depth and connect to the plate interface within this gap at ~11 s twtt. We compare the reflective structure of these faults to that of the plate boundary and examine where it intersects the megathrust with respect of the expected downdip limit of coupling. We also compare this major structure with the seismicity recorded in this sector. The imaged fault system is associated with a large deep basin (~6s twt) that is an inherited structure formed during the pre-Aleutian period. Basins faults appear to have accommodated primarily normal motion, although folding of sediments near the fault and complicated fault geometries in the shallow section may indicate that this fault has accommodated other types of motion during its history that may reflect the stress-state at the megathrust over time. The deformation within the youngest sediment also suggests also that this fault system might be still active. The coincident wide-angle seismic data coincident with one MCS profile allow the addition of more information about the deep P-wave velocity structure whereas the streamer tomography (Michaelson-Rotermund et al., this session) around the fault system add more detailed view into the complex structure in the shallow portions (upper 2km) of these structures showing a low velocity zone along one large fault suggesting that this fault is still active. These large-scale structures imaged in the overriding plate within the Shumagin gap are probably sufficiently profound to play a major role in the behavior of the megathrust in this area, segmentation of great earthquake rupture area, tsunami generation and may influence the frictional properties of the seismogenic zone at depth.
McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.
1999-01-01
In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.
Geometric-kinematic characteristics of the main faults in the W-SW of the Lut Block (SE Iran)
NASA Astrophysics Data System (ADS)
Rashidi Boshrabadi, Ahmad; Khatib, Mohamad Mahdi; Raeesi, Mohamad; Mousavi, Seyed Morteza; Djamour, Yahya
2018-03-01
The area to the W-SW of the Lut Block in Iran has experienced numerous historical and recent destructive earthquakes. We examined a number of faults in this area that have high potential for generating destructive earthquakes. In this study a number of faults are introduced and named for the first time. These new faults are Takdar, Dehno, Suru, Hojat Abad, North Faryab, North Kahnoj, Heydarabad, Khatun Abad and South Faryab. For a group of previously known faults, their mechanism and geological offsets are investigated for the first time. This group of faults include East Nayband, West Nayband, Sardueiyeh, Dalfard, Khordum, South Jabal-e-Barez, and North Jabal-e-Barez. The N-S fault systems of Sabzevaran, Gowk, and Nayband induce slip on the E-W, NE-SW and NW-SE fault systems. The faulting patterns appear to preserve different stages of fault development. We investigated the distribution of active faults and the role that they play in accommodating tectonic strain in the SW-Lut. In the study area, the fault systems with en-echelon arrangement create structures such as restraining and releasing stepover, fault bend and pullapart basin. The main mechanism for fault growth in the region seems to be 'segment linkage of preexisting weaknesses' and also for a limited area through 'process zone'. Estimations are made for the likely magnitudes of separate or combined failure of the fault segments. Such magnitudes are used in hazard analysis of the region.
Faulting along the southern margin of Reelfoot Lake, Tennessee
Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.
1998-01-01
The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.
Slip accumulation and lateral propagation of active normal faults in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.
2001-01-01
We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.
Geophysical Characterization of the Hilton Creek Fault System
NASA Astrophysics Data System (ADS)
Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.
2016-12-01
The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography, various models of the Hilton Creek Fault System and cross-sections through focal mechanism and earthquake catalogs, and will attempt to integrate these observations into a single fault geometry model.
NASA Astrophysics Data System (ADS)
Ghribi, R.; Zaatra, D.; Bouaziz, S.
2018-01-01
The Monastir and Grombalia fault systems consist of three strands that the northern segment corresponds to Hammamet and Grombalia faults. The southern strand represents Monastir Fault also referred to as the Skanes-Khnis Fault. These NW-trends are observed continuously in the major outcropping features of north-eastern Tunisia including both the Cap Bon peninsula and the Sahel domain. Along the Hammamet Fault, the north-eastern strand of Grombalia fault system, left lateral drainage offset of amount 220 m is found in Fawara valley. To the South, the left lateral movement is occurred along the Monastir Fault based on 180 m of Tyrrhenian terrace displacement. Field observations supported by satellite images suggest that the Monastir and Grombalia fault systems appear to slip mostly laterally with components of normal dip slip. Assuming the development of the stream networks during the Riss-Würm interglacial (115000-125000 years) and the age of the Tyrrhenian terrace (121 ± 10 ka), the strike slip rates of the Hammamet and Monastir faults are calculated in the range of 1.5-1.8 mm/yr. There vertical slip rates are estimated to be 0.06 and 0.26 mm/yr, respectively. These data are consistent with the displacement rate in the Pelagian shelf (1-2 mm/yr) but they are below the convergence rate of African-Eurasian plates (8 mm/yr). Our seismotectonics study reveals that a maximum earthquake of Mw = 6.5 could occur every 470 years in the Hammamet fault zone and Mw = 6-every 263 years in the Monastir fault zone.
NASA Technical Reports Server (NTRS)
Liggett, M. A. (Principal Investigator); Childs, J. F.
1974-01-01
The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.
Manaker, David M.; Michael, Andrew J.; Burgmann, Roland
2005-01-01
We perform a joint inversion for hypocenters and the 3D P-wave velocity structure of the stepover region using 477 earthquakes. We find strong velocity contrasts across the Calaveras and Hayward faults, corroborated by geologic, gravity, and aeromagnetic data. Detailed examination of two seismic lineaments in conjunction with the velocity model and independent geologic and geophysical evidence suggests that they represent the southern extension of a northeasterly dipping Hayward fault that splays off the Calaveras fault, directly accounting for the deep slip transfer. The Mission fault appears to be accommodating deformation within the block between the Hayward and Calaveras faults. Thus, the Calaveras and Hayward faults need to be considered as a single system for developing rupture scenarios for seismic hazard assessments.
NASA Astrophysics Data System (ADS)
Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.
2017-12-01
The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.
Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.
2003-01-01
Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.
Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John
2014-01-01
Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.
Geophysical framework of the northern San Francisco Bay region, California
Langenheim, Victoria; Graymer, Russell W.; Jachens, Robert C.; McLaughlin, Robert J.; Wagner, D.L.; Sweetkind, Donald
2010-01-01
We use geophysical data to examine the structural framework of the northern San Francisco Bay region, an area that hosts the northward continuation of the East Bay fault system. Although this fault system has accommodated ∼175 km of right-lateral offset since 12 Ma, how this offset is partitioned north of the bay is controversial and important for understanding where and how strain is accommodated along this stretch of the broader San Andreas transform margin. Using gravity and magnetic data, we map these faults, many of which influenced basin formation and volcanism. Continuity of magnetic anomalies in certain areas, such as Napa and Sonoma Valleys, the region north of Napa Valley, and the region south of the Santa Rosa Plain, preclude significant (>10 km) offset. Much of the slip is partitioned around Sonoma and Napa Valleys and onto the Carneros, Rodgers Creek, and Green Valley faults. The absence of correlative magnetic anomalies across the Hayward–Rodgers Creek–Maacama fault system suggests that this system reactivated older basement structures, which appear to influence seismicity patterns in the region.
The south San Fernando Valley fault, Los Angeles California: Myth or reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slosson, J.E.; Phipps, M.B.; Werner, S.L.
1993-04-01
Based on related geomorphic and hydrogeologic evidence, the authors have identified the probable existence of a fault system and related Riedel faults along the southerly side of the San Fernando Valley (SFV), Los Angeles, CA. This fault system, which appears to be aligned along a series of pressure ridges, artesian springs and warm water wells, is termed the South SFV Fault for the purpose of this study. The trace of this fault is believed to roughly follow the southern extent of the SFV near the northern base of the east-west trending Santa Monica Mountains. The SFV is a fault-affected synclinalmore » structure bounded on the north, east, and west by well-recognized and documented fault systems. The southern boundary of the SFV is defined by the complexly faulted anticlinal structure of the bordering Santa Monica Mountains. This presentation will suggest that the southern boundary of the SFV (syncline) is controlled by faulting similar to the fault-controlled north, east, and west boundaries. The authors believe that the trace of the fault system in the southeastern portion of the SFV has been somewhat modified and concealed by the erosion and deposition of coarse grained sediments derived from the vast granitic-metamorphic complex of the San Gabriel Mountains to the north, the major watershed, and in part by sediment derived from similar rock type to the east and southeast. The western half of the SFV has been largely filled with fine grained sediments derived from erosion of the surrounding sedimentary uplands. Further modification has occurred due to urbanization of the area. With reference to the fault-affected boundaries on the west, north, and east sides of the SFV, these structures are all considered youthfall and capable of producing earthquakes as the SFF did in 1971. The south-bounding fault may fall within a similar category. Accordingly, the authors believe that the proposed South SFV Fault has been a tectonic feature since the Pliocene epoch.« less
NASA Astrophysics Data System (ADS)
Rockwell, T. K.
2010-12-01
A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern California. These observations suggest that the complexity of the southern California fault network is partly responsible for the apparent increase in “noise” and non-periodic behavior, perhaps resulting from stress transfer to adjacent faults after a large earthquake on one fault. The simplicity of the central NAF may account for its relatively simple behavior. If correct, the study of simple plate boundary faults may provide new insights into the constitutive elements of fault zones, and may aid in identifying those components that are critical for better forecasting future seismicity in complex systems.
NASA Astrophysics Data System (ADS)
Giletycz, Slawomir Jack; Chang, Chung-Pai; Lin, Andrew Tien-Shun; Ching, Kuo-En; Shyu, J. Bruce H.
2017-11-01
The fault systems of Taiwan have been repeatedly studied over many decades. Still, new surveys consistently bring fresh insights into their mechanisms, activity and geological characteristics. The neotectonic map of Taiwan is under constant development. Although the most active areas manifest at the on-land boundary of the Philippine Sea Plate and Eurasia (a suture zone known as the Longitudinal Valley), and at the southwestern area of the Western Foothills, the fault systems affect the entire island. The Hengchun Peninsula represents the most recently emerged part of the Taiwan orogen. This narrow 20-25 km peninsula appears relatively aseismic. However, at the western flank the peninsula manifests tectonic activity along the Hengchun Fault. In this study, we surveyed the tectonic characteristics of the Hengchun Fault. Based on fieldwork, four years of monitoring fault displacement in conjunction with levelling data, core analysis, UAV surveys and mapping, we have re-evaluated the fault mechanisms as well as the geological formations of the hanging and footwall. We surveyed features that allowed us to modify the existing model of the fault in two ways: 1) correcting the location of the fault line in the southern area of the peninsula by moving it westwards about 800 m; 2) defining the lithostratigraphy of the hanging and footwall of the fault. A bathymetric map of the southern area of the Hengchun Peninsula obtained from the Atomic Energy Council that extends the fault trace offshore to the south distinctively matches our proposed fault line. These insights, coupled with crust-scale tomographic data from across the Manila accretionary system, form the basis of our opinion that the Hengchun Fault may play a major role in the tectonic evolution of the southern part of the Taiwan orogen.
A Generic Modeling Process to Support Functional Fault Model Development
NASA Technical Reports Server (NTRS)
Maul, William A.; Hemminger, Joseph A.; Oostdyk, Rebecca; Bis, Rachael A.
2016-01-01
Functional fault models (FFMs) are qualitative representations of a system's failure space that are used to provide a diagnostic of the modeled system. An FFM simulates the failure effect propagation paths within a system between failure modes and observation points. These models contain a significant amount of information about the system including the design, operation and off nominal behavior. The development and verification of the models can be costly in both time and resources. In addition, models depicting similar components can be distinct, both in appearance and function, when created individually, because there are numerous ways of representing the failure space within each component. Generic application of FFMs has the advantages of software code reuse: reduction of time and resources in both development and verification, and a standard set of component models from which future system models can be generated with common appearance and diagnostic performance. This paper outlines the motivation to develop a generic modeling process for FFMs at the component level and the effort to implement that process through modeling conventions and a software tool. The implementation of this generic modeling process within a fault isolation demonstration for NASA's Advanced Ground System Maintenance (AGSM) Integrated Health Management (IHM) project is presented and the impact discussed.
NASA Astrophysics Data System (ADS)
Chevalier, Marie-Luce; Leloup, Philippe Hervé; Li, Haibing
2016-06-01
The northern part of the already highly debated Karakorum fault (KF) in western Tibet (regarding its initiation age, total geological offset and slip-rate) has been argued by Robinson (2009a) and Robinson et al. (2015) to be inactive. This is based on field investigation and satellite images interpretation showing a few km of Quaternary deposits from the southern Tashkorgan basin in the Chinese Pamir, that appear undisturbed by the main branch of the KF. In particular, Robinson et al. (2015) suggested that the Kongur Shan extensional system (KES) is not kinematically related to the KF, and that the latter is only a local fault. Here, we use basic definitions of what is an active strike-slip fault system, as well as re-emphasize the importance of the timescale of observation to discuss whether a fault is active, to demonstrate that the KF and the KES are part of the same fault system. We argue that they together play a significant role in accommodating deformation at the western Himalayan syntaxis, under the form of extensional displacement in the Chinese Pamir.
Quick, J.E.
1991-01-01
The longest proposed suture zone in Saudi Arabia, the Nabitah suture, can be traced as a string of ophiolite complexes for 1200 km along the north-south axis of the Arabian Shield. Results of a field study in the north-central shield between 23?? and 26??N indicate that the Nabitah suture is indeed a major crustal discontinuity across which hundreds of kilometers of displacement may have occurred on north-south trending, subvertical faults of the Nabitah fault system. Although not a unique solution, many structures within and near these faults can be reconciled with transpression, i.e., convergent strike-slip, and syntectonic emplacement of calc-alkaline plutonic rocks. Transcurrent motion on the Nabitah fault system appears to have began prior to 710 Ma, was active circa 680 Ma, and terminated prior to significant left-lateral, strike slip on the Najd fault system, which began sometime after 650 Ma. Northwest-directed subduction in the eastern shield could have produced the observed association of calc-alkaline magmatism and left-lateral transpressive strike slip, and is consistent with interpretation of the Abt schist and sedimentary rocks of the Murdama group as relics of the associated accretionary wedge and fore-arc basin. ?? 1991.
NASA Astrophysics Data System (ADS)
Holmes, J. J.; Driscoll, N. W.; Kent, G. M.
2016-12-01
The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these data volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on this new data, we've mapped several small fault strands associated with the SOT that appear to link up with a westward jog in right-lateral fault splays of the NIRC Fault on the shelf and then narrowly radiate southwards. Our observations are that these strands are strike-slip features associated with a dying splay of the NIRC system rather than compressional features associated with a regional thrust.
Fulton, P.M.; Saffer, D.M.; Bekins, B.A.
2009-01-01
Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.
Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake
NASA Astrophysics Data System (ADS)
Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.
2012-12-01
On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.
NASA Astrophysics Data System (ADS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
NASA Astrophysics Data System (ADS)
Morley, Chris K.
2009-10-01
At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.
NASA Astrophysics Data System (ADS)
Carlson, C. W.; Faulds, J. E.
2014-12-01
Positioned between the Sierra Nevada microplate and Basin and Range in western North America, the Walker Lane (WL) accommodates ~20% of the dextral motion between the North American and Pacific plates on predominately NW-striking dextral and ENE to E-W-striking sinistral fault systems. The Terrill Mountains (TM) lie at the northern terminus of a domain of dextral faults accommodating translation of crustal-blocks in the central WL and at the southeast edge of sinistral faults accommodating oroclinal flexure and CW rotation of blocks in the northern WL. As the mechanisms of strain transfer between these disparate fault systems are poorly understood, the thick Oligocene to Pliocene volcanic strata of the TM area make it an ideal site for studying the transfer of strain between regions undergoing differing styles of deformation and yet both accommodating dextral shear. Detailed geologic mapping and paleomagnetic study of ash-flow tuffs in the TM region has been conducted to elucidate Neogene strain accommodation for this transitional region of the WL. Strain at the northernmost TM appears to be transferred from a system of NW-striking dextral faults to a system of ~E-W striking sinistral faults with associated CW flexure. A distinct ~23 Ma paleosol is locally preserved below the tuff of Toiyabe and provides an important marker bed. This paleosol is offset with ~6 km of dextral separation across the fault bounding the NE flank of the TM. This fault is inferred as the northernmost strand of the NW-striking, dextral Benton Spring fault system, with offset consistent with minimums constrained to the south (6.4-9.6 km, Gabbs Valley Range). Paleomagnetic results suggest counter-intuitive CCW vertical-axis rotation of crustal blocks south of the domain boundary in the system of NW-striking dextral faults, similar to some other domains of NW-striking dextral faults in the northern WL. This may result from coeval dextral shear and WNW-directed extension within the left-stepping system of dextral fault. The left steps are analogous to Riedel shears developing above a more through-going shear zone at depth. However, a site directly adjacent to the Benton Springs fault is rotated ~30° CW, likely due to fault drag. These results show the complex and important contribution of vertical-axis rotations in accommodation of dextral shear.
Earth Observations taken by Expedition 30 crewmember
2012-01-14
ISS030-E-035487 (14 Jan. 2012) --- The East African Rift Valley in Kenya is featured in this image photographed by an Expedition 30 crew member on the International Space Station. This photograph highlights classical geological structures associated with a tectonic rift valley, in this case the Eastern Branch of the East African Rift near Kenya’s southern border with Tanzania and just south of the Equator. The East African Rift is one of the great tectonic features of Africa, caused by fracturing of Earth’s crust. The Nubian (or African) plate includes the older continental crust of Africa to the west, while the Somalian plate that is moving away includes the Horn of Africa to the northeast; the tectonic boundary stretches from the southern Red Sea to central Mozambique. Landscapes in the rift valley can appear confusing. The most striking features in this view are the numerous, nearly parallel, linear fault lines that occupy the floor of the valley (most of the image). Shadows cast by the late afternoon sun make the fault scarps (steps in the landscape caused by slip motion along individual faults) more prominent. The faults are aligned with the north-south axis of the valley (lower left to top right). A secondary trend of less linear faults cuts the main fault trend at an acute angle, the fault steps throwing large shadows. The Eastern Branch of the East African Rift is arid (compared with the Western Branch which lies on the border of the Congolese rainforest). Evidence of this can be seen in the red, salt-loving algae of the shallow and salty Lake Magadi (center). A neighboring small lake to the north has deeper water and appears dark in the image. The white salt deposits of the dry part of the Lake Magadi floor (center) host a few small commercial salt pans. The lakes appear to be located where the main and secondary fault trends intersect. The East African rift system is marked by substantial volcanic activity, including lavas erupted from fissures along the rift in the region. Much of the faulting observed in this image cuts through such lavas. Elsewhere along the rift system individual volcanoes form. Some of those volcanoes are very large, including Mt. Kilimanjaro and Mt. Kenya. In this image, rising 400 meters above the valley floor, a volcano appears to be superimposed on the faults—indicating that the volcano is younger than the faults it covers. Deeply eroded slopes also suggest that the volcano has not been active for a long time. The largest vegetated area (lower left)—in an desert zone with no vegetation visible to the naked eye from space—is the green floor of a valley which drains an area large enough for water to exist near the surface so that plants can thrive. For a sense of scale, the vegetated valley floor is 17 kilometers long (10.5 miles).
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
NASA Astrophysics Data System (ADS)
Barrie, J. Vaughn; Greene, H. Gary
2018-02-01
The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatti, A.A.
1990-04-01
This paper examines the effects of primary and secondary fault quantities as well s of mutual couplings of neighboring circuits on the sensitivity of operation and threshold settings of a microcomputer based differential protection of UHV lines under selective phase switching. Microcomputer based selective phase switching allows the disconnection of minimum number of phases involved in a fault and requires the autoreclosing of these phases immediately after the extinction of secondary arc. During a primary fault a heavy current contribution to the healthy phases tends to cause an unwanted tripping. Faulty phases physically disconnected constitute an isolated fault which beingmore » coupled to the system affects the current and voltage levels of the healthy phases still retained in the system and may cause an unwanted tripping. The microcomputer based differential protection, appears to have poor performance when applied to uncompensated lines employing selective pole switching.« less
NASA Astrophysics Data System (ADS)
Porter, Mason C.; Rutherford, Bradley S.; Speece, Marvin A.; Mosolf, Jesse G.
2016-04-01
Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8-13 km below the Earth's surface and dip 3-10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3-4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.
Crustal deformation and source models of the Yellowstone volcanicfield from geodetic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.; Puskas, C.M.; Smith, R.B.
2006-07-05
Geodetic observations, comprised of InterferometricSynthetic Aperture Radar (InSAR), Global Positioning System (GPS). andleveling measurements, are used to infer volume change in the subsurfaceassociated with the Yellowstone volcanic system. We find that existingfaults play a significant role in controlling subsurface volume increasesand decreases due to fluid migration within the volcanic system. Forexample, subsidence from 1992 to 1995 appears to be associated withvolume changes below the Elephant Back fault zone and a north-southtrending fault which cuts across the caldera. Furthermore, we are able toimage an episode of magma intrusion near the northern edge of the calderawhich parallels and is adjacent to themore » north trending volume decrease.The primary intrusion occurred between 1996 and 2000, though theintrusion appears to have continnued, shallowed, and changed shapebetween 2000 and 2001. There is evidence that the intrusive activityaffected extensional fauts to the north of the caldera.« less
Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.
1999-01-01
Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppler, D.; Baldridge, S.; Perry, F.
1987-03-01
Thermal waters at the Azacualpa geothermal site are surfacing along fractures in the Atima Formation associated with the main north-south-trending Zacapa fault and the subordinate north-south-trending splays of the main fault. Permeability appears to be related to these fractures rather than to formation permeability in either the limestones of the Atima Formation or the Valle de Angeles Group red beds. Attitudes of lower Valle de Angeles Group red beds do not vary appreciably with distance away from the Zacapa fault, suggesting that the system is not behaving like a listric normal fault at depth. The ''Jaitique structure,'' as conjectured bymore » R. Fakundiny (1985), does not appear to have any manifestation at the surface in terms of structures that can be seen or measured in the bedrock. Its existence is considered unlikely at the present time. Calorimetry calculations indicate that the thermal anomaly at the Azacualpa site is producing approx.4.4 thermal megawatts.« less
Stress field rotation or block rotation: An example from the Lake Mead fault system
NASA Technical Reports Server (NTRS)
Ron, Hagai; Nur, Amos; Aydin, Atilla
1990-01-01
The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.
Stress field rotation or block rotation: An example from the Lake Mead fault system
NASA Astrophysics Data System (ADS)
Ron, Hagai; Nur, Amos; Aydin, Atilla
1990-02-01
The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.
Surface Creep along the Chaman Fault on the Pakistan-Afghanistan Border imaged by SAR interferometry
NASA Astrophysics Data System (ADS)
Szeliga, W. M.; Furuya, M.; Satyabala, S.; Bilham, R.
2006-12-01
The Chaman fault system is an on-land transform separating the Indian and Asian plates. From the Arabia/Asia/India triple junction on the Makran coast it passes north through Baluchistan, trending NNE into Afghanistan before merging with the Himalayan arc in the North West Frontier province of Pakistan. Geological and plate closure estimates of slip on the system suggest sinistral slip of between 1.9 and 3.5 cm/yr over the last 25 Ma. Oblique convergence occurs near and north of Quetta, Pakistan where it is accommodated by thrust faulting in ranges to the east of the apparently pure strike-slip Chaman fault. We present InSAR analyses that suggest that a 110 km segment of the Chaman fault system north of Quetta may be experiencing shallow aseismic slip (creep). ERS-1/-2 data indicate a change in range along a 110 km segment of the Chaman fault by as much as 7.8 mm/yr. The absence of ascending pass scenes means that we cannot exclude the possibility that some or all of this sinistral slip occurs as vertical displacement, although we suspect that slip partitioning may rule out a substantial vertical component to the observed slip. The trend of the Chaman fault lies nearly perpendicular to the satellite range direction reducing the signal to noise ratio and rendering the data too noisy to assess the locking depth of creep on the fault, although it would appear to be locked at least 5 km beneath the surface. We note the length and rate of slip of the creeping segment of the Chaman fault is similar to that of the Hayward fault in California.
NASA Astrophysics Data System (ADS)
Sahakian, Valerie; Bormann, Jayne; Driscoll, Neal; Harding, Alistair; Kent, Graham; Wesnousky, Steve
2017-03-01
The Newport-Inglewood/Rose Canyon (NIRC) fault zone is an active strike-slip fault system within the Pacific-North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.
Evaluation of feasibility of mapping seismically active faults in Alaska
NASA Technical Reports Server (NTRS)
Gedney, L. D. (Principal Investigator); Vanwormer, J. D.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered activity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around Mt. McKinley. One member of the system was the scene of a magnitude 6.5 earthquake in 1968. The potential value of ERTS-1 imagery to land use planning is reflected in the fact that this earthquake occurred within 10 km of the site which was proposed for the Rampart Dam, and the fault on which it occurred passes very near the proposed site for the bridge and oil pipeline crossing of the Yukon River.
Cannon, W.F.; Peterman, Z.E.; Sims, P.K.
1993-01-01
A structurally simple, 35-km-thick, north facing stratigraphic succession of Late Archean to Middle Proterozoic rocks is exposed near the Montreal River, which forms the border between northern Wisconsin and Michigan. This structure, the Montreal River monocline, is composed of steeply dipping to vertical sedimentary rocks and flood basalts of the Keweenawan Supergroup (Middle Proterozoic) along the south limb of the Midcontinent rift, and disconformably underlying sedimentary rocks of the Marquette Range Supergroup (Early Proterozoic). These rocks lie on an Archean granite-greenstone complex, about 10 km of which is included in the monocline. This remarkable thickness of rocks appears to be essentially structurally intact and lacks evidence of tectonic thickening or repetition.Tilting to form the monocline resulted from southward thrusting on listric faults of crustal dimension. The faults responsible for the monocline are newly recognized components of a well-known regional fault system that partly closed and inverted the Midcontinent rift system. Resetting of biotite ages on the upper plate of the faults indicates that faulting and uplift occurred at about 1060 +/−20 Ma and followed very shortly after extension that formed the Midcontinent rift system.
Thrust Belt Architecture of the Central and Southern Western Foothills of Taiwan
NASA Astrophysics Data System (ADS)
Rodriguez, F.; Wiltschko, D.
2006-12-01
A structural model of the central and southern Western Foothills Fold and Thrust Belt (WFFTB) was constructed from serial balanced cross sections using available surface, drill, seismic and thermochronologic data. The WFFTB is composed of four main thrust sheets with minor splays. On the east, the Tulungwan fault, which separates the sedimentary rocks of the WFFTB from the low grade meta-sediments of the Slate Belt, evolves from a basement cored fold in the north (around 24°10' N) where the conformable contact between foothills sediments and meta-sediments from the Slate Belt on its western flank is present. At this point the tip of the fault is below the unconformity and the displacement amount is small. To the south this fault breaks the back limb of the fold and gains displacement, and continues gaining displacement to the south. The next thrust sheet to the west includes the Schuantung, Fenghuangchan, Luku, Tatou, Hopiya, and Pingchi faults. This fault system is interpreted as characterized by a long flat with small ramps along a Miocene detachment, not a series of imbricates, as it has been interpreted before. The next thrust sheet to the west is the Chulungupu-Chukou-Lunhou, this system appears to gain displacement to the south as the Schuantung fault system decreases in amount of displacement. The Chulungpu-Chukou-Lunhou fault system contains a wide monocline in the central foothills related with the Chulungpu fault and two wide synclines in the southern part, the Yuching and Tinpligling synclines. Modeling of these two last structures shows that both are uplifted with respect to the regional level above a wide and flat feature; the footwall of the Lunhou fault is a monocline. A geometric solution to lift the Lunhou system involves a major fault-bend-fold anticline with a long ramp and a detachment at ~13 km of depth. It explains, 1) the frontal monocline, which is the from limb of this fault-bend- fold, 2) the minor structures associated with minor back-thrusts and wedging, and 3) the uplift of the structures above the regional level over a wide anticlinal crest. The last thrust system toward the west shows a series of structures which closely associated with the Peikang high implying that the structures are either inversion structures or new thrust faults whose ramps are located in pre-existing normal faults.
The 2017 Jiuzhaigou Earthquake: A Complicated Event Occurred in a Young Fault System
NASA Astrophysics Data System (ADS)
Sun, Jianbao; Yue, Han; Shen, Zhengkang; Fang, Lihua; Zhan, Yan; Sun, Xiangyu
2018-03-01
The Minshan Uplift Zone (MUZ) is located at the eastern margin of the Tibetan Plateau, which is the junction of three tectonic terranes. The observed discrepancy between a high uplifting and low shortening rate over the MUZ is attributed to the intrusion of a viscous lower crust. In the last 50 years, several significant earthquakes occurred at the boundaries of the MUZ, that is, the Huya and Mingjiang faults. On 8 August 2017, the Jiuzhaigou earthquake (Mw 6.5) occurred on the northern extension of the Huya fault. We adopt a joint inversion of the interferometric synthetic aperture radar and teleseismic body wave data to investigate the rupture process of this event. The obtained slip model is dominated by left-lateral strike slips on a subvertical fault presenting significant shallow slip deficit. The rupture initiation is composed of both thrust and strike-slip mechanisms producing a non-double-couple solution. We also resolve a secondary fault branch forming an obtuse angle with the main fault plane at its northern end. These phenomena indicate that the northern Huya fault is a young (less mature) fault system. Focal mechanisms of the regional earthquakes demonstrate that the northern and southern Huya faults present different combinations of strike-slip and reversed motion. We attribute such discrepancy to the lateral extension of the viscous lower crust, which appears to extrude to the east beyond the northern Huya fault, in comparison with that confined under the MUZ near the southern Huya fault. This conceptual model is also supported by geomorphological and magnetotelluric observations.
NASA Astrophysics Data System (ADS)
Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.
2016-12-01
The seismic hazard posed by offshore faults for coastal communities in Southern California is poorly understood and may be considerable, especially when these communities are located near long faults that have the ability to produce large earthquakes. The San Diego Trough fault (SDTF) and San Pedro Basin fault (SPBF) systems are active northwest striking, right-lateral faults in the Inner California Borderland that extend offshore between San Diego and Los Angeles. Recent work shows that the SDTF slip rate accounts for 25% of the 6-8 mm/yr of deformation accommodated by the offshore fault network, and seismic reflection data suggest that these two fault zones may be one continuous structure. Here, we use recently acquired CHIRP, high-resolution multichannel seismic (MCS) reflection, and multibeam bathymetric data in combination with USGS and industry MCS profiles to characterize recent deformation on the SDTF and SPBF zones and to evaluate the potential for an end-to-end rupture that spans both fault systems. The SDTF offsets young sediments at the seafloor for 130 km between the US/Mexico border and Avalon Knoll. The northern SPBF has robust geomorphic expression and offsets the seafloor in the Santa Monica Basin. The southern SPBF lies within a 25-km gap between high-resolution MCS surveys. Although there does appear to be a through-going fault at depth in industry MCS profiles, the low vertical resolution of these data inhibits our ability to confirm recent slip on the southern SPBF. Empirical scaling relationships indicate that a 200-km-long rupture of the SDTF and its southern extension, the Bahia Soledad fault, could produce a M7.7 earthquake. If the SDTF and the SPBF are linked, the length of the combined fault increases to >270 km. This may allow ruptures initiating on the SDTF to propagate within 25 km of the Los Angeles Basin. At present, the paleoseismic histories of the faults are unknown. We present new observations from CHIRP and coring surveys at three locations where thin lenses of sediment mantle the SDTF, providing the ideal sedimentary record to constrain the timing of the most recent event. Characterizing the paleoseismic histories is a key step toward defining the extent and variability of past ruptures, which in turn, will improve maximum magnitude estimates for the SDTF and SPBF systems.
Some aspects of active tectonism in Alaska as seen on ERTS-1
NASA Technical Reports Server (NTRS)
Gedney, L. D.; Vanwormer, J. D.
1973-01-01
ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered seismicity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Perhaps of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around the outside of the great bend of the Alaska Range at Mt. McKinley.
NASA Astrophysics Data System (ADS)
Roberts, Gerald P.; Ganas, Athanassios
2000-10-01
Fault-slip directions recorded by outcropping striated and corrugated fault planes in central and southern Greece have been measured for comparison with extension directions derived from focal mechanism and Global Positioning System (GPS) data for the last ˜100 years to test how far back in time velocity fields and deformation dynamics derived from the latter data sets can be extrapolated. The fault-slip data have been collected from the basin-bounding faults to Plio-Pleistocene to recent extensional basins and include data from arrays of footwall faults formed during the early stages of fault growth. We show that the orientation of the inferred stress field varies along faults and earthquake ruptures, so we use only slip-directions from the centers of faults, where dip-slip motion occurs, to constrain regionally significant extension directions. The fault-slip directions for the Peloponnese and Gulfs of Evia and Corinth are statistically different at the 99% confidence level but statistically the same as those implied by earthquake focal mechanisms for each region at the 99% confidence level; they are also qualitatively similar to the principal strain axes derived from GPS studies. Extension directions derived from fault-slip data are 043-047° for the southern Peloponnese, 353° for the Gulf of Corinth, and 015-014° for the Gulf of Evia. Extension on active normal faults in the two latter areas appears to grade into strike-slip along the North Anatolian Fault through a gradual change in fault-slip directions and fault strikes. To reconcile the above with 5° Myr-1 clockwise rotations suggested for the area, we suggest that the faults considered formed during a single phase of extension. The deformation and formation of the normal fault systems examined must have been sufficiently rapid and recent for rotations about vertical axes to have been unable to disperse the fault-slip directions from the extension directions implied by focal mechanisms and GPS data. Thus, in central and southern Greece the velocity fields derived from focal mechanism and GPS data may help explain the dynamics of the deformation over longer time periods than the ˜100 years over which they were measured; this may include the entire deformation history of the fault systems considered, a time period that may exceed 1-2 Myr.
NASA Astrophysics Data System (ADS)
Cunningham, Dickson; Zhang, Jin; Li, Yanfeng
2016-09-01
For many tectonicists, the structural development of the northern Tibetan Plateau stops at the Altyn Tagh Fault (ATF). This study challenges that assumption. Structural field observations and remote sensing analysis indicate that the Sanweishan and Nanjieshan basement cored ridges of the Archean Dunhuang Block, which interrupt the north Tibetan foreland directly north of the ATF, are bound and cut by an array of strike-slip, thrust and oblique-slip faults that have been active in the Quaternary and remain potentially active. The Sanweishan is a SE-tilted block that is bound on its NW margin by a steep south-dipping thrust fault that has also accommodated sinistral strike-slip displacements. The Nanjieshan consists of parallel, but offset basement ridges that record NNW and SSE thrust displacements and sinistral strike-slip. Regional folds characterize the extreme eastern Nanjieshan and appear to have formed above blind thrust faults which break the surface further west. Previously published magnetotelluric data suggest that the major faults of the Sanweishan and Nanjieshan ultimately root to the south within conductive zones that are inferred to merge into the ATF. Therefore, although the southern margin of the Dunhuang Block focuses significant deformation along the ATF, the adjacent cratonic basement to the north is also affected. Collectively, the ATF and structurally linked Sanweishan and Nanjieshan fault array represent a regional asymmetric half-flower structure that is dominated by non-strain partitioned sinistral transpression. The NW-trending Dengdengshan thrust fault system near Yumen City appears to define the northeastern limit of the Sanweishan-Nanjieshan block, which may be regionally viewed as the most northern, but early-stage expression of Tibetan Plateau growth into a slowly deforming, mechanically stiff Archean craton.
NASA Astrophysics Data System (ADS)
Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.
2013-12-01
Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to convergence, has been accommodated along the Denali Fault since E. Miocene. Southeast of the bend there is little evidence of convergence across the fault and Quaternary slip is ~12-13.5 mm/year. The eastern restraining bend of the Denali fault is much broader than the syntaxis and dextral slip continues at rates of ~10 mm/year, but the rock response to increasing obliquity is similar. Low and moderate-T cooling histories determined from a wide range of isotopic systems on minerals from bedrock show exhumation strongly localized on the north side of the high-angle Denali fault, south of the Hines Creek fault, since ~25 Ma. The structural record in ductilely deformed rocks from the most highly exhumed regions shows transpressive deformation over a few km wide region, but above the brittle-ductile transition strain becomes highly partitioned and is accommodated by thrust and normal faults on the north side of the bend. A connector fault between the Fairweather and Totschunda-Denali fault systems has been speculated on but it is not clear whether a single through-going fault is expressed at the surface. Any connector is likely a relatively young structure compared to the Fairweather and Denali systems' histories of long-lived oblique convergence. Overall, in both regions high-angle faults appear to be critical for controlling the location of major deep-seated and/or long-lived exhumation, and deformation at these geometrical complexities is dominated by transpression.
Fault rock mineralogy and fluid flow in the Coso Geothermal Field, CA
NASA Astrophysics Data System (ADS)
Davatzes, N. C.; Hickman, S. H.
2005-12-01
The minerals that comprise fault rock, their grain shapes, and packing geometry are important controls on fault zone properties such as permeability, frictional strength, and slip behavior. In this study we examine the role of mineralogy and deformation microstructures on fluid flow in a fault-hosted, fracture-dominated geothermal system contained in granitic rocks in the Coso Geothermal Field, CA. Initial examination of the mineralogy and microstructure of fault rock obtained from core and surface outcrops reveals three fault rock types. (1) Fault rock consisting of kaolinite and amorphous silica that contains large connected pores, dilatant brittle fractures, and dissolution textures. (2) Fault rock consisting of foliated layers of chlorite and illite-smectite separated by slip surfaces. (3) Fault rock consisting of poorly sorted angular grains, characterized by large variations in grain packing (pore size), and crack-seal textures. These different fault rocks are respectively associated with a high permeability upper boiling zone for the geothermal system, a conductively heated "caprock" at moderate to shallow depth associated with low permeability, and a deeper convectively heated region associated with enhanced permeability. Outcrop and hand-sample scale mapping, XRD analysis, and SEM secondary electron images of fault gouge and slip surfaces at different stages of development (estimated shear strain) are used to investigate the processes responsible for the development and physical properties of these distinct fault rocks. In each type of fault rock, mineral dissolution and re-precipitation in conjunction with the amount and geometry of porosity changes induced by dilation or compaction are the key controls on fault rock development. In addition, at the contacts between slip surfaces, abrasion and resulting comminution appear to influence grain size, sorting, and packing. Macroscopically, we expect the frictional strength of these characteristic fault rocks to differ because the processes that accommodate deformation depend strongly on mineralogy. Frictional strength of quartz-dominated fault rocks in the near surface and in the reservoir should be greater (~0.6) than that in the clay-dominated cap rock (~0.2-0.4). Similarly, permeability should be much lower in foliated clay-rich fault rocks than in quartz-rich fault rocks as evidenced by larger, more connected pores imaged in quartz-rich gouge. Mineral stability is a function of loading, strain rate, temperature, and fluid flow conditions. Which minerals form, and the rates at which they grow is also a key element in determining variations in the magnitude and anisotropy of fault zone properties at Coso. Consequently, we suggest that the development of fault-zone properties depends on the feedback between deformation, resulting changes in permeability, and large-scale fluid flow and the leading to dissolution/precipitation of minerals in the fault rock and adjacent host rock. The implication for Coso is that chemical alteration of otherwise low-porosity crystalline rocks appears to determine the distribution and temporal evolution of permeability in the actively deforming fracture network at small to moderate scales as well as along major, reservoir-penetrating fault zones.
Minor, Scott A.; Hudson, Mark R.
2006-01-01
Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are <100 m, and fault zones appear to have formed mainly at depths less than 1,000 m. Fault zone widths do not exceed 40 m (median width = 15.5 m). The mean width of fault cores (0.1 m) is nearly one order of magnitude less than that of mixed zones (0.75 m) and two orders of magnitude less than that of damage zones (9.7 m). Cements, a proxy for localized flow of ancient ground water, are common along fault zones in the basin. Silica cements are limited to faults that are near and strike north to northwest toward the Jemez volcanic field north of the basin, whereas carbonate fault cements are widely distributed. Coarse sediments (gravel and sand) host the greatest concentrations of cement within fault zones. Cements fill some extension fractures and, to a lesser degree, are concentrated along shear fractures and deformation bands within inner damage zones. Cements are commonly concentrated in mixed zones and inner damage zones on one side of a fault and thus are asymmetrically distributed within a fault zone, but cement does not consistently lie on the basinward side of faults. From observed spatial patterns of asymmetrically distributed fault zone cements, we infer that ancient ground-water flow was commonly localized along, and bounded by, faults in the basin. It is apparent from our study that the Albuquerque Basin contains a high concentration of faults. The geometry of, internal structure of, and cement and clay distribution in fault zones have created and will continue to create considerable heterogeneity of permeability within the basin aquifers. The characteristics and statistical range of fault zone features appear to be predictable and consistent throughout the basin; this predictability can be used in ground-water flow simulations that consider the influence of faults.
Conditions of Fissuring in a Pumped-Faulted Aquifer System
NASA Astrophysics Data System (ADS)
Hernandez-Marin, M.; Burbey, T. J.
2007-12-01
Earth fissuring associated with subsidence from groundwater pumping is problematic in many arid-zone heavily pumped basins such as Las Vegas Valley. Long-term pumping at rates considerably greater than the natural recharge rate has stressed the heterogeneous aquifer system resulting in a complex stress-strain regime. A rigorous artificial recharge program coupled with increased surface-water importation has allowed water levels to appreciably recover, which has led to surface rebound in some localities. Nonetheless, new fissures continue to appear, particularly near basin-fill faults that behave as barriers to subsidence bowls. The purpose of this research is to develop a series of computational models to better understand the influence that structure (faults), pumping, and hydrostratigraphy has in the generation and propagation of fissures. The hydrostratigraphy of Las Vegas Valley consists of aquifers, aquitards and a relatively dry vadoze zone that may be as thick as 100m in much of the valley. Quaternary faults are typically depicted as scarps resulting from pre- pumping extensional tectonic events and are probably not responsible for the observed strain. The models developed to simulate the stress-strain and deformation processes in a faulted pumped aquifer-aquitard system of Las Vegas use the ABAQUS CAE (Complete ABAQUS Environment) software system. ABAQUS is a sophisticated engineering industry finite-element modeling package capable of simulating the complex fault- fissure system described here. A brittle failure criteria based on the tensile strength of the materials and the acting stresses (from previous models) are being used to understand how and where fissures are likely to form. , Hypothetical simulations include the role that faults and the vadose zone may play in fissure formation
The Honey Lake fault zone, northeastern California: Its nature, age, and displacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.
The Honey Lake fault zone of northeastern California is composed of en echelon, northwest trending faults that form the boundary between the Sierra Nevada and the Basin Ranges provinces. As such the Honey Lake fault zone can be considered part of the Sierra Nevada frontal fault system. It is also part of the Walker Lane of Nevada. Faults of the Honey Lake zone are vertical with right-lateral oblique displacements. The cumulative vertical component of displacement along the fault zone is on the order of 800 m and right-lateral displacement is at least 10 km (6 miles) but could be considerablymore » more. Oligocene to Miocene (30 to 22 Ma) age rhyolite tuffs can be correlated across the zone, but mid-Miocene andesites do not appear to be correlative indicating the faulting began in early to mid-Miocene time. Volcanic rocks intruded along faults of the zone, dated at 16 to 8 Ma, further suggest that faulting in the Honey Lake zone was initiated during mid-Miocene time. Late Quaternary to Holocene activity is indicated by offset of the 12,000 year old Lake Lahontan high stand shoreline and the surface rupture associated with the 1950 Fort Sage earthquake.« less
New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico
NASA Astrophysics Data System (ADS)
Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.
2015-12-01
Within the southern San Andreas transform plate boundary system, relatively little is known regarding active faulting in northern Baja California, Mexico, or offshore along the Inner Continental Borderland. The inner offshore system appears to be fed from the south by the Agua Blanca Fault (ABF), which strikes northwest across the Peninsular Ranges of northern Baja California. Therefore, the geologic slip rate for the ABF also provides a minimum slip rate estimate for the offshore system, which is connected to the north to faults in the Los Angeles region. Previous studies along the ABF determined slip rates of ~4-6 mm/yr (~10% of relative plate motion). However, these rates relied on imprecise age estimates and offset geomorphic features of a type that require these rates to be interpreted as minima, allowing for the possibility that the slip rate for the ABF may be greater. Although seismically quiescent, the surface trace of the ABF clearly reflects Holocene activity, and given its connectivity with the offshore fault system, more quantitative slip rates for the ABF are needed to better understand earthquake hazard for both US and Mexican coastal populations. Using newly acquired airborne LiDAR, we have mapped primary and secondary fault strands along the segmented western 70 km of the ABF. Minimal development has left the geomorphic record of surface slip remarkably well preserved, and we have identified abundant evidence meter to km scale right-lateral displacement, including new Late Quaternary slip rate sites. We verified potential reconstructions at each site during summer 2015 fieldwork, and selected an initial group of three high potential slip rate sites for detailed mapping and geochronologic analyses. Offset landforms, including fluvial terrace risers, alluvial fans, and incised channel fill deposits, record displacements of ~5-80 m, and based on minimal soil development, none appear older than early Holocene. To quantitatively constrain landform ages, we collected surface and depth profile samples for 10Be cosmogenic exposure dating. We also identified sites for new paleoseismic excavations, and documented evidence of the last two earthquakes, each of which produced ~2.5 m of surface displacement. We expect new Holocene slip rates for the Agua Blanca Fault to be forthcoming in fall of 2015.
Berger, B.R.; Tingley, J.V.; Drew, L.J.
2003-01-01
Bonanza-grade orebodies in epithermal-style mineral deposits characteristically occur as discrete zones within spatially more extensive fault and/or fracture systems. Empirically, the segregation of such systems into compartments of higher and lower permeability appears to be a key process necessary for high-grade ore formation and, most commonly, it is such concentrations of metals that make an epithermal vein district world class. In the world-class silver- and gold-producing Comstock mining district, Nevada, several lines of evidence lead to the conclusion that the Comstock lode is localized in an extensional stepover between right-lateral fault zones. This evidence includes fault geometries, kinematic indicators of slip, the hydraulic connectivity of faults as demonstrated by veins and dikes along faults, and the opening of a normal-fault-bounded, asymmetric basin between two parallel and overlapping northwest-striking, lateral- to lateral-oblique-slip fault zones. During basin opening, thick, generally subeconomic, banded quartz-adularia veins were deposited in the normal fault zone, the Comstock fault, and along one of the bounding lateral fault zones, the Silver City fault. As deformation continued, the intrusion of dikes and small plugs into the hanging wall of the Comstock fault zone may have impeded the ability of the stepover to accommodate displacement on the bounding strike-slip faults through extension within the stepover. A transient period of transpressional deformation of the Comstock fault zone ensued, and the early-stage veins were deformed through boudinaging and hydraulic fragmentation, fault-motion inversion, and high- and low-angle axial rotations of segments of the fault planes and some fault-bounded wedges. This deformation led to the formation of spatially restricted compartments of high vertical permeability and hydraulic connectivity and low lateral hydraulic connectivity. Bonanza orebodies were formed in the compartmentalized zones of high permeability and hydraulic connectivity. As heat flow and related hydrothermal activitv waned along the Comstock fault zone, extension was reactivated in the stepover along the Occidental zone of normal faults east of the Comstock fault zone. Volcanic and related intrusive activity in this part of the stepover led to a new episode of hydrothermal activity and formation of the Occidental lodes.
NASA Astrophysics Data System (ADS)
McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.
2011-12-01
The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2.0 km/sec in the basin fill to 4.5-5.5 km/sec in the footwall) across the basin-bounding normal fault system. Very fast (approaching 6.0 km/sec) basement underlies the basin fill. The residual gravity anomaly indicates that Clayton Valley is divided into a shallower northern basin, imaged by the seismic lines, and a deeper, more asymmetric southern basin. Faults within Clayton Valley are curvilinear in nature, similar to faults observed in other step-over systems (e.g., the Mina Deflection). Gravity profiles support the seismic reflection interpretation and indicate a high angle fault (>60 degrees) bounding the northern sub-basin on its southeast margin, with a shallower fault bounding it to the northwest. A basement high trends west-northwest and separates the northern and southern basins, and is likely bounded on its southern edge by a predominantly strike-slip fault crossing the valley. Much of the strain accommodated within the southern sub-basin appears to be transferred into southern Big Smoky Valley, northwest of Clayton Valley, via these dextral strike-slip faults that obliquely cross Clayton Valley.
NASA Astrophysics Data System (ADS)
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-05-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-01-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
NASA Astrophysics Data System (ADS)
Lister, Gordon
2017-04-01
The Great Sumatran Earthquake took place on 26th December 2004. One month into the aftershock sequence, a dense swarm of earthquakes took place beneath the Andaman Sea, northeast of the Nicobar Islands. The swarm continued for ˜11 days, rapidly decreasing in intensity towards the end of that period. Unlike most earthquake swarms, the Nicobar cluster was characterised by a large number of shocks with moment magnitude exceeding five. This meant that centroid moment tensor data could be determined, and this data in turn allows geometric analysis of inferred fault plane motions. The classification obtained using program eQuakes shows aftershocks falling into distinct spatial groups. Thrusts dominate in the south (in the Sumatran domain), and normal faults dominate in the north (in the Andaman domain). Strike-slip faults are more evenly spread. They occur on the Sumatran wrench system, for example, but also on the Indian plate itself. Orientation groups readily emerge from such an analysis. Temporal variation in behaviour is immediately evident, changing after ˜12 months. Orientation groups in the first twelve months are consistent with margin perpendicular extension beneath the Andaman Sea (i.e. mode II megathrust behaviour) whereas afterward the pattern of deformation appears to have reverted to that expected in consequence of relative plate motion. In the first twelve months, strike-slip motion appears to have taken place on faults that are sub-parallel to spreading segments in the Andaman Sea. By early 2006 however normal fault clusters formed that showed ˜N-S extension across these spreading segments had resumed, while the overall density of aftershocks in the Andaman segment had considerably diminished. Throughout this entire period the Sumatran segment exhibited aftershock sequences consistent with ongoing Mode I megathrust behaviour. The Nicobar Swarm marks the transition from one sort of slab dynamics to the other. The earthquake swarm may have been facilitated by hydrothermal activity related to a seamount, or by magma intrusion. However, the swarm is located where the transpressional regime of the Sumatran strike-slip fault system changes to that of the 'microplate-bounding' transtensional wrench involved in the Andaman Sea spreading centre. The swarm thus may be the result of the confluence of two tectonic modes of afterslip on the main rupture, with arc-normal compression to the south, and arc-normal extension to the north. The orientations of the controlling faults can be related to the right-lateral Sumatran strike-slip system, and to oceanic transforms in the spreading system. Faults parallel to the Andaman Sea spreading system axis reactivated as left-lateral strike-slip faults during the period of afterslip. Analysis of the orientation groups shows that the swarm involved synchronous but geometrically incompatible movements on opposing but conjugate fault plane sets with trends that are consistent with Mohr-Coulomb failure, even though the orientation groups delineated require slip in many different directions on these planes. The fault planes allow inference of regional deviatoric stress axes with the principal compressive stress parallel to the prior distortion inferred using satellite geodesy.
NASA Astrophysics Data System (ADS)
Martin, K. M.; Gulick, S. P.; Bangs, N. L.; Ashi, J.; Moore, G. F.; Nakamura, Y.; Tobin, H. J.
2008-12-01
A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan images the Nankai accretionary prism, forearc basin and the subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel ~1200 m deep depression (a "notch") along the seaward edge of the Kumano forearc basin, just landward of the shallowest branch of the previously- mapped splay-fault system. The shape of this feature varies along strike, from a single, steep-walled, ~3.5 km wide notch in the northeast, to a broader, ~6 km wide zone with several shallower linear bathymetric lows in the southwest. We have mapped the area below the notch and found both vertical faults and faults which dip toward the central axis of the depression. Some dipping faults appear to have normal offset, consistent with the formation of a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is more difficult to determine, but the dip and along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. Possible causes for such a system in the forearc include variations in splay fault geometry and strain partitioning. By considering only the along-strike variability of the mapped splay fault, we were unable to explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of forearc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollment strength variations which control the location of the forearc basins may therefore play a role in the position where the along-strike component of deformation is localized. While the obliquity of convergence in the Nankai trough is comparatively small (13-30 degrees), we believe it is still significant enough to account for the formation of the observed notch.
NASA Astrophysics Data System (ADS)
Ando, R.; Kaneko, Y.
2017-12-01
The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al. (2017). We conclude that the first order characteristics of this event may be interpreted by the effect of irregularity in the fault geometry.
NASA Astrophysics Data System (ADS)
Gomez, F.; Jaafar, R.; Abdallah, C.; Karam, G.
2012-12-01
The Lebanese Restraining Bend (LRB) is a ~200-km-long bend in the central part of the Dead Sea Fault system (DSFS). As with other large restraining bends, this part of the transform is characterized by more complicated structure than other parts. Additionally, results from recent GPS studies have documented slower velocities north of the LRB than are observed along the southern DSFS to the south. In an effort to understand how strain is transferred through the LRB, this study analyzes improved GPS velocities within the central DSFS based on new data and additional stations. Despite relatively modest rates of seismicity, the Dead Sea Fault system (DSFS) has a historically documented record of producing large and devastating earthquakes. Hence, geodetic measurements of crustal deformation may provide key constraints on processes of strain accumulation that may not be evident in instrumentally recorded seismicity. Within the LRB, the transform splays into two prominent strike-slip faults: The through-going Yammouneh fault and the Serghaya fault. The latter appears to terminate in the Anti-Lebanon Mountains. Additionally, some oblique plate motion is accommodated by thrusting along the coast of Lebanon. This study used GPS observations from survey-mode GPS sites, as well as continuous GPS stations in the region. In total, 22 GPS survey sites have been measured in Lebanon between 2002 and 2010, along with GPS data from the adjacent area. Elastic models are used for initial assessment of fault slip rates. Incorporating two major strike-slip faults, as well as an offshore thrust fault, this modeling suggests left-lateral slip rates of 3.8 mm/yr and 1.1 mm/yr for the Yammouneh and Serghaya faults, respectively. The GPS survey network has sufficient density for analyzing velocity gradients in an effort to quantify tectonic strains and rotations. The velocity gradients suggest that differential rotations play a role in accommodating some plate motion.
NASA Astrophysics Data System (ADS)
Martin, Kylara M.; Gulick, Sean P. S.; Bangs, Nathan L. B.; Moore, Gregory F.; Ashi, Juichiro; Park, Jin-Oh; Kuramoto, Shin'ichi; Taira, Asahiko
2010-05-01
A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan, images the accretionary prism, fore-arc basin, and subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel depression (a "notch") along the seaward edge of the fore-arc Kumano Basin, just landward of the megasplay fault system. This bathymetric feature varies along strike, from a single, steep-walled, ˜3.5 km wide notch in the northeast to a broader, ˜5 km wide zone with several shallower linear depressions in the southwest. Below the notch we found both vertical faults and faults which dip toward the central axis of the depression. Dipping faults appear to have normal offset, consistent with the extension required to form a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is difficult to determine, but the along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. By considering only the along-strike variability of the megasplay fault, we could not explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of fore-arc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollement strength variations which control the location of the fore-arc basins may therefore play a role in the position where an along-strike component of strain is localized. While the obliquity of convergence in the Nankai Trough is comparatively small (˜15°), we believe it generated the Kumano Basin Edge Fault Zone, which has implications for interpreting local measured stress orientations and suggests potential locations for strain-partitioning-related deformation in other subduction zones.
Hubbard, Judith; Shaw, John H.; Dolan, James F.; Pratt, Thomas L.; McAuliffe, Lee J.; Rockwell, Thomas K.
2014-01-01
The Ventura Avenue anticline is one of the fastest uplifting structures in southern California, rising at ∼5 mm/yr. We use well data and seismic reflection profiles to show that the anticline is underlain by the Ventura fault, which extends to seismogenic depth. Fault offset increases with depth, implying that the Ventura Avenue anticline is a fault‐propagation fold. A decrease in the uplift rate since ∼30±10 ka is consistent with the Ventura fault breaking through to the surface at that time and implies that the fault has a recent dip‐slip rate of ∼4.4–6.9 mm/yr.To the west, the Ventura fault and fold trend continues offshore as the Pitas Point fault and its associated hanging wall anticline. The Ventura–Pitas Point fault appears to flatten at about 7.5 km depth to a detachment, called the Sisar decollement, then step down on a blind thrust fault to the north. Other regional faults, including the San Cayetano and Red Mountain faults, link with this system at depth. We suggest that below 7.5 km, these faults may form a nearly continuous surface, posing the threat of large, multisegment earthquakes.Holocene marine terraces on the Ventura Avenue anticline suggest that it grows in discrete events with 5–10 m of uplift, with the latest event having occurred ∼800 years ago (Rockwell, 2011). Uplift this large would require large earthquakes (Mw 7.7–8.1) involving the entire Ventura/Pitas Point system and possibly more structures along strike, such as the San Cayetano fault. Because of the local geography and geology, such events would be associated with significant ground shaking amplification and regional tsunamis.
NASA Astrophysics Data System (ADS)
Bai, Mingkun; Chevalier, Marie-Luce; Pan, Jiawei; Replumaz, Anne; Leloup, Philippe Hervé; Métois, Marianne; Li, Haibing
2018-03-01
The left-lateral strike-slip Xianshuihe fault system located in the eastern Tibetan Plateau is considered as one of the most tectonically active intra-continental fault system in China, along which more than 20 M > 6.5 and more than 10 M > 7 earthquakes occurred since 1700. Therefore, studying its activity, especially its slip rate at different time scales, is essential to evaluate the regional earthquake hazard. Here, we focus on the central segment of the Xianshuihe fault system, where the Xianshuihe fault near Kangding city splays into three branches: the Selaha, Yalahe and Zheduotang faults. In this paper we use precise dating together with precise field measurements of offsets to re-estimate the slip rate of the fault that was suggested without precise age constraints. We studied three sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. We measured horizontal offsets of 96 ± 20 m at Tagong levees (TG), 240 ± 15 m at Selaha moraine (SLH) and 80 ± 5 m at Yangjiagou moraine (YJG). Using 10Be cosmogenic dating, we determined abandonment ages at Tagong, Selaha and Yangjiagou of 12.5 (+ 2.5 / - 2.2) ka, 22 ± 2 ka, and 18 ± 2 ka, respectively. By matching the emplacement age of the moraines or levees with their offsets, we obtain late Quaternary horizontal average slip-rates of 7.6 (+ 2.3 / - 1.9) mm/yr at TG and 10.7 (+ 1.3 / - 1.1) mm/yr at SLH, i.e., 5.7-12 mm/yr or between 9.6 and 9.9 mm/yr assuming that the slip rate should be constant between the nearby TG and SLH sites. At YJG, we obtain a lower slip rate of 4.4 ± 0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a ∼5 mm/yr slip rate along the Zheduotang fault. The ∼10 mm/yr late Quaternary rate along the Xianshuihe fault is higher than that along the Ganzi fault to the NW (6-8 mm/yr). This appears to be linked to the existence of the Longriba fault system that separates the Longmenshan and Bayan Har blocks north of the Xianshuihe fault system. A higher slip rate along the short (∼60 km) and discontinuous Selaha fault compared to that along the long (∼300 km) and linear Ganzi fault suggests a high hazard for a M > 6 earthquake in the Kangding area in the near future, which could devastate that densely populated city.
Product quality management based on CNC machine fault prognostics and diagnosis
NASA Astrophysics Data System (ADS)
Kozlov, A. M.; Al-jonid, Kh M.; Kozlov, A. A.; Antar, Sh D.
2018-03-01
This paper presents a new fault classification model and an integrated approach to fault diagnosis which involves the combination of ideas of Neuro-fuzzy Networks (NF), Dynamic Bayesian Networks (DBN) and Particle Filtering (PF) algorithm on a single platform. In the new model, faults are categorized in two aspects, namely first and second degree faults. First degree faults are instantaneous in nature, and second degree faults are evolutional and appear as a developing phenomenon which starts from the initial stage, goes through the development stage and finally ends at the mature stage. These categories of faults have a lifetime which is inversely proportional to a machine tool's life according to the modified version of Taylor’s equation. For fault diagnosis, this framework consists of two phases: the first one is focusing on fault prognosis, which is done online, and the second one is concerned with fault diagnosis which depends on both off-line and on-line modules. In the first phase, a neuro-fuzzy predictor is used to take a decision on whether to embark Conditional Based Maintenance (CBM) or fault diagnosis based on the severity of a fault. The second phase only comes into action when an evolving fault goes beyond a critical threshold limit called a CBM limit for a command to be issued for fault diagnosis. During this phase, DBN and PF techniques are used as an intelligent fault diagnosis system to determine the severity, time and location of the fault. The feasibility of this approach was tested in a simulation environment using the CNC machine as a case study and the results were studied and analyzed.
NASA Astrophysics Data System (ADS)
Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu
2018-02-01
In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.
Rybakov, M.; Shapira, A.; Al-Zoubi, A.; ten Brink, Uri S.; Hofstetter, R.; Kraeva, N.; Feldman, L.
2006-01-01
The spatial distribution of the earthquakes in the Arava Valley, a 150-km section of the Dead Sea Transform, is compared for the first time with the local subsurface geological features derived from geophysical and geological data. Gravity data suggested that the Gharandal, Timna, and Elat basins were filled by low-density young sediments. These features were confirmed by seismic reflection profiles and high-resolution aeromagnetic (HRAM) survey. The HRAM survey delineated the trace of the Dead Sea Transform (DST), which separates magnetic anomalies in the eastern and western parts of the valley, and revealed the occurrence of the unknown deep magmatics. Overall, the earthquake activity appears to be strongly related to the Dead Sea Transform. However, on a local scale, there is no apparent correlation between the seismicity and the mapped fault segments comprising the DST fault system. Absence of the correlation may be a result of insufficient accuracy of the earthquake localization and/or the inclined fault plane. However, in spite of such inaccuracy, it is clearly observed that the large clusters of the low-magnitude earthquakes coincide well with the sedimentary basins. Two pronounced clusters appear to coincide with the subsurface magmatics. We assume that the subsurface geology predetermines areas of stress accumulation and earthquakes. These areas can be the end of faults, or fault jogs, which sometimes create basins. Magmatism can also be affected by the stress field and predetermine the stress and earthquakes' allocation. ?? 2007 Science From Israel/LPPLtd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S.Y.; Watkins, J.S.
Mapping of Miocene stratigraphy and structure of the Sabine Pass, West Cameron, and East Cameron areas of the western Louisiana outer continental shelf - based on over 1300 mi of seismic data on a 4-mi grid, paleotops from 60 wells, and logs from 35 wells - resulted in time-structure and isochron maps at six intervals from the upper Pliocene to lower Miocene. The most pronounced structural features are the fault systems, which trend east-northeast to east along the Miocene stratigraphic trend. Isolated normal faults with small displacements characterize the inner inner shelf, whereas interconnected faults with greater displacements characterize themore » outer inner shelf. The inner inner shelf faults exhibit little growth, but expansion across the interconnected outer inner shelf fault ranges up to 1 sec two-way traveltime. The interconnected faults belong to two structurally independent fault families. The innermost shelf faults appear to root in the sediment column. A third set of faults located in the Sabine Pass area trends north-south. This fault set is thought to be related to basement movement and/or basement structure. Very little salt is evident in the area. A single diapir is located in West Cameron Block 110 and vicinity. There is little evidence of deep salt. Overall sediment thickness probably exceeds 20,000 ft, with the middle Miocene accounting for 8000 ft.« less
Faulting arrested by control of ground-water withdrawal in Houston, Texas.
Holzer, T.; Gabrysch, R.K.; Verbeek, E.R.
1983-01-01
More than 86 historically active faults with an aggregate length of 150 miles have been identified within and adjacent to the Houston, Texas, metropolitan area. Although scarps of these faults grow gradually and without causing damaging earthquakes, historical fault offset has cost millions of dollars in damage to houses and other buildings, utilities, and highways that were built on or across the faults. The historical fault activity results from renewed movement along preexisting faults and appears to be caused principally by withdrawal of ground water for municipal, industrial, and agricultural uses in the Houston area. Approximately one-half of the area's water supply is obtained from local ground water. Monitoring by the US Geological Survey of heights of fault scarps indicates that many of the scarps have recently stopped increasing in height. The area where faulting has ceased coincides with the area where ground-water pumping was cut back in the mid-1970s to slow the damage caused by land subsidence along Galveston Bay and the Houston Ship Channel. Thus, it appears that efforts to halt land subsidence in the coastal area have provided the additional benefit of arresting damaging surface faulting. -from Authors
Wicks, Charles; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P.
2011-01-01
In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energys Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agencys (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ???70mm of slip less than ???0.5km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process. Copyright 2011 by the American Geophysical Union.
Tectonic Setting of NGHP-1 Site 17, Andaman Forearc
NASA Astrophysics Data System (ADS)
Cochran, J. R.
2008-12-01
The National Gas Hydrate Program (NGHP) Expedition 1 was an 'IODP-like' coring and logging program to investigate gas hydrate occurrences along the margins of India. Although most sites were located along the east coast of India, Site NGHP-01-17 was located near 10° 45'N on the Andaman forearc approximately 50 km east of Little Andaman Island in a water depth of 1325 m. Seismic lines across the site show an anomalously deep bottom simulating reflector (BSR) at a depth of about 600 mbsf. Coring and logging results confirmed that the BSR does mark the base of the gas hydrate stability zone. The age of the sediments at the base of the hole was estimated as 12.3 Ma. The Andaman Sea is an extensional basin resulting from strain partitioning during oblique subduction at the Sunda trench. The site is located within the eastern portion of the Andaman-Nicobar outer arc accretionary ridge on a long sliver of crust between the Eastern Margin Fault and the Diligent Fault. They are both down-to-the-east normal faults that form the eastern edge of the accretionary prism. The West Andaman Fault (WAF), which forms the principal active plate boundary between the Sumatra Fault and the Andaman Spreading Center, is located about 45 km further east along the eastern side of Invisible Bank. The Eastern Margin Fault forms the eastern edge of the block containing Little Andaman Island and extends northward for at least 100 km along the eastern side of South Andaman Island where it appears to die out. It can be traced south to about 8° 20'N where it dies out east of Tarasa Island. The Diligent Fault extends south to about 9° N where it apparently merges with the WAF. It forms the eastern edge of the accretionary prism northward to at least to 13° N and most likely to the Mynamar shelf at 14° N. It probably continues on to join the Kabaw Fault, which marks the eastern boundary of the accretionary prism in Myanmar. Although there is a significant vertical offset across both faults near the NGDP-1-17 site, the Diligent Fault appears to have also experienced strike-slip faulting at some point, probably prior to formation of the Andaman Spreading Center at about 4 Ma. At that time the situation may have been similar to that now found between about 7° N and 4° N where the northern motion of the sliver plate is concentrated at two locations, a fault system along the landward margin of the accretionary prism and another system further landward that forms the main plate boundary.
Rundle, J. B.; Tiampo, K. F.; Klein, W.; Sá Martins, J. S.
2002-01-01
Threshold systems are known to be some of the most important nonlinear self-organizing systems in nature, including networks of earthquake faults, neural networks, superconductors and semiconductors, and the World Wide Web, as well as political, social, and ecological systems. All of these systems have dynamics that are strongly correlated in space and time, and all typically display a multiplicity of spatial and temporal scales. Here we discuss the physics of self-organization in earthquake threshold systems at two distinct scales: (i) The “microscopic” laboratory scale, in which consideration of results from simulations leads to dynamical equations that can be used to derive the results obtained from sliding friction experiments, and (ii) the “macroscopic” earthquake fault-system scale, in which the physics of strongly correlated earthquake fault systems can be understood by using time-dependent state vectors defined in a Hilbert space of eigenstates, similar in many respects to the mathematics of quantum mechanics. In all of these systems, long-range interactions induce the existence of locally ergodic dynamics. The existence of dissipative effects leads to the appearance of a “leaky threshold” dynamics, equivalent to a new scaling field that controls the size of nucleation events relative to the size of background fluctuations. At the macroscopic earthquake fault-system scale, these ideas show considerable promise as a means of forecasting future earthquake activity. PMID:11875204
Whiteside, David; Elliott, Bruce; Lay, Brendan; Reid, Machar
2013-08-01
While velocity generation is an obvious prerequisite to proficient tennis serve performance, it is also the only stroke where players are obliged to negotiate a unique target constraint. Therefore, the dearth of research attending to the accuracy component of the serve is surprising. This study compared the body, racquet and ball kinematics characterising successful serves and service faults, missed into the net, in two groups of elite junior female players and one professional female tennis player. Three-dimensional body, racquet and ball kinematics were recorded using a 22-camera VICON motion analysis system. There were no differences in body kinematics between successful serves and service faults, suggesting that service faults cannot be attributed to a single source of biomechanical error. However, service faults missing into the net are characterized by projection angles significantly further below the horizontal, implying that consistency in this end-point parameter is critical to successful performance. Regulation of this parameter appears dependent on compensatory adjustments in the distal elbow and wrist joints immediately prior to impact and also perceptual feedback. Accordingly, coordination of the distal degrees of freedom and a refined perception-action coupling appear more important to success than any isolated mechanical component of the service action. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Yuehua; Li, Xiaomin; Cheng, Jiangzhou; Nie, Deyu; Wang, Zhuoyuan
2018-02-01
This paper presents a novel fault location method by injecting travelling wave current. The new methodology is based on Time Difference Of Arrival(TDOA)measurement which is available measurements the injection point and the end node of main radial. In other words, TDOA is the maximum correlation time when the signal reflected wave crest of the injected and fault appear simultaneously. Then distance calculation is equal to the wave velocity multiplied by TDOA. Furthermore, in case of some transformers connected to the end of the feeder, it’s necessary to combine with the transient voltage comparison of amplitude. Finally, in order to verify the effectiveness of this method, several simulations have been undertaken by using MATLAB/SIMULINK software packages. The proposed fault location is useful to short the positioning time in the premise of ensuring the accuracy, besides the error is 5.1% and 13.7%.
NASA Astrophysics Data System (ADS)
Maestro-González, A.; Bárcenas, P.; Vázquez, J. T.; Díaz-Del-Río, V.
2008-02-01
Fractures associated with volcanic rock outcrops on the inner shelf of Alboran Island, Western Mediterranean, were mapped on the basis of a side-scan sonar mosaic. Absolute maximum fracture orientation frequency is NW SE to NNW SSE, with several sub-maxima oriented NNE SSW, NE SW and ENE WSW. The origin of the main fracture systems in Neogene and Quaternary rocks of the Alboran Basin (south Spain) appears to be controlled by older structures, namely NE SW and WNW ESE to NW SE faults which cross-cut the basement. These faults, pre-Tortonian in origin, have been reactivated since the early Neogene in the form of strike-slip and extensional movements linked to the recent stress field in this area. Fracture analysis of volcanic outcrops on the inner continental shelf of Alboran Island suggests that the shelf has been deformed into a narrow shear zone limited by two NE SW-trending, sub-parallel high-angle faults, the main orientation and density of which have been influenced by previous WNW ESE to NW SE basement fractures.
NASA Astrophysics Data System (ADS)
Kitada, N.; Inoue, N.; Tonagi, M.
2016-12-01
The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault. This result indicates that the fault displacement is difficult to appear at the edge of the fault displacement in Japan. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (NRA), Japan.
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Rost, S.; Houseman, G.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Rondenay, S.; Frederiksen, A. W.
2014-12-01
Deformation along major strike-slip faults is typically focussed into narrow damage zones at the surface, but the distribution at greater depths is more enigmatic. For instance, deformation in the lower crust beneath these faults is often attributed to much broader ductile shear zones. Deciphering how strain is distributed throughout the crust and lithospheric mantle is important because it has ramifications on the earthquake loading cycle. In order to better understand the structure of these systems at depth, we investigate the North Anatolian Fault Zone (NAFZ) as part of a multidisciplinary project entitled FaultLab. This fault system extends ~1200km across Turkey and has shown a clear west-east progression in seismicity over the last century, culminating in 2 catastrophic earthquakes located close to the population centers of Izmit and Duzce in 1999. In this contribution, we will present new data from a dense seismic array (Dense Array for North Anatolia, DANA, a 6x11 grid with a nominal station spacing of 7km) located across a part of the ruptured segment of the Izmit earthquake. Using the techniques of teleseismic scattering tomography and scattering migration, the excellent resolution afforded by DANA highlights sharp (< 5km) lateral variations in structure at mid- to lower-crustal depths (~20-25 km) across two branches of the NAFZ. This suggests that deformation zones between distinct crustal blocks remain narrow at these depths. Integrating complementary results from other parts of the FaultLab project (satellite geodesy, geodynamical modelling, structural geology), the results appear to be consistent with postseismic deformation being accommodated through afterslip on the deep extension of a narrow fault zone as opposed to a broad ductile region beneath the seismogenic extent of the fault.
Map and Database of Probable and Possible Quaternary Faults in Afghanistan
Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.
2007-01-01
The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.
NASA Astrophysics Data System (ADS)
McLindon, C.
2017-12-01
The Barataria fault is a major component of the Terrebonne Trough, a structural system of faults and salt domes underlying coastal Louisiana. High-quality 3-D seismic reflection data, industry well logs, micro-paleontological data and published literature on regional depositional patterns are integrated to provide an evolutionary history of the Barataria fault. The fault is a segment within a series of south-dipping normal faults that define the northern boundary of the Terrebonne Trough. The fault segment tips at depth interact with the Lake Washington and Bay de Chene salt domes, which appear to have limited its along-strike length. This study shows that the Barataria fault has exhibited continuous but episodic slip since at least the middle Miocene and through the present. Periods of maximum rates of fault slip are related to periods of maximum rates of sediment accumulation associated with Miocene deltaic deposition. The expansion of interval thickness between biostratigraphic markers in the hanging wall section of the fault relative to the footwall section (expansion index) indicate that rates of subsidence on the footwall during active fault slip were substantially greater than on the footwall. Pliocene-Pleistocene stratigraphic intervals exhibiting lower expansion indexes indicate that the fault remained active, but with a pattern of slower slip rate in which stratigraphic thickening was more limited to the area immediately adjacent to the fault. The Barataria fault defines the modern-day width of Barataria Bay, and also has a surface expression in the coastal marsh indicating that recent episodic slip has been associated with patterns of Holocene deltaic deposition.
NASA Astrophysics Data System (ADS)
Walton, M. A. L.; Barrie, V.; Greene, H. G.; Brothers, D. S.; Conway, K.; Conrad, J. E.
2017-12-01
The Queen Charlotte-Fairweather (QC-FW) Fault Zone is the Pacific - North America transform plate boundary and is clearly seen for over 900 km on the seabed as a linear and continuous feature from offshore central Haida Gwaii, British Columbia to Icy Point, Alaska. Recently (July - September 2017) collected multibeam bathymetry, seismic-reflection profiles and sediment cores provide evidence for the continuous strike-slip morphology along the continental shelfbreak and upper slope, including a linear fault valley, offset submarine canyons and gullies, and right-step offsets (pull apart basins). South of central Haida Gwaii, the QC-FW is represented by several NW-SE to N-S trending faults to the southern end of the islands. Adjacent to the fault at the southern extreme and offshore Dixon Entrance (Canada/US boundary) are 400 to 600 m high mud volcanos in 1000 to 1600 m water depth that have plumes extending up 700 m into the water column and contain extensive carbonate crusts and chemosynthetic communities within the craters. In addition, gas plumes have been identified that appear to be directly associated with the fault zone. Surficial Quaternary sediments within and adjacent to the central and southern fault date either to the deglaciation of this region of the Pacific north coast (16,000 years BP) or to the last interstadial period ( 40,000 years BP). Sediment accumulation is minimal and the sediments cored are primarily hard-packed dense sands that appear to have been transported along the fault valley. The majority of the right-lateral slip along the entire QC-FW appears to be accommodated by the single fault north of the convergence at its southern most extent.
NASA Astrophysics Data System (ADS)
Walton, M. A. L.; Barrie, V.; Greene, H. G.; Brothers, D. S.; Conway, K.; Conrad, J. E.
2016-12-01
The Queen Charlotte-Fairweather (QC-FW) Fault Zone is the Pacific - North America transform plate boundary and is clearly seen for over 900 km on the seabed as a linear and continuous feature from offshore central Haida Gwaii, British Columbia to Icy Point, Alaska. Recently (July - September 2017) collected multibeam bathymetry, seismic-reflection profiles and sediment cores provide evidence for the continuous strike-slip morphology along the continental shelfbreak and upper slope, including a linear fault valley, offset submarine canyons and gullies, and right-step offsets (pull apart basins). South of central Haida Gwaii, the QC-FW is represented by several NW-SE to N-S trending faults to the southern end of the islands. Adjacent to the fault at the southern extreme and offshore Dixon Entrance (Canada/US boundary) are 400 to 600 m high mud volcanos in 1000 to 1600 m water depth that have plumes extending up 700 m into the water column and contain extensive carbonate crusts and chemosynthetic communities within the craters. In addition, gas plumes have been identified that appear to be directly associated with the fault zone. Surficial Quaternary sediments within and adjacent to the central and southern fault date either to the deglaciation of this region of the Pacific north coast (16,000 years BP) or to the last interstadial period ( 40,000 years BP). Sediment accumulation is minimal and the sediments cored are primarily hard-packed dense sands that appear to have been transported along the fault valley. The majority of the right-lateral slip along the entire QC-FW appears to be accommodated by the single fault north of the convergence at its southern most extent.
Bakun, William H.; Flores, Claudia H.; ten Brink, Uri S.
2012-01-01
Historical records indicate frequent seismic activity along the north-east Caribbean plate boundary over the past 500 years, particularly on the island of Hispaniola. We use accounts of historical earthquakes to assign intensities and the intensity assignments for the 2010 Haiti earthquakes to derive an intensity attenuation relation for Hispaniola. The intensity assignments and the attenuation relation are used in a grid search to find source locations and magnitudes that best fit the intensity assignments. Here we describe a sequence of devastating earthquakes on the Enriquillo fault system in the eighteenth century. An intensity magnitude MI 6.6 earthquake in 1701 occurred near the location of the 2010 Haiti earthquake, and the accounts of the shaking in the 1701 earthquake are similar to those of the 2010 earthquake. A series of large earthquakes migrating from east to west started with the 18 October 1751 MI 7.4–7.5 earthquake, probably located near the eastern end of the fault in the Dominican Republic, followed by the 21 November 1751 MI 6.6 earthquake near Port-au-Prince, Haiti, and the 3 June 1770 MI 7.5 earthquake west of the 2010 earthquake rupture. The 2010 Haiti earthquake may mark the beginning of a new cycle of large earthquakes on the Enriquillo fault system after 240 years of seismic quiescence. The entire Enriquillo fault system appears to be seismically active; Haiti and the Dominican Republic should prepare for future devastating earthquakes.
NASA Astrophysics Data System (ADS)
Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea
2016-04-01
The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be considered active (or at least active till the Holocene-Pleistocene boundary), and that the cumulative horizontal displacement is consistent with a relevant WSW-ENE stretching, that can be associated to the bending moment applied to the Apulian Plate by the combined effect of the Appennines and Hellenides subduction.
NASA Astrophysics Data System (ADS)
Omura, K.; Ikeda, R.; Iio, Y.; Matsuda, T.
2005-12-01
Electrical resistivity is important property to investigate the structure of active faults. Pore fluid affect seriously the electrical properties of rocks, subsurface electrical resistivity can be an indicator of the existence of fluid and distribution of pores. Fracture zone of fault is expected to have low resistivity due to high porosity and small gain size. Especially, strike-slip type fault has nearly vertical fracture zone and the fracture zone would be detected by an electrical survey across the fault. We performed electromagnetic survey across the strike-slip active faults in central Japan. At the same faults, we also drilled borehole into the fault and did downhole logging in the borehole. We applied MT or CSAMT methods onto 5 faults: Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), western Nagano Ohtaki area(1984 Nagano-ken seibu earthquake (M=6.8), the fault did not appeared on the surface), Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), Atera fault which seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), Gofukuji fault that is considered to have activated about 1200 years ago. The sampling frequencies of electrical and magnetic field were 2 - 1024Hz (10 frequencies) for CSAMT survey and 0.00055 - 384Hz (40 frequencies) for MT survey. The electromagnetic data were processed by standard method and inverted to 2-D resistivity structure along transects of the faults. Results of the survey were compared with downhole electrical logging data and observational descriptions of drilled cores. Fault plane of each fault were recognized as low resistivity region or boundary between relatively low and high resistivity region, except for Gofukuji fault. As for Gofukuji fault, fault was located in relatively high resistivity region. During very long elapsed time from the last earthquake, the properties of fracture zone of Gofukuji fault might changed from low resistivity properties as observed for other faults. Downhole electrical logging data were consistent to values of resistivity estimated by electromagnetic survey for each fault. The existence of relatively low and high resistivity regions in 2-D structure from electromagnetic survey was observed again by downhole logging at the correspondent portion in the borehole. Cores recovered from depthes where the electrical logging showed low resistivity were hardly fractured and altered from host rock which showed high resistivity. Results of electromagnetic survey, downhole electrical logging and observation of drilled cores were consistent to each other. In present case, electromagnetic survey is useful to explore the properties of fault fracture zone. In the further investigations, it is important to explore relationships among features of resistivity structure and geological and geophysical situations of the faults.
Cyclical Fault Permeability in the Lower Seismogenic Zone: Geological Evidence
NASA Astrophysics Data System (ADS)
Sibson, R. H.
2005-12-01
Syntectonic hydrothermal veining is widespread in ancient fault zones exhibiting mixed brittle-ductile behavior that are exhumed from subgreenschist to greenschist environments. The hydrothermal material (predominantly quartz ± carbonate) commonly occurs as fault-veins developed along principal slip surfaces, with textures recording intermittent deposition, sometimes in the form of repeated episodes of brecciation and recementation. Systematic sets of extension veins with histories of incremental dilation often occur in adjacent wallrocks. Conspicuous for their size and continuity among these fault-hosted vein systems are mesozonal Au-quartz lodes, which are most widespread in Archean granite-greenstone belts but also occur throughout the geological record. Most of these lode gold deposits developed at pressures of 1-5 kbar and temperatures of 200-450°C within the lower continental seismogenic zone. A notable characteristic is their vertical continuity: many `ribbon-texture' fault veins with thicknesses of the order of a meter extend over depth ranges approaching 2 km. The largest lodes are usually hosted by reverse or reverse- oblique fault zones with low finite displacement. Associated flat-lying extension veins in the wallrock may taper away from the shear zones over tens or hundreds of meters, and demonstrate repeated attainment of the ~lithostatic fluid overpressures needed for hydraulic extension fracturing. Where hosted by extensional-transtensional fault systems, lode systems tend to be less well developed. Mesozonal vein systems are inferred to be the product of extreme fault-valve behavior, whereby episodic accumulation of pore-fluid pressure to near-lithostatic values over the interseismic period leads to fault rupture, followed by postseismic discharge of substantial fluid volumes along the freshly permeable rupture zone inducing hydrothermal precipitation that seals the fracture permeability. Aqueous mineralizing fluids were generally low-salinity and rich in CO2. Analysis of fluid inclusions suggests that cycling of fluid pressure, in at least some instances, spanned much of the lithostatic-hydrostatic range. While the mesozonal lodes appear to represent an extreme form of fault-valve behavior, minor valving action involving smaller fluid discharges seems likely to be widespread at this structural level in seismogenic crust. The vein systems themselves represent permeability barriers allowing accumulation of fluid overpressure in subseismogenic shear zones, and may occupy part or all of the transition zone between hydrostatic and lithostatic fluid pressure regimes.
NASA Astrophysics Data System (ADS)
Villani, Fabio; D'Amico, Sebastiano; Panzera, Francesco; Vassallo, Maurizio; Bozionelos, George; Farrugia, Daniela; Galea, Pauline
2018-01-01
The Victoria Lines Fault (island of Malta) is a >15 km-long and N260°-striking segmented normal fault-system, which is probably inactive since the late Pliocene. In the westernmost part, the Fomm Ir-Rih segment displays comparable geologic throw and escarpment height ( 150-170 m), moreover its hangingwall hosts thin patches of Middle Pleistocene clastic continental deposits (red beds), which are poorly preserved elsewhere. We acquired two seismic transects, by collecting ambient vibration recordings, processed by using horizontal-to-vertical spectral ratios, complemented by one high-resolution 2-D refraction tomography survey crossing this fault where it is locally covered by red beds and recent colluvial deposits. We found a resonance peak at 1.0 Hz in the hangingwall block, whereas clear peaks in the range 5.0-10.0 Hz appear when approaching the subsurface fault, and we relate them to the fractured bedrock within the fault zone. The best-fit tomographic model shows a relatively high-Vp shallow body (Vp 2200-2400 m/s) that we relate to the weathered top of the Miocene Upper Coralline Limestone Fm., bounded on both sides by low-Vp regions (<1400 m/s). The latter are the smeared images of steep fault zones. Tomography further reveals a thick ( 15-20 m) low-Vp (<1000 m/s) zone, which could be a syn-tectonic wedge of colluvial deposits developed in the downthrown block. Surface waves analysis indicates lateral changes of the average shallow shear wave velocity, with Vs 130 m/s within the inferred fault zone, and Vs >230 m/s above the weathered top-bedrock. Our results depict a clear seismic signature of the Victoria Lines Fault, characterized by low seismic velocity and high amplification of ground motion. We hypothesize that, during the Middle Pleistocene, faulting may have affected the basal part of the red beds, so that this part of the investigated complex fault-system may be considered inactive since 0.6 Myr ago.
Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin
NASA Astrophysics Data System (ADS)
Delvaux, D.; Kervyn, F.; Vittori, E.; Kajara, R. S. A.; Kilembe, E.
1998-04-01
Interpretation of remotely sensed images and air photographs, compilation of geological and topographical maps, morphostructural and fault kinematic observations and 14C dating reveal that, besides obvious climatic influences, the lake water extent and sedimentation in the closed hydrological system of Lake Rukwa is strongly influenced by tectonic processes. A series of sandy ridges, palaeolacustrine terraces and palaeounderwater delta fans are related to an Early Holocene high lake level and subsequent progressive lowering. The maximum lake level was controlled by the altitude of the watershed between the Rukwa and Tanganyika hydrological systems. Taking as reference the present elevation of the palaeolacustrine terraces around Lake Rukwa, two orders of vertical tectonic movement are evidenced: i) a general uplift centred on the Rungwe Volcanic Province between the Rukwa and Malawi Rift Basins; and ii) a tectonic northeastward tilting of the entire Rukwa Rift Basin, including the depression and rift shoulders. This is supported by the observed hydromorphological evolution. Local uplift is also induced by the development of an active fault zone in the central part of the depression, in a prolongation of the Mbeya Range-Galula Fault system. The Ufipa and Lupa Border Faults, bounding the Rukwa depression on the southwestern and northeastern sides, respectively, exert passive sedimentation control only. They appear inactive or at least less active in the Late Quaternary than during the previous rifting stage. The main Late Quaternary tectonic activity is represented by dextral strike-slip movement along the Mbeya Range-Galula Fault system, in the middle of the Rukwa Rift Basin, and by normal dip-slip movements along the Kanda Fault, in the western rift shoulder.
Hydrogen Embrittlement And Stacking-Fault Energies
NASA Technical Reports Server (NTRS)
Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.
1988-01-01
Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.
Pratt, Thomas L.; Williams, Robert; Odum, Jackson K.; Stephenson, William J.
2013-01-01
The southern arm of the New Madrid seismic zone of the central United States coincides with the buried, ~110 km by ~20 km Blytheville Arch antiform within the Cambrian–Ordovician Reelfoot rift graben. The Blytheville Arch has been interpreted at various times as a compressive structure, an igneous intrusion, or a sediment diapir. Reprocessed industry seismic-reflection profiles presented here show a strong similarity between the Blytheville Arch and pop-up structures, or flower structures, within strike-slip fault systems. The Blytheville Arch formed in the Paleozoic, but post–Mid-Cretaceous to Quaternary strata show displacement or folding indicative of faulting. Faults within the graben structure but outside of the Blytheville Arch also appear to displace Upper Cretaceous and perhaps younger strata, indicating that past faulting was not restricted to the Blytheville Arch and New Madrid seismic zone. As much as 10–12.5 km of strike slip can be estimated from apparent shearing of the Reelfoot arm of the New Madrid seismic zone. There also appears to be ~5–5.5 km of shearing of the Reelfoot topographic scarp at the north end of the southern arm of the New Madrid seismic zone and of the southern portion of Crowley's Ridge, which is a north-trending topographic ridge just south of the seismic zone. These observations suggest that there has been substantial strike-slip displacement along the Blytheville Arch and southern arm of the New Madrid seismic zone, that strike-slip extended north and south of the modern seismic zone, and that post–Mid-Cretaceous (post-Eocene?) faulting was not restricted to the Blytheville Arch or to currently active faults within the New Madrid seismic zone.
Cunningham, D.; Owen, L.A.; Snee, L.W.; Li, Ji
2003-01-01
The Barkol Tagh and Karlik Tagh ranges of the easternmost Tien Shan are a natural laboratory for studying the fault architecture of an active termination zone of a major intracontinental mountain range. Barkol and Karlik Tagh and lesser ranges to the north are bounded by active thrust faults that locally deform Quaternary sediments. Major thrusts in Karlik Tagh connect along strike to the east with the left-lateral Gobi-Tien Shan Fault System in SW Mongolia. From a Mongolian perspective. Karlik Tagh represents a large restraining bend for this regional strike-slip fault system, and the entire system of thrusts and strike-slip faults in the Karlik Tagh region defines a horsetail splay fault geometry. Regionally, there appears to be a kinematic transition from thrust-dominated deformation in the central Tien Shan to left-lateral transpressional deformation in the easternmost Tien Shan. This transition correlates with a general eastward decrease in mountain belt width and average elevation and a change in the angular relationship between the NNE-directed maximum horizontal stress in the region and the pre-existing basement structural grain, which is northwesterly in the central Tien Shan (orthogonal to SHmax) but more east-west in the eastern Tien Shan (acute angular relationship with SHmax . Ar-Ar ages indicate that major range-bounding thrusts in Barkol and Karlik Tagh are latest Permian-Triassic ductile thrust zones that underwent brittle reactivation in the Late Cenozoic. It is estimated that the modern mountain ranges of the extreme easternmost Tien Shan could have been constructed by only 10-15 km of Late Cenozoic horizontal shortening.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.
2016-12-01
The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.
Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data
NASA Astrophysics Data System (ADS)
Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.
2016-12-01
Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns appear to correlate with variations in the distribution of aftershocks from the 2009 and 2014 Karonga earthquakes and in background seismicity beneath the lake, providing new constraints on length-displacement scaling for predictive models and earthquake hazards.
NASA Astrophysics Data System (ADS)
Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.
2012-12-01
First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows westward towards exposures of granitic basement in the Superstition Mountains. The basin between the Superstition Mountains and Coyote Mountains is ~2 km deep.
Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces
NASA Astrophysics Data System (ADS)
Nakamura, Yu; Muto, Jun; Nagahama, Hiroyuki; Shimizu, Ichiko; Miura, Takashi; Arakawa, Ichiro
2012-11-01
To understand physico-chemical processes at real contacts (asperities) on fault surfaces, we conducted pin-on-disk friction experiments at room temperature, using single crystalline quartz disks and quartz pins. Velocity weakening from friction coefficient μ ˜ 0.6 to 0.4 was observed under apparent normal stresses of 8-19 (18 > 19), when the slip rate was increased from 0.003 to 2.6 m/s. Frictional surfaces revealed ductile deformation of wear materials. The Raman spectra of frictional tracks showed blue shifts and broadening of quartz main bands, and appearance of new peaks at 490-520 and 610 cm-1. All these features are indicative of pressure- and strain-induced amorphization of quartz. The mapping analyses of Fourier transform infrared (FT-IR) spectroscopy at room dry conditions suggest selective hydration of wear materials. It is possible that the strained Si-O-Si bridges in amorphous silica preferentially react with water to form silica-gel. In natural fault systems, amorphous materials would be produced at real fault contacts and accumulate over the fault surfaces with displacements. Subsequent hydration would lead to significant reduction of fault strength during slip.
Odum, J.K.; Stephenson, W.J.; Shedlock, K.M.; Pratt, T.L.
1998-01-01
The February 7, 1812, New Madrid, Missouri, earthquake (M [moment magnitude] 8) was the third and final large-magnitude event to rock the northern Mississippi Embayment during the winter of 1811-1812. Although ground shaking was so strong that it rang church bells, stopped clocks, buckled pavement, and rocked buildings up and down the eastern seaboard, little coseismic surface deformation exists today in the New Madrid area. The fault(s) that ruptured during this event have remained enigmatic. We have integrated geomorphic data documenting differential surficial deformation (supplemented by historical accounts of surficial deformation and earthquake-induced Mississippi River waterfalls and rapids) with the interpretation of existing and recently acquired seismic reflection data, to develop a tectonic model of the near-surface structures in the New Madrid, Missouri, area. This model consists of two primary components: a northnorthwest-trending thrust fault and a series of northeast-trending, strike-slip, tear faults. We conclude that the Reelfoot fault is a thrust fault that is at least 30 km long. We also infer that tear faults in the near surface partitioned the hanging wall into subparallel blocks that have undergone differential displacement during episodes of faulting. The northeast-trending tear faults bound an area documented to have been uplifted at least 0.5 m during the February 7, 1812, earthquake. These faults also appear to bound changes in the surface density of epicenters that are within the modern seismicity, which is occurring in the stepover zone of the left-stepping right-lateral strike-slip fault system of the modern New Madrid seismic zone.
Earth Observations taken by the Expedition 18 Crew
2008-10-24
ISS018-E-005058 (24 Oct. 2008) --- Southern California's coastline, from southern Los Angeles to Tijuana in Mexico, a distance of about 225 kilometers, is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Port facilities of Los Angeles Harbor give much detail to the coastline at the north end and arcuate San Diego Bay is highly recognizable at the south end (right bottom). The image includes much of one of the most densely populated parts of the USA, with approximately 20 million people within the parts of five counties shown here. The dense urban areas appear gray, with the largest conurbation in the north of the view, in the region Long Beach--Los Angeles--San Bernardino. A smaller zone appears around San Diego--Tijuana in the south. Major highways with their associated strip development snake through these dense urban areas. The geography and geomorphology of Southern California is defined by long linear features that are surface traces of large transform faults. These faults, including the Elsinore fault and San Jacinto fault seen here, are generally considered part of the San Andreas system, and make up the broad zone comprising the tectonic plate boundary between North America to the east and the Pacific plate to the west. The Elsinore fault marks the steep eastern scarp of the Santa Ana Mountains, as well as the precipitation boundary between the wetter mountains and the drier deserts to the east. The rainfall difference is reflected in the darker appearance (more vegetation) of the mountains and coastal regions. Inland of the mountains, climates are far drier, and the natural vegetation is scrubby and much less dense which allows brown and yellow soils to show through. However, the entire region is arid; water management is a critical issue for the large urban areas of the state. Several reservoirs that are visible east of the Santa Ana Mountains provide water for both cities and agriculture in southern California.
The geometry of slip surfaces in the hanging-wall of the Sierra Madre fault, La-Canada, California
NASA Astrophysics Data System (ADS)
Dor, O.; Sammis, C. G.; Ben-Zion, Y.
2009-12-01
Fault-slip data from the granitic hanging-wall of the Sierra Madre fault near La-Canada, California, show a steeply dipping conjugate set of cm- to decimeter scale slip surfaces (115 data samples) with moderate to strong inclinations of slip vectors. These off-fault damage elements may be associated with Mohr-Coulomb slip in the stress field of a propagating earthquake rupture. At the microscale, we identified two dominant fracture orientations. The first appears both near and far from the fault and is compatible with Andersonian failure on the main fault. The second appears only within meters from the fault and may be associated with the formation of the slip surfaces. Characterization of damage fabric in the microscale suggests that in-situ failure of grains under tension with minimal strain immediately above the fault plane may be associated with an opening mode of rupture. We conclude that the architecture of the slip surfaces was developed during slip events over a finite displacement history with fairly stable faulting conditions, and that with continuing displacement, as the rock mass approached the surface, a dynamic opening mode could have led to the shattering of grains in the immediate vicinity of the slip zone.
An Estimation Method of System Voltage Sag Profile using Recorded Sag Data
NASA Astrophysics Data System (ADS)
Tanaka, Kazuyuki; Sakashita, Tadashi
The influence of voltage sag to electric equipment has become big issues because of wider utilization of voltage sensitive devices. In order to reduce the influence of voltage sag appearing at each customer side, it is necessary to recognize the level of receiving voltage drop due to lightning faults for transmission line. However it is hard to measure directly those sag level at every load node. In this report, a new method of efficiently estimating system voltage sag profile is proposed based on symmetrical coordinate. In the proposed method, limited recorded sag data is used as the estimation condition which is recorded at each substation in power systems. From the point of view that the number of the recorded node is generally far less than those of the transmission route, a fast solution method is developed to calculate only recorder faulted voltage by applying reciprocity theorem for Y matrix. Furthermore, effective screening process is incorporated, in which the limited candidate of faulted transmission line can be chosen. Demonstrative results are presented using the IEEJ East10 standard system and actual 1700 bus system. The results show that estimation accuracy is sufficiently acceptable under less computation labor.
Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults
Hardebeck, Jeanne L.; Shelly, David R.
2016-01-01
We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.
Murray, J.; Langbein, J.
2006-01-01
Parkfield, California, which experienced M 6.0 earthquakes in 1934, 1966, and 2004, is one of the few locales for which geodetic observations span multiple earthquake cycles. We undertake a comprehensive study of deformation over the most recent earthquake cycle and explore the results in the context of geodetic data collected prior to the 1966 event. Through joint inversion of the variety of Parkfield geodetic measurements (trilateration, two-color laser, and Global Positioning System), including previously unpublished two-color data, we estimate the spatial distribution of slip and slip rate along the San Andreas using a fault geometry based on precisely relocated seismicity. Although the three most recent Parkfield earthquakes appear complementary in their along-strike distributions of slip, they do not produce uniform strain release along strike over multiple seismic cycles. Since the 1934 earthquake, more than 1 m of slip deficit has accumulated on portions of the fault that slipped in the 1966 and 2004 earthquakes, and an average of 2 m of slip deficit exists on the 33 km of the fault southeast of Gold Hill to be released in a future, perhaps larger, earthquake. It appears that the fault is capable of partially releasing stored strain in moderate earthquakes, maintaining a disequilibrium through multiple earthquake cycles. This complicates the application of simple earthquake recurrence models that assume only the strain accumulated since the most recent event is relevant to the size or timing of an upcoming earthquake. Our findings further emphasize that accumulated slip deficit is not sufficient for earthquake nucleation.
Soil gas anomalies along the Watukosek fault system, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Sciarra, A.; Ruggiero, L.; Bigi, S.; Mazzini, A.
2017-12-01
Two soil gas surveys were carried out in the Sidoarjo district (East Java, Indonesia) to investigate the gas leaking properties along fractured zones that coincide with a strike-slip system in NE Java, the Watukosek Fault System. This structure has been the focus of attention since the beginning of the spectacular Lusi mud eruption on the 29th May 2006. This fault system appear to be a sinistral strike-slip system that originates from the Arjuno-Welirang volcanic complex, intersects the active Lusi eruption site displaying a system of antithetic faults, and extends towards the NE of Java where mud volcanic structures reside. In the Lusi region we completed two geochemical surveys (222Rn and 220Rn activity, CO2 and CH4 flux and concentration) along four profiles crossing the Watukosek fault system. In May 2015 two profiles ( 1.2 km long) were performed inside the 7 km2 embankment area framing the erupted mud breccia zone and across regions characterized by intense fracturing and surface deformation. In April 2017 two additional profiles ( 4 km long) were carried out in the northern and southern part outside the Lusi embankment mud eruption area, intersecting the direction of main Watukosek fault system. All the profiles highlight that the fractured zones have the highest 222Rn activity, CO2 and CH4 flux and concentration values. The relationship existing among the measured parameters suggest that the Watukosek fault system acts as a preferential pathway for active rise of deep fluids. In addition the longer profiles outside the embankment show very high average values of CO2 (5 - 8 %,v/v) and 222Rn (17 - 11.5 kBq/m3), while soil gas collected along the profiles inside the Lusi mud eruption are CH4-dominant (up to 4.5%,v/v).This suggests that inside the embankment area (i.e. covered by tens of meters thick deposits of erupted mud breccia) the seepage is overall methane-dominated. This is likely the result of microbial reactions ongoing in the organic-rich sediments producing shallow gas that gets mixed with deeper rising fluids. In contrasts profiles collected in areas not covered by the organic rich mud breccia, and that are crossing the main Watukosek fault system, have the highest 222Rn activity and CO2 concentration values. We suggest that at these localities the rise of deep fluids is not affected by shallower gas production.
Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.
2013-01-01
The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.
Low-Temperature Fault Creep: Strong vs. Weak, Steady vs. Episodic
NASA Astrophysics Data System (ADS)
Wang, K.; Gao, X.
2017-12-01
Unless we understand how faults creep, we do not fully understand how they produce earthquakes. However, most of the physics and geology of low-temperature creep is not known. There are two end-member types of low-temperature creep: weak creep of smooth faults and strong creep of rough faults, with a spectrum of intermediate modes in between. Most conceptual and numerical models deal with weak creep, assuming a very smooth fault with a gouge typically weakened by hydrous minerals (Harris, 2017). Less understood is strong creep. For subduction zones, strong creep appears to be common and is often associated with the subduction of large geometrical irregularities such as seamounts and aseismic ridges (Wang and Bilek, 2014). These irregularities generate fracture systems as they push against the resistance of brittle rocks. The resultant heterogeneous stress and structural environment makes it very difficult to lock the fault. The geodetically observed creep under such conditions is accomplished by the complex deformation of a 3D damage zone. Strong-creeping faults dissipate more heat than faults that produce great earthquakes (Gao and Wang, 2014). Although an integrated frictional strength of the fault is still a useful concept, the creeping mechanism is very different from frictional slip of a velocity-strengthening smooth fault. Cataclasis and pressure-solution creep in the fracture systems must be important processes in strong creep. Strong creep is necessarily non-steady and produces small and medium earthquakes. Strong creep of a megathrust can also promote the occurrence of a very special type of weak creep - episodic slow slip around the mantle wedge corner accompanied with tremor (ETS). An example is Hikurangi, where strong creep causes the frictional-viscous transition along the plate interface to occur much shallower than the mantle wedge corner, a necessary condition for ETS (Gao and Wang, 2017). Gao and Wang (2014), Strength of stick-slip and creeping subduction megathrusts from heat flow observations, Science. Gao and Wang (2017), Rheological separation of the megathrust seismogenic zone and Episodic Tremor and Slip, Nature. Harris (2017), Large earthquakes and creeping faults, Rev. Geophys. Wang and Bilek (2014), Fault creep caused by subduction of rough seafloor relief, Tectonophysics.
NASA Astrophysics Data System (ADS)
Craddock, W. H.; Kirby, E.; Harkins, N.; Zhang, H.
2008-12-01
Characterizing the space-time patterns of the growth of high topography in Asia is an important step toward a deeper understanding of the mechanics of intracontinental deformation and its influence on global climate. In northeastern Tibet, there is emerging evidence that a number of ranges around the margins of the plateau experienced a pulse of deformation in the Late Miocene (ca. 12-8 Ma). It remains uncertain, however, whether this event was confined to the margins of the plateau, or whether interior regions deformed synchronously. Here we present a preliminary assessment of the timing and magnitude of upper crustal shortening along the margins of the Gonghe-Tongde basin complex. The Gonghe basin is located at the boundary between the high plateau of central Tibet and the southern flank of the Qilian Shan, and as such it is well-suited as a site to begin reconstructing patterns of plateau growth. The basin is overthrust by two regionally-extensive fault systems, the Qinghai Nan Shan (QNS) fault system on the north side and the Gonghe Nan Shan (GNS) fault system on the south side. Both fault systems are associated with deformation of Tertiary strata; variations in dip, sedimentary facies, and provenance are used to interpret the onset of growth along the margins of the Gonghe basin. A combination of the architecture of pre- and syntectonic basin strata, field measurements of fault dip, fault plane solutions, and topographic analysis of fold backlimbs for the GNS and QNS leads us to infer that the fault systems are a) trishear fault propagation style thrust faults and b) south vergent, with ~30 degree fault ramps soleing into a gently dipping decollement. Reconstructions of fold evolution suggest that the area has experienced > 5 km of upper crustal shortening in the late Cenozoic. A combination of magnetostratigraphy, biostratigraphy and cosmogenic burial ages provides preliminary age control. South of the GNS, a 250 m thick package of growth related strata are found to be 3.4 - 0.5 Ma. A 500 m thick exposure of growth strata on the north side of the range is also interpreted to be Plio-Quaternary in age. At present, however, we can only place a minimum bound on the onset of deformation of ca. 4-5 Ma. In light of a companion study interpreting the onset of deformation along the QNS at >= 5-7 Ma (Zhang H., in review), deformation of the Gonghe region appears to be slightly more recent than at the plateau margins. Historic seismicity and deformation of late-Quaternary alluvial surfaces on both fault systems indicate that these structures have remained active into the Pleistocene.
NASA Astrophysics Data System (ADS)
Olsen, Mikkel S.; Clausen, Ole R.; Andresen, Katrine J.; Korstgård, John A.
2015-04-01
Minor secondary structures observed along the flanks of major salt structures in the Norwegian-Danish Basin appear to be generated mainly during the early stages of halokinesis. Seismic anomalies in the cover sediments at the flanks of the major salt structures and in relation to one of the secondary structures show several circular patterns. The circular patterns are generally interpreted as faults related to collapsing salt, indicating a subtle and dynamic cannibalization relationship between the secondary structure and the main diapir. High-amplitude reflections interpreted as either entrapped gas along the circular faults or diagenetic changes induced by the fluids originating from the salt-sediment interface generally enhances the seismic appearance of the circular faults, but potentially also disturb the seismic imaging of the faults. Other secondary salt structures, with a similar geometry, do not show sign of collapse, apparently due to a greater distance from the main salt structures and therefore not within the reach of being cannibalized by these. The observations furthermore suggest a trend showing a more advanced development of the main salt structures when the secondary structures are cannibalized. The lateral distribution of the main salt structures thus appears to be controlled not only by the initial thickness of the Zechstein salt, and possible underlying structures, but also by subtle variations in the location and evolution of secondary structures. The secondary structures have a major impact on the drainage of the deep Mesozoic succession as indicated by the fluid flow pattern also observed in the study, which emphasizes that a detailed mapping of salt structures including secondary structures at the flanks is of major importance during evaluation of petroleum systems in areas dominated by halokinesis.
Distributed bearing fault diagnosis based on vibration analysis
NASA Astrophysics Data System (ADS)
Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani
2016-01-01
Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.
Active Tectonics of the Far North Pacific Observed with GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Mazzotti, S.
2017-12-01
The idea that the tectonics of the northeastern Pacific is defined by relatively discrete deformation along the boundary between the Pacific and North American plates has given way to a more complex picture of broad plate boundary zones and distributed deformation. This is due in large part to the Plate Boundary Observatory and several focused GPS studies, which have greatly increased the density of high-quality GPS data throughout the region. We will present an updated GPS velocity field in a consistent reference frame as well as a new, integrated block model that sheds light on regional tectonics and provides improved estimates of motion along faults and their potential seismic hazard. Crustal motions in southern Alaska are strongly influenced by the collision and flat-slab subduction of the Yakutat block along the central Gulf of Alaska margin. In the area nearest to the collisional front, small blocks showing evidence of internal deformation are required. East of the front, block motions show clockwise rotation into the Canadian Cordillera while west of the front there are counterclockwise rotations that extend along the Alaska forearc, suggesting crustal extrusion. Farther from the convergent margin, the crust appears to move as rigid blocks, with uniform motion over large areas. In western Alaska, block motions show a southwesterly rotation into the Bering Sea. Arctic Alaska displays southeasterly motions that gradually transition into easterly motion in Canada. Much of the southeastern Alaska panhandle and coastal British Columbia exhibit northwesterly motions. Although the relative plate motions are mainly accommodated along major faults systems, including the Fairweather-Queen Charlotte transform system, the St. Elias fold-and-thrust belt, the Denali-Totschunda system, and the Alaska-Aleutian subduction zone, a number of other faults accommodate lesser but still significant amounts of motion in the model. These faults include the eastern Denali/Duke River system, the Castle Mountain fault, the western Denali fault, the Kaltag fault, and the Kobuk fault. Based on the expanded GPS data set, locked or partially locked sections of the Alaska subduction zone may extend as far north and east as the eastern Alaska Range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.E.
1983-09-01
Oil and gas accumulation in Gulf Coast Tertiary strata is contolled mainly by regional growth faults and by salt-related structures. Salt forms the most prominent set of structures in the Houston diapir province of southeast Texas. Recent work in three study areas shows that the Tertiary growth-fault trends, so well displayed along strike to the south-west, continue through this salt basin as well, but they have been deformed by later salt movement. In the Katy area, seismic data disclose early (pre-Wilcox) salt pillows downdip of the Cretaceous reef trend. Salt stocks were injected upward from the pillows during Clayborne deposition,more » and were flanked by deep withdrawal basins and turtle structures. In Brazoria County, a major lower Frio growth-fault trend affecting the Houston delta system, was deformed by later salt domes, by a salt-withdrawal basin, and by a possible turtle structure at Chocolate Bayou. A productive geopressured aquifer exists in the salt-withdrawal basin bounded by the previously formed growth faults. In Jefferson County, in contrast, salt-tectonic activity and growth faulting appear to have been coeval. Early salt-cored ridges continued to rise throughout Frio deposition; growth faults occur both updip and downdip. Hydrocarbons accumulated over the salt domes in growth-fault anticlines and in stratigraphic traps. Recognition that shelf-margin growth faulting preceded the development of the present pattern of domes and basins has important implications for hydrocarbon exploration. Growth faults may be migration paths for hydrocarbons; furthermore, early formed traps, distorted by salt movement, may still be found to contain hydrocarbons.« less
NASA Technical Reports Server (NTRS)
1985-01-01
The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.
Coleman, James; Pratt, Thomas L.
2016-01-01
No production has been established in the Reel-foot rift. However, at least nine of 22 exploratory wells have reported petroleum shows, mainly gas shows with some asphalt or solid hydrocarbon residue. Regional seismic profiling shows the presence of two large inversion structures (Blytheville arch and Pascola arch). The Blytheville arch is marked by a core of structurally thickened Elvins Shale, whereas the Pascola arch reflects the structural uplift of a portion of the entire rift basin. Structural uplift and faulting within the Reelfoot rift since the late Paleozoic appear to have disrupted older conventional hydrocarbon traps and likely spilled any potential conventional petroleum accumulations. The remaining potential resources within the Reelfoot rift are likely shale gas accumulations within the Elvins Shale; however, reservoir continuity and porosity as well as pervasive faulting appear to be significant future challenges for explorers and drillers.
Detecting Faults In High-Voltage Transformers
NASA Technical Reports Server (NTRS)
Blow, Raymond K.
1988-01-01
Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.
The Morelia-Acambay Fault System
NASA Astrophysics Data System (ADS)
Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.
2013-05-01
The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be associated to an alignment or different structures oblique directed to the principal fault trace which sometimes shows inverted moves suggest that the MAFS is a system with ''en echelon'' geometry which respond to transtensive tectonic activity. Recent research based in cinematic indicators from some of the most important faults of the MAFS concludes with evidence of the existence of a transtensive deformation in the center section of the TMVB, which can be explained through the oblique convergence model of plates Northamerica, Rivera and Cocos added to the division of the subduction angle at the North of the Mesoamerican trench.
One Century of Tectonic Deformation Along the Sumatran Fault from Triangulation and GPS Surveys
NASA Technical Reports Server (NTRS)
Prawirodirdjo, L.; Bock, Y.; Genrich, J. F.; Puntodewo, S. S. O.; Rais, J.; Subarya, C.; Sutisna, S.
2000-01-01
An analysis combining historical triangulation and recent Global Positioning System (GPS) survey measurements in West and North Sumatra, Indonesia, reveals a detailed slip history along the central part of the Sumatran Fault. The arc-parallel components of the combined velocity field are consistent with slip rates inferred from GPS data, ranging from 23 to 24 mm/yr. Between 1.0 S and 1.3 N the Sumatran Fault appears to be characterized by deep locking depths, on the order of 20 km, and the occurrence of large (M (sub w) approximately 7) earthquakes. The long-term (1883-1993) strains show simple right-lateral shear, with rates similar to GPS-measured, 1989-1993 strain rates. Coseismic deformation due to the 1892 Tapanuli and 1926 Padang Panjang earthquakes, estimated from triangulation measurements taken before and after the events, indicate that the main shocks were significantly larger than previously reported. The 1892 earthquake had a likely magnitude of M (sub w) approximately equal to 7.6, while the 1926 events appear to be comparable in size to the subsequent (M approximately 7) 1943 events, and an order of magnitude higher than previously reported.
The most recent large earthquake on the Rodgers Creek fault, San Francisco bay area
Hecker, S.; Pantosti, D.; Schwartz, D.P.; Hamilton, J.C.; Reidy, L.M.; Powers, T.J.
2005-01-01
The Rodgers Creek fault (RCF) is a principal component of the San Andreas fault system north of San Francisco. No evidence appears in the historical record of a large earthquake on the RCF, implying that the most recent earthquake (MRE) occurred before 1824, when a Franciscan mission was built near the fault at Sonoma, and probably before 1776, when a mission and presidio were built in San Francisco. The first appearance of nonnative pollen in the stratigraphic record at the Triangle G Ranch study site on the south-central reach of the RCF confirms that the MRE occurred before local settlement and the beginning of livestock grazing. Chronological modeling of earthquake age using radiocarbon-dated charcoal from near the top of a faulted alluvial sequence at the site indicates that the MRE occurred no earlier than A.D. 1690 and most likely occurred after A.D. 1715. With these age constraints, we know that the elapsed time since the MRE on the RCF is more than 181 years and less than 315 years and is probably between 229 and 290 years. This elapsed time is similar to published recurrence-interval estimates of 131 to 370 years (preferred value of 230 years) and 136 to 345 years (mean of 205 years), calculated from geologic data and a regional earthquake model, respectively. Importantly, then, the elapsed time may have reached or exceeded the average recurrence time for the fault. The age of the MRE on the RCF is similar to the age of prehistoric surface rupture on the northern and southern sections of the Hayward fault to the south. This suggests possible rupture scenarios that involve simultaneous rupture of the Rodgers Creek and Hayward faults. A buried channel is offset 2.2 (+ 1.2, - 0.8) m along one side of a pressure ridge at the Triangle G Ranch site. This provides a minimum estimate of right-lateral slip during the MRE at this location. Total slip at the site may be similar to, but is probably greater than, the 2 (+ 0.3, - 0.2) m measured previously at the nearby Beebe Ranch site.
NASA Astrophysics Data System (ADS)
Graymer, R. W.
2014-12-01
Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.
NASA Astrophysics Data System (ADS)
Davy, P.; Darcel, C.; Le Goc, R.; Bour, O.
2011-12-01
We discuss the parameters that control fracture density on the Earth. We argue that most of fracture systems are spatially organized according to two main regimes. The smallest fractures can grow independently of each others, defining a "dilute" regime controlled by nuclei occurrence rate and individual fracture growth law. Above a certain length, fractures stop growing due to mechanical interactions between fractures. For this "dense" regime, we derive the fracture density distribution by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of kilometers for faults systems, and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on both flow and mechanical properties. In the dense regime, networks appears to be very close to a critical state.
Contrasting frictional behaviour of fault gouges containing Mg-rich phyllosilicates
NASA Astrophysics Data System (ADS)
Sanchez Roa, C.; Faulkner, D.; Jimenez Millan, J.; Nieto, F.
2015-12-01
The clay mineralogy of fault gouges has important implications on frictional properties and stability of fault planes. We studied the specific case of the Galera fault zone where fault gouges containing Mg-rich phyllosilicates appear as hydrothermal deposits related to high salinity fluids enriched in Mg2+. These deposits are dominated by sepiolite and palygorskite, both fibrous clay minerals with similar composition to Mg-smectite. The frictional strengths of sepiolite and palygorskite have not yet been determined, however, as they are part of the clay mineral group, it has been assumed that their frictional behaviour would be in line with platy clay minerals. We performed frictional sliding experiments on powdered pure standards and fault rocks in order to establish the frictional behaviour of sepiolite and palygorskite using a triaxial deformation apparatus with a servo-controlled axial loading system and fluid pressure pump. Friction coefficients for palygorskite and sepiolite as monomineralic samples were found to be 0.65 to 0.7 for dry experiments, and 0.45 to 0.5 for water-saturated experiments. Although these fibrous minerals are part of the phyllosilicates group, they show higher friction coefficients and their mechanical behaviour is less stable than platy clay minerals. This difference is a consequence of their stronger structural framework and the discontinuity of water layers. Our results present a contrast in mechanical behaviour between Mg-rich fibrous and platy clay minerals in fault gouges, where smectite is known to considerably reduce friction coefficients and to increase the stability of the fault plane leading to creeping processes. Transformations between saponite and sepiolite have been previously observed and could modify the deformation regime of a fault zone. Constraining the stability conditions and possible mineral reactions or transformations in fault gouges could help us understand the general role of clay minerals in fault stability.
Ion-absorption band analysis for the discrimination of iron-rich zones. [Nevada
NASA Technical Reports Server (NTRS)
Rowan, L. C. (Principal Investigator); Wetlaufer, P. H.
1974-01-01
The author has identified the following significant results. A technique which combines digital computer processing and color composition was devised for detecting hydrothermally altered areas and for discriminating among many rock types in an area in south-central Nevada. Subtle spectral reflectance differences among the rock types are enhanced by ratioing and contrast-stretching MSS radiance values for form ratio images which subsequently are displayed in color-ratio composites. Landform analysis of Nevada shows that linear features compiled without respect to length results in approximately 25 percent coincidence with mapped faults. About 80 percent of the major lineaments coincides with mapped faults, and substantial extension of locally mapped faults is commonly indicated. Seven major lineament systems appear to be old zones of crustal weakness which have provided preferred conduits for rising magma through periodic reactivation.
Banerjee, Amlan; Person, Mark; Hofstra, Albert; Sweetkind, Donald S.; Cohen, Denis; Sabin, Andrew; Unruh, Jeff; Zyvoloski, George; Gable, Carl W.; Crossey, Laura; Karlstrom, Karl
2011-01-01
This study assesses the relative importance of deeply circulating meteoric water and direct mantle fluid inputs on near-surface 3He/4He anomalies reported at the Coso and Beowawe geothermal fields of the western United States. The depth of meteoric fluid circulation is a critical factor that controls the temperature, extent of fluid-rock isotope exchange, and mixing with deeply sourced fluids containing mantle volatiles. The influence of mantle fluid flux on the reported helium anomalies appears to be negligible in both systems. This study illustrates the importance of deeply penetrating permeable fault zones (10-12 to 10-15 m2) in focusing groundwater and mantle volatiles with high 3He/4He ratios to shallow crustal levels. These continental geothermal systems are driven by free convection.
NASA Astrophysics Data System (ADS)
Bierlein, Frank P.; Betts, Peter G.
2004-09-01
In marked contrast to Palaeoproterozoic Laurentia, the location of sutures and boundaries of discrete crustal fragments amalgamated during Palaeoproterozoic formation of the North Australian Craton remain highly speculative. Interpretations of suture locations have relied heavily on the analysis of regional geophysical datasets because of sparse exposure of rocks of the appropriate age. The Mount Isa Fault Zone has been interpreted as one such Palaeoproterozoic terrane-bounding suture. Furthermore, the coincidence of this fault zone with major shale-hosted massive sulphide Pb-Zn-Ag orebodies has led to speculations that trans-lithospheric faults may be an important ingredient for the development of this deposit type. This study has integrated geophysical and geochemical data to test the statute of the Mount Isa Fault as a terrane-bounding suture. Forward modelling of gravity data shows that basement rocks on either side of the Mount Isa Fault have similar densities. These interpretations are consistent with geochemical observations and Sm-Nd data that suggest that basement lithologies on either side of the Mount Isa Fault are geochemically and isotopically indistinguishable from each other, and that the Mount Isa Fault is unlikely to represent a suture zone that separates different Palaeoproterozoic terranes. Our data indicate that the crustal blocks on both sides of the Mount Isa Fault Zone must have been in within close proximity of each other since the Palaeoproterozoic, and that the Western Fold Belt was part of the (ancestral) North Australian Craton well before the ˜1.89-1.87 Ga Barramundi Orogeny. It appears that deep crustal variations in density may be related to the boundary between a shallowly west-dipping high-density mafic to ultramafic plate and low-density basement rocks. This interpretation in turn impacts on crustal-scale models for the development of shale-hosted massive sulphide Pb-Zn mineralisation, which do not require trans-lithospheric faults to tap deep-seated metal reservoirs and/or mantle plumbing systems. The approach applied herein demonstrates the value of multi-disciplinary investigations to the critical assessment of long-lived Proterozoic fault systems which, in the absence of methodical analysis, are commonly assumed to represent terrane-bounding sutures.
NASA Astrophysics Data System (ADS)
Valoroso, L.; Chiaraluce, L.
2017-12-01
Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.
NASA Astrophysics Data System (ADS)
Lacroix, S.; Sawyer, E. W.; Chown, E. H.
1998-01-01
The Lake Abitibi area within the late Archaean Abitibi Greenstone Belt exhibits an interlinked plutonic, structural and metamorphic evolution that may characterize segmented strike-slip faults at upper-to-mid-crustal levels. Along the major, southeastward propagating Macamic D2 dextral strike-slip fault, Theological and preexisting D1 structural heterogeneities induced the development of NNW-trending dextral-oblique splays which evolved into an extensional trailing fan and created an extensional, NNW-dipping stepover. Magma flowing upwards from deeper parts of the Macamic Fault spread towards the southeast at upper crustal levels along both the oblique-slip and extensional D2 splays, and built several plutons in a pull-apart domain between 2696 and 2690 Ma. Different emplacement and material transfer mechanisms operated simultaneously in different parts of the system, including fault dilation and wedging, lateral expansion, wall-rock ductile flow and stoping. Transfer of movement between D2 splays occurred under ductile conditions during syn-emplacement, amphibolite-grade metamorphism (500-700 °C). During cooling (< 2690 Ma), narrower brittle-ductile zones of greenschist-grade shearing were concentrated along the pluton-wall rock contacts, but the extensional stepover locked since both normal and reverse movements occurred along NNW-dipping faults. Pluton emplacement, contact metamorphism and propagation of D2 faults appear to have been closely linked during the Superior Province-wide late transpressional event.
A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran
NASA Astrophysics Data System (ADS)
Walker, Richard Thomas
2006-04-01
Geomorphological observations reveal a major oblique fold-and-thrust belt in Kerman province, S.E. Iran. The active faults appear to link the Sabzevaran right-lateral strike-slip fault in southeast Iran to other strike-slip faults within the interior of the country and may provide the means of distributing right-lateral shear between the Zagros and Makran mountains over a wider region of central Iran. The Rafsanjan fault is manifest at the Earth's surface as right-lateral strike-slip fault scarps and folding in alluvial sediments. Height changes across the anticlines, and widespread incision of rivers, are likely to result from hanging-wall uplift above thrust faults at depth. Scarps in recent alluvium along the northern margins of the folds suggest that the thrusts reach the surface and are active at the present-day. The observations from Rafsanjan are used to identify similar late Quaternary faulting elsewhere in Kerman province near the towns of Mahan and Rayen. No instrumentally recorded destructive earthquakes have occurred in the study region and only one historical earthquake (Lalehzar, 1923) is recorded. In addition GPS studies show that present-day rates of deformation are low. However, fault structures in southern Kerman province do appear to be active in the late Quaternary and may be capable of producing destructive earthquakes in the future. This study shows how widely available remote sensing data can be used to provide information on the distribution of active faulting across large areas of deformation.
NASA Astrophysics Data System (ADS)
Walsh, L. S.; Montesi, L. G.; Sauber, J. M.; Watters, T. R.; Kim, W.; Martin, A. J.; Anderson, R.
2011-12-01
On August 23, 2011, the magnitude 5.8 Mineral, VA, earthquake rocked the U.S. national capital region (Washington, DC) drawing worldwide attention to the occurrence of intraplate earthquakes. Using regional Coulomb stress change, we evaluate to what extent slip on faults during the Mineral, VA, earthquake and its aftershocks may have increased stress on notable Cenozoic fault systems in the DC metropolitan area: the central Virginia seismic zone, the DC fault zone, and the Stafford fault system. Our Coulomb stress maps indicate that the transfer of stress from the Mineral, VA, mainshock was at least 500 times greater than that produced from the magnitude 3.4 Germantown, MD, earthquake that occurred northwest of DC on July 16, 2010. Overall, the Mineral, VA, earthquake appears to have loaded faults of optimum orientation in the DC metropolitan region, bringing them closer to failure. The distribution of aftershocks of the Mineral, VA, earthquake will be compared with Coulomb stress change maps. We further characterize the Mineral, VA, earthquake by comparing its aftershock decay rate with that of blind thrust earthquakes with similar magnitude, focal mechanism, and depth from a variety of tectonic settings. In particular, we compare aftershock decay relations of the Mineral, VA, earthquake with two well studied California reverse faulting events, the August 4, 1985 Kettleman Hills (Mw = 6.1) and October 1, 1987 Whittier Narrow (Mw = 5.9) earthquakes. Through these relations we test the hypothesis that aftershock duration is inversely proportional to fault stressing rate, suggesting that aftershocks in active tectonic margins may last only a few years while aftershocks in intraplate regions could endure for decades to a century.
Geology of the platanares geothermal area, Departamento de Copan, Honduras
Heiken, G.; Ramos, N.; Duffield, W.; Musgrave, J.; Wohletz, K.; Priest, S.; Aldrich, J.; Flores, W.; Ritchie, A.; Goff, F.; Eppler, D.; Escobar, C.
1991-01-01
Platanares is located 16 km west of Santa Rosa de Copan, Honduras, along the Quebrada del Agua Caliente. The thermal manifestations are along faults in tuffs, tuffaceous sedimentary rocks, and lavas of the Padre Miguel Group. These tuffs are silicified near the faults, are fractured, and may provide the fracture permeability necessary for the hydrothermal system. Tuffs are overlain by a wedge of terrace gravels up to 60 m thick. Quaternary conglomerates of the Quebrada del Agua Caliente are cemented by silica sinter. The Platanares area contains numerous faults, all of which appear to be extensional. There are four groups of faults (N80/sup 0/E to N70/sup 0/W, N30/sup 0/ to 60/sup 0/W, N40/sup 0/ to 65/sup 0/E, and N00/sup 0/ to 05/sup 0/W). All hot springs at this site are located along faults that trend mostly northwest and north. Twenty-eight spring groups were described over an area of 0.2 km/sup 2/; half were boiling. Based on surface temperatures and flow rates, between 0.7 and 1.0 MW thermal energy is estimated for the area. The increased temperature of the stream flowing through the thermal area indicates that several megawatts of thermal energy are being added to the stream. We recommend that a dipole-dipole resistivity line be run along the Quebrada del Agua Caliente to identify zones of fracture permeability associated with buried faults and hot water reservoirs within those fault zones. A thermal gradient corehole should be drilled at Platanares to test temperatures, lithologies, and permeability of the hydrothermal system.
Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet
NASA Astrophysics Data System (ADS)
Zuza, A. V.; Yin, A.
2013-12-01
It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid Tarim vs. eastern China moving eastward relative to Eurasia), which results in the development of thrust and extensional belts. These zones heterogeneously deform the wall-rock of the major strike-slip faults, causing the faults to stretch (an idea described by W.D. Means 1989 GEOLOGY). This effect is further enhanced by differential fault rotation, leading to more slip in the west, where the effect of India's indentation is more pronounced, than in the east. To investigate the feasibility of this model, we have examined geologic offsets, Quaternary fault slip rates, and GPS velocities, both from existing literature and our own observations. We compare offsets with the estimated shortening and extensional strain in the wall-rocks of the strike-slip faults. For example, if this model is valid, the slip on the eastern segment of the Haiyuan fault (i.e., ~25 km) should be compatible with shortening in the Liupan Shan and extension in the Yinchuan graben. We also present simple analogue model experiments to document the strain accumulated in bookshelf fault systems under different initial and boundary conditions (e.g., rigid vs. free vs. moving boundaries, heterogeneous or homogenous materials, variable strain rates). Comparing these experimentally derived strain distributions with those observed within the plateau can help elucidate which factors dominantly control regional deformation.
Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico
NASA Astrophysics Data System (ADS)
Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.
2007-12-01
As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the Los Planes highway, the fault steps to the right 2km with no overlap. The fault is inactive until ~3km south of the Los Planes highway where scarp heights in the Quaternary sediments rise to ~3-11m for ~11km with an average trend of 160°, implying increasing slip rate. The fault then steps left 2km with no overlap, trending 145°. Scarp heights range from 3-6m in the step. The southernmost 9km of the fault zone, trending 200°, is marked by discontinuous scarps and embayed bedrock, reflecting diminished fault activity. The footwall landscape in this area is characterized by a broad, gently-sloping, low-relief pediment surface with thin Quaternary cover, disrupted by inselberg-like hills. The young scarp-forming fault appears to have reactivated older faults to rupture this pediment, reflecting the episodic nature of slip along this fault zone. Preliminary OSL ages of the youngest faulted deposit imply a Late Pleistocene-Holocene slip rate of 0.1-1mm/yr. The SJPFZ is thus characterized by reactivation of pre-existing faults to rupture a pre-existing low relief erosional landscape. Whereas the entire region might have experienced the quiescent period that allowed for development of the low- relief, stable surface along the SJPFZ, we speculate that while the SJPFZ was dormant, other faults within the gulf-margin system were actively accommodating strain.
McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.
2015-01-01
The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a few days and are localized near the MCF system.
Crustal-scale tilting of the central Salton block, southern California
Dorsey, Rebecca; Langenheim, Victoria
2015-01-01
The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.
Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Wilson, J. C. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Photointerpretation methods have been most successfully applied in the less vegetated test sites where several previously unknown geologic features have been recognized and known ones extended. Northwest mid-Tertiary faults in the ELY, Nevada area are observed to offset north-trending ranges and abruptly terminate older Mesozoic structures. In the Ray, Arizona area the observed patterns of fault and fracture systems appear to be related to the locations of known porphyry copper deposits. In the Tanacross, Alaska area a number of regional circular features observed may represent near surface intrusions and, therefore, permissive environments for copper porphyries.
Klotsko, Shannon; Driscoll, Neal W.; Kent, Graham; Brothers, Daniel
2016-01-01
New high-resolution CHIRP seismic data acquired offshore San Onofre, southern California reveal that shelf sediment distribution and thickness are primarily controlled by eustatic sea level rise and sediment supply. Throughout the majority of the study region, a prominent abrasion platform and associated shoreline cutoff are observed in the subsurface from ~ 72 to 53 m below present sea level. These erosional features appear to have formed between Melt Water Pulse 1A and Melt Water Pulse 1B, when the rate of sea-level rise was lower. There are three distinct sedimentary units mapped above a regional angular unconformity interpreted to be the Holocene transgressive surface in the seismic data. Unit I, the deepest unit, is interpreted as a lag deposit that infills a topographic low associated with an abrasion platform. Unit I thins seaward by downlap and pinches out landward against the shoreline cutoff. Unit II is a mid-shelf lag deposit formed from shallower eroded material and thins seaward by downlap and landward by onlap. The youngest, Unit III, is interpreted to represent modern sediment deposition. Faults in the study area do not appear to offset the transgressive surface. The Newport Inglewood/Rose Canyon fault system is active in other regions to the south (e.g., La Jolla) where it offsets the transgressive surface and creates seafloor relief. Several shoals observed along the transgressive surface could record minor deformation due to fault activity in the study area. Nevertheless, our preferred interpretation is that the shoals are regions more resistant to erosion during marine transgression. The Cristianitos fault zone also causes a shoaling of the transgressive surface. This may be from resistant antecedent topography due to an early phase of compression on the fault. The Cristianitos fault zone was previously defined as a down-to-the-north normal fault, but the folding and faulting architecture imaged in the CHIRP data are more consistent with a strike-slip fault with a down-to-the-northwest dip-slip component. A third area of shoaling is observed off of San Mateo and San Onofre creeks. This shoaling has a constructional component and could be a relict delta or beach structure. (C) 2015 Elsevier B.V. All rights reserved.
Faulting of gas-hydrate-bearing marine sediments - contribution to permeability
Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael
1997-01-01
Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.
Investigation of the Hosgri Fault, offshore Southern California, Point Sal to Point Conception
Payne, C.M.; Swanson, O.E.; Schell, B.A.
1979-01-01
A high-resolution seismic reflection survey of the inner continental shelf between Point Sal and Point Conception has revealed faults that displace post-Wisconsin strata (less than 17,000-20,000 years). These faults are the Hosgri fault, the Offshore Lompoc fault, and smaller unnamed faults. Faults trending offshore from the adjacent shoreline such as the Pezzoni, Lions Head, Honda, and Pacifico faults, do not show post-Wisconsin activity. The Hosgri fault trends directly toward the coastline between Purisima Point and Point Arguello where it appears to merge with folds and smaller faults in the western Transverse Ranges. This trend of offshore structures toward the Point Arguello-Point Conception area is consistent with a hypothesis that the regional structural fabric of the southern California Coast Ranges and its adjacent offshore area merge with the Transverse Ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culotta, R.; Latham, T.; Oliver, J.
1992-02-01
This COCORP deep seismic survey provides a comprehensive image of the southeast-Texas part of the Gulf passive margin and its accreted Ouachita arc foundation. Beneath the updip limit of the Cenozoic sediment wedge, a prominent antiformal structure is imaged within the interior zone of the buried late Paleozoic Ouachita orogen. The structure appears to involve Precambrian Grenville basement. The crest of the antiform is coincident with the Cretaceous-Tertiary Luling-Mexia-Talco fault zone. Some of these faults dip to the northwest, counter to the general regional pattern of down-to-the-basin faulting, and appear to sole into the top of the antiform, suggesting thatmore » the Ouachita structure has been reactivated as a hingeline to the subsiding passive margin. The antiform may be tied via this fault system and the Ouachita gravity gradient to the similar Devils River, Waco, and Benton uplifts, interpreted as Precambrian basement-cored massifs. Above the Paleozoic sequence, a possible rift-related graben is imaged near the updip limit of Jurassic salt. Paleoshelf edges of the major Tertiary depositional sequences are marked by expanded sections disrupted by growth faults and shale diapirs. Within the Wilcox Formation, the transect crosses the mouth of the 900-m-deep Yoakum Canyon, a principal pathway of sediment delivery from the Laramide belt to the Gulf. Beneath the Wilcox, the Comanchean (Lower Cretaceous) shelf edge, capped by the Stuart City reef, is imaged as a pronounced topographic break onlapped by several moundy sediment packages. Because this segment of the line parallels strike, the topographic break may be interpreted as a 2,000-m-deep embayment in the Cretaceous shelf-edge, and possibly a major submarine canyon older and deeper than the Yoakum Canyon.« less
Long term fault system reorganization of convergent and strike-slip systems
NASA Astrophysics Data System (ADS)
Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.
2017-12-01
Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that irregularities can persist along active fault systems without reorganization of the fault system. Consequently, steady state behavior, for example with constant fault slip rates, may arise either in systems with high degree of stress-relaxation or occur only within the intervals between episodes of fault reorganization.
Behrendt, John C.
1985-01-01
The Appalachian décollement does not appear continuous from the Appalachian Mountains to the coast but rather appears to extend southeastward only to the Carolina slate belt. A series of reflections on lines S4, S6, and S8 and on the COCORP line is interpreted as evidence of southeastward-dipping imbricate faults, from the Brevard fault on the northwest to beyond the Augusta fault, which marks the southeastern extent of the Eastern Piedmont fault zone. The Carolina slate belt is characterized on the four seismic profiles by a complex series of diffractions and reflections extending from less than 1 s to 8 s. These arrivals are possibly the result of layering in the metasedimentary rocks complexly disrupted by the imbricate faults. A number of Triassic (?) basins are apparent in the reflection data for the rifted Charleston terrane identified from low-gradient magnetic anomalies.
NASA Astrophysics Data System (ADS)
Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.
2016-10-01
Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.
Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Hecker, S.
2013-12-01
A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF was stressed sufficiently to fail at that time. The Bear River fault zone (BRFZ) is a young normal fault along the eastern margin of basin-range extension that appears to have reactivated a ramp in the Laramide-age Darby-Hogsback thrust. The entire Cenozoic history of the BRFZ may consist of only two surface-rupturing events in the late Holocene (one at ~5 ka and the most recent at ~2.5 ka). The 40-km-long fault comprises synthetic and antithetic scarps extending across a zone up to 5 km wide. Remote sensing, including airborne LiDAR, and field studies show that, despite the complexity, the pattern of faulting was similar (in location and amount) for each of the two events and, at the south end, was strongly influenced by the east-west-trending Uinta Arch. Pre-existing structure clearly has exerted a first-order control on moment release on this immature fault. As shown by these examples, data on timing of surface ruptures, coseismic slip, slip rate, and fault geometry can provide a basis to constrain lengths of past and future earthquake ruptures, including possible alternative rupture scenarios. The difficult question for hazard analysis is whether the available data capture the full range of behavior and with what relative frequency do the alternatives occur?
NASA Astrophysics Data System (ADS)
Johnson, B.; Zhurina, E. N.
2001-12-01
We are developing and assessing field testing and analysis methodologies for quantitative characterization of aquifer heterogenities using data measured in an array of multilevel monitoring wells (MLW) during pumping and recovery well tests. We have developed a unique field laboratory to determine the permeability field in a 20m by 40m by 70m volume in the fault partitioned, siliciclastic Hickory aquifer system in central Texas. The site incorporates both stratigraphic variations and a normal fault system that partially offsets the aquifer and impedes cross-fault flow. We constructed a high-resolution geologic model of the site based upon 1050 m of core and a suite of geophysical logs from eleven, closely spaced (3-10m), continuously cored boreholes to depths of 125 m. Westbay multilevel monitoring systems installed in eight holes provide 94 hydraulically isolated measurement zones and 25 injection zones. A good geologic model is critical to proper installation of the MLW. Packers are positioned at all significant fault piercements and selected, laterally extensive, clay-rich strata. Packers in adjacent MLW bracket selected hydrostratigraphic intervals. Pump tests utilized two, uncased, fully penetrating irrigation wells that straddle the fault system and are in close proximity (7 to 65 m) to the MLW. Pumping and recovery transient pressure histories were measured in 85 zones using pressure transducers with a resolution of 55 Pa (0.008 psi). The hydraulic response is that of an anisotropic, unconfined aquifer. The transient pressure histories vary significantly from zone to zone in a single MLW as well as between adjacent MLW. Derivative plots are especially useful for differentiating details of pressure histories. Based on the geologic model, the derivative curve of a zone reflects its absolute vertical position, vertical stratigraphic position, and proximity to either a fault or significant stratigraphic heterogeneity. Additional forward modeling is needed to assist qualitative interpretation of response curves. Prior geologic knowledge appears critical. Quantitative interpretation of the transient pressure histories requires utilizing a numerical aquifer response model coupled with a geophysical inversion algorithm.
NASA Astrophysics Data System (ADS)
Fitzgerald, Paul G.; Duebendorfer, Ernest M.; Faulds, James E.; O'Sullivan, Paul
2009-04-01
The South Virgin-White Hills detachment (SVWHD) in the central Basin and Range province with an along-strike extent of ˜60 km is a major continental detachment fault system. Displacement on the SVWHD decreases north to south from ˜17 to <6 km. This is accompanied by a change in fault and footwall rock type from mylonite overprinted by cataclasite to chlorite cataclasite and then fault breccia reflecting decreasing fault displacement and footwall exhumation. Apatite fission track (AFT) thermochronology was applied both along-strike and across-strike to assess this displacement gradient. The overall thermal history reflects Laramide cooling (˜75 Ma) and then rapid cooling beginning in the late early Miocene. Age patterns reflect some complexity but extension along the SVWHD appears synchronous with rapid cooling initiated at ˜17 Ma due to tectonic exhumation. Slip rate is more rapid (˜8.6 km/Ma) in the north compared to ˜1 km/Ma in the south. The displacement gradient results from penecontemporaneous along-strike motion and formation of the SVWHD by linkage of originally separate fault segments that have differential displacements and hence differential slip rates. East-west transverse structures likely play a role in linkage of different fault segments. The preextension paleogeothermal gradient is well constrained in the Gold Butte block as 18-20°C/km. We present a new thermochronologic approach to constrain fault dip during slip, treating the vertical exhumation rate and the slip as vectors, with the angle between them used to constrain fault dip during slip through the closure temperature of a particular thermochronometer. AFT data from the western rim of the Colorado Plateau constrain the initiation of timing of cooling associated with the Laramide Orogeny at ˜75 Ma, and a reheating event in the late Eocene/early Oligocene associated with burial by sediments ("rim gravels") most likely shed from the Kingman High to the west of the plateau.
NASA Astrophysics Data System (ADS)
Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.
2005-12-01
In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated conductive lower crust and nested faults, and these are advanced as melt source regions for the underplating. MT, with its wide frequency bandwidth, allows views of nearly a complete melting and emplacement process, from mantle source region, through lower crustal intrusion, to brittle regime deformational response.
Identification and interpretation of tectonic features from Skylab imagery. [California to Arizona
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator)
1974-01-01
The author has identified the following significant results. S190-B imagery confirmed previous conclusions from S190-A that the Garlock fault does not extend eastward beyond its known termination near the southern end of Death Valley. In the Avawatz Mountains, California, two faults related to the Garlock fault zone (Mule Spring fault and Leach Spring fault) show evidence of recent activity. There is evidence that faulting related to Death Valley fault zone extends southeastward across the Old Dad Mountains. There, the Old Dad fault shows evidence of recent activity. A significant fault lineament has been identified from McCullough Range, California southeastward to Eagle Tail Mountains in southwestern Arizona. The lineament appears to control tertiary and possible cretaceous intrusives. Considerable right lateral shear is suspected to have taken place along parts of this lineament.
McBride, J.H.; Stephenson, W.J.; Thompson, T.J.; Harper, M.P.; Eipert, A.A.; Hoopes, J.C.; Tingey, D.G.; Keach, R.W.; Okojie-Ayoro, A. O.; Gunderson, K.L.; Meirovitz, C.D.; Hicks, T.C.; Spencer, C.J.; Yaede, J.R.; Worley, D.M.
2008-01-01
We report the results of a geophysical study of the Wasatch fault zone near the Provo and Salt Lake City segment boundary. This area is anomalous because the fault zone strikes more east-west than north-south. Vibroseis was used to record a common mid-point (CMP) profile that provides information to depths of ???500 m. A tomographic velocity model, derived from first breaks, constrained source and receiver static corrections; this was required due to complex terrain and significant lateral velocity contrasts. The profile reveals an ???250-m-wide graben in the hanging wall of the main fault that is associated with both synthetic and antithetic faults. Faults defined by apparent reflector offsets propagate upward toward topographic gradients. Faults mapped from a nearby trench and the seismic profile also appear to correlate with topographic alignments on LiDAR gradient maps. The faults as measured in the trench show a wide range of apparent dips, 20??-90??, and appear to steepen with depth on the seismic section. Although the fault zone is likely composed of numerous small faults, the broad asymmetric structure in the hanging wall is fairly simple and dominated by two inward-facing ruptures. Our results indicate the feasibility of mapping fault zones in rugged terrain and complex near-surface geology using low-frequency vibroseis. Further, the integration of geologic mapping and seismic reflection can extend surface observations in areas where structural deformation is obscured by poorly stratified or otherwise unmappable deposits. Therefore, the vibroseis technique, when integrated with geological information, provides constraints for assessing geologic hazards in areas of potential development.
Predeployment validation of fault-tolerant systems through software-implemented fault insertion
NASA Technical Reports Server (NTRS)
Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.
1989-01-01
Fault injection-based automated testing (FIAT) environment, which can be used to experimentally characterize and evaluate distributed realtime systems under fault-free and faulted conditions is described. A survey is presented of validation methodologies. The need for fault insertion based on validation methodologies is demonstrated. The origins and models of faults, and motivation for the FIAT concept are reviewed. FIAT employs a validation methodology which builds confidence in the system through first providing a baseline of fault-free performance data and then characterizing the behavior of the system with faults present. Fault insertion is accomplished through software and allows faults or the manifestation of faults to be inserted by either seeding faults into memory or triggering error detection mechanisms. FIAT is capable of emulating a variety of fault-tolerant strategies and architectures, can monitor system activity, and can automatically orchestrate experiments involving insertion of faults. There is a common system interface which allows ease of use to decrease experiment development and run time. Fault models chosen for experiments on FIAT have generated system responses which parallel those observed in real systems under faulty conditions. These capabilities are shown by two example experiments each using a different fault-tolerance strategy.
NASA Astrophysics Data System (ADS)
Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.
2008-12-01
Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that buried by the debris-flow lobe, exhibit progressively larger displacement (up to 10-12 m). Well-preserved bar and swale morphology, incipient varnishing of surface boulders, and weak soil development all suggest that this surface is Late Holocene in age. We are working to confirm this inference, but if correct, it suggests that this fault system may have experienced ~3-4 events in the relatively recent past. Finally, preliminary surface ages from even older surfaces along this portion of the fault zone place limits on the slip rate over Late Pleistocene time. Cosmogenic 10Be surface clast dating of an alluvial surface with well-developed pavement and moderate soil development near Happy Canyon suggests a surface age of 30-35 kyr. We are working to refine this estimate with new dating and soil characterization, but our preliminary reconstructions of displacement of this surface across the two primary fault strands are consistent with slip rates that exceed ~3 mm/yr. Overall, these results are consistent with the inference that the Panamint Valley fault zone is the primary structure that accomplishes transfer of right-lateral shear across the Garlock Fault.
NASA Astrophysics Data System (ADS)
Hao, Yanjun
Large magnitude intraplate earthquakes are a puzzling exception to plate tectonic theory. Unlike earthquakes occurring along plate boundaries, large continental intraplate earthquakes are a rare occurrence and are often distributed over broad regions. Albeit rare, their occurrence can cause widespread damage because of the low attenuation of seismic energy typical of plate interiors [Hanks and Johnston, 1992]. In the Central USA, most of the recent tectonic intraplate seismicity concentrates along the New Madrid seismic zone (NMSZ), where three large (M>7) earthquakes occurred between 1811--1812 [Johnston and Schweig, 1996]. Here the low surface deformation rates [Calais and Stein, 2009] conflict with the elevated instrument-recorded seismicity and the occurrence of historical and prehistorical large magnitude events [Tuttle et al., 2002]. One of the promising hypotheses proposed to reconcile this apparent contradiction is that intraplate earthquakes may be temporally clustered, episodic or cyclic, and may migrate spatially at the regional or continental scale across multiple faults or fault systems. In order to test this hypothesis and to understand how and where the long-term deformation is accommodated in the Mississippi Embayment, Central USA, I utilize high-resolution seismic reflection data acquired by the Mississippi River Project [Magnani and McIntosh, 2009] and by a 2010 survey across the Meeman-Shelby fault [Magnani, 2011; Hao et al., 2013]. To identify the location of Quaternary deformation and characterize deformation history, I acquired, processed, and interpreted the seismic reflection data and integrated them with other available geophysical (e.g. seismicity, crustal and lithospheric models) and geological (e.g. magmatism and borehole) data. For my research, I focus on three regions in the Mississippi Embayment: 1) the Meeman-Shelby fault west of Memphis, Tennessee, 2) the eastern Reelfoot rift margin north of Memphis, Tennessee, and 3) the area in southeastern Arkansas along the Alabama-Oklahoma transform zone. Quaternary deformation and prolonged history of activity of the imaged faults is documented at all sites. The results show that Quaternary seismic activity in the Mississippi Embayment is accommodated by faults additional to the NMSZ fault system, and that fault activity is controlled by certain paleotectonic structures inherited from the Proterozoic and Paleozoic history of the North American continent. The identification of Quaternary seismogenic faults outside the footprint of the NMSZ and of the lower crustal anomaly (i.e. "rift pillow") supports seismotectonic models that predict deformation over a large area (e.g. Forte et al., 2007) and calls into questions in models that predict concentration of strain in the NMSZ region (e.g. Pollitz et al., 2001). A comparison between the newly imaged faults and the NMSZ faults shows that the former are indistinguishable from the latter except for the occurrence of instrumental seismicity. Based on the analysis of the location and sense of displacement of Quaternary deformation in the northern Mississippi Embayment, I propose a new fault network to reconcile the wide distribution of Quaternary faults with concentration of instrumental seismicity along the NMSZ. The fault network consists of three distinct trends of faults: ~N45°E right-lateral strike-slip faults, ~N20°W reverse faults, and ~N25°E right-lateral strike-slip faults. Different faults in the fault network appear to have been active at different times across the northern embayment. The available age data suggest a northward migration of the deformation, with the NMSZ representing the latest and youngest fault system.
Fault-tolerant rotary actuator
Tesar, Delbert
2006-10-17
A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.
Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada
NASA Astrophysics Data System (ADS)
Dering, Gregory M.
Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ˜15 km southeast of the Snake River Plain and ˜90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ˜170°C reservoir in metasedimentary rocks at a depth of 1740 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ˜700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal system is restricted to the narrow (< 1 km) axial part of the accommodation zone, where permeability is maintained at depth around complex fault intersections. Shallow up-flow appears to be focused along several closely spaced steeply west-dipping north-northeast-striking normal faults within the axial part of the accommodation zone. These faults are favorably oriented for extension and fluid flow under the present-day northwest-trending regional extension direction indicated by previous studies of GPS geodetic data, earthquake focal mechanisms, and kinematic data from late Quaternary faults. The recognition of the axial part of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. Preliminary analysis of broad step-overs similar to Tuscarora reveals that geothermal activity occurs in a variety of subsidiary structural settings within these regions. In addition, the presence of several high-temperature systems in northeastern Nevada demonstrates the viability of electrical-grade geothermal activity in this region despite low present-day strain rates as indicated by GPS geodetic data. Geothermal exploration potential in northeastern Nevada may therefore be higher than previously recognized.
The engine fuel system fault analysis
NASA Astrophysics Data System (ADS)
Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei
2017-05-01
For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.
Investigation of Air Transportation Technology at Princeton University, 1989-1990
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1990-01-01
The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given.
NASA Astrophysics Data System (ADS)
Qu, F.; Lu, Z.; Kim, J. W.
2017-12-01
Growth faults are common and continue to evolve throughout the unconsolidated sediments of Greater Houston (GH) region in Texas. Presence of faults can induce localized surface displacements, aggravate localized subsidence, and discontinue the integrity of ground water flow. Property damages due to fault creep have become more evident during the past few years over the GH area, portraying the necessity of further study of these faults. Interferometric synthetic aperture radar (InSAR) has been proven to be effective in mapping creep along and/or across faults. However, extracting a short wavelength, as well as small amplitude of the creep signal (about 10-20 mm/year) from long time span interferograms is extremely difficult, especially in agricultural or vegetated areas. This paper aims to map and monitor the latest rate, extent, and temporal evolution of faulting at a highest spatial density over GH region using an improved Multi-temporal InSAR (MTI) technique. The method, with maximized usable signal and correlation, has the ability to identify and monitor the active faults to provide an accurate and elaborate image of the faults. In this study, two neighboring ALOS tracks and Sentinel-1A datasets are used. Many zones of steep phase gradients and/or discontinuities have been recognized from the long term velocity maps by both ALOS (2007-2011) and Sentinei-1A (2015-2017) imagery. Not only those previously known faults position but also the new fault traces that have not been mapped by other techniques are imaged by our MTI technique. Fault damage and visible cracking of ground were evident at most locations through our field survey. The discovery of new fault activation, or faults moved from earlier locations is a part of the Big Barn Fault and Conroe fault system, trending from southwest to northeast between Hockley and Conroe. The location of area of subsidence over GH is also shrinking and migrating toward the northeast (Montgomery County) after 2000. The continuous mining of ground water from the Jasper aquifer formed a new water-level decline cones over Montgomery County, exactly reflects the intensity of new fault activity. The discovery of new fault activation, or faults moved from earlier locations appear to be related to excessive water exploitation from Montgomery County aquifers.
The Isis project: Fault-tolerance in large distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.; Marzullo, Keith
1993-01-01
This final status report covers activities of the Isis project during the first half of 1992. During the report period, the Isis effort has achieved a major milestone in its effort to redesign and reimplement the Isis system using Mach and Chorus as target operating system environments. In addition, we completed a number of publications that address issues raised in our prior work; some of these have recently appeared in print, while others are now being considered for publication in a variety of journals and conferences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrix, E.D.
1993-04-01
The Soledad Basin (central Transverse Ranges, CA) contains the first recognized example of mid-Tertiary detachment-faulting west of the San Andreas fault. Displacements along the Pelona detachment fault and syn-extensional upper-plate sedimentation occurred between [approximately] 26--18 Ma, resulting in deposition of at least 4 separate lithogenetic sequences (LS) which record distinct phases of crustal response to extension. The 1st LS (lower Vasquez Fm.) predates syn-extensional volcanism and records initial basin subsidence along small, discontinuous faults. The 2nd LS (middle Vasquez Fm.) consists of both volcanic and sedimentary strata and signals simultaneous onset of magmatism and initial development of a well-defined networkmore » of high-angle, upper-plate normal faults, creating 2 separate sub-basins. Resulting alluvial fans were non-entrenched, implying that subsidence rates, and thus vertical displacement rates on high-angle faults, equaled or exceeded an estimated average sedimentation rate of 1.4 mm/yr. The 3rd LS (upper Vasquez Fm.) reflects transition to a single, well-integrated depositional basin characterized by streamflood sedimentation. This suggests an enlarged drainage basin and a decrease in subsidence rate relative to sedimentation rate, triggered possibly by uplift of the detachment lower-plate. The 4th LS (Tick Canyon Fm.) lies with angular unconformity above the 3rd LS and contains the 1st clasts eroded from the detachment lower plate. Detachment faulting in the Soledad basin appears to involve, in part, reactivation of structural zones of weakness along the Vincent thrust. Preliminary reconstructions of Soledad extension imply 25--30 km of displacement along the Pelona detachment fault system at an averaged slip rate of 3.6--4.3 mm/yr.« less
Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure
Poag, C.W.
2005-01-01
This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism.
The LUSI Seismic Experiment: Deployment of a Seismic Network around LUSI, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Haryanto, Iyan; Masturyono, Masturyono; Hadi, Soffian; Rohadi, Suprianto; Suardi, Iman; Rudiyanto, Ariska; Pranata, Bayu
2015-04-01
The spectacular Lusi eruption started in northeast Java, Indonesia the 29 of May 2006 following a M6.3 earthquake striking the island. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. Lusi is located few kilometres to the NE of the Arjuno-Welirang volcanic complex. Lusi sits upon the Watukosek fault system. From this volcanic complex originates the Watukosek fault system that was reactivated by the M6.3 earthquake in 2006 and is still periodically reactivated by the frequent seismicity. To date Lusi is still active and erupting gas, water, mud and clasts. Gas and water data show that the Lusi plumbing system is connected with the neighbouring Arjuno-Welirang volcanic complex. This makes the Lusi eruption a "sedimentary hosted geothermal system". To verify and characterise the occurrence of seismic activity and how this perturbs the connected Watukosek fault, the Arjuno-Welirang volcanic system and the ongoing Lusi eruption, we deployed 30 seismic stations (short-period and broadband) in this region of the East Java basin. The seismic stations are more densely distributed around LUSI and the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. Fewer stations are positioned around the volcanic arc. Our study sheds light on the seismic activity along the Watukosek fault system and describes the waveforms associated to the geysering activity of Lusi. The initial network aims to locate small event that may not be captured by the Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) seismic network and it will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-Arjuno Welirang region and temporal variations of vp/vs ratios. Such variations will then be ideally related to large-magnitude seismic events. This project is an unprecedented monitoring of a multi component system including an Lusi active eruption, an unlocked strike slip fault, a neighbouring volcanic arc all affected by frequent seismicity. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. The seismic experiment suggested in this study enforces our knowledge about Lusi and will represent a step further towards the reconstruction of a society devastated by Lusi disaster.
A distributed fault-detection and diagnosis system using on-line parameter estimation
NASA Technical Reports Server (NTRS)
Guo, T.-H.; Merrill, W.; Duyar, A.
1991-01-01
The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.
Human problem solving performance in a fault diagnosis task
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1978-01-01
It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.
Martian Wrinkle Ridge Topography: Evidence for Subsurface Faults from MOLA
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Anderson, F. S.; Zuber, M. T.
2000-01-01
Mars Orbiter Laser Altimeter (MOLA) profiles across wrinkle ridges are characterized by plains surfaces at different elevations on either side that appear best explained by subsurface thrust faults that underlie the ridges and produce the offset.
NASA Astrophysics Data System (ADS)
Klein, E.; Masson, F.; Duputel, Z.; Yavasoglu, H.; Agram, P. S.
2016-12-01
Over the last two decades, the densification of GPS networks and the development of new radar satellites offered an unprecedented opportunity to study crustal deformation due to faulting. Yet, submarine strike slip fault segments remain a major issue, especially when the landscape appears unfavorable to the use of SAR measurements. It is the case of the North Anatolian fault segments located in the Main Marmara Sea, that remain unbroken ever since the Mw7.4 earthquake of Izmit in 1999, which ended a eastward migrating seismic sequence of Mw > 7 earthquakes. Located directly offshore Istanbul, evaluation of seismic hazard appears capital. But a strong controversy remains over whether these segments are accumulating strain and are likely to experience a major earthquake, or are creeping, resulting both from the simplicity of current geodetic models and the scarcity of geodetic data. We indeed show that 2D infinite fault models cannot account for the complexity of the Marmara fault segments. But current geodetic data in the western region of Istanbul are also insufficient to invert for the coupling using a 3D geometry of the fault. Therefore, we implement a global optimization procedure aiming at identifying the most favorable distribution of GPS stations to explore the strain accumulation. We present here the results of this procedure that allows to determine both the optimal number and location of the new stations. We show that a denser terrestrial survey network can indeed locally improve the resolution on the shallower part of the fault, even more efficiently with permanent stations. But data closer from the fault, only possible by submarine measurements, remain necessary to properly constrain the fault behavior and its potential along strike coupling variations.
The magnitude 6.7 Northridge, California, earthquake of 17 January 1994
Jones, L.; Aki, K.; Boore, D.; Celebi, M.; Donnellan, A.; Hall, J.; Harris, R.; Hauksson, E.; Heaton, T.; Hough, S.; Hudnut, K.; Hutton, K.; Johnston, M.; Joyner, W.; Kanamori, H.; Marshall, G.; Michael, A.; Mori, J.; Murray, M.; Ponti, D.; Reasenberg, P.; Schwartz, D.; Seeber, L.; Shakal, A.; Simpson, R.; Thio, H.; Tinsley, J.; Todorovska, M.; Trifunac, M.; Wald, D.; Zoback, M.L.
1994-01-01
The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.
NASA Astrophysics Data System (ADS)
Dickson Cunningham, W.; Windley, Brian F.; Dorjnamjaa, D.; Badamgarov, G.; Saandar, M.
1996-02-01
We present results from the first detailed geological transect across the Mongolian Western Altai using modern methods of structural geology and fault kinematic analysis. Our purpose was to document the structures responsible for Cenozoic uplift of the range in order to better understand processes of intracontinental mountain building. Historical right-lateral strike-slip and oblique-slip earthquakes have previously been documented from the Western Altai, and many mountain fronts are marked by active fault scarps indicating current tectonic activity and uplift. The dominant structures in the range are long (>200 km) NNW trending right-lateral strike-slip faults. Our transect can be divided into three separate domains that contain active, right-lateral strike-slip master faults and thrust faults with opposing vergence. The current deformation regime is thus transpressional. Each domain has an asymmetric flower structure cross-sectional geometry, and the transect as a whole is interpreted as three separate large flower structures. The mechanism of uplift along the transect appears to be horizontal and vertical growth of flower structures rooted into the dominant right-lateral strike-slip faults. The major Bulgan Fault forms the southern structural boundary to the range and is a 3.5-km-wide brittle-ductile zone that has accommodated reverse and left-lateral strike-slip displacements. It appears to be linked to the North Gobi Fault Zone to the east and Irtysh Fault zone to the west and thus may be over 900 km in length. Two major ductile left-lateral extensional shear zones were identified in the interior of the range that appear to be preserved structures related to a regional Paleozoic or Mesozoic extensional event. Basement rocks along the transect are dominantly metavolcanic, metasedimentary, or intrusive units probably representing a Paleozoic accretionary prism and arc complex. The extent to which Cenozoic uplift has been accommodated by reactivation of older structures and inversion of older basins is unknown and will require further study. As previously suggested by others, Cenozoic uplift of the Altai is interpreted to be due to NE-SW directed compressional stress resulting from the Indo-Eurasian collision 2500 km to the south.
The earthquake potential of the New Madrid seismic zone
Tuttle, Martitia P.; Schweig, Eugene S.; Sims, John D.; Lafferty, Robert H.; Wolf, Lorraine W.; Haynes, Marion L.
2002-01-01
The fault system responsible for New Madrid seismicity has generated temporally clustered very large earthquakes in A.D. 900 ± 100 years and A.D. 1450 ± 150 years as well as in 1811–1812. Given the uncertainties in dating liquefaction features, the time between the past three New Madrid events may be as short as 200 years and as long as 800 years, with an average of 500 years. This advance in understanding the Late Holocene history of the New Madrid seismic zone and thus, the contemporary tectonic behavior of the associated fault system was made through studies of hundreds of earthquake-induced liquefaction features at more than 250 sites across the New Madrid region. We have found evidence that prehistoric sand blows, like those that formed during the 1811–1812 earthquakes, are probably compound structures resulting from multiple earthquakes closely clustered in time or earthquake sequences. From the spatial distribution and size of sand blows and their sedimentary units, we infer the source zones and estimate the magnitudes of earthquakes within each sequence and thereby characterize the detailed behavior of the fault system. It appears that fault rupture was complex and that the central branch of the seismic zone produced very large earthquakes during the A.D. 900 and A.D. 1450 events as well as in 1811–1812. On the basis of a minimum recurrence rate of 200 years, we are now entering the period during which the next 1811–1812-type event could occur.
Henry, Christopher S.; Colgan, Joseph P.
2011-01-01
The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are precluded by the depths of the earthquake and aftershocks, about 8 km and as deep as 12 km, respectively. These depths are below where an antithetic fault would intersect any main fault, and a tilted, formerly shallow and sub-horizontal thrust fault would not extend to depths of more than about 5–6 km. The east-dipping, high-angle, earthquake fault cuts older west-dipping faults rather than reactivating them, highlighting a change in the structural style of Basin and Range extension in this region from closely-spaced, west-dipping faults that rotated significantly during slip and accommodated large-magnitude extension, to widely-spaced, high-angle faults that accommodate much less total strain over a long time span.
NASA Technical Reports Server (NTRS)
Clayton, J. Louie; Phelps, Lisa (Technical Monitor)
2001-01-01
Carbon Fiber Rope (CFR) thermal barrier systems are being considered for use in several RSRM (Reusable Solid Rocket Motor) nozzle joints as a replacement for the current assembly gap close-out process/design. This study provides for development and test verification of analysis methods used for flow-thermal modeling of a CFR thermal barrier subject to fault conditions such as rope combustion gas blow-by and CFR splice failure. Global model development is based on a 1-D (one dimensional) transient volume filling approach where the flow conditions are calculated as a function of internal 'pipe' and porous media 'Darcy' flow correlations. Combustion gas flow rates are calculated for the CFR on a per-linear inch basis and solved simultaneously with a detailed thermal-gas dynamic model of a local region of gas blow by (or splice fault). Effects of gas compressibility, friction and heat transfer are accounted for the model. Computational Fluid Dynamic (CFD) solutions of the fault regions are used to characterize the local flow field, quantify the amount of free jet spreading and assist in the determination of impingement film coefficients on the nozzle housings. Gas to wall heat transfer is simulated by a large thermal finite element grid of the local structure. The employed numerical technique loosely couples the FE (Finite Element) solution with the gas dynamics solution of the faulted region. All free constants that appear in the governing equations are calibrated by hot fire sub-scale test. The calibrated model is used to make flight predictions using motor aft end environments and timelines. Model results indicate that CFR barrier systems provide a near 'vented joint' style of pressurization. Hypothetical fault conditions considered in this study (blow by, splice defect) are relatively benign in terms of overall heating to nozzle metal housing structures.
Upgrading the Space Shuttle Caution and Warning System
NASA Technical Reports Server (NTRS)
McCandless, Jeffrey W.; McCann, Robert S.; Hilty, Bruce T.
2005-01-01
A report describes the history and the continuing evolution of an avionic system aboard the space shuttle, denoted the caution and warning system, that generates visual and auditory displays to alert astronauts to malfunctions. The report focuses mainly on planned human-factors-oriented upgrades of an alphanumeric fault-summary display generated by the system. Such upgrades are needed because the display often becomes cluttered with extraneous messages that contribute to the difficulty of diagnosing malfunctions. In the first of two planned upgrades, the fault-summary display will be rebuilt with a more logical task-oriented graphical layout and multiple text fields for malfunction messages. In the second upgrade, information displayed will be changed, such that text fields will indicate only the sources (that is, root causes) of malfunctions; messages that are not operationally useful will no longer appear on the displays. These and other aspects of the upgrades are based on extensive collaboration among astronauts, engineers, and human-factors scientists. The report describes the human-factors principles applied in the upgrades.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2017-01-01
By applying conventional cross-track InSAR and multiple-aperture InSAR (MAI) techniques with ALOS-2 SAR data to foreshocks of the 2016 Kumamoto earthquake, ground displacement fields in range (line-of-sight) and azimuth components have been successfully mapped. The most concentrated crustal deformation with ground displacement exceeding 15 cm is located on the western side of the Hinagu fault zone. A locally distributed displacement which appears along the strike of the Futagawa fault can be identified in and around Mashiki town, suggesting that a different local fault slip also contributed toward foreshocks. Inverting InSAR, MAI, and GNSS data, distributed slip models are obtained that show almost pure right-lateral fault motion on a plane dipping west by 80° for the Hinagu fault and almost pure normal fault motion on a plane dipping south by 70° for the local fault beneath Mashiki town. The slip on the Hinagu fault reaches around the junction of the Hinagu and Futagawa faults. The slip in the north significantly extends down to around 10 km depth, while in the south the slip is concentrated near the ground surface, perhaps corresponding to the M j 6.5 and the M j 6.4 events, respectively. The focal mechanism of the distributed slip model for the Hinagu fault alone shows pure right-lateral motion, which is inconsistent with the seismically estimated mechanism that includes a significant non-double couple component. On the other hand, when taking the contribution of normal fault motion into account, the focal mechanism appears similar to that of the seismic analysis. This result may suggest that local fault motion occurred just beneath Mashiki town, simultaneously with the M j 6.5 event, thereby increasing the degree of damage to the town.[Figure not available: see fulltext.
The relationship between oceanic transform fault segmentation, seismicity, and thermal structure
NASA Astrophysics Data System (ADS)
Wolfson-Schwehr, Monica
Mid-ocean ridge transform faults (RTFs) are typically viewed as geometrically simple, with fault lengths readily constrained by the ridge-transform intersections. This relative simplicity, combined with well-constrained slip rates, make them an ideal environment for studying strike-slip earthquake behavior. As the resolution of available bathymetric data over oceanic transform faults continues to improve, however, it is being revealed that the geometry and structure of these faults can be complex, including such features as intra-transform pull-apart basins, intra-transform spreading centers, and cross-transform ridges. To better determine the resolution of structural complexity on RTFs, as well as the prevalence of RTF segmentation, fault structure is delineated on a global scale. Segmentation breaks the fault system up into a series of subparallel fault strands separated by an extensional basin, intra-transform spreading center, or fault step. RTF segmentation occurs across the full range of spreading rates, from faults on the ultraslow portion of the Southwest Indian Ridge to faults on the ultrafast portion of the East Pacific Rise (EPR). It is most prevalent along the EPR, which hosts the fastest spreading rates in the world and has undergone multiple changes in relative plate motion over the last couple of million years. Earthquakes on RTFs are known to be small, to scale with the area above the 600°C isotherm, and to exhibit some of the most predictable behaviors in seismology. In order to determine whether segmentation affects the global RTF scaling relations, the scalings are recomputed using an updated seismic catalog and fault database in which RTF systems are broken up according to their degree of segmentation (as delineated from available bathymetric datasets). No statistically significant differences between the new computed scaling relations and the current scaling relations were found, though a few faults were identified as outliers. Finite element analysis is used to model 3-D RTF fault geometry assuming a viscoplastic rheology in order to determine how segmentation affects the underlying thermal structure of the fault. In the models, fault segment length, length and location along fault of the intra-transform spreading center, and slip rate are varied. A new scaling relation is developed for the critical fault offset length (OC) that significantly reduces the thermal area of adjacent fault segments, such that adjacent segments are fully decoupled at ~4 OC . On moderate to fast slipping RTFs, offsets ≥ 5 km are sufficient to significantly reduce the thermal influence between two adjacent transform fault segments. The relationship between fault structure and seismic behavior was directly addressed on the Discovery transform fault, located at 4°S on the East Pacific Rise. One year of microseismicity recorded on an OBS array, and 24 years of Mw ≥ 5.4 earthquakes obtained from the Global Centroid Moment Tensor catalog, were correlated with surface fault structure delineated from high-resolution multibeam bathymetry. Each of the 15 Mw ≥ 5.4 earthquakes was relocated into one of five distinct repeating rupture patches, while microseismicity was found to be reduced within these patches. While the endpoints of these patches appeared to correlate with structural features on the western segment of Discovery, small step-overs in the primary fault trace were not observed at patch boundaries. This indicates that physical segmentation of the fault is not the primary control on the size and location of large earthquakes on Discovery, and that along-strike heterogeneity in fault zone properties must play an important role.
Fault tolerance in a supercomputer through dynamic repartitioning
Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Takken, Todd E.
2007-02-27
A multiprocessor, parallel computer is made tolerant to hardware failures by providing extra groups of redundant standby processors and by designing the system so that these extra groups of processors can be swapped with any group which experiences a hardware failure. This swapping can be under software control, thereby permitting the entire computer to sustain a hardware failure but, after swapping in the standby processors, to still appear to software as a pristine, fully functioning system.
Fault detection and isolation for complex system
NASA Astrophysics Data System (ADS)
Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi
2017-07-01
Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.
Analysis of a hardware and software fault tolerant processor for critical applications
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1993-01-01
Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.
A likely universal model of fracture scaling and its consequence for crustal hydromechanics
NASA Astrophysics Data System (ADS)
Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.
2010-10-01
We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.
NASA Astrophysics Data System (ADS)
Contadakis, M. E.; Leventakis, G.-A. N.
1992-12-01
Geodetic methods have been proved very useful tools for the detection and monitoring of the earth crustal deformation. Using the repeated measurements in the decade 1979-1990 of the 16-point trigonometric network, located in the seismic active area of the lake Volvi in Northern Greece, a continuous strain field was determined for the area and for each epoch of the corresponding surveys. The dominant characteristic of the deformation field of the area relates, in a way, to the system of the surface faults, which appeared after the string earthquake of June 21, 1978. In addition, there is local as well as time variation of the strain field which is well correlated with the microseismic activity of the area. That is, although there is a general tendency of a N-S horizontal extension in accordance with the direction of the stress field of the area, regions of contraction appear in places where microseismic activity has taken place before the epochs of the respective survey. A few shocks in these region, for which reliable fault plane solutions could be defined by Scordilis on 1985,show focal mechanisms conformable to the geodetic results. Seismicity and fault plane solutions, based on a micro-earthquake study of the region during March and April of 1984 by Hatzfeld et al. with the help of a temporary network of 29 portable stations shows a rather complex pattern. The proposed model for the formation and the evolution of a complex graben system conform qualitatively to the geodetic results
Slemmons, D.B.; Wormer, D.V.; Bell, E.J.; Silberman, M.L.
1979-01-01
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada. The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of ho??rst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament. Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE-SW compression axis (??1) and an EW to NW-SE extension axis (??3). ?? 1979.
Paleoseismological surveys on the Hinagu fault zone in Kumamoto, central Kyushu, Japan
NASA Astrophysics Data System (ADS)
Azuma, T.
2017-12-01
The Hinagu fault zone is located on the south of the Futagawa fault zone, which was a main part of the source fault of the 2016 Kumamoto earthquake of Mj 7.3. Northernmost part of the Hinagu fault zone was also acted in 2016 event and surface faults with right-lateral displacement upto ca. 50 cm were appeared. Seismicity along the central part of the Hinagu fault was increased just after the 2016 Kumamoto Earthquake. It seems that the Hinagu fault zone would produce the next large earthquake in the near future, although it has not occurred yet. The Headquarters of the Earthquake Research Promotions (HERP) conducted active fault surveys on the Hinagu fault zone to recognize the probability of the occurrence of the next faulting event. The Hinagu fault zone is composed with 3 fault segments, Takano-Shirahata, Hinagu, and Yatsushiro Bay. Yatsushiro Bay segment is offshore fault. In FY2016, we conducted paleoseismological trenching surveys at 2 sites (Yamaide, Minamibeta) and offshore drilling. Those result showed evidences that the recurrence intervals of the Hinagu fault zone was rather short and the last faulting event occurred around 1500-2000 yrsBP. In FY2017, we are planning another trenching survey on the southern part of the central segment, where Yatsushiro city located close to the fault.
Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.
2005-01-01
In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.
Phanerozoic geological evolution of the Equatorial Atlantic domain
NASA Astrophysics Data System (ADS)
Basile, Christophe; Mascle, Jean; Guiraud, René
2005-10-01
The Phanerozoic geological evolution of the Equatorial Atlantic domain has been controlled since the end of Early Cretaceous by the Romanche and Saint Paul transform faults. These faults did not follow the PanAfrican shear zones, but were surimposed on Palæozoic basins. From Neocomian to Barremian, the Central Atlantic rift propagated southward in Cassiporé and Marajó basins, and the South Atlantic rift propagated northward in Potiguar and Benue basins. During Aptian times, the Equatorial Atlantic transform domain appeared as a transfer zone between the northward propagating tip of South Atlantic and the Central Atlantic. Between the transform faults, oceanic accretion started during Late Aptian in small divergent segments, from south to north: Benin-Mundaú, deep Ivorian basin-Barreirinhas, Liberia-Cassiporé. From Late Aptian to Late Albian, the Togo-Ghana-Ceará basins appeared along the Romanche transform fault, and Côte d'Ivoire-Parà-Maranhão basins along Saint Paul transform fault. They were rapidly subsiding in intra-continental settings. During Late Cretaceous, these basins became active transform continental margins, and passive margins since Santonian times. In the same time, the continental edge uplifted leading either to important erosion on the shelf or to marginal ridges parallel to the transform faults in deeper settings.
Flight elements: Fault detection and fault management
NASA Technical Reports Server (NTRS)
Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.
1990-01-01
Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.
Geodetic estimates of fault slip rates in the San Francisco Bay area
Savage, J.C.; Svarc, J.L.; Prescott, W.H.
1999-01-01
Bourne et al. [1998] have suggested that the interseismic velocity profile at the surface across a transform plate boundary is a replica of the secular velocity profile at depth in the plastosphere. On the other hand, in the viscoelastic coupling model the shape of the interseismic surface velocity profile is a consequence of plastosphere relaxation following the previous rupture of the faults that make up the plate boundary and is not directly related to the secular flow in the plastosphere. The two models appear to be incompatible. If the plate boundary is composed of several subparallel faults and the interseismic surface velocity profile across the boundary known, each model predicts the secular slip rates on the faults which make up the boundary. As suggested by Bourne et al., the models can then be tested by comparing the predicted secular slip rates to those estimated from long-term offsets inferred from geology. Here we apply that test to the secular slip rates predicted for the principal faults (San Andreas, San Gregorio, Hayward, Calaveras, Rodgers Creek, Green Valley and Greenville faults) in the San Andreas fault system in the San Francisco Bay area. The estimates from the two models generally agree with one another and to a lesser extent with the geologic estimate. Because the viscoelastic coupling model has been equally successful in estimating secular slip rates on the various fault strands at a diffuse plate boundary, the success of the model of Bourne et al. [1998] in doing the same thing should not be taken as proof that the interseismic velocity profile across the plate boundary at the surface is a replica of the velocity profile at depth in the plastosphere.
NASA Astrophysics Data System (ADS)
Hayano, Akira; Ishii, Eiichi
2016-10-01
This study investigates the mechanical relationship between bedding-parallel and bedding-oblique faults in a Neogene massive siliceous mudstone at the site of the Horonobe Underground Research Laboratory (URL) in Hokkaido, Japan, on the basis of observations of drill-core recovered from pilot boreholes and fracture mapping on shaft and gallery walls. Four bedding-parallel faults with visible fault gouge, named respectively the MM Fault, the Last MM Fault, the S1 Fault, and the S2 Fault (stratigraphically, from the highest to the lowest), were observed in two pilot boreholes (PB-V01 and SAB-1). The distribution of the bedding-parallel faults at 350 m depth in the Horonobe URL indicates that these faults are spread over at least several tens of meters in parallel along a bedding plane. The observation that the bedding-oblique fault displaces the Last MM fault is consistent with the previous interpretation that the bedding- oblique faults formed after the bedding-parallel faults. In addition, the bedding-parallel faults terminate near the MM and S1 faults, indicating that the bedding-parallel faults with visible fault gouge act to terminate the propagation of younger bedding-oblique faults. In particular, the MM and S1 faults, which have a relatively thick fault gouge, appear to have had a stronger control on the propagation of bedding-oblique faults than did the Last MM fault, which has a relatively thin fault gouge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.
1986-08-01
Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included themore » tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector.« less
Pore pressure control on faulting behavior in a block-gouge system
NASA Astrophysics Data System (ADS)
Yang, Z.; Juanes, R.
2016-12-01
Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides of the fault. We conclude that the stability of the fault should be evaluated separately for both sides of the gouge layer, a result that sheds new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.
Large earthquakes and creeping faults
Harris, Ruth A.
2017-01-01
Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.
Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.
2016-12-01
The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.
Faults on Skylab imagery of the Salton Trough area, Southern California
NASA Technical Reports Server (NTRS)
Merifield, P. M.; Lamar, D. L. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Large segments of the major high angle faults in the Salton Trough area are readily identifiable in Skylab images. Along active faults, distinctive topographic features such as scarps and offset drainage, and vegetation differences due to ground water blockage in alluvium are visible. Other fault-controlled features along inactive as well as active faults visible in Skylab photography include straight mountain fronts, linear valleys, and lithologic differences producing contrasting tone, color or texture. A northwestern extension of a fault in the San Andreas set, is postulated by the regional alignment of possible fault-controlled features. The suspected fault is covered by Holocene deposits, principally windblown sand. A northwest trending tonal change in cultivated fields across Mexicali Valley is visible on Skylab photos. Surface evidence for faulting was not observed; however, the linear may be caused by differences in soil conditions along an extension of a segment of the San Jacinto fault zone. No evidence of faulting could be found along linears which appear as possible extensions of the Substation and Victory Pass faults, demonstrating that the interpretation of linears as faults in small scale photography must be corroborated by field investigations.
NO-FAULT COMPENSATION FOR MEDICAL INJURIES: TRENDS AND CHALLENGES.
Kassim, Puteri Nemie
2014-12-01
As an alternative to the tort or fault-based system, a no-fault compensation system has been viewed as having the potential to overcome problems inherent in the tort system by providing fair, speedy and adequate compensation for medically injured victims. Proponents of the suggested no-fault compensation system have argued that this system is more efficient in terms of time and money, as well as in making the circumstances in which compensation is paid, much clearer. However, the arguments against no-fault compensation systems are mainly on issues of funding difficulties, accountability and deterrence, particularly, once fault is taken out of the equation. Nonetheless, the no-fault compensation system has been successfully implemented in various countries but, at the same time, rejected in some others, as not being implementable. In the present trend, the no-fault system seems to fit the needs of society by offering greater access to justice for medically injured victims and providing a clearer "road map" towards obtaining suitable redress. This paper aims at providing the readers with an overview of the characteristics of the no fault compensation system and some examples of countries that have implemented it. Qualitative Research-Content Analysis. Given the many problems and hurdles posed by the tort or fault-based system, it is questionable that it can efficiently play its role as a mechanism that affords fair and adequate compensation for victims of medical injuries. However, while a comprehensive no-fault compensation system offers a tempting alternative to the tort or fault-based system, to import such a change into our local scenario requires a great deal of consideration. There are major differences, mainly in terms of social standing, size of population, political ideology and financial commitment, between Malaysia and countries that have successfully implemented no-fault systems. Nevertheless, implementing a no-fault compensation system in Malaysia is not entirely impossible. A custom-made no-fault model tailored to suit our local scenario can be promising, provided that a thorough research is made, assessing the viability of a no-fault system in Malaysia, addressing the inherent problems and, consequently, designing a workable no-fault system in Malaysia.
Virtually-synchronous communication based on a weak failure suspector
NASA Technical Reports Server (NTRS)
Schiper, Andre; Ricciardi, Aleta
1993-01-01
Failure detectors (or, more accurately Failure Suspectors (FS)) appear to be a fundamental service upon which to build fault-tolerant, distributed applications. This paper shows that a FS with very weak semantics (i.e., that delivers failure and recovery information in no specific order) suffices to implement virtually-synchronous communication (VSC) in an asynchronous system subject to process crash failures and network partitions. The VSC paradigm is particularly useful in asynchronous systems and greatly simplifies building fault-tolerant applications that mask failures by replicating processes. We suggest a three-component architecture to implement virtually-synchronous communication: (1) at the lowest level, the FS component; (2) on top of it, a component (2a) that defines new views; and (3) a component (2b) that reliably multicasts messages within a view. The issues covered in this paper also lead to a better understanding of the various membership service semantics proposed in recent literature.
A complex systems analysis of stick-slip dynamics of a laboratory fault
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael
2014-03-15
We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less
Advanced information processing system: Authentication protocols for network communication
NASA Technical Reports Server (NTRS)
Harper, Richard E.; Adams, Stuart J.; Babikyan, Carol A.; Butler, Bryan P.; Clark, Anne L.; Lala, Jaynarayan H.
1994-01-01
In safety critical I/O and intercomputer communication networks, reliable message transmission is an important concern. Difficulties of communication and fault identification in networks arise primarily because the sender of a transmission cannot be identified with certainty, an intermediate node can corrupt a message without certainty of detection, and a babbling node cannot be identified and silenced without lengthy diagnosis and reconfiguration . Authentication protocols use digital signature techniques to verify the authenticity of messages with high probability. Such protocols appear to provide an efficient solution to many of these problems. The objective of this program is to develop, demonstrate, and evaluate intercomputer communication architectures which employ authentication. As a context for the evaluation, the authentication protocol-based communication concept was demonstrated under this program by hosting a real-time flight critical guidance, navigation and control algorithm on a distributed, heterogeneous, mixed redundancy system of workstations and embedded fault-tolerant computers.
NASA Technical Reports Server (NTRS)
Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven
2010-01-01
Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.
NASA Technical Reports Server (NTRS)
Redinbo, Robert
1994-01-01
Fault tolerance features in the first three major subsystems appearing in the next generation of communications satellites are described. These satellites will contain extensive but efficient high-speed processing and switching capabilities to support the low signal strengths associated with very small aperture terminals. The terminals' numerous data channels are combined through frequency division multiplexing (FDM) on the up-links and are protected individually by forward error-correcting (FEC) binary convolutional codes. The front-end processing resources, demultiplexer, demodulators, and FEC decoders extract all data channels which are then switched individually, multiplexed, and remodulated before retransmission to earth terminals through narrow beam spot antennas. Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values with data flows and operations, are used to protect the data processing operations. The additional checking features utilize resources that can be substituted for normal processing elements when resource reconfiguration is required to replace a failed unit.
Fault recovery characteristics of the fault tolerant multi-processor
NASA Technical Reports Server (NTRS)
Padilla, Peter A.
1990-01-01
The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.
Characterization of geologic deposits in the vicinity of US Ecology, Amargosa Basin, southern Nevada
Taylor, Emily M.
2010-01-01
Multiple approaches have been applied to better understand the characteristics of geologic units exposed at the surface and buried at depth in the vicinity of US Ecology (USE), a low-level commercial waste site in the northern Amargosa Desert, Nevada. Techniques include surficial geologic mapping and interpretation of the subsurface using borehole data. Dated deposits at depth were used to estimate rates of sediment accumulation. The subsurface lithologies have been modeled in three dimensions. Lithologic cross sections have been created from the three-dimensional model and have been compared to resistivity data at the same location. Where deposits appear offset, a fault was suspected. Global Positioning System elevation transects were measured and trenches were excavated to locate a strand of the Carrara Fault. The presence of the fault helps to better understand the shape of the potentiometric surface. These data will be used to better understand the hydrologic parameters controlling the containment of the waste at US Ecology.Quaternary geologic units exposed at the surface, in the vicinity of US Ecology, are derived from the alluvium shed off the adjacent range front and the Amargosa River. These deposits vary from modern to early Pleistocene in age. At depth, heterogeneous sands and gravel occur. Observed in deep trenches and boreholes, the subsurface deposits are characterized as fining-upward sequence of sediment from 5- to 8-meters thick. No volcanic units or fine-grained playa deposits were described in the boreholes to a depth of 200 meters. Based on Infrared Stimulated Luminescence dated core samples, short-term rates of sediment accumulation (<70,000 years) are an average of 2.7 millimeters per year, however, long-term rates (<3,900,000 years) are orders of magnitude less. Resistivity data, when compared to lithologic cross sections, generally are consistent with lithology grain size and probable soil carbonate accumulations. Surface resistivity displays a fining-upward sequence of sediments at the surface with a soil carbonate imprint. Finally, trenching north of US Ecology successfully exposed offset Quaternary deposits on a splay of the Carrara Fault. Holocene deposits do not appear to be faulted, however, a fault zone does intersect middle and late Pleistocene aged units.
NASA Astrophysics Data System (ADS)
Omura, K.; Yamashita, F.; Yamada, R.; Matsuda, T.; Fukuyama, E.; Kubo, A.; Takai, K.; Ikeda, R.; Mizuochi, Y.
2004-12-01
Drilling is an effective method to investigate the structure and physical state in and around the active fault zone, such as, stress and strength distribution, geological structure and materials properties. In particular, the structure in the fault zone is important to understand where and how the stress accumulates during the earthquake cycle. In previous studies, we did integrate investigation on active faults in central Japan by drilling and geophysical prospecting. Those faults are estimated to be at different stage in the earthquake cycle, i.e., Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), the Neodani fault which appeared by the 1891 Nobi earth-quake (M=8.0), the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), and Gofukuji Fault that is considered to have activated about 1200 years ago. Each faults showed characteristic features of fracture zone structure according to their geological and geophysical situations. In a present study, we did core recovery and down hole measurements at the Atotsugawa fault, central Japan, that is considered to have activated at 1858 Hida earthquake (M=7.0). The Atotsugawa fault is characterized by active seismicity along the fault. But, at the same time, the shallow region in the central segment of the fault seems to have low seismicity. The high seismicity segment and low seismicity segments may have different mechanical, physical and material properties. A 350m depth borehole was drilled vertically beside the surface trace of the fault in the low seismicity segment. Recovered cores were overall heavily fractured and altered rocks. In the cores, we observed many shear planes holding fault gouge. Logging data showed that the apparent resistance was about 100 - 600 ohm-m, density was about 2.0 - 2.5g/cm3, P wave velocity was approximately 3.0 - 4.0 km/sec, neutron porosity was 20 - 40 %. Results of physical logging show features of fault fracture zone that were the same as the fault fracture zones of other active faults that we have drilled previously. By the BHTV logging, we detected many fractures of which the strikes are not only parallel to the fault trace bur also oblique to the fault trace. The observations of cores and logging data indicate that the borehole passed in the fracture zone down to the bottom, and that the fracture zone has complicate internal structure including foliation not parallel to the fault trace. The core samples are significant for further investigation on material properties in the fracture zone. And we need data of geophysical prospecting to infer the deeper structure of the fracture zone.
Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia
Ekren, E.B.
1984-01-01
Two northeast-trending buried right-lateral faults are inferred in the quadrangle; one in the southeast and one in the northwest. The one in the northwest probably offsets the comendite dike swarm about 3 km. This fault appears to be part of a broad right-lateral fault and flexure zone that juxtaposes the Hadn formation on the west against the Hulayfah group on the east.
Subsidence rates at the southern Salton Sea consistent with reservoir depletion
NASA Astrophysics Data System (ADS)
Barbour, Andrew J.; Evans, Eileen L.; Hickman, Stephen H.; Eneva, Mariana
2016-07-01
Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr-1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.
Subsidence rates at the southern Salton Sea consistent with reservoir depletion
Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana
2016-01-01
Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr−1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.
NASA Astrophysics Data System (ADS)
Johnson, H. E.; Hornbach, M.; Cormier, M.; McHugh, C. M.; Gulick, S. P.; Braudy, N.; Davis, M.; Dieudonne, N.; Diebold, J. B.; Douilly, R.; Mishkin, K.; Seeber, L.; Sorlien, C. C.; Steckler, M. S.; Symithe, S. J.; Templeton, J.
2010-12-01
In response to the January 12, 2010 earthquake in Haiti, we investigated offshore structures where aftershocks, lateral spreading, and a small tsunami suggested a coseismic underwater rupture. One aspect of that expedition involved mapping the trace of the Enriquillo-Plantain Garden fault (EPGF) very close to shore, in water as shallow as 2 m. For this, we deployed from the ship a small inflatable boat mounted with a sidescan sonar and a chirp subbottom profiler. These nearshore surveys focused on Grand Goave Bay and Petit Goave Bay, two areas 40-60 km west of Port-au-Prince where the EPGF briefly extends offshore. In Grand Goave Bay, the combination of shipboard multibeam bathymetric data and nearshore geophysical data highlights a series of en-echelon ridges striking about EW, sub-parallel to the expected fault trend. These rise 50-80 m above the surrounding seafloor and some slumps occur on their steep flanks. Although the sidescan imagery does not capture any well-defined seafloor offset or mole tracks that could be attributed to a 2010 earthquake rupture, the chirp profiles document faults that clearly affect the upper 20 m of sediments. The chirp also imaged an EW-striking ridge that appears to be fault-bounded on its north flank and is located about 1 km north of the onshore trace of the EPGF, suggesting that this fault system affects a relatively broad zone. In Petit Goave Bay, a series of textured, sub-circular mounds rising ~5 m above the sedimented bottom most likely indicate bioherms. These align roughly EW at the base of a 20-30 m-high ridge and may be forming at cold seeps associated with an active fault strand, as reported for other offshore transform fault systems. Lateral spreading and slumps fringe the southern shoreline of that bay. Based on the sharp resolution of the sidescan imagery over the slumps, detailing individual fissures and angular blocks, we interpret these to have been triggered by the 2010 earthquake, and that they therefore are likely to have enhanced tsunamigenesis in the area, as addressed in Hornbach et al. (Nature Geoscience, Accepted Sept. 2010).
Thinning Mechanism of the South China Sea Crust: New Insight from the Deep Crustal Images
NASA Astrophysics Data System (ADS)
Chang, S. P.; Pubellier, M. F.; Delescluse, M.; Qiu, Y.; Liang, Y.; Chamot-Rooke, N. R. A.; Nie, X.; Wang, J.
2017-12-01
The passive margin in the South China Sea (SCS) has experienced a long-lived extension period from Paleocene to late Miocene, as well as an extreme stretching which implies an unusual fault system to accommodate the whole amount of extension. Previous interpretations of the fault system need to be revised to explain the amount of strain. We study a long multichannel seismic profile crossing the whole rifted margin in the southwest of SCS, using 6 km- and 8 km-long streamers. After de-multiple processing by SRME, Radon and F-K filtering, an enhanced image of the crustal geometry, especially on the deep crust, allows us to illustrate two levels of detachment at depth. The deeper detachment is around 7-8 sec TWT in the profile. The faults rooting at this detachment are characterized by large offset and are responsible for thicker synrift sediment. A few of these faults appear to reach the Moho. The geometry of the acoustic basement between these boundary faults suggests gentle tilting with a long wavelength ( 200km), and implies some internal deformation. The shallower detachment is located around 4-5 sec TWT. The faults rooting at this detachment represent smaller offset, a shorter wavelength of the basement and thinner packages of synrift sediment. Two detachments separate the crust into upper, middle and lower crust. If the lower crust shows ductile behavior, the upper and middle crust is mostly brittle and form large wavelength boudinage structure, and the internal deformation of the boudins might imply low friction detachments at shallower levels. The faults rooting to deep detachment have activated during the whole rifting period until the breakup. Within the upper and middle crust, the faults resulted in important tilting of the basement at shallow depth, and connect to the deep detachment at some places. The crustal geometry illustrates how the two detachments are important for the thinning process, and also constitute a pathway for the following magmatic activity from the mantle to the surface.
McBride, J.H.
1997-01-01
Deformation within the United States mid-continent is frequently expressed as quasilinear zones of faulting and folding, such as the La Salle deformation belt, a northwest-trending series of folds cutting through the center of the Illinois basin. Seismic reflection profiles over the southern La Salle deformation belt reveal the three-dimensional structural style of deformation in the lower Paleozoic section and uppermost Precambrian(?) basement. Individual profiles and structural contour maps show for the first time that the folds of the La Salle deformation belt are underlain at depth by reverse faults that disrupt and offset intrabasement structure, offset the top of interpreted Precambrian basement, and accommodate folding of overlying Paleozoic strata. The folds do not represent development of initial dips by strata deposited over a preexisting basement high. Rather, the structures resemble subdued "Laramide-style" forced folds, in that Paleozoic stratal reflectors appear to be flexed over a fault-bounded basement uplift with the basement-cover contact folded concordantly with overlying strata. For about 40 km along strike, the dominant faults reverse their dip direction, alternating between east and west. Less well expressed antithetic or back thrusts appear to be associated with the dominant faults and could together describe a positive flower structure. The overall trend of this part of the La Salle deformation belt is disrupted by along-strike discontinuities that separate distinct fold culminations. Observations of dual vergence and along-strike discontinuities suggest an original deformation regime possibly involving limited transpression associated with distant late Paleozoic Appalachian-Ouachita mountain building. Moderate-magnitude earthquakes located west of the western flank of the La Salle deformation belt have reverse and strike-slip mechanisms at upper trustai depths, which might be reactivating deep basement faults such as observed in this study. The La Salle deformation belt is not necessarily typical of other well-known major midcontinent fault and fold zones, such as the Nemaha ridge, over which Paleozoic and younger sediments appear to simply be draped.
Coordinated Fault-Tolerance for High-Performance Computing Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Dhabaleswar Kumar; Beckman, Pete
2011-07-28
With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system throughmore » fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of existing publish-subscribe tools. We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.« less
A fault isolation method based on the incidence matrix of an augmented system
NASA Astrophysics Data System (ADS)
Chen, Changxiong; Chen, Liping; Ding, Jianwan; Wu, Yizhong
2018-03-01
A new approach is proposed for isolating faults and fast identifying the redundant sensors of a system in this paper. By introducing fault signal as additional state variable, an augmented system model is constructed by the original system model, fault signals and sensor measurement equations. The structural properties of an augmented system model are provided in this paper. From the viewpoint of evaluating fault variables, the calculating correlations of the fault variables in the system can be found, which imply the fault isolation properties of the system. Compared with previous isolation approaches, the highlights of the new approach are that it can quickly find the faults which can be isolated using exclusive residuals, at the same time, and can identify the redundant sensors in the system, which are useful for the design of diagnosis system. The simulation of a four-tank system is reported to validate the proposed method.
Active Deformation of the Northern Cordillera Observed with GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Freymueller, J.; Mazzotti, S.
2017-12-01
The Northern Cordillera, which encompasses western Canada and eastern Alaska, is a complex tectonic puzzle. Past terrane accretions, the present collision of the Yakutat block, large-scale plate motions, and past and present glacier change have created a tectonic landscape that includes a major transform system, most of the highest peaks in North America, and far-flung ongoing distributed deformation. We present an updated GPS velocity field as well as a new integrated tectonic block model for the region. The style of deformation varies through the region. Surrounding the Yakutat collision, the model includes a number of small blocks that indicate rotations to the east, north, and west as material moves away from the collisional front. These small blocks also show evidence of internal deformation. Farther from the collisional front, blocks are larger and appear to behave more rigidly. In the south, northwestward motion resulting in a prominent band of coastal shear extends from Vancouver Island to Glacier Bay. In the Arctic, small southeastward motions in Alaska transition to easterly motion in Canada that extends to the Mackenize Mountains near the Cordillera-craton boundary. A number of faults and fault systems accommodate relative Pacific-North America plate motion in the region, although the significant majority is along the Fairweather-Queen Charlotte transform system and the St. Elias fold-and-thrust belt. Along the Fairweather-Queen Charlotte system, the motion is dominantly dextral with increasing oblique transpression to the south corresponding to a change in margin trend. At the northern end of the transform system, motion is distributed onto multiple faults. Roughly 75% of the Fairweather motion is transferred west into the St. Elias fold-and-thrust belt, which accommodates 30 mm/yr of convergence. The remaining 25% is transferred north towards the dextral Denali-Totschunda system. The eastern Denali fault presently plays a minor role in accommodating relative plate motion, with 2-3 mm/yr of transpression. Based on a sequence of earthquakes in May 2017, this motion may be distributed along multiple fault strands.
Parameter Transient Behavior Analysis on Fault Tolerant Control System
NASA Technical Reports Server (NTRS)
Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob
2003-01-01
In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.
NASA Technical Reports Server (NTRS)
Lee, Harry
1994-01-01
A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.
NASA Astrophysics Data System (ADS)
Bonilla Sierra, V.; Donze, F. V.; Duriez, J.; Klinger, Y.; Scholtes, L.
2016-12-01
At the very early stages of a pure strike-slip fault zone formation, shear displacement along a deep buried parent fault produces a characteristic set of "evenly-spaced" strike-slip faults at the surface, e.g. Southern San Andreas, North Anatolian, Central Asian, and Northern Tibetan fault systems. This mode III fracture propagation is initiated by the rotation of the local principal stress at the tip of the parent discontinuity, generating twisted fractures with a helicoidal shape. In sandbox or clay-cake experiments used to reproduce these structures, it has been observed that the spacing and possibly the characteristic length of the fractures appearing at the surface are proportional to the overburden thickness of the deformed layer. Based on a Discrete Element Method (YADE DEM-Open Source), we have investigated the conditions controlling the linear relationships between the spacing of the surface "evenly-spaced" strike-slip discontinuities and the thickness of the deformed layer. Increasing the basement displacement of the model, a diffused shear zone appears first at the tip of the basal parent discontinuity. From this mist zone, localized and strongly interacting shear fractures start to propagate. This interaction process can generate complex internal structures: some fractures will propagate faster than their neighbors, modifying their close surrounding stress environment. Some propagating fractures can stop growing and asymmetrical fracture sets can be observed. This resulting hierarchical bifurcation process leads to a set of "en echelon" discontinuities appearing at the surface (Figure 1). In a pure strike-slip mode, fracture spacing is proportional to the thickness, with a ratio and a bifurcation mode controlled by the cohesion value at the first order. Depending on the Poisson's ratio value, which mainly controls the orientation of the discontinuities, this ratio can be affected at a lower degree. In presence of mixed-mode (transpression or transtension), these linear relationships disappear. Figure 1: Effects of the cohesion C and the thickness T of the deformed layer on the surface discontinuity pattern (a) T = Tref and C = Cref (b) T = Tref and C= 10×Cref (c) T = 2×Tref and C = Cref (d) T = 2×Tref and 10×Cref. The color code corresponds to the instantaneous velocity in the Y direction.
Geologic evaluation of major Landsat lineaments in Nevada and their relationship to ore districts
Rowan, Lawrence C.; Wetlaufer, Pamela Heald
1979-01-01
Analysis of diverse geologic, geophysical, and geochemical data shows that eight major lineament systems delineated in Landsat images of Nevada are morphological and tonal expressions of substantially broader structural zones. Southern Nevada is dominated by the 175 km-wide northwest-trending Walker Lane, a 150 km-wide zone of east-trending lineament systems consisting of the Pancake Range, Warm Springs, and Timpahute lineament systems, and a 125 km-wide belt of northeast-trending faults termed the Pahranagat lineament system. Northern Nevada is dominated by the northeast-trending 75-200km wide Midas Trench lineament system, which is marked by northeasterly-oriented faults, broad gravity anomalies, and the Battle Mountain heat flow high; this feature appears to extend into central Montana. The Midas Trench system is transected by the Northern Nevada Rift, a relatively narrow zone of north-northwest-trending basaltic dikes that give rise to a series of prominent aeromagnetic highs. The northwest-trending Rye Patch lineament system, situated at the northeast boundary of the Walker Lane, also intersects the Midas Trench system and is characterized by stratigraphic discontinuities and alignment of aeromagnetic anomalies. Field relationships indicate that all the lineament systems except for the Northern Nevada Rift are conjugate shears formed since mid-Miocene time during extension of the Great Basin. Metallization associated with volcanism was widespread along these systems during the 17-6 m.y. period. However, these zones appear to have been established prior to this period, probably as early as Precambr-an time. These lineament systems are interpreted to be old, fundamental, structural zones that have been reactivated episodically as stress conditions !changed in the western United States. Many metal districts are localized within these zones as magma rose along the pre-existing conduits.
Active stress field and seismotectonic features in Intra-Carpathian region of Romania
NASA Astrophysics Data System (ADS)
Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea
2017-04-01
The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.
Integrated Approach To Design And Analysis Of Systems
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1993-01-01
Object-oriented fault-tree representation unifies evaluation of reliability and diagnosis of faults. Programming/fault tree described more fully in "Object-Oriented Algorithm For Evaluation Of Fault Trees" (ARC-12731). Augmented fault tree object contains more information than fault tree object used in quantitative analysis of reliability. Additional information needed to diagnose faults in system represented by fault tree.
Fault recovery for real-time, multi-tasking computer system
NASA Technical Reports Server (NTRS)
Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)
2011-01-01
System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.
Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.
2004-01-01
Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of sequential formation of tectonic joints, in the context of regional paleostress studies, indicate that north- and northwest-striking joint sets formed coevally with the main faulting episode during regional east-northeast-west-southwest extension and that a prominent northeast-striking joint set formed later, probably after 9 Ma. These structural analyses contribute to the understanding of several important issues at Yucca Mountain, including potential hydrologic pathways, seismic hazards, and fault-displacement hazards. ?? 2004 Geological Society of America.
NASA Astrophysics Data System (ADS)
Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.
2015-12-01
Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung-and-ladder" seismicity seen within the Salton Sea. Additionally, the presence of the STF may explain the gaps seen in the paleoseismic record along the SSAF (i.e. Philibosian et al., 2011), which shows an extended period of non-rupture. The STF may play a role in strain release along the SSAF, so a combined history may yield improved insight to the long periods of quiescence.
NASA Astrophysics Data System (ADS)
Roland, E. C.; Walton, M. A. L.; Ruppert, N. A.; Gulick, S. P. S.; Christeson, G. L.; Haeussler, P. J.
2014-12-01
In January 2013, a Mw 7.5 earthquake ruptured a segment of the Queen Charlotte Fault offshore the town of Craig in southeast Alaska. The region of the fault that slipped during the Craig earthquake is adjacent to and possibly overlapping with the northern extent of the 1949 M 8.1 Queen Charlotte earthquake rupture (Canada's largest recorded earthquake), and is just south of the rupture area of the 1972 M 7.6 earthquake near Sitka, Alaska. Here we present aftershock locations and focal mechanisms for events that occurred four months following the mainshock using data recorded on an Ocean Bottom Seismometer (OBS) array that was deployed offshore of Prince of Wales Island. This array consisted of 9 short period instruments surrounding the fault segment, and recorded hundreds of aftershocks during the months of April and May, 2013. In addition to highlighting the primary mainshock rupture plane, aftershocks also appear to be occurring along secondary fault structures adjacent to the main fault trace, illuminating complicated structure, particularly toward the northern extent of the Craig rupture. Focal mechanisms for the larger events recorded during the OBS deployment show both near-vertical strike slip motion consistent with the mainshock mechanism, as well as events with varying strike and a component of normal faulting. Although fault structure along this northern segment of the QCF appears to be considerably simpler than to the south, where a higher degree of oblique convergence leads to sub-parallel compressional deformation structures, secondary faulting structures apparent in legacy seismic reflection data near the Craig rupture may be consistent with the observed seismicity patterns. In combination, these data may help to characterize structural heterogeneity along the northern segment of the Queen Charlotte Fault that contributes to rupture segmentation during large strike slip events.
Plafter, George
1967-01-01
Two reverse faults on southwestern Montague Island in Prince William Sound were reactivated during the earthquake of March 27, 1964. New fault scarps, fissures, cracks, and flexures appeared in bedrock and unconsolidated surficial deposits along or near the fault traces. Average strike of the faults is between N. 37° E. and N. 47° E.; they dip northwest at angles ranging from 50° to 85°. The dominant motion was dip slip; the blocks northwest of the reactivated faults were relatively upthrown, and both blocks were upthrown relative to sea level. No other earthquake faults have been found on land. The Patton Bay fault on land is a complex system of en echelon strands marked by a series of spectacular landslides along the scarp and (or) by a zone of fissures and flexures on the upthrown block that locally is as much as 3,000 feet wide. The fault can be traced on land for 22 miles, and it has been mapped on the sea floor to the southwest of Montague Island an additional 17 miles. The maximum measured vertical component of slip is 20 to 23 feet and the maximum indicated dip slip is about 26 feet. A left-lateral strike-slip component of less than 2 feet occurs near the southern end of the fault on land where its strike changes from northeast to north. Indirect evidence from the seismic sea waves and aftershocks associated with the earthquake, and from the distribution of submarine scarps, suggests that the faulting on and near Montague Island occurred at the northeastern end of a reactivated submarine fault system that may extend discontinuously for more than 300 miles from Montague Island to the area offshore of the southeast coast of Kodiak Island. The Hanning Bay fault is a minor rupture only 4 miles long that is marked by an exceptionally well defined almost continuous scarp. The maximum measured vertical component of slip is 16⅓ feet near the midpoint, and the indicated dip slip is about 20 feet. There is a maximum left-lateral strike-slip component of one-half foot near the southern end of the scarp. Warping and extension cracking occurred in bedrock near the midpoint on the upthrown block within about 1,000 feet of the fault scarp. The reverse faults on Montague Island and their postulated submarine extensions lie within a tectonically important narrow zone of crustal attenuation and maximum uplift associated with the earthquake. However, there are no significant lithologic differences in the rock sequences across these faults to suggest that they form major tectonic boundaries. Their spatial distribution relative to the regional uplift associated with the earthquake, the earthquake focal region, and the epicenter of the main shock suggest that they are probably subsidiary features rather than the causative faults along which the earthquake originated. Approximately 70 percent of the new breakage along the Patton Bay and the Hanning Bay faults on Montague Island was along obvious preexisting active fault traces. The estimated ages of undisturbed trees on and near the fault trace indicate that no major disc placement had occurred on these faults for at least 150 to 300 years before the 1964 earthquake.
NASA Astrophysics Data System (ADS)
Audin, L.; Manighetti, I.; Tapponnier, P.; Métivier, F.; Jacques, E.; Huchon, P.
2001-02-01
A detailed geophysical survey of the Ghoubbet Al Kharab (Djibouti) clarifies the small-scale morphology of the last submerged rift segment of the propagating Aden ridge before it enters the Afar depression. The bathymetry reveals a system of antithetic normal faults striking N130°E, roughly aligned with those active along the Asal rift. The 3.5kHz sub-bottom profiler shows how the faults cut distinct layers within the recent, up to 60m thick, sediment cover on the floor of the basin. A large volcanic structure, in the centre of the basin, the `Ghoubbet' volcano, separates two sedimentary flats. The organization of volcanism and the planform of faulting, with en echelon subrifts along the entire Asal-Ghoubbet rift, appear to confirm the westward propagation of this segment of the plate boundary. Faults throughout the rift have been active continuously for the last 8400yr, but certain sediment layers show different offsets. The varying offsets of these layers, dated from cores previously retrieved in the southern basin, imply Holocene vertical slip rates of 0.3-1.4mmyr-1 and indicate a major decrease in sedimentation rate after about 6000yr BP, and a redistribution of sediments in the deepest troughs during the period that preceded that change.
Space Radar Image of Santa Cruz Island, California
NASA Technical Reports Server (NTRS)
1994-01-01
This space radar image shows the rugged topography of Santa Cruz Island, part of the Channel Islands National Park in the Pacific Ocean off the coast of Santa Barbara and Ventura, Calif. Santa Cruz, the largest island of the national park, is host to hundreds of species of plants, animals and birds, at least eight of which are known nowhere else in the world. The island is bisected by the Santa Cruz Island fault, which appears as a prominent line running from the upper left to the lower right in this image. The fault is part of the Transverse Range fault system, which extends eastward from this area across Los Angeles to near Palm Springs, Calif. Color variations in this image are related to the different types of vegetation and soils at the surface. For example, grass-covered coastal lowlands appear gold, while chaparral and other scrub areas appear pink and blue. The image is 35 kilometers by 32 kilometers (22 miles by 20 miles) and is centered at 33.8 degrees north latitude, 119.6 degrees west longitude. North is toward upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 10, 1994, onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.
2011-01-01
Triggered slip in the Yuha Desert area occurred along more than two dozen faults, only some of which were recognized before the April 4, 2010, El Mayor-Cucapah earthquake. From east to northwest, slip occurred in seven general areas: (1) in the Northern Centinela Fault Zone (newly named), (2) along unnamed faults south of Pinto Wash, (3) along the Yuha Fault (newly named), (4) along both east and west branches of the Laguna Salada Fault, (5) along the Yuha Well Fault Zone (newly revised name) and related faults between it and the Yuha Fault, (6) along the Ocotillo Fault (newly named) and related faults to the north and south, and (7) along the southeasternmost section of the Elsinore Fault. Faults that slipped in the Yuha Desert area include northwest-trending right-lateral faults, northeast-trending left-lateral faults, and north-south faults, some of which had dominantly vertical offset. Triggered slip along the Ocotillo and Elsinore Faults appears to have occurred only in association with the June 14, 2010 (Mw5.7), aftershock. This aftershock also resulted in slip along other faults near the town of Ocotillo. Triggered offset on faults in the Yuha Desert area was mostly less than 20 mm, with three significant exceptions, including slip of about 50–60 mm on the Yuha Fault, 40 mm on a fault south of Pinto Wash, and about 85 mm on the Ocotillo Fault. All triggered slips in the Yuha Desert area occurred along preexisting faults, whether previously recognized or not.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, L.K.
1987-05-01
Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into themore » nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.« less
NASA Astrophysics Data System (ADS)
Katopody, D. T.; Oldow, J. S.
2015-12-01
The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.
NASA Astrophysics Data System (ADS)
Wong, Pei-Syuan; Lin, Ming-Lang
2016-04-01
According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation (W). Compared to the investigation in field, rupture of the Greendale Fault, produced a 30-km-long, 300-m-wide zone of ground-surface rupture and deformation (W), involving 5.29 m maximum horizontal , 1.45 m maximum vertical (Dv, max) and 2.59 m average net displacement. Meanwhile, en echelon R shears and cracks were recorded in some region. Besides, the 400-m depth of deep sedimentation (Ds) in the Christchurch City area. Greendale Fault showed close ratio Dv/Ds and W/Ds compared to the experimental case (in the same order), which indicated the wide zone of ground-surface rupture and deformation may be normalized with the vertical displacement (Dv). The foundation located above the basement-fault trace had obvious horizontal displacements and counter-clockwise rotation with increasing displacement. Horizontal displacements and rotation decreased with deeper depth of soil. The deeper embedded foundation caused more rotation. Besides, the soil near the foundation is confined and pressed when it rotates. Key words: strike-slip fault, shallow foundation, ground deformation
NASA Astrophysics Data System (ADS)
Bird, P.
2010-12-01
The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt [Bird, 2009, JGR] to model neotectonics of the active fault network in the western United States found that only 2/3 of Pacific-North America relative motion in California occurs by slip on faults included in seismic hazard models by the 2007 Working Group on California Earthquake Probabilities [2008; USGS OFR 2007-1437]. (Whether the missing distributed permanent deformation is seismogenic has not yet been determined.) 5. Even outside of broad orogens, dangerous intraplate faulting is evident in catalogs: (a) About 3% of shallow earthquakes in the Global CMT catalog are Intraplate [Bird et al., 2010, SRL]; (b) Intraplate earthquakes have higher stress-drops by about a factor-of-two [Kanamori & Anderson, 1975, BSSA; Allmann & Shearer, 2009, JGR]; (c) The corner magnitude of intraplate earthquakes is >7.6, and unconstrained from above, on the moment magnitude scale [Bird & Kagan, 2004, BSSA]. For some intraplate earthquakes, the causitive fault is mapped only (if at all) by its aftershocks.
Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.
Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang
2017-03-01
This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, R.; Wang, H.; Li, W.; Li, H.
2014-12-01
The Minshan region, located along the eastern margin of the Tibetan Plateau north of the Sichuan Basin, provides an important natural laboratory in which to study the patterns of deformation and their relationship to mountain building at the margin of the plateau. The Minshan range is bounded by the Minjiang fault to the west and Huya fault to the east. Evidence from the Neotectonics sediments suggests that deformation along the western Min Shan may reflect the surface response to thickening of a weak lower crust at the margin of the Tibetan Plateau (Kirby et al., 2000). In 2014, two deep seismic profiles was carried out across the Minjiang fault (55 km long) and Huya fault (45 km long) respectively, supported by China geological survey project (No.1212011220260) and Crust Probe Project of China (SinoProbe-02-01). The recording of seismic waves from 4 big shots (500kg), 100 middle shots (120 kg) and 400 small shots (36 kg) were employed. The geophones spacing is 50 m. The preliminary stack sections provide us a detailed deformation mechanism of the Minshan region for the first time. The result shows that: (1) The Huya fault section shows different reflection characteristics on the west and east flank. (2) The Moho reflection beneath the Huya fault, which appeared at 12-13 s two-way time, tilts from the east to the west. (3) The Minjiang fault shows as a series of thrust nappe in the upper crust. (4) A strong reflector appears in the middle crust of the Minjiang section at 8-9 s two-way times, and it dips down to the lower crust from west to east.
NASA Astrophysics Data System (ADS)
Madden, E. H.; McBeck, J.; Cooke, M. L.
2013-12-01
Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in efficiency provided by both hard-linkage and soft-linkage to be quantified and compared. Specialized models of interactions over the past 1 Ma between the Clark and Coyote Creek faults within the San Jacinto system reveal increasing mechanical efficiency as these fault structures change over time. Alongside this increasing efficiency is an increasing likelihood for single, larger earthquakes that rupture multiple fault segments. These models reinforce the sensitivity of mechanical efficiency to both fault structure and the regional tectonic stress orientation controlled by plate motions and provide insight into how slip may have been partitioned between the San Andreas and San Jacinto systems over the past 1 Ma.
Advanced Fault Diagnosis Methods in Molecular Networks
Habibi, Iman; Emamian, Effat S.; Abdi, Ali
2014-01-01
Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei
2015-10-01
In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.
The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)
NASA Astrophysics Data System (ADS)
Safaei, Homayon
2009-08-01
The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.
Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance
NASA Astrophysics Data System (ADS)
Wang, Jian; Yang, Zhenwei; Kang, Mei
2018-01-01
This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.
Analysis of typical fault-tolerant architectures using HARP
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Bechta Dugan, Joanne; Trivedi, Kishor S.; Rothmann, Elizabeth M.; Smith, W. Earl
1987-01-01
Difficulties encountered in the modeling of fault-tolerant systems are discussed. The Hybrid Automated Reliability Predictor (HARP) approach to modeling fault-tolerant systems is described. The HARP is written in FORTRAN, consists of nearly 30,000 lines of codes and comments, and is based on behavioral decomposition. Using the behavioral decomposition, the dependability model is divided into fault-occurrence/repair and fault/error-handling models; the characteristics and combining of these two models are examined. Examples in which the HARP is applied to the modeling of some typical fault-tolerant systems, including a local-area network, two fault-tolerant computer systems, and a flight control system, are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com
The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.
NASA ground terminal communication equipment automated fault isolation expert systems
NASA Technical Reports Server (NTRS)
Tang, Y. K.; Wetzel, C. R.
1990-01-01
The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC).
Expert System Detects Power-Distribution Faults
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Quinn, Todd M.
1994-01-01
Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.
Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height
NASA Technical Reports Server (NTRS)
2005-01-01
The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise. In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C. Size: 495 kilometers (307 miles) by 162 kilometers (100 miles) Location: 43.2 degrees South latitude, 170.5 degrees East longitude Orientation: Northwest toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000NASA Astrophysics Data System (ADS)
Mohadjer, Solmaz; Ehlers, Todd; Bendick, Rebecca; Mutz, Sebastian
2016-04-01
Previous studies related to the kinematics of deformation within the India-Asia collision zone have relied on slip rate data for major active faults to test kinematic models that explain the deformation of the region. The slip rate data, however, are generally disputed for many of the first-order faults in the region (e.g., Altyn Tagh and Karakorum faults). Several studies have also challenged the common assumption that geodetic slip rates are representative of Quaternary slip rates. What has received little attention is the degree to which geodetic slip rates relate to Quaternary slip rates for active faults in the India-Asia collision zone. In this study, we utilize slip rate data from a new Quaternary fault database for Central Asia to determine the overall relationship between Quaternary and GPS-derived slip rates for 18 faults. The preliminary analysis investigating this relationship uses weighted least squares and a re-sampling analysis to test the sensitivity of this relationship to different data point attributes (e.g., faults associated with data points and dating methods used for estimating Quaternary slip rates). The resulting sample subsets of data points yield a maximum possible Pearson correlation coefficient of ~0.6, suggesting moderate correlation between Quaternary and GPS-derived slip rates for some faults (e.g., Kunlun and Longmen Shan faults). Faults with poorly correlated Quaternary and GPS-derived slip rates were identified and dating methods used for the Quaternary slip rates were examined. Results indicate that a poor correlation between Quaternary and GPS-derived slip rates exist for the Karakorum and Chaman faults. Large differences between Quaternary and GPS slip rates for these faults appear to be connected to qualitative dating of landforms used in the estimation of the Quaternary slip rates and errors in the geomorphic and structural reconstruction of offset landforms (e.g., offset terrace riser reconstructions for Altyn Tagh fault). Other factors such as a low density in the GPS network (e.g., GPS rate based on data from a single station for the Karakorum fault) appear to also contribute to the mismatch observed between the slip rates. Taken together, these results suggest that GPS-derived slip rates are often (but not always) representative of Quaternary slip rates and that the dating methods and sampling approaches used to identify transients in a fault slip rate history should be heavily scrutinized before interpreting the seismic hazards for a region.
Late Quaternary faulting in the Cabo San Lucas-La Paz Region, Baja California
NASA Astrophysics Data System (ADS)
Busch, M.; Arrowsmith, J. R.; Umhoefer, P. J.; Gutiérrez, G. M.; Toke, N.; Brothers, D.; Dimaggio, E.; Maloney, S.; Zielke, O.; Buchanan, B.
2006-12-01
While Baja California drifts, active deformation on and just offshore indicates that spreading is not completely localized to the rift axis in the Gulf of California. Using on and offshore data, we characterize normal faulting- related deformation in the Cabo San Lucas-La Paz area. We mapped sections of the north trending faults in a 150 km long left-stepping fault array. Starting in the south, the San Jose del Cabo fault (east dipping) bounds the ~2 km high Sierra La Laguna. It is >70 km long with well defined 1-10 meter fault scarps cutting the youngest late Quaternary geomorphic surfaces. Our preliminary mapping along the north central section exhibits extensive late Quaternary terraces with riser heights of tens of meters above Holocene terraces. The San Jose del Cabo fault trace becomes diffuse and terminates in the area of Los Barriles. Moving northward, the fault system steps to the west, apparently transferring slip to the faults of San Juan de Los Planes and Saltito, which then step left again across the La Paz basin to the NNW trending Carrizal Fault. It has an on shore length of > 60 km. We produced a 25 km detailed strip map along the northern segment. It is embayed by convex east arcs several km long and 100 m deep. In the south, few-m-high scarps cut a pediment of thin Quaternary cover over tertiary volcanic rocks. The escarpment along the fault is hundreds of meters high and scarps 1-10 m high where it goes offshore in the north. Near Bonfil, a quarry cut exposes the fault zone. It comprises a 5-10 m wide bedrock shear zone with sheared tertiary volcanic units. On the footwall, the lower silty and sandy units have moderately well developed pedogenic carbonate, whereas the upper coarse gravel does not. These late Quaternary units appear to be faulted by one to three earthquakes. Finally, we mapped the Saltito fault zone NNE of La Paz. It is a NW trending structure with well developed 5- 10 meter high bedrock scarps defining its NW 5 km and slightly concave east with a 500 m left. Along all the fault zones studied, offset geomorphic surfaces indicate late Pleistocene to Holocene offset. These surfaces can be exploited to determine slip rates and produce a regional chronosequence to test for synchroneity of climatically modulated variations in sediment supply and transport capacity. In addition, a shallow marine geophysics and coring extends our mapping and provides important age control and improved stratigraphic assessment of fault activity.
Results of an electrical power system fault study (CDDF)
NASA Technical Reports Server (NTRS)
Dugal-Whitehead, N. R.; Johnson, Y. B.
1993-01-01
This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.
Multiple Fault Isolation in Redundant Systems
NASA Technical Reports Server (NTRS)
Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David
1997-01-01
Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.
Multiple Fault Isolation in Redundant Systems
NASA Technical Reports Server (NTRS)
Pattipati, Krishna R.
1997-01-01
Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.
Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System
NASA Technical Reports Server (NTRS)
Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.
2006-01-01
The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.
NASA Technical Reports Server (NTRS)
Brunelle, J. E.; Eckhardt, D. E., Jr.
1985-01-01
Results are presented of an experiment conducted in the NASA Avionics Integrated Research Laboratory (AIRLAB) to investigate the implementation of fault-tolerant software techniques on fault-tolerant computer architectures, in particular the Software Implemented Fault Tolerance (SIFT) computer. The N-version programming and recovery block techniques were implemented on a portion of the SIFT operating system. The results indicate that, to effectively implement fault-tolerant software design techniques, system requirements will be impacted and suggest that retrofitting fault-tolerant software on existing designs will be inefficient and may require system modification.
NASA Astrophysics Data System (ADS)
Karson, J.; Horst, A. J.; Nanfito, A.
2011-12-01
Iceland has long been used as an analog for studies of seafloor spreading. Despite its thick (~25 km) oceanic crust and subaerial lavas, many features associated with accretion along mid-ocean ridge spreading centers, and the processes that generate them, are well represented in the actively spreading Neovolcanic Zone and deeply glaciated Tertiary crust that flanks it. Integrated results of structural and geodetic studies show that the plate boundary zone on Iceland is a complex array of linked structures bounding major crustal blocks or microplates, similar to oceanic microplates. Major rift zones propagate N and S from the hotspot centered beneath the Vatnajökull icecap in SE central Iceland. The southern propagator has extended southward beyond the South Iceland Seismic Zone transform fault to the Westman Islands, resulting in abandonment of the Eastern Rift Zone. Continued propagation may cause abandonment of the Reykjanes Ridge. The northern propagator is linked to the southern end of the receding Kolbeinsey Ridge to the north. The NNW-trending Kerlingar Pseudo-fault bounds the propagator system to the E. The Tjörnes Transform Fault links the propagator tip to the Kolbeinsey Ridge and appears to be migrating northward in incremental steps, leaving a swath of deformed crustal blocks in its wake. Block rotations, concentrated mainly to the west of the propagators, are clockwise to the N of the hotspot and counter-clockwise to the S, possibly resulting in a component of NS divergence across EW-oriented rift zones. These rotations may help accommodate adjustments of the plate boundary zone to the relative movements of the N American and Eurasian plates. The rotated crustal blocks are composed of highly anisotropic crust with rift-parallel internal fabric generated by spreading processes. Block rotations result in reactivation of spreading-related faults as major rift-parallel, strike-slip faults. Structural details found in Iceland can help provide information that is difficult or impossible to obtain in propagating systems of the deep seafloor.
NASA Astrophysics Data System (ADS)
Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy
1989-02-01
The Intermountain and Idaho seismic belts within Idaho, Wyoming, and Montana form an unusual parabolic pattern about the axis of the aseismic eastern Snake River Plain (SRP). This pattern is also reflected in the distribution of latest Quaternary normal faults. Several late Cenozoic normal faults that trend perpendicular to the axis of the eastern SRP extend from the aseismic region to the region of latest Quaternary faulting and seismicity. A study of the late Miocene to Holocene displacement history of one of these, the Grand Valley fault system in southeastern Idaho and western Wyoming, indicates that a locus of high displacement rates has migrated away from the eastern SRP to its present location in southern Star Valley in western Wyoming. In Swan Valley the studied area closest to the eastern SRP, isotopic ages, and paleomagnetic data for over 300 samples from 47 sites on well-exposed late Cenozoic volcanic rocks (the tuff of Spring Creek, the tuff of Heise, the Huckleberry Ridge tuff, the Pine Creek Basalt, and an older tuff thought to be the tuff of Cosgrove Road) are used to demonstrate differences in the displacement rate on the Grand Valley fault over the last ˜10 m.y. Tectonic tilts for these volcanic rocks are estimated by comparing the results of paleomagnetic analyses in Swan Valley to similar analyses of samples from undeformed volcanic rocks outside of Swan Valley. Basin geometry and tilt axes are established using seismic reflection profiles and field mapping. Combining these data with the tilt data makes it possible to calculate displacement rates during discrete temporal intervals. An average displacement rate of ˜1.8 mm/yr is calculated for the Grand Valley fault in Swan Valley between 4.4 and 2.0 Ma. In the subsequent 2.0-m.y. interval the rate dropped 2 orders of magnitude to ˜0.014 mm/yr; during the preceding 5.5-m.y. interval the displacement rate is ˜0.15 mm/yr, or about 1 order of magnitude less than the rate between 4.4 and 2.0 Ma. Mapping of fault scarps and unfaulted deposits along the Grand Valley fault system shows that latest Quaternary fault scarps are restricted to the portion farthest from the eastern SRP, the southern part of the Star Valley fault. Surface displacements estimated from scarp profiles and deposit ages estimated from soil development suggest a latest Quaternary displacement rate of 0.6-1.2 mm/yr for the southern portion of the Star Valley fault. Morphologic evidence suggests that this displacement rate persisted on the Star Valley fault throughout most of the Quaternary. The latest Quaternary displacement rate calculated for the southern portion of the Star Valley fault is similar to the rate calculated for Swan Valley during the interval from 2.0 to 4.4 Ma. This similarity, together with evidence for a low Quaternary displacement rate on the fault system in Swan Valley, suggests that the location of the highest displacement rate has migrated away from the eastern SRP. Other normal faults in southeastern Idaho, northwestern Wyoming, and southwestern Montana, while less well described than the Grand Valley fault system, exhibit a similar outward migrating pattern of increased fault activity followed by quiescence. Furthermore, a temporal and spatial relationship between fault activity and the 3.5 cm/yr northeastward track of the Yellowstone hotspot is observable on the Grand Valley fault system and on other north-northwest trending late Cenozoic faults that border the eastern SRP. The temporal and spatial relationship of Miocene to present high displacement rates for other circumeastern SRP faults and the observable outwardly migrating pattern of fault activity suggest that a similar parabolic distribution of seismicity and high displacement rates was symmetrically positioned about the former position of the hotspot. Moreover, the tandem migration of the hotspot and the parabolic distribution of increased fault activity and seismicity are closely followed by a parabolic-shaped "collapse shadow," or region of fault inactivity and aseismicity. We suggest that the outwardly migrating pattern of increased fault activity (active region) results from reduced integrated lithospheric strength caused by thermal effects of the hotspot. Conversely, the outwardly propagating quiescent region is the result of a reduction or "collapse" of crustal extension rates caused by increased integrated lithospheric strength. Lithospheric strength in this region is increased by addition of mafic materials at the base of the crust and at midcrustal levels. Although the strength of the mantle portion of the lithosphere is reduced, the increased strength of the crust results in a total integrated increase in lithospheric strength. Paradoxically, the surface heat flow data suggest that the region within the interior parabola has a higher heat flow (after accounting for the cooling effects of the eastern SRP aquifer) than the adjacent regions, yet the interior region exhibits significantly lower extension rates. It appears that in this region the surface heat flow is not a good predictor of rates of lithospheric extension.
DIFFERENTIAL FAULT SENSING CIRCUIT
Roberts, J.H.
1961-09-01
A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.
NASA Astrophysics Data System (ADS)
Ye, Jiyang; Liu, Mian
2017-08-01
In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.
Advanced information processing system: Fault injection study and results
NASA Technical Reports Server (NTRS)
Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.
1992-01-01
The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.
NASA Astrophysics Data System (ADS)
Hassanabadi, Amir Hossein; Shafiee, Masoud; Puig, Vicenc
2018-01-01
In this paper, sensor fault diagnosis of a singular delayed linear parameter varying (LPV) system is considered. In the considered system, the model matrices are dependent on some parameters which are real-time measurable. The case of inexact parameter measurements is considered which is close to real situations. Fault diagnosis in this system is achieved via fault estimation. For this purpose, an augmented system is created by including sensor faults as additional system states. Then, an unknown input observer (UIO) is designed which estimates both the system states and the faults in the presence of measurement noise, disturbances and uncertainty induced by inexact measured parameters. Error dynamics and the original system constitute an uncertain system due to inconsistencies between real and measured values of the parameters. Then, the robust estimation of the system states and the faults are achieved with H∞ performance and formulated with a set of linear matrix inequalities (LMIs). The designed UIO is also applicable for fault diagnosis of singular delayed LPV systems with unmeasurable scheduling variables. The efficiency of the proposed approach is illustrated with an example.
Hierarchical Simulation to Assess Hardware and Software Dependability
NASA Technical Reports Server (NTRS)
Ries, Gregory Lawrence
1997-01-01
This thesis presents a method for conducting hierarchical simulations to assess system hardware and software dependability. The method is intended to model embedded microprocessor systems. A key contribution of the thesis is the idea of using fault dictionaries to propagate fault effects upward from the level of abstraction where a fault model is assumed to the system level where the ultimate impact of the fault is observed. A second important contribution is the analysis of the software behavior under faults as well as the hardware behavior. The simulation method is demonstrated and validated in four case studies analyzing Myrinet, a commercial, high-speed networking system. One key result from the case studies shows that the simulation method predicts the same fault impact 87.5% of the time as is obtained by similar fault injections into a real Myrinet system. Reasons for the remaining discrepancy are examined in the thesis. A second key result shows the reduction in the number of simulations needed due to the fault dictionary method. In one case study, 500 faults were injected at the chip level, but only 255 propagated to the system level. Of these 255 faults, 110 shared identical fault dictionary entries at the system level and so did not need to be resimulated. The necessary number of system-level simulations was therefore reduced from 500 to 145. Finally, the case studies show how the simulation method can be used to improve the dependability of the target system. The simulation analysis was used to add recovery to the target software for the most common fault propagation mechanisms that would cause the software to hang. After the modification, the number of hangs was reduced by 60% for fault injections into the real system.
NASA Astrophysics Data System (ADS)
Wallace, W. K.; Sherrod, B. L.; Dawson, T. E.
2002-12-01
Preliminary observations suggest that right-lateral strike-slip on the Denali fault is transferred to the Totschunda fault via an extensional bend in the Little Tok River valley. Most of the surface rupture during the Denali fault earthquake was along an east- to east-southeast striking, gently curved segment of the Denali fault. However, in the Little Tok River valley, rupture transferred to the southeast-striking Totschunda fault and continued to the southeast for another 75 km. West of the Little Tok River valley, 5-7 m of right-lateral slip and up to 2 m of vertical offset occurred on the main strand of the Denali fault, but no apparent displacement occurred on the Denali fault east of the valley. Rupture west of the intersection also occurred on multiple discontinuous strands parallel to and south of the main strand of the Denali fault. In the Little Tok River valley, the northern part of the Totschunda fault system consists of multiple discontinuous southeast-striking strands that are connected locally by south-striking stepover faults. Faults of the northern Totschunda system display 0-2.5 m of right-lateral slip and 0-2.75 m of vertical offset, with the largest vertical offset on a dominantly extensional stepover fault. The strands of the Totschunda system converge southeastward to a single strand that had up to 2 m of slip. Complex and discontinuous faulting may reflect in part the immaturity of the northern Totschunda system, which is known to be younger and have much less total slip than the Denali. The Totschunda fault forms an extensional bend relative to the dominantly right-lateral Denali fault to the west. The fault geometry and displacements at the intersection suggest that slip on the Denali fault during the earthquake was accommodated largely by extension in the northern Totschunda fault system, allowing a significant decrease in strike-slip relative to the Denali fault. Strands to the southwest in the area of the bend may represent shortcut faults that have reduced the curvature at the intersection of the two fault systems.
NASA Astrophysics Data System (ADS)
Fenton, C. H.; Sutiwanich, C.
2005-12-01
The Ranong and Khlong Marui faults are northeast-southwest trending structures in the Isthmus of Kra, southern Thailand, that apparently link the extensional regimes of the Mergui Basin in the Andaman Sea and the Gulf of Thailand. These faults are depicted commonly as strike-slip faults, acting as conjugate structures to the dominant northwest-southeast trending strike-slip faults, in Southeast Asia. These faults are parallel to the predominant structural grain in the Carboniferous rocks of peninsular Thailand. In addition, they appear to be bounding structures for several Tertiary basins, including the onshore parts of the Surat Thani basin and the offshore Chumphon basin. Initial remote sensing studies showed that both faults have relatively subdued geomorphic expressions. Field reconnaissance investigations indicated a lack of youthful tectonic geomorphology along the Khlong Marui fault and ambiguous evidence for recent movement along the Ranong fault. Fault exposures along both fault trends and on minor parallel faults in the region indicated that, rather than predominantly strike-slip motion, these faults have experienced up-to-the-west reverse movement. Because of its more youthful geomorphic expression, several sites along the Ranong fault were chosen for paleoseismic trenching. Initial trench exposures indicate an absence of Holocene movement. Some exposures indicate the possibility of Late Tertiary-Early Holocene vertical movement. These investigations are currently ongoing and we hope to report our conclusions at the Fall Meeting.
Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems
NASA Astrophysics Data System (ADS)
Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook
2015-11-01
High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.
Intermittent/transient fault phenomena in digital systems
NASA Technical Reports Server (NTRS)
Masson, G. M.
1977-01-01
An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Haeussler, P. J.; Seitz, G. G.; Dawson, T. E.; Stenner, H. D.; Matmon, A.; Crone, A. J.; Personius, S.; Burns, P. B.; Cadena, A.; Thoms, E.
2005-12-01
Developing accurate rupture histories of long, high-slip-rate strike-slip faults is is especially challenging where recurrence is relatively short (hundreds of years), adjacent segments may fail within decades of each other, and uncertainties in dating can be as large as, or larger than, the time between events. The Denali Fault system (DFS) is the major active structure of interior Alaska, but received little study since pioneering fault investigations in the early 1970s. Until the summer of 2003 essentially no data existed on the timing or spatial distribution of past ruptures on the DFS. This changed with the occurrence of the M7.9 2002 Denali fault earthquake, which has been a catalyst for present paleoseismic investigations. It provided a well-constrained rupture length and slip distribution. Strike-slip faulting occurred along 290 km of the Denali and Totschunda faults, leaving unruptured ?140km of the eastern Denali fault, ?180 km of the western Denali fault, and ?70 km of the eastern Totschunda fault. The DFS presents us with a blank canvas on which to fill a chronology of past earthquakes using modern paleoseismic techniques. Aware of correlation issues with potentially closely-timed earthquakes we have a) investigated 11 paleoseismic sites that allow a variety of dating techniques, b) measured paleo offsets, which provide insight into magnitude and rupture length of past events, at 18 locations, and c) developed late Pleistocene and Holocene slip rates using exposure age dating to constrain long-term fault behavior models. We are in the process of: 1) radiocarbon-dating peats involved in faulting and liquefaction, and especially short-lived forest floor vegetation that includes outer rings of trees, spruce needles, and blueberry leaves killed and buried during paleoearthquakes; 2) supporting development of a 700-900 year tree-ring time-series for precise dating of trees used in event timing; 3) employing Pb 210 for constraining the youngest ruptures in sag ponds on the eastern and western Denali fault; and 4) using volcanic ashes in trenches for dating and correlation. Initial results are: 1) Large earthquakes occurred along the 2002 rupture section 350-700 yrb02 (2-sigma, calendar-corrected, years before 2002) with offsets about the same as 2002. The Denali penultimate rupture appears younger (350-570 yrb02) than the Totschunda (580-700 yrb02); 2) The western Denali fault is geomorphically fresh, its MRE likely occurred within the past 250 years, the penultimate event occurred 570-680 yrb02, and slip in each event was 4m; 3) The eastern Denali MRE post-dates peat dated at 550-680 yrb02, is younger than the penultimate Totschunda event, and could be part of the penultimate Denali fault rupture or a separate earthquake; 4) A 120-km section of the Denali fault between tNenana glacier and the Delta River may be a zone of overlap for large events and/or capable of producing smaller earthquakes; its western part has fresh scarps with small (1m) offsets. 2004/2005 field observations show there are longer datable records, with 4-5 events recorded in trenches on the eastern Denali fault and the west end of the 2002 rupture, 2-3 events on the western part of the fault in Denali National Park, and 3-4 events on the Totschunda fault. These and extensive datable material provide the basis to define the paleoseismic history of DFS earthquake ruptures through multiple and complete earthquake cycles.
NASA Astrophysics Data System (ADS)
Goto, Hideaki; Tsutsumi, Hiroyuki; Toda, Shinji; Kumahara, Yasuhiro
2017-02-01
The 30-km-long surface ruptures associated with the M w 7.0 ( M j 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped 100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Authority of Japan (GSI) indicated coseismic surface deformation in and around the downtown of Kumamoto City, the surface ruptures have not been clearly mapped in the central part of the Kumamoto Plain, and whether there are other active faults other than the Futagawa fault in the Kumamoto Plain remained unclear. We produced topographical stereo images (anaglyph) from 5-m-mesh digital elevation model of GSI, which was generated from light detection and ranging data. We interpreted them and identified that several SW-sloping river terraces formed after the deposition of the pyroclastic flow deposits related to the latest large eruption of the Aso caldera (86.8-87.3 ka) are cut and deformed by several NW-trending flexure scarps down to the southwest. These 5.4-km-long scarps that cut across downtown Kumamoto were identified for the first time, and we name them as the Suizenji fault zone. Surface deformation such as continuous cracks, tilts, and monoclinal folding associated with the main shock of the 2016 Kumamoto earthquake was observed in the field along the fault zone. The amount of vertical deformation ( 0.1 m) along this fault associated with the 2016 Kumamoto earthquake was quite small compared to the empirically calculated coseismic slip (0.5 m) based on the fault length. We thus suggest that the slip on this fault zone was triggered by the Kumamoto earthquake, but the fault zone has potential to generate an earthquake with larger slip that poses a high seismic risk in downtown Kumamoto area.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Jiang, Zhongshan; Huang, Dingfa; Yuan, Linguo; Hassan, Abubakr; Zhang, Lupeng; Yang, Zhongrong
2018-04-01
The 2016 moment magnitude (Mw) 7.8 Kaikoura earthquake demonstrated that multiple fault segments can undergo rupture during a single seismic event. Here, we employ Global Positioning System (GPS) observations and geodetic modeling methods to create detailed images of coseismic slip and postseismic afterslip associated with the Kaikoura earthquake. Our optimal geodetic coseismic model suggests that rupture not only occurred on shallow crustal faults but also to some extent at the Hikurangi subduction interface. The GPS-inverted moment release during the earthquake is equivalent to a Mw 7.9 event. The near-field postseismic deformation is mainly derived from right-lateral strike-slip motions on shallow crustal faults. The afterslip did not only significantly extend northeastward on the Needles fault but also appeared at the plate interface, slowly releasing energy over the past 6 months, equivalent to a Mw 7.3 earthquake. Coulomb stress changes induced by coseismic deformation exhibit complex patterns and diversity at different depths, undoubtedly reflecting multi-fault rupture complexity associated with the earthquake. The Coulomb stress can reach several MPa during coseismic deformation, which can explain the trigger mechanisms of afterslip in two high-slip regions and the majority of aftershocks. Based on the deformation characteristics of the Kaikoura earthquake, interseismic plate coverage, and historical earthquakes, we conclude that Wellington is under higher seismic threat after the earthquake and great attention should be paid to potential large earthquake disasters in the near future.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe
2017-12-01
Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.
Chen, Gang; Song, Yongduan; Lewis, Frank L
2016-05-03
This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.
Spatial and Temporal Variation of in-situ Stress in and around Active Fault zones in Central Japan
NASA Astrophysics Data System (ADS)
Ikeda, R.; Omura, K.; Matsuda, T.; Iio, Y.
2002-12-01
In the "Active Fault Zone Drilling Project in Japan," we have compared the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone in different conditions. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), have been drilled through their fault fracture zones. A similar experiment conducted on and research of the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9). We can use a deep borehole as a reliable tool to understand overall fault structure and composed materials directly. Additionally, the stress states in and around the fault fractured zones were obtained from in-situ stress measurements by the hydraulic fracturing method. Important phenomena such as rapid stress drop in the fault fracture zones were observed in the Neodani well (1300 m deep) and the Nojima well (1800 m) of the fault zone drillings, as well as in the Ashio well (2,000 m) in the focal area. In the Atera fault project, we have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Four boreholes (400 m to 600 m deep) were located on a line crossing the fracture zone of the Atera fault. We noted that the stress magnitude decreases in the area closer to the center of the fracture zone. Furthermore the orientation of the maximum horizontal compressive stress was almost reverse of the fault moving direction. These results support the idea that the differential stress is extremely small at narrow zones adjoining fracture zones. We also noted that the frictional strength of the crust adjacent to the faults is high and the level of shear stress in the crust adjacent to the faults is principally controlled by the frictional strength of rock. We argue that the stress state observed in these sites exists only if the faults are quite "weak." As a temporal variation of stresses, crustal stress was recorded from 1978 to before the Kobe earthquake in and around the area where the earthquake occurred. By examining this data, the change in tectonic stress gradually increased prior to the earthquake. After the earthquake, the same boreholes were once again used to obtain new data. From these measurements, we were able to determine that there was a definite drop in the crustal stress in the area and that there was a change in the direction of the principal stresses. The continual measuring is essential to estimate the absolute stress magnitude that initiate earthquakes and control their propagation.
Smart intimation and location of faults in distribution system
NASA Astrophysics Data System (ADS)
Hari Krishna, K.; Srinivasa Rao, B.
2018-04-01
Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.
NASA Astrophysics Data System (ADS)
Roman, D. C.; Neuberg, J.; Luckett, R. R.
2006-08-01
Episodes of volcanic unrest do not always lead to an eruption. Many of the commonly monitored signals of volcanic unrest, including surface deformation and increased degassing, can reflect perturbations to a deeper magma storage system, and may persist for years without accompanying eruptive activity. Signals of volcanic unrest can also persist following the end of an eruption. Furthermore, the most reliable eruption precursor, the occurrence of low-frequency seismicity, appears to reflect very shallow processes and typically precedes eruptions by only hours to days. Thus, the identification of measurable and unambiguous indicators that are sensitive to changes in the mid-level conduit system during an intermediate stage of magma ascent is of critical importance to the field of volcano monitoring. Here, using data from the ongoing eruption of the Soufrière Hills Volcano, Montserrat, we show that ˜90° changes in the orientation of double-couple fault-plane solutions for high-frequency 'volcanotectonic' (VT) earthquakes reflect pressurization of the mid-level conduit system prior to eruption and may precede the onset of eruptive episodes by weeks to months. Our results demonstrate that, once the characteristic stress field response to magma ascent at a given volcano is established, a relatively simple analysis of VT fault-plane solutions may be used to make intermediate-term assessments of the likelihood of future eruptive activity.
Lithospheric Shear Stresses Over And Around Africa
NASA Astrophysics Data System (ADS)
Greff-Lefftz, M.; Jean, B.; Vicente De Gouveia, S.
2017-12-01
We use a simple model for mantle dynamics combining contributions of subducted lithosphere, domes at the bottom of the mantle and upwelling plumes. A dominant feature of plate tectonics is the quasi permanence of a girdle of subductions around the Pacific ocean (or its ancestor), which creates large-wavelength positive topography anomaly within the ring they form. The superimposition of the resultant extension with the one induced by the dome leads to a permanent extensional regime over Africa and the future Indian ocean which creates faults with azimuth directions depending on the direction of the most active part of the ring of subductions. We thus obtain fractures with NW-SE azimuth during the period 275-165 Ma parallel to the strike of the subduction zone of the West South American active margin, which appears to be very active during this period. Between 155-95 Ma, subduction became more active along the Eastern Australian coast involving a change in the direction of the faults toward an E-W direction, in agreement with the observed fault systems between Africa and India, Antartica and Australia. During the Mesozoic and the Cenozoic, we correlate the permanent extensional regime over Africa and Indian ocean with the observed rift systems.Finally we emphasize the role of three primary hotspots as local additional contributors to the stress field imposed by our proposed subduction-doming system, which help in the opening of Indian and South Atlantic oceans.
Seismic interpretation of the deep structure of the Wabash Valley Fault System
Bear, G.W.; Rupp, J.A.; Rudman, A.J.
1997-01-01
Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.W.; Davidson, G.L.; Heller, J.A.
1993-03-01
A road cut along US 321 N, approximately 1 km NW of Walland, TN, exposes a previously unexposed complexly deformed section of Middle Ordovician clastic wedge [Chickamauga Group, Sevier Shale] sedimentary rocks. It provides an excellent opportunity to analyze both the lithologic assemblages and complex folding and faulting beneath the Great Smoky thrust sheet. Arkosic quartzite of the Lower Cambrian Cochran Conglomerate [Chilhowee Group], has been thrust over weaker Sevier Shale in the hanging wall of the Guess Creek fault. Regionally, the Great Smoky fault separates metamorphosed Precambrian to Lower Cambrian clastic shelf, slope, and rift facies rocks of themore » western Blue Ridge from Cambro-Ordovician carbonate shelf and orogenic wedge deposits of the foreland fold and thrust belt. West of the Great Smoky fault, the Guess Creek fault has been interpreted to floor duplexed Cambro-Ordovician rocks exposed in windows beneath the Great Smoky thrust sheet in the vicinity of the Great Smoky Mountains National Park. The Sevier Shale here consists of variably cleaved shale, siltstone, sandstone, and conglomerate. It exhibits a variety of fold styles throughout the exposure, ranging from predominantly noncylindrical tight folds to broad, open structures. A weak axial-planar pencil cleavage is developed in the Middle Ordovician shale and siltstone, along with a secondary cleavage that transects the axial surfaces of the folds. Minor thrust faults within the Sevier Shale appear to have formed by propagation through tightened fold hinges or bedding-parallel slip. The fold pattern observed in the roadcut appears to be partly the result of movement along a tear fault that broke both the hanging wall and footwall of the Great Smoky thrust sheet after emplacement. Slickenline orientations along minor thrust surfaces in the Cochran Conglomerate indicate eastward-directed, oblique-slip movement of the tear fault.« less
NASA Astrophysics Data System (ADS)
Kinscher, J.; Krüger, F.; Woith, H.; Lühr, B. G.; Hintersberger, E.; Irmak, T. S.; Baris, S.
2013-11-01
The Armutlu peninsula, located in the eastern Marmara Sea, coincides with the western end of the rupture of the 17 August 1999, İzmit MW 7.6 earthquake which is the penultimate event of an apparently westward migrating series of strong and disastrous earthquakes along the NAFZ during the past century. We present new seismotectonic data of this key region in order to evaluate previous seismotectonic models and their implications for seismic hazard assessment in the eastern Marmara Sea. Long term kinematics were investigated by performing paleo strain reconstruction from geological field investigations by morphotectonic and kinematic analysis of exposed brittle faults. Short term kinematics were investigated by inverting for the moment tensor of 13 small to moderate recent earthquakes using surface wave amplitude spectra. Our results confirm previous models interpreting the eastern Marmara Sea Region as an active transtensional pull-apart environment associated with significant NNE-SSW extension and vertical displacement. At the northern peninsula, long term deformation pattern did not change significantly since Pliocene times contradicting regional tectonic models which postulate a newly formed single dextral strike slip fault in the Marmara Sea Region. This area is interpreted as a horsetail splay fault structure associated with a major normal fault segment that we call the Waterfall Fault. Apart from the Waterfall Fault, the stress strain relation appears complex associated with a complicated internal fault geometry, strain partitioning, and reactivation of pre-existing plane structures. At the southern peninsula, recent deformation indicates active pull-apart tectonics constituted by NE-SW trending dextral strike slip faults. Earthquakes generated by stress release along large rupture zones seem to be less probable at the northern, but more probable at the southern peninsula. Additionally, regional seismicity appears predominantly driven by plate boundary stresses as transtensional faulting is consistent with the southwest directed far field deformation of the Anatolian plate.
Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.
1999-01-01
We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.
Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Compiler)
2014-01-01
This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.
Kellogg, K.S.; Minor, S.A.
2005-01-01
The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar to other Tertiary structural basins in southern California, such those that underlie Cuyama Valley, the Ridge basin, and the east Ventura basin.
NASA Astrophysics Data System (ADS)
Beardsley, A. G.; Avé Lallemant, H. G.; Levander, A.; Clark, S. A.
2006-12-01
The kinematic history of the Leeward Antilles (offshore Venezuela) can be characterized with the integration of onshore outcrop data and offshore seismic reflection data. Deformation structures and seismic interpretation show that oblique convergence and wrench tectonics have controlled the diachronous deformation identified along the Caribbean - South America plate boundary. Field studies of structural features in outcrop indicate one generation of ductile deformation (D1) structures and three generations of brittle deformation (F1 - F3) structures. The earliest deformation (D1/F1) began ~ 110 Ma with oblique convergence between the Caribbean plate and South American plate. The second generation of deformation (F2) structures initiated in the Eocene with the extensive development of strike-slip fault systems along the diffuse plate boundary and the onset of wrench tectonics within a large-scale releasing bend. The most recent deformation (F3) has been observed in the west since the Miocene where continued dextral strike-slip motion has led to the development of a major restraining bend between the Caribbean plate transform fault and the Oca - San Sebastian - El Pilar fault system. Deformation since the late Cretaceous has been accompanied by a total of 135° clockwise rotation. Interpretation of 2D marine reflection data indicates similar onshore and offshore deformation trends. Seismic lines that approximately parallel the coastline (NW-SE striking) show syndepositional normal faulting during F1/F2 and thrust faulting associated with F3. On seismic lines striking NNE-SSW, we interpret inversion of F2 normal faults with recent F3 deformation. We also observe both normal and thrust faults related to F3. The thick sequence of recent basin sedimentation (Miocene - Recent), interpreted from the seismic data, supports the ongoing uplift and erosion of the islands; as suggested by fluid inclusion analysis. Overall, there appears to be a strong correlation between onshore micro- and mesoscopic deformational structures and offshore macro-scale structural features seen in the reflection data. The agreement of features supports our regional deformation and rotation model along the Caribbean - South America obliquely convergent plate boundary.
NASA Astrophysics Data System (ADS)
Goren, Liran; Castelltort, Sébastien; Klinger, Yann
2016-04-01
Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western Mount Lebanon. A numerical landscape evolution experiment demonstrates the emergence of a similar χ pattern of drainage area disequilibrium in response to progressive distributed shear deformation of river basins with relatively minor drainage network reorganization.
NASA Astrophysics Data System (ADS)
Douilly, R.; Haase, J. S.; Ellsworth, W. L.; Bouin, M.; Calais, E.; Armbruster, J. G.; Mercier De Lepinay, B. F.; Deschamps, A.; Saint Louis, M.; Meremonte, M. E.; Hough, S. E.
2011-12-01
Haiti has several active faults that are capable of producing large earthquakes such as the 2010 Mw 7.0 Haiti earthquake. This earthquake was not unexpected, given geodetic measurements showing strain accumulation on the Enriquillo Plantain Garden Fault Zone, the major fault system in southern Haiti (Manaker et al. 2008). GPS and INSAR data (Calais et al., 2010) show, however, that this rupture occurred on the previously unmapped Léogâne fault, a 60° north dipping oblique blind thrust located immediately north of the Enriquillo Fault. Following the earthquake, several groups installed temporary seismic stations to record aftershocks. Natural Resources Canada installed three broadband seismic stations, Géoazur installed 21 ocean bottom seismometers, L'Institut de Physique du Globe de Paris installed 5 broadband seismometers, and the United States Geological Survey deployed 17 short period and strong motion seismometers in and around Port-au-Prince. We use data from this complete set of stations, along with data from permanent regional stations, to relocate all of the events from March 17 to June 24, to determine the regional one-dimensional crustal structure and determine focal mechanisms. The aftershock locations from the combined data set clearly delineate the Léogâne fault. The strike and dip closely agrees with that of the global centroid moment tensor solution, but appears to be more steeply dipping than the finite fault inversions. The aftershocks also delineate a flat structure on the west side of the rupture zone and may indicate triggered seismicity on the Trois Baies fault, although the depths of these events are not as well constrained. There is no clear evidence for aftershocks on the other rupture segments inferred in the Hayes et al. (2010) mainshock rupture model. There is a cluster of aftershocks in the hanging wall near the western patch of high slip identified by Calais et al. (2010) and Meng et al. (2011), or central patch in the Hayes et al. (2010) model. We use first-motion focal mechanism solutions to clarify the relationship of the fault geometry to the mechanisms of the larger events.
Fisher, M.A.; Langenheim, V.E.; Sorlien, C.C.; Dartnell, P.; Sliter, R.W.; Cochrane, G.R.; Wong, F.L.
2005-01-01
Offshore faults west of Point Dume, southern California, are part of an important regional fault system that extends for about 206 km, from near the city of Los Angeles westward along the south flank of the Santa Monica Mountains and through the northern Channel Islands. This boundary fault system separates the western Transverse Ranges, on the north, from the California Continental Borderland, on the south. Previous research showed that the fault system includes many active fault strands; consequently, the entire system is considered a serious potential earthquake hazard to nearby Los Angeles. We present an integrated analysis of multichannel seismic- and high-resolution seismic-reflection data and multibeam-bathymetric information to focus on the central part of the fault system that lies west of Point Dume. We show that some of the main offshore faults have cumulative displacements of 3-5 km, and many faults are currently active because they deform the seafloor or very shallow sediment layers. The main offshore fault is the Dume fault, a large north-dipping reverse fault. In the eastern part of the study area, this fault offsets the seafloor, showing Holocene displacement. Onshore, the Malibu Coast fault dips steeply north, is active, and shows left-oblique slip. The probable offshore extension of this fault is a large fault that dips steeply in its upper part but flattens at depth. High-resolution seismic data show that this fault deforms shallow sediment making up the Hueneme fan complex, indicating Holocene activity. A structure near Sycamore knoll strikes transversely to the main faults and could be important to the analysis of the regional earthquake hazard because the structure might form a boundary between earthquake-rupture segments.
Activation of preexisting transverse structures in an evolving magmatic rift in East Africa
NASA Astrophysics Data System (ADS)
Muirhead, J. D.; Kattenhorn, S. A.
2018-01-01
Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.
Fault management for data systems
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann
1993-01-01
Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.
Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha
2014-09-01
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, W.; Jia, M. P.
2018-06-01
When incipient fault appear in the rolling bearing, the fault feature is too small and easily submerged in the strong background noise. In this paper, wavelet total variation denoising based on kurtosis (Kurt-WATV) is studied, which can extract the incipient fault feature of the rolling bearing more effectively. The proposed algorithm contains main steps: a) establish a sparse diagnosis model, b) represent periodic impulses based on the redundant wavelet dictionary, c) solve the joint optimization problem by alternating direction method of multipliers (ADMM), d) obtain the reconstructed signal using kurtosis value as criterion and then select optimal wavelet subbands. This paper uses overcomplete rational-dilation wavelet transform (ORDWT) as a dictionary, and adjusts the control parameters to achieve the concentration in the time-frequency plane. Incipient fault of rolling bearing is used as an example, and the result shows that the effectiveness and superiority of the proposed Kurt- WATV bearing fault diagnosis algorithm.
NASA Astrophysics Data System (ADS)
Zuza, A. V.; Yin, A.; Lin, J. C.
2015-12-01
Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip fault systems, both on Earth and throughout the solar system (e.g., the Tiger Stripe Fractures on Enceladus).
Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.
2014-01-01
The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.
NASA Astrophysics Data System (ADS)
Young, C. S.; Dawers, N. H.
2017-12-01
Fault growth is often accomplished by linking a series of en echelon faults through relay ramps. A relay ramp is the area between two overlapping fault segments that tilts and deforms as the faults accrue displacement. The structural evolution of breached normal fault relay ramps remains poorly understood because of the difficulty in defining how slip is partitioned between the most basinward fault (known as the outboard fault), the overlapping fault (inboard fault), and any ramp-breaching linking faults. Along the Warner Valley fault in south-central Oregon, two relay ramps displaying different fault linkage geometries are lined with a series of paleo-lacustrine shorelines that record a Pleistocene paleolake regression. The inner edges of these shorelines act as paleo-horizontal datums that have been deformed by fault activity, and are used to measure relative slip variations across the relay ramp bounding faults. By measuring the elevation changes using a 10m digital elevation model (DEM) of shoreline inner edges, we estimate the amount of slip partitioned between the inboard, outboard and ramp-breaching linking faults. In order to attribute shoreline deformation to fault activity we identify shoreline elevation anomalies, where deformation exceeds a ± 3.34 m window, which encompass our conservative estimates of natural variability in the shoreline geomorphology and the error associated with the data collection. Fault activity along the main length of the fault for each ramp-breaching style is concentrated near the intersection of the linking fault and the outboard portion of the main fault segment. However, fault activity along the outboard fault tip varies according to breaching style. At a footwall breach the entire outboard fault tip appears relatively inactive. At a mid-ramp breach the outboard fault tip remains relatively active because of the proximity of the linking fault to this fault tip.
Software-implemented fault insertion: An FTMP example
NASA Technical Reports Server (NTRS)
Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.
1987-01-01
This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.
Geology of the Ralston Buttes district, Jefferson County, Colorado: a preliminary report
Sheridan, Douglas M.; Maxwell, Charles H.; Albee, Arden L.; Van Horn, Richard
1956-01-01
The Ralston Buttes district in Jefferson County is one of the most significant new uranium districts located east of the Continental Divide in Colorado. The district is east of the Colorado Front Range mineral belt, along the east front of the range. From November 1953 through October 1956, about 10,000 tons of uranium ore, much of which was high-grade pitchblende-bearing vein material, was shipped from the district. The ore occurs in deposits that range in size from bodies containing less than 50 tons to ore shoots containing over 1,000 tons. The only other mining activity in the area has been a sporadic production of beryl, feldspar, and scrap mica from Precambrian pegmatites, and quarrying of dimension stone, limestone, and clay from sedimentary rocks. Most of the Ralston Buttes district consists of complexly folded Precambrian metamorphic and igneous rocks - gneiss, schist, quartzite, amphibolite, and granodiorite. Paleozoic and Mesozoic sedimentary rocks crop out in the northeastern part of the district. These rocks are cut by northwesterly-trending fault systems of Laramide age and by small bodies of intrusive rocks that are Tertiary in age. The typical uranium deposits in the district are hydrothermal veins occupying openings in Laramide fault breccias or related fractures that cut the Precambrian rocks. Pitchblende and lesser amounts of secondary uranium minerals are associated with sparse base-mental sulfides in a gangue of carbonate minerals, potash feldspar, and, more rarely, quartz. Less common types of deposits consist of pitchblende and secondary uranium minerals that occupy fractures cutting pegmatites and quartz veins. The uranium deposits are concentrated in two areas, the Ralston Creek area and the Golden Gate Canyon area. The deposits in the Ralston Creek area are located along the Rogers fault system, and the deposits in the Golden Gate Canyon area are along the Hurricane Hill fault system. Two geologic factors were important to the localization of the uranium deposits: (1) favorable structural environment and (2) favorable host rocks. The deposits in each of the two major areas are located where a northwesterly-trending Laramide fault system splits into a complex network of faults. Also, most of the deposits appear to be localized where the faults cut Precambrian rocks rich in hornblende, biotite, or garnet and biotite. The ore controls recognized in this relatively new uranium district may have wider application in areas of similar geology elsewhere in the Front Range.
The role of discrete intrabasement shear zones during multiphase continental rifting
NASA Astrophysics Data System (ADS)
Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon
2016-04-01
Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with overlying rift-related faults: (i) Faults exploit planes of weakness internally within the shear zones; (ii) faults initiate within the hangingwall and subsequently merge along the intrabasement structure at depth; and (iii) faults initiate independently from and cross-cut intrabasement structure. We find that reactivation preferentially occurs along the thicker, steeper intrabasement structures, the Devonian Shear Zones, with individual faults exploiting internal mylonite layers. Using a detailed 3D interpretation of intrabasement structures, correlated with the onshore geology, we show that large-scale Devonian shear zones act as a long-lived structural template for fault initiation throughout multiple rift phases. Rift-related faults inherit the orientation and location of underlying intrabasement structures.
Lewis, Kristen A.; Potter, Christopher J.; Shah, Anjana K.; Stanley, Richard G.; Haeussler, Peter J.; Saltus, Richard W.
2015-07-30
The eastern seismic lines show evidence of numerous short-wavelength antiforms that appear to correspond to a series of northeast-trending lineations observed in aeromagnetic data, which have been interpreted as being due to folding of Paleogene volcanic strata. The eastern side of the basin is also cut by a number of reverse faults and thrust faults, the majority of which strike north-south. The western side of the Susitna Basin is cut by a series of regional reverse faults and is characterized by synformal structures in two fault blocks between the Kahiltna River and Skwentna faults. These synforms are progressively deeper to the west in the footwalls of the east-vergent Skwentna and northeast-vergent Beluga Mountain reverse faults. Although the seismic data are limited to the south, we interpret a potential regional south-southeast-directed reverse fault striking east-northeast on the east side of the basin that may cross the entire southern portion of the basin.
Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri
Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.
1997-01-01
Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.
Abstractions for Fault-Tolerant Distributed System Verification
NASA Technical Reports Server (NTRS)
Pike, Lee S.; Maddalon, Jeffrey M.; Miner, Paul S.; Geser, Alfons
2004-01-01
Four kinds of abstraction for the design and analysis of fault tolerant distributed systems are discussed. These abstractions concern system messages, faults, fault masking voting, and communication. The abstractions are formalized in higher order logic, and are intended to facilitate specifying and verifying such systems in higher order theorem provers.
NASA Astrophysics Data System (ADS)
Ridgway, K.; Trop, J. M.; Finzel, E.; Brennan, P. R.; Gilbert, H. J.; Flesch, L. M.
2015-12-01
Studies the past decade have fundamentally changed our perspective on the Mesozoic and Cenozoic tectonic configuration of Alaska. New concepts include: 1) A link exists between Mesozoic collisional zones, Cenozoic strike-slip fault systems, and active deformation that is related to lithospheric heterogeneities that remain over geologic timescales. The location of the active Denali fault and high topography, for example, is within a Mesozoic collisional zone. Rheological differences between juxtaposed crustal blocks and crustal thickening in this zone have had a significant influence on deformation and exhumation in south-central Alaska. In general, the original configuration of the collisional zone appears to set the boundary conditions for long-term and active deformation. 2) Subduction of a spreading ridge has significantly modified the convergent margin of southern Alaska. Paleocene-Eocene ridge subduction resulted in surface uplift, unconformity development and changes in deposystems in the forearc region, and magmatism that extended from the paleotrench to the retroarc region. 3) Oligocene to Recent shallow subduction of an oceanic plateau has markedly reconfigured the upper plate of the southern Alaska convergent margin. This ongoing process has prompted growth of some of the largest mountain ranges on Earth, exhumation of the forearc and backarc regions above the subducted slab, development of a regional gap in arc magmatism above the subducted slab as well as slab-edge magmatism, and displacement on the Denali fault system. In the light of these new tectonic concepts for Alaska, we will discuss targets of opportunity for future integrated geologic and geophysical studies. These targets include regional strike-slip fault systems, the newly recognized Bering plate, and the role of spreading ridge and oceanic plateau subduction on the location and pace of exhumation, sedimentary basin development, and magmatism in the upper plate.
NASA Astrophysics Data System (ADS)
Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.
2017-11-01
The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike-slip faults at the northern end of the rupture. The northern and southern strike-slip fault domains have the same orientation but are spatially separated by >15 km. In our model, the low angle splay thrust fault is located above the slab and connects the strike-slip faults kinematically. During the aftershock phase, the entire fault system remained active.
NASA Astrophysics Data System (ADS)
Yin, An; Kelty, Thomas K.; Davis, Gregory A.
1989-09-01
Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.
Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling
NASA Astrophysics Data System (ADS)
Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.
2007-08-01
Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration assessments. Model results may also be used to help predict the location of basement discontinuities which may have focused hydrothermal fluids during basin formation and inversion.
NASA Astrophysics Data System (ADS)
Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa
2015-11-01
The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.
NASA Astrophysics Data System (ADS)
Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédéric
2017-04-01
Flow through reservoirs such as fractured media is powered by pressure gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of ground surface deformation and sub-surface fluid pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Amongst all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically-induced deformation over a broad range of time scales with a remarkable precision (1 nanoradian). Here, we investigate the information content of transient surface tilt generated by flow in a kilometer scale sub-vertical fault zone and its surrounding fractured rock matrix. Our approach involves the combined analysis of field data and results of a fully coupled poroelastic model, where fault and matrix are represented as equivalent homogeneous domains. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in: 1) tilt time series alone from a set of 4 instruments; 2) the ratio of tilt over pressure. With the model, we evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. In particular, we show a few well placed tiltmeters (on each side of a fault) give more information on the medium's properties than well spatialized surface displacement maps. Furthermore, the ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone, and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated to fault zone hydrogeology at short time scales, where space-borne surveying methods fail to seize any deformation signal.
Spencer, J.E.
2011-01-01
Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani
2018-02-01
As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huijuan; Diao, Xiaoxu; Li, Boyuan
This paper studies the propagation and effects of faults of critical components that pertain to the secondary loop of a nuclear power plant found in Nuclear Hybrid Energy Systems (NHES). This information is used to design an on-line monitoring (OLM) system which is capable of detecting and forecasting faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop. The simulation is accomplished by using the Integrated System Failure Analysis (ISFA). ISFA is used for analyzing hardware and softwaremore » faults during the conceptual design phase. In this paper, the models of system components required by ISFA are initially constructed. Then, the fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived from the design of an OLM system. The result of the fault simulation is utilized to build a database for fault detection and diagnosis, provide preventive measures, and propose an optimization plan for the OLM system.« less
Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.
2003-01-01
Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.
Grauch, V.J.S.; Drenth, Benjamin J.
2009-01-01
High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.
NASA Astrophysics Data System (ADS)
Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel
2016-04-01
The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized spreading center. The interest of that definition is that it does not restrain the term oceanic crust to a basement composition and consequently does not exclude the creation of magma-poor oceanic crust, as observed at slow spreading ridges for example. Indeed, the initiation of steady state oceanic spreading is not necessarily magmatic (e.g. some segments of the Australian-Antarctic margins). In this case, drifting is accommodated by mantle exhumation. However, in this magma-poor transition, and without clear markers of a gradual increase of magmatism, it thus appears difficult to clearly differentiate an exhumed OCT basement and an exhumed oceanic basement. Some theoretical differences can be nevertheless considered: exhumed OCT basement should display a chemical evolution toward the ocean from a subcontinental to an oceanic signature. Moreover, extensional detachment faults are probably long-lived due to the poor influence of the asthenosphere at this stage. On the contrary, exhumed oceanic basement should only display an oceanic signature. In this case, extensional detachment faults are certainly short-lived, due to the strong influence of the asthenosphere, which tends to quickly re-localize the deformation above the spreading center.
Improving Multiple Fault Diagnosability using Possible Conflicts
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino
2012-01-01
Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.
Tectonic implications of Mars crustal magnetism
Connerney, J. E. P.; Acuña, M. H.; Ness, N. F.; Kletetschka, G.; Mitchell, D. L.; Lin, R. P.; Reme, H.
2005-01-01
Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an ≈400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics. PMID:16217034
Tectonic implications of Mars crustal magnetism.
Connerney, J E P; Acuña, M H; Ness, N F; Kletetschka, G; Mitchell, D L; Lin, R P; Reme, H
2005-10-18
Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an approximately 400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics.
AGSM Functional Fault Models for Fault Isolation Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
This project implements functional fault models to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.
NASA Astrophysics Data System (ADS)
Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim
2008-07-01
The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent faults often reactivate older fault systems that were formed under E-W to NW-SE horizontal compression, compatible with late Pan-African tectonics. The present-day stress inverted from earthquake focal mechanisms shows that the Manyara-Dodoma Rift segment is presently subjected to an extensional stress field with a N080°E direction of horizontal principal extension. Under this stress field, the rift develops by: (1) reactivation of the pre-existing tectonic planes of weakness, and (2) progressive development of a new fault system in a more N-S trend by the linkage of existing rift faults. This process started about 1.2 Ma ago and is still ongoing.
Data-based fault-tolerant control for affine nonlinear systems with actuator faults.
Xie, Chun-Hua; Yang, Guang-Hong
2016-09-01
This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Griscom, Andrew
1983-01-01
Eleven magnetic interpretation maps (scale 1:250,000) have been prepared for the area .of. exposed crystalline rocks in the Southern Najd and part of the Southern Tuwayq quadrangles (scale 1:500,000) from available published data. Boundaries of a variety of rock units that produce distinctive magnetic anomalies .or anomaly patterns are delineated. In some cases these magnetic boundaries correspond with previously mapped geologic contacts, and in other cases they indicate the possibility of additional, as yet unmapped, geologic contacts. The magnetic boundaries also allow the extrapolation of geologic contacts across areas covered by Quaternary deposits. Many boundaries are identified as part of the Najd fault system, and offset magnetic anomalies may be correlated across certain fault zones. Approximate dips were calculated for a few boundaries that represent igneous contacts, faults, or unconformities. Some characteristic anomalies appear to be associated in a general way with areas of gold mineralization and thus provide a guide for further prospecting.
Validation techniques for fault emulation of SRAM-based FPGAs
Quinn, Heather; Wirthlin, Michael
2015-08-07
A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less
NASA Astrophysics Data System (ADS)
Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.
2010-12-01
It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new outcrops in this area where the surface ruptures of the 1891 Nobi earthquake have not been known. These outcrops have active fault which cut the layer of terrace deposit and slope deposit to the bottom of present soil layer in common. At the locality of Ogotani outcrop, the humic layer which age is from14th century to 15th century by 14C age dating is deformed by the active fault. The vertical displacement of the humic layer is 0.8-0.9m and the terrace deposit layer below the humic layer is ca. 1.3m. For this reason and the existence of fain grain deposit including AT tephra (28ka) in the footwall of the fault, this fault movement occurred more than once since the last glacial age. We conclude that the surface rupture of Nukumi fault in the 1891 Nobi earthquake is continuous to 9km southeast of Nukumi pass. In other words, these findings indicate that there is 10km parallel overlap zone between the surface rupture of the southeastern end of Nukumi fault and the northwestern end of Neodani fault.
Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults
NASA Astrophysics Data System (ADS)
Qin, Liguo; He, Xiao; Zhou, D. H.
2017-10-01
This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.
Previously unrecognized now-inactive strand of the North Anatolian fault in the Thrace basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perincek, D.
1988-08-01
The North Anatolian fault is a major 1,200 km-long transform fault bounding the Anatolian plate to the north. It formed in late middle Miocene time as a broad shear zone with a number of strands splaying westward in a horsetail fashion. Later, movement became localized along the stem, and the southerly and northerly splays became inactive. One such right-lateral, now-inactive splay is the west-northwest-striking Thrace strike-slip fault system, consisting of three subparallel strike-slip faults. From north to south these are the Kirklareli, Lueleburgaz, and Babaeski fault zones, extending {plus minus} 130 km along the strike. The Thrace fault zone probablymore » connected with the presently active northern strand of the North Anatolian fault in the Sea of Marmara in the southeast and may have joined the Plovdiv graben zone in Bulgaria in the northwest. The Thrace basin in which the Thrace fault system is located, is Cenozoic with a sedimentary basin fill from middle Eocene to Pliocene. The Thrace fault system formed in pre-Pliocene time and had become inactive by the Pliocene. Strike-slip fault zones with normal and reverse separation are detected by seismic reflection profiles and subsurface data. Releasing bend extensional structures (e.g., near the town of Lueleburgaz) and restraining bend compressional structures (near Vakiflar-1 well) are abundant on the fault zones. Umurca and Hamitabad fields are en echelon structures on the Lueleburgaz fault zone. The Thrace strike-slip fault system has itself a horsetail shape, the various strands of which become younger southward. The entire system died before the Pliocene, and motion on the North Anatolian fault zone began to be accommodated in the Sea of Marmara region. Thus the Thrace fault system represents the oldest strand of the North Anatolian fault in the west.« less
Magma-tectonic Interaction at Laguna del Maule, Chile
NASA Astrophysics Data System (ADS)
Keranen, K. M.; Peterson, D. E.; Miller, C. A.; Garibaldi, N.; Tikoff, B.; Williams-Jones, G.
2016-12-01
The Laguna del Maule Volcanic Field (LdM), Chile, the largest concentration of rhyolite <20 kyr globally, exhibits crustal deformation at rates higher than any non-erupting volcano. The interaction of large magmatic systems with faulting is poorly understood, however, the Chaitén rhyolitic system demonstrated that faults can serve as magma pathways during an eruption. We present a complex fault system at LdM in close proximity to the magma reservoir. In March 2016, 18 CHIRP seismic reflection lines were acquired at LdM to identify faults and analyze potential spatial and temporal impacts of the fault system on volcanic activity. We mapped three key horizons on each line, bounding sediment packages between Holocene onset, 870 ybp, and the present date. Faults were mapped on each line and offset was calculated across key horizons. Our results indicate a system of normal-component faults in the northern lake sector, striking subparallel to the mapped Troncoso Fault SW of the lake. These faults correlate to prominent magnetic lineations mapped by boat magnetic data acquired February 2016 which are interpreted as dykes intruding along faults. We also imaged a vertical fault, interpreted as a strike-slip fault, and a series of normal faults in the SW lake sector near the center of magmatic inflation. Isochron and fault offset maps illuminate areas of growth strata and indicate migration and increase of fault activity from south to north through time. We identify a domal structure in the SW lake sector, coincident with an area of low magnetization, in the region of maximum deformation from InSAR results. The dome experienced 10 ms TWT ( 10 meters) of uplift throughout the past 16 kybp, which we interpret as magmatic inflation in a shallow magma reservoir. This inflation is isolated to a 1.5 km diameter region in the hanging wall of the primary normal fault system, indicating possible fault-facilitated inflation.
McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.
2012-01-01
The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed during late-stage fault zone reorganization. The Santa Rosa pull-apart basin formed ca. 1 Ma, during the reorganization of the right stepover geometry of the Rodgers Creek–Maacama fault system, when the maturely evolved overlapping geometry of the northern Rodgers Creek and Maacama fault zones was overprinted by a less evolved, non-overlapping stepover geometry. The Rodgers Creek–Maacama fault system has contributed at least 44–53 km of right-lateral displacement to the East Bay fault system south of San Pablo Bay since 7 Ma, at a minimum rate of 6.1–7.8 mm/yr.
Clendenin, C.W.; Diehl, S.F.
1999-01-01
A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.
Enigmatic rift-parallel, strike-slip faults around Eyjafjörður, Northern Iceland
NASA Astrophysics Data System (ADS)
Proett, J. A.; Karson, J. A.
2014-12-01
Strike-slip faults along mid-ocean ridge spreading centers are generally thought to be restricted to transform boundaries connecting rift segments. Faults that are parallel to spreading centers are generally assumed to be normal faults associated with tectonic extension. However, clear evidence of north-south (rift-parallel), strike-slip displacements occur widely around the southern portion of Eyjafjörður, northern Iceland about 50 km west of the Northern Rift Zone. The area is south of the southernmost strand (Dalvík Lineament) of the NW-SE-trending, dextral-slip, Tjӧrnes Fracture Zone (where N-S, sinistral, strike-slip "bookshelf" faulting occurs). Faults in the Eyjafjörður area cut 8.5-10 m.y. basaltic crust and are parallel to spreading-related dikes and are commonly concentrated along dike margins. Fault rocks range from fault breccia to gouge. Riedel shears and other kinematic indicators provide unambiguous evidence of shear sense. Most faults show evidence of sinistral, strike-slip movement but smaller proportions of normal and oblique-slip faults also are present. Cross cutting relations among the different types of faults are inconsistent and appear to be related to a single deformation event. Fault slip-line kinematic analysis yields solutions indicating sinistral-normal oblique-slip overall. These results may be interpreted in terms of either previously unrecognized transform-fault bookshelf faulting or slip accommodating block rotation associated with northward propagation of the Northern Rift Zone.
Results and interpretation of exploratory drilling near the Picacho Fault, south-central Arizona
Holzer, Thomas L.
1978-01-01
Modern surface faulting along the Picacho fault, east of Picacho, Arizona, has been attributed to ground-water withdrawal. In September 1977, three exploratory test holes were drilled 5 km east of Picacho and across the Picacho fault to investigate subsurface conditions and the mechanism of the faulting. The holes were logged by conventional geophysical and geologic methods. Piezometers were set in each hole and have been monitored since September 1977. The drilling indicates that the unconsolidated alluvium beneath the surface fault is approximately 310 m thick. Drilling and piezometer data and an associated seismic refraction survey indicate that the modern faulting is coincident with a preexisting, high-angle, normal fault that offsets units within the alluvium as well as the underlying bedrock. Piezometer and neutron log data indicate that the preexisting fault behaves as a partial ground-water barrier. Monitoring of the piezometers indicates that the magnitude of the man-induced difference in water level across the preexisting fault is seasonal in nature, essentially disappearing during periods of water-level recovery. The magnitude of the seasonal difference in water level, however, appears to be sufficient to account for the modern fault offset by localized differential compaction caused by a difference in water level across the preexisting fault. In addition, repeated level surveys since September 1977 of bench marks across the surface fault and near the piezometers have indicated fault movement that corresponds to fluctuations of water level.
Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,
2013-01-01
There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs and structure terminations revealed by this study is unprecedented. Collecting magnetic data via UAS represents a new capability in geothermal exploration of remote and dangerous areas that significantly enhances our ability to map the subsurface.
Managing Space System Faults: Coalescing NASA's Views
NASA Technical Reports Server (NTRS)
Muirhead, Brian; Fesq, Lorraine
2012-01-01
Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.
Aagaard, Brad T.; Anderson, G.; Hudnut, K.W.
2004-01-01
We use three-dimensional dynamic (spontaneous) rupture models to investigate the nearly simultaneous ruptures of the Susitna Glacier thrust fault and the Denali strike-slip fault. With the 1957 Mw 8.3 Gobi-Altay, Mongolia, earthquake as the only other well-documented case of significant, nearly simultaneous rupture of both thrust and strike-slip faults, this feature of the 2002 Denali fault earthquake provides a unique opportunity to investigate the mechanisms responsible for development of these large, complex events. We find that the geometry of the faults and the orientation of the regional stress field caused slip on the Susitna Glacier fault to load the Denali fault. Several different stress orientations with oblique right-lateral motion on the Susitna Glacier fault replicate the triggering of rupture on the Denali fault about 10 sec after the rupture nucleates on the Susitna Glacier fault. However, generating slip directions compatible with measured surface offsets and kinematic source inversions requires perturbing the stress orientation from that determined with focal mechanisms of regional events. Adjusting the vertical component of the principal stress tensor for the regional stress field so that it is more consistent with a mixture of strike-slip and reverse faulting significantly improves the fit of the slip-rake angles to the data. Rotating the maximum horizontal compressive stress direction westward appears to improve the fit even further.
Identification of Baribis fault - West Java using second vertical derivative method of gravity
NASA Astrophysics Data System (ADS)
Sari, Endah Puspita; Subakti, Hendri
2015-04-01
Baribis fault is one of West Java fault zones which is an active fault. In modern era, the existence of fault zone can be observed by gravity anomaly. Baribis fault zone has not yet been measured by gravity directly. Based on this reason, satellite data supported this research. Data used on this research are GPS satellite data downloaded from TOPEX. The purpose of this research is to determine the type and strike of Baribis fault. The scope of this research is Baribis fault zone which lies on 6.50o - 7.50o S and 107.50o - 108.80o E. It consists of 5146 points which one point to another is separated by 1 minute meridian. The method used in this research is the Second Vertical Derivative (SVD) of gravity anomaly. The Second Vertical Derivative of gravity anomaly show as the amplitude of gravity anomaly caused by fault structure which appears as residual anomaly. The zero value of residual gravity anomaly indicates that the contact boundary of fault plane. Second Vertical Derivative method of gravity was applied for identifying Baribis fault. The result of this research shows that Baribis fault has a thrust mechanism. It has a lineament strike varies from 107o to 127o. This result agrees with focal mechanism data of earthquakes occurring on this region based on Global CMT catalogue.
Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.
2001-01-01
Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.
Provable Transient Recovery for Frame-Based, Fault-Tolerant Computing Systems
NASA Technical Reports Server (NTRS)
DiVito, Ben L.; Butler, Ricky W.
1992-01-01
We present a formal verification of the transient fault recovery aspects of the Reliable Computing Platform (RCP), a fault-tolerant computing system architecture for digital flight control applications. The RCP uses NMR-style redundancy to mask faults and internal majority voting to purge the effects of transient faults. The system design has been formally specified and verified using the EHDM verification system. Our formalization accommodates a wide variety of voting schemes for purging the effects of transients.
Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte
2016-01-01
The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to Quaternary reactivation of the old and deeply buried Picuris-Pecos faults. If so, then the Los Cordovas structures may extend southward under the Picuris piedmont, where they form growth faults as they merge downward into the Picuris-Pecos bedrock faults. The exceptionally high density of cross-cutting faults in the study area has severely disrupted the stratigraphy of the Picuris formation and the Santa Fe Group. The Picuris formation exists at the surface in the Miranda and Rio Grande del Rancho grabens, and locally along the top of the Picuris piedmont. In the subsurface, it deepens rapidly from the mountain front into the rift basin. In a similar manner, the Tesuque and Chamita Formations are shallowly exposed close to the mountain front, but are down dropped into the basin along the Embudo faults. The Ojo Caliente Sandstone Member of the Tesuque Formation appears to be thickest in the northwestern study area, and thins toward the south and the east. In the study area, the Lama formation thins westward and southward. The Servilleta Basalt is generally thickest to the north and northwest, thins under the Picuris piedmont, and terminates along a major, linear, buried strand of the Embudo fault zone, demonstrating that the Servilleta flows were spatially and temporally related to Embudo fault activity.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.
NASA Astrophysics Data System (ADS)
Beck, C.; Reyss, J.; Feuillet, N.; Leclerc, F.; Moreno, E.
2012-12-01
Improvements of active fault surveying have shown that creep, or alternating creep and co-seismic displacements, are not rare. Nevertheless, either on land (trenching), or in subaqueous setting (seismic imaging and coring), active fault offsets, investigated for paleoseismic purpose, are sometimes assumed as co-seismic without direct evidences. At the opposite, within adequate sedimentary archives, some gravity reworking events may be attributed to earthquake triggering, but often do not permit to locate the responsible fault and the co-seismic rupture. In the here-discussed example, both types of observations could be associated: faulting offsets and specific sedimentary events "sealing" them. Several very high resolution (VHR) seismic profiles obtained during The GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) evidenced frequent "ponding" of reworked sediments in the deepest areas. These bodies are acoustically transparent (few ms t.w.t. thick) and often deposited on the hanging walls of dominantly normal faults, at the base of scarps, as previously observed along the North Anatolian Fault (Beck et al., 2007, doi:10.1016/j.sedgeo.2005.12.031). Their thicknesses appear sufficient to compensate (i.e. bury) successive offsets, resulting in a flat and horizontal sea floor through time. Offshore Montserrat and Nevis islands, piston coring (4 to 7 m long) was dedicated to characterize the most recent of these particular layers. An up to 2m-thick "homogenite" appears capping the RedOx water/sediment interface. 210Pb and 137Cs activities lack in the homogenite, while a normal unsupported 210Pb decrease profile and a 137Cs peak, corresponding to the Atmospheric Nuclear Experiments (1962), are present below (Beck et al. 2012, doi:10.5194/nhess-12-1-2012). This sedimentary event and the coeval scarp are post-1970 AD, and attributed either to the March 16th 1985 earthquake or to the October 8th 1974 one (respectively Mw6.3 and Mw7.4). Based on the sedimentological interpretation and their geometrical relationships with ruptures, a co-seismic origin is attributed to older homogenites. Associated co-seismic offsets could be estimated for a 45 m-thick pile. With respect to VHR imaging precision, the total observed offset equals the sum of successive co-seismic offsets, each of them compensated (sealed) by a homogenite. Using the sedimentation rate deduced from 210Pb decrease curve and taking into account minor reworking events only detected in cores, we conclude that the Redonda fault system has been responsible for five >M6 events during the last 34 000 years.
NASA Astrophysics Data System (ADS)
Kazmi, Zaheer Abbas; Konagai, Kazuo; Kyokawa, Hiroyuki; Tetik, Cigdem
On April 11th, 2011, Iwaki region of Fukushima prefecture was jolted by Fukushima-Prefecture Hamadoori Earthquake. Surface ruptures were observed along causative Idosawa and Yunotake normal faults. In addition to numerous small slope failures, a coherent landslide and building structures of Tabito Junior High School, bisected by Idosawa Fault, were found along the causative faults. A precise digital elevation model of the coherent landslide was obtained through the ground and air-born LiDAR surveys. The measurements of perimeters of the gymnasium building and the swimming pool of Tabito Junior High School have shown that ground undergoes a slow and steady/continual deformation.
Jeon, Namju; Lee, Hyeongcheol
2016-12-12
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.
Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system
Haeussler, Peter J.; Matmon, Ari; Schwartz, David P.; Seitz, Gordon G.
2017-01-01
The neotectonics of southern Alaska (USA) are characterized by a several hundred kilometers–wide zone of dextral transpressional that spans the Alaska Range. The Denali fault system is the largest active strike-slip fault system in interior Alaska, and it produced a Mw 7.9 earthquake in 2002. To evaluate the late Quaternary slip rate on the Denali fault system, we collected samples for cosmogenic surface exposure dating from surfaces offset by the fault system. This study includes data from 107 samples at 19 sites, including 7 sites we previously reported, as well as an estimated slip rate at another site. We utilize the interpreted surface ages to provide estimated slip rates. These new slip rate data confirm that the highest late Quaternary slip rate is ∼13 mm/yr on the central Denali fault near its intersection with the eastern Denali and the Totschunda faults, with decreasing slip rate both to the east and west. The slip rate decreases westward along the central and western parts of the Denali fault system to 5 mm/yr over a length of ∼575 km. An additional site on the eastern Denali fault near Kluane Lake, Yukon, implies a slip rate of ∼2 mm/yr, based on geological considerations. The Totschunda fault has a maximum slip rate of ∼9 mm/yr. The Denali fault system is transpressional and there are active thrust faults on both the north and south sides of it. We explore four geometric models for southern Alaska tectonics to explain the slip rates along the Denali fault system and the active fault geometries: rotation, indentation, extrusion, and a combination of the three. We conclude that all three end-member models have strengths and shortcomings, and a combination of rotation, indentation, and extrusion best explains the slip rate observations.
Beard, Sue; Campagna, David J.; Anderson, R. Ernest
2010-01-01
The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.
Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system
NASA Astrophysics Data System (ADS)
Amelug, F.
2015-12-01
The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded M<7 earthquakes in last century on this segment. The Chaman fault between north of the City of Chaman to North of Kabul, does not show an increase in the rate of strain accumulation. However, lack of seismicity on this segment, presents a significant hazard on Kabul. The high rate of strain accumulation on the Ghazaband fault and lack of evidence for the rupture of the fault during the 1935 Quetta earthquake, present a growing earthquake hazard to the Balochistan and the populated areas such as the city of Quetta.
NASA Astrophysics Data System (ADS)
Zhao, H.; Wu, L.; Xiao, A.
2016-12-01
We present a detailed structural analysis on the fault geometry and Cenozoic development in the Dongping area, northwestern Qaidam Basin, based on the precise 3-D seismic interpretation, remote sensing images and seismic attribute analysis. Two conflicting fault systems distributed in different orientations ( EW-striking and NNW-striking) with opposing senses of shear are recognized and discussed, and the interaction between them provides new insights to the intracontinental deformation of the Qaidam Basin within the NE Tibetan Plateau. The EW-striking fault system constitutes the south part of the Altyn left-slip positive flower structure. Faulting on the EW-striking faults dominated the northwestern Qaidam since 40 Ma in respond to the inception of the Altyn Tagh fault system as a ductile shear zone, tilting the south slope of the Altyn Tagh. Whereas the NNW-striking fault system became the dominant structures since the mid-Miocene ( 15 Ma), induced by the large scale strike-slip of the Altyn Tagh fault which leads to the NE-SW directed compression of the Qaidam Basin. Thus it evidently implies a structural conversion taking place within the NE Tibetan Plateau since the mid-Miocece ( 15 Ma). Interestingly, the preexisting faults possibly restrained the development of the later period faults, while the latter tended to track and link to the former fault traces. Taken the large scale sinistral striking-slip East Kunlun fault system into account, the late Cenozoic intracontinental deformation in the Qaidam Basin showing the dextral transpressional attribute is suggested to be the consequence of the combined effect of its two border sinistral strike-slip faults, which furthermore favors a continuous and lateral-extrusion mechanism of the growth of the NE Tibetan Plateau.
The Oakland Conglomerate: a Hayward Fault Teconite?
NASA Astrophysics Data System (ADS)
Strayer, L. M.; Allen, J. R.
2008-12-01
The Late Cretaceous Oakland Conglomerate (OC), a coarse-grained cobble and sandstone unit of the Great Valley Sequence is a tectonite. Faulted and shattered cobbles and well developed grain-on-grain contact features between clasts are ubiquitous and penetrative throughout conglomeratic lenses. The OC outcrops east of the Hayward fault (HF) and adjacent to the Chabot fault in the East Bay Hills. It overlies the Knoxville Formation and may have been buried beneath 4-6 km of younger units. The OC is a proximal submarine fan deposit with sediment sourced to the ancestral Klamath and Sierra Nevada. Clast types are dominated by volcanics, granitoids, as well as numerous quartzites, perhaps reflecting complex provenance:Klamath and pre-Sierran arc and pre-Cretaceous Basin and Range. And although there was a significant interval between the Late-K deposition of the OC and the inception of San Andreas faulting in the Bay Area, its 1-2 km proximity to the HF in the Oakland Metropolitan area strongly suggests that much of the brittle-plastic deformation within the OC may be due to earthquakes upon the nearby Hayward fault. Clasts with the OC are frequently shattered, fractured or faulted. Most have grain-on-grain contact features on their surfaces regardless of whether they are matrix or grain supported. Faulting in the cobbles ranges from outcrop scale, penetrative and often conjugate shear fracture sets that run through both cobbles and matrix (if present), to closely spaced en-echelon faults that clearly deform cobbles, and radially shattered specimens with nearly conical conjugate shear fractures that are clearly the result of point loading due to grain-on-grain contact. There are at least 3 types of contact structures, ranging from: 1) Type-H, bright circular halos with little or no surface dimpling, likely the result of intense microfracture at the contact; 2) Type-S, shattered, rounded 'firing-pin' structures that have pulverized, depressed contact that is the locus of radial and conjugate shear fractures that offset the surface of the clasts. Cross-cutting relationships suggest that pulverized dimpling and faulting are synchronous. These appear to form both with and without matrix involvement. 3) Type-P, clean, well formed, pressure solution pits, often rimmed by a discrete lip of adjacent matrix, likely cemented by locally available quartz. These are often cut by the faults of Type-S above. Type-S and Type-P contact features can and often do occur in the same specimen. Type-H and some Type-S contacts appear to be products of 'clean' grain-on-grain contact without matrix involvement. Differences between the bright halo and the pressure solution pits may be due to the presence of a thin layer of matrix sand, which appears to facilitate wholesale pressure solution. Faults within the matrix and cobbles are often conjugate, and penetrative at the outcrop scale. Initial structural analysis suggests these faults might lend themselves to stress inversion techniques if enough examples are available. Since many of the cobbles were re-cemented after they were faulted, there may be potential to gain insight into their burial depths during these events by investigating their geochemistry. The OC, given its very close proximity to the HF, may provide a record of the shortening direction and stress orientations directly adjacent to this important plate boundary.
Modeling and Fault Simulation of Propellant Filling System
NASA Astrophysics Data System (ADS)
Jiang, Yunchun; Liu, Weidong; Hou, Xiaobo
2012-05-01
Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.
Structural superposition in fault systems bounding Santa Clara Valley, California
Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.
2015-01-01
Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.
Delivery and application of precise timing for a traveling wave powerline fault locator system
NASA Technical Reports Server (NTRS)
Street, Michael A.
1990-01-01
The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.
Paleoearthquakes on the Denali-Totschunda Fault system: Preliminary Observations of Slip and Timing
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Denali Fault Earthquake Geology Wp, .
2003-12-01
Understanding the behavior of large strike-slip fault systems requires information about the amount of slip and timing of past earthquakes at different locations along a fault. A historical surface rupture adds a critically important baseline for calibration. During July 2003 we performed additional mapping of the 2002 Denali-Totschunda surface rupture with the goal of also measuring and dating slip during previous earthquakes. We were able to obtain slip values for prior events at a dozen locations along Denali-Totschunda strike-slip rupture. We focused on the penultimate event, which is easiest to distinguish (slip from individual older events can eventually be measured). On the Denali fault just west of the intersection with the Susitna Glacier thrust 2002 slip was low, 1.0 m to 1.5 m; cumulative slip from two events was 2.5-3.0, which is essentially double. On the 100-km-long section between Black Rapids Glacier and Gillett Pass, where 2002 slip averaged 5 m, three measurements indicate penultimate-event slip was about the same as 2002. The 7-8 m offset section east of Gillett Pass has the clearest paleoevent slip history. We measured three locations where 2002 slip was 7-8m and cumulative offset on channels was 14.5-16 m. Along this section previous workers noted gullies with 15 m offsets before the 2002 earthquake, suggesting the past three events here had similar slip. On the Totschunda fault paleo offsets appear to be similar in amount to 2002. At one locality we measured 2.8 m in 2002 and 5.4 m for two events. A second site had 1.0-1.4 m of offset in 2002 and 3.1 m for two events. A third location yielded 3.3 m in 2002 and 10.8 m on a paleochannel, which could represent three events with similar slip. A location in the Denali-Totschunda transition zone had a 5-6 m-high scarp and a well-developed sag pond, indicating that this complex part of the fault system has been active in previous events. The major observation is that the paleo offset measurements, though presently limited in number, indicate that penultimate event slip was very similar to the 2002 offset along the length of the ruptured Denali and Totschundafaults, and may have been similar for at least a third event back. For most of the it's length the 2002 rupture is expressed as a narrow mole track (typically 1m to 3m wide) but locally it has produced pull aparts and large fissures. These features contain a variety of organic deposits associated with the ground surface at the time of the penultimate earthquake(s) on the Denali and Totschunda faults. We sampled five of these, and recovered peat, pine needles, and trees that were toppled during the penultimate event(s). Including a test pit west of the Delta River, we have six sample sites that span the 5m and 7-8m rupture segments of the Denali, the Denali-Totschunda transition zone, and the Totschunda fault. Preliminary radiocarbon dates indicate that the timing of the penultimate event on the Denali fault is younger than 1400 to 1289 yr BP and may have occurred as recently as 520 to 310 yr BP. The penultimate event on the Totschunda fault occurred after 1340 to 1130 yr BP and most likely occurred shortly after 660 to 530 years BP. The Denali-Totschunda fault system is a remarkable laboratory, particularly in terms of preservation of fault geomorphology and organic material, for studying large strike-slip faults. These initial observations of paleoslip and event dates are the first steps in unraveling the behavior of this major strike-slip zone. Denali Fault Earthquake Geology Working Group: T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome), G. Carver. G.Plafker (Alyeska)
Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments
NASA Astrophysics Data System (ADS)
Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.
2017-12-01
Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a first non-planar oblique slip fault, strain energy density is greatest where the first fault is steepest, as less convergence is accommodated along this portion of the fault. The addition of a second slip-partitioning fault to the system decreases external work indicating that these faults increase the mechanical efficiency of the system.
Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada
Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.
1991-01-01
The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting events) that cuts Q1B surfaces.
Li, Yunji; Wu, QingE; Peng, Li
2018-01-23
In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2004-01-01
In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.
NASA Astrophysics Data System (ADS)
Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel
2016-12-01
This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shi, F.; Yu, T.; Zhu, L.; Zhang, J.; Gasc, J.; Incel, S.; Schubnel, A.; Li, Z.; Liu, W.; Jin, Z.
2017-12-01
Southern Tibet is the most active orogenic region on Earth where the Indian plate thrusts under the Eurasian continent, pushing the Moho to unusual depths of 80 km. Seismicity is wide spread, reaching 100 km depth. Mechanisms of these deep earthquakes remain enigmatic. Here we examine the hypothesis of metamorphism induced mechanical instability in granulite-facies rocks, which are the dominant constituent in subducted Indian lower crust. We conducted deformation experiments on natural and nominally dry granulite in a DDIA apparatus within the stability fields of both granulite and eclogite. The system is interfaced with an acoustic emission (AE) monitoring system, allowing in-situ detection of mechanical instability along with the progress of eclogitization. We found that granulite deformed within its own stability field behaved in a ductile fashion without any AE activity. In contrast, numerous AE events were observed during deformation of metastable granulite in the eclogite field. The observed AE activities were episodic. Correlating closely to the AE burst episodes, measured differential stresses rose and fell during deformation, suggesting unstable fault slip. Microstructural observation shows that strain is highly localized around grain boundaries, which are decorated by eclogitization products. Time-resolved event location analysis showed large episodes corresponded to the growth of branches of macroscopic faults in recovered samples. It appears that ruptures originate from weakened grain boundaries, propagate through grains, and self-organize into macroscopic fault zones. No melting is required in the fault zones to facilitate brittle failure. This process may be responsible for the deep crustal seismicity in Southern Tibet and other continental-continental subduction regions.
Faults Discovery By Using Mined Data
NASA Technical Reports Server (NTRS)
Lee, Charles
2005-01-01
Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2001-12-01
We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.
Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation
NASA Astrophysics Data System (ADS)
Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.
2017-12-01
The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre-existing fault. However, with increasing slip, a second conjugate fault progressively appeared, which ultimately accommodated all of the imposed vertical displacement. The inferred structural changes resemble fault branching and dynamic slip transfer processes seen in large-scale geology. This project was funded by the ANLEC R&D in partnership with the WA Government.
Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada
Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.
1999-01-01
Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the basin with about 3-3.5 km of relief on basement. A fault zone, related to the southern margin of the basin, appears to extend up to a depth of about 500 m. The path of groundwater encountering this fault zone is uncertain but may be either to the southwest towards Beatty or to the south towards Crater Flat.
NASA Technical Reports Server (NTRS)
Padilla, Peter A.
1991-01-01
An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.
DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol
2010-01-01
We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.
An overview of results from the CO2SINK 3D baseline seismic survey at Ketzin, Germany
NASA Astrophysics Data System (ADS)
Juhlin, C.; Giese, R.; Cosma, C.; Kazemeini, H.; Juhojuntti, N.; Lüth, S.; Norden, B.; Förster, A.; Yordkayhun, S.
2009-04-01
A 3D seismic survey was acquired at the CO2SINK project site over the Ketzin anticline in the fall of 2005. Main objectives of the survey were (1) to verify earlier geological interpretations of the structure based on vintage 2D seismic and borehole data, (2) to provide, if possible, an understanding of the structural geometry for flow pathways within the reservoir, (3) a baseline for later evaluation of the time evolution of rock properties as CO2 is injected into the reservoir, and (4) detailed sub-surface images near the injection borehole for planning of the drilling operations. Overlapping templates with 5 receiver lines containing 48 active channels in each template were used for the acquisition. In each template, 200 nominal source points were activated using an accelerated weight drop, giving a nominal fold of 25. Due to logistics, the number of actual source points in each template varied. In spite of the relatively low fold and the simple source used, data quality is generally good with the uppermost 1000 m being well imaged. Data processing results clearly show a fault system across the top of the Ketzin anticline that is termed the Central Graben Fault Zone (CGFZ). The fault zone consists of west-southwest-east-northeast- to east-west-trending normal faults bounding a 600-800 m wide graben. Within the Jurassic section, discrete faults are well developed, and the main graben-bounding faults have throws of up to 30 m. At shallower levels, the fault system appears to disappear in the Tertiary Rupelian clay. The main bounding faults of the CGFZ can be traced downwards to the top of the Weser Formation and possibly to the Stuttgart level, the target formation for CO2 injection. No faults were imaged near the injection site on the southern limb of the anticline. Remnant gas, cushion and residual gas from a previous natural gas storage facility at the site, is present near the top of the anticline in the depth interval of about 250-400 m and has a clear seismic signature. In addition to the standard processing and interpretation applied, attribute analysis, detailed shallow reflection seismic processing, tomographic inversion of first arrival times, and initial seismic modeling of the CO2 response have been performed. Attribute analysis of the target horizon using the continuous wavelet transform indicates that the injection site penetrates the target reservoir near the edge of a north-northwest-south-southeast striking channel.
The 1987 Whittier Narrows, California, earthquake: A Metropolitan shock
NASA Astrophysics Data System (ADS)
Hauksson, Egill; Stein, Ross S.
1989-07-01
Just 3 hours after the Whittier Narrows earthquake struck, it became clear that a heretofore unseen geological structure was seismically active beneath metropolitan Los Angeles. Contrary to initial expectations of strike-slip or oblique-slip motion on the Whittier fault, whose north end abuts the aftershock zone, the focal mechanism of the mainshock showed pure thrust faulting on a deep gently inclined surface [Hauksson et al., 1988]. This collection of nine research reports spans the spectrum of seismological, geodetic, and geological investigations carried out as a result of the Whittier Narrows earthquake. Although unseen, the structure was not unforeseen. Namson [1987] had published a retrodeformable geologic cross section (meaning that the sedimentary strata could be restored to their original depositional position) 100 km to the west of the future earthquake epicenter in which blind, or subsurface, thrust faults were interpreted to be active beneath the folded southern Transverse Ranges. Working 25 km to the west, Hauksson [1987] had also found a surprising number of microearthquakes with thrust focal mechanisms south of the Santa Monica mountains, another clue to a subsurface system of thrust faults. Finally, Davis [1987] had presented a preliminary cross section only 18 km to the west of Whittier Narrows that identified as "fault B" the thrust that would rupture later that year. Not only was the earthquake focus and its orientation compatible with the 10-15 km depth and north dipping orientation of Davis' proposed thrust, but fault B appears to continue beneath the northern flank of the Los Angeles basin, skirting within 5 km of downtown Los Angeles, an area of dense commercial high-rise building development. These results are refined and extended by Davis et al. [this issue].
Tremor, remote triggering and earthquake cycle
NASA Astrophysics Data System (ADS)
Peng, Z.
2012-12-01
Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.
Late Cenozoic structure and stratigraphy of south-central Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidel, S.P.; Campbell, N.P.; Fecht, K.R.
1993-09-01
The structural framework of the Columbia Basin began developing before Columbia River Basalt Group (CRBG) volcanism. Prior to 17.5 Ma, the eastern part of the basin was a relatively stable area, with a basement of Paleozoic and older crystalline rock. The western part was an area of subsidence in which large volumes of sediment and volcanic rocks accumulated. Concurrent with eruption of the CRBG, anticlinal ridges of the Yakima Fold Belt (YFB) were growing under north-south compression. Topographic expression of these features was later masked by the large volume of CRBG basalt flowing west from fissures in the eastern Columbiamore » Basin. The folds continued to develop after cessation of volcanism, leading to as much as 1,000 m of structural relief in the past 10 million years. Post-CRBG evolution of the Columbia Basin is recorded principally in folding and faulting in the YFB and sediments deposited in the basins. The accompanying tectonism resulted in lateral migration of major depositional systems into subsiding structural lows. Although known late Cenozoic faults are on anticlinal ridges, earthquake focal mechanisms and contemporary strain measurements indicate most stress release is occurring in the synclinal areas under north-south compression. There is no obvious correlation between focal mechanisms for earthquakes whose foci are in the CRBG and the location of known faults. High in situ stress values help to explain the occurrence of microseismicity in the Columbia Basin but not the pattern. Microseismicity appears to occur in unaltered fresh basalt. Faulted basalt associated with the YFB is highly brecciated and commonly altered to clay. The high stress, abundance of ground water in confined aquifers of the CRBG, and altered basalt in fault zones suggest that the frontal faults on the anticlinal ridges probably have some aseismic deformation. 85 refs.« less
Analog modeling of the deformation and kinematics of the Calabrian accretionary wedge
NASA Astrophysics Data System (ADS)
Dellong, David; Gutscher, Marc-Andre; Klingelhoefer, Frauke; Graindorge, David; Kopp, Heidrun; Mercier de Lepinay, Bernard; Dominguez, Stephane; Malavieille, Jacques
2017-04-01
The Calabrian accretionary wedge in the Ionian Sea, is the site of slow, deformation related to the overall convergence between Africa and Eurasia and the subduction zone beneath Calabria. High-resolution swath bathymetric data and seismic profiling image a complex network of compressional and strike-slip structures. Major Mesozoic rift structures (Malta Escarpment) are also present and appear to be reactivated in places by normal faulting. Ongoing normal faulting also occurs in the straits of Messina area (1908 M7.2 earthquake). We applied analog modeling using granular materials as well as ductile (silicone) in some experiments. The objective was to test the predictions of certain kinematic models regarding the location and kinematics of a major lateral slab edge tear fault. One experiment, using two independently moving backstops, demonstrates that the relative kinematics of the Calabrian and Peloritan blocks can produce a zone of dextral transtension and subsidence which corresponds well to the asymmetric rift observed in seismic data in the southward prolongation of the straits of Messina faults. However, the expected dextral offset in the deformation front of the accretionary wedge is not observed in bathymetry. In fact sinistral motion is observed along the boundary between two lobes of the accretionary wedge suggesting the dextral motion is absorbed along a network of transcurrent faults within the eastern lobe. Bathymetric and seismic observations indicate that the major dextral boundary along the western boundary of the accretionary wedge is the Alfeo fault system, whose southern termination is the focal point of a striking set of radial slip-lines. Further analog modeling experiments attempted to reproduce these structures, with mixed results.
Kusky, Timothy M.; Bradley, Dwight C.; Donely, D. Thomas; Rowley, David; Haeussler, Peter J.
2003-01-01
A belt of Paleogene near-trench plutons known as the Sanak-Baranof belt intruded the southern Alaska convergent margin. A compilation of isotopic ages of these plutons shows that they range in age from 61 Ma in the west to ca. 50 Ma in the east. This migrating pulse of magmatism along the continental margin is consistent with North Pacific plate reconstructions that suggests the plutons were generated by migration of a trench-ridge-trench triple junction along the margin. On the Kenai Peninsula the regional lower greenschist metamorphic grade of the turbiditic host rocks, texture of the plutons, contact-metamorphic assemblage, and isotopic and fluid inclusion studies suggest that the plutons were emplaced at pressures of 1.5–3.0 kbars (5.2–10.5 km) into a part of the accretionary wedge with an ambient temperature of 210–300 °C. The presence of kyanite, garnet, and cordierite megacrysts in the plutons indicates that the melts were generated at a depth greater than 20 km and minimum temperature of 650 °C. These megacrysts are probably xenocrystic remnants of a restitic or contact metamorphic phase entrained by the melt during intrusion. However, it is also possible that they are primary magmatic phases crystallized from the peraluminous melt.Plutons of the Sanak-Baranof belt serve as time and strain markers separating kinematic regimes that predate and postdate ridge subduction. Pre-ridge subduction structures are interpreted to be related to the interaction between the leading oceanic plate and the Chugach terrane. These include regional thrust faults, NE-striking map-scale folds with associated axial planar foliation, type-1 mélanges, and an arrayof faults within the contact aureole indicating shortening largely accommodated by layer-parallel extension. Syn-ridge subduction features include the plutons, dikes, and ductile shear zones within contact aureoles with syn-kinematic metamorphic mineral growth and foliation development. Many of the studied plutons have sheeted margins and appear to have intruded along extensional jogs in margin-parallel strike-slip faults, whereas others form significant angles with the main faults and may have been influenced by minor faults of other orientations. Some of the plutons of the Sanak-Baranof belt have their long axes oriented parallel to faults of an orthorhombic fault set, implying that these faults may have provided a conduit for magma emplacement. This orthorhombic set of late faults is interpreted to have initially formed during the ridge subduction event, and continued to be active for a short time after passage of the triple junction. ENE-striking dextral faults of this orthorhombic fault system exhibit mutually crosscutting relationships with Eocene dikes related to ridge subduction, and mineralized strike-slip and normal faults of this system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Movement on the orthorhombic fault system accommodated exhumation of deeper levels of the southern Alaska accretionary wedge, which is interpreted as a critical taper adjustment to subduction of younger oceanic lithosphere during ridge subduction. These faults therefore accommodate both deformation of the wedge and assisted emplacement of near-trench plutons. Structures that crosscut the plutons and aureoles include the orthorhombic fault set and dextral strike-slip faults, reflecting a new kinematic regime established after ridge subduction, during underthrusting of the trailing oceanic plate with new dextral-oblique convergence vectors with the overriding plate. The observation that the orthorhombic fault set both cuts and is cut by Eocene intrusives demonstrates the importance of these faults for magma emplacement in the forearc.A younger, ca. 35 Ma suite of plutons intrudes the Chugach terrane in the Prince William Sound region, and their intrusion geometry was strongly influenced by pre-existing faults developed during ridge subduction. The generation of these plutons may be related to the sudden northward migration of the triple junction at ca. 40–33 Ma, as the ridge was being subducted nearly parallel to the trench during this interval. These younger plutons are used to provide additional constraints on the structural evolution of the wedge. Late- to post-ridge subduction fabrics include a pressure solution cleavage and additional movement on the orthorhombic fault system. After triple junction migration, subduction of the trailing oceanic plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. This change in kinematics is recorded by very late gouge-filled dextral faults in the late structures of the accretionary prism.
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
Robust Fault Detection and Isolation for Stochastic Systems
NASA Technical Reports Server (NTRS)
George, Jemin; Gregory, Irene M.
2010-01-01
This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.
Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang
2017-12-06
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.
Kinematics of shallow backthrusts in the Seattle fault zone, Washington State
Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.
2015-01-01
Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.
NASA Astrophysics Data System (ADS)
Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.
2016-12-01
Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.
1980-09-01
morphology appears to be effective on an unstructured problem and provides a useful vehicle for clearly defining the functions and tasks that meet the needs...approach used is a structured decision process which was successfully demonstrated in FY 78 on relatively simple mechanical equipment and has now been...including achievement of practical conclusions from the large scale optimization procedures. This design morphology provided a useful vehicle for
Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benwell, Andrew; Kemp, Mark; Burkhart, Craig
2010-06-11
An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.
NASA Astrophysics Data System (ADS)
Morris, Antony; Pressling, Nicola; Gee, Jeffrey; John, Barbara; MacLeod, Christopher
2010-05-01
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. For example, recent analyses suggest that detachment faults may underlie more than 50% of the Mid Atlantic Ridge (MAR) and may take up most of the overall plate divergence at times when magma supply to the ridge system is reduced. The most extensively studied oceanic core complex is Atlantis Massif, located at 30°N on the MAR. This forms an inside-corner bathymetric high at the intersection of the Atlantis Transform Fault and the MAR. The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305. This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. The core (Hole U1309D) reflects the interplay between magmatism and deformation prior to, during, and subsequent to a period of footwall displacement and denudation associated with slip on the detachment fault. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. In a number of intervals, however, the gabbros exhibit a complex remanence structure with the presence of intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are more consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. Differences in the width of blocking temperature spectra between samples appear to control the number of components present; samples with narrow and high temperature spectra record only R1 components, whereas those with broader blocking temperature spectra record multicomponent (R1-N1 and R1-N1-R2) remanences. The common occurrence of detachment faults in slow and ultra-slow spreading oceanic crust suggests they accommodate a significant component of plate divergence. However, the sub-surface geometry of oceanic detachment faults remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We resolve this debate using paleomagnetic remanences as a marker for tectonic rotation of the Atlantis Massif footwall. Previous ODP/IODP palaeomagnetic studies have been restricted to analysis of magnetic inclination data, since hard-rock core pieces are azimuthally unoriented and free to rotate in the core barrel. For the first time we have overcome this limitation by independently reorienting core pieces to a true geographic reference frame by correlating structures in individual pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of paleomagnetic data and subsequent tectonic interpretation without the need for a priori assumptions on the azimuth of the rotation axis. Results indicate a 46°±6° counterclockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011°±6°. This provides unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby faults initiate at higher dips and rotate to their present day low angle geometries.
Discrete Wavelet Transform for Fault Locations in Underground Distribution System
NASA Astrophysics Data System (ADS)
Apisit, C.; Ngaopitakkul, A.
2010-10-01
In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.
Dynamic characteristics of a 20 kHz resonant power system - Fault identification and fault recovery
NASA Technical Reports Server (NTRS)
Wasynczuk, O.
1988-01-01
A detailed simulation of a dc inductor resonant driver and receiver is used to demonstrate the transient characteristics of a 20 kHz resonant power system during fault and overload conditions. The simulated system consists of a dc inductor resonant inverter (driver), a 50-meter transmission cable, and a dc inductor resonant receiver load. Of particular interest are the driver and receiver performance during fault and overload conditions and on the recovery characteristics following removal of the fault. The information gained from these studies sets the stage for further work in fault identification and autonomous power system control.
The Quaternary thrust system of the northern Alaska Range
Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.
2012-01-01
The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.
Jurassic faults of southwest Alabama and offshore areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, R.M.; Tew, B.H.; Bearden, B.L.
1991-03-01
Four fault groups affecting Jurassic strata occur in the southwest and offshore Alabama areas. They include the regional basement rift trend, the regional peripheral fault trend, the Mobile graben fault system, and the Lower Mobile Bay fault system. The regional basement system rift and regional peripheral fault trends are distinct and rim the inner margin of the eastern Gulf Coastal Plain. The regional basement rift trend is genetically related to the breakup of Pangea and the opening of the Gulf of Mexico in the Late Triassic-Early Jurassic. This fault trend is thought to have formed contemporaneously with deposition of Latemore » Triassic-Early Jurassic Eagle Mills Formation and to displace pre-Mesozoic rocks. The regional peripheral fault trend consists of a group of en echelon extensional faults that are parallel or subparallel to regional strike of Gulf Coastal Plain strata and correspond to the approximate updip limit of thick Louann Salt. Nondiapiric salt features are associated with the trend and maximum structural development is exhibited in the Haynesville-Smackover section. No hydrocarbon accumulations have been documented in the pre-Jurassic strata of southwest and offshore Alabama. Productive hydrocarbon reservoirs occur in Jurassic strata along the trends of the fault groups, suggesting a significant relationship between structural development in the Jurassic and hydrocarbon accumulation. Hydrocarbon traps are generally structural or contain a major structural component and include salt anticlines, faulted salt anticlines, and extensional fault traps. All of the major hydrocarbon accumulations are associated with movement of the Louann Salt along the regional peripheral fault trend, the Mobile graben fault system, or the Lower Mobile Bay fault system.« less
NASA Astrophysics Data System (ADS)
Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.
2014-12-01
Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.
Fault imprint in clay units: magnetic fabric, structural and mineralogical signature
NASA Astrophysics Data System (ADS)
Moreno, Eva; Homberg, Catherine; Schnyder, Johann; Person, Alain; du Peloux1, Arthur; Dick, Pierre
2014-05-01
Fault-induced deformations in clay units can be difficult to decipher because strain markers are not always visible at outcrop scale or using geophysical methods. Previous studies have indicated that the anisotropy of magnetic susceptibility (ASM) provides a powerful and rapid technique to investigate tectonic deformation in clay units even when they appear quite homogenous and undeformed at the outcrop scale (Lee et al. 1990, Mattei et al. 1997). We report here a study based on ASM, structural analysis and magnetic and clay mineralogy from two boreholes (TF1 and ASM1)drilled horizontally in the Experimental Station of Tournemire of the Institute for Radiological Protection and Nuclear Safety (IRSN) in Aveyron (France). The boreholes intersect a N-S trending strike-slip fault from west to east. The ASM study indicates the evolution of the magnetic fabric from the undeformed host rock to the fault core. Also, all the fractures cutting the studied interval of the core have been measured as well as the slip vectors which are generally well preserved. In the two boreholes, the undeformed sediments outside the fault zone are characterized by an oblate fabric, a sub-vertical minimum susceptibility axis (k3) perpendicular to the bedding plane and without magnetic lineation. Within the fault zone, a tilt in the bedding plane has been observed in two boreholes TF1 and ASM1. In addition, in the TF1 core, the fault area presents a tectonic fabric characterized by a triaxial AMS ellipsoid. Moreover, the magnetic lineation increases and k3 switches from a vertical to a sub-horizontal plane. This kind of fabric has not been observed in borehole ASM1. The structural analysis of the individual fractures making the fault zone indicates a complex tectonic history with different imprint in the two fault segments cut by the two boreholes. The large majority of fractures correspond to dextral strike-slip faults but normal and reverse movements were observed and are more or less frequent depending on the borehole. Notably, many fractures are low angle faults (dip<45°) and may bear both strike-slip or normal striae. The mineralogical study based on X-ray diffraction analysis, have pointed out some variations in clay minerals associations nearby the deformed zones that may be the result of fluid circulation along the fault system which is in agreement with the presence of goethite determined by low magnetic temperature measurements. This multi-proxi study, combining ASM, petrostructural and mineralogical approaches has highlighted the heterogeneity of the fault, but also its past role as a drain to fluid circulation.
Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra
NASA Astrophysics Data System (ADS)
Nukman, Mochamad; Moeck, Inga
2013-09-01
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.
The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System
Sims, P.K.
2009-01-01
Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.
Automatic Fault Characterization via Abnormality-Enhanced Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronevetsky, G; Laguna, I; de Supinski, B R
Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less
Sequential Test Strategies for Multiple Fault Isolation
NASA Technical Reports Server (NTRS)
Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.
1997-01-01
In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.
Fault Modeling of Extreme Scale Applications Using Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.
Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less
Fault Modeling of Extreme Scale Applications Using Machine Learning
Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.; ...
2016-05-01
Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less
A comparative study of sensor fault diagnosis methods based on observer for ECAS system
NASA Astrophysics Data System (ADS)
Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli
2017-03-01
The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
Hardware fault insertion and instrumentation system: Mechanization and validation
NASA Technical Reports Server (NTRS)
Benson, J. W.
1987-01-01
Automated test capability for extensive low-level hardware fault insertion testing is developed. The test capability is used to calibrate fault detection coverage and associated latency times as relevant to projecting overall system reliability. Described are modifications made to the NASA Ames Reconfigurable Flight Control System (RDFCS) Facility to fully automate the total test loop involving the Draper Laboratories' Fault Injector Unit. The automated capability provided included the application of sequences of simulated low-level hardware faults, the precise measurement of fault latency times, the identification of fault symptoms, and bulk storage of test case results. A PDP-11/60 served as a test coordinator, and a PDP-11/04 as an instrumentation device. The fault injector was controlled by applications test software in the PDP-11/60, rather than by manual commands from a terminal keyboard. The time base was especially developed for this application to use a variety of signal sources in the system simulator.
The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.
Kumar, Mohit; Yadav, Shiv Prasad
2012-07-01
In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.
1997-01-01
Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schermer, E.R.
1993-04-01
New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less
Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems
NASA Technical Reports Server (NTRS)
Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.
1992-01-01
The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.
Aron, A.; Hardebeck, J.L.
2009-01-01
We investigated the relationship between seismicity rate changes and modeled Coulomb static stress changes from the 2003 M 6.5 San Simeon and the 2004 M 6.0 Parkfield earthquakes in central California. Coulomb stress modeling indicates that the San Simeon mainshock loaded parts of the Rinconada, Hosgri, and San Andreas strike-slip faults, along with the reverse faults of the southern Los Osos domain. All of these loaded faults, except for the San Andreas, experienced a seismicity rate increase at the time of the San Simeon mainshock. The Parkfield earthquake occurred 9 months later on the loaded portion of the San Andreas fault. The Parkfield earthquake unloaded the Hosgri fault and the reverse faults of the southern Los Osos domain, which both experienced seismicity rate decreases at the time of the Parkfield event, although the decreases may be related to the decay of San Simeon-triggered seismicity. Coulomb stress unloading from the Parkfield earthquake appears to have altered the aftershock decay rate of the southern cluster of San Simeon after-shocks, which is deficient compared to the expected number of aftershocks from the Omori decay parameters based on the pre-Parkfield aftershocks. Dynamic stress changes cannot explain the deficiency of aftershocks, providing evidence that static stress changes affect earthquake occurrence. However, a burst of seismicity following the Parkfield earthquake at Ragged Point, where the static stress was decreased, provides evidence for dynamic stress triggering. It therefore appears that both Coulomb static stress changes and dynamic stress changes affect the seismicity rate.
Jeon, Namju; Lee, Hyeongcheol
2016-01-01
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather; Wirthlin, Michael
A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less
In-flight Fault Detection and Isolation in Aircraft Flight Control Systems
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann
2005-01-01
In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.
NASA Astrophysics Data System (ADS)
Yim, Keun Soo
This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.
Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus
NASA Astrophysics Data System (ADS)
Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.
2012-12-01
Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.
NASA Astrophysics Data System (ADS)
Gomila, Rodrigo; Arancibia, Gloria; Mitchell, Thomas M.; Cembrano, Jose M.; Faulkner, Daniel R.
2016-02-01
Understanding fault zone permeability and its spatial distribution allows the assessment of fluid-migration leading to precipitation of hydrothermal minerals. This work is aimed at unraveling the conditions and distribution of fluid transport properties in fault zones based on hydrothermally filled microfractures, which reflect the ''frozen-in'' instantaneous advective hydrothermal activity and record palaeopermeability conditions of the fault-fracture system. We studied the Jorgillo Fault, an exposed 20 km long, left-lateral strike-slip fault, which juxtaposes Jurassic gabbro against metadiorite belonging to the Atacama Fault System in northern Chile. Tracings of microfracture networks of 19 oriented thin sections from a 400 m long transect across the main fault trace was carried out to estimate the hydraulic properties of the low-strain fault damagezone, adjacent to the high-strain fault core, by assuming penny-shaped microfractures of constant radius and aperture within an anisotropic fracture system. Palaeopermeability values of 9.1*10-11 to 3.2*10-13 m2 in the gabbro and of 5.0*10-10 to 1.2*10-13 m2 in the metadiorite were determined, both decreasing perpendicularly away from the fault core. Fracture porosity values range from 40.00% to 0.28%. The Jorgillo Fault has acted as a left-lateral dilational fault-bend, generating large-scale dilation sites north of the JF during co-seismic activity.
Evaluation of reliability modeling tools for advanced fault tolerant systems
NASA Technical Reports Server (NTRS)
Baker, Robert; Scheper, Charlotte
1986-01-01
The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.
NASA Astrophysics Data System (ADS)
Carannante, Simona; Argnani, Andrea; Massa, Marco; D'Alema, Ezio; Lovati, Sara; Moretti, Milena; Cattaneo, Marco; Augliera, Paolo
2015-08-01
This study presents new geological and seismological data that are used to assess the seismic hazard of a sector of the Po Plain (northern Italy), a large alluvial basin hit by two strong earthquakes on May 20 (MW 6.1) and May 29 (MW 6.0), 2012. The proposed interpretation is based on high-quality relocation of 5369 earthquakes ('Emilia sequence') and a dense grid of seismic profiles and exploration wells. The analyzed seismicity was recorded by 44 seismic stations, and initially used to calibrate new one-dimensional and three-dimensional local Vp and Vs velocity models for the area. Considering these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. These data define a seismicity that is elongated in the W-NW to E-SE directions. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~ 45° SSW, and the surface projection indicates an area ~ 10 km wide and 23 km long. The aftershocks of the May 29 mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~ 6 km wide and 33 km long. Multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene. There is also evidence of a Mesozoic extensional fault system in the Ferrara arc, with faults that in places have been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were related to ruptures along blind fault surfaces that are not part of the Pliocene-Pleistocene structural system, but are instead related to a deeper system that is itself closely related to re-activation of a Mesozoic extensional fault system.
Expert systems for real-time monitoring and fault diagnosis
NASA Technical Reports Server (NTRS)
Edwards, S. J.; Caglayan, A. K.
1989-01-01
Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.
Ultrareliable fault-tolerant control systems
NASA Technical Reports Server (NTRS)
Webster, L. D.; Slykhouse, R. A.; Booth, L. A., Jr.; Carson, T. M.; Davis, G. J.; Howard, J. C.
1984-01-01
It is demonstrated that fault-tolerant computer systems, such as on the Shuttles, based on redundant, independent operation are a viable alternative in fault tolerant system designs. The ultrareliable fault-tolerant control system (UFTCS) was developed and tested in laboratory simulations of an UH-1H helicopter. UFTCS includes asymptotically stable independent control elements in a parallel, cross-linked system environment. Static redundancy provides the fault tolerance. A polling is performed among the computers, with results allowing for time-delay channel variations with tight bounds. When compared with the laboratory and actual flight data for the helicopter, the probability of a fault was, for the first 10 hr of flight given a quintuple computer redundancy, found to be 1 in 290 billion. Two weeks of untended Space Station operations would experience a fault probability of 1 in 24 million. Techniques for avoiding channel divergence problems are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, Andrew
2013-03-08
The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less
NASA Astrophysics Data System (ADS)
Walsh, R.; Zoback, M. D.
2015-12-01
Over the past six years, the earthquake rate in the central and eastern U.S. has increased markedly, and is related to fluid injection. Nowhere has seismicity increased more than in Oklahoma, where large volumes of saline pore water are co-produced with oil and gas, then injected into deeper sedimentary formations. These deeper formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although the majority of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted. To understand probability of slip on a given fault, we invert for stresses from the hundreds of M4+ events in Oklahoma for which moment tensors have been made. We then resolve these stresses, while incorporating uncertainties, on the faults from the preliminary Oklahoma fault map. The result is a probabilistic understanding of which faults are most likely active and best avoided.
A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements
Chery, J.; Zoback, M.D.; Hickman, S.
2004-01-01
Stress measurements made in the SAFOD pilot hole provide an opportunity to study the relation between crustal stress outside the fault zone and the stress state within it using an integrated mechanical model of a transform fault loaded in transpression. The results of this modeling indicate that only a fault model in which the effective friction is very low (<0.1) through the seismogenic thickness of the crust is capable of matching stress measurements made in both the far field and in the SAFOD pilot hole. The stress rotation measured with depth in the SAFOD pilot hole (???28??) appears to be a typical feature of a weak fault embedded in a strong crust and a weak upper mantle with laterally variable heat flow, although our best model predicts less rotation (15??) than observed. Stress magnitudes predicted by our model within the fault zone indicate low shear stress on planes parallel to the fault but a very anomalous mean stress, approximately twice the lithostatic stress. Copyright 2004 by the American Geophysical Union.
Fault tolerant operation of switched reluctance machine
NASA Astrophysics Data System (ADS)
Wang, Wei
The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.
NASA Astrophysics Data System (ADS)
Han, Raehee; Hirose, Takehiro; Jeong, Gi Young; Ando, Jun-ichi; Mukoyoshi, Hideki
2014-08-01
Clayey gouges are common in fault slip zones at shallow depths. Thus, the fault zone processes and frictional behaviors of the gouges are critical to understanding seismic slip at these depths. We conducted rotary shear tests on clayey gouge (~41 wt % clay minerals) at a seismic slip rate of 1.3 m/s. Here we report that the gouge was melted at 5 MPa of normal stress and room humidity conditions. The initial local melting was followed by melt layer formation. Clay minerals (e.g., smectite and illite) and plagioclase were melted and quenched to glass with numerous vesicles. Both flash heating and bulk temperature increases appear to be responsible for the melting. This observation of clayey gouge melting is comparable to that of natural faults (e.g., Chelungpu fault, Taiwan). Due to heterogeneous fault zone properties (e.g., permeability), frictional melting may be one of the important processes in clayey slip zones at shallow depths.
Design of on-board Bluetooth wireless network system based on fault-tolerant technology
NASA Astrophysics Data System (ADS)
You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang
2007-11-01
In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.
Holocene deposition and megathrust splay fault geometries within Prince William Sound, Alaska
NASA Astrophysics Data System (ADS)
Finn, S.; Liberty, L. M.; Haeussler, P. J.; Pratt, T. L.
2011-12-01
New high resolution sparker seismic reflection data, in conjunction with reprocessed legacy seismic data, provide the basis for a new fault, fold, and Holocene sediment thickness database for Prince William Sound, Alaska. Additionally, legacy airgun seismic data in Prince William Sound and the Gulf of Alaska tie features on these new sparker data to deeper portions of megathrust splay faults. We correlate regionally extensive bathymetric lineaments within Prince William Sound to megathrust splay faults, such as the ones that ruptured in the 1964 M9.2 earthquake. Lastly, we estimate Holocene sediment thickness within Prince William Sound to better constrain the Holocene fault history throughout the region. We identify three seismic facies related to Holocene, Quaternary, and Tertiary strata that are crosscut by numerous high angle normal faults in the hanging wall of the megathrust splay faults. The crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A change in exhumation rates, slip rates, and fault orientation appears near Hinchinbrook that we attribute to differences in subducted slab geometry. Based on our slip rate analysis, we calculate average Holocene displacements of 20 m and 100 m in eastern and western Prince William Sound, respectively. Landward of two splay faults exposed on Montague Island, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes.
NASA Astrophysics Data System (ADS)
Lamarche, Geoffroy; Lebrun, Jean-Frédéric
2000-01-01
South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a series of transpressional faults that splay northwards across the Snares Fault, and terminate at the top of the Puysegur trench slope. Between ca. 48°S and 46°30'S, the relative plate motion appears to be distributed over the Puysegur subduction zone and the strike-slip faults located on the edge of the upper plate. Conversely, north of ca. 46°S, a lack of active strike-slip faulting along the MFS and across most of Puysegur Bank indicates that the subduction in the northern part of Puysegur Trench accounts for most of the oblique convergence. Hence, active transpression in the Snares fault zone indicates that the relative PAC-AUS plate motion is transferred from strike-slip faulting along the Puysegur Fault to subduction at Puysegur Trench. The progressive transition from thrusts at Puysegur Trench and strike-slip faulting at the Puysegur Fault to oblique subduction at Puysegur Trench suggests that the subduction interface progressively developed from a western shallow splay of the Puysegur Fault. It implies that the transfer fault links the subduction interface at depth. A tectonic sliver is identified between Puysegur Trench and the Puysegur Fault. Its northwards motion relative to the Pacific Plate implies that is might collide with Puysegur Bank.
Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA
Christiansen, L.B.; Hurwitz, S.; Ingebritsen, S.E.
2007-01-01
We analyze seismic data from the San Andreas Fault (SAF) near Parkfield, California, to test for annual modulation in seismicity rates. We use statistical analyses to show that seismicity is modulated with an annual period in the creeping section of the fault and a semiannual period in the locked section of the fault. Although the exact mechanism for seasonal triggering is undetermined, it appears that stresses associated with the hydrologic cycle are sufficient to fracture critically stressed rocks either through pore-pressure diffusion or crustal loading/ unloading. These results shed additional light on the state of stress along the SAF, indicating that hydrologically induced stress perturbations of ???2 kPa may be sufficient to trigger earthquakes.
Comparing Different Fault Identification Algorithms in Distributed Power System
NASA Astrophysics Data System (ADS)
Alkaabi, Salim
A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.
Automatic translation of digraph to fault-tree models
NASA Technical Reports Server (NTRS)
Iverson, David L.
1992-01-01
The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.
Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event
NASA Astrophysics Data System (ADS)
Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping
2013-03-01
Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.
Orion GN&C Fault Management System Verification: Scope And Methodology
NASA Technical Reports Server (NTRS)
Brown, Denise; Weiler, David; Flanary, Ronald
2016-01-01
In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.
NASA Technical Reports Server (NTRS)
Andre, Constance G.
1989-01-01
SPOT stereoscopic and TM multispectral images support evidence in AVHRR thermal-IR images of a major unmapped shear zone in Phanerozoic cover rocks southeast of the ancient Najd Fault System in the Arabian Shield. This shear zone and faults of the Najd share a common alignment, orientation, and sinistral sense of movement. These similarities suggest a 200-km extension of the Najd Fault System and reactivation since it formed in the late Precambrian. Topographic and lithologic features in the TM and SPOT data along one of three faults inferred from the AVHRR data indicate sinistral offsets up to 2.5 km, en echelon folds and secondary faults like those predicted by models of left-lateral strike-slip faulting. The age of the affected outcrops indicates reactivation of Najd faults in the Cretaceous, judging from TM and SPOT data or in the Tertiary, based on AVHRR data. The total length of the system visible at the surface measures 1300 km. If the Najd Fault System is extrapolated beneath sands of the Empty Quarter to faults of a similar trend in South Yemen, the shear zone would span the Arabian Plate. Furthermore, if extensions into the Arabian Sea bed and into Egypt proposed by others are considered, it would exceed 3000 km.
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.
2016-08-01
As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.
Software fault tolerance in computer operating systems
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar K.; Lee, Inhwan
1994-01-01
This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.
The characteristics of seismic activity during the 2016 Kumamoto Earthquake sequence
NASA Astrophysics Data System (ADS)
Yano, T. E.; Matsubara, M.
2016-12-01
We have relocated hypocenters (total number of hypocenters to be relocated within five independent regions; N= 37,136) during the 2016 Kumamoto Earthquake sequence applying the NIED Hi-net phase pick data and waveform cross-correlations to hypoDD (Waldhauser and Ellsworth, 2000), the double-difference method. The relocated seismicity clearly trace linearly to the background seismicity, such as the Hinagu, Futagawa, and Beppu-Haneyama fault zone, and Mt. Aso area, but also form a linear seismic activity at the previously quiet area including northern edge of the caldera of Mt. Aso (Aso caldera) and some areas within the Beppu-Haneyama fault zone. Two mainshocks of M6.5 on April 14th and M7.3 on April 16th occurred at the region where the Hinagu and Futagawa faults meet each other. Our results show that the seismicity forming a shape enough to identify a line along the Hinagu fault for about 20 km immediately after the M6.3 and continues after the M7.5 event. It also make enable to trace a line of seismicity along the Futagawa fault to the east (total of about 28 km), northern part of the Aso caldera, and Ohita region along the Beppu-Haneyama fault zone becomes active only after the M7.5 event. Not only seismicity following the known faults but also seismicity unconfirmed from background seismicity in previous relocation study between 2000 and 2012 (Yano, et al., 2016) appears during the Kumamoto Earthquake sequence. By comparing our high resolution relocated catalog in the Kumamoto region from previous study and this study enable us to identified interesting characteristics; (1) the quiet area making as a gap of seismicity between the northeast extension of the Futagawa fault zone and Mt. Aso region appears only after the M7.5 event, (2) the seismicity forming a vertical or high angle dip in Aso and Ohita regions are selectively activated, (3) the linear seismicity at previously unconfirmed regions where at the northern part of the Aso caldera and along the Beppu-Haneyama fault zone. We present these characteristics of seismicity during the Kumamoto Earthquake sequence in detail.
Possible strand of the North Anatolian fault in the Thrace basin, Turkey - An interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perincek, D.
1991-02-01
This study focuses on the presence of a major strike-slip fault system in the Thrace basin. This new discovery is important for the geology of the Thrace basin and also brings a new perspective to petroleum exploration. The wrench fault system is named the Thrace strike-slip fault system (Perincek, 1988). Similarities with the North Anatolian fault zone prompted an investigation of the relationship between these two fault system.s The study area covers most of the Thrace region of Turkey. The purposes of this paper are (1) to outline the geometry of the Thrace fault system, (2) to demonstrate its tectonicmore » relation with other major structures of the region, (3) to define the age of its inception, and (4) to discuss possible magnitudes of the lateral displacement. The interpretation is based mainly on seismic data consisting of 180 seismic reflection profiles that have a total cumulative length of 2,800 km. Seismic data are complemented with subsurface control from 54 wells.« less
Critical fault patterns determination in fault-tolerant computer systems
NASA Technical Reports Server (NTRS)
Mccluskey, E. J.; Losq, J.
1978-01-01
The method proposed tries to enumerate all the critical fault-patterns (successive occurrences of failures) without analyzing every single possible fault. The conditions for the system to be operating in a given mode can be expressed in terms of the static states. Thus, one can find all the system states that correspond to a given critical mode of operation. The next step consists in analyzing the fault-detection mechanisms, the diagnosis algorithm and the process of switch control. From them, one can find all the possible system configurations that can result from a failure occurrence. Thus, one can list all the characteristics, with respect to detection, diagnosis, and switch control, that failures must have to constitute critical fault-patterns. Such an enumeration of the critical fault-patterns can be directly used to evaluate the overall system tolerance to failures. Present research is focused on how to efficiently make use of these system-level characteristics to enumerate all the failures that verify these characteristics.
Application of fault detection techniques to spiral bevel gear fatigue data
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Handschuh, Robert F.; Decker, Harry J.
1994-01-01
Results of applying a variety of gear fault detection techniques to experimental data is presented. A spiral bevel gear fatigue rig was used to initiate a naturally occurring fault and propagate the fault to a near catastrophic condition of the test gear pair. The spiral bevel gear fatigue test lasted a total of eighteen hours. At approximately five and a half hours into the test, the rig was stopped to inspect the gears for damage, at which time a small pit was identified on a tooth of the pinion. The test was then stopped an additional seven times throughout the rest of the test in order to observe and document the growth and propagation of the fault. The test was ended when a major portion of a pinion tooth broke off. A personal computer based diagnostic system was developed to obtain vibration data from the test rig, and to perform the on-line gear condition monitoring. A number of gear fault detection techniques, which use the signal average in both the time and frequency domain, were applied to the experimental data. Among the techniques investigated, two of the recently developed methods appeared to be the first to react to the start of tooth damage. These methods continued to react to the damage as the pitted area grew in size to cover approximately 75% of the face width of the pinion tooth. In addition, information gathered from one of the newer methods was found to be a good accumulative damage indicator. An unexpected result of the test showed that although the speed of the rig was held to within a band of six percent of the nominal speed, and the load within eighteen percent of nominal, the resulting speed and load variations substantially affected the performance of all of the gear fault detection techniques investigated.
Abercrombie, R.E.; Webb, T.H.; Robinson, R.; McGinty, P.J.; Mori, J.J.; Beavan, R.J.
2000-01-01
The 1994 Arthur's Pass earthquake (Mw6.7) is the largest in a recent sequence of earthquakes in the central South Island, New Zealand. No surface rupture was observed the aftershock distribution was complex, and routine methods of obtaining the faulting orientation of this earthquake proved contradictory. We use a range of data and techniques to obtain our preferred solution, which has a centroid depth of 5 km, Mo=1.3??1019 N m, and a strike, dip, and rake of 221??, 47??, 112??, respectively. Discrepancies between this solution and the Harvard centroid moment tensor, together with the Global Positioning System (GPS) observations and unusual aftershock distribution, suggest that the rupture may not have occurred on a planar fault. A second, strike slip, subevent on a more northerly striking plane is suggested by these data but neither the body wave modeling nor regional broadband recordings show any complexity or late subevents. We relocate the aftershocks using both one-dimensional and three-dimensional velocity inversions. The depth range of the aftershocks (1-10 km) agrees well with the preferred mainshock centroid depth. The aftershocks near the hypocenter suggest a structure dipping toward the NW, which we interpret to be the mainshock fault plane. This structure and the Harper fault, ???15 km to the south appear to have acted as boundaries to the extensive aftershock zone trending NNW-SSE Most of the ML???5 aftershocks, including the two largest (ML6.1 and ML5.7), clustered near the Harper fault and have strike slip mechanisms consistent with motion on this fault and its conjugates. Forward modeling of the GPS data suggests that a reverse slip mainshock, combined with strike slip aftershock faulting in the south, is able to match the observed displacements. The occurrence of this earthquake sequence implies that the level of seismic hazard in the central South Island is greater than previous estimates. Copyright 2000 by the American Geophysical Union.
Practical Methods for Estimating Software Systems Fault Content and Location
NASA Technical Reports Server (NTRS)
Nikora, A.; Schneidewind, N.; Munson, J.
1999-01-01
Over the past several years, we have developed techniques to discriminate between fault-prone software modules and those that are not, to estimate a software system's residual fault content, to identify those portions of a software system having the highest estimated number of faults, and to estimate the effects of requirements changes on software quality.
NASA Technical Reports Server (NTRS)
Abbott, Kathy
1990-01-01
The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to examine pilot mental models of the aircraft subsystems and their use in diagnosis tasks. Future research plans include piloted simulation evaluation of the diagnosis decision aiding concepts and crew interface issues. Information is given in viewgraph form.
cost and benefits optimization model for fault-tolerant aircraft electronic systems
NASA Technical Reports Server (NTRS)
1983-01-01
The factors involved in economic assessment of fault tolerant systems (FTS) and fault tolerant flight control systems (FTFCS) are discussed. Algorithms for optimization and economic analysis of FTFCS are documented.
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Kraft, Toni; Eduard, Kissling; Nicholas, Deichmann; Clinton, John; Wiemer, Stefan
2014-05-01
From July to November 2013 a sequence of more than 850 events, of which more than 340 could be located, was triggered in a planned hydrothermal system below the city of St. Gallen in eastern Switzerland. Seismicity initiated on July 14 and the maximum Ml in the sequence was 3.5, comparable in size with the Ml 3.4 event induced by stimulation below Basel in 2006. To improve absolute locations of the sequence, more than 1000 P and S wave arrivals were inverted for hypocenters and 1D velocity structure. Vp of 5.6-5.8 km/s and a Vp/Vs ratio of 1.82-1.9 in the source region indicate a limestone or shale-type composition and a comparison with a lithological model from a 3D seismic model suggests that the seismically active streak (height up to 400 m) is within the Mesozoic layer. To resolve the fine structure of the induced seismicity, we applied waveform cross-correlation and double-difference algorithms. The results image a NE-SW striking lineament, consistent with a left-lateral fault plane derived from first motion polarities and moment tensor inversions. A spatio-temporal analysis of the relocated seismicity shows that, during first acid jobs on July 17, microseismicity propagated towards southwest over the entire future Ml 3.5 rupture plane. The almost vertical focal plane associated with the Ml 3.5 event of July 20 is well imaged by the seismicity. The area of the ruptured fault is approximately 675x400 m. Seismicity images a change in focal depths along strike, which correlates with a kink or bend in the mapped fault system northeast of the Ml 3.5 event. This change might indicate structural differences or a segmentation of the fault. Following the Ml 3.5 event, seismicity propagated along strike to the northeast, in a region without any mapped faults, indicating a continuation of the fault segment. Seismicity on this segment occurred in September and October. A complete rupture of the NE segment would have the potential to produce a magnitude larger than 3.0. Similarity of waveforms suggests that an Ml 3.2 in 1987 and an Ml 2.2 event in 1993 occurred on a similar structure with a similar slip direction as the Ml 3.5 event. It appears that the fault zone targeted by the geothermal project is not only oriented favourably for rupture relative to the regional stress field, but is also close to failure.
NASA Astrophysics Data System (ADS)
Al-Ghamdi, Ali Mohammed
A seismic stratigraphy and structural study was undertaken to explain the Miocene tectonic and sedimentary evolution of the North and South Padre Island and OCS areas (offshore south Texas). Three linear, elongated growth-fault systems, trending northeast-southwest, occurred in this area: Clemente-Tomas, Corsair, and Wanda. The Clemente-Tomas and the Corsair systems were controlled by late Oligocene-early Miocene overpressured shale uplifted by an influx of clastic sediments. Salt withdrawal helped expand the Corsair fault during the late Oligocene-early Miocene, whereas salt withdrawal formed the Wanda fault system. Nine salt structures (eight diapirs and one sheet), active throughout the Miocene, occurred beneath the present-day shelf edge and in the South Padre Island East Addition. Two types of overpressured shale (overpressured shale ridges and overpressured stratified shale) are present. Seven major depocenters: four controlled by fault expansion and sediment influx, and three by sediment influx and salt withdrawal. The depocenters caused by fault expansion propagate to the northeast, whereas those related to salt withdrawal remain in the same location. Sedimentation in the depocenters was active during the early to middle Miocene. Three sediment fairways, entering the study area from the southwest, west, and northwest, appear to connect the sediment depocenters controlled by salt withdrawal and fault expansion. All sediment fairways propagated first to depocenters associated with salt withdrawal and then to upper slope areas. Lower Miocene time-structure maps of the area show ragged structural relief caused by sedimentation and shale and salt uplifts. Using well-log, seismic reflection, and paleontologic data to support the seismic stratigraphy, five cross-sections were constructed. Large-scale sedimentation occurred at the regressive sea level during the Oligocene beneath the present-day shoreline, forcing the uplift of predeposited marine sediments (shale) through differential loading. The Corsair and Clemente-Tomas faults began forming on the eastern flank of the uplifted shale. More regression occurred at sea level in late Oligocene and early Miocene times, causing the depocenter to shift basinward of the Corsair. Range of hydrocarbon maturity lies between 120sp°C and 165sp°C at NP960 (25-27.5 m.y.) and between 130sp°C and 160sp°C at SP1076 (16-17.5 m.y.) isotherms. Total basement subsidence is about 4 km (SP1076) and 3.2 km (NP960), and the crustal stretching factor (ss) is 2.0 at SP1076 and 1.65 at NP960.
NASA Astrophysics Data System (ADS)
Heilman, E.; Kolawole, F.; Mayle, M.; Atekwana, E. A.; Abdelsalam, M. G.
2017-12-01
We address the longstanding question of the role of long-lived basement structures in strain accommodation within active rift systems. Studies have highlighted the influence of pre-existing zones of lithospheric weakness in modulating faulting and fault kinematics. Here, we investigate the role of the Neoproterozoic Mughese Shear Zone (MSZ) in Cenozoic rifting along the Rukwa-Malawi rift segment of the East African Rift System (EARS). Detailed analyses of Shuttle Radar Topography Mission (SRTM) DEM and filtered aeromagnetic data allowed us to determine the relationship between rift-related basement-rooted normal faults and the MSZ fabric extending along the southern boundary of the Rukwa-Malawi Rift North Basin. Our results show that the magnetic lineaments defining the MSZ coincide with the collinear Rukwa Rift border fault (Ufipa Fault), a dextral strike-slip fault (Mughese Fault), and the North Basin hinge-zone fault (Mbiri Fault). Fault-scarp and minimum fault-throw analyses reveal that within the Rukwa Rift, the Ufipa Border Fault has been accommodating significant displacement relative to the Lupa Border Fault, which represents the northeastern border fault of the Rukwa Rift. Our analysis also shows that within the North Basin half-graben, the Mbiri Fault has accommodated the most vertical displacement relative to other faults along the half-graben hinge zone. We propose that the Cenozoic reactivation along the MSZ facilitated significant normal slip displacement along the Ufipa Border Fault and the Mbiri Fault, and minor dextral strike-slip between the two faults. We suggest that the fault kinematics along the Rukwa-Malawi Rift is the result of reactivation of the MSZ through regional oblique extension.
ARGES: an Expert System for Fault Diagnosis Within Space-Based ECLS Systems
NASA Technical Reports Server (NTRS)
Pachura, David W.; Suleiman, Salem A.; Mendler, Andrew P.
1988-01-01
ARGES (Atmospheric Revitalization Group Expert System) is a demonstration prototype expert system for fault management for the Solid Amine, Water Desorbed (SAWD) CO2 removal assembly, associated with the Environmental Control and Life Support (ECLS) System. ARGES monitors and reduces data in real time from either the SAWD controller or a simulation of the SAWD assembly. It can detect gradual degradations or predict failures. This allows graceful shutdown and scheduled maintenance, which reduces crew maintenance overhead. Status and fault information is presented in a user interface that simulates what would be seen by a crewperson. The user interface employs animated color graphics and an object oriented approach to provide detailed status information, fault identification, and explanation of reasoning in a rapidly assimulated manner. In addition, ARGES recommends possible courses of action for predicted and actual faults. ARGES is seen as a forerunner of AI-based fault management systems for manned space systems.
Li, Xiangfei; Lin, Yuliang
2017-01-01
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017
Model-Based Diagnostics for Propellant Loading Systems
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.
2011-01-01
The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.
Fault patterns in the Strait of Messina, Southern Italy
NASA Astrophysics Data System (ADS)
Fu, L.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Schulten, I.; Cukur, D.; Gross, F.; Bialas, J.
2013-12-01
The Strait of Messina is one of the seismically most active areas in the Mediterranean region. The structural and seismotectonic settings of the area are still poorly understood. A number of faults have been identified on new high-resolution 2D seismic data collected in December 2011/January 2012. Most of the faults trending NWW-SEE are high angle (>60°) faults; they are located in the northern (off Calabria) and southern part of the Messina Straits. A number of faults identified in the central part of the Straits along the central channel or on the Calabrian side strike NNE-SSW or NNW-NNE. They dip at intermediate (30°-60°) to low (<30°) angles. The NNW-ward motion of Sicily and the NE-ward motion of Calabria indicate that faults in the strait are transtensional and that the strait is basically an asymmetric pull-apart basin (half-graben) under transtensional condition. This is confirmed by the appearances of negative flower structures, an en-echelon fault zone, and two main depocentres in the northern and central part of the straits, respectively. A fault located close to the Sicilian coast between Taormina and Briga may represent the so called Taormina fault. The existence of this fault is heavily debated in literatures. As the Strait of Messina is a transtensional basin, the Taormina fault should be a surface fault, which may outcrop very close to the Ionian coast off Sicily rather than a blind basement fault as identified on our data. Faults in the north may be the source of the 1908 Messina earthquake, because the area is in an early mature developing stage of a pull-apart basin. The cross-basin faults transecting this part of the basin would increase the slippage and the potential for large-magnitude earthquakes.
Seismotectonics of the Hindukush and Baluchistan arc
NASA Astrophysics Data System (ADS)
Verma, R. K.; Mukhopadhyay, M.; Bhanja, A. K.
1980-07-01
A seismicity map of that part of the Pakistan-Afghanistan region lying between the latitudes 28° to 38°N and longitudes 66° to 75°E is given using all available data for the period 1890-1970. The earthquakes of magnitude 4.5 and above were considered in the preparation of this map. On the basis of this map, it is observed that the seismicity pattern over the well-known Hindukush region is quite complex. Two prominent, mutually orthogonal, seismicity lineaments, namely the northvestern and the north-eastern trends, characterize the Hindukush area. The northwestern trend appears to extend from the Main Boundary Fault of the Kashmir Himalaya on the southeast to the plains of the Amu Darya in Uzbekistan on the northwest beyond the Hindukush. The Sulaiman and Kirthar ranges of Pakistan are well-defined zones of intermontane seismicity exhibiting north-south alignment. Thirty-two new focal-mechanism solutions for the above-mentioned region have been determined. These, together with the results obtained by earlier workers, suggest the pre-dominance of strike-slip faulting in the area. The Hazara Mountains, the Sulaiman wrench zone and the Kirthar wrench zone, as well as the supposed extension of the Murray ridge up to the Karachi coast, appear to be mostly undergoing strike-slip movements. In the Hindukush region, thrust and strike-slip faulting are found to be equally prevalent. Almost all the thrust-type mechanisms belonging to the Hindukush area have both the nodal planes in the NW-SE direction for shallow as well as intermediate depth earthquakes. The dip of P-axes for the events indicating thrust type mechanisms rarely exceeds 35°. The direction of the seismic slip vector obtained through thrust type solutions is always directed towards the northeast. The epicentral pattern together with these results suggest a deep-seated fault zone paralleling the northwesterly seismic zone underneath the Hindukush. This NW-lineament has a preference for thrust faulting, and it appears to extend from the vicinity of the Main Boundary Fault of the Kashmir Himalaya on the southeast of Uzbekistan on the northwest through Hindukush. Almost orthogonal to this NW-seismic zone, there is a NE-seismic lineament in which there is a preference for strike-slip faulting. The above results are discussed from the point of view of convergence of the Indian and Eurasian plates in the light of plate tectonics theory.
Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.
2002-12-01
Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines. The interactions between active structural systems formed the complicate geomorphic features presented in this paper.
Structural character of the Ghost Dance fault, Yucca Mountain, Nevada
Spengler, R.W.; Braun, C.A.; Linden, R.M.; Martin, L.G.; Ross-Brown, D. M.; Blackburn, R.L.
1993-01-01
Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: 1) dominantly north trending, 2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, 3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and 4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundance of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).
Geologic structure in California: Three studies with ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1974-01-01
Results are presented of three early applications of imagery from the NASA Earth Resources Technology Satellite to geologic studies in California. In the Coast Ranges near Monterey Bay, numerous linear drainage features possibly indicating unmapped fracture zones were mapped within one week after launch of the satellite. A similar study of the Sierra Nevada near Lake Tahoe revealed many drainage features probably formed along unmapped joint or faults in granitic rocks. The third study, in the Peninsular Ranges, confirmed existence of several major faults not shown on published maps. One of these, in the Sawtooth Range, crosses in Elsinore fault without lateral offset; associated Mid-Cretaceous structures have also been traced continuously across the fault without offset. It therefore appears that displacement along the Elsinore fault has been primarily of a dip-slip nature, at least in this area, despite evidence for lateral displacement elsewhere.
An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems
NASA Astrophysics Data System (ADS)
Hieb, Jeffrey; Graham, James; Guan, Jian
This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.
NASA Astrophysics Data System (ADS)
Wechsler, N.; Rockwell, T. K.; Klinger, Y.; Agnon, A.; Marco, S.
2012-12-01
Models used to forecast future seismicity make fundamental assumptions about the behavior of faults and fault systems in the long term, but in many cases this long-term behavior is assumed using short-term and perhaps non-representative observations. The question arises - how long of a record is long enough to represent actual fault behavior, both in terms of recurrence of earthquakes and of moment release (aka slip-rate). We test earthquake recurrence and slip models via high-resolution three-dimensional trenching of the Beteiha (Bet-Zayda) site on the Dead Sea Transform (DST) in northern Israel. We extend the earthquake history of this simple plate boundary fault to establish slip rate for the past 3-4kyr, to determine the amount of slip per event and to study the fundamental behavior, thereby testing competing rupture models (characteristic, slip-patch, slip-loading, and Gutenberg Richter type distribution). To this end we opened more than 900m of trenches, mapped 8 buried channels and dated more than 80 radiocarbon samples. By mapping buried channels, offset by the DST on both sides of the fault, we obtained for each an estimate of displacement. Coupled with fault crossing trenches to determine event history, we construct earthquake and slip history for the fault for the past 2kyr. We observe evidence for a total of 9-10 surface-rupturing earthquakes with varying offset amounts. 6-7 events occurred in the 1st millennium, compared to just 2-3 in the 2nd millennium CE. From our observations it is clear that the fault is not behaving in a periodic fashion. A 4kyr old buried channel yields a slip rate of 3.5-4mm/yr, consistent with GPS rates for this segment. Yet in spite of the apparent agreement between GPS, Pleistocene to present slip rate, and the lifetime rate of the DST, the past 800-1000 year period appears deficit in strain release. Thus, in terms of moment release, most of the fault has remained locked and is accumulating elastic strain. In contrast, the preceding 1200 years or so experienced a spate of earthquake activity, with large events along the Jordan Valley segment alone in 31 BCE, 363, 749, and 1033 CE. Thus, the return period appears to vary by a factor of two to four during the historical period in the Jordan Valley as well as at our site. The Beteiha site seems to be affected by both its southern and northern neighboring segments, and there is tentative evidence that earthquakes nucleating in the Jordan Valley (e.g. 749 CE) can rupture through the Galilee step-over to the south of Beteiha, or trigger a smaller event on the Jordan Gorge segment, in which case the historical record will tend to amalgamate any evidence for it into one large event. We offer a model of earthquake slip for this segment, in which the overall slip rate remains constant, yet differing earthquake sizes can occur, depending on the segment from which they originated and the time since the last large event. The rate of earthquake production in this model does not produce a time predictable pattern over a period of 2kyr, and the slip rate varies between the 1st and 2nd millennia CE, as a result of the interplay between coalescing fault segments to the north.
Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico
Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.
2005-01-01
The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep-marine middle Eocene rocks from transgressive, shallow-marine rocks of middle-upper Oligocene age. Rocks of middle Oligocene-early Pliocene age above unconformity are gently folDed about the roughly east-west-trending Puerto Rico-Virgin Islands arch, which is well expressed in the geomorphology of western Puerto Rico. Arching appears ongoing because onshore and offshore late Quaternary oblique-slip faults closely parallel the complexly Deformed crest of the arch and appear to be related to exTensional strains focused in the crest of the arch. We estimate ???4 km of vertical throw on the Cerro GoDen fault based on the position of the carbonate cap north of the fault in the La CaDena De San Francisco and its position south of the fault inferred from seismic reflection data in Mayaguez Bay. Based on these observations, our interpretation of the kinematics and history of the Cerro GoDen fault zone incluDes two major phases of motion: (1) Eocene northeast-southwest shorTening possibly accompanied by left-lateral shearing as Determined by previous workers on the Great Southern Puerto Rico fault zone; and (2) post-early Pliocene regional arching of Puerto Rico accompanied by normal offset and right-lateral shear along faults flanking the crest of the arch. The second phase of Deformation accompanied east-west opening of the Mona rift and is inferred to continue to the present day. ?? 2005 Geological Society of America.
Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection
NASA Astrophysics Data System (ADS)
Yi, Zhehan
This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.
Farrington, R.B.; Pruett, J.C. Jr.
1984-05-14
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
Farrington, Robert B.; Pruett, Jr., James C.
1986-01-01
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
Real-time fault diagnosis for propulsion systems
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet
1991-01-01
Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.
APPALACHIAN FOLDS, LATERAL RAMPS, AND BASEMENT FAULTS: A MODERN ENGINEERING PROBLEM?
Pohn, Howard A.
1987-01-01
Field studies and analysis of radar data have shown that cross-strike faulting in the central and southern Appalachians has affected geologic structures at the surface. These basement faults appear to have been active through much of geologic time. Indeed, more than 45 percent of modern earthquakes occur along these narrow zones here termed 'lateral ramps. ' Because of this seismic activity, these lateral ramps are likely to be zones that are prone to slope failure. The engineer should be aware of the presence of such zones and the higher landslide potential along them.
Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasaki, Kenzi; Onishi, Tiemi; Black, Bill
2009-03-31
This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. Themore » Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.« less
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones
2004-05-01
The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.
NASA Astrophysics Data System (ADS)
Özaydın, Sinan; Bülent Tank, Sabri; Karaş, Mustafa; Sandvol, Eric
2017-04-01
Wide-band magnetotelluric (MT) (360 Hz - 1860 sec) data were acquired at 25 sites along a north - south aligned profile cutting across the Central Pontides, which are made up of highly metamorphosed formations and their tectonic boundaries including: a Lower Cretaceous-aged turbidite sequence, Central Pontides Metamorphic Supercomplex (CPMS), North Anatolian Fault Zone (NAFZ) and Izmir-Ankara-Erzincan Suture Zone (IAESZ). Dimensionality analyses over all observation points demonstrated high electrical anisotropy, which indicates complex geological and tectonic structures. This dimensional complexity and presence of the electrically conductive Black Sea augmented the requirement for a three-dimensional analysis. Inverse modeling routines, ModEM (Egbert and Kelbert, 2012) and WSINV3DMT (Siripunvaraporn et al., 2005) were utilized to reveal the geo-electrical implications over this unusually complicated region. Interpretations of the resultant models are summarized as follows: (i) Çangaldaǧ and Domuzdaǧ complexes appear as highly resistive bodies bounded by north dipping faults. (ii) Highly conductive Tosya Basin sediments overlain the ophiolitic materials as a thin cover located at the south of the NAFZ. (iii) North Anatolian Fault and some auxiliary faults within the system exhibit conductive-resistive interfaces that reach to lower crustal levels. (iv) IAESZ is a clear feature marked by the resistivity contrast between NAFZ-related sedimentary basins and Neo-Tethyan ophiolites.
The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource
NASA Astrophysics Data System (ADS)
Payne, J.; Bell, J. W.; Calvin, W. M.
2012-12-01
The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.
NASA Astrophysics Data System (ADS)
Steely, A.; Hourigan, J. K.; Mere, A.; Orme, D. A.; Ooms, J.; Gallagher, C.
2016-12-01
We use two new datasets to constrain the Late Cretaceous through modern history of vertical deformation in the Santa Lucia range of the central California coast to better understand the tectonic evolution of the plate boundary between the San Andreas fault and San Gregorio-Hosgri fault (SGHF). New data presented here include 46 apatite and 31 zircon (U-Th)/He ages and 1,200 elevation measurements of the first marine terrace (presumably the MIS 5a or 5e terrace) along 190 km of coastline. The San Gregorio-Hosgri fault (SGHF) initiated in the late Miocene and appears to have asymmetrically focused exhumation on its NE side. Apatite ages are 1.5-4 Ma directly NE of the fault in both crystalline and Franciscan bedrock, but 20-60 Ma older directly SW of the fault or >5 km NE of the fault; zircon ages reflect a similar pattern and are as young as 8 Ma directly NE of the fault. These data appear to show that bedrock exhumation has been highly focused in narrow fault slivers parallel and subparallel to the SGHF and has been sufficient to exhume apatite and zircon from below their partial retention zones. We suggest that this focusing may occur along pre-existing weak faults in crustal blocks with shallow (<10 km) underplated schist—a rheologic feature of the Salinian bedrock in the Santa Lucia range not found in the surrounding crustal blocks. Surveys of the lowest marine terrace south from Monterey and northwest from Santa Cruz show a similar asymmetric pattern of increasing elevation towards the SGHF. The terrace south of Monterey rises gently from 5 m to 20 m above MSL obliquely southward toward the fault. After crossing into one of the highly exhumed crustal blocks, the terrace rises sharply to over 84 m and then drops sharply after crossing the fault zone. Inferred uplift rates from the late Quaternary (0.7-1.1 mm/yr) are higher than those during the main late Miocene-Pliocene phase of activity on the SGHF ( 0.3 mm/yr). This is puzzling in light of the low rates of modern seismicity along the SGHF and the lack of large late Quaternary horizontal offset and may suggest that the SGHF along the Santa Lucia range is more active (or active in a different way) than previously thought.
Evidence of post-Pleistocene faults on New Jersey Atlantic outer continental shelf
Sheridan, R.E.; Knebel, H.J.
1976-01-01
Recently obtained high-resolution seismic profiles (400-4,000-Hz band) show evidence of faults in shallow sedimentary strata near the edge of the Atlantic continental shelf off New Jersey. Apparent normal faults having a throw of about 1.5 m displace sediments to within 7 m of the sea floor. The faults appear to be overlain by undeformed horizontal beds of relatively recent age. Several faults 1 to 2 km apart strike approximately N70°E and dip northwest. The data suggest that the faults are upthrown on the southeast.Projection of the faults on the high-resolution profiles to a nearby multichannel seismic-reflection profile indicates that these shallow faults might be the near-surface expression of a more fundamental deep-seated fault. Several prominent reflectors in the multichannel records are offset by a high-angle normal fault reaching depths of 4.0 to 5.0 sec (6.0 to 6.5 km). The deep fault on the multichannel line also is upthrown on the southeast. Throws of as much as 90 m are apparent at depth, but offsets of as much as 10 m could be present in the shallower parts of the section that may not be resolved in the multichannel data.The position and strike of these faults coincide with and parallel the East Coast magnetic anomaly interpreted as the fundamental seaward basement boundary of the Baltimore Canyon trough. Recurring movements along such boundary faults are expected theoretically if the marginal basins are subsiding in response to the plate rotation of North America and seafloor spreading in the Atlantic.
Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M
2015-01-01
Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Astrophysics Data System (ADS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-11-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruns, T.R.; Carlson, P.R.; Stevenson, A.J.
1990-06-01
GLORIA images collected in 1989 along southeast Alaska and British Columbia strikingly show the active trace of the Fairweather-Queen Charlotte transform fault system beneath the outer shelf and slope; seismic-reflection data are used to track the fault system across the continental shelf where GLORIA data are not available. From Cross Sound to Chatham Strait, the fault system is comprised of two sets of subparallel fault traces separated by 3 to 6 km. The fault system crosses the shelf from Icy Point to south of Yakobi Valley, then follows the shelf edge to Chatham Strait. Between Chatham Strait and Dixon Entrance,more » a single, sharply defined active fault trace underlies the upper and middle slope. This fault segment is bounded on the seaward side by a high, midslope ridge and by lower slope Quaternary( ) anticlines up to 35 km wide. Southeast of Dixon Entrance, the active fault trace trends back onto the outer shelf until midway along the Queen Charlotte Islands, then cuts back to and stays at midslope to the Tuzo Wilson Knolls south of the Queen Charlotte Islands. The fault steps westward at Tuzo Wilson Knolls, which are likely part of a spreading ridge segment. Major deep-sea fans along southeast Alaska show a southeastward age progression from older to younger and record both point source deposition at Chatham Strait and Dixon Entrance and subsequent (Quaternary ) offset along the fault system. Subsidence of ocean plate now adjacent to the Chatham Strait-Dixon Entrance fault segment initiated development of both Mukluk and Horizon Channels.« less
Tutorial: Advanced fault tree applications using HARP
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.
1993-01-01
Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.
NASA Astrophysics Data System (ADS)
Delescluse, M.; Chamot-Rooke, N.; Cattin, R.
2009-05-01
The present-day intraplate deformation between India and Australia started 9 Myrs ago. In the Central Indian Basin (CIB), this deformation is recorded in the thick sediments of the Bengal fan. The equatorial, dense E-W thrust fault network in this region is the result of a massive reverse reactivation of normal faults at the onset of deformation. The Wharton Basin (WB), separated from the CIB by the NinetyEast Ridge (NyR), shows a contrasting style of deformation with mainly left-lateral strike-slip seismicity. The WB finite deformation and seismicity also involve pre-existing faults, in this case the N-S paleo-transforms of the fossile Wharton spreading-ridge system. The oceanic plate seismicity after the December 2004 Aceh subduction earthquake shows strike-slip events with a clear intraplate P-axis. No thrust faults are detected. This indicates short-term reactivation of the transform faults near the trench. Spatial and temporal distribution of intraplate erthquakes, as well as their anomalous moment release suggests triggering by the Aceh megathrust earthquake, which appears to have acted as an "accelerator" for the oceanic intraplate deformation. In this study, we use Coulomb stress static variations to confirm our seismicity observations. We first assume that the reactivated transform and the neoformed thrust fault plane families are present in the oceanic lithosphere. We then compute the coseismic stresses in the vicinity of the trench from the Aceh and Nias earthquakes slip distributions. Finally, we derive the normal and shear stresses on the fault planes. The results show that the strike-slip events are all favored by the subduction earthquakes coseismic stresses. They also show that the normal fault earthquakes at oceanic bulges are supported by the modeled coseismic stresses, except offshore Myanmar. The particularly interesting result is that all the possible neoformed thrust faults perpendicular to the intraplate P-axis are inhibited by the same coseismic stresses. This suggests that the style of intraplate deformation favored near the Sumatra Trench in the short-term by subduction earthquakes is the same than the long-term style. Under the effect of northward slab pull forces, Australia tries to detach from its Indian "brake" along the WB's N-S transform faults.
Lindsey, D.A.
1998-01-01
Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and erosion of a highland is the appearance of abundant feldspar in the Late Cretaceous Vermejo Formation. Above the Vermejo, unconformities overlain by conglomerate indicate continued thrusting and erosion of highlands from late Cretaceous (Raton) through Eocene (Cuchara) time. Eocene alluvial-fan conglomerates in the Cuchara Formation may represent erosion of the Culebra thrust block. Deposition in the Raton Basin probably shifted north from New Mexico to southern Colorado from Paleocene to Eocene time as movement on individual thrusts depressed adjacent segments of the basin.
NASA Astrophysics Data System (ADS)
Knapp, C. C.; Enciu, D. M.; Knapp, J. H.
2007-12-01
Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the foreland deformation, possibly accommodated on these two major fault systems. These results contradict both the "subduction-in-place" and "slab- break-off" hypotheses as feasible explanations for VSZ intermediate-depth seismicity, and lend additional support to a lithospheric delamination model to explain both the origin of the VSZ and the crustal architecture of the Southeast Carpathian foreland.
Revealing fate of CO2 leakage pathways in the Little Grand Wash Fault, Green River, Utah
NASA Astrophysics Data System (ADS)
Han, K.; Han, W. S.; Watson, Z. T.; Guyant, E.; Park, E.
2015-12-01
To assure long-term security of geologic carbon sequestration site, evaluation of natural CO2 leakage should be preceded before actual construction of the CO2 facility by comparing natural and artificial reservoir systems. The Little Grand Wash fault is located at the northwestern margin of the Paradox Basin and roles on a bypass of deep subsurface CO2 and brine water onto the surface, e.g., cold water geyser, CO2 spring, and surface travertine deposits. CO2 degassed out from brine at the Little Grand Wash fault zone may react with formation water and minerals while migrating through the fault conduit. Leakage observed by soil CO2 flux on the fault trace shows this ongoing transition of CO2, from supersaturated condition in deep subsurface to shallow surface equilibria. The present study aims to investigate the reactions induced by changes in hydrological and mineralogical factors inside of the fault zone. The methodology to develop site-specific geochemical model of the Little Grand Wash Fault combines calculated mechanical movements of each fluid end-member, along with chemical reactions among fluid, free CO2 gas and rock formations. Reactive transport modeling was conducted to simulate these property changes inside of the fault zone, using chemistry dataset based on 86 effluent samples of CO2 geysers, springs and in situ formation water from Entrada, Carmel, and Navajo Sandstone. Meanwhile, one- and two-dimensional models were separately developed to delineate features mentioned above. The results from the 3000-year simulation showed an appearance of self-sealing processes near the surface of the fault conduit. By tracking physicochemical changes at the depth of 15 m on the 2-dimensional model, significant changes induced by fluid mixing were indicated. Calculated rates of precipitation for calcite, illite, and pyrite showed increase in 2.6 x 10-4, 2.25 x 10-5, and 3.0 x 10-6 in mineral volume fraction at the depth of 15m, respectively. Concurrently, permeability and porosity were decreased 4.0 x 10-18 m2 and 3.0 x 10-4 due to precipitation of minerals. At the middle of the fault conduit (400 m), however, indicates consistent dissolution of minerals in formation which enhances vertical fluid migration.
The earthquake cycle in the San Francisco Bay region: A.D. 1600–2012
Schwartz, David P.; Lienkaemper, James J.; Hecker, Suzanne; Kelson, Keith I.; Fumal, Thomas E.; Baldwin, John N.; Seitz, Gordon G.; Niemi, Tina
2014-01-01
Stress changes produced by the 1906 San Francisco earthquake had a profound effect on the seismicity of the San Francisco Bay region (SFBR), dramatically reducing it in the twentieth century. Whether the SFBR is still within or has emerged from this seismic quiescence is an issue of debate with implications for earthquake mechanics and seismic hazards. Historically, the SFBR has not experienced one complete earthquake cycle (i.e., the accumulation of stress, its release primarily as coseismic slip during surface‐faulting earthquakes, its re‐accumulation in the interval following, and its subsequent rerelease). The historical record of earthquake occurrence in the SFBR appears to be complete at about M 5.5 back to 1850 (Bakun, 1999). For large events, the record may be complete back to 1776, which represents about half a cycle. Paleoseismic data provide a more complete view of the most recent pre‐1906 SFBR earthquake cycle, extending it back to about 1600. Using these, we have developed estimates of magnitude and seismic moment for alternative sequences of surface‐faulting paleoearthquakes occurring between 1600 and 1776 on the region’s major faults. From these we calculate seismic moment and moment release rates for different time intervals between 1600 and 2012. These show the variability in moment release and suggest that, in the SFBR regional plate boundary, stress can be released on a single fault in great earthquakes such as that in 1906 and in multiple ruptures distributed on the regional plate boundary fault system on a decadal time scale.
Fault Analysis in Solar Photovoltaic Arrays
NASA Astrophysics Data System (ADS)
Zhao, Ye
Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.
Subduction and Plate Edge Tectonics in the Southern Caribbean
NASA Astrophysics Data System (ADS)
Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group
2013-05-01
The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust Caribbean plate supports the elevations of the coastal mountains and controls continuing deformation.
Siler, Drew; Hinz, Nicholas H.; Faulds, James E.
2018-01-01
Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.
Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties
NASA Astrophysics Data System (ADS)
Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui
2017-10-01
In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.
Publications - PIR 2015-5-2 | Alaska Division of Geological & Geophysical
faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet Authors: Betka, P.M., and Gillis, R.J strike-slip and reverse-slip faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet, in
Formal Validation of Fault Management Design Solutions
NASA Technical Reports Server (NTRS)
Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John
2013-01-01
The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.
Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation
NASA Technical Reports Server (NTRS)
Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.
2014-01-01
Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.
Designing Fault-Injection Experiments for the Reliability of Embedded Systems
NASA Technical Reports Server (NTRS)
White, Allan L.
2012-01-01
This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.
NASA Astrophysics Data System (ADS)
Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.
2018-03-01
Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from 450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine "orogenic lid") and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous "overthrust" between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine "lid" and the European cratonic margin, with the Helvetic system (European margin) acting as the "floor" of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.
Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.
2018-01-01
Fifty‐one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top‐north thrust fault, is in fact primarily an Oligocene‐Miocene normal fault that has a minimum of 60 km of displacement with top‐south or top‐southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.
Fisher, M.A.; Sorlien, C.C.; Sliter, R.W.
2009-01-01
Urban areas in Southern California are at risk from major earthquakes, not only quakes generated by long-recognized onshore faults but also ones that occur along poorly understood offshore faults. We summarize recent research findings concerning these lesser known faults. Research by the U.S. Geological Survey during the past five years indicates that these faults from the eastern Santa Barbara Channel south to Dana Point pose a potential earthquake threat. Historical seismicity in this area indicates that, in general, offshore faults can unleash earthquakes having at least moderate (M 5-6) magnitude. Estimating the earthquake hazard in Southern California is complicated by strain partitioning and by inheritance of structures from early tectonic episodes. The three main episodes are Mesozoic through early Miocene subduction, early Miocene crustal extension coeval with rotation of the Western Transverse Ranges, and Pliocene and younger transpression related to plate-boundary motion along the San Andreas Fault. Additional complication in the analysis of earthquake hazards derives from the partitioning of tectonic strain into strike-slip and thrust components along separate but kinematically related faults. The eastern Santa Barbara Basin is deformed by large active reverse and thrust faults, and this area appears to be underlain regionally by the north-dipping Channel Islands thrust fault. These faults could produce moderate to strong earthquakes and destructive tsunamis. On the Malibu coast, earthquakes along offshore faults could have left-lateral-oblique focal mechanisms, and the Santa Monica Mountains thrust fault, which underlies the oblique faults, could give rise to large (M ??7) earthquakes. Offshore faults near Santa Monica Bay and the San Pedro shelf are likely to produce both strike-slip and thrust earthquakes along northwest-striking faults. In all areas, transverse structures, such as lateral ramps and tear faults, which crosscut the main faults, could segment earthquake rupture zones. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Li, Bin; Atakan, Kuvvet; Sørensen, Mathilde Bøttger; Havskov, Jens
2015-05-01
Earthquake focal mechanisms of the Shanxi rift system, North China, are investigated for the time period 1965-April 2014. A total of 143 focal mechanisms of ML ≥ 3.0 earthquakes were compiled. Among them, 105 solutions are newly determined in this study by combining the P-wave first motions and full waveform inversion, and 38 solutions are from available published data. Stress tensor inversion was then performed based on the new database. The results show that most solutions in the Shanxi rift system exhibit normal or strike-slip faulting, and the regional stress field is transtensional and dominated by NNW-SSE extension. This correlates well with results from GPS data, geological field observations and levelling measurements across the faults. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for five subzones. While the minimum stress axis (σ3) appears to be consistent and stable, the orientations, especially the plunges, of the maximum and intermediate stresses (σ1 and σ2) vary significantly along the strike of the different subzones. Based on our results and combining multidisciplinary observations from geological surveys, GPS and cross-fault monitoring, a kinematic model is proposed for the Shanxi rift system, in which the rift is situated between two opposite rotating crustal blocks, exhibiting a transtensional stress regimes. This model illustrates the present-day stress field and its correlation to the regional tectonics, as well as the current crustal deformation of the Shanxi rift system. Results obtained in this study, may help to understand the geodynamics, neotectonic activity, active seismicity and potential seismic hazard in this region.
Formal Techniques for Synchronized Fault-Tolerant Systems
NASA Technical Reports Server (NTRS)
DiVito, Ben L.; Butler, Ricky W.
1992-01-01
We present the formal verification of synchronizing aspects of the Reliable Computing Platform (RCP), a fault-tolerant computing system for digital flight control applications. The RCP uses NMR-style redundancy to mask faults and internal majority voting to purge the effects of transient faults. The system design has been formally specified and verified using the EHDM verification system. Our formalization is based on an extended state machine model incorporating snapshots of local processors clocks.
NASA Astrophysics Data System (ADS)
Matsuda, T.; Omura, K.; Ikeda, R.
2003-12-01
National Research Institute for Earth Science and Disaster Prevention (NIED) has been conducting _gFault zone drilling_h. Fault zone drilling is especially important in understanding the structure, composition, and physical properties of an active fault. In the Chubu district of central Japan, large active faults such as the Atotsugawa (with 1858 Hietsu earthquake) and the Atera (with 1586 Tensho earthquake) faults exist. After the occurrence of the 1995 Kobe earthquake, it has been widely recognized that direct measurements in fault zones by drilling. This time, we describe about the Atera fault and the Nojima fault. Because, these two faults are similar in geological situation (mostly composed of granitic rocks), so it is easy to do comparative study of drilling investigation. The features of the Atera fault, which have been dislocated by the 1586 Tensho earthquake, are as follows. Total length is about 70 km. That general trend is NW45 degree with a left-lateral strike slip. Slip rate is estimated as 3-5 m / 1000 years. Seismicity is very low at present and lithologies around the fault are basically granitic rocks and rhyolite. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes (Hatajiri, Fukuoka, Ueno and Kawaue) are located on a line crossing in a direction perpendicular to the Atera fault. In the Kawaue well, mostly fractured and alternating granitic rock continued from the surface to the bottom at 630 m. X-ray fluorescence analysis (XRF) is conducted to estimate the amount of major chemical elements using the glass bead method for core samples. The amounts of H20+ are about from 0.5 to 2.5 weight percent. This fractured zone is also characterized by the logging data such as low resistivity, low P-wave velocity, low density and high neutron porosity. The 1995 Kobe (Hyogo-ken Nanbu) earthquake occurred along the NE-SW-trending Rokko-Awaji fault system, and the Nojima fault appeared on the surface on Awaji Island when this rupture occurred. It is more than 10 km long with 1-2 m offset along the Nojima fault. About one year after the earthquake, NIED drilled a borehole (the Hirabayashi NIED borehole) and penetrated the Nojima fault. The Hirabayashi NIED borehole was drilled to a depth of 1838 m and recovered the drill core. The main types of rock intersected by the borehole are granodiorite and cataclastic fault rocks. Three fracture zones were recognized in cores at approximate depth of 1140 m, 1300 m and 1800 m. There is remarkable foliated blue-gray gouge at a depth of 1140 m. We investigate chemical compositions by XRF analysis in the fracture zone. The amounts of H20+ are about from 1.0 to 15.0 weight percent. We investigate mineral assemblage in both drilling cores by X-ray powder diffraction analysis. From the results, we can_ft recognize so difference between the two faults. But the amount of H2O+ is very different. In the Hirabayashi NIED core at a depth of 1140 m, there is about ten times as much as the average of the Kawaue core. This is probably due to the greater degree of wall-rock fracturing in the fracture zone. We suggest that this characteristic is associated with the fault activity at the time of the 1995 Kobe earthquake and the nature of fluid-rock interactions in the fracture zone.
Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.
2004-01-01
The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.
NASA Technical Reports Server (NTRS)
Lundgren, Paul; Saucier, Fraancois; Palmer, Randy; Langon, Marc
1995-01-01
We compute crustal motions in Alaska by calculating the finite element solution for an elastic spherical shell problem. The method we use allows the finite element mesh to include faults and very long baseline interferometry (VLBI) baseline rates of change. Boundary conditions include Pacific-North American (PA-NA) plate motions. The solution is constrained by the oblique orientation of the Fairweather-Queen Charlotte strike-slip faults relative to the PA-NA relative motion direction and the oblique orientation from normal convergence of the eastern Aleutian trench fault systems, as well as strike-shp motion along the Denali and Totschunda fault systems. We explore the effects that a range of fault slip constraints and weighting of VLBI rates of change has on the solution. This allows us to test the motion on faults, such as the Denali fault, where there are conflicting reports on its present-day slip rate. We find a pattern of displacements which produce fault motions generally consistent with geologic observations. The motion of the continuum has the general pattern of radial movement of crust to the NE away from the Fairweather-Queen Charlotte fault systems in SE Alaska and Canada. This pattern of crustal motion is absorbed across the Mackenzie Mountains in NW Canada, with strike-slip motion constrained along the Denali and Tintina fault systems. In south central Alaska and the Alaska forearc oblique convergence at the eastern Aleutian trench and the strike-shp motion of the Denali fault system produce a counterclockwise pattern of motion which is partially absorbed along the Contact and related fault systems in southern Alaska and is partially extruded into the Bering Sea and into the forearc parallel the Aleutian trench from the Alaska Peninsula westward. Rates of motion and fault slip are small in western and northern Alaska, but the motions we compute are consistent with the senses of strike-slip motion inferred geologically along the Kaltag, Kobuk Trench, and Thompson Creek faults and with the normal faulting observed in NW Alaska near Nome. The nonrigid behavior of our finite element solution produces patterns of motion that would not have been expected from rigid block models: strike-slip faults can exist in a continuum that has motion mostly perpendicular to their strikes, and faults can exhibit along-strike differences in magnitudes and directions.
Method and system for environmentally adaptive fault tolerant computing
NASA Technical Reports Server (NTRS)
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
A Solid-State Fault Current Limiting Device for VSC-HVDC Systems
NASA Astrophysics Data System (ADS)
Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz
2013-08-01
Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.
Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi
NASA Astrophysics Data System (ADS)
Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.
2017-12-01
Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.
Graph-based real-time fault diagnostics
NASA Technical Reports Server (NTRS)
Padalkar, S.; Karsai, G.; Sztipanovits, J.
1988-01-01
A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.
The emergence of asymmetric normal fault systems under symmetric boundary conditions
NASA Astrophysics Data System (ADS)
Schöpfer, Martin P. J.; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Nicol, Andrew; Grasemann, Bernhard
2017-11-01
Many normal fault systems and, on a smaller scale, fracture boudinage often exhibit asymmetry with one fault dip direction dominating. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing. Moreover, domains of parallel faults are frequently used to infer the presence of a décollement. Using Distinct Element Method (DEM) modelling we show, that asymmetric fault systems can emerge under symmetric boundary conditions. A statistical analysis of DEM models suggests that the fault dip directions and system polarities can be explained using a random process if the strength contrast between the brittle layer and the surrounding material is high. The models indicate that domino and shear band boudinage are unreliable shear-sense indicators. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults alone.
Bounemeur, Abdelhamid; Chemachema, Mohamed; Essounbouli, Najib
2018-05-10
In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario
2015-04-01
The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.
Research on Fault Characteristics and Line Protections Within a Large-scale Photovoltaic Power Plant
NASA Astrophysics Data System (ADS)
Zhang, Chi; Zeng, Jie; Zhao, Wei; Zhong, Guobin; Xu, Qi; Luo, Pandian; Gu, Chenjie; Liu, Bohan
2017-05-01
Centralized photovoltaic (PV) systems have different fault characteristics from distributed PV systems due to the different system structures and controls. This makes the fault analysis and protection methods used in distribution networks with distributed PV not suitable for a centralized PV power plant. Therefore, a consolidated expression for the fault current within a PV power plant under different controls was calculated considering the fault response of the PV array. Then, supported by the fault current analysis and the on-site testing data, the overcurrent relay (OCR) performance was evaluated in the collection system of an 850 MW PV power plant. It reveals that the OCRs at downstream side on overhead lines may malfunction. In this case, a new relay scheme was proposed using directional distance elements. In the PSCAD/EMTDC, a detailed PV system model was built and verified using the on-site testing data. Simulation results indicate that the proposed relay scheme could effectively solve the problems under variant fault scenarios and PV plant output levels.
NASA Astrophysics Data System (ADS)
Verma, R. K.; Kumar, G. V. R. Krishna
1987-03-01
The Himalaya together with Arakan-Yoma form a well defined seismic belt to the north and east of the Indian Peninsula. The Seismicity along this belt is attributed mostly to collision between the Indian and the Eurasian plates. However, the exact nature of activity along the major thrusts and faults is not well understood. The seismicity along the entire Himalaya and Northern Burma has been studied in detail. It has been found that besides the Main Boundary Fault and the Main Central Thrust several transverse features are also very active. Some of these behave like steeply dipping fracture zones. Along the Arakan-Yoma most of the seismicity appears to be due to subduction of the Indian lithosphere to the east. Analysis of focal mechanism solutions for the Himalaya shows that although thrust movements are predominant, normal and strike-slip faulting is taking place along some of the transverse features. In addition to thrusting, strike-slip faulting is also taking place along the Arakan-Yoma. Orientation of P-axes for all thrust solutions show a sharp change from predominantly east-west along the Burmese arc to N-S and NE-SW along the Himalaya. The direction further changes to NW-SE along the Baluchistan arc. It appears that the Indian lithosphere is under compression from practically all sides. The present day seismicity of Northeast India and Northern Burma can be explained in terms of a plate tectonics model after Nandy (1976). No simple model appears to be applicable for the entire Himalaya.
Evidence of Quaternary and recent activity along the Kyaukkyan Fault, Myanmar
NASA Astrophysics Data System (ADS)
Crosetto, Silvia; Watkinson, Ian M.; Soe Min; Gori, Stefano; Falcucci, Emanuela; Nwai Le Ngal
2018-05-01
Cenozoic right-lateral shear between the eastern Indian margin and Eurasia is expressed by numerous N-S trending fault systems inboard of the Sunda trench, including the Sagaing Fault. The most easterly of these fault systems is the prominent ∼500 km long Kyaukkyan Fault, on the Shan Plateau. Myanmar's largest recorded earthquake, Mw 7.7 on 23rd May 1912, focused near Maymyo, has been attributed to the Kyaukkyan Fault, but the area has experienced little significant seismicity since then. Despite its demonstrated seismic potential and remarkable topographic expression, questions remain about the Kyaukkyan Fault's neotectonic history.
A distributed fault-tolerant signal processor /FTSP/
NASA Astrophysics Data System (ADS)
Bonneau, R. J.; Evett, R. C.; Young, M. J.
1980-01-01
A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.
NASA Technical Reports Server (NTRS)
Russell, B. Don
1989-01-01
This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.
On-board fault management for autonomous spacecraft
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne
1991-01-01
The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.
Early Tertiary transtension-related deformation and magmatism along the Tintina fault system, Alaska
Till, A.B.; Roeske, S.M.; Bradley, D.C.; Friedman, R.; Layer, P.W.
2007-01-01
Transtensional deformation was concentrated in a zone adjacent to the Tintina strike-slip fault system in Alaska during the early Tertiary. The deformation occurred along the Victoria Creek fault, the trace of the Tintina system that connects it with the Kaltag fault; together the Tintina and Kaltag fault systems girdle Alaska from east to west. Over an area of ???25 by 70 km between the Victoria Creek and Tozitna faults, bimodal volcanics erupted; lacustrine and fluvial rocks were deposited; plutons were emplaced and deformed; and metamorphic rocks cooled, all at about the same time. Plutonic and volcanic rocks in this zone yield U-Pb zircon ages of ca. 60 Ma; 40Ar/ 39Ar cooling ages from those plutons and adjacent metamorphic rocks are also ca. 60 Ma. Although early Tertiary magmatism occurred over a broad area in central Alaska, meta- morphism and ductile deformation accompanied that magmatism in this one zone only. Within the zone of deformation, pluton aureoles and metamorphic rocks display consistent NE-SW-stretching lineations parallel to the Victoria Creek fault, suggesting that deformation processes involved subhorizontal elongation of the package. The most deeply buried metamorphic rocks, kyanite-bearing metapelites, occur as lenses adjacent to the fault, which cuts the crust to the Moho (Beaudoin et al., 1997). Geochronologic data and field relationships suggest that the amount of early Tertiary exhumation was greatest adjacent to the Victoria Creek fault. The early Tertiary crustal-scale events that may have operated to produce transtension in this area are (1) increased heat flux and related bimodal within-plate magmatism, (2) movement on a releasing stepover within the Tintina fault system or on a regional scale involving both the Tintina and the Kobuk fault systems, and (3) oroclinal bending of the Tintina-Kaltag fault system with counterclockwise rotation of western Alaska. ?? 2007 The Geological Society of America. All rights reserved.
Robust fault detection of wind energy conversion systems based on dynamic neural networks.
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.
Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774
Quasi-dynamic earthquake fault systems with rheological heterogeneity
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.
2009-12-01
Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.