Science.gov

Sample records for fault zone structure

  1. Fault zone structure of the Wildcat fault in Berkeley, California - Field survey and fault model test -

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Onishi, C. T.; Karasaki, K.; Tanaka, S.; Hamada, T.; Sasaki, T.; Ito, H.; Tsukuda, K.; Ichikawa, K.; Goto, J.; Moriya, T.

    2010-12-01

    In order to develop hydrologic characterization technology of fault zones, it is desirable to clarify the relationship between the geologic structure and hydrologic properties of fault zones. To this end, we are performing surface-based geologic and trench investigations, geophysical surveys and borehole-based hydrologic investigations along the Wildcat fault in Berkeley,California to investigate the effect of fault zone structure on regional hydrology. The present paper outlines the fault zone structure of the Wildcat fault in Berkeley on the basis of results from trench excavation surveys. The approximately 20 - 25 km long Wildcat fault is located within the Berkeley Hills and extends northwest-southeast from Richmond to Oakland, subparallel to the Hayward fault. The Wildcat fault, which is a predominantly right-lateral strike-slip fault, steps right in a releasing bend at the Berkeley Hills region. A total of five trenches have been excavated across the fault to investigate the deformation structure of the fault zone in the bedrock. Along the Wildcat fault, multiple fault surfaces are branched, bent, paralleled, forming a complicated shear zone. The shear zone is ~ 300 m in width, and the fault surfaces may be classified under the following two groups: 1) Fault surfaces offsetting middle Miocene Claremont Chert on the east against late Miocene Orinda formation and/or San Pablo Group on the west. These NNW-SSE trending fault surfaces dip 50 - 60° to the southwest. Along the fault surfaces, fault gouge of up to 1 cm wide and foliated cataclasite of up to 60 cm wide can be observed. S-C fabrics of the fault gouge and foliated cataclasite show normal right-slip shear sense. 2) Fault surfaces forming a positive flower structure in Claremont Chert. These NW-SE trending fault surfaces are sub-vertical or steeply dipping. Along the fault surfaces, fault gouge of up to 3 cm wide and foliated cataclasite of up to 200 cm wide can be observed. S-C fabrics of the fault

  2. Structure and deformational character of strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Deng, Qidong; Wu, Daning; Zhang, Peizhen; Chen, Shefa

    1986-01-01

    Strike-slip fault zones observed either in the field or in model experiments generally consist of several subparallel faults which make these zones complicated in geometry and kinematics. The geometry of a strike-slip fault or shear zone is dependent on arrangement (pinnate or en echelon), on step (left step or right step), and on the rank )smaller faults within larger faults) of the subparallel fault. The relations and interactions of these three factors create a variety of dynamic circumstances and tectonic settings within the strike-slip fault zones. These include pull-aparts in the release area between subparallel faults, push-ups in the jogs where the subparallel faults overlap, and pivotal movements, or rotation, of single faults along the whole fault zone. Each kind of tectonic setting is in itself characteristic, each setting consists of many subtypes, which are controlled chiefly by the geometric parameters of the subparallel faults. One of the most important phenomena revealed in the field work is two different kinds of evolution of strike-slip fault zones: one is the evolution of a zone with a tensile component, which is related to the growth of rock bridges, and the other, of one with a compressional component, which develops by the destruction of rock bridges. In this paper we discuss, on the basis of recent research on four strike-slip fault zones in China, the essential characteristics of strike-slip faults and the possible causes of the observed structural phenomena. Attention is focussed on the deformation, development, and distribution of horizontal displacements within strike-slip fault zones.

  3. High Resolution Imaging of Fault Zone Structures With Seismic Fault Zone Waves

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; Zhigang, P.; Lewis, M. A.; McGuire, J.

    2006-12-01

    Large fault zone (FZ) structures with damaged rocks and material discontinuity interfaces can generate several indicative wave propagation signals. High crack density may produce prominent scattering and non-linear effects. A preferred crack orientation can lead to shear wave splitting. A lithology contrast can produce FZ head waves that propagate along the material interface with the velocity and motion polarity of the faster medium. A coherent low velocity layer may generate FZ trapped waves. These signals can be used to obtain high resolution imaging of the subsurface structure of fault zones, and to track possible temporal evolution of FZ material properties. Several results have emerged from recent systematic analyses of such signals. The trapped waves are generated typically by ~100 m wide layers that extend only to ~3-4 km depth and are characterized by 30-50% velocity reduction and strong attenuation. The trapping structures are surrounded by broader anisotropic and scattering zones limited primarily also to the shallow crust. Results associated with anisotropy and scattering around the North Anatolian fault using repeating earthquake clusters do not show precursory temporal evolution. The anisotropy results show small co-seismic changes, while the scattering results show larger co-seismic changes and post-seismic logarithmic recovery. The temporal changes probably reflect damage evolution in the top few hundred m of the crust. Systematic analyses of head waves along several sections of the San Andreas fault reveal material interfaces that extend to the bottom of the seismogenic zone. Joint arrival time inversions of direct and FZ head waves imply velocity contrasts of 20% or more in the top 3 km and lower contrasts of 5-15% in the deeper section. In several places, analyses of trapped and head waves indicate that the shallow damaged layers are asymmetric across the fault. The observed damage asymmetry may reflect preferred propagation direction of

  4. Internal Structure of Taiwan Chelungpu Fault Zone Gouges

    NASA Astrophysics Data System (ADS)

    Song, Y.; Song, S.; Tang, M.; Chen, F.; Chen, Y.

    2005-12-01

    Gouge formation is found to exist in brittle faults at all scale (1). This fine-grain gouge is thought to control earthquake instability. And thus investigating the gouge textures and compositions is very important to an understanding of the earthquake process. Employing the transmission electron microscope (TEM) and a new transmission X-ray microscope (TXM), we study the internal structure of fault zone gouges from the cores of the Taiwan Chelungpu-fault Drilling Project (TCDP), which drilled in the fault zone of 1999 Chi-Chi earthquake. This X-ray microscope have installed at beamline BL01B of the Taiwan Light Source, National Synchrotron Radiation Research Center (NSRRC). It provides 2D imaging and 3D tomography at energy 8-11 keV with a spatial resolution of 25-60 nm, and is equipped with the Zernike-phase contrast capability for imaging light materials. In this work, we show the measurements of gouge texture, particle size distribution and 3D structure of the ultracataclasite in fault gouges within 12 cm about 1111.29 m depth. These characterizations in transition from the fault core to damage zone are related to the comminuting and the fracture energy in the earthquake faulting. The TXM data recently shows the particle size distributions of the ultracataclasite are between 150 nm and 900 nm in diameter. We will keep analyzing the characterization of particle size distribution, porosity and 3D structure of the fault zone gouges in transition from the fault core to damage zone to realize the comminuting and fracture surface energy in the earthquake faulting(2-5).The results may ascertain the implication of the nucleation, growth, transition, structure and permeability of the fault zones(6-8). Furthermore, it may be possible to infer the mechanism of faulting, the physical and chemical property of the fault, and the nucleation of the earthquake. References 1) B. Wilson, T. Dewerw, Z. Reches and J. Brune, Nature, 434 (2005) 749. 2) S. E. Schulz and J. P. Evans

  5. The deep structure and seismic characteristic of Longmenshan fault zone

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Han, Jianguang; Qu, Chen; Feng, Yangyang

    2017-04-01

    The Longmenshan fault zone is located at the Eastern Tibet, north from the Qingchuan, go through the Nanba, Beichuan, Yingxiu, Baoxing to LuDing, total length is about 560 km, and width is 30-50 km. This belt is mainly composed of 4 faults from the west to the east, which are Maoxian-Wenchuan fault, Beichuan-Yingxiu fault, Anxian-Guanxian fault and Guangyuan-Dayi fault, respectively (Hubbard et al., 2008; Xu et al., 2008). The whole fault zone shows the characteristics of the earth's physical field change abruptly, such as landform, crustal thickness, tectonic stress field, density and velocity. Through research and analysis seismic reflection profiles and aftershock sequence space distribution of large earthquake, deep structures and the characteristics of earthquakes of Longmenshan tectonic belt are studied here. It reveals the fine crustal structure and construction of 3 sections of Longmenshan fault zone: north, middle and south, discusses the relationship between deep structural features and seismic, formed as below: 1. The north segment of the Anxian-Guanxian fault with NW dipping angle of 45° at ≥ 14 km depth, and begin to slow in the depth of 8 km. The all middle segment of this fault show the characteristic: North East steep south west slow, and develop various structural types. From the aftershock distribution map, we can see that the earthquakes are less in Anxian-Guanxian fault northern part. There are a large number of earthquakes in the middle section of the fault, which may be related to the development of the hidden faults. Most of southern part aftershocks are distributed on both sides of the fault, located below the Anxian-Guanxian fault. 2. The study found that the north segment of the Yingxiu-Beichuan fault dip 55° to NW in ≥19 km depth, and begin to slow in the depth of 6 km, extend to decollement surface at low angle. From the aftershock distribution map, we can see that the earthquakes in northern fault are distributed along both sides

  6. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  7. Structural Analysis of the Exhumed SEMP Fault Zone, Austria: Towards an Understanding of Fault Zone Architecture Throughout the Seismogenic Crust

    NASA Astrophysics Data System (ADS)

    Frost, E. K.; Dolan, J. F.; Sammis, C.; Hacker, B.; Ratschbacher, L.

    2006-12-01

    One of the most exciting and important frontiers in earthquake science is the linkage between the internal structure and the mechanical behavior of fault zones. In particular, little is known about how fault-zone structure varies as a function of depth, from near-surface conditions down through the seismogenic crust and into the ductile lower crust. Such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This imperative has led us to the Oligo-Miocene Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault zone in Austria, a major left-lateral strike-slip fault that has been exhumed differentially such that it exposes a continuum of structural levels along strike. This exhumed fault system provides a unique opportunity to systematically examine depth-dependent changes in fault-zone geometry and structure along a single fault. In order to establish the structure of the fault zone in the seismogenic crust, we are studying exposures of this fault at a variety of exhumation levels, from <1 km near the eastern end of the fault, downward through the seismogenic crust, across the brittle-ductile transition, and into the uppermost part of the lower crust in western Austria. Here we present our results from one of these study sites, a spectacular exposure of the fault zone near the town of Gstatterboden in central Austria. The fault, which at this location has been exhumed from a depth of ~ 2-3 km, juxtaposes limestone of the Wettersteinkalk on the south with dolomite of the Ramsaudolomit on the north. We conducted two detailed structural traverses over a fault-perpendicular width of over 200 m. Analysis of the density and orientation of outcrop scale features, such as faults and fractures, reveals a highly asymmetric pattern of fault zone damage. Dolomite to the north of the fault is extensively shattered, while the limestone unit to the south shows only minor evidence of fault damage

  8. Hydraulic structure of a fault zone at seismogenic depths (Gole Larghe Fault Zone, Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Mittempergher, Silvia; Di Toro, Giulio; Smith, Steve; Garofalo, Paolo; Vho, Alice

    2016-04-01

    The Gole Larghe Fault Zone (GLFZ, Italian Southern Alps) was exhumed from c. 8 km depth, where it was characterized by seismic activity (pseudotachylytes), but also by hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the fault zone over a continuous area > 1 km2, the fault zone architecture has been quantitatively described with an unprecedented detail (Bistacchi 2011, PAGEOPH; Smith 2013, JSG; Mittempergher 2016, this meeting), providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. Based on field and microstructural evidence, we infer that the opening and closing of fractures resulted in a toggle-switch mechanism for fluid flow during the seismic cycle: higher permeability was obtained in the syn- to early post-seismic period, when the largest number of fractures was (re)opened by off-fault deformation, then permeability dropped due to hydrothermal mineral precipitation and fracture sealing. Since the fracture network that we observe now in the field is the result of the cumulative deformation history of the fault zone, which probably includes thousands of earthquakes, a fundamental parameter that cannot be directly evaluated in the field is the fraction of fractures-faults that were open immediately after a single earthquake. Postseismic permeability has been evaluated in a few cases in the world thanks to seismological evidences of fluid migration along active fault systems. Therefore, we were able to develop a parametric hydraulic model of the GLFZ and calibrate it, varying the fraction of faults/fractures that were open in the postseismic period, to obtain on one side realistic fluid flow and permeability values, and on the other side a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold

  9. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  10. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Eichhubl, P.; Aydin, A.

    2005-01-01

    Faults in sandstone are frequently composed of two classes of structures: (1) deformation bands and (2) joints and sheared joints. Whereas the former structures are associated with cataclastic deformation, the latter ones represent brittle fracturing, fragmentation, and brecciation. We investigated the distribution of these structures, their formation, and the underlying mechanical controls for their occurrence along the Moab normal fault in southeastern Utah through the use of structural mapping and numerical elastic boundary element modeling. We found that deformation bands occur everywhere along the fault, but with increased density in contractional relays. Joints and sheared joints only occur at intersections and extensional relays. In all locations , joints consistently overprint deformation bands. Localization of joints and sheared joints in extensional relays suggests that their distribution is controlled by local variations in stress state that are due to mechanical interaction between the fault segments. This interpretation is consistent with elastic boundary element models that predict a local reduction in mean stress and least compressive principal stress at intersections and extensional relays. The transition from deformation band to joint formation along these sections of the fault system likely resulted from the combined effects of changes in remote tectonic loading, burial depth, fluid pressure, and rock properties. In the case of the Moab fault, we conclude that the structural heterogeneity in the fault zone is systematically related to the geometric evolution of the fault, the local state of stress associated with fault slip , and the remote loading history. Because the type and distribution of structures affect fault permeability and strength, our results predict systematic variations in these parameters with fault evolution. ?? 2004 Geological Society of America.

  11. Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone

    PubMed Central

    Ross, Zachary E.; Hauksson, Egill; Ben-Zion, Yehuda

    2017-01-01

    The trifurcation area of the San Jacinto fault zone has produced more than 10% of all earthquakes in southern California since 2000, including the June 2016 Mw (moment magnitude) 5.2 Borrego Springs earthquake. In this area, the fault splits into three subparallel strands and is associated with broad VP/VS anomalies. We synthesize spatiotemporal properties of historical background seismicity and aftershocks of the June 2016 event. A template matching technique is used to detect and locate more than 23,000 aftershocks, which illuminate highly complex active fault structures in conjunction with a high-resolution regional catalog. The hypocenters form dipping seismicity lineations both along strike and nearly orthogonal to the main fault, and are composed of interlaced strike-slip and normal faults. The primary faults change dip with depth and become listric by transitioning to a dip of ~70° near a depth of 10 km. The Mw 5.2 Borrego Springs earthquake and past events with M > 4.0 occurred on the main faults, whereas most of the low-magnitude events are located in a damage zone (several kilometers wide) at seismogenic depths. The lack of significant low-magnitude seismicity on the main fault traces suggests that they do not creep. The very high rate of aftershocks likely reflects the large geometrical fault complexity and perhaps a relatively high stress due to a significant length of time elapsed since the last major event. The results provide important insights into the physics of faulting near the brittle-ductile transition. PMID:28345036

  12. Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone.

    PubMed

    Ross, Zachary E; Hauksson, Egill; Ben-Zion, Yehuda

    2017-03-01

    The trifurcation area of the San Jacinto fault zone has produced more than 10% of all earthquakes in southern California since 2000, including the June 2016 Mw (moment magnitude) 5.2 Borrego Springs earthquake. In this area, the fault splits into three subparallel strands and is associated with broad VP /VS anomalies. We synthesize spatiotemporal properties of historical background seismicity and aftershocks of the June 2016 event. A template matching technique is used to detect and locate more than 23,000 aftershocks, which illuminate highly complex active fault structures in conjunction with a high-resolution regional catalog. The hypocenters form dipping seismicity lineations both along strike and nearly orthogonal to the main fault, and are composed of interlaced strike-slip and normal faults. The primary faults change dip with depth and become listric by transitioning to a dip of ~70° near a depth of 10 km. The Mw 5.2 Borrego Springs earthquake and past events with M > 4.0 occurred on the main faults, whereas most of the low-magnitude events are located in a damage zone (several kilometers wide) at seismogenic depths. The lack of significant low-magnitude seismicity on the main fault traces suggests that they do not creep. The very high rate of aftershocks likely reflects the large geometrical fault complexity and perhaps a relatively high stress due to a significant length of time elapsed since the last major event. The results provide important insights into the physics of faulting near the brittle-ductile transition.

  13. Internal structure of fault zones in geothermal reservoirs: Examples from palaeogeothermal fields and potential host rocks

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea; Meier, Silke; Bauer, Johanna F.; Afşar, Filiz

    2014-05-01

    Fault zones commonly have great effects on fluid transport in geothermal reservoirs. During fault slip all the pores and small fractures that meet with the slip plane become interconnected so that the inner part of the fault, the fault core, consisting of breccia or gouge, may suddenly develop a very high permeability. This is evidenced, for example by networks of mineral veins in deeply eroded fault zones in palaeogeothermal fields. Inactive faults, however, may have low permeabilities and even act as flow barriers. In natural and man-made geothermal reservoirs, the orientation of fault zones in relation to the current stress field and their internal structure needs be known as accurately as possible. One reason is that the activity of the fault zone depends on its angle to the principal stress directions. Another reason is that the outer part of a fault zone, the damage zone, comprises numerous fractures of various sizes. Here we present field examples of faults, and associated joints and mineral veins, in palaeogeothermal fields, and potential host rocks for man-made geothermal reservoirs, respectively. We studied several localities of different stratigraphies, lithologies and tectonic settings: (1) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); (2) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone, limestone and granite) in the Upper Rhine Graben; and (3) 74 fault zones in two coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (1) and (2) are outcrop analogues of geothermal reservoir horizons, (3) represent palaeogeothermal fields with mineral veins. The field studies in the Northwest German Basin (1) show pronounced differences between normal-fault zones in carbonate and clastic rocks. In carbonate rocks clear damage zones occur that are

  14. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  15. Deep Structure and Earthquake Generating Properties in the Yamasaki Fault Zone Estimated from Dense Seismic Observation

    NASA Astrophysics Data System (ADS)

    Nishigami, K.; Shibutani, T.; Katao, H.; Yamaguchi, S.; Mamada, Y.

    2010-12-01

    We have been estimating crustal heterogeneous structure and earthquake generating properties in and around the Yamasaki fault zone, which is a left-lateral strike-slip active fault with a total length of about 80 km in southwest Japan. We deployed dense seismic observation network, composed of 32 stations with average spacing of 5-10 km around the Yamasaki fault zone. We estimate detailed fault structure such as fault dip and shape, segmentation, and possible location of asperities and rupture initiation point, as well as generating properties of earthquakes in the fault zone, through analyses of accurate hypocenter distribution, focal mechanism, 3-D velocity tomography, coda wave inversion, and other waveform analyses. We also deployed a linear seismic array across the fault, composed of 20 stations with about 20 m spacing, in order to delineate the fault-zone structure in more detail using the seismic waves trapped inside the low velocity zone. We also estimate detailed resistivity structure at shallow depth of the fault zone by AMT (audio-frequency magnetotelluric) and MT surveys. In the scattering analysis of coda waves, we used 2,391 wave traces from 121 earthquakes that occurred in 2002, 2003, 2008 and 2009, recorded at 60 stations, including dense temporary and routine stations. We estimated 3-D distribution of relative scattering coefficients along the Yamasaki fault zone. Microseismicity is high and scattering coefficient is relatively larger in the upper crust along the entire fault zone. The distribution of strong scatterers suggests that the Ohara and Hijima faults, which are the segments in the northwestern part of the Yamasaki fault zone, have almost vertical fault plane from surface to a depth of about 15 km. We used seismic network data operated by Universities, NIED, AIST, and JMA. This study has been carried out as a part of the project "Study on evaluation of earthquake source faults based on surveys of inland active faults" by Japan Nuclear

  16. Slip zone structure and processes in seismogenic carbonate faults

    NASA Astrophysics Data System (ADS)

    Bullock, R. J.; De Paola, N.

    2011-12-01

    High velocity rotary shear experiments performed at seismic slip velocities (>1 m/s) have shown that experimental faults are weak; with increasing displacement, friction coefficient values decrease from Byerlee's values (μ = 0.6-0.85) to values of ~0.1. In carbonate rocks, experimental studies have shown that fault lubrication is due to the operation of multiple dynamic weakening mechanisms (e.g., flash heating, thermal pressurization, nanoparticle lubrication), which are thermally activated due to the frictional heat generated along localized slip surfaces during rapid slip. This study has set out to investigate whether evidence for the operation of these weakening mechanisms can be found in naturally occurring carbonate fault zones. Field studies were carried out on the active Gubbio fault zone (1984, Mw = 5.6) in the northern Apennines of Italy. Jurassic-Oligocene carbonates in the footwall are heavily deformed within a fault core of ~15 m thickness, which contains a number of very well exposed, highly localized principal slip surfaces (PSSs). Fault rocks are predominantly breccias and foliated cataclasites. Microstructural analyses of the PSSs reveal that slip is localized within very narrow principal slip zones (PSZs), ranging from 10-85 μm in thickness, with sub-millimetre scale asperities. PSZs are composed of very fine-grained, orange-brown ultracataclasite gouge containing a high proportion of nano-sized particles. The ultracataclasite commonly displays a foliated texture and sub-micron scale zones of extreme shear localization. A broader slip zone, up to 1.5 mm wide and containing multiple slip surfaces, is associated with the most evolved PSSs; it is located on the opposite side of the PSS to the PSZ. Here, the host rock material is heavily fractured, abraded and altered, sometimes with an ultracataclasite matrix. The surrounding wall rock often appears to have a porous texture, and calcite crystals within the slip zone have altered rims with lobate

  17. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio

    2016-09-01

    The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).

  18. Fault-zone structure and weakening processes in basin-scale reverse faults: The Moonlight Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Alder, S.; Smith, S. A. F.; Scott, J. M.

    2016-10-01

    The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the

  19. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  20. Deconvoluting complex structural histories archived in brittle fault zones.

    PubMed

    Viola, G; Scheiber, T; Fredin, O; Zwingmann, H; Margreth, A; Knies, J

    2016-11-16

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.

  1. Deconvoluting complex structural histories archived in brittle fault zones

    PubMed Central

    Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.

    2016-01-01

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks. PMID:27848957

  2. Deconvoluting complex structural histories archived in brittle fault zones

    NASA Astrophysics Data System (ADS)

    Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.

    2016-11-01

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.

  3. CRUSTAL STRUCTURE OF THE SOUTHERN CALAVERAS FAULT ZONE, CENTRAL CALIFORNIA, FROM SEISMIC REFRACTION INVESTIGATIONS.

    USGS Publications Warehouse

    Blumling, Peter; Mooney, Walter D.; Lee, W.H.K.

    1985-01-01

    A magnitude 5. 7 earthquake on August 6, 1979, within the Calaveras fault zone, near Coyote Lake of west-central California, motivated a seismic-refraction investigation in this area. A northwest-southeast profile along the fault, as well as two fan profiles across the fault were recorded to examine the velocity structure of this region. The analysis of the data reveals a complicated upper crustal velocity structure with strong lateral variations in all directions. Velocities within the fault zone were determined from the fan profiles. Near Anderson Lake, a pronounced delay of first arrivals on the fan records indicates a vertical 1- to 2-km-wide near-surface, low-velocity zone along the fault. Near Coyote Lake, the delays observed in the fan records correlate with two subsurface en-echelon fault planes which have been previously identified from lineations in the seismicity pattern. Refs.

  4. Finite-frequency sensitivity kernels of seismic waves to fault zone structures

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Tape, C.; Ben-Zion, Y.

    2015-12-01

    We analyse the volumetric sensitivity of fault zone seismic head and trapped waves by constructing finite-frequency sensitivity (Fréchet) kernels for these phases using a suite of idealized and tomographically derived velocity models of fault zones. We first validate numerical calculations by waveform comparisons with analytical results for two simple fault zone models: a vertical bimaterial interface separating two solids of differing elastic properties, and a `vertical sandwich' with a vertical low velocity zone surrounded on both sides by higher velocity media. Establishing numerical accuracy up to 12 Hz, we compute sensitivity kernels for various phases that arise in these and more realistic models. In contrast to direct P body waves, which have little or no sensitivity to the internal fault zone structure, the sensitivity kernels for head waves have sharp peaks with high values near the fault in the faster medium. Surface wave kernels show the broadest spatial distribution of sensitivity, while trapped wave kernels are extremely narrow with sensitivity focused entirely inside the low-velocity fault zone layer. Trapped waves are shown to exhibit sensitivity patterns similar to Love waves, with decreasing width as a function of frequency and multiple Fresnel zones of alternating polarity. In models that include smoothing of the boundaries of the low velocity zone, there is little effect on the trapped wave kernels, which are focused in the central core of the low velocity zone. When the source is located outside a shallow fault zone layer, trapped waves propagate through the surrounding medium with body wave sensitivity before becoming confined. The results provide building blocks for full waveform tomography of fault zone regions combining high-frequency head, trapped, body, and surface waves. Such an imaging approach can constrain fault zone structure across a larger range of scales than has previously been possible.

  5. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; Peng, Z.; Ben-Zion, Y.; Vernon, F. L.

    2005-09-01

    We analyse fault zone trapped waves, generated by ~500 small earthquakes, for high-resolution imaging of the subsurface structure of the Coyote Creek, Clark Valley and Buck Ridge branches of the San Jacinto fault zone near Anza, California. Based on a small number of selected trapped waves within this data set, a previous study concluded on the existence of a low-velocity waveguide that is continuous to a depth of 15-20 km. In contrast, our systematic analysis of the larger data set indicates a shallow trapping structure that extends only to a depth of 3-5 km. This is based on the following lines of evidence. (1) Earthquakes clearly outside these fault branches generate fault zone trapped waves that are recorded by stations within the fault zones. (2) A traveltime analysis of the difference between the direct S arrivals and trapped wave groups shows no systematic increase (moveout) with increasing hypocentral distance or event depth. Estimates based on the observed average moveout values indicate that the propagation distances within the low-velocity fault zone layers are 3-5 km. (3) Quantitative waveform inversions of trapped wave data indicate similar short propagation distances within the low-velocity fault zone layers. The results are compatible with recent inferences on shallow trapping structures along several other faults and rupture zones. The waveform inversions also indicate that the shallow trapping structures are offset to the northeast from the surface trace of each fault branch. This may result from a preferred propagation direction of large earthquake ruptures on the San Jacinto fault.

  6. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  7. Structure of the eastern Seattle fault zone, Washington state: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.

    2008-01-01

    We identify and characterize the active Seattle fault zone (SFZ) east of Lake Washington with newly acquired seismic reflection data. Our results focus on structures observed in the upper 1 km below the cities of Bellevue, Sammamish, Newcastle, and Fall City, Washington. The SFZ appears as a broad zone of faulting and folding at the southern boundary of the Seattle basin and north edge of the Seattle uplift. We interpret the Seattle fault as a thrust fault that accommodates north-south shortening by forming a fault-propagation fold with a forelimb breakthrough. The blind tip of the main fault forms a synclinal growth fold (deformation front) that extends at least 8 km east of Vasa Park (west side of Lake Sammamish) and defines the south edge of the Seattle basin. South of the deformation front is the forelimb break-through fault, which was exposed in a trench at Vasa Park. The Newcastle Hills anticline, a broad anticline forming the north part of the Seattle uplift east of Lake Washington, is interpreted to lie between the main blind strand of the Seattle fault and a backthrust. Our profiles, on the northern limb of this anticline, consistently image north-dipping strata. A structural model for the SFZ east of Lake Washington is consistent with about 8 km of slip on the upper part of the Seattle fault, but the amount of motion is only loosely constrained.

  8. Internal Structure of the San Jacinto Fault Zone at Blackburn Canyon from a Dense Linear Deployment across the Fault

    NASA Astrophysics Data System (ADS)

    Share, P. E.; Allam, A. A.; Ben-Zion, Y.; Lin, F. C.; Vernon, F.

    2016-12-01

    We image the internal structure of the Clark section of the San Jacinto fault zone (SJFZ) at Blackburn Canyon using teleseismic and local earthquake waveforms recorded during about 1 month by a linear array consisting of 125 three-component 5 Hz geophones with an aperture of 2.4 km. The instrument spacing is 10 m in a zone 400 m wide centered on the surface trace of the fault, and 30 m to the NE and SW of that zone. Analysis of 4 teleseismic events indicates an abrupt change in the horizontal first motions of P phases around the central station, BS55, coinciding with the surface trace. Variations in P arrival times suggest a zone of slowness from station BS55 to 350 m to the NE, with maximum slowness 130 m from BS55. Automatic algorithms are used to detect P fault zone head waves (FZHW) and S fault zone trapped waves (FZTW) generated by local events. Over 200 FZHW candidate phases are detected for 57 M>1 events located SE of the array along the SJFZ. Inspection of the picks reveals probable FZHW in most stations within 1 km wide zone to the SW of station BS32 ( 350 m NE from the central station BS55). FZTW are detected for 36 M>1 events located in a very broad region around the array. When considering only stations in the central 400 m zone, 76% of the FZTW detections are made for stations in the 200 m wide zone NE of BS55. A 100 m wide internal region with 10 stations (B40 to B50), centered 100 m NE of BS55, has the largest amplitude and lowest frequency for waveforms with FZTW, and most likely overlies the core active damage zone of the Clark fault. Based on these initial findings and geological constraints, the main Clark fault at depth is likely closest to station BS55, damage is asymmetric to the NE with most damage confined to a 100 m zone, and the damage zone terminates at a bimaterial interface close to station BS32. Further analysis is needed to confirm the discussed results and conclusions.

  9. Lithospheric Structure of the Western North Anatolian Fault Zone from 3-D Teleseismic Tomography

    NASA Astrophysics Data System (ADS)

    Papaleo, E.

    2015-12-01

    The North Anatolian Fault Zone (NAFZ) is a 1500 km long active strike-slip fault that spans northern Turkey. During the past century a series of migrating earthquakes have sequentially activated different segments of the fault. The last major events of this sequence are the 1999 Izmit and Düzce earthquakes, which are consistent with a gradual westward migration in seismicity. The next active segment of the fault may be close to the city of Istanbul, posing a major risk for its population. Historically, the NAFZ exhibits a recurrent migrating sequence of high magnitude earthquakes along the fault zone, suggesting that it accommodates most of the plate motion between Anatolian and Eurasian plates in a narrow shear zone. From GPS studies following the Izmit and Düzce events, this motion does not appear to be constrained to the upper crust, and may extend at least to the lower crust. However, the geometry of the fault in the lower crust and upper mantle is at present poorly understood and previous tomographic studies do not provide a consistent picture of the velocity structure in this region. To better constrain the geometry of the shear zone at depth, in particular beneath the most recently active segment of the fault, an array of 70 temporary seismic stations with a 7 km spacing was deployed for 18 months as part of the FaultLab project. Amongst all the events recorded, those of magnitude ≥ 5 and situated between 27 and 98 degrees from the centre of the array were selected to perform 3D teleseismic tomography. Synthetic resolution tests indicate that structures as small as the average station spacing can be recovered to a depth of approximately 80 km. The work aims to provide a higher resolution image of the velocity structure beneath the western segment of the NAFZ, leading to a better understanding of the shear zone in the lower crust and upper mantle.

  10. Fine crustal structure and seismogenic tectonic system of Tanlu fault zone midpiece area in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfa; Wang, Hualin; Jiang, Wenliang; Wang, Xin; Tian, Tian

    2013-04-01

    In this paper, based on the studying related data involved in tectonic geology, earthquake geology, gravity and magnetism of Tanlu fault zone midpiece area of China, multi-scale wavelet method is used to separate gravity and magnetism field in different deeps, and crustal density and magnetic structure feature are understood. Moho topography of this area is inversed using 3D Parker density interface inversion method and variable density model, constrained by deep seismic data and others. And at last, three typical gravity profiles are modeled. Results indicate that rebuilt by multi-tectonic movement crustal structure of this area is very complicated, the faults appear in profiles, ones of which control hollow structure and another ones break lower crust, only Tanlu fault zone cut off earthcrust and upper mantle, and there is upwelling material had high density from upper mantle and asthenosphere along fault zone, which show a dense gravity stair zone in the Bouguer anomaly approximate image. Besides, relocation data of earthquakes in this area are used and 3D fine structure pattern near seismic resource area is rebuilt and 2 clear dominant earthquakes distributions are found in 10km and 16km deeps. The relationship between the tectonics and strong earthquake is studied and symbol and feature of strong earthquake in this area is found. Research conclude that the cause of 1668 Tancheng Ms8.5 earthquake is probably related to especialy fault morphology and upwelling material had high density from asthenosphere.

  11. Depth-dependent structure of the Landers fault zone from trapped waves generated by aftershocks

    NASA Astrophysics Data System (ADS)

    Li, Yong-Gang; Vidale, John E.; Aki, Keiiti; Xu, Fei

    2000-03-01

    We delineate the internal structure of the Johnson Valley and Kickapoo faults (Landers southern rupture) at seismogenic depth using fault zone trapped waves generated by aftershocks. Trapped waves recorded at the dense linear seismic arrays deployed across and along the surface breaks of the 1992 M7.5 Landers earthquake show large amplitudes and dispersive wave trains following the S waves. Group velocities of trapped waves measured from multiple band-pass-filtered seismograms for aftershocks occurring at different depths between 1.8 km and 8.2 km show an increase in velocity with depth. Velocities range from 1.9 km/s at 4 Hz to 2.6 km/s at 1 Hz for shallow events, while for deep events, velocities range from 2.3 km/s at 4 Hz to 3.1 km/s at 1 Hz. Coda-normalized amplitude spectra of trapped waves peak in amplitudes at 3-4 Hz for stations located close to the fault trace. The amplitude decays rapidly with the station offset from the fault zone. Normalized amplitudes also decrease with distance along the fault, giving an apparent Q of 30 for shallow events and 50 for deep events. We evaluated depth-dependent fault zone structure and its uncertainty from these measurements plus our previous results from near-surface explosion-excited trapped waves [Li et al., 1999] in a systematic model parameter-searching procedure using a three-dimensional (3-D) finite difference computer code [Graves, 1996]. Our best model of the Landers fault zone is 250 m wide at the surface, tapering to 100-150 m at 8.2 km depth. The shear velocity within the fault zone increases from 1.0 to 2.5 km/s and Q increases from 20 to 60 in this depth range. Fault zone shear velocities are reduced by 35 to 45% from those of the surrounding rock and also vary along the fault zone with an increase of ˜10% near ends of the southern rupture zone.

  12. Continuity of subsurface fault structure revealed by gravity anomaly: the eastern boundary fault zone of the Niigata plain, central Japan

    NASA Astrophysics Data System (ADS)

    Wada, Shigeki; Sawada, Akihiro; Hiramatsu, Yoshihiro; Matsumoto, Nayuta; Okada, Shinsuke; Tanaka, Toshiyuki; Honda, Ryo

    2017-01-01

    We have investigated gravity anomalies around the Niigata plain, which is a sedimentary basin in central Japan bounded by mountains, to examine the continuity of subsurface fault structures of a large fault zone—the eastern boundary fault zone of the Niigata plain (EBFZNP). The features of the Bouguer anomaly and its first horizontal and vertical derivatives clearly illustrate the EBFZNP. The steep first horizontal derivative and the zero isoline of the vertical derivative are clearly recognized along the entire EBFZNP over an area that shows no surface topographic features of an active fault. Two-dimensional density structure analyses also confirm a relationship between the two first derivatives and the subsurface fault structure. Therefore, we conclude that the length of the EBFZNP as an active fault extends to 56 km, which is longer than previously estimated. This length leads to an estimation of a moment magnitude of 7.4 of an expected earthquake from the EBFZNP.[Figure not available: see fulltext.

  13. Fine structure of the landers fault zone: Segmentation and the rupture process

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.

    1994-01-01

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  14. Fault zone structure observations from the SAFOD Pilot Hole vertical seismic array

    NASA Astrophysics Data System (ADS)

    Chavarria, A.; Shalev, E.; Malin, P.

    2003-04-01

    In July 2003 we installed a 32 level array of 15 Hz, 3-component seismometers in the San Andreas Fault Observatory at Depth Pilot Hole. The Pilot Hole sits on the southwestern side of the Parkfield segment of the San Andreas Fault Zone. The array levels are spaced 40 m apart and cover the depth interval of 856 to 2096 m. Both surface explosion and earthquake data have been recorded with the array using sampling rates of 1 and 2 KHz, respectively. Because of their location below the complex structure and strong attenuation of the near surface, the microearthquake recordings contain seismic energy up to very high frequencies, for some events as high as 600 Hz. Travel time curves from these data contain evidence for the reflection and refraction of P and S waves within the fault zone. As can be expected, the curves are strong functions of azimuth, with phases traveling parallel to the fault showing significantly less uphole moveout than those traveling normal to it. This feature is a direct result of the 2-dimensionality of the local geology. There is a change in seismic velocities and amplitudes a few hundred meter below the top of the array. This is somewhat unexpected given that this is also a few hundred meters below the local sediment-granite basement contact. Further, the fault zone P and S wave velocity structures appear to vary in significantly different fashions. The same seems to be true for the fault zone P and S wave attenuation. The S-wave data show signs of shear wave splitting, possibly originating from the fault zones primary facture system. These fractures may also account for the difference in the P and S wave velocity variations and attenuation, particularly if these fractures are fluid filled.

  15. Architecture, fracture system, mechanical properties and permeability structure of a fault zone in Lower Triassic sandstone, Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Bauer, Johanna F.; Meier, Silke; Philipp, Sonja L.

    2015-04-01

    Close to the western Upper Rhine Graben Main Fault, Alsace, a NNE-SSW-striking fault zone, crosscutting porous, thick bedded Lower Triassic Bunter sandstone was investigated in detail, including its architecture, discontinuity system, mechanical rock properties and implications on its permeability structure and fault zone type. Field observations indicate a three-part fault zone structure including core-, transition- and damage zone. The at least 14 m thick fault core is composed of various slip surfaces and deformation bands, which encompass fractured host rock lenses. When connected, host rock lenses may transport fluids through the core zone. Adjacent transition zones are highly fractured in R1-orientation, show folded beds and contain P1-oriented deformation bands. R1 and P1-fractures are synthetic shear fractures and project with an acute angle (10-20°) toward the fault plane. Only in the damage zone, fault-parallel striking fractures occur. Here, increasing fracture apertures and connectivity may increase the permeability toward the fault core. Mechanical rock properties from 12 rock samples (Young's modulus, uniaxial compressive strength, tensile strength) measured in all the parts of the fault zone, show highest values within the transition zone. In-situ measurements of rebound-hardnesses with a Schmidt-Hammer and analytical approaches, however, indicate that effective Young's moduli are two to sixteen times lower than the Young's moduli of intact rock. Values clearly decrease toward the fault core, even in the transition zone and are in average lower than effective Young's moduli in the damage zone. Although many fault zones in sandstone are sealing structures these field study show, that fault zones in porous sandstone may allow fluid flow.

  16. Pulse-Like Rupture Induced by Three-Dimensional Fault Zone Flower Structures

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Huang, Yihe; Ampuero, Jean-Paul

    2015-05-01

    Faults are often embedded in low-velocity fault zones (LVFZ) caused by material damage. Previous 2D dynamic rupture simulations (H uang and A mpuero, 2011; H uang et al., 2014) showed that if the wave velocity contrast between the LVFZ and the country rock is strong enough, ruptures can behave as pulses, i.e. with local slip duration (rise time) much shorter than whole rupture duration. Local slip arrest (healing) is generated by waves reflected from the LVFZ-country rock interface. This effect is robust against a wide range of fault zone widths, absence of frictional healing, variation of initial stress conditions, attenuation, and off-fault plasticity. These numerical studies covered two-dimensional problems with fault-parallel fault zone structures. Here, we extend previous work to 3D and geometries that are more typical of natural fault zones, including complexities such as flower structures with depth-dependent velocity and thickness, and limited fault zone depth extent. This investigation requires high resolution and flexible mesh generation, which are enabled here by the high-order accurate arbitrary high-order derivatives discontinuous Galerkin method with an unstructured tetrahedral element discretization (P elties et al., 2012). We show that the healing mechanism induced by waves reflected in the LVFZ also operates efficiently in such three-dimensional fault zone structures and that, in addition, a new healing mechanism is induced by unloading waves generated when the rupture reaches the surface. The first mechanism leads to very short rise time controlled by the LVFZ width to wave speed ratio. The second mechanism leads to generally longer, depth-increasing rise times, is also conditioned by the existence of an LVFZ, and persists at some depth below the bottom of the LVFZ. Our simulations show that the generation of slip pulses by these two mechanisms is robust to the depth extent of the LVFZ and to the position of the hypocenter. The first healing

  17. Fault zone structure and seismic reflection characteristics in zones of slow slip and tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Henrys, Stuart; Sutherland, Rupert; Barker, Daniel; Wallace, Laura; Holden, Caroline; Power, William; Wang, Xiaoming; Morgan, Joanna; Warner, Michael; Downes, Gaye

    2015-04-01

    Over the last couple of decades we have learned that a whole spectrum of different fault slip behaviour takes place on subduction megathrust faults from stick-slip earthquakes to slow slip and stable sliding. Geophysical data, including seismic reflection data, can be used to characterise margins and fault zones that undergo different modes of slip. In this presentation we will focus on the Hikurangi margin, New Zealand, which exhibits marked along-strike changes in seismic behaviour and margin characteristics. Campaign and continuous GPS measurements reveal deep interseismic coupling and deep slow slip events (~30-60 km) at the southern Hikurangi margin. The northern margin, in contrast, experiences aseismic slip and shallow (<10-15 km) slow slip events (SSE) every 18-24 months with equivalent moment magnitudes of Mw 6.5-6.8. Updip of the SSE region two unusual megathrust earthquakes occurred in March and May 1947 with characteristics typical of tsunami earthquakes. The Hikurangi margin is therefore an excellent natural laboratory to study differential fault slip behaviour. Using 2D seismic reflection, magnetic anomaly and geodetic data we observe in the source areas of the 1947 tsunami earthquakes i) low amplitude interface reflectivity, ii) shallower interface relief, iii) bathymetric ridges, iv) magnetic anomaly highs and in the case of the March 1947 earthquake v) stronger geodetic coupling. We suggest that this is due to the subduction of seamounts, similar in dimensions to seamounts observed on the incoming Pacific plate, to depths of <10 km. We propose a source model for the 1947 tsunami earthquakes based on geophysical data and find that extremely low rupture velocities (c. 300 m/s) are required to model the observed large tsunami run-up heights (Bell et al. 2014, EPSL). Our study suggests that subducted topography can cause the nucleation of moderate earthquakes with complex, low velocity rupture scenarios that enhance tsunami waves, and the role of

  18. Evaluation of soft sediment deformation structures along the Fethiye-Burdur Fault Zone, SW Turkey

    NASA Astrophysics Data System (ADS)

    Ozcelik, Mehmet

    2016-03-01

    Burdur city is located on lacustrine sedimentary deposits at the northeastern end of the Fethiye-Burdur Fault Zone (FBFZ) in SW Turkey. Fault steps were formed in response to vertical displacement along normal fault zones in these deposits. Soft sediment deformation structures were identified at five sites in lacustrine sediments located on both sides of the FBFZ. The deformed sediments are composed of unconsolidated alternations of sands, silts and clay layers and show different morphological types. The soft sediment deformation structures include load structures, flame structures, slumps, dykes, neptunian dykes, drops and pseudonodules, intercalated layers, ball and pillow structures, minor faults and water escape structures of varying geometry and dimension. These structures are a direct response to fluid escape during liquefaction and fluidization mechanism. The driving forces inferred include gravitational instabilities and hydraulic processes. Geological, tectonic, mineralogical investigations and age analysis were carried out to identify the cause for these soft sediment deformations. OSL dating indicated an age ranging from 15161±744 to 17434±896 years for the soft sediment deformation structures. Geological investigations of the soft sediment deformation structures and tectonic history of the basin indicate that the main factor for deformation is past seismic activity.

  19. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction

  20. Direct Observation of Depth Variation in Fault Zone Structure Through and Below the Seismogenic Crust: Preliminary Results From the SEMP Fault System in Austria

    NASA Astrophysics Data System (ADS)

    Frost, E. K.; Dolan, J.; Sammis, C.; Hacker, B.; Ratschbacher, L.

    2004-12-01

    One of the most exciting and important frontiers in earthquake science is the linkage between the internal structure and the mechanical behavior of fault zones. In particular, little is known about how fault-zone structure varies as a function of depth, from near-surface conditions down through the seismogenic crust and into the ductile lower crust. Such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This imperative has led us to the Oligo-Miocene Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault zone in Austria. The SEMP system is an extremely rare example of a major strike-slip fault that has been exhumed differentially such that it exposes a continuum of structural levels along strike. This exhumed fault system thus provides a unique opportunity to systematically examine depth-dependent changes in fault-zone geometry and structure along a single fault. Our ongoing field studies focus on structural transects across the SEMP fault zone at exhumation levels ranging from the near-surface at the eastern end of the fault (Vienna pull-apart basin), within the seismogenic crust (central Austria), and down into the ductile lower crust exposed in the Tauern window of western Austria. In addition to detailed field mapping of structural fabrics, fluid-rock interactions, relative timing relationships, and variations in fault geometry, we are also conducting detailed analyses of fault-zone rocks designed to explore deformation at a wide range of scales using petrographic microscopy, cathodoluminescence microscopy, fluid-inclusion studies, scanning-electron microscopy, and transmission/analytical-electron microscopy. Preliminary results from one of our first detailed study sites, at Gesäuse in central Austria, reveal strikingly asymmetric damage across the fault. The limestones exposed south of the fault are fractured, but relatively coherent to within a few meters of the main fault

  1. Structural styles of Paleozoic intracratonic fault reactivation: A case study of the Grays Point fault zone in southeastern Missouri, USA

    USGS Publications Warehouse

    Clendenin, C.W.; Diehl, S.F.

    1999-01-01

    A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.

  2. Toward Explaining Scale-dependent Velocity Structure Across an Exposed Brittle Fault Zone

    NASA Astrophysics Data System (ADS)

    Gettemy, G. L.; Tobin, H. J.; Hole, J. A.; Sayed, A. Y.

    2001-12-01

    The lack of preserved surface exposures of faults generally necessitates the use of remote-sensed data to infer lithostructural architecture of the subsurface of any particular fault, particularly seismic experiments which detail physical properties linked to wave propagation phenomena. The exposure of the San Gregorio Fault at Moss Beach (25 km southwest of San Francisco, CA), however, provides a unique opportunity to examine a preserved active fault zone. We combine two scales of geophysical investigation--high-resolution field velocity tomography, and an extensive laboratory ultrasonic velocity measurement program--to produce a 1D across-fault velocity structure that correlates well with the previously mapped structural domains. The absolute velocities within a given domain are strongly scale dependent, with the laboratory velocities 20-50% greater than the field-scale tomography results. This disparity can potentially be attributed to sampling bias (i.e., the inability to sample and ultrasonically test macroscopically fractured rock near \\textit{in situ} conditions), saturation effects, and frequency dispersion. We investigate the importance of the mesoscopic fracture distribution and depositional heterogeneity on the velocity discrepancies through monte carlo analysis by applying an effective medium theory of multi-scaled fractured rock combined with a propagator matrix algorithm. We parameterize the model by generating a 1D model of the fault zone, incorporating dispersion-adjusted saturated rock velocities and mesoscopic fracture distributions consistent with ultrasonic measurements and field-scale geologic mapping. The results clearly demonstrate that differing elastomechanical parameters must be invoked to explain the velocity discrepancy within the hanging wall (massive mudstone) and foot wall (sandstone with interbedded pebble conglomerate). These results highlight the value of conducting multi-scaled investigations when studying complex fault zone

  3. Multi-Scale Structure and Earthquake Properties in the San Jacinto Fault Zone Area

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2014-12-01

    I review multi-scale multi-signal seismological results on structure and earthquake properties within and around the San Jacinto Fault Zone (SJFZ) in southern California. The results are based on data of the southern California and ANZA networks covering scales from a few km to over 100 km, additional near-fault seismometers and linear arrays with instrument spacing 25-50 m that cross the SJFZ at several locations, and a dense rectangular array with >1100 vertical-component nodes separated by 10-30 m centered on the fault. The structural studies utilize earthquake data to image the seismogenic sections and ambient noise to image the shallower structures. The earthquake studies use waveform inversions and additional time domain and spectral methods. We observe pronounced damage regions with low seismic velocities and anomalous Vp/Vs ratios around the fault, and clear velocity contrasts across various sections. The damage zones and velocity contrasts produce fault zone trapped and head waves at various locations, along with time delays, anisotropy and other signals. The damage zones follow a flower-shape with depth; in places with velocity contrast they are offset to the stiffer side at depth as expected for bimaterial ruptures with persistent propagation direction. Analysis of PGV and PGA indicates clear persistent directivity at given fault sections and overall motion amplification within several km around the fault. Clear temporal changes of velocities, probably involving primarily the shallow material, are observed in response to seasonal, earthquake and other loadings. Full source tensor properties of M>4 earthquakes in the complex trifurcation area include statistically-robust small isotropic component, likely reflecting dynamic generation of rock damage in the source volumes. The dense fault zone instruments record seismic "noise" at frequencies >200 Hz that can be used for imaging and monitoring the shallow material with high space and time details, and

  4. Structure of a seismogenic fault zone in dolostones: the Foiana Line (Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Fondriest, M.; Smith, S. A.; Aretusini, S.

    2012-12-01

    clasts (resulting from force chains) oriented at 60-80 degrees to the slip surfaces. Similar features have been reported in natural and experimental pulverized rocks, the latter produced under dynamic stress wave loading conditions. 3-Dimensional rupture simulations along strike-slip faults predict (1) off-fault damage distributions with "flower-like" shapes (broad damage zone near the surface that rapidly narrows with increasing confining pressure, e.g., Ma and Andrews, 2010) and (2) formation of secondary faults/fractures with disperse attitudes and kinematics near the surface, with horizontal slip at depth. Qualitatively, these theoretical results compare favorably with increasing strain localization and a switch in fault kinematics recognized along the FL moving from the southern, shallower portion of the fault zone to the northern, deeper portion. Observations along the FL suggest that the association of shattered dolostones and mirror-like slip surfaces might be a potential indicator of seismic rupture propagation. Further detailed structural mapping along the FL coupled with experimental work on rock pulverization will be necessary to understand rupture dynamics in dolostones.

  5. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey

    USGS Publications Warehouse

    Ben-Zion, Y.; Peng, Z.; Okaya, D.; Seeber, L.; Armbruster, J.G.; Ozer, N.; Michael, A.J.; Baris, S.; Aktar, M.

    2003-01-01

    We discuss the subsurface structure of the Karadere-Duzce branch of the North Anatolian Fault based on analysis of a large seismic data set recorded by a local PASSCAL network in the 6 months following the Mw = 7.4 1999 Izmit earthquake. Seismograms observed at stations located in the immediate vicinity of the rupture zone show motion amplification and long-period oscillations in both P- and S-wave trains that do not exist in nearby off-fault stations. Examination of thousands of waveforms reveals that these characteristics are commonly generated by events that are well outside the fault zone. The anomalous features in fault-zone seismograms produced by events not necessarily in the fault may be referred to generally as fault-zone-related site effects. The oscillatory shear wave trains after the direct S arrival in these seismograms are analysed as trapped waves propagating in a low-velocity fault-zone layer. The time difference between the S arrival and trapped waves group does not grow systematically with increasing source-receiver separation along the fault. These observations imply that the trapping of seismic energy in the Karadere-Duzce rupture zone is generated by a shallow fault-zone layer. Traveltime analysis and synthetic waveform modelling indicate that the depth of the trapping structure is approximately 3-4 km. The synthetic waveform modelling indicates further that the shallow trapping structure has effective waveguide properties consisting of thickness of the order of 100 m, a velocity decrease relative to the surrounding rock of approximately 50 per cent and an S-wave quality factor of 10-15. The results are supported by large 2-D and 3-D parameter space studies and are compatible with recent analyses of trapped waves in a number of other faults and rupture zones. The inferred shallow trapping structure is likely to be a common structural element of fault zones and may correspond to the top part of a flower-type structure. The motion amplification

  6. Structural and Petrophysical Characterization of Fault Zones in Shales: Example from the Tournemire Url (sw, France)

    NASA Astrophysics Data System (ADS)

    DICK, P.; Du Peloux de Saint Romain, A.; Moreno, E.; Homberg, C.; Renel, F.; Dauzères, A.; Wittebroodt, C.; Matray, J.

    2013-12-01

    The Tournemire Underground Research Laboratory (URL) operated by IRSN (French Institute for Radiological Protection and Nuclear Safety) is located on the western border of the Mesozoic sedimentary Causses Basin (SW France). The URL crosses a thick Toarcian shale formation (≈250 m) and is interbedded between two aquiferous limestone formations. In addition to the 250 m thick overlying limestones, the geotechnical and hydrogeological characteristics of this site exhibit similarities with those measured by the French National Agency for Radioactive Waste Management (Andra) in the Callovo-Oxfordian formation of Bure (Meuse/Haute Marne, France). The Tournemire site is marked by numerous minor shear bands that affect not only the shale formation but also the over- and underlying limestone units. Since analogous discontinuities in an underground deep geological repository could act as a preferential pathway for radionuclide migration, the Tournemire site appears as an ideal location to understand the internal and permeability structures of such clay-based faults. In this study, we investigate the structural and petrophysical variations observed in a 10-15 m thick, subvertical, strike-slip shear band. For this, eight fully cored and logged horizontal boreholes were drilled normal to the fault's direction. The internal architecture and permeability of the fault was revealed through a combination of different tools (AMS, SEM, XRD and helium pycnometer) used on samples, as well as optical, induction and neutron porosity logging used in boreholes. The analysis of core samples from the different boreholes indicates that the studied fault zone is divided into a fault core (gouge), surrounded by a damaged zone (e.g., kinematically related fracture sets, small faults, and veins). Porosity and hydraulic conductivity values are low in the undisturbed shale (respectively, 9% and 10-14 m.s-1) and increase progressively towards the fault core (respectively, 15-20% and 5.10-12 m.s-1

  7. Complex fragmentation and silicification structures in fault zones: quartz crystallization and repeated fragmentation in the Rusey fault zone (Cornwall/UK)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.

    2015-04-01

    Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone

  8. Pulse-like rupture induced by three-dimensional fault zone flower structures

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Huang, Yihe; Ampuero, Jean-Paul

    2013-04-01

    Mature faults are often embedded in low-velocity fault zones (LVFZs). Numerical simulations of dynamic rupture including a LVFZ by Huang and Ampuero (2011) showed that if the wave velocity contrast between the LVFZ and the country rock is strong enough, ruptures can behave as pulse-like ruptures. The healing front that stops the rupture is generated by reflected waves from the LVFZ-country rock interface. However, the numerical study by Huang and Ampuero (2011) was limited to two-dimensional problems with fault-parallel fault zone structures. Natural fault zones include complexities such as flower structures with depth-dependent velocity and thickness, and limited depth extent. We will show here that the mechanism of pulse generation induced by the LVFZ also operates efficiently in such three-dimensional fault zone structures. This investigation requires high resolution and flexible mesh generation, which are enabled here by the high-order accurate ADER-DG method with an unstructured tetrahedral element discretization (Pelties et al., 2012). Our simulations show that the pulse generation mechanism is robust to the depth extent of the LVFZ and to the position of the hypocenter (whether it is inside or below the LVFZ). In particular, for events with hypocenter deeper than a shallow LVFZ, we find that a healing front emerges soon after the rupture enters the LVFZ, with rise time controlled by the LVFZ properties. Moreover, this healing front reflects from the free surface and propagates downdip beyond the bottom of the LVFZ, inducing there pulse-like rupture with longer rise time. Thus, we find that the depth-dependence of rise time might reflect the depth extent of the LVFZ. References: Huang, Y. and J.-P. Ampuero (2011), Pulse-like ruptures induced by low-velocity fault zones, J. Geophys. Res., 116, B12307, doi:10.1029/2011JB008684. Pelties, C., J. de la Puente, J.-Pl Ampuero, G. B. Brietzke, and M. Käser (2012), Three-Dimensional Dynamic Rupture Simulation with a

  9. Paleoseismology of the 1966 Varto Earthquake (Ms 6.8) and Structure of the Varto Fault Zone, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Isik, V.; Caglayan, A.; Saber, R.; Yesilyurt, N.

    2014-12-01

    Turkey is a region of active faulting and contains several strike-slip fault zones, which have generated both historical and recent large earthquakes. Two active fault zones in Turkey, the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ), divide the area into the Anatolian micro-plate accommodating WSW-directed movement. The southeastern continuation of the NAFZ is often referred to the Varto Fault Zone (VFZ). The VFZ cuts mainly Pliocene volcano-sedimentary units and/or Quaternary deposits and is characterized by multiple fault strands and multiple, closely spaced, active seismogenic zones. Fault motions in the zone are primarily right-lateral, with a subordinate component of NNW-SSE shortening. Study area is Varto region in which indications of active faulting are very well preserved. We recognized three coseismic ruptures from five trench exposures. It is referred to these as events 1 (youngest) through 3 (oldest). The best evidence of event 3 comes from fault traces and its upward terminations. The major components of this fault are fault core and damage zone. The fault is not just one plane of discontinuity and bifurcates and creates additional slip surfaces, which propagate out of the plane of the original fault. Event 2 and event 1, referring to 1946 and 1966 earthquakes, are characterized primarily by discrete, regularly spaced normal faults with and 55-80 cm and 105-270 cm throws, respectively and geometry of growth strata. The VFZ in the study area include typical structures of strike-slip fault zone. It forms a number of parallel and slightly sub-parallel strands striking N50°-72°W including contractional and extensional brittle structures. Several meters to tens of meters wavelength active folds with ENE-WSW and WNW-ESE trending fold axis. These folds deform the Plio-Quaternary units and show classic asymmetry associated with both a south- and north-vergent fault propagation fold. Meso-scale normal faults are also well

  10. Combined structural and magnetotelluric investigation across the West Fault Zone in northern Chile

    NASA Astrophysics Data System (ADS)

    Hoffmann-Rothe, Arne

    2002-08-01

    The characterisation of the internal architecture of large-scale fault zones is usually restricted to the outcrop-based investigation of fault-related structural damage on the Earth's surface. A method to obtain information on the downward continuation of a fault is to image the subsurface electrical conductivity structure. This work deals with such a combined investigation of a segment of the West Fault, which itself is a part of the more than 2000 km long trench-linked Precordilleran Fault System in the northern Chilean Andes. Activity on the fault system lasted from Eocene to Quaternary times. In the working area (22°04'S, 68°53'W), the West Fault exhibits a clearly defined surface trace with a constant strike over many tens of kilometers. Outcrop condition and morphology of the study area allow ideally for a combination of structural geology investigation and magnetotelluric (MT) / geomagnetic depth sounding (GDS) experiments. The aim was to achieve an understanding of the correlation of the two methods and to obtain a comprehensive view of the West Fault's internal architecture. Fault-related brittle damage elements (minor faults and slip-surfaces with or without striation) record prevalent strike-slip deformation on subvertically oriented shear planes. Dextral and sinistral slip events occurred within the fault zone and indicate reactivation of the fault system. Youngest deformation increments mapped in the working area are extensional and the findings suggest a different orientation of the extension axes on either side of the fault. Damage element density increases with approach to the fault trace and marks an approximately 1000 m wide damage zone around the fault. A region of profound alteration and comminution of rocks, about 400 m wide, is centered in the damage zone. Damage elements in this central part are predominantly dipping steeply towards the east (70-80°). Within the same study area, the electrical conductivity image of the subsurface was

  11. Space Geodetic Constraints on the Structure and Properties of Compliant Damage Zones Around Major Crustal Faults

    NASA Astrophysics Data System (ADS)

    Fialko, Y.

    2004-12-01

    Geologic and seismologic studies of large crustal faults indicate that the fault interface that accommodates most of seismic slip is often surrounded by heavily damaged material characterized by high crack density and reduced seismic velocities. Recently such damage zones were imaged by space geodetic observations. I present results of Interferometric Synthetic Aperture Radar (InSAR) observations of deformation across kilometer-wide compliant fault zones in response to nearby earthquakes. In particular, a number of faults in the Eastern California Shear Zone, including the Calico, Rodman, Pinto Mountain, and Lenwood faults, were strained by both the 1992 Landers and the 1999 Hector Mine earthquakes. Analysis of deformation on these faults indicates that the fault zone displacements depend on the magnitude, but are independent of the sign of the co-seismic stress changes, implying a linearly elastic deformation. Other examples include faults adjacent to the North Anatolian fault (Turkey) that were strained by the 1999 Izmit earthquake. Analytic and numerical (finite element) modeling of the observed deformation suggests that the compliant fault zones have width of 1-2 km, depth extent of several km (or greater), and reductions in the effective shear modulus of about a factor of two. Stacked interferometric data from the Eastern California Shear Zone spannig a time period of more than 10 years reveal time-dependent (post- or inter-seismic) deformation on some of the inferred compliant fault zones. In particular, the fault zone associated with the Pinto Mountain fault was subsiding over several years following the Landers eartquake, with the total amplitude of subsidence comparable to the amplitude of the co-seismically-induced uplift. This behavior may be indicative of the poro-elastic deformation of the fluid-saturated fault zone.

  12. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  13. Structural characteristics of the Yilan-Yitong and Dunhua-Mishan faults as northern extensions of the Tancheng-Lujiang Fault Zone: New deep seismic reflection results

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Li, Yalin; Hou, Hesheng; Wang, Chengshan; Gao, Rui; Wang, Haiyan; Han, Zhongpeng; Zhou, Aorigele

    2017-06-01

    The Tancheng-Lujiang Fault Zone (TLFZ) can be subdivided into three segments that exhibit sharp contrasts in their deep structures. A deep seismic reflection profile (length 600 km) across the north part of the TLFZ, which provides new constraints on the structural styles of the northern TLFZ, was recently completed by the Chinese Sinoprobe Project. Here, the TLFZ branches into the Yilan-Yitong Fault (YYF) to the west and the Dunhua-Mishan Fault (DMF) to the east. The YYF developed as an internal fault in the Songnen-Zhangguangcai massif, while the DMF serves as the tectonic boundary between the Nadanhada terrane and the Khanka massif. Both faults developed large-scale flower structures, with that of the YYF being negative and that of the DMF being positive with reverse faults. The Moho in the profile is at a depth of 25-39 km and is offset by the faults. The north part of the TLFZ extends into the upper mantle as thin shear zones with the reflectors truncated in the middle/lower crust. This feature differs from most crustal-scale strike-slip faults that distribute over a discrete shear zone in the lower crust, such as the San Andreas Fault.

  14. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone

    USGS Publications Warehouse

    Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.

    2014-01-01

    Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.

  15. Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array

    NASA Astrophysics Data System (ADS)

    Share, Pieter-Ewald; Ben-Zion, Yehuda; Ross, Zachary E.; Qiu, Hongrui; Vernon, Frank L.

    2017-08-01

    Local and teleseismic earthquake waveforms recorded by a 180-m-long linear array (BB) with seven seismometers crossing the Clark fault of the San Jacinto fault zone northwest of Anza are used to image a deep bimaterial interface and core damage structure of the fault. Delay times of P waves across the array indicate an increase in slowness from the southwest most (BB01) to the northeast most (BB07) station. Automatic algorithms combined with visual inspection and additional analyses are used to identify local events generating fault zone head and trapped waves. The observed fault zone head waves imply that the Clark fault in the area is a sharp bimaterial interface, with lower seismic velocity on the southwest side. The moveout between the head and direct P arrivals for events within ∼40 km epicentral distance indicates an average velocity contrast across the fault over that section and the top 20 km of 3.2 per cent. A constant moveout for events beyond ∼40 km to the southeast is due to off-fault locations of these events or because the imaged deep bimaterial interface is discontinuous or ends at that distance. The lack of head waves from events beyond ∼20 km to the northwest is associated with structural complexity near the Hemet stepover. Events located in a broad region generate fault zone trapped waves at stations BB04-BB07. Waveform inversions indicate that the most likely parameters of the trapping structure are width of ∼200 m, S velocity reduction of 30-40 per cent with respect to the bounding blocks, Q value of 10-20 and depth of ∼3.5 km. The trapping structure and zone with largest slowness are on the northeast side of the fault. The observed sense of velocity contrast and asymmetric damage across the fault suggest preferred rupture direction of earthquakes to the northwest. This inference is consistent with results of other geological and seismological studies.

  16. Evaluating the San Andreas Fault Zone Permeability Structure by Using On-Line mud gas Monitoring Data

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Erzinger, J.

    2006-12-01

    To archieve a better understanding of the permeability structure at seismogenic depths of the San Andreas Fault, we have evaluated data from drill mud gas from the SAFOD Main Hole (San Andreas Fault Observatory at Depth). Two gas-rich zones at the margins of the fault core differ significantly in the composition of CH4, H2 and CO2, which are the most abundant non-atmospheric gases in the entire hole. The gases enter the bore hole through bedding-plane fractures in the upper zone (approx. 2700 2900 m) and probably from below 3550 m. Separation of two individual hydrogeologic systems by a low-permeable fault core is also indicated by the helium isotopic composition, which is 0.4-0.6 Ra in the upper zone and 0.8-0.9 Ra in the lower one. However, the overall contribution of mantle-derived helium is relatively low. The carbon and hydrogen isotopic composition display an organic gas source of hydrocarbons and CO2. High concentration of hydrogen in the fractured zones at the margins of the fault core are consistent with the concept of hydrogen formation by interaction of water with fresh mineral surfaces generated by tectonic activities. The fault core, localized between approx. 3100 - 3450 m depth, is generally low in gas, in particular in hydrogen. Within the fault core, two sections with higher gas content, but distinct gas composition were identified in 3150 3200 m and 3310 - 3340 m depths. We conclude that the SAF consists of permeable strata at the fault zone margins and a generally low- permeable fault core. In the fault core, separate gas-rich lenses are interstratified. The gas inventory of the San Andreas Fault Zone is dominated by in-situ produced gases, the contribution of gases migrated from greater depths is probably low.

  17. 3D multi-scale velocity structure of an active seismogenic normal fault zone (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, Michele; Mitchell, Tom; Vassallo, Maurizio; Di Giulio, Giuseppe; Balsamo, Fabrizio; Passelegue, Francois; Pischiutta, Marta; Di Toro, Giulio

    2017-04-01

    The characterization of physical properties of fault zones (e.g., ultrasonic velocities, elastic moduli, porosity and fracture intensity of the fault zone rocks) is a relevant topic in reservoir geology (exploration and exploitation) and fault mechanics, for the modelling of both long-term quasi-static and fast dynamic fault zone evolution with time. Here we characterized the shallow subsurface velocity-elastic structure of the active Vado di Corno normal fault zone (Campo Imperatore, Central Apennines, Italy) which is up to > 300 m thick. Based on a detailed structural mapping of the fault footwall block covering a 2 km long fault segment, four main structural units separated by principal fault strands were recognized: (i) cataclastic unit, (ii) breccia unit, (iii) high-strain damage zone, (iv) low-strain damage zone. The single units were systematically sampled along a transect ( 200 m) orthogonal to the average strike of the fault and characterized in the laboratory in terms of petrophysical properties (i.e., Vp, Vs, static and dynamic elastic moduli, porosity). The cataclastic and breccia units (Vp = 4.68±0.43 kms-1, Vs = 2.68±0.24 kms-1) were significantly "slower" compared to the damage zone units (Vp = 5.43±0.53 kms-1, Vs = 3.20±0.29 kms-1). A general negative correlation between ultrasonic velocity and porosity values was reported. Moreover three dimensional acoustic anisotropy was quantified within the different units with respect to the mapped fault strands, and related to the deformation fabrics (i.e., open fractures, veins) observed at the sample scale. A Vp - Vs seismic refraction tomography was then performed in the field along a profile ( 90 m) across the fault zone. The tomographic results clearly illuminated fault-bounded rock bodies characterized by different velocities (i.e., elastic properties) and geometries which match with the ones deduced from the structural analysis of the fault zone exposures. Fracture intensity measurements (both at

  18. Structure of fault zones in sandstone and its effect on permeability

    SciTech Connect

    Seeburger, D.A.; Warner, J.L.; White, R.E. ); Aydin, A. )

    1991-03-01

    Faults in clean porous sandstone occur as thin, 3-D deformed zones containing crushed grains. Field observations and laboratory measurements show that fault zones have a profound effect on fluid flow. Field observations indicate that most fault zones across which there have been more than a few cm of displacement develop a slip surface that is bounded on one side by the deformed zone in which porosity, grain sizes, and the degree of sorting of the sand grains are reduced, and on the other side by nearly undeformed rock. Permeability along this slip surface could be large, as for a fracture, allowing fluid migration in all directions parallel to the slip surface. Laboratory measurements confirm that permeability in the deformed, low porosity zone is low. Fault zone permeability could thus be extremely anisotropic with low permeability on one side due to the deformed zone, and high permeability parallel to the fault on the other side related to the through-going slip surface. The slip surface may occur more often on the hanging wall side of the deformed zone providing asymmetry in permeability distribution and, thus, asymmetry in trapping and migration potential. This asymmetry could explain many oil-water-fault relations such as those reported from the Niger Delta.

  19. Temperature and composition of carbonate cements record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA

    NASA Astrophysics Data System (ADS)

    Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.

    2016-10-01

    Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.

  20. The anatomy of shallow-crustal transpressional structures: insights from the Archaean Carajás fault zone, Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Holdsworth, Robert E.; Pinheiro, Roberto V. L.

    2000-08-01

    The Carajás fault zone (CFZ) is the most prominent structure in the E-W-trending Carajás strike-slip system (CaSSS), an ancient upper crustal fault network of probable Late Archaean age that cuts across the Precambrian Amazonian Craton in Brazil. The subvertical faults reactivated pre-existing, high-grade basement shear-zone fabrics (Itacaiúnas shear zone) and display a complex, long-lived history of movement (>1 Ga) dominated by oblique- and strike-slip displacements. A postulated early regional phase of dextral movement downfaulted units of low-grade to unmetamorphosed basement rocks into dilational bends and offsets in the CaSSS. Subsequent sinistral transpression ca. 2.6 Ga led to faulting and folding during partial inversion of the cover rocks in these dilational sites with much of the associated deformation focused in the immediate vicinity (<2 km) of the major fault traces. The youngest sequence of rocks affected by sinistral transpression along the CFZ—the Águas Claras Formation—were apparently deformed prior to complete lithification and developed a complex assemblage of disharmonic, curvilinear folds and associated transpressional fault arrays. The structures are generally comparable to published descriptions of fold and fault assemblages from shallow-crustal transpressional settings, notably along the San Andreas Fault. However, the meso-scale deformation patterns observed in the Águas Claras road section point to a hitherto unrecognised level of structural complexity that may exist adjacent to comparable transpressional fault zones in many Mesozoic and Cenozoic settings. Our findings suggest that the architecture and underlying dynamic controls of structural development in shallow crustal transpression zones have remained similar for at least the last 2.6 Ga.

  1. Morphology and structure of the Camarinal Sill from high-resolution bathymetry: evidence of fault zones in the Gibraltar Strait

    NASA Astrophysics Data System (ADS)

    Luján, María; Crespo-Blanc, Ana; Comas, Menchu

    2011-06-01

    The Gibraltar Strait is the very narrow neck which connects the Atlantic Ocean and the Mediterranean Sea. The causes and mode of its opening at the end of the Messinian Salinity Crisis are still a matter of debate, and models based on eustatic rise and/or topographic lowering due to either erosion or faulting are generally evoked. We investigated the presence of faults based on a morphological and structural analysis of the Camarinal Sill, the shallowest passage in the Gibraltar Strait (<100 m water depth in places). This sill connects the Spanish and Moroccan shelves, and probably represents a structural high inherited from the Miocene compressive tectonics which took place in the external zones of the Betic-Rif orogenic arc. Our high-resolution bathymetric data enabled us to identify and interpret the origin of major morphological features in the area, including canyons, channels and a landslide, which we name the Tarifa landslide. Topographic arguments suggest that the Camarinal Sill is crossed by two main E-W- to ENE-WSW-directed fault zones which bound areas with different distribution, orientation and slopes of both scarps and crests. We name these the Hercules and Tarik fault zones, north and south of the sill respectively. The Hercules fault zone probably incorporates a normal movement component, whereas kinematic indicators are poor along the Tarik fault zone. The age of faulting is poorly constrained in both cases. Together with existing evidence of faults onland, the presence of these fault zones implies that they could be responsible for, or have contributed to, the opening of the Gibraltar Strait.

  2. Microstructural and petrophysical characterization of a "structurally oversimplified" fault zone in poorly lithified sands: evidence for a coseismic rupture?

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio

    2010-05-01

    We studied an extensional fault zone developed in poorly lithified, quartz-rich high porosity sandy sediments of the seismically active Crotone basin (southern Italy). The fault zone cuts across interlayered fine- to coarse-grained sands and consists of a cm-thick, discrete fault core embedded in virtually undeformed wall sediments. Consequently, it can be described as "structurally oversimplified" due to the lack of footwall and hanging wall damage zones. We acquired microstructural, grain size, grain shape, porosity, mineralogical and permeability data to investigate the influence of initial sedimentological characteristics of sands on the final faulted granular products and related hydrologic properties. Faulting evolves by a general grain size and porosity reduction with a combination of intragranular fracturing, spalling, and flaking of grain edges, irrespective of grain mineralogy. The dominance of cataclasis, also confirmed by fractal dimensions >2.6, is generally not expected at a deformation depth <1 km. Coarse-grained sand shows a much higher comminution intensity, grain shape variations and permeability drop than fine-grained sands. This is because coarser aggregates have (i) fewer grain-to-grain contacts for a given area, which results in higher stress concentration at contact points, and (ii) a higher probability of pre-existing intragranular microstructural defects that result in a lower grain strength. The peculiar structural architecture, the dominance of cataclasis over non-destructive particulate flow, and the compositional variations of clay minerals in the fault core, strongly suggest that the studied fault zone developed by a coseismic rupture.

  3. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  4. Evaluation of Fault Zone Structure and Properties at Depth, with Insights into Deformation and Alteration of the San Andreas Fault at SAFOD

    NASA Astrophysics Data System (ADS)

    Evans, J. P.; Jeppson, T. N.; Keighley Bradbury, K.; Lowry, A. R.

    2009-12-01

    We examine the physical properties and structure of the San Andreas fault with the SAFOD wireline geophysical data combined with data from cuttings and core. We examined geophysical logs from the SAFOD borehole starting at an approximate measured depth of 3 km to the end of the drill hole at 4 km; this area includes the region interpreted to be the main and active part of the San Andreas Fault, which lies in a sequence of deformed sandstone, siltstone, shale, and Franciscan rocks. Franciscan lithologies include fine-grained siltstones and block-in-matrix melange. Geophysical logs show the presence of a low velocity zone from 3150 to 3410 m measured depth. Active slip surfaces within the low velocity zone correspond to sharp decreases in velocity and density and increasing porosity. Conventional comparisons of the amount of fracturing, alteration, and cataclasite in the LVZ with wireline data reveal complex relationships. The are few to weak correlations between the velocity data and the measures of the amount of deformation, and in places the velocity increases with deformation features in the low-velocity zone. The LVZ may correlate with low-velocity rock types within the fault zone. We also use inversion methods to examine the data, and found three distinct clusters of data in which velocity, density, and resistivities correlate. This relationship could be due to the presence serpentinite or a decrease in porosity and increase in density due to compaction and/or cementation of the sandstones and siltstones. Estimates of the elastic moduli from the wireline data for the SAF at depth and the Buzzard Canyon fault southwest of the SAF show that both faults exhibit low modulli. The lowest velocity/moduli rocks are sheared mélange/fault gouge diamictites and serpentinites within the narrow zones of the active part of the San Andreas fault, and also within the Buzzard Canyon fault, where Salinain grantic rocks are juxtaposed on Salinian-derived arkosic rocks. These

  5. Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin, New Mexico - Implications for Ground-Water Flow

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.

    2006-01-01

    Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are <100 m, and fault zones appear to

  6. Gravity field and structure of the Sorong Fault Zone, eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Sardjono

    free-air gravity were observed in south of Mangole (about 13 mGal/km) and west of Obi (about 15 mGal/km) but elsewhere were gentler. Analyses of gravity data along the Sorong Fault Zone in the region of Barggal-Sula Islands controlled in part by geological, reflection seismic and sidescan sonar data, have produced four models which suggest that the crustal structures beneath the zone consist predominantly of attenuated continental fragments, juxtaposed to thick layer of tectonic melange and anomalous oceanic crusts. The continental fragments appear to be severely attenuated and limited in extent in the east but thicker and wider towards the west. The tectonic melange is underlain by deep seated oceanic crust in the Molucca Sea region. The anomalously thin North Banda Sea crust appears to underlie a very thin layer of sediments and to have suffered some degree of arching. The deep seated oceanic crust and the thick layer of tectonic melange are interpreted as the result of the sinking of the lithospheric plate of the Molucca Sea. The descent of this plate may have produced bending forces which may have initiated flexure which propagates through the surrounding region. Depending on the rigidity of the crustal slab, arching and fracturing may have occurred in the crustal rocks. The arching of the oceanic crust of the North Banda Sea may have been one result of this process. The continental fragments of the Banggai-Sula region appear to dip northwards and this may, in addition to the effect of shear tectonics along the Sorong Fault Zone, also be interpreted as the response of the continental fragments to the sinking of the lithospheric plate of the Molucca Sea. In the Obi region, the gravity data suggest that most of the island is underlain by peridotitic and basaltic rocks. Continental crust appears to form the basement in the south and extend offshore south of the island and juxtaposed to oceanic rock. The ultramafic and basic rocks appear to be emplaced on Obi by a high

  7. High-resolution 3D seismic imaging of the Longmenshan fault zone structure using double-difference seismic tomography

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yu, X.; Zhang, W.

    2011-12-01

    The Longmenshan fault zone where the 2008 M8.0 Wenchuan, China, earthquake occurred is located in the boundary area between the Songpan-Garze block to the west and the Sichuan basin to the east. This area is characterized by complex structures and active seismotectonics. We collected both direct P wave absolute arrival times and differential arrival times from 2551 events in the period of 1992 to 1999 recorded by China National Seismic Network. The double-difference seismic tomography (tomoDD) method is used to determine event relocations and the P wave crustal and upper mantle velocity structure. Our results show that obvious velocity variations exist in the crust and upper mantle beneath the Longmenshan fault zone. The inferred velocity structure of the upper crust correlates well with the surface geological and topographic features in this area: the east of Tibet plateau is imaged as a prominent high-velocity zone, while the Longmenshan fault and Sichuan basin are imaged as a low-velocity feature. Compared with upper crust, the Longmenshan fault zone lies in the transition zone between high velocity anomalies to the west and low velocity anomalies to the east in the middle crust, where most earthquakes occurred. While in the lower crust, the fault zone lies in the transition zone between low velocity anomalies to the west and high velocity anomalies to the east. In upper mantle, a prominent low velocity anomaly exists under the Wenchuan main shock region. This suggests that lower crustal flow has affect on the occurrence of the Wenchuan earthquake. There is also a obvious velocity structure difference between the south and north segment of the Longmenshan fault zone in the whole crust and upper mantle, low velocity anomalies in the south segment and prominent lateral heterogeneous in the north segment, respectively. The velocity difference maybe resulted in the northeastwards of the Wenchuan aftershocks.

  8. Crustal Structure of the Chukuo Fault Zone Extracted from the Cross-Correlation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Yeh, Y.; Wen, S.; Chen, C.

    2010-12-01

    ABSTRACT The highly-populated Chia-Nan area in the southwestern Taiwan is located at the active deformation front of the collision of the Eurasian continental plate and the Philippine Sea plate, which causes complex folds as well as thrust fault systems in the area. The well-known Chukuo Fault is an active thrust fault and plays as a boundary between the Western Foothill and the Coastal Plain. The strike of the fault is in the N-S direction. The dip angle of the fault plane near the surface is 60 degrees toward to the east, while the dip angle is about 30-40 degrees at the lower part of the fault plane. However, the nature of the crustal structure beneath the fault zone is less understood. With the high quality broadband seismic network deployed along the ChuKuo Fault in recent year, we are able to have better insight in the characteristics of crustal structure of the Chukuo Fault zone. In this study, we have retrieved Rayleigh wave Green’s functions for all stations pairs separated by 5-30 km by cross-correlation of ambient noise, which was recorded from 2004 to 2006. The multiple filter technique is applied to perform dispersion analysis. We further obtain an adapted crustal shear-wave velocity structure of the Chukuo Fault zone at period between 1 to 5 seconds using the Neighborhood Algorithm (NA) which minimizes the misfit between the observed and synthetic dispersion curve. We find that the shear-wave velocity at the western side (footwall) of the fault is much greater (up to 20% of difference) than that at the eastern side (hanging wall) of the fault at shallow crustal area (~ 10 km in depth). From the study of microearthquake seismicity at the fault zone, which shows that most earthquakes occurred at the eastern side of the fault and tends to be clustered at the depth between 10 to 12 km. Thus, both results imply that the eastern side of the fault is highly fractured due to intensive deformation caused by plate collision.

  9. Structural evolution of the La Trocha fault zone: Oblique collision and strike-slip basins in the Cuban Orogen

    NASA Astrophysics Data System (ADS)

    Cruz-Orosa, Israel; Sã Bat, Francesc; Ramos, Emilio; Rivero, LluíS.; VáZquez-Taset, Yaniel M.

    2012-10-01

    The La Trocha fault zone acted as a major left-lateral transfer zone and is bounded by the La Trocha (LTF), Zaza-Tuinicú (ZTF), Cristales (CTF) and Taguasco (TGF) faults. These faults were consistent with the clockwise rotation of convergence and shortening in central Cuba. From the Paleocene to the Early Eocene (65-48 Ma), a SSW-NNE shortening produced transtension in the LTF and transpression in the ZTF. Subsequently, during the Middle Eocene (48-37 Ma), shortening shifted to a SW-NE direction, resulting in the normal component of the LTF and transpression in the ZTF and CTF. Since the Late Eocene (37 Ma), central Cuba has been welded to the North American Plate. The post-welding deformation gave rise to transtension of the LTF and TGF. This deformation is consistent with a WSW-ENE shortening and reflects activity in the transform boundary of the Cayman Trough. Both the normal and thrust displacements of these previous faults are corroborated by structural data whereas left-lateral displacement is deduced from the concordance between oblique collision and structural features. Plate-kinematics and the structural evolution of the La Trocha fault zone indicate that the related Central Basin is a strike-slip polygenetic basin and that the formation of this system (i.e., fault zone - strike-slip basin) was a consequence of the Paleogene oblique collision between the Caribbean Volcanic Arc and the Bahamas Borderland (North American plate).

  10. Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory

    2016-04-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.

  11. Rapid mapping of ultrafine fault zone topography with structure from motion

    USGS Publications Warehouse

    Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly

    2014-01-01

    Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.

  12. Imaging the deep structure of the San Andreas Fault south of Hollister with joint analysis of fault zone head and direct P arrivals

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; Ben-Zion, Y.; McGuire, J. J.

    2007-06-01

    We perform a joint inversion of arrival time data generated by direct P and fault zone (FZ) head waves in the San Andreas Fault south of Hollister, CA, to obtain a high-resolution local velocity structure. The incorporation of head waves allows us to obtain a sharp image of the overall velocity contrast across the fault as a function of depth, while the use of near-fault data allows us to resolve internal variations in the FZ structure. The data consist of over 9800 direct P and over 2700 head wave arrival times from 450 events at up to 54 stations of a dense temporary seismic array and the permanent northern California seismic network in the area. One set of inversions is performed upon the whole data set, and five inversion sets are performed on various data subsets in an effort to resolve details of the FZ structure. The results imply a strong contrast of P-wave velocities across the fault of ~50 per cent in the shallow section, and lower contrasts of 10-20 per cent below 3 km, with the southwest being the side with faster velocities. The presence of a shallow low velocity zone around the fault, which could corresponds to the damage structures imaged in trapped wave studies, is detected by inversions using subsets of the data made up of only stations close to the fault. The faster southwest side of the fault shows the development of a shallow low velocity FZ layer in inversions using instruments closer and closer to the fault (<5 and <2 km). Such a feature is not present in results of inversions using only stations at greater distances from the fault. On the slower northeast side of the fault, the presence of a low velocity shallow layer is only detected in the inversions using the stations within 2 km of the fault. We interpret this asymmetry across the fault as a possible indication of a preferred propagation direction of earthquake ruptures in the region. Using events from different portions of the fault, the head wave inversions also resolve small

  13. Deep resistivity structure along the Longmen Mountain fault zone in the eastern Tibetan plateau of China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhang, G.; Luo, W.; Luo, H.; Cai, X.; Zhou, Y.; Zhang, W.; Qin, Q.

    2012-12-01

    1.Introduction Many researchers (e.g.,Wang et al.,2009) have proposed the relevant knowledge of tectonic evolution and dynamic characteristics of the Longmen Mountain belt as well as the Songpan-Ganzi and Yangtze blocks in the past few decades, the knowledge of shallow thrust nappe tectonic along the belt has then been generally recognized. It's, however, still difficult to image the deep crust and mantle structures and reveal the dynamic mechanism of the crustal formation under the Longmen Mountain. In this study, we carried out the MT experiments along and across the Longmen mountain region and investigated the relationships between the crust structure and seismic activity basing on the latest MT geological results. 2. Field observations We conducted three MT experiment profiles in the eastern Tibetan Plateau. One is along the Mingshan-Guangyuan profile parallel with the structural direction, and another two profiles (Maqu-Gaoliangzhen and Luqu-Hechuan) perpendicular to the Longmen Mountain fault zone. In this study, we use the conventional magnetotelluric (MT) data combine with the long-period magnetotelluric (LMT) data to observe electromagnetic response. The MT and LMT data was observed by using the V8 instrument and LEMI-417, respectively. 3. Conclusion (1) According to the results of MT inversion, we find that the high concentration of stress process along the Songpan-Ganzi block and the Yangtze block colliding zone might result from the deep crust-mantle tough shear Zone of Longmen Mountain expanded to mid-upper crust, and finally leads to a new rupture. This could be one of the focal mechanisms of the Wenchuan earthquake (Ms 8.0) generating. The deep resistivity structure along the Longmen Mountain fault zone can be divided into southern,middle and northern segments from southwest to northeast. The total resistivity of southern segment is lower than the middle and northern portions. We suggest that the upper crust of the Longmen Mountain, south of Dayi

  14. Structural analysis of the Gachsar sub-zone in central Alborz range; constrain for inversion tectonics followed by the range transverse faulting

    NASA Astrophysics Data System (ADS)

    Yassaghi, A.; Naeimi, A.

    2010-04-01

    Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.

  15. Disturbed zones; indicators of deep-seated subsurface faults in the Valley and Ridge and Appalachian structural front of Pennsylvania

    USGS Publications Warehouse

    Pohn, Howard A.; Purdy, Terri L.

    1982-01-01

    Field studies of geologic structures in the Valley and Ridge and adjacent parts of the Appalachian Plateau provinces in Pennsylvania have shown a new type of structure, formerly poorly understood and frequently unmapped, is a significant indicator of deep-seated subsurface faulting. These structures, herein called disturbed zones, are formed by movement between closely spaced pairs of thrust faults. Disturbed zones are characterized at the surface by long, narrow, intensely folded and faulted zones of rocks in a relatively undisturbed stratigraphic sequence. These zones are frequently kilometers to tens of kilometers long and tens to hundreds of meters wide. Although disturbed zones generally occur in sequences of alternating siltstone and shale beds, they can also occur in other lithologies including massively-bedded sandstones and carbonates. Disturbed zones are not only easily recognized in outcrop but their presence can also be inferred on geologic maps by disharmonic fold patterns, which necessitates a detachment between adjacent units that show the disharmony. A number of geologic problems can be clarified by understanding the principles of the sequence of formation and the method of location of disturbed zones, including the interpretation of some published geologic cross sections and maps. The intense folding and faulting which accompanies the formation of a typical disturbed zone produces a region of fracture porosity which, if sealed off from the surface, might well serve as a commercially-exploitable hydrocarbon trap. We believe that the careful mapping of concentrations of disturbed zones can serve as an important exploration method which is much less expensive than speculation seismic lines.

  16. Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Ben-Zion, Y.; Ross, Z. E.; Share, P.-E.; Vernon, F. L.

    2017-03-01

    The internal structure of the Clark fault in the trifurcation area of the San Jacinto fault zone is imaged using seismograms recorded by a dense linear array (JF) crossing the surface trace of the fault and an adjacent array (TR) to the SW. Delay times between phase arrivals associated with ∼3500 local earthquakes and 9 teleseismic events are used to estimate velocity variations within the arrays. The teleseismic P waves travel faster beneath the TR than the JF array, in contrast to larger-scale tomographic results. Statistical analysis of local P wave delay times indicates that the entire JF array, with an aperture of ∼400 m, is inside a low velocity damage zone. This low velocity zone is bounded on the NE side by a shallow bimaterial interface generating fault zone head waves, and it contains an inner zone of more intense damage generating fault zone trapped waves. The P wave velocity contrast across the local bounding bimaterial interface is 10-15%. The trapping structure is associated with a width of ∼200 m, S wave velocity reduction of ∼35% with respect to the surrounding rock, Q value of ∼20 and depth of ∼3.5 km. The imaging results suggest that the main seismogenic fault is near the SW end of the JF array, in agreement with a prominent geomorphologic feature. The existence of intense local damage on the crustal block with faster larger-scale velocity at depth is consistent with common propagation of earthquake ruptures in the area to the NW.

  17. Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Ben-Zion, Y.; Ross, Z. E.; Share, P.-E.; Vernon, F. L.

    2017-06-01

    The internal structure of the Clark fault in the trifurcation area of the San Jacinto fault zone is imaged using seismograms recorded by a dense linear array (Jackass Flat, JF) crossing the surface trace of the fault and an adjacent array (TR) to the SW. Delay times between phase arrivals associated with ∼3500 local earthquakes and nine teleseismic events are used to estimate velocity variations within the arrays. The teleseismic P waves travel faster beneath the TR than the JF array, in contrast to larger scale tomographic results. Statistical analysis of local P-wave delay times indicates that the entire JF array, with an aperture of ∼400 m, is inside a low-velocity damage zone. This low-velocity zone is bounded on the NE side by a shallow bimaterial interface generating fault zone head waves, and it contains an inner zone of more intense damage generating fault zone trapped waves. The P-wave velocity contrast across the local bounding bimaterial interface is 10-15 per cent. The trapping structure is associated with a width of ∼200 m, S-wave velocity reduction of ∼35 per cent with respect to the surrounding rock, Q-value of ∼20 and depth of ∼3.5 km. The imaging results suggest that the main seismogenic fault is near the SW end of the JF array, in agreement with a prominent geomorphologic feature. The existence of intense local damage on the crustal block with faster larger scale velocity at depth is consistent with common propagation of earthquake ruptures in the area to the NW.

  18. Imaging the internal structure of the San Jacinto Fault Zone with high Frequency noise

    NASA Astrophysics Data System (ADS)

    Zigone, D.; Ben-Zion, Y.; Campillo, M.; Hillers, G.; Roux, P.; Vernon, F.

    2014-12-01

    Regional tomography studies in the SJFZ area gives detailed images up to the top 500 meters or so of the crust (Zigone et al., 2014; Allam et al., 2014). To obtain additional high resolution information on local structures at the shallower crust, we use cross correlation of ambient seismic noise between 10 Hz and 70 Hz recorded by several linear arrays that cross the SJFZ with typical inter-station distances around 40 m. Pre-processing techniques involving earthquakes removal and whitening on 15 minutes time windows are used to obtained the 9-component correlation tensors associated with all station pairs. The obtained cross correlations exhibit coherent waves up to 30-40 Hz that travel between the station pairs. Polarization and dispersion analysis show that both body and surface waves are reconstructed with Rayleigh group velocity around 400-500 m/s. The results likely include also body waves and trapped fault zone signals. After rejecting paths without sufficient signal to noise ratios, we invert the Rayleigh group velocity measurements using the Barmin et al. (2001) approach on a 20m grid size. The obtained group velocity maps reveal complex structures with very low velocity damage zones around the surface traces of the SJFZ. The group velocities are inverted to 3D images of shear wave speeds using the linear inversion method of Hermann & Ammon (2002). The results show local flower-type damage structures in the top 200m, with Vs values at 30m depths around 250-300 m/s in agreement with the available Vs30 values in the literature. This high-resolution study will be complemented with a more detailed analysis using a dense rectangular array with 1108 vertical-component seismometers separated by 10-30 m centered on the fault. This geometry allows the use of very high frequency seismic noise up to 200 Hz that can be used to image the small-scale features (~10-20 m) in the top few hundred m of the crust. Updated results will be presented in the meeting.

  19. Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko; Togo, Tetsuhiro

    2013-06-01

    This paper reports on the internal structures of the Pingxi fault zone near the northeastern end of the coseismic surface ruptures associated with the 2008 Wenchuan earthquake. The fault zone consists of a 50-80 cm wide fault core and several-meter wide fault breccia zones. The fault core contains yellowish gouge (YG), gray-blackish gouge (GBG), black gouge (BG) and gray-blackish fault breccia. A coseismic slip during the Wenchuan earthquake occurred within GBG in a slip zone of 24 ± 9 mm in width. High-velocity friction experiments were conducted at normal stresses σn of 0.45-2.50 MPa and slip rates v of 0.0014-2.09 m/s. YG and GBG exhibit dramatic slip-weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient μp to steady-state friction coefficient μss over a slip-weakening distance Dc. Specific fracture energy EG for YG and GBG was 0.37-2.02 MJ/m2 of the same order of magnitude as the fracture energy estimated for natural earthquakes. Empirical equations describing the changes in μp, μss and Dc in terms of σn and v indicate that EG decreases with increasing σn, so that higher-normal stress experiments will lead to EG lower than seismic values. Thus our experiments probably reproduced deeper seismic fault motion under dry conditions with respect to EG. Frictional behavior of BG is characterized by a sharp initial weakening, subsequent strengthening to the second peak friction, and slip weakening towards the steady-state friction. The initial weakening and strengthening seem to be caused by the formation of a very sharp slip zone (~ 5 μm in width) and subsequent formation of a widely deformed zone. A comparison of our data with reported results for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault system may be quite uniform. The observed dramatic high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.

  20. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  1. Complex fragmentation and silicification structures in fault zones: quartz mineralization and repeated fragmentation along the Fountain Range Fault (Mt. Isa Inlier, Australia)

    NASA Astrophysics Data System (ADS)

    Seybold, Lina; Blenkinsop, Tom; Heuss, Soraya; Ord, Alison; Kruhl, Jörn H.

    2015-04-01

    In large-scale fault zones fracture networks are commonly generated by high volumes of pressurized fluids, followed by quartz precipitation. In this way large amounts of quartz are formed as microcrystalline masses and as complex vein systems, with partly highly different textures, as a result of different formation processes. Based on field and microstructural data and the quantification of vein patterns, the spatial and temporal connection between fragmentation, quartz crystallization and fluid and material flow along the Fountain Range Fault at Fountain Springs was investigated. Dextral strike-slip led to up to 25 km horizontal displacement along the fault. Due to various fragmentation and quartz formation processes, a ca. 100 m high, 80 - 100 m wide and km-long quartz ridge with numerous vein systems and variable microfabrics was formed. Locally, lenses of highly altered metamorphic wall-rocks occur in the quartz zone. Where exposed, the contact to wall rocks is sharp. Millimetre- to decimetre-thick quartz veins penetrate the wall-rocks only within metre distance from the contact. Several clearly distinguishable fine-grained reddish, brownish to dark and pigment-rich quartz masses form up to 50 m wide and up to several 100 m long steep lenses that build the major part of the silicified fault zone. A chronology can be established. Some of these lenses are oriented slightly oblique to the general trend of the quartz zone, in agreement with the supposed dextral strike slip along the fault. Numerous generations of typically µm-cm thick quartz veins transect the microcrystalline quartz masses and, locally, form anisotropic networks. In the quartz masses, angular fragments often composed of quartz with, again, internal fragmentation structures, indicate earlier fracturing and silicification events. Within the veins, quartz forms geodes, locally filled with fine-grained reddish quartz and palisade structures with feathery textures and fluid-inclusion zoning

  2. Lateral structural variation along the Kalabagh Fault Zone, NW Himalayan foreland fold-and-thrust belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Chen, Lize; Ahmad, Sajjad; Ahmad, Irshad; Ali, Fayaz

    2012-05-01

    The NW Himalayan fold-and-thrust belt in Pakistan is of gentler regional slope and wider extent than the other parts of the convergent plate boundary between India and the rest of Asia. Large scale structural re-entrants typify the Main Frontal Thrust (MFT) of the NW Himalayan fold-and-thrust belt in Pakistan. Understanding dynamics of the formation of these structural variations has been hampered by the lack of information about the lateral structures bounding the re-entrants. Our mapping of the Kalabagh Fault Zone, a lateral ramp linking the Salt and the Surghar Ranges, advanced spaceborne thermal emission and reflection radiometer (ASTER) data, field investigations and the interpreted reprocessed 2D seismic data. This integration of surface and subsurface geology provides new insights on the geometry and evolution of the Kalabagh Fault Zone, by showing that it forms an oblique ramp to the Main Frontal Thrust, and at north a lateral ramp with right-lateral strike slip movement. Our results indicate that the presence and areal extent of the evaporates is the dominant factor controlling lateral structural variation in the NW Himalayan fold-and-thrust belt of Pakistan. The Kalabagh Fault Zone acts as a zone that accommodates differential shortening and structural variation along the orogenic trend.

  3. Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey

    USGS Publications Warehouse

    Hole, J.A.; Ryberg, T.; Fuis, G.S.; Bleibinhaus, F.; Sharma, A.K.

    2006-01-01

    Refraction traveltimes from a 46-km long seismic survey across the San Andreas Fault were inverted to obtain two-dimensional velocity structure of the upper crust near the SAFOD drilling project. The model contains strong vertical and lateral velocity variations from <2 km/s to ???6 km/s. The Salinian terrane west of the San Andreas Fault has much higher velocity than the Franciscan terrane east of the fault. Salinian basement deepens from 0.8 km subsurface at SAFOD to ???2.5 km subsurface 20 km to the southwest. A strong reflection and subtle velocity contrast suggest a steeply dipping fault separating the Franciscan terrane from the Great Valley Sequence. A low-velocity wedge of Cenozoic sedimentary rocks lies immediately southwest of the San Andreas Fault. This body is bounded by a steep fault just northeast of SAFOD and approaches the depth of the shallowest earthquakes. Multiple active and inactive fault strands complicate structure near SAFOD. Copyright 2006 by the American Geophysical Union.

  4. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    NASA Technical Reports Server (NTRS)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  5. Quantifying structural controls on fluid flow: Insights from carbonate-hosted fault damage zones on the Maltese Islands

    NASA Astrophysics Data System (ADS)

    Dimmen, Vilde; Rotevatn, Atle; Peacock, David C. P.; Nixon, Casey W.; Nærland, Kari

    2017-08-01

    Structural complexity along faults (e.g., relay zones, fault intersections and jogs) exert strong controls on fluid flow, yet few attempts have been made to quantify and visualise such relationships. This paper does that using an outcrop-based study of fracture networks in carbonate rocks in Malta. We investigate the spatial distribution of low-porosity cemented mounds within the fracture networks, and the geometry and topology of the fracture networks are characterised. The mounds are associated with low porosity due to selective cementation along the faults, as well as with peaks in connecting node frequency (a topological proxy for network connectivity), and fracture intensity (a fracture abundance proxy for network complexity). Considering the mounds as a record of palaeo-fluid flow and palaeo-fluid-rock-interaction, this work therefore quantifies and visualises the relationship between structural complexity and fluid flow.

  6. Imaging of the Deep Structure and Extension of the North Anatolian Fault Zone by Magnetotelluric Method Beneath the Marmara Sea

    NASA Astrophysics Data System (ADS)

    Kaya, T.; Ogawa, Y.; Kasaya, T.; Tank, B.; Honkura, Y.; Tuncer, M. K.; Oshiman, N.; Matsushima, M.

    2011-12-01

    Relative motions of the Arabian and African plates with respect to stable Eurasian plate resulted in westward movement of the Anatolian block and produced two main fault zones in Turkey. The most active one, the North Anatolian Fault Zone (NAFZ), hosted destructive earthquakes during the history causing not only damage in the buildings but also thousands of causalities. The migration of large earthquakes along the NAFZ from east to west in 20th century, occurrence of the last earthquakes (1999 Izmit and Duzce) by the side of Marmara Sea, and owning the fault segment which has not ruptured since 1766 made the Marmara Sea a potential location for the next large rupture on the NAFZ. Seismic, geodetic and other studies showed complexity of the structure suggesting various estimates about the extension of the NAFZ through the Marmara Sea. In this study, we benefit from the high depth resolution of the Magnetotelluric (MT) method to resolve the electrical resistivity structure beneath the Marmara Sea and disclose its relation with the geologic structure. In order to investigate extension of the NAFZ beneath the Marmara Sea we deployed long period ocean bottom electromagnetic data at 16 sites which form 4 profiles perpendicular to the possible traces of the NAFZ. Variation of the geoelectric strike from east to west demonstrates different oriented faults in the Marmara Sea. The highly conductive anomaly in electrical resistivity models extends from crustal depths to the lithosphere and merges with the melted mantle material. This conductive anomaly is surrounded by relatively resistive anomalies which imply continuation of the fault structure from land to the Marmara Sea. Our results clear the location of the highly conductive and resistive anomalies that has crucial implications in two aspects; conductive anomaly may trigger the micro-seismic activity and resistive anomalies may refer to the asperity zones where stress accumulation result in large earth quakes.

  7. Structure and deformation of the Southern Taiwan accretionary prism: The active submarine Fangliao Fault Zone offshore west Hengchun Peninsula

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Liu, Char-Shine; Hsu, Ho-Han

    2016-12-01

    What is the structural geometry of the southern Taiwan transition zone from the Manila subduction offshore to the Taiwan onshore collision, specifically in the western flank of the Hengchun peninsula that corresponds to the summit of the Manila subduction accretionary prism? This paper aims to decipher the onshore/offshore structures and tectonic deformation that occur west of the Hengchun Ridge through both detailed topographic analyses and interpretation of numerous old and new seismic profiles. From a geomorphic point of view, both Fangliao and Hongchai submarine canyons have different structural and landslide implications. The Fangliao Canyon is guided by a N-S elongated mud diapir (the Fangliao Ridge), intruding an inferred N010°E trending, left lateral strike-slip fault zone. Conversely, the arcuate and concave shape of the Hongchai Canyon appear to follow the crown and the northern boundary of a newly recognized Hongchai submarine landslide situated on the steep western flank of the onshore asymmetric Hengchun Anticline. Our results highlight that both Fangliao and Hengchun Faults are linear, near-vertical left-lateral strike-slip faults. They converge onshore to the Chaochou Fault. This study demonstrates that neotectonics combine with morphostructural analysis of the submarine canyon drainages lead to a better comprehension of the present deformation in the northern part of the Manila accretionary prism.

  8. Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California earthquake sequence (including maps of shear zones, belts of shear zones, tectonic ridge, duplex en echelon fault, fault elements, and thrusts in restraining steps)

    SciTech Connect

    Johnson, A.M.; Johnson, N.A.; Johnson, K.M.; Wei, W.; Fleming, R.W.; Cruikshank, K.M.; Martosudarmo, S.Y.

    1997-12-31

    The June 28, 1992, M{sub s} 7.5 earthquake at Landers, California, which occurred about 10 km north of the community of Yucca Valley, California, produced spectacular ground rupturing more than 80 km in length (Hough and others, 1993). The ground rupturing, which was dominated by right-lateral shearing, extended along at least four distinct faults arranged broadly en echelon. The faults were connected through wide transfer zones by stepovers, consisting of right-lateral fault zones and tension cracks. The Landers earthquakes occurred in the desert of southeastern California, where details of ruptures were well preserved, and patterns of rupturing were generally unaffected by urbanization. The structures were varied and well-displayed and, because the differential displacements were so large, spectacular. The scarcity of vegetation, the aridity of the area, the compactness of the alluvium and bedrock, and the relative isotropy and brittleness of surficial materials collaborated to provide a marvelous visual record of the character of the deformation zones. The authors present a series of analecta -- that is, verbal clips or snippets -- dealing with a variety of structures, including belts of shear zones, segmentation of ruptures, rotating fault block, en echelon fault zones, releasing duplex structures, spines, and ramps. All of these structures are documented with detailed maps in text figures or in plates (in pocket). The purpose is to describe the structures and to present an understanding of the mechanics of their formation. Hence, most descriptions focus on structures where the authors have information on differential displacements as well as spatial data on the position and orientation of fractures.

  9. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  10. Complex permeability structure of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Aydin, A.; Hazelton, G.

    2013-12-01

    Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a

  11. Variable deep structure of a midcontinent fault and fold zone from seismic reflection: La Salle deformation belt, Illinois basin

    USGS Publications Warehouse

    McBride, J.H.

    1997-01-01

    Deformation within the United States mid-continent is frequently expressed as quasilinear zones of faulting and folding, such as the La Salle deformation belt, a northwest-trending series of folds cutting through the center of the Illinois basin. Seismic reflection profiles over the southern La Salle deformation belt reveal the three-dimensional structural style of deformation in the lower Paleozoic section and uppermost Precambrian(?) basement. Individual profiles and structural contour maps show for the first time that the folds of the La Salle deformation belt are underlain at depth by reverse faults that disrupt and offset intrabasement structure, offset the top of interpreted Precambrian basement, and accommodate folding of overlying Paleozoic strata. The folds do not represent development of initial dips by strata deposited over a preexisting basement high. Rather, the structures resemble subdued "Laramide-style" forced folds, in that Paleozoic stratal reflectors appear to be flexed over a fault-bounded basement uplift with the basement-cover contact folded concordantly with overlying strata. For about 40 km along strike, the dominant faults reverse their dip direction, alternating between east and west. Less well expressed antithetic or back thrusts appear to be associated with the dominant faults and could together describe a positive flower structure. The overall trend of this part of the La Salle deformation belt is disrupted by along-strike discontinuities that separate distinct fold culminations. Observations of dual vergence and along-strike discontinuities suggest an original deformation regime possibly involving limited transpression associated with distant late Paleozoic Appalachian-Ouachita mountain building. Moderate-magnitude earthquakes located west of the western flank of the La Salle deformation belt have reverse and strike-slip mechanisms at upper trustai depths, which might be reactivating deep basement faults such as observed in this study

  12. Structural and microstructural evolution of fault zones in Cretaceous poorly lithified sandstones of the Rio do Peixe basin, Paraiba, NE Brazil

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge

    2017-04-01

    In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They

  13. Transfer zones in listric normal fault systems

    NASA Astrophysics Data System (ADS)

    Bose, Shamik

    Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in

  14. Fault-related structural permeability: Qualitative insights of the damage-zone from micro-CT analysis.

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand

    2016-04-01

    Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90

  15. a Study of Fault Zone Hydrology

    NASA Astrophysics Data System (ADS)

    Karasaki, K.; Onishi, C. T.; Goto, J.; Moriya, T.; Tsuchi, H.; Ueta, K.; Kiho, K.; Miyakawa, K.

    2010-12-01

    The Nuclear Waste Management Organization of Japan and Lawrence Berkeley National Laboratory are presently collaborating at a dedicated field site to further understand, and to develop the characterization technology for, fault zone hydrology. To this end, several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~ 150 m have been core-drilled; one on the east side and two on the west side of the suspected fault trace. The lithology at Wildcat Fault mainly consists of chert, shale and sandstone, extensively sheared and fractured; with gouges observed at several depths and a thick cataclasite zone. After conducting hydraulic tests, the boreholes were instrumented with temperature and pressure sensors at multiple levels. Preliminary results from these holes indicated that the geology was not what was expected: while confirming some earlier, published conclusions about Wildcat, they have also led to some unexpected findings. The pressure and temperature distributions indicate a downward hydraulic gradient and a relatively large geothermal gradient. Wildcat near the field site appear to consist of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. At this writing an inclined fourth borehole is being drilled to penetrate the main Wildcat. Using the existing three boreholes as observation wells, we plan to conduct hydrologic cross-hole tests in this fourth borehole. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor long term behavior, instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale, and

  16. High-resolution shear-wave seismics across the Carlsberg Fault zone south of Copenhagen - Implications for linking Mesozoic and late Pleistocene structures

    NASA Astrophysics Data System (ADS)

    Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars

    2016-07-01

    The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.

  17. Fault zones in Triassic Muschelkalk limestones of the Upper Rhine Graben: Infrastructure characterization and permeability structure analyses

    NASA Astrophysics Data System (ADS)

    Meier, Silke; Bauer, Johanna F.; Philipp, Sonja L.

    2014-05-01

    The characterization of fault zones is of particular importance in geothermal reservoirs since there may be great effects on fluid flow. Fault zones generally consist of two major hydromechanical units: the fault core and the damage zone, surrounded by the unaffected host rock. To improve predictions of fracture system parameters for each unit and resulting estimations of reservoir permeabilities at depths, we perform outcrop analogue studies. We analyze Middle Triassic Muschelkalk limestones that form one potential geothermal reservoir formation in the Upper Rhine Graben (URG), in quarries on its eastern graben shoulder. We measure the orientations and displacements of various fault zones and characterize the fracture systems within the fault zone units and the host rock. Important features in terms of reservoir permeability are the fracture aperture, the fracture connectivity and the fracture vertical extension. Fractures have to be connected to create a hydraulically relevant flow path and non-stratabound fractures could create a hydraulic connectivity between multiple layers. We observed a decreasing fracture length with increasing distance to the fault core but a better connectivity between shorter fractures in the well-developed damage zones. Our studies show, however, that the differing mechanical properties in the analyzed limestone-marl alternations are significant for the fracture propagation, even in the fault zones. Based on the field data we use analytical models to estimate the permeabilities of the analyzed fracture systems. Results show increased fracture frequencies in the fault zone damage zones and larger fracture apertures parallel or subparallel to fault zone strike and to the URG that lead to enhanced permeabilities compared with other fracture orientations. Mineralized fractures accumulated in directions parallel or subparallel to fault zone strike as well as observed mineralizations in some fault cores indicate a fluid flow along the fault

  18. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  19. Role of structural inheritances and major transfer fault-zones in the tectonic history of the Alboran Basin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Comas, Menchu; Crespo-Blanc, Ana; Balanya, Juan Carlos

    2014-05-01

    reorganization (N-S shortening) of the basin, which encompass wrench tectonics, margin rotations, sub-basin inversions, bending of former extensional structures, and further shale-tectonics. The recent NW-SE and NE-SW trending conjugate wrench-fault system that bound the actual structural domains observed offshore locates over major transfer-faults zones from the Miocene extension. The rotated segments of basin-margins and concomitant structural bending, as well as changes in the tectonic regimen of the transfer-fault systems are expressive of the aftermath of superimposed extensional and compressional processes in the Alboran Basin. The spatial and temporary evolution of the tectonic deformation documented by geological and geophysical observables in the Alboran Sea basin provides new insights into the critical role of the tectonic heritage and major transfer fault-zones in the geodynamic history of the GAS. Acknowledgements: This study was supported by projects RNM-3713, RNM-215, CTM2009-07715 and CGL2009-11384 (MINECO, JA, and FEDER founds, Spain).

  20. Downdip variations in seismic reflection character: Implications for fault structure and seismogenic behavior in the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Li, Jiyao; Shillington, Donna J.; Bécel, Anne; Nedimović, Mladen R.; Webb, Spahr C.; Saffer, Demian M.; Keranen, Katie M.; Kuehn, Harold

    2015-11-01

    Seismic reflection data collected offshore of Alaska Peninsula across the western edge of the Semidi segment show distinctive variations in reflection characteristics of the megathrust fault with depth, suggesting changes in structure that may relate to seismic behavior. From the trench to ~40 km landward, two parallel reflections are observed, which we interpret as the top and bottom of the subducted sediment section. From ~50 to 95 km from the trench, the plate interface appears as a thin (<400 ms) reflection band. Deeper and farther landward, the plate interface transitions to a thicker (1-1.5 s) package of reflections, where it appears to intersect the fore-arc mantle wedge based on our preferred interpretation of the continental Moho. Synthetic waveform modeling suggests that the thin reflection band is best explained by a single ~100 to 250 m thick low-velocity zone, whereas the thick reflection band requires a 3 to 5 km thick zone of thin layers. The thin reflection band is located at the center of the 1938 Mw 8.2 Semidi earthquake rupture zone that now experiences little interplate seismicity. The thick reflection band starts at the downdip edge of the rupture zone, correlates with a dipping band of seismicity, and projects to the location of tremor at greater depth. We interpret the thin reflection band as a compacted sediment layer and/or localized shear zone. The thick reflection band could be caused by a wide deformation zone with branching faults and/or fluid-rich layers, representing a broad transition from stick-slip sliding to slow slip and tremor.

  1. Delineation of fault zones using imaging radar

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.; Gulen, L.; Prange, M.; Matarese, J.; Pettengill, G. H.; Ford, P. G.

    1986-01-01

    The assessment of earthquake hazards and mineral and oil potential of a given region requires a detailed knowledge of geological structure, including the configuration of faults. Delineation of faults is traditionally based on three types of data: (1) seismicity data, which shows the location and magnitude of earthquake activity; (2) field mapping, which in remote areas is typically incomplete and of insufficient accuracy; and (3) remote sensing, including LANDSAT images and high altitude photography. Recently, high resolution radar images of tectonically active regions have been obtained by SEASAT and Shuttle Imaging Radar (SIR-A and SIR-B) systems. These radar images are sensitive to terrain slope variations and emphasize the topographic signatures of fault zones. Techniques were developed for using the radar data in conjunction with the traditional types of data to delineate major faults in well-known test sites, and to extend interpretation techniques to remote areas.

  2. Metamorphic and structural evidence for significant vertical displacement along the Ross Lake fault zone, a major orogen-parallel shear zone in the Cordillera of western North America

    USGS Publications Warehouse

    Baldwin, J.A.; Whitney, D.L.; Hurlow, H.A.

    1997-01-01

    Results of an investigation of the petrology and structure of the Skymo complex and adjacent terranes constrain the amount, timing, and sense of motion on a segment of the > 600-km-long Late Cretaceous - early Tertiary Ross Lake fault zone (RLFZ), a major orogen-parallel shear zone in the Cordillera of western North America. In the study area in the North Cascades, Washington state, the RLFZ accommodated significant pre-middle Eocene vertical displacement, and it juxtaposes the Skymo complex with upper amphibolite facies (650??-690??C and 6-7 kbar) Skagit Gneiss of the North Cascades crystalline core to the SW and andalusite-bearing phyllite of the Little Jack terrane (Intermontane superterrane) to the NE. The two main lithologic units of the Skymo complex, a primitive mafic intrusion and a fault-bounded block of granulite facies metasedimentary rocks, are unique in the North Cascades. Granulite facies conditions were attained during high-temperature (> 800??C), low pressure (??? 4 kbar) contact metamorphism associated with intrusion of the mafic magma. P-T estimates and reaction textures in garnet-orthopyroxene gneiss suggest that contact metamorphism followed earlier, higher pressure regional metamorphism. There is no evidence that the Skagit Gneiss experienced high-T - low-P contact metamorphism. In the Little Jack terrane, however, texturally late cordierite ?? spinel and partial replacement of andalusite by sillimanite near the terrane's fault contact with Skymo gabbro suggest that the Little Jack terrane experienced high-T (??? 600??C) - low-P (??? 4 kbar) contact metamorphism following earlier low-grade regional metamorphism. Similarities in the protoliths of metasedimentary rocks in the Skymo and Little Jack indicate that they may be part of the same terrane. Differences in pressure estimates for the Little Jack versus Skymo for regional metamorphism that preceded contact metamorphism indicate vertical displacement of ??? 10 km (west side up) on the strand

  3. Hydrologic Characterization Study at Wildcat Fault Zone

    NASA Astrophysics Data System (ADS)

    Karasaki, K.; Onishi, C. T.; Goto, J.; Moriya, T.; Ueta, K.; Kiho, K.

    2011-12-01

    A dedicated field site has been developed to further the understanding of, and to develop the characterization technology for, fault zone hydrology in the hills east of Berkeley, California across the Wildcat Fault. The Wildcat is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, several ~2-4-m deep trenches were cut, a number of surface-based geophysical surveys were conducted, and four ~150-m deep fully cored boreholes were drilled at the site; one on the east side and two on the west side of the suspected fault trace. The inclined fourth hole was drilled to penetrate the Wildcat. Geologic analysis results from these trenches and boreholes indicated that the geology was not always what was expected: while confirming some earlier, published conclusions about Wildcat, they have also led to some unexpected findings. The lithology at the Wildcat Fault area mainly consists of chert, shale, silt and sandstone, extensively sheared and fractured with gouge and cataclasite zones observed at several depths. Wildcat near the field site appears to consist of multiple fault planes with the major fault planes filled with unconsolidated pulverized rock instead of clay gouge. The pressure and temperature distributions indicate a downward hydraulic gradient and a relatively large geothermal gradient. Various types of borehole logging were conducted but there were no obvious correlations between boreholes or to hydrologic properties. Using the three other boreholes as observation wells, hydrologic cross-hole pumping tests were conducted in the fourth borehole. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone: high permeability along the plane and low permeability across it, and the fault planes may be compartmentalizing aquifers. No correlation was found between fracture frequency and flow. Long term pressure monitoring over multiple seasons was shown to be very

  4. Tectonic significance of the Valera Fault Zone, Northwestern Venezuela

    SciTech Connect

    Rodrigues, J.; Bueno, E.; Ostos, M. )

    1993-02-01

    A detailed structural study was performed at the southern end of the north-south to north-northwest Valera fault zone. The area is particularly interesting, since it lies close to the triple point were the Maracaibo and Lara blocks meet the South American plate. The fault zone is associated with an anticlinorium with the following structural features: (a) conic folds with hinges oriented N26-35E; (b) a main, left-lateral, north-northwest to north-south fault population; (c) a secondary set of dextral west-northwest faults; and (d) two secondary sets of left-lateral northwest and northeast faults. The structural pattern and the dynamic analysis of the faults, which indicated a N 46-50 W shortening, is compatible with the spatial arrangement of structures associated with a north-south to north-northwest sinistral strike-slip fault. A regional interpretation based on seismic sections tied to wells suggests a continuous and complex structural evolution including: (a) early Eocene northwesterly trending normal faulting, at the forebulge developed during the emplacement of the Lara nappes; (b) Early Neogene NW reverse faulting and inversion of early normal faults, at the transpressive zone that bounded the Maracaibo and Lara blocks; (c) Late Neogene development of the sinistral Valera fault zone to accomodate the tangential component of the relative movement between the two blocks.

  5. Velocity Structure of the Alpine Fault Zone, New Zealand: Laboratory and Log-Based Fault Rock Acoustic Properties at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Graham, J. L., II; Tobin, H. J.; Paris Cavailhes, J.; Celerier, B. P.; Doan, M. L.; Nitsch, O.; Massiot, C.

    2015-12-01

    The elastic properties of fault zone rocks at seismogenic depth play a key role in rupture nucleation, propagation, and damage associated with fault slip. In order to understand the seismic hazard posed by a fault we need to both measure these properties and understand how they govern that particular fault's behavior. The Alpine Fault is the principal component of the active transpressional plate boundary through the South Island of New Zealand. Rapid exhumation along the fault provides an opportunity to study near-surface rocks that have experienced similar histories to those currently deforming at mid-crustal depths. In this study, we examine the acoustic properties of the Alpine Fault in Deep Fault Drilling Project (DFDP)-1 drill core samples and borehole logs from the shallow fault zone, DFDP-2 borehole logs from the hanging wall, and outcrop samples from a number of field localities along the central Alpine Fault. P- and S-wave velocities were measured at ultrasonic frequencies on saturated 2.5 cm-diameter core plugs taken from DFDP-1 core and outcrops. Sampling focused on mylonites, cataclasites, and fault gouge from both the hanging and foot walls of the fault in order to provide a 1-D seismic velocity transect across the entire fault zone. Velocities were measured over a range of effective pressures between 1 and 68 MPa to determine the variation in acoustic properties with depth and pore pressure. When possible, samples were cut in three orthogonal directions and S-waves were measured in two polarization directions on all samples to constrain velocity anisotropy. XRD and petrographic characterization were used to examine how fault-related alteration and deformation change the composition and texture of the rock, and to elucidate how these changes affect the measured velocities. The ultrasonic velocities were compared to sonic logs from DFDP to examine the potential effects of frequency dispersion, brittle deformation, and temperature on the measured

  6. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  7. Active faulting on the Wallula fault zone within the Olympic-Wallowa lineament, Washington State, USA

    USGS Publications Warehouse

    Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth

    2016-01-01

    The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.

  8. Rapid, decimeter-resolution fault zone topography mapped with Structure from Motion

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Nissen, E.; Saripalli, S.; Arrowsmith, R.; McGarey, P.; Scharer, K. M.; Williams, P. L.

    2013-12-01

    Recent advances in the generation of high-resolution topography have revolutionized our ability to detect subtle geomorphic features related to ground-rupturing earthquakes. Currently, the most popular topographic mapping methods are airborne Light Detection And Ranging (LiDAR) and terrestrial laser scanning (TLS). Though powerful, these laser scanning methods have some inherent drawbacks: airborne LiDAR is expensive and can be logistically complicated, while TLS is time consuming even for small field sites and suffers from patchy coverage due to its restricted field-of-view. An alternative mapping technique, called Structure from Motion (SfM), builds upon traditional photogrammetry to reproduce the topography and texture of a scene from photographs taken at varying viewpoints. The improved availability of cheap, unmanned aerial vehicles (UAVs) as camera platforms further expedites data collection by covering large areas efficiently with optimal camera angles. Here, we introduce a simple and affordable UAV- or balloon-based SfM mapping system which can produce dense point clouds and sub-decimeter resolution digital elevation models (DEMs) registered to geospatial coordinates using either the photograph's GPS tags or a few ground control points across the scene. The system is ideally suited for studying ruptures of prehistoric, historic, and modern earthquakes in areas of sparse or low-lying vegetation. We use two sites from southern California faults to illustrate. The first is the ~0.1 km2 Washington Street site, located on the Banning strand of the San Andreas fault near Thousand Palms. A high-resolution DEM with ~700 point/m2 was produced from 230 photos collected on a balloon platform flying at 50 m above the ground. The second site is the Galway Lake Road site, which spans a ~1 km strip of the 1992 Mw 7.3 Landers earthquake on the Emerson Fault. The 100 point/m2 DEM was produced from 267 photos taken with a balloon platform at a height of 60 m above the ground

  9. Geophysical data reveal the crustal structure of the Alaska Range orogen within the aftershock zone of the Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.

    2004-01-01

    Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.

  10. Fault zone Q values derived from Taiwan Chelungpu Fault borehole seismometers (TCDPBHS)

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ju; Lin, Yen-Yu; Lee, Meng-Chieh; Ma, Kuo-Fong

    2012-11-01

    The attenuation factor, Q, at a fault zone is an important parameter for understanding the physical properties. In this study, we investigated the Q value of the Chelungpu Fault, the main rupture of the Mw 7.6 Chi-Chi earthquake, using the 7-level TCDP borehole seismometer array (TCDPBHS). The TCDPBHS was deployed at depths from 945 to 1270 m throughout the 1999 ruptured slip zone at 1111 m. Three borehole seismometers (BHS1-BHS3) were placed in the hanging wall, and the remaining three (BHS5-BHS7) were placed in the foot wall, with BHS4 near the slip zone. The configuration allowed us to estimate the Q-structure of the recent ruptured fault zone. In this study, we estimated Q values between BHS1 and BHS4, Qs1 (Qp1) at the fault zone and between BHS4 to 2 km in depth, Qs4 (Qp4) beneath the fault zone. We utilized two independent methods, the spectral ratio and spectral fitting analyses, for calculating the Q value of Qs1 (Qp1) in order to provide a reliability check. After analyzing 26 micro-events for Qs and 17 micro-events for Qp, we obtained consistent Q values from the two independent methods. The values of Qs1 and Qp1 were 21-22 and 27-35, respectively. The investigation for the value of Qs4 was close to 45, and Qp4 was 85. These Qp and Qs values are quiet consistent with observations obtained for the San Andreas Fault at the corresponding depth. A low Qs1 value for the recent Chelungpu Fault zone suggests that this fault zone has been highly fractured. Qs values within the Chelungpu Fault, similar to those within the San Andreas Fault, suggest that the Q structure within the fault zone is sedimentary rock independent. However, the possible existence of fluids, fractures, and cracks dominates the attenuation feature in the fault zone.

  11. Distribution and structure of active strike-slip faults in the Enshu forearc basin of the eastern Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Ojima, T.; Ashi, J.; Nakamura, Y.

    2010-12-01

    Accretionary prisms and forearc basins are developed in the Nankai Trough, SW Japan. Many active faults are recognized and classified into five fault systems in the eastern Nankai Trough. The Enshu Faults System, the most landward one, runs over 200 km along the northern edge of the Tokai, Enshu and Kumano forearc basins. Swath bathymetry and side-scan sonar surveys indicate a general fault trend of ENE-WSW and dextral displacement of submarine canyons across the landward-most fault. Seismic reflection profiles partly exhibit landward dipping fault planes and flower structures suggesting that the Enshu fault system is affected by oblique subduction of the Philippines Sea Plate. Structural investigation of this area is important for earthquake disaster mitigation as well as understanding of oblique subduction tectonics. However, activity of faults has not been clarified. Japan Oil, Gas and Metal National Corporation (JOGMEC) conducted dense seismic reflection survey at the Tokai-Kumano area in 2001. Seismic reflection profiles clearly show depositional sequences and deformation structures such as faults and folds. This study examined deformation styles and fault activities based on detailed interpretation of seismic reflection profiles. Sediment thickness mapped from seismic profiles clearly changes with age. Sediment thickness is almost homogeneous from the acoustic basement (probably Paleogene Shimanto Complex) to a Pliocene horizon in the survey area. In contrast, thickness between a Pliocene horizon and present seafloor shows large variations from east to west. It is suggested that sedimentary environments change drastically at this period. There are also small-scale variations in sediment thickness for all horizons. Some distinct changes are distributed along linear boundaries. It seems that they correspond to the faults recognized as lineaments on the sidescan sonar images. We estimated activities of faulting based on such sediment thickness changes and their

  12. Geochemical characteristics of fault core and damage zones of the Hong-Che Fault Zone of the Junggar Basin (NW China) with implications for the fault sealing process

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Pei, Yangwen; Liu, Bo; Guo, Jianxun

    2017-08-01

    Faults may have a complex internal structure, including fault core and damage zone, and can act as major conduits for fluid migration. The migration of fluids along faults is generally associated with strong fluid-rock interaction, forming large amounts of cement that fill in the fractures. The cementation of the fault fractures is considered to be one of the important parameters of fault sealing. The different components of faults have diverse geochemical features because of varying physical characteristics. The investigation of the geochemical characteristics of the fault and damage zones could provide important information about the fault sealing process, which is very important in oil and gas exploration. To understand the fault-cemented sealing process, detailed geochemical studies were conducted on the fault and damage zones of the Hong-Che Fault of the northwestern Junggar Basin in China. The major and trace element data of our study suggest that the fault core is characterized by higher loss on ignition (LOI), potassium loss, Chemical Index of Alteration (CIA), and Plagioclase Index of Alteration (PIA) values and lower high field strength element (HFSE), large-ion lithosphile element (LILE), and rare earth element (REE) concentrations compared with the damage zone, implying more serious elemental loss and weathering of the fault core compared with the damage zone during faulting. The carbon and oxygen isotope data reveal that the cement of the Hong-Che Fault Zone formed due to multiple sources of fluids. The fault core was mainly affected by deep sources of hydrothermal fluids. In combination with previous studies, we suggest a potential fault-cemented sealing process during the period of fault movement. The fault core acts as the fluid conduit during faulting. After faulting, the fault core is cemented and the damage zone becomes the major conduit for fluid migration. The cementation firstly occurs on two sides of the damage zone in the upper part of the

  13. From Fault Seal to Fault Leak: Effect of Mechanical Stratigraphy on the Evolution of Transport Processes in Fault Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Urai, J. L.; Schmatz, J.; van Gent, H. W.; Abe, S.; Holland, M.

    2009-12-01

    Predictions of the transport properties of faults in layered sequences are usually based on geometry and lithology of the faulted sequence. Mechanical properties and fault resealing processes are used much less frequently. Based on laboratory, field and numerical studies we present a model, which takes into account these additional factors. When the ratio of rock strength and in-situ mean effective stress is high enough to allow hybrid failure, dilatant fracture networks will form in that part of the sequence which meets this condition, dramatically increasing permeability along the fault, with possibility of along-fault fluid flow and vertical transport of fine grained sediment to form clay gouge in dilatant jogs. A key parameter here is the 3D connectivity of the dilatant fracture network. In systems where fracturing is non-dilatant and the mechanical contrast between the layers is small, the fault zones are relatively simple in structure, with complexity concentrated in relay zones between segments at different scales. With increasing mechanical contrast between the layers (and the presence of preexisting fractures), patterns of localization and fault zone structure become increasingly complex. Mechanical mixing in the fault gouge is a major process especially when one of the lithologies is highly permeable. Reworking of wall rocks composed of hard claystones produces a low-permeability clay gouge in critical state. Circulating supersaturated fluids in the fault zone produce vein networks, which reseal the fault zone, typically in a cyclic fashion.

  14. Ste. Genevieve Fault Zone, Missouri and Illinois. Final report

    SciTech Connect

    Nelson, W.J.; Lumm, D.K.

    1985-07-01

    The Ste. Genevieve Fault Zone is a major structural feature which strikes NW-SE for about 190 km on the NE flank of the Ozark Dome. There is up to 900 m of vertical displacement on high angle normal and reverse faults in the fault zone. At both ends the Ste. Genevieve Fault Zone dies out into a monocline. Two periods of faulting occurred. The first was in late Middle Devonian time and the second from latest Mississippian through early Pennsylvanian time, with possible minor post-Pennsylvanian movement. No evidence was found to support the hypothesis that the Ste. Genevieve Fault Zone is part of a northwestward extension of the late Precambrian-early Cambrian Reelfoot Rift. The magnetic and gravity anomalies cited in support of the ''St. Louis arm'' of the Reelfoot Rift possible reflect deep crystal features underlying and older than the volcanic terrain of the St. Francois Mountains (1.2 to 1.5 billion years old). In regard to neotectonics no displacements of Quaternary sediments have been detected, but small earthquakes occur from time to time along the Ste. Genevieve Fault Zone. Many faults in the zone appear capable of slipping under the current stress regime of east-northeast to west-southwest horizontal compression. We conclude that the zone may continue to experience small earth movements, but catastrophic quakes similar to those at New Madrid in 1811-12 are unlikely. 32 figs., 1 tab.

  15. Soil gas radon: a tool for exploring active fault zones.

    PubMed

    Ioannides, K; Papachristodoulou, C; Stamoulis, K; Karamanis, D; Pavlides, S; Chatzipetros, A; Karakala, E

    2003-01-01

    The profile of soil gas radon was monitored in five active fault sites in northern and northwestern Greece. Measurements were carried out during summer months, using CR-39 solid state nuclear track detectors (SSNTDs). The spatial distribution of radon along lines traversing the fault zones revealed anomalies, clearly connected to the local tectonic structure. Specifically, increased radon signals evolved on the radon background level, in the vicinity of the faults' axes and the signal-to-background ratio ranged from 2 to 13. The consistency of this pattern confirms that the radon technique is powerful in the detection and mapping of active fault zones.

  16. Fault intersections along the Hosgri Fault Zone, Central California

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Johnson, S. Y.; Langenheim, V. E.

    2011-12-01

    It is well-established that stresses concentrate at fault intersections or bends when subjected to tectonic loading, making focused studies of these areas particularly important for seismic hazard analysis. In addition, detailed fault models can be used to investigate how slip on one fault might transfer to another during an earthquake. We combine potential-field, high-resolution seismic-reflection, and multibeam bathymetry data with existing geologic and seismicity data to investigate the fault geometry and connectivity of the Hosgri, Los Osos, and Shoreline faults offshore of San Luis Obispo, California. The intersection of the Hosgri and Los Osos faults in Estero Bay is complex. The offshore extension of the Los Osos fault, as imaged with multibeam and high-resolution seismic data, is characterized by a west-northwest-trending zone (1-3 km wide) of near vertical faulting. Three distinct strands (northern, central, and southern) are visible on shallow seismic reflection profiles. The steep dip combined with dramatic changes in reflection character across mapped faults within this zone suggests horizontal offset of rock units and argues for predominantly strike-slip motion, however, the present orientation of the fault zone suggests oblique slip. As the Los Osos fault zone approaches the Hosgri fault, the northern and central strands become progressively more northwest-trending in line with the Hosgri fault. The northern strand runs subparallel to the Hosgri fault along the edge of a long-wavelength magnetic anomaly, intersecting the Hosgri fault southwest of Point Estero. Geophysical modeling suggests the northern strand dips 70° to the northeast, which is in agreement with earthquake focal mechanisms that parallel this strand. The central strand bends northward and intersects the Hosgri fault directly west of Morro Rock, corresponding to an area of compressional deformation visible in shallow seismic-reflection profiles. The southern strand of the Los Osos

  17. Physical and Mechanical Properties of the Mozumi Fault, Japan: Petrophysics of a Fine-Grained Fault Zone

    NASA Astrophysics Data System (ADS)

    Isaacs, A. J.; Evans, J. P.; Kolesar, P. T.

    2005-12-01

    The Mozumi-Sokenobu fault, a right-lateral strike-slip fault in north-central Honshu, Japan is intersected by the Active Fault Survey Tunnel. This tunnel allows for direct observation of the fault at a depth of 300-400 m below the ground surface. Within the tunnel, the Mozumi fault cuts Jurassic Tetori Group sandstone and shale. We have characterized microstructures, mineralogy, geochemistry, and elastic properties of fault rock samples from the Mozumi fault. These data can be combined to illustrate the in-situ macroscopic hydro-mechanical structure of the fault. Core samples from the main Mozumi fault zone intersected by the Active Fault Survey Tunnel borehole A were analyzed and compared to wireline logs for a petrophysical study of the fault zone rocks. Microstructures, mineralogy, and geochemistry of Mozumi fault rocks indicate syn-tectonic fluid flow and multiple deformation events. Resistivity and sonic log values are depressed through the main fault zone. Likewise, the seismic p and s wave velocity values are decreased across the main fault relative to the surrounding rock. Calculated values for Young's modulus and Poisson's ratio fall at the top of or above the experimentally derived range for elastic moduli of siltstone, shale, and sandstone. Smaller scale variations across the fault zone itself are also present. Samples of foliated fault rocks containing predominantly muscovite have intermediate values for elastic moduli and seismic velocity relative to other fault zone samples used in this study. Fault rocks significantly depleted in oxides relative to host rock samples and containing mixed clays have higher resistivity than surrounding fault rocks and intermediate permeability values. These variations in physical and mechanical properties throughout the fault zone coincide with the complex fault-parallel combined conduit/barrier permeability structure of the Mozumi fault zone.

  18. Mantle fault zone beneath Kilauea Volcano, Hawaii.

    PubMed

    Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M

    2003-04-18

    Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  19. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  20. Characterization of slow slip rate faults in humid areas: Cimandiri fault zone, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, J. R.; Whipple, K. X.

    2016-12-01

    In areas where regional tectonic strain is accommodated by broad zones of short and low slip rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments or soils; their geomorphic expression subdued and sometimes undetectable until the next earthquake. In Java, active faults are diffused, and their characterization is challenging. Among them is the ENE striking Cimandiri fault zone. Cumulative displacement produces prominent ENE oriented ranges with the southeast side moving relatively upward and to the northeast. The fault zone is expressed in the bedrock by numerous NE, west, and NW trending thrust- and strike-slip faults and folds. However, it is unclear which of these structures are active. We performed a morphometric analysis of the fault zone using 30 m resolution Shuttle Radar Topography Mission digital elevation model. We constructed longitudinal profiles of 601 bedrock rivers along the upthrown ranges along the fault zone, calculated the normalized channel steepness index, identified knickpoints and use their distribution to infer relative magnitudes of rock uplift and locate boundaries that may indicate active fault traces. We compare the rock uplift distribution to surface displacement predicted by elastic dislocation model to determine the plausible fault kinematics. The active Cimandiri fault zone consists of six segments with predominant sense of reverse motion. Our analysis reveals considerable geometric complexity, strongly suggesting segmentation of the fault, and thus smaller maximum earthquakes, consistent with the limited historical record of upper plate earthquakes in Java.

  1. High-resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Hole, J.A.; Huggins, R.; Lippus, C.

    2002-01-01

    A 5-km-long, high-resolution seismic imaging survey across the San Andreas fault (SAF) zone and the proposed San Andreas Fault Observatory at Depth (SAFOD) drill site near Parkfield, California, shows that velocities vary both laterally and vertically. Velocities range from 4.0 km/sec) probably correspond to granitic rock of the Salinian block, which is exposed a few kilometers southwest of the SAF. The depth to the top of probable granitic rock varies laterally along the seismic profile but is about 600 m below the surface at the proposed SAFOD site. We observe a prominent, lateral low-velocity zone (LVZ) beneath and southwest of the surface trace of the SAF. The LVZ is about 1.5 km wide at 300-m depth but tapers to about 600 m wide at 750-m depth. At the maximum depth of the velocity model (750 m), the LVZ is centered approximately 400 m southwest of the surface trace of the SAF. Similar velocities and velocity gradients are observed at comparable depths on both sides of the LVZ, suggesting that the LVZ is anomalous relative to rocks on either side of it. Velocities within the LVZ are lower than those of San Andreas fault gouge, and the LVZ is also anomalous with respect to gravity, magnetic, and resistivity measurements. Because of its proximity to the surface trace of the SAF, it is tempting to suggest that the LVZ represents a zone of fractured crystalline rocks at depth. However, the LVZ instead probably represents a tectonic sliver of sedimentary rock that now rests adjacent to or encompasses the SAF. Such a sliver of sedimentary rock implies fault strands on both sides and possibly within the sliver, suggesting a zone of fault strands at least 1.5 km wide at a depth of 300 m, tapering to about 600 m wide at 750-m depth. Fluids within the sedimentary sliver are probably responsible for observed low-resistivity values.

  2. Structure and potential seismogenic and tsunamigenic sources of the offshore Bajo Segura fault zone, SE Iberian Peninsula (Mediterranean Sea): Preliminary results

    NASA Astrophysics Data System (ADS)

    Perea, H.; Gràcia, E.; Bartolomé, R.; Lo Iacono, C.; Masana, E.; Event-Shelf Team

    2009-04-01

    The present-day crustal deformation of the SE Iberian margin is driven mainly by the NW-SE convergence (4-5 mm/yr) between the African and Eurasian plates. This convergence is accommodated over a wide deformation zone with significant seismic activity south of the Iberian Peninsula. The Neogene and Quaternary faulting activity in the SE Iberian Margin is dominated by a large left-lateral strike-slip system of sigmoid geometry referred to as the Eastern Betic Shear Zone (EBSZ), stretching over more than 450 km from Alacant to Almería. The northern terminal splays of the EBSZ correspond to the Bajo Segura fault zone (BSFZ) that extends further into the Mediterranean Sea. This fault zone shows an important instrumental seismic activity characterized by small to moderate earthquakes. Even though, moderate to large historical earthquakes have affected the zone, being the Torrevieja earthquake (1829; IMSK=X) the largest. The onshore area of the BSFZ has been extensively studied and it is characterized by active structures (faults and folds) displaying a transpressive behavior since the Plio-Pleistocene and resulting in positive relieves and subsiding zones. However, the offshore area shows an almost complete lack of information from the tectonic point of view. Recently, the marine geophysical cruise EVENT-SHELF was carried out in September 2008 onboard the Spanish RV Garcia del Cid. The main goal was to map the seafloor ruptures and the sub-seafloor structures of the offshore area of BSFZ using swath bathymetry and high-resolution seismics (Spaker GeoSpark 6kJ). A total of 10 regional profiles were acquired along and across the fault zone. The preliminary results from the analysis of the acoustic and seismic data show that the main structures observed onshore have their continuation offshore, and that some of the faults and folds related to the BSFZ are active. The carefully study and processing of these data will allow us to localize the present active structures

  3. The seismic velocity structure of a foreshock zone on an oceanic transform fault: Imaging a rupture barrier to the 2008 Mw 6.0 earthquake on the Gofar fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Lizarralde, D.; Collins, J. A.

    2010-12-01

    East Pacific Rise (EPR) oceanic transform faults are known to exhibit a number of unique seismicity characteristics, including abundant seismic swarms, a prevalence of aseismic slip, and high rates of foreshock activity. Until recently the details of how this behavior fits into the seismic cycle of large events that occur periodically on transforms have remained poorly understood. In 2008 the most recent seismic cycle of the western segment (G3) of the Gofar fault (4 degrees South on the EPR) ended with a Mw 6.0 earthquake. Seismicity associated with this event was recorded by a local array of ocean bottom seismometers, and earthquake locations reveal several distinct segments with unique slip behavior on the G3 fault. Preceding the Mw 6.0 event, a significant foreshock sequence was recorded just to the east of the mainshock rupture zone that included more than 20,000 detected earthquakes. This foreshock zone formed the eastern barrier to the mainshock rupture, and following the mainshock, seismicity rates within the foreshock zone remained unchanged. Based on aftershock locations of events following the 2007 Mw 6.0 event that completed the seismic cycle on the eastern end of the G3 fault, it appears that the same foreshock zone may have served as the western rupture barrier for that prior earthquake. Moreover, mainshock rupture associated with each of the last 8 large (~ Mw 6.0) events on the G3 fault seems to terminate at the same foreshock zone. In order to elucidate some of the structural controls on fault slip and earthquake rupture along transform faults, we present a seismic P-wave velocity profile crossing the center of the foreshock zone of the Gofar fault, as well as a profile for comparison across the neighboring Quebrada fault. Although tectonically similar, Quebrada does not sustain large earthquakes and is thought to accommodate slip primarily aseismically and with small magnitude earthquake swarms. Velocity profiles were obtained using data collected

  4. Upper crustal structure of the North Anatolian Fault Zone from ambient seismic noise Rayleigh and Love wave tomography

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory; Hillers, Gregor

    2017-04-01

    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a region that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ˜1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand moved in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in surface wave group velocity. To the north of the NAFZ, we observe low Rayleigh wave group velocities ( 1.2 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ, we detect high velocities ( 2.5 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  5. Laboratory evidence of strength recovery of a healed fault: implications for a mechanism responsible for creating wide fault zones

    NASA Astrophysics Data System (ADS)

    Masuda, Koji

    2015-12-01

    Fault zones consist of a high-strain fault core and a surrounding damage zone of highly fractured rock. The close, reciprocal relationship between fault zones and earthquake rupture evolution demands better understanding of the processes that create and modify damage zones. This study modeled the evolution of a damage zone in the laboratory by monitoring seismic signals (acoustic emissions) in a specimen of ultramylonite stressed to failure. The result provided evidence supporting the strength recovery of parts of the healed surface. A new fault initiated in an area of heterogeneous structure a short distance from the preexisting fault plane. Repeated cycles of fracture and healing may be one mechanism responsible for wide fault zones with multiple fault cores and damage zones.

  6. Seismic measurements of the internal properties of fault zones

    USGS Publications Warehouse

    Mooney, W.D.; Ginzburg, A.

    1986-01-01

    The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.

  7. 3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Yolsal-Ćevikbilen, Seda; Biryol, C. Berk; Beck, Susan; Zandt, George; Taymaz, Tuncay; Adıyaman, Hande E.; Özacar, A. Arda

    2012-03-01

    3-D P-wave velocity structure and Vp/Vs variations in the crust along the North Anatolian Fault Zone (NAFZ) in north-central Anatolia were investigated by the inversion of local P- and S-wave traveltimes, to gain a better understanding of the seismological characteristics of the region. The 3-D local earthquake tomography inversions included 5444 P- and 3200 S-wave readings obtained from 168 well-located earthquakes between 2006 January and 2008 May. Dense ray coverage yields good resolution, particularly in the central part of the study area. The 3-D Vp and Vp/Vs tomographic images reveal clear correlations with both the surface geology and significant tectonic units in the region. We observed the lower limit of the seismogenic zone for north-central Anatolia at 15 km depth. Final earthquake locations display a distributed pattern throughout the study area, with most of the earthquakes occurring on the major splays of the NAFZ, rather than its master strand. We identify three major high-velocity blocks in the mid-crust separated by the İzmir-Ankara-Erzincan Suture and interpret these blocks to be continental basement fragments that were accreted onto the margin following the closure of Neo-Tethyan Ocean. These basement blocks may have in part influenced the rupture propagations of the historical 1939, 1942 and 1943 earthquakes. In addition, large variations in the Vp/Vs ratio in the mid-crust were observed and have been correlated with the varying fluid contents of the existing lithologies and related tectonic structures.

  8. Quantitative Inversion of Seismic Fault Zone Waveforms in the Rupture Zone of the 1992 Landers Earthquake for Structural Properties at Depth

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Ben-Zion, Y.; Michael, A. J.

    2001-12-01

    Waveform modeling of seismic fault zone (FZ) trapped waves has the potential for providing a high-resolution imaging of seismic velocities, seismic attenuation, FZ width, and structural continuity at depth. From a digital waveform data set generated by 238 aftershocks of the 1992 Landers earthquake [William Lee, per. com., '99], we identified 60 events with good candidate trapped waves. Each event was recorded by 33 three-component, short-period (2 Hz), L-22 seismometers, 22 of which on a line crossing the surface rupture zone of the mainshock. Locations of 102 events out of the 238 aftershocks are given in the catalog of Richards-Dinger and Shearer [JGR, '00]. These include 16 events generating candidate trapped waves. A plane-wave fitting technique is applied to estimate the back-azimuth angle of the unlocated events that produce candidate trapped waves. The source-receiver distance for these events is estimated from the S - P travel time. Of the 60 candidate trapped waves, about 75% are generated by events with locations close to the FZ, while the reminder are likely produced by events at considerable distance from the fault. The latter observation is compatible with 3D numerical calculations of Igel et al. [Pageoph, '01]. The FZ waveforms with candidate trapped waves are modeled with a genetic inversion algorithm (GIA) that maximizes the correlation between observed and synthetic waveforms [Michael and Ben-Zion, ms. in preparation, '01]. The synthetic seismograms are generated with a two-dimensional analytical solution for a scalar wavefield in a layered vertical FZ between two quarter-spaces [Ben-Zion and Aki, BSSA,'90; Ben-Zion, JGR, '98]. Our previous results showed that the GIA is able to provide very good fits for Landers FZ waveforms with a model consisting of a single uniform FZ layer in a half space. However, it is possible to get equally good fits for a wide range of parameters. This is due to significant trade-offs among FZ width, propagation distance

  9. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, Jr., J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  10. Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Zaky, Khairy S.

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  11. Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland)

    NASA Astrophysics Data System (ADS)

    Kristensen, Thomas B.; Rotevatn, Atle; Peacock, David C. P.; Henstra, Gijs A.; Midtkandal, Ivar; Grundvåg, Sten-Andreas

    2016-11-01

    Structurally controlled, syn-rift, clastic depocentres are of economic interest as hydrocarbon reservoirs; understanding the structure of their bounding faults is of great relevance, e.g. in the assessment of fault-controlled hydrocarbon retention potential. Here we investigate the structure of the Dombjerg Fault Zone (Wollaston Forland, NE Greenland), a syn-rift border fault that juxtaposes syn-rift deep-water hanging-wall clastics against a footwall of crystalline basement. A series of discrete fault strands characterize the central fault zone, where discrete slip surfaces, fault rock assemblages and extreme fracturing are common. A chemical alteration zone (CAZ) of fault-related calcite cementation envelops the fault and places strong controls on the style of deformation, particularly in the hanging-wall. The hanging-wall damage zone includes faults, joints, veins and, outside the CAZ, disaggregation deformation bands. Footwall deformation includes faults, joints and veins. Our observations suggest that the CAZ formed during early-stage fault slip and imparted a mechanical control on later fault-related deformation. This study thus gives new insights to the structure of an exposed basin-bounding fault and highlights a spatiotemporal interplay between fault damage and chemical alteration, the latter of which is often underreported in fault studies. To better elucidate the structure, evolution and flow properties of faults (outcrop or subsurface), both fault damage and fault-related chemical alteration must be considered.

  12. Structural analysis of the Valence basin (SE France) based on kriging and borehole data: implications for hercynian fault zone behaviour in geothermic reservoirs.

    NASA Astrophysics Data System (ADS)

    Chabani, Arezki; Mehl, Caroline; Bruel, Dominique; Cojan, Isabelle

    2017-04-01

    The Valence basin is a 130 km-long and 60 km-wide Tertiary sub-basin situated north to the SE basin of France, in the central part of the European Cenozoic RIft System (ECRIS). That structural key position in a naturally fractured hostrock associated with a favorable thermal regime make that basin a good target for geothermal exploitation in France. The structure and kinematics of the Valence basin is controlled by a several kilometer-scale hercynian fault system that may have a strong influence on fluid flows and thermal anomalies within the basin. This study aimed to constrain the geometry of deposits and the way they fracture regards to the major faults, to determine their diagenetic evolution and to characterize the hydraulic behavior of the major faults. We thus performed a structural model of the basin and analyzed the Montoison borehole. Kriging on data pointed on 348 boreholes from BSS, synthetic boreholes calculated from two seismic lines and isohypses from existing models allowed modeling the geometry of basement and the ceno-mesozoic unconformity. Basement is structured by two pluri-kilometer long fault corridors striking N/S to NE/SW. The central extends laterally on around 1 kilometer and has been identified as a segment of the Cevennes fault. The maximum depth of the basement is around 6000 m and is situated between the two corridors. Interpretations on seismic lines highlight a westward migration of Cenozoic depocenters within time. A structural analysis of the Montoison borehole confirms it is affected by a major fault interpreted as the Cevennes fault. Fault zone cuts across the Keuper and is characterized by an heterometric breccia within marly layers. The entire sedimentary pile recorded 2 sets of fractures: perpendicular and parallel to the borehole axis. Both sets are recrystallized. Nature of recrystallization (quartz, calcite and dolomite) strongly depends on the hostrock. An important thread of barite is located under the fault zone, putting

  13. Granular Packings and Fault Zones

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Herrmann, H. J.; Timonen, J.

    2000-01-01

    The failure of a two-dimensional packing of elastic grains is analyzed using a numerical model. The packing fails through formation of shear bands or faults. During failure there is a separation of the system into two grain-packing states. In a shear band, local ``rotating bearings'' are spontaneously formed. The bearing state is favored in a shear band because it has a low stiffness against shearing. The ``seismic activity'' distribution in the packing has the same characteristics as that of the earthquake distribution in tectonic faults. The directions of the principal stresses in a bearing are reminiscent of those found at the San Andreas Fault.

  14. Seismomagnetic response of a fault zone

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.; Loktev, D. N.; Spivak, A. A.

    2017-01-01

    Based on the results of instrumental observations of geomagnetic variations caused by the propagation of seismic waves through a fault zone, the dependences between the amplitudes of the induced seismomagnetic effect and seismic signal as a function of distance r to the midline of the fault are obtained. For the first time, it is shown that the amplitude of the seismomagnetic effect is maximal in the fault damage zone. The phenomenological model describing the generation of magnetic signals by seismic waves propagating through the crushed rock in the tectonic fault zone is suggested. It is assumed that geomagnetic variations are generated by the changes in the electrical conductivity of the fragmented rocks as a result of the deformation of the rock pieces contacts. The amplitudes of the geomagnetic variations calculated from the model agree with the instrumental observations.

  15. The Fault Damage Zone of the Shallow Japan Trench Megathrust

    NASA Astrophysics Data System (ADS)

    Keren, T.; Kirkpatrick, J. D.

    2014-12-01

    The Mw 9.0 Tohoku-oki earthquake resulted in an unprecedented coseismic slip of >50 m in the shallow portion of the Japan Trench subduction zone. We present analyses of core recovered during IODP Expedition 343/343T (JFAST) that define structures surrounding the inferred plate boundary décollement, and use the results to constrain the fault's long-term strength. The plate boundary fault is centered at 821.5 m below the sea floor, with a damage zone extending 15.5 m below and 51.5 m above. The damage zone is defined by shear fractures, subsidiary faults, deformation bands, mode I fractures, breccia zones, and sediment-filled veins. Orientations of mutually crosscutting shear fractures decrease in dip angle nearing the fault in the hanging wall, from 67° at 50 m above the fault down to 25°. In the footwall, dips range from 88° at 9.6 m below the fault to 30° at 11 m below. The damage zone characteristics were established using a set of criteria to eliminate drilling-, coring-, and handling-induced damage in core. Core-scale fracture density increases from 21 fractures/m at 51 m above the fault to 247 fractures/m adjacent to the fault in the hanging wall, and from 28 fractures/m at 11 m below the fault to 254 fractures/m adjacent to the fault in the footwall. The fall-off in fracture density is fit by power law functions in the hanging wall and footwall, with decay exponent n values of 0.70 and 1.45, respectively. Microstructures include shear fractures, veins, crystallographic preferred orientation bands, shear zones, and undifferentiated fractures. Microstructure density in the footwall increases from 0.32 fractures/mm 10 m below the fault to 2.04 fractures/mm adjacent to the fault, and is fit by a power law function with n = 1.27. Orientations of shear fractures have attitudes consistent with normal and reverse faults, indicating the stress field underwent significant reorientations multiple times. This is consistent with the inferred stress field changes

  16. Seismic velocity structure in the Hot Springs and Trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Ben-Zion, Y.; Kurzon, I.; Vernon, F.

    2014-08-01

    We present tomographic images of crustal velocity structures in the complex Hot Springs and Trifurcation areas of the San Jacinto Fault Zone (SJFZ) based on double-difference inversions of earthquake arrival times. We invert for VP, VS and hypocentre location within 50 × 50 × 20 km3 volumes, using 266 969 P and 148 249 S arrival times. We obtain high-fidelity images of seismic velocities with resolution on the order of a few kilometres from 2 to 12 km depth and validate the results using checkerboard tests. Due to the relatively large proportion of S-wave arrival times, we also obtain stable maps of VP/VS ratios in both regions. The velocity of the Trifurcation Area as a whole is lower than adjacent unfaulted material. We interpret a 4-km-wide low velocity zone with high VP/VS ratio in the trifurcation itself as related to fault zone damage. We also observe clear velocity contrasts across the Buck Ridge, Clark and Coyote Creek segments of the SJFZ. The Anza segment of the SJFZ, to the NW of the trifurcation area, displays a strong (up to 27 per cent) contrast of VS from 2 to 9 km depth. In the Hot Springs area, a low velocity zone between the Claremont and Casa Loma Strands narrows with depth, with clear velocity contrasts observed across both segments. A roughly 10-km-wide zone of low velocity and low VP/VS ratio at the NW tip of the Hot Springs fault is indicative of either unconsolidated sediments associated with the San Jacinto basin, or fluid-filled cracks within a broad deformation zone. High VP/VS ratios along the Anza segment could indicate a preferred nucleation location for future large earthquakes, while the across-fault velocity contrast suggests a preferred northwest rupture propagation direction for such events.

  17. Seismic velocity structure in the Hemet Stepover and Trifurcation Areas of the San Jacinto Fault Zone from double-difference earthquake tomography

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Ben-Zion, Y.; Vernon, F.; Kurzon, I.

    2013-12-01

    We present tomographic images of crustal velocity structures in the Hemet Stepover and Trifurcation areas of the San Jacinto Fault Zone (SJFZ) based on double-difference inversions of earthquake arrival times. We discretize both regions with a horizontal 250m grid spacing and a vertical 500m spacing within 50km by 50km by 20km volumes. We invert for VP, VS, and hypocenter location using data from 16064 earthquakes recorded at 136 stations. In total, we use 266,969 P and 148,249 S arrivals to constrain the seismic velocity structures in the two regions. With large numbers of both arrivals, we are able to obtain images of VP and VS at similar resolutions, enabling us to make spatial maps of and interpret the VP/VS ratios. Though ray coverage is limited at shallow depths, we obtain high-fidelity images of seismic velocities from 2 to 12 km, and validate the results using checkerboard tests. The tomographic images indicate that the velocity of the trifurcation area as a whole is lower than adjacent unfaulted material. We interpret a 4km-wide low velocity zone in the trifurcation itself as fault zone damage related due to high VP/VS ratio. We also observe clear velocity contrasts across the Buck Ridge, Clark, and Coyote Creek segments of the SJFZ. The Anza segment of the SJFZ, to the NW of the trifurcation area, displays a strong (up to 27%) contrast of VS from 2km to 9km. In the Hemet Stepover, a low velocity zone between the Claremont and Casa Loma Strands narrows with depth, with clear velocity contrasts observed across both segments. A roughly 10km-wide zone of low velocity and low VP/VS ratio at the NW tip of the Hot Springs fault is indicative of either unconsolidated sediments associated with the San Jacinto basin, or fluid-filled cracks within a broad deformation zone. Relocated seismicity tends to align with the surface traces of the various fault strands, though it is offset to the northeast of the Casa Loma-Clark strand and to the southwest of the Hot Springs

  18. Remote sensing and field analysis of the Palaeozoic structural style in NW Libya: The Qarqaf arch a paleo-transfer fault zone between the Ghadamis and Murzuq basins

    NASA Astrophysics Data System (ADS)

    Chorowicz, Jean; Benissa, Mahmoud

    2016-11-01

    The N75°E-trending Qarqaf arch in NW Libya separates the Ghadamis and Murzuq basins. We have updated existing geological maps by remote sensing analysis and fieldwork in order to describe the tectonic style of the Palaeozoic units. We have evidenced a Bir Aishah anticline, a Wadi Ash Shabiyat graben and arrays of sedimentary and/or vein quartz dykes that relate to extension fractures or open faults some of them being filled up by on-going sedimentation. We show that continuous brittle syn-depositional deformation occurred throughout the Palaeozoic and progressively with time focused into major faults. The Qarqaf arch is a Palaeozoic right-lateral fault zone comprising main conjugate dextral N60°E and sinistral N90°E fault families. It also comprises ∼ N-striking extensional faults with related drag or fault-propagation folds. The Palaeozoic tectonic style is that of rift basins connected by a major transfer fault zone. The arch is as a consequence of strike-slip mechanism. In order to account for distinct folds affecting the Carboniferous strata we argue that partly consolidated silty Devonian and Carboniferous deposits slid in mass by places at the end of their deposition over tilting Devonian layers. Our model is alternative to the currently considered concept of major Variscan compressional orogen in this area. The regional so called 'Variscan' age disconformity actually is the Triassic early Neo-Tethyan event. These general concepts have potential impact on basin modelling of subsidence, uplift, thermal history and hydrocarbon migration. Any new structural geology study in this area is important for oil exploration.

  19. Recent advances in imaging crustal fault zones: a review

    NASA Astrophysics Data System (ADS)

    Yang, Hongfeng

    2015-04-01

    Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the along-strike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume air-gun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution.

  20. Late Cenozoic Reverse Faulting in the Fall Zone, Southeastern Virginia.

    PubMed

    Berquist Jr; Bailey

    1999-11-01

    A set of en-echelon reverse faults cut Paleozoic metamorphosed igneous rocks of the Piedmont and overlying late Cenozoic sediments at the Old Hickory Heavy Mineral Deposit in the Fall Zone of southeastern Virginia. Diorite of the eastern Slate Belt was faulted over nearshore to shore-face deposits of the Pliocene Yorktown Formation. These NW-SE-striking faults experienced oblique dip-slip movement with a maximum displacement of up to 6 m on individual faults. Faults tip out along strike and are overlain by distinct cobble beds, suggesting that sediment deposition and faulting were contemporaneous. Deformation at Old Hickory may have been formed by reactivation of existing Paleozoic structures under a regionally extensive compressional stress field parallel to the modern one.

  1. Strain concentration mechanism beneath the fold-and-thrust belt, Ishikari-teichi Toen Fault Zone, NE Japan, revealed by three-dimensional resistivity structure

    NASA Astrophysics Data System (ADS)

    Yamaya, Y.; Mogi, T.; Honda, R.; Hase, H.; Suzuki, A.; Hashimoto, T.; Uyeshima, M.

    2013-12-01

    Ishikari-teichi-toen fault zone (ITFZ) is an active fault zone, located at the eastern edge of the Ishikari lowland between the central and southwestern part of Hokkaido Island, Japan. The Ishikari lowland is situated at the end of westing foreland fold-and-thrust belt from the Hidaka collision zone at which the NE Japan and Kuril arcs contact each other. This activity forms a tectonic zone in this region under E-W compression field. The recent studies regarding inland earthquakes have suggested that fluids in the mid-lower crust generate a weak zone and the compressive strain is accumulated there. Thus, the distribution of fluids in the crust might be one of the important factors in generating inland earthquakes. A magnetotelluric (MT) survey was performed in the Ishikari lowland region in order to clarify the distribution of fluids beneath the ITFZ. Four components of impedance tensor and two components of magnetic transfer function at 16 frequencies between 40 and 0.00012 Hz at 50 measurement stations were inverted to a 3-D resistivity structure with the aid of the WSINV3DMT code. The inverted structure showed that the conductive layer (<10 Ωm) corresponding to sediments beneath the lowland lies from the surface down to 7 km deep. The resistivity below 7 km shows a regional boundary between the western-northern and southwestern parts. A conductor along the ITFZ is found beneath this boundary in the middle crust. We interpreted this conductor to be a fluid rich zone, acting as a dynamically weakened zone. The conductive body is also found beneath the Shikotsu caldera, implying magmatic fluids ascending from the mantle or a region of partial melt. We propose possible factors to form the strain compression in this region as follows; (1) There is the regional boundary as a structural background. (2) The fluid rich zone beneath the boundary acts as a dynamically weak zone. (3) The heterogeneous structure in the shallower part causes a thrust fault there. These

  2. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    surface along fractures associated with groundwater flow. Therefore, it will be possible to estimate the groundwater flow pathways from deep underground in fracture zones around a fault by measurement of the hydrogen gas. From this standpoint, we have obtained multipoint hydrogen gas measurements across an exposed fault zone in the Atera Fault System, an active, major strike-slip fault in Central Japan and provide a continuous cross-section from fault core to damage zone. The distribution of hydrogen gas emissions, corresponding to the microscopic structure of fracture zones, have shown that large volumes of hydrogen gas emission occur where open micro-fractures are dominant and emissions were not observed in the central part of faults with abundant clay minerals. Using these simple methods, we have obtained information on the qualitative permeability of fracture zones. A rapid evaluation of the spatial heterogeneity of hydrogen gas emissions along the faults probably increase knowledge of hydrogeological structure around faults. Reference Sugisaki et al., 1983, Jour. Geol. 91, 239-258. Kita et al., 1982, JGR 87, 10789-10795. Shimada et al., 2008, Resource Geol. 58, 196-202.

  3. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    NASA Astrophysics Data System (ADS)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a

  4. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the

  5. Seismic Structure and Anisotropy of the Crust Around Major Fault Zones in Northern California from the Harmonic Decomposition of Receiver Functions

    NASA Astrophysics Data System (ADS)

    Audet, P.

    2013-12-01

    Teleseismic P-wave receiver functions are useful in the characterization of layered structure in a wide variety of tectonic and geological settings. In the presence of anisotropy and/or structural heterogeneity, however, the inversion of receiver function data using isotropic velocity models and methods are inadequate. The effects of anisotropy and dipping structures are manifested as strong azimuthal variations in both amplitude and timing of converted phases of receiver functions. Combined with effects due to vertical layering, the various signals are difficult to untangle. In northern California, visual inspection of receiver function data suggests that crustal structure is either strongly anisotropic or contains dipping reflectors with strong velocity contrasts, in particular near major fault zones. We examine the velocity structure of northern California by decomposing the azimuthal variations of 1-D migrated receiver functions into the first 3 harmonics: a constant term representing bulk isotropic structure and 180 and 90 degree periodic terms in both radial and transverse components. Using synthetic data we provide a semi-quantitative interpretation of receiver function harmonics in terms of either anisotropy and/or dipping structure, and use these findings to provide maps of crustal structure (Moho depth, orientation of anisotropy axes). A detailed study around the San Andreas Fault near Parkfield reveals the change in both isotropic and non-isotropic velocity structure along and across strike. These results may be used to infer important structural changes near major strike-slip faults and at depth.

  6. A new conceptual model for damage zone evolution with fault growth

    NASA Astrophysics Data System (ADS)

    de Joussineau, G.; Aydin, A.

    2006-12-01

    Faults may either impede or enhance fluid flow in the subsurface, which is relevant to a number of economic issues (hydrocarbon migration and entrapment, formation and distribution of mineral deposits) and environmental problems (movement of contaminants). Fault zones typically comprise a low-permeability core made up of intensely deformed fault rock and a high-permeability damage zone defined by fault-related fractures. The geometry, petrophysical properties and continuity of both the fault core and the damage zone have an important influence on the mechanical properties of the fault systems and on subsurface fluid flow. Information about fault components from remote seismic methods is limited and is available only for large faults (slip larger than 20-100m). It is therefore essential to characterize faults and associated damage zones in field analogues, and to develop conceptual models of how faults and related structures form and evolve. Here we present such an attempt to better understand the evolution of fault damage zones in the Jurassic Aztec Sandstone of the Valley of Fire State Park (SE Nevada). We document the formation and evolution of the damage zone associated with strike-slip faults through detailed field studies of faults of increasing slip magnitudes. The faults initiate as sheared joints with discontinuous pockets of damage zone located at fault tips and fault surface irregularities. With increasing slip (slip >5m), the damage zone becomes longer and wider by progressive fracture infilling, and is organized into two distinct components with different geometrical and statistical characteristics. The first component of the damage zone is the inner damage zone, directly flanking the fault core, with a relatively high fracture frequency and a thickness that scales with the amount of fault slip. Parts of this inner zone are integrated into the fault core by the development of the fault rock, contributing to the core's progressive widening. The second

  7. Characterising the Alpine Fault Damage Zone using Fault Zone Guided Waves, South Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; Gulley, A.; Boese, C. M.; Malin, P. E.; Townend, J.; Thurber, C. H.; Guo, B.; Sutherland, R.

    2015-12-01

    Fault Zone Guided Waves (FZGWs) are observed within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Distinctive dispersive seismic coda waves (~7-35 Hz), trapped within the low-velocity fault damage zone, have been recorded on three component 2 Hz borehole seismometers installed within 20 m of the principal slip zone in the shallow (< 150 m deep) DFDP-1 boreholes. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale strike-slip and thrust segment partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Double-difference earthquake relocation of events using the dense SAMBA and WIZARD seismometer arrays allows spatio-temporal patterns of 2013 events to be analysed and the segmentation and low velocity zone depth extent further explored. Three layer, dispersion modeling of the low-velocity zone indicates a waveguide width of 60-200 m with a 10-40% reduction in S-wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.

  8. A neotectonic tour of the Death Valley fault zone, Inyo County

    SciTech Connect

    Wills, C.J.

    1989-09-01

    The Death Valley fault zone has recently been evaluated by the Division of Mines and Geology for zoning under the Alquist-Priolo Special Studies Zones Act of 1972. This act requires the State Geologist to zone for special studies those faults that are sufficiently active and well defined as to constitute a potential hazard to structures from surface faulting or fault creep. The Death Valley fault zone is part of a system of faults that extends over 180 miles (300 km) from Fish Lake Valley in Nevada to the Garlock fault. The northern part of this system, the Northern Death Valley-Furnace Creek fault zone, is an active right-lateral fault zone. The southern part of the system, the Death Valley fault zone, is a right-lateral oblique-slip fault between Furnace Creek and Shoreline Butte. From Shoreline Butte to the Garlock fault, it is a right-lateral strike-slip fault. Landforms along this fault indicate that it is the source of many earthquakes and that it has been active in Holocene time. The heights of the scarps and magnitude of the smallest right-lateral offsets (4 feet; 1.2 m) suggest that the most recent of these events was M 6.5 or larger. The freshness of the geomorphic features and the youth of the offset materials suggest that event occurred late in the Holocene, and that multiple Holocene earthquakes have occurred.

  9. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    SciTech Connect

    Neuhaus, D. )

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic survey covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.

  10. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  11. Geophysical investigation of the Hockai Fault Zone, Eastern Belgium

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Nguyen, Frédéric; Halleux, Lucien; Hölz, Sebastian; Camelbeeck, Thierry

    2015-04-01

    In the frame of a regional project evaluating the geothermal potential of the Wallonian Region of Belgium, the Hockai Fault Zone has been identified as one of the most interesting targets. It is a seismically active fault zone that hosted the largest historical earthquake in Northwestern Europe, the M6-6.5 Verviers event in 1692 as well as a swarm of small earthquakes that was recorded in 1989-90. On the surface, the presence of the fault zones is marked by a series of geomorphic features, such as several landslides near the borders in the northern part, repeated NW-SE oriented scarps all along the Eastern border (over a distance of 40 km), river diversions and captures with formation of paleo-valleys. Along the most prominent paleo-valley, the Paleo-Warche Valley crossing the fault zone over a distance of 5 km, a geophysical survey has been organized by several teams to better characterize the shallow (<150 m) subsurface of the fault zone. It included electro-magnetic sounding (frequency-based and TEM), shallow seismics (refraction, walk-away, surface waves analysis), electrical resistivity tomography as well as ambient noise recordings. To support an integrated interpretation of all geophysical results in combination with geomorphic and seismo-tectonic aspects, surface morphology, soundings and profiles were represented in a 3D model. This model clearly reveals low-resistivity and low-velocity zones near the Eastern border of the fault zone, vertically above the hypocenters of the 1989-90 earthquake swarm. Across the structure, low-resistivity zones have a limited extent while they are repeatedly identified all along Eastern border.

  12. Influence of syn-sedimentary faults on orogenic structures in a collisional belt: Insights from the inner zone of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea

    2016-05-01

    This paper discusses the possible influence of syn-sedimentary structures on the development of orogenic structures during positive tectonic inversion in the inner Northern Apennines (Italy). Examples from key areas located in southern Tuscany provided original cartographic, structural and kinematics data for Late Oligocene-Early Miocene thrusts, organized in duplex systems, verging in the opposite direction of the foreland propagation (back-thrusts), which affected the Late Triassic-Oligocene sedimentary succession of the Tuscan Domain, previously affected by pre-orogenic structures. These latter consist of mesoscopic-to cartographic-scale Jurassic syn-sedimentary normal faults and extensional structures, which gave rise to effective stratigraphic lateral variation and mechanical heterogeneities. Structural analysis of both syn-sedimentary faults and back-thrusts were therefore compared in order to discuss the possible role of the pre-existing anisotropies in influencing the evolution of the back-thrusts. As a result, it can be reasonably proposed that back-thrusts trajectories and stacking pattern were controlled by relevant syn-sedimentary normal faults; these latter were reactivated, in some cases, if properly oriented. Such an issue adds new inputs for discussing the potential role of structural inheritance during tectonic inversions, and helps to better understand the processes suitable for the development of back-thrusts in the inner zones of orogenic belts, as it is the case of the inner Northern Apennines.

  13. Geophysical evidence for wedging in the San Gorgonio Pass structural knot, southern San Andreas fault zone, southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Matti, J.C.; Hauksson, E.; Morton, D.M.; Christensen, A.

    2005-01-01

    Geophysical data and surface geology define intertonguing thrust wedges that form the upper crust in the San Gorgonio Pass region. This picture serves as the basis for inferring past fault movements within the San Andreas system, which are fundamental to understanding the tectonic evolution of the San Gorgonio Pass region. Interpretation of gravity data indicates that sedimentary rocks have been thrust at least 5 km in the central part of San Gorgonio Pass beneath basement rocks of the southeast San Bernardino Mountains. Subtle, long-wavelength magnetic anomalies indicate that a magnetic body extends in the subsurface north of San Gorgonio Pass and south under Peninsular Ranges basement, and has a southern edge that is roughly parallel to, but 5-6 km south of, the surface trace of the Banning fault. This deep magnetic body is composed either of upper-plate rocks of San Gabriel Mountains basement or rocks of San Bernardino Mountains basement or both. We suggest that transpression across the San Gorgonio Pass region drove a wedge of Peninsular Ranges basement and its overlying sedimentary cover northward into the San Bernardino Mountains during the Neogene, offsetting the Banning fault at shallow depth. Average rates of convergence implied by this offset are broadly consistent with estimates of convergence from other geologic and geodetic data. Seismicity suggests a deeper detachment surface beneath the deep magnetic body. This interpretation suggests that the fault mapped at the surface evolved not only in map but also in cross-sectional view. Given the multilayered nature of deformation, it is unlikely that the San Andreas fault will rupture cleanly through the complex structures in San Gorgonio Pass. ?? 2005 Geological Society of America.

  14. Fold-to-fault progression of a major thrust zone revealed in horses of the North Mountain fault zone, Virginia and West Virginia, USA

    USGS Publications Warehouse

    Orndorff, Randall C.

    2012-01-01

    The method of emplacement and sequential deformation of major thrust zones may be deciphered by detailed geologic mapping of these important structures. Thrust fault zones may have added complexity when horse blocks are contained within them. However, these horses can be an important indicator of the fault development holding information on fault-propagation folding or fold-to-fault progression. The North Mountain fault zone of the Central Appalachians, USA, was studied in order to better understand the relationships of horse blocks to hanging wall and footwall structures. The North Mountain fault zone in northwestern Virginia and eastern panhandle of West Virginia is the Late Mississippian to Permian Alleghanian structure that developed after regional-scale folding. Evidence for this deformation sequence is a consistent progression of right-side up to overturned strata in horses within the fault zone. Rocks on the southeast side (hinterland) of the zone are almost exclusively right-side up, whereas rocks on the northwest side (foreland) of the zone are almost exclusively overturned. This suggests that the fault zone developed along the overturned southeast limb of a syncline to the northwest and the adjacent upright limb of a faulted anticline to the southeast.

  15. A Uniform Fault Zone Diffusivity Structure in the Simi Valley Based on Water Level Tidal and Barometric Response

    NASA Astrophysics Data System (ADS)

    Xue, L.; Brodsky, E. E.; Allègre, V.; Parker, B. L.; Cherry, J. A.

    2016-12-01

    measurement and there is no major fault-guided hydrogeological channel at the site. Such homogenous by fault zone damage is possible in a region of multiple strands and copious secondary faulting.

  16. Experiments on faulting in zones of distributed wrenching

    SciTech Connect

    Schreurs, G.; Colletta, B.; Letouzey, J. )

    1993-09-01

    Analog model experiments were performed to investigate faulting in zones of distributed wrenching at basin and crustal scale. Three-dimensional fault shape and fault evolution were analyzed by x-ray-computed tomography. Stratified models were constructed with brittle analog materials (sand and glass powder) overlying a thin layer of viscous polydimethyl siloxane. Distributed wrenching is dominantly accommodated by synthetic strike-slip faults (R-shears) at low strain stages. They strike at about 20[degrees] to the shear direction. Antithetic strike-slip faults (R[prime]-shears) are rare and strike at 70-80[degrees]. Synthetic and antithetic Riede are subvertical and extend down to the base of the brittle layers. En echelon-arranged R-shears create push-up zones in the area of overlap. With increasing deformation, lower angle synthetic (R[sub L]) and lower angle antithetic faults (R[prime][sub L]) form. these secondary structures are confined mostly in between previously formed major R-shears. Newly formed R[prime][sub L]-shears strike at progressively lower angles to the shear direction with increasing wrenching and document local stress field modifications. In experiments with unconfined transversal borders, R[prime] and R[prime][sub L]-shears undergo considerable rotations about vertical axes. Space problems created by rotation of antithetic shears in between major R-shears are solved by upbulging of the free surface near their intersection. This results in sigmoidal-shaped antithetic faults (plan view) with a dip-slip component and a dip direction that changes along strike. Possible structural traps are represented by push-up zones and areas of positive vertical relief near the intersection of antithetic and synthetic faults. There is good agreement between our models and natural examples of major wrench zones where block rotations have been documented by paleomagnetic,geodetic and seismic methods.

  17. Characterization of the Hosgri Fault Zone and adjacent structures in the offshore Santa Maria Basin, south-central California: Chapter CC of Evolution of sedimentary basins/onshore oil and gas investigations - Santa Maria province

    USGS Publications Warehouse

    Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.

    2013-01-01

    The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures

  18. Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro

    2017-01-01

    Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.

  19. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  20. Seismicity and fault interaction, Southern San Jacinto Fault Zone and adjacent faults, southern California: Implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Petersen, Mark D.; Seeber, Leonardo; Sykes, Lynn R.; NáBěLek, John L.; Armbruster, John G.; Pacheco, Javier; Hudnut, Kenneth W.

    1991-12-01

    The southern San Jacinto fault zone is characterized by high seismicity and a complex fault pattern that offers an excellent setting for investigating interactions between distinct faults. This fault zone is roughly outlined by two subparallel master fault strands, the Coyote Creek and Clark-San Felipe Hills faults, that are located 2 to 10 km apart and are intersected by a series of secondary cross faults. Seismicity is intense on both master faults and secondary cross faults in the southern San Jacinto fault zone. The seismicity on the two master strands occurs primarily below 10 km; the upper 10 km of the master faults are now mostly quiescent and appear to rupture mainly or solely in large earthquakes. Our results also indicate that a considerable portion of recent background activity near the April 9, 1968, Borrego Mountain rupture zone (ML=6.4) is located on secondary faults outside the fault zone. We name and describe the Palm Wash fault, a very active secondary structure located about 25 km northeast of Borrego Mountain that is oriented subparallel to the San Jacinto fault system, dips approximately 70° to the northeast, and accommodates right-lateral shear motion. The Vallecito Mountain cluster is another secondary feature delineated by the recent seismicity and is characterized by swarming activity prior to nearby large events on the master strand. The 1968 Borrego Mountain and the April 28, 1969, Coyote Mountain (ML=5.8) events are examples of earthquakes with aftershocks and subevents on these secondary and master faults. Mechanisms from those earthquakes and recent seismic data for the period 1981 to 1986 are not simply restricted to strike-slip motion; dipslip motion is also indicated. Teleseismic body waves (long-period P and SH) of the 1968 and 1969 earthquakes were inverted simultaneously for source mechanism, seismic moment, rupture history, and centroid depth. The complicated waveforms of the 1968 event (Mo=1.2 × 1019 N m) are interpreted in

  1. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  2. Fault zone characterization using P- and S-waves

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger

    2014-05-01

    Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.

  3. Fault slip rates in the modern new madrid seismic zone

    PubMed

    Mueller; Champion; Guccione; Kelson

    1999-11-05

    Structural and geomorphic analysis of late Holocene sediments in the Lake County region of the New Madrid seismic zone indicates that they are deformed by fault-related folding above the blind Reelfoot thrust fault. The widths of narrow kink bands exposed in trenches were used to model the Reelfoot scarp as a forelimb on a fault-bend fold; this, coupled with the age of folded sediment, yields a slip rate on the blind thrust of 6.1 +/- 0.7 mm/year for the past 2300 +/- 100 years. An alternative method used structural relief across the scarp and the estimated dip of the underlying blind thrust to calculate a slip rate of 4.8 +/- 0.2 mm/year. Geometric relations suggest that the right lateral slip rate on the New Madrid seismic zone is 1.8 to 2.0 mm/year.

  4. Seismic velocity models for the Denali fault zone along the Richardson Highway, Alaska

    USGS Publications Warehouse

    Brocher, T.M.; Fuis, G.S.; Lutter, W.J.; Christensen, N.I.; Ratchkovski, N.A.

    2004-01-01

    Crustal-scale seismic-velocity models across the Denali fault zone along the Richardson Highway show a 50-km-thick crust, a near vertical fault trace, and a 5-km-wide damage zone associated with the fault near Trans-Alaska Pipeline Pump Station 10, which provided the closest strong ground motion recordings of the 2002 Denali fault earthquake. We compare models, derived from seismic reflection and refraction surveys acquired in 1986 and 1987, to laboratory measurements of seismic velocities for typical metamorphic rocks exposed along the profiles. Our model for the 1986 seismic reflection profile indicates a 5-km-wide low-velocity zone in the upper 1 km of the Denali fault zone, which we interpret as fault gouge. Deeper refractions from our 1987 line image a 40-km wide, 5-km-deep low-velocity zone along the Denali fault and nearby associated fault strands, which we attribute to a composite damage zone along several strands of the Denali fault zone and to the obliquity of the seismic line to the fault zone. Our velocity model and other geophysical data indicate a nearly vertical Denali fault zone to a depth of 30 km. After-shocks of the 2002 Denali fault earthquake and our velocity model provide evidence for a flower structure along the fault zone consisting of faults dipping toward and truncated by the Denali fault. Wide-angle reflections indicate that the crustal thickness beneath the Denali fault is transitional between the 60-km-thick crust beneath the Alaska Range to the south, and the extended, 30-km-thick crust of the Yukon-Tanana terrane to the north.

  5. Fault displacement rates and recent activity on the Ierapetra Fault Zone, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Veliz, V.

    2015-12-01

    Crete is an eastern Mediterranean island that includes the highest forearc topography of the Hellenic subduction margin, along which the African and Eurasian plates converge at rates of ~40 mm/yr. The island is currently experiencing regional uplift and is broken up by numerous active normal faults that contribute to the shaping of its topography. The largest of these onshore tectonic features is, the Ierapetra Fault Zone (IFZ), a normal fault that traverses the entire width of eastern Crete (>20 km) with a NNE strike and west diping. Here we use geomorphologic, structural and kinematic indicators to discuss fault segmentation along the IFZ and to provide quantitative constraints on the late Quaternary (~16.5 and 33 kyr) displacement rate on the fault, including evidence of Holocene earthquake activity on its central segment.

  6. Detailed Shallow Structure and Seismic Catalog Based on Data of a Spatially-Dense Array on the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2015-12-01

    I review results on imaging the shallow structure of San Jacinto fault zone and detection/location of seismic energy sources using data of a spatially-dense Nodal array centered on the Clark branch of the fault. The array operated at the Sage Brush site south of Anza for about 4 weeks in 2014 with 1108 vertical (10 Hz) geophones in about 650 m x 700 m box configuration. Continuous waveforms with signals generated by the ambient seismic noise, earthquakes, and Betsy gunshots were recorded with useable frequencies up to 200 Hz. Imaging the shallow structure is done with surface and body waves extracted from the ambient noise, arrivals from local and teleseismic earthquakes, and waves generated by the gunshots. The results reveal shallow material with very low seismic velocities and attenuation coefficients, strong lateral and vertical variations, seismic trapping structure, local sedimentary basin, and overall lithology contrast across the fault. The detection/location techniques include stacking, beamforming, matched field processing, and templates generated by these methods. The analysis uncovers many hundred of daily earthquakes not detected by the regional networks and several different types of surface noise sources.

  7. Fluids in the damage zone: Insights from clumped isotope thermometry of fault-hosted carbonate cements

    NASA Astrophysics Data System (ADS)

    Crider, Juliet G.; Hodson, Keith R.; Huntington, Katharine W.

    2015-04-01

    Carbonate cements in fault zone rocks contain both chemical and physical information about the interaction and coevolution of their source fluids with surrounding fault rock. In this work, we present an analysis of textural relationships and isotopic compositions of carbonate cements in sandstone, within a well-characterized upper-crustal fault intersection zone, 'Courthouse Junction' along the Moab Fault in southeast Utah, USA. Structures exposed at the outcrop record several phases of overprinting brittle deformation, including cataclastic deformation bands, fracturing and faulting. Carbonate diagenesis is thought to be a later stage, possibly facilitated by an increase in fault parallel permeability. Calcite is hosted within joints and concretions associated with both deformation-band faults and fracture-based faults. We have used cathodoluminescence, oxygen and carbon isotopes, and clumped isotope paleothermometry to differentiate two populations of calcite cement in the fault intersection zone: cool (

  8. The Bocono Fault Zone, Western Venezuela

    SciTech Connect

    Schubert, C. ); Estevez, R. ); Henneberg, H.G. )

    1993-02-01

    The Bocono Fault Zone, the western part of the Bocono Moron-El Pilar Fault System of the southern Caribbean plate boundary, consists of aligned valleys, linear depressions, pull-apart basins and other morphological features, which extend for about 500 km in a N45[degrees]E direction, between the Tachira depression (Venezuela-Colombia border) and the Caribbean Sea. It crosses obliquely the Cordillera de Merida and cuts across the Caribbean Mountains, two different geologic provinces of Late Tertiary-Quaternary and Late Cretaceous-Early Tertiary age, respectively. Therefore, the maximum age that can be assigned to the Bocono Fault Zone is Late Tertiary (probably Pliocene). A total maximum right-lateral offset rate of 3.3 mm/a. The age of the sedimentary fill o[approximately] the La Gonzalez pull-apart basin suggests that the 7-9 km right-lateral offset necessary to produce it took place in Middle to Late Pleistocene time. The majority of seismic events are well aligned with the main fault trace; minor events are distributed in a belt several kilometers wide. Focal depth is typically 15 km and focal mechanisms indicate an average east-west compression across the zone. Return periods of 135-460 a (Richter M = 8), 45-70 a (M = 7), and 7-15 a (M = 6) have been calculated. Geodetic studies of several sites along the zone indicate compressive and right-lateral components; at Mucubaji the rate of right-lateral displacement observed is about 1 mm every 5 months (15 a of measurements).

  9. Mineralogy and porosity transformation induced by normal fault activity, Pirgaki fault zone (Corinth rift, Greece).

    NASA Astrophysics Data System (ADS)

    Géraud, Y.; Diraison, M.

    2003-04-01

    The Pirgaki fault displays an average N095-100 strike direction and contributes to the south part of the Corinth graben. Several interconnected segments compose it and it forms a quite continuous fault scrap elevated up to 300 meters. The total length of outcropping fault zone is at least 30 km. The dip angle involves between 40° to 70° for the highest. The high angle part of the fault marks the contact between limestone and sediments of the rift series (Ghisetti et al. 2001). A large set of structural and sedimentological criteria are evidence of repeated activity of the Pirgaki fault during the whole Pliocene-Pleistocene period (Ghisetti et al., 2001). The studied part of the Pirgaki fault zone has low angle dip and affects limestones. These limestones, as well as in the hanging wall than in the footwall, are strongly affected by a previous neogene orogen with ductile (folds) and brittle (faults) structures. The sampling zone concerns the low dipping part of the fault. A set of 12 samples is analysed by Hg and water porosimetry, X-ray diffraction and SEM. Protolith is characterised by a very low porosity material, porous volume lower than 1% and threshold size lower 0.1µm. Clay fraction of the protolith material is formed by a set of interstratified illite-smectite and kaolinite minerals. The gouge zone is characterized by an important structural modification with formation of ductile strain part and a brittle strain part. Transformations of the clay content are important in this part of the fault zone. Interstratified phases disappear and are replaced by illite and chlorite phases. The highest illite content is measured for the brittle part of the gouge zone and the highest chlorite content is measured in the ductile part. These structural transformations are also associated with porosity modifications with an large increase of the porosity volume (10%) an of the threshold diameter (3µm) in the brittle part and a lower increase (porosity value, 2% and

  10. The implications of fault zone transformation on aseismic creep: Example of the North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Kaduri, Maor; Gratier, Jean-Pierre; Renard, François; ćakir, Ziyadin; Lasserre, Cécile

    2017-06-01

    Aseismic creep is observed at surface along several segments of the North Anatolian right-lateral active fault in Turkey, a major plate boundary between Eurasia and Anatolia. Identifying the mechanisms that control creep and their temporal and spatial change represents a major challenge for predicting the mechanical evolution of active faults, the interplay between creep and earthquakes, and the link between short-term observations from geodesy and the long-term fault zone evolution. We combine geological observations, laboratory analyses, and imaging techniques, shedding new light on the mechanism of fault creep along the North Anatolian Fault (NAF) and its time-dependent change. A clear correlation is shown between shallow creep and near-surface fault gouge composition: locked segments of the NAF are mostly composed of massive limestones without clay gouges, whereas creeping segments comprise clay gouges that contain low-friction minerals. Such fault gouges appear to result from a progressive change of initial volcanic host rocks during their deformation. Anastomosing cleavage develops during the first stage of displacement, leading to layering, oblique at first and then subparallel to the fault, which accommodates part of the aseismic creep by pressure solution. Soluble minerals are dissolved, leading to passive concentration of phyllosilicates in the gouges where alteration transformations by fluid flow produce low friction minerals. At the same time damage zones are fractured and fractures are sealed by carbonates. As a result, these mineralogical and structural transformations weaken the gouge and strengthen the damage zone leading to the change from diffuse to localized seismic-aseismic zones.

  11. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of

  12. Analysis of the internal structure of a carbonate damage zone: Implications for the mechanisms of fault breccia formation and fluid flow

    NASA Astrophysics Data System (ADS)

    Hausegger, Stefan; Kurz, Walter; Rabitsch, Robert; Kiechl, Eva; Brosch, Franz-Josef

    2010-09-01

    A segment of the Salzach-Ennstal fault zone (Talhof fault, Eastern Alps) shows evidence for joint nucleation by layer-parallel shear, causing the formation of joint-bounded slices oriented at high angles (65-85°) with respect to the shear zone boundary (SZB). Subsequent slice rotation resulted in joint reactivation as antithetic shears, slice kinking, and breaking-up of the individual slices into smaller fragments. The latter process, due to the longitudinal constraint of slices with impeded shear zone widening, marked the transition to cataclasite formation and fault core evolution during shear localization. Cataclasites were subsequently cemented and underwent continuous shear deformation by re-fracturing. Cement precipitation from fluids therefore played a fundamental role in the evolution of the fault zone, with a cyclic change between an open and a closed permeability system during fault evolution. Stable isotope compositions (δ 13C, δ 18O) of fault rock cements indicate a continuous equilibration between protolith-derived fragments and cements precipitated from those fluids. This points to limited fluid amounts, only temporally replenished by meteoric water, and a hydraulic gradient that directed fluid flow from the damage zone towards the fault core.

  13. Experimental tests of truncated diffusion in fault damage zones

    NASA Astrophysics Data System (ADS)

    Suzuki, Anna; Hashida, Toshiyuki; Li, Kewen; Horne, Roland N.

    2016-11-01

    Fault zones affect the flow paths of fluids in groundwater aquifers and geological reservoirs. Fault-related fracture damage decreases to background levels with increasing distance from the fault core according to a power law. This study investigated mass transport in such a fault-related structure using nonlocal models. A column flow experiment is conducted to create a permeability distribution that varies with distance from a main conduit. The experimental tracer response curve is preasymptotic and implies subdiffusive transport, which is slower than the normal Fickian diffusion. If the surrounding area is a finite domain, an upper truncated behavior in tracer response (i.e., exponential decline at late times) is observed. The tempered anomalous diffusion (TAD) model captures the transition from subdiffusive to Fickian transport, which is characterized by a smooth transition from power-law to an exponential decline in the late-time breakthrough curves.

  14. Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.

    2015-12-01

    The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.

  15. A three-dimensional study of fault zone architecture: Results from the SEMP fault system, Austria.

    NASA Astrophysics Data System (ADS)

    Frost, E. K.; Dolan, J. F.; Sammis, C. G.; Hacker, B.; Cole, J.; Ratschbacher, L.

    2008-12-01

    One of the most exciting frontiers in earthquake science is the linkage between the internal structure and mechanical behavior of fault zones. Little is known about how fault-zone structure varies as a function of depth, yet such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This has led us to the Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault system in Austria, a major left-lateral strike-slip fault that has accommodated ~ 60 km of displacement during Oligo-Miocene time. Differential exhumation of the SEMP has resulted in a fault zone that reveals a continuum of structural levels along strike. This provides us with a unique opportunity to directly observe how fault-zone properties change with depth, from near-surface levels, down through the seismogenic crust, across the brittle-ductile transition, and into the uppermost part of the lower crust in western Austria. Here we present results from four key outcrops and discuss the mechanical implications of these new data. Our brittle outcrop at Gstatterboden has been exhumed from at least 4 km depth. Here the SEMP juxtaposes limestone of the Wettersteinkalk on the south against Rauwacken dolomite to the north. Faulting has produced extremely asymmetric damage, extensively shattering and shearing the dolomite while leaving the limestone largely intact. Measurements of outcrop-scale faults and fractures in the dolomite, combined with analysis of grain-size-distributions, suggest that strain has progressively localized to a zone ~ 10 m wide. These findings are compared to those from two outcrops (Kitzlochklamm and Liechtensteinklamm) that bracket the brittle-ductile transition, exhumed from depths of = 10 km. Here, the SEMP juxtaposes Greywacke Zone rocks on the north against carbonate mylonites of the Klammkalk to the south. We calculate the strain gradient in the ductile Klammkalk rocks by analyzing the lattice preferred

  16. Seismotectonics of the Blanco Transform Fault Zone (Invited)

    NASA Astrophysics Data System (ADS)

    Braunmiller, J.; Nabelek, J.

    2013-12-01

    The Blanco Transform Fault Zone (BTFZ) forms the Pacific-Juan de Fuca plate boundary offshore Oregon connecting the Juan de Fuca and Gorda ridges. The BTFZ is morphologically characterized by several strike-slip fault segments separated by extensional step overs and a short intra-transform spreading ridge in the central part of the BTFZ. The plate motion rate along the 350-km long transform system is moderate at 56 mm/yr. The combination of tectonically diverse targets and high seismicity make the BTFZ a prime target to study the seismotectonics of an oceanic transform fault system. Using land-based seismic data, we relocated seismicity and obtained seismic moment tensors (fault plane solutions, seismic moment, depth) of earthquakes of magnitude Mw 4.5 and larger. The results reveal a strong contrast in seismic coupling, maximum earthquake size, earthquake frequency-size distribution and width of the active plate boundary zone. The Blanco Ridge transform segment along the eastern BTFZ experiences the largest earthquakes (Mw=6.5), which contribute the bulk of seismic moment release along this fully coupled, geometrically relatively simple segment with narrowly focused seismicity. In contrast, seismicity is more widely distributed along the evolving western BTFZ indicating several active transform fault strands; earthquake size reached Mw=6.0-6.2 and seismicity accounts only for a small percentage of the plate motions suggesting significant aseismic slip or abundant small earthquakes undetected by land seismic networks. Earthquakes within the extensional basins have normal faulting mechanisms, do not exceed about Mw=5.5 and account only for a small percentage of the plate motions. Normal fault trends in the intra-transform spreading ridge are perpendicular to the overall orientation of the BTFZ; in other basins, fault trends are at a 45-degree angle indicating pull-apart deformation. To improve resolution of the tectonics, seismic behavior and structure of the BTFZ

  17. Kinematics of shallow backthrusts in the Seattle fault zone, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.

    2015-01-01

    Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.

  18. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  19. The offshore Palos Verdes fault zone near San Pedro, Southern California

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.

    2004-01-01

    High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.

  20. Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Zhang, H.; Baher, S.; Ellsworth, W.

    2004-01-01

    We present results from the tomographic analysis of seismic data from the Parkfield area using three different inversion codes. The models provide a consistent view of the complex velocity structure in the vicinity of the San Andreas, including a sharp velocity contrast across the fault. We use the inversion results to assess our confidence in the absolute location accuracy of a potential target earthquake. We derive two types of accuracy estimates, one based on a consideration of the location differences from the three inversion methods, and the other based on the absolute location accuracy of "virtual earthquakes." Location differences are on the order of 100-200 m horizontally and up to 500 m vertically. Bounds on the absolute location errors based on the "virtual earthquake" relocations are ??? 50 m horizontally and vertically. The average of our locations places the target event epicenter within about 100 m of the SAF surface trace. Copyright 2004 by the American Geophysical Union.

  1. Midcontinent U.S. fault and fold zones: A legacy of Proterozoic intracratonic extensional tectonism?

    NASA Astrophysics Data System (ADS)

    Marshak, Stephen; Paulsen, Timothy

    1996-02-01

    The U.S. continental interior (midcontinent) contains numerous fault and fold zones. Seismic and drilling data indicate that some of these zones first formed as Proterozoic-Eocambrian rift faults, but the origin of most remains enigmatic. We propose that the enigmatic fault and fold zones also began as Proterozoic-Eocambrian normal faults. We base our hypothesis on the following: (1) enigmatic zones parallel known rifts, (2) the structural style of enigmatic zones mirrors the structural style of known rifts, (3) the map pattern of some enigmatic zones (e.g., the La Salle deformation belt of Illinois) resembles the map pattern of contemporary rifts, and (4) it is easier to rupture an intact craton by normal faulting than by reverse or strike-slip faulting. These zones, along with known rifts, represent the legacy of widespread extensional tectonism that brittlely broke up the craton into fault-bounded blocks prior to deposition of Phanerozoic platform cover. Once formed, midcontinent fault and fold zones remained weak, allowing cratonic blocks to jostle relative to one another during the Phanerozoic, thereby inverting faults (and creating transpressional or transtensional structural assemblages), localizing seismicity, and channeling (or releasing) ore-generating fluids.

  2. Geophysics: a moving fluid pulse in a fault zone.

    PubMed

    Haney, Matthew M; Snieder, Roel; Sheiman, Jon; Losh, Steven

    2005-09-01

    In the Gulf of Mexico, fault zones are linked with a complex and dynamic system of plumbing in the Earth's subsurface. Here we use time-lapse seismic-reflection imaging to reveal a pulse of fluid ascending rapidly inside one of these fault zones. Such intermittent fault 'burping' is likely to be an important factor in the migration of subsurface hydrocarbons.

  3. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    USGS Publications Warehouse

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at

  4. Noise Configuration and fault zone anisotropy investigation from Taiwan Chelungpu-fault Deep Borehole Array

    NASA Astrophysics Data System (ADS)

    Hung, R. J.; Ma, K. F.; Song, T. R. A.; Nishida, K.; Lin, Y. Y.

    2016-12-01

    The Taiwan Chelungpu-fault Drilling Project was operated to understand the fault zone characteristics associated with the 1999 Chichi earthquake. Seven Borehole Seismometers (TCDPBHS) were installed through the identified fault zone to monitor the micro-seismic activities, as well as the fault-zone seismic structure properties. To understand the fault zone anisotropy and its possible temporal variations after the Chichi earthquake, we calculated cross-correlations of the noise at different stations to obtain cross correlation functions (CCFs) of the ambient noise field between every pair of the stations. The result shows that TCDP well site suffers from complex wavefield, and phase traveltime from CCF can't provide explicit result to determine the dominated wavefield. We first analyze the power density spectra and probability density functions of this array. We observe that the spectra show diurnal variation in the frequency band 1-25 Hz, suggesting human-generated sources are dominated in this frequency band. Then, we focus on the particle motion analysis at each CCF. We assume one component at a station plays as a visual source and compute the CCF tensor in other station components. The particle motion traces show high linearity which indicate that the dominated wavefield in our study area is body wave signals with the azimuth approximate to 60° from north. We also analyze the Fourier spectral amplitudes by rotating every 5 degrees in time domain to search for the maximum background energy distribution. The result shows that the spectral amplitudes are stronger at NE-SW direction, with shallow incident angles which are comparable with the CCF particle motion measurement. In order to obtain higher resolution about the dominated wavefield in our study area, we also used beamforming from surface station array to validate our results from CCF analysis. In addition to the CCF analysis to provide the noise configuration at the TCDPBHS site for further analysis on

  5. Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and Sprechenstein fault system (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Massironi, Matteo; Menegon, Luca

    2010-12-01

    The characterization and representation of fault zones is of paramount importance for studies of fault and earthquake mechanics, since their rheological and geometric complexity controls seismic/aseismic behaviour and fluid circulation at depth. We present a 3D geological model of a fault system, created by integrating borehole and surface structural data, which allows us to bridge the gap between outcrop-scale descriptions and large-scale geophysical models. The model integrates (i) fault geometry and topology, (ii) fault-rock distribution, and (iii) characterization of fracturing in damage zones at the km scale. The dextral-reverse Pusteria and Sprechenstein-Mules Faults (Italian Eastern Alps) provide an opportunity to study fault rocks and damage distribution as a function of host-rock lithology and fabric, and of fault geometry. A first-order control is exerted by the composition of protoliths (quartzo-feldspathic vs. phyllosilicate-rich) and/or by the presence of an inherited anisotropic fabric (massive vs. foliated), resulting in a marked asymmetry of damage zones. Interestingly, the pervasive foliation typical of some protoliths may explain both this asymmetry and the relative weakness of one of the faults. The importance of geometrical factors is highlighted when the damage zone thickness increases five times in proximity to a km-scale contractional jog. On the other hand, the type of fault rock present within the fault core does not show a direct relationship with damage intensity. In addition, the thickness of damage zones along planar fault segments does not appear to grow indefinitely with displacement, as might be envisaged from some scaling laws. We interpret both of these observations as reflecting the maturity of these large-displacement faults.

  6. The evolution of faults formed by shearing across joint zones in sandstone

    NASA Astrophysics Data System (ADS)

    Myers, Rodrick; Aydin, Atilla

    2004-05-01

    The evolution of strike-slip and normal faults formed by slip along joint zones is documented by detailed field studies in the Jurassic Aztec Sandstone in the Valley of Fire State Park, Nevada, USA. Zones of closely spaced planar sub-parallel joints arranged en échelon are sheared, forming faults. Fracturing occurs as a result of shearing, forming new joints. Later shearing along these joints leads to successively formed small faults and newer joints. This process is repeated through many generations of fracturing with increasing fault slip producing a hierarchical array of structures. Strain localization produced by shearing of joint zones at irregularities in joint traces, fracture intersections, and in the span between adjacent sheared joints results in progressive fragmentation of the weakened sandstone, which leads to the formation of gouge along the fault zone. The length and continuity of the gouge and associated slip surfaces is related to the slip magnitude and fault geometry with slip ranging from several millimeters to about 150 m. Distributed damage in a zone surrounding the gouge core is related to the original joint zone configuration (step sense, individual sheared joint overlaps and separation), shear sense, and slip magnitude. Our evolutionary model of fault development helps to explain some outstanding issues concerning complexities in faulting such as, the variability in development of fault rock and fault related fractures, and the failure processes in faults.

  7. Fault interaction and stresses along broad oceanic transform zone: Tjörnes Fracture Zone, north Iceland

    NASA Astrophysics Data System (ADS)

    Homberg, C.; Bergerat, F.; Angelier, J.; Garcia, S.

    2010-02-01

    Transform motion along oceanic transforms generally occurs along narrow faults zones. Another class of oceanic transforms exists where the plate boundary is quite large (˜100 km) and includes several subparallel faults. Using a 2-D numerical modeling, we simulate the slip distribution and the crustal stress field geometry within such broad oceanic transforms (BOTs). We examine the possible configurations and evolution of such BOTs, where the plate boundary includes one, two, or three faults. Our experiments show that at any time during the development of the plate boundary, the plate motion is not distributed along each of the plate boundary faults but mainly occurs along a single master fault. The finite width of a BOT results from slip transfer through time with locking of early faults, not from a permanent distribution of deformation over a wide area. Because of fault interaction, the stress field geometry within the BOTs is more complex than that along classical oceanic transforms and includes stress deflections close to but also away from the major faults. Application of this modeling to the 100 km wide Tjörnes Fracture Zone (TFZ) in North Iceland, a major BOT of the Mid-Atlantic Ridge that includes three main faults, suggests that the Dalvik Fault and the Husavik-Flatey Fault developed first, the Grismsey Fault being the latest active structure. Since initiation of the TFZ, the Husavik-Flatey Fault accommodated most of the plate motion and probably persists until now as the main plate structure.

  8. Scaling Between Fault Length, Damaged Zone Thickness and Width of Secondary Fault Fans Derived from Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean Paul; Mao, Xiaolin

    2016-04-01

    The interaction between earthquakes, fault network geometry and fault zone structure is a key question motivating the integration of dynamic rupture and long-term crustal deformation modeling. Here, we address the scaling between fault structural properties from the perspective of dynamic and quasi-static processes involved in fault system evolution. Faults are surrounded by materials damaged through quasi-static and dynamic processes, forming damaged zones whose thickness and damage intensity may vary as a function of fault maturity and length. In the vicinity (typically less than a few hundred meters) of their principal slip surface, faults develop an "inner damage zone", usually characterized by micro-fracture observations. At a larger scale, faults develop an "outer damage zone" of secondary macroscopic fault branches at their tips, which organize into fans of splay faults. Inner damage zones can significantly affect earthquake ruptures, enhance near-field ground motions and facilitate fluid transport in the crust. Fault zone trapped waves can generate pulse-like rupture and oscillatory rupture speed, facilitate supershear rupture transition and allow for steady rupture propagation at speeds that are unstable or inadmissible in homogeneous media. The effects of a fault damage zone crucially depend on its thickness. Field observations of inner damage zone thickness as a function of cumulated slip show linear scaling at small slip but saturation at large slip, with maximum damage zone thickness of a few hundred meters. We previously developed fracture mechanics theoretical arguments and dynamic rupture simulations with off-fault inelastic deformation that predict saturation of the thickness of co-seismic damage zone controlled by the depth extent of the seismogenic zone. In essence, the stress intensity factor at the front of a rupture, which controls the distance reached by the large off-fault stresses that cause damage, scales with the shortest characteristic

  9. The role of bed-parallel slip in the development of complex normal fault zones

    NASA Astrophysics Data System (ADS)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  10. Seismic image of the Ivanhoe Lake Fault Zone in the Kapuskasing Uplift of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Wu, Jianjun; Mereu, Robert F.; Percival, John A.

    1992-02-01

    The Kapuskasing uplift, located in the central Canadian shield, represents an oblique exposure of the Archean middle to lower crust. The Ivanhoe Lake fault zone, believed to be the basal thrust carrying the high-grade rocks of the Kapuskasing zone over the low-grade Abitibi greenstone belt, holds the key to understanding the nature and evolution of the Kapuskasing uplift. Despite numerous geological and geophysical studies, including LITHOPROBE deep seismic reflection profiles, and because of very limited bedrock exposure in the area, the shallow structure of the Ivanhoe Lake fault zone remains obscure. Here we present results obtained by reprocessing data from a LITHOPROBE seismic reflection profile across the fault zone. For the first time, the Ivanhoe Lake fault zone is clearly imaged on the seismic section as a series of west-dipping reflectors with an average dip of 20°, which can be traced to the surface. The results support the conclusion that fault zones form good reflectors.

  11. The seismogenic Gole Larghe Fault Zone (Italian Southern Alps): quantitative 3D characterization of the fault/fracture network, mapping of evidences of fluid-rock interaction, and modelling of the hydraulic structure through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2016-12-01

    The Gole Larghe Fault Zone (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault zone over a continuous area > 1.5 km2, the fault zone architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault zone strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic

  12. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    and collecting these into "disturbance geobodies". These seismic image processing methods represents a first efficient step toward a construction of a robust technique to investigate sub-seismic strain, mapping noisy deformed zones and displacement within subsurface geology (Dutzer et al.,2011; Iacopini et al.,2012). In all these cases, accurate fault interpretation is critical in applied geology to building a robust and reliable reservoir model, and is essential for further study of fault seal behavior, and reservoir compartmentalization. They are also fundamental for understanding how deformation localizes within sedimentary basins, including the processes associated with active seismogenetic faults and mega-thrust systems in subduction zones. Dutzer, JF, Basford., H., Purves., S. 2009, Investigating fault sealing potential through fault relative seismic volume analysis. Petroleum Geology Conference series 2010, 7:509-515; doi:10.1144/0070509 Marfurt, K.J., Chopra, S., 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical development Iacopini, D., Butler, RWH. & Purves, S. (2012). 'Seismic imaging of thrust faults and structural damage: a visualization workflow for deepwater thrust belts'. First Break, vol 5, no. 30, pp. 39-46.

  13. Fault-zone attenuation of high-frequency seismic waves

    NASA Astrophysics Data System (ADS)

    Blakeslee, Sam; Malin, Peter; Alvarez, Marcos

    1989-11-01

    We have developed a technique to measure seismic attenuation within an active fault-zone at seismogenic depths. Utilizing a pair of stations and pairs of earthquakes, spectral ratios are performed to isolate attenuation produced by wave-propagation within the fault-zone. This empirical approach eliminates common source, propagation, instrument and near-surface site effects. The technique was applied to a cluster of 19 earthquakes recorded by a pair of downhole instruments located within the San Andreas fault-zone, at Parkfield California. Over the 1-40 Hz bandwidth used in this analysis, amplitudes are found to decrease exponentially with frequency. Furthermore, the fault-zone propagation distance correlates with the severity of attenuation. Assuming a constant Q attenuation operator, the S-wave quality factor within the fault-zone at a depth of 5-6 kilometers is 31 (+7,-5). If fault-zones are low-Q environments, then near-source attenuation of high-frequency seismic waves may help to explain phenomenon such as fmax. Fault-zone Q may prove to be a valuable indicator of the mechanical behavior and rheology of fault-zones. Specific asperities can be monitored for precursory changes associated with the evolving stress-field within the fault-zone. The spatial and temporal resolution of the technique is fundamentally limited by the uncertainty in earthquake location and the interval time between earthquakes.

  14. Comparing Biases of Fault Zone Permeability Magnitudes and Inferred Conceptual Models - Global Multidisciplinary Compilation and Mapping

    NASA Astrophysics Data System (ADS)

    Scibek, J.

    2015-12-01

    Although fault zones have been studied worldwide, there have been no global mapping, compilation and meta-analysis of interpretations of the fault zone permeability structures and/or methodological biases. To investigate biases in data collection sources we review ~2000 published studies and reports and summarize categorical data from over 600 cases, including ~200 studies with reported fault zone permeability, transmissivity, or diffusivity estimates from the fault damage zone, fault core, whole fault zone, and protolith. The data are categorized into fault zone permeability structures (e.g. barrier, conduit, barrier-conduit, etc.) and are evaluated with respect to the type of fluid flow or permeability observation, the data collection source (e.g. studies in structural geology, hydrogeology, tunneling, mining, engineering, etc.), and on the scale of measurement. Our results show that the combined conduit-barrier fault zone structure is observed in only 15-20% of the cases (but up to 60% of structural geology cases if paleo-conduit studies are included). The barrier structure is observed in ~30% of the faults in structural geology, hydrogeology, and mining studies, and in over 40% petroleum engineering studies, but in less than 10% in tunnel engineering and rarely in geothermal engineering. The barrier nature of faults is detected primarily with qualitative observations (water levels and pressures, water geochemistry), and is difficult to measure in the subsurface. Some hydrogeological observations favour the detection of hydraulic barriers or conduits, but not both equally. Therefore, the frequency of fault zone conceptual models (barriers/conduits) globally or within a region may be a result of measurement bias and not of actual conditions. We also compare reported permeability values at three scales of measurement: matrix permeability, small scale fractured bulk permeability, and whole fault zone permeability. The quantitative permeability anisotropy or scaling

  15. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20'N and 13°30'N, Mid Atlantic Ridge)

    NASA Astrophysics Data System (ADS)

    Escartín, J.; Mével, C.; Petersen, S.; Bonnemains, D.; Cannat, M.; Andreani, M.; Augustin, N.; Bezos, A.; Chavagnac, V.; Choi, Y.; Godard, M.; Haaga, K.; Hamelin, C.; Ildefonse, B.; Jamieson, J.; John, B.; Leleu, T.; MacLeod, C. J.; Massot-Campos, M.; Nomikou, P.; Olive, J. A.; Paquet, M.; Rommevaux, C.; Rothenbeck, M.; Steinfuhrer, A.; Tominaga, M.; Triebe, L.; Campos, R.; Gracias, N.; Garcia, R.

    2017-04-01

    Microbathymetry data, in situ observations, and sampling along the 13°20'N and 13°20'N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the along-extension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 13°20'N OCC, and gabbro and peridotite at 13°30'N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 13°30'N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 13°20'N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.

  16. Kinematics of the Eastern California shear zone: Evidence for slip transfer from Owens and Saline Valley fault zones to Fish Lake Valley fault zone

    USGS Publications Warehouse

    Reheis, M.C.; Dixon, T.H.

    1996-01-01

    Late Quaternary slip rates and satellite-based geodetic data for the western Great Basin constrain regional fault-slip distribution and evolution. The geologic slip rate on the Fish Lake Valley fault zone (the northwest extension of the Furnace Creek fault zone) increases northward from about 3 to 5 mm/yr, in agreement with modeled geodetic data. The increase coincides with the intersections of the Deep Springs fault, connected to the Owens Valley fault zone, and of other faults connected to the Saline Valley fault. The combined geologic and geodetic data suggest that (1) the northwest-striking faults of the Eastern California shear zone north of the Garlock fault are connected by north- to northeast-striking normal faults that transfer slip in a series of right steps, and (2) the amount and distribution of slip among the many faults of this broad, complex plate boundary have changed through time.

  17. Quaternary travertine of the Kurai fault zone (Gorny Altai)

    NASA Astrophysics Data System (ADS)

    Deev, E. V.; Sokol, E. V.; Ryapolova, Yu. M.; Kokh, S. N.; Rusanov, G. G.

    2017-03-01

    In the Kurai fault zone, travertine forms a matrix cementing clastic material of colluvial and glacial deposits or rarely forming a stockwork in a system of fractures in Palaeozoic rocks. The regular change of composition of solutions in the process of travertine formation has resulted in change of stable Mg-calcite by Sr-aragonite. According to the carbon isotopic composition, the travertine has intermediate genesis between thermal and meteogene. The light oxygen isotopic composition of CaCO3 indicates formational water input. The carbonates inherited Y, Sr, U, and Ni and in some areas, V, As, and Zn from the endogeneous water sources. Given that the Kurai zone travertine cements the Late Pleistocene-Holocene sediments and 14C dating of the carbonates gives a range of >40 000-3475 ± 35 years, the faults serving as routes of migration of the solutions forming the travertine should be considered as active structures.

  18. Geomorphic and Structural Analysis of the Verona-Williams-Pleasanton fault zone and implications for seismic hazard, eastern San Francisco Bay Area, California

    NASA Astrophysics Data System (ADS)

    Sawyer, T. L.; Unruh, J. R.; Hoirup, D. F.; Barry, G.; Pearce, J. T.

    2012-12-01

    Folds and thrust faults adjacent to and beneath the Livermore Valley have accommodated Quaternary crustal shortening between major dextral faults of the eastern San Andreas fault system. The Verona and Williams faults are NE-dipping thrust or reverse faults that have uplifted the Pliocene-Pleistocene Livermore gravels along the western and southern margins of the valley. The Williams fault extends ~13 km northwest from the Mt. Lewis seismic trend to the sinistral Las Positas fault, which forms the southern margin of the valley. A 3-km left step along the Las Positas fault separates the surface traces of the Verona and Williams faults. The Verona fault extends ~8 km northwest from the stepover to southwestern Livermore Valley. It is possible that the Las Positas fault extends to the base of the seismogenic crust and separates the Verona and Williams faults into two kinematically independent structures. Alternatively, the Verona and Williams faults may merge downdip into a common thrust fault plane, with the Las Positas fault confined to the hanging wall as a tear fault. The Verona and Williams faults exhibit geomorphic evidence for late Quaternary fault rupture propagating to or very near the ground surface. The Williams fault tightly folds and overturns the Livermore gravels, and appears to form scarps that impound late Quaternary alluvium and cross Holocene landslide deposits. Many Holocene(?) alluvial fans exhibit distinct convex longitudinal profiles across the fault trace suggesting active folding above the Verona fault. The geomorphic position of a stream-terrace remnant suggests that >7 m of tectonic uplift is possible across the Verona fault during the late Quaternary. Surficial geologic mapping and geomorphic analysis of the ancestral Arroyo Valle drainage system reveals numerous paleochannels that generally decrease in elevation (age) to the northwest, and provide useful isochronous markers delineating a subtle tectonic uplift in western Livermore Valley

  19. Shoreline and Oceano Fault Zones' Intersection Geometry, San Luis Obispo Bay, Offshore South Central Coastal California

    NASA Astrophysics Data System (ADS)

    Hogan, P. J.; Nishenko, S. P.; Greene, H. G.; Bergkamp, B.

    2015-12-01

    As part of the Central Coastal California Seismic Imaging Project, high-resolution 3D low energy marine seismic-reflection data were acquired within San Luis Obispo Bay in 2011 and 2012. Mapping of the sediment-buried bedrock surface using 2D and 3D data clearly reveals that the trace of the Shoreline fault zone bifurcates at Souza Rock. The eastern strand is a reverse fault that trends toward the east-southeast, connecting with the Oceano fault zone onshore. The Shoreline fault is a vertical dextral fault with a very linear geometry that continues south to near the Santa Maria river mouth, and may intersect the Casmalia fault onshore. Both of these fault strands are crossed by Pleistocene low-stand paleochannels eroded into bedrock, and are buried by marine and non-marine sediment. The 3D data show that both the Oceano and Shoreline faults are narrow, well defined fault zones. The reverse slip rate for the Oceano fault (~0.1 mm/y.) falls within published slip rate estimates for the Oceano fault onshore (0.01-0.20 mm/y). The dextral slip rate for the Shoreline fault southeast of Souza Rock is estimated to be 0.06 mm/y. Souza Rock is located on the hanging wall of the Oceano Fault, north of the point of intersection between the Shoreline and Oceano faults. Water depths shoal from 60 m on the surrounding seafloor to 5 m on top of Souza Rock. This structure is interpreted as a structural popup in a restraining bend where the N65°W-trending Oceano fault intersects the N25°W-trending Shoreline fault. The structural geometry near the point of intersection has several minor secondary fault strands, but is remarkably simple.

  20. Geomorphological and Paleoseismological Studies of the Malatya Fault (Malatya-Ovacık Fault Zone, Turkey)

    NASA Astrophysics Data System (ADS)

    Sançar, Taylan; Zabcı, Cengiz; Karabacak, Volkan; Akyüz, Hüsnü Serdar

    2016-04-01

    The Malatya-Ovacık Fault Zone (MOFZ is about 240 km-long sinistral strike-slip tectonic structure within the Anatolian Scholle. Although the MOFZ is claimed to be an inactive structure since 3 Ma (Westaway and Arger, 2001), recent GPS measurements, morphotectonic studies and micro seismicity strongly suggest considerable amount of strain accumulation along this tectonic feature. The GPS-based elastic block model results yield horizontal slip rates of about 1.2 and 1.6 mm/a, for the northeastern and southwestern sections of this fault zone, respectively (Aktuǧ et al., 2013). In order to understand the seismic potential of the southwestern section, Malatya Fault (MF), of the MOFZ, we carried out paleoseismological trenching and morphometric analyses in the frame of the TÜBİTAK project no. 114Y580. The preliminary results of morphometric analyses, including the hypsometric curve and channel longitudinal profiles, suggest that the northernmost part of the MF accommodate more deformation than the southern part, where the fault zone bifurcates into several discrete segments. Relatively high values of hypsometric integral and the shape of hypsometric curves and the longitudinal channel profiles, indicate youthful topography at northern part of the MF. In the northern section of the MF, Kızık Basin is one of the most remarkable fault-related landforms, which is 9 km long and 2 km wide, and is directly controlled by the extensional step-over of the fault segments. On the northern parts of this relatively narrow depression, a linear scarp prolongs between Kızık and Ahlas villages for about 150 m. In summer 2015, we excavated a single trench on this straight lineament, where mostly braided river-related gravels and sands were exposed. Although we could not observe any evidence of surface faulting inside the erosional channel systems, the bedrock has very well-developed shear fabric at the toe of the observed scarp. We sampled the most bottom section of the undeformed

  1. The width of fault zones in a brittle-viscous lithosphere: Strike-slip faults

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1991-01-01

    A fault zone in an ideal brittle material overlying a very weak substrate could, in principle, consist of a single slip surface. Real fault zones have a finite width consisting of a number of nearly parallel slip surfaces on which deformation is distributed. The hypothesis that the finite width of fault zones reflects stresses due to quasistatic flow in the ductile substrate of a brittle surface layer is explored. Because of the simplicity of theory and observations, strike-slip faults are examined first, but the analysis can be extended to normal and thrust faulting.

  2. Fluid infiltration into fault zones: Chemical, isotopic, and mechanical effects

    NASA Astrophysics Data System (ADS)

    Kerrich, R.

    1986-01-01

    Fluid infiltration into fault zones and their deeper-level counterparts, brittle-ductile shear zones, is examined in diverse tectonic environments. In the 2.7 Ga Abitibi greenstone belt, major tectonic discontinuities, with lateral extents of hundreds of kilometres initiated as listric normal faults accommodating rift extension and acted as sites for komatiite extrusion and locally intense metasomatism. During reverse motion on the structures, accommodating shortening of the belt, these transcrustal faults were utilised as a conduit for the ascent of trondhjemitic magmas from the base of the crust and of alkaline magmas from the asthenosphere and for the discharge of thousands of cubic kilometres of hydrothermal fluids. Such fluids were characterised by δ18O=+6±2, δD=-50±20, δ13C=-4±4, and temperatures of 270 to 450°C, probably derived from devolatilisation of crustal rocks undergoing prograde metamorphism. Hydrothermal fluids were more radiogenic (87Sr/86Sr=0.7010 to 0.7040) and possessed higher μ than did contemporaneous mantle, komatiites or tholeiites, and thus carried a contribution from older sialic basement. A provinciality of87Sr/86Sr and δ13C is evident, signifying that fault plumbing sampled lower crust which was heterogeneous at the scale of tens of kilometres. Mineralised faults possess enrichments of large ion lithophile (LIL), LIL elements, including K, Rb, Ba, Cs, B, and CO2, and rare elements, such as Au, Ag, As, Sb, Se, Te, Bi, and W. Fluids were characterised by XCO 2≈0.1, neutral to slightly acidic pH, low salinity ≤3 wt-%, K/Na=0.1, they carried minor CH4, CO, and N2, and they underwent transient effervescence of CO2 during decompression. Clastic sediments occupy graben developed at fault flexures. The40Ar/39Ar release spectra indicate that fault rocks experienced episodic disturbance on time scales of hundreds of millions of years. At the Grenville front, translation was accommodated along two mylonite zones and an intervening

  3. Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Wang, Ting

    2016-09-01

    X-ray computed tomography (CT) scans of drill-core, recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through New Zealand's Alpine Fault, provide an excellent opportunity to study the damage zone of a plate-bounding continental scale fault, late in its interseismic cycle. Documentation of the intermediate-macro scale damage zone structures observed in the CT images show that there is no increase in the density of these structures towards the fault's principal slip zones (PSZs), at least within the interval sampled, which is 30 m above and below the PSZs. This is in agreement with independent analysis using borehole televiewer data. Instead, we conclude the density of damage zone structures to correspond to lithology. We find that 72% of fractures are fully healed, by a combination of clays, calcite and quartz, with an additional 24% partially healed. This fracture healing is consistent with the Alpine Fault's late interseismic state, and the fact that the interval of damage zone sampled coincides with an alteration zone, an interval of extensive fluid-rock interaction. These fractures do not impose a reduction of P-wave velocity, as measured by wireline methods. Outside the alteration zone there is indirect evidence of less extensive fracture healing.

  4. Contrasts in compliant fault zone properties inferred from geodetic measurements in the San Francisco Bay area

    NASA Astrophysics Data System (ADS)

    Materna, Kathryn; Bürgmann, Roland

    2016-09-01

    In crustal fault zones, regions of damaged rock characterized by reduced elastic shear modulus can influence patterns of near-field interseismic deformation. In order to study these compliant fault zones (CFZs) and how they might develop over the lifetimes of faults, we compare two fault segments with contrasting fault age and lithology along the San Andreas Fault in the San Francisco Bay Area. New geodetic measurements of the interseismic velocity fields at each location are used to constrain fault zone parameters through a Markov chain Monte Carlo method. At Black Mountain, in the Santa Cruz Mountains of the San Francisco Peninsula, we do not find evidence for a compliant fault zone; instead, we find that the geodetic data are more consistent with a model of a single fault in a homogeneous elastic half-space. At Lake San Andreas, a younger fault segment 35 km farther north, we find evidence for a compliant fault zone about 3.4 +1.1/-1.4 km wide, containing a shear modulus of about 40% of the shear modulus of the surrounding rock. We also find that the best fitting CFZ model at this location, unlike the best fitting homogeneous half-space model, has a locking depth that agrees well with the observed depth of microseismicity. Based on differences in fault age, cumulative displacement, and lithology between Black Mountain and Lake San Andreas, we infer that lithology plays an important and, in this case, perhaps a dominant role in the accumulation of fault zone damage structures and the development of CFZs over the lifetime of a fault.

  5. Rigidity of the fault zones in the Earth's crust estimated from seismic data

    NASA Astrophysics Data System (ADS)

    Spivak, A. A.

    2011-07-01

    Nonlinear effects in seismic wave propagation are analyzed to determine the mechanical rigidity of different-order faults that thread the tectonic structures in the central part of the East European platform (Moscow syneclise and Voronezh Crystalline Massif) and the fault zones of the Balapan and Degelen mountain regions in Kazakhstan (the Degelen magmatic node in the Central Chingiz zone). The dependency of the rigidity of the fault zone on the fault's length is obtained. The rigidity of the tectonic structures is found to experience well-expressed temporal variations with periods of 13-15 days, 27-32 days, and about one year. In the different-order fault zones, the amplitudes of both normal k n and the shear k s rigidity for semimonthly, monthly, and annual variations can span a factor of 1.3, 1.5, and 2.5, respectively.

  6. Transpressional inversion in an extensional transfer zone (the Saltacaballos fault, northern Spain)

    NASA Astrophysics Data System (ADS)

    Quintana, Luís; Alonso, Juan Luís; Pulgar, Javier A.; Rodríguez-Fernández, Luís Roberto

    2006-11-01

    This paper deals with an extensional transfer zone and its main structure, the Saltacaballos fault, developed during Early Cretaceous times, and obliquely inverted during the Alpine shortening. Geological mapping and structural analysis were carried out to determine the kinematic history of the deformation. The Saltacaballos ridge is the relay zone between two major and conjugate normal fault systems: the Bilbao and the La Granja-Samano fault systems. Three distinct phases in the structural evolution of this transfer zone can be identified. (1) During the initial stages of extensional deformation, shallow-water marine limestones were deposited on the relay ridge and deep-water marls on the flanking depocenters. At the same time, submarine landslides developed on paleoslope generated either by normal drag or by a fault-propagation fold related to the Saltacaballos normal fault. (2) With increasing displacement, normal faults antithetic to the Saltacaballos fault were developed probably in response to the collapse of its hanging-wall. (3) During the subsequent Alpine compressional stage, these normal faults were reactivated as dextral strike-slip faults as a result of transpressional inversion, whereas previous extensional fault-related folds were tightened. At the same time, some normal faults were overturned as a consequence of passive rotation in fold limbs.

  7. Seismically invisible fault zones: Laboratory insights into imaging faults in anisotropic rocks

    NASA Astrophysics Data System (ADS)

    Kelly, C. M.; Faulkner, D. R.; Rietbrock, A.

    2017-08-01

    Phyllosilicate-rich rocks which commonly occur within fault zones cause seismic velocity anisotropy. However, anisotropy is not always taken into account in seismic imaging and the extent of the anisotropy is often unknown. Laboratory measurements of the velocity anisotropy of fault zone rocks and gouge from the Carboneras fault zone in SE Spain indicate 10-15% velocity anisotropy in the gouge and 35-50% anisotropy in the mica-schist protolith. Greater differences in velocity are observed between the fast and slow directions in the mica-schist rock than between the gouge and the slow direction of the rock. This implies that the orientation of the anisotropy with respect to the fault is key in imaging the fault seismically. For example, for fault-parallel anisotropy, a significantly greater velocity contrast between fault gouge and rock will occur along the fault than across it, highlighting the importance of considering the foliation orientation in design of seismic experiments.

  8. Tectonic creep in the Hayward fault zone, California

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.; Bonilla, M.G.

    1966-01-01

    Tectonic creep is slight apparently continuous movement along a fault. Evidence of creep has been noted at several places within the Hayward fault zone--a zone trending northwestward near the western front of the hills bordering the east side of San Francisco Bay. D. H. Radbruch of the Geological Survey and B. J. Lennert, consulting engineer, confirmed a reported cracking of a culvert under the University of California stadium. F. B. Blanchard and C. L. Laverty of the East Bay Municipal Utility District of Oakland studied cracks in the Claremont water tunnel in Berkeley. M. G. Bonilla of the Geological Survey noted deformation of railroad tracks in the Niles district of Fremont. Six sets of tracks have been bent and shifted. L. S. Cluff of Woodward-Clyde-Sherard and Associates and K. V. Steinbrugge of the Pacific Fire Rating Bureau noted that the concrete walls of a warehouse in the Irvington district of Fremont have been bent and broken, and the columns forced out of line. All the deformations noted have been right lateral and range from about 2 inches in the Claremont tunnel to about 8 inches on the railroad tracks. Tectonic creep almost certainly will continue to damage buildings, tunnels, and other structures that cross the narrow bands of active movement within the Hayward fault zone.

  9. Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran

    NASA Astrophysics Data System (ADS)

    Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang

    2017-10-01

    The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.

  10. Characteristics of faults and shear zones in deep mines

    USGS Publications Warehouse

    Wallace, R.E.; Morris, H.T.

    1986-01-01

    The characteristics of fault and shear zones to depths of 2.5 km are well documented in deep mines in North America. The characteristics may be summarized as follows. (a) Fault zones usually are irregular, branched, anastomosed, and curved rather than simple and planar. (b) Faults are generally composed of one or more clay or clay-like gouge zones in a matrix of sheared and foliated rock bordered by highly fractured rock. (c) The widths of fault zones appear to be greater when faults have greater displacement, probably as a result of a long history of repeated minor movements. Fault zones with kilometers of displacement tend to be 100 m or more wide, whereas those with only a few hundred meters of displacement commonly are only 1 m or less wide. (d) Some zones represent shear distributed across hundreds of meters without local concentration in a narrow gouge zone. (e) Many fault zones are wet even above the water table, and water moves along them at various rates, but some also serve as subsurface dams, ponding ground water as much as several hundred meters higher on one side than on the other. No striking differences in the characteristics of faults over the vertical range of 2.5 km are documented. ?? 1986 Birkha??user Verlag.

  11. Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Weaver, C.S.; Johnson, S.Y.

    2002-01-01

    A high-resolution aeromagnetic survey of the Puget Lowland shows details of the Seattle fault zone, an active but largely concealed east-trending zone of reverse faulting at the southern margin of the Seattle basin. Three elongate, east-trending magnetic anomalies are associated with north-dipping Tertiary strata exposed in the hanging wall; the magnetic anomalies indicate where these strata continue beneath glacial deposits. The northernmost anomaly, a narrow, elongate magnetic high, precisely correlates with magnetic Miocene volcanic conglomerate. The middle anomaly, a broad magnetic low, correlates with thick, nonmagnetic Eocene and Oligocene marine and fluvial strata. The southern anomaly, a broad, complex magnetic high, correlates with Eocene volcanic and sedimentary rocks. This tripartite package of anomalies is especially clear over Bainbridge Island west of Seattle and over the region east of Lake Washington. Although attenuated in the intervening region, the pattern can be correlated with the mapped strike of beds following a northwest-striking anticline beneath Seattle. The aeromagnetic and geologic data define three main strands of the Seattle fault zone identified in marine seismic-reflection profiles to be subparallel to mapped bedrock trends over a distance of >50 km. The locus of faulting coincides with a diffuse zone of shallow crustal seismicity and the region of uplift produced by the M 7 Seattle earthquake of A.D. 900-930.

  12. Smoothing and re-roughening processes: The geometric evolution of a single fault zone

    NASA Astrophysics Data System (ADS)

    Shervais, Katherine A. H.; Kirkpatrick, James D.

    2016-10-01

    The geometry of a fault zone exerts a major control on earthquake rupture processes and source parameters. Observations previously compiled from multiple faults suggest that fault surface shape evolves with displacement, but the specific processes driving the evolution of fault geometry within a single fault zone are not well understood. Here, we characterize the deformation history and geometry of an extraordinarily well-exposed fault using maps of cross-sectional exposures constructed with the Structure from Motion photogrammetric method. The La Quinta Fault, located in southern California, experienced at least three phases of deformation. Multiple layers of ultracataclasite formed during the most recent phase. Crosscutting relations between the layers define the evolution of the structures and demonstrate that new layers formed successively during the deformation history. Wear processes such as grain plucking from one layer into a younger layer and truncation of asperities at layer edges indicate that the layers were slip zones and the contacts between them slip surfaces. Slip surfaces that were not reactivated or modified after they were abandoned exhibit self-affine geometry, preserving the fault roughness from different stages of faulting. Roughness varies little between surfaces, except the last slip zone to form in the fault, which is the smoothest. This layer contains a distinct mineral assemblage, indicating that the composition of the fault rock exerts a control on roughness. In contrast, the similar roughness of the older slip zones, which have comparable mineralogy but clearly crosscut one another, suggests that as the fault matured the roughness of the active slip surface stayed approximately constant. Wear processes affected these layers, so for roughness to stay constant the roughening and smoothing effects of fault slip must have been approximately balanced. These observations suggest fault surface evolution occurs by nucleation of new surfaces and

  13. Paleofluid evolution of strike-slip compartmentalized extensional fault zones in the Jabal Qusaybah anticline, Salakh Arc, Oman

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Mozafari, Mahtab; Solum, John; Swennen, Rudy; Taberner, Conxita; Tueckmantel, Christian

    2015-04-01

    The E-W-trending Jabal Qusaybah anticline, developed in layered Cretaceous carbonates, is located at the western termination of the Salakh Arc, Oman Mountains. The anticline is 10 km long and is characterized by a complex fault pattern which mainly includes NE-SW left-lateral strike-slip and N-S extensional fault zones. The N-S striking extensional fault zones are best developed in the central sector of the anticlinal crest, likely due to along-strike outer-arc extension associated with positive fault inversion and salt migration. Extensional fault zones are perpendicular to the fold axis and geometrically confined within major NE-SW left-lateral strike-slip fault zones. They have trace lengths ranging from a few m up to ~800 m, and displacements ranging from a few dm up to ~60 m. Fault zones consist of cataclastic fault cores (~1-15 cm thick) surrounded by vein-dominated damage zones. Overall, fault zones show significant volumes of dilation breccia texture, m-thick infillings of calcite crystals, and cm- to m-thick veins localized at fault tip zones, areas of fault overlap, and zones of interaction between strike-slip and extensional fault segments. By analyzing fault abutting geometries, detailed vein relative chronology, delta13C and delta18O signatures and fluid inclusion data from calcite veins and calcite fault infillings, we propose a model where a deep seated left-lateral strike-slip fault system, active during the growth of the anticline, inhibited the lateral propagation of late-stage transversal extensional fault zones. Our findings show that, in this geological setting, the structural position, rather than fault throw, is the parameter controlling the location of the more dilatant fault segments.

  14. How can fluid overpressures be developed and maintained in crustal fault zones ?

    NASA Astrophysics Data System (ADS)

    LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.

    2013-12-01

    The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50

  15. Fault structure, frictional properties and mixed-mode fault slip behavior

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Niemeijer, André; Viti, Cecilia; Smith, Steven A. F.; Marone, Chris

    2011-11-01

    Recent high-resolution GPS and seismological data reveal that tectonic faults exhibit complex, multi-mode slip behavior including earthquakes, creep events, slow and silent earthquakes, low-frequency events and earthquake afterslip. The physical processes responsible for this range of behavior and the mechanisms that dictate fault slip rate or rupture propagation velocity are poorly understood. One avenue for improving knowledge of these mechanisms involves coupling direct observations of ancient faults exhumed at the Earth's surface with laboratory experiments on the frictional properties of the fault rocks. Here, we show that fault zone structure has an important influence on mixed-mode fault slip behavior. Our field studies depict a complex fault zone structure where foliated horizons surround meter- to decameter-sized lenses of competent material. The foliated rocks are composed of weak mineral phases, possess low frictional strength, and exhibit inherently stable, velocity-strengthening frictional behavior. In contrast, the competent lenses are made of strong minerals, possess high frictional strength, and exhibit potentially unstable, velocity-weakening frictional behavior. Tectonic loading of this heterogeneous fault zone may initially result in fault creep along the weak and frictionally stable foliated horizons. With continued deformation, fault creep will concentrate stress within and around the strong and potentially unstable competent lenses, which may lead to earthquake nucleation. Our studies provide field and mechanical constraints for complex, mixed-mode fault slip behavior ranging from repeating earthquakes to transient slip, episodic slow-slip and creep events.

  16. 3D reconstruction of a normal fault zone: A trenching study on a strand of the active Baza fault, Central Betic Cordillera, south central Spain

    NASA Astrophysics Data System (ADS)

    Koch, Leah Jean; Cardozo, Nestor; Martin-Rojas, Iván; Alfaro, Pedro; Castro, Julia; Medina-Cascales, Iván; García-Tortosa, Francisco J.

    2017-04-01

    Faults are rarely a discrete two-dimensional surface, but a three dimensional volume with a complex internal structure. Faults are commonly encountered in reservoirs and evaluated for their ability to act as a fluid flow conduit or barrier. The problem is that the structure of a fault zone in 3D is poorly understood, particularly because outcrops exposing fault zones in 3D are rare, and few have a large (e.g. 100 m) throw. Detailed 3D outcrop studies of fault zones can help provide insight into their internal structure, and the processes undergone during faulting, as well as improve the predictability of subsurface (e.g. reservoir) models. The main objective of this project is to construct a 3D structural model of a strand of the Baza fault, an active normal fault located in south central Spain in the Betic Cordillera. This strand is one of the many strands of the Baza fault system, and has an estimated throw of 30 meters in a relatively unconsolidated clay to silt Pliocene sequence. Through a trenching study, 10 vertical dip sections, 3 vertical strike sections, and one depth section in an area of approximately 80 m2 were excavated, cleaned, Lidar scanned, photographed, and documented. Based on these sections, we have reconstructed the 3D geometry and associated structures of this superb fault zone. These data can be used to study the variability of fault zones in 3D, but also for geophysical (e.g. seismic imaging) and reservoir modeling studies.

  17. Tectonic history of the northern Nabitah fault zone, Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, J.E.; Bosch, Paul S.

    1990-01-01

    Based on the presence of similar lithologies, similar structure, and analogous tectonic setting, the Mother Lode District in California is reviewed as a model for gold occurrences near the Nabitah fault zone in this report.

  18. 3D insight into fault geometries, deformation, and fluid-migration within the Hosgri Fault Zone offshore central California: Results from high-resolution 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Brothers, D. S.; Johnson, S. Y.; Watt, J. T.

    2015-12-01

    High-resolution 3D seismic P-Cable data and advanced seismic attribute analyses were used to detect and interpret complex strike-slip fault geometries, deformation patterns, and fluid-pathways across a portion of the Hosgri Fault Zone (HFZ) offshore central California. Combination of the fault attribute results with structural analysis provides 3D insight into the geometry and internal structure of restraining and releasing bends, step-over zones, fault convergence zones, and apparent paired fault bends. The 3D seismic volume covers a 13.7 km2 region along the HFZ offshore of Point Sal and was collected in 2012 as part of the PG&E Central California Seismic Imaging Project (PG&E, 2014). Application of the fault attribute workflow isolated and delineated fault strands within the 3D volume. These results revealed that the northern and southern edges of the survey region are characterized by single fault strands that exhibit an approximate 6° change in strike across the 3D volume. Between these single faults strands is a complex network of fault splays, bends, stepovers, and convergence zones. Structural analysis reveals that the southern portion of the HFZ in the region is characterized by transtensional deformation, whereas transpressional-related folding dominates the central and northern portions of the HFZ. In the central region, convergence of the Lions Head Fault from the southeast results in an apparent impinging block, leading to development of a "paired fault bend" to the west. Combination of the fault and "chimney" attribute results indicates a strong connection between faults and fluid-migration pathways. Fluid-pathways are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones.

  19. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.

    PubMed

    Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J

    2014-12-12

    Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis.

  20. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  1. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  2. Paleoseismology of the Mt. Narryer Fault Zone, West Central Western Australia: a Multi-Segment Intraplate Fault System

    NASA Astrophysics Data System (ADS)

    Whitney, B. B.; Clark, D.; Hengesh, J.

    2014-12-01

    The Western Australia shear zone (WASZ) is a 2000 km long fault system within the intraplate region of Australia. A paleoseismological study of faults and fault-related folds comprising the Mount Narryer fault zone (MNfz) in the southern WASZ reveals a late Quaternary history of repeated morphogenic earthquake occurrence that has profoundly influenced the planform and course of the Murchison, Roderick, and Sanford Rivers. Folding in the near surface sediments is the predominant style of surface expression of reactivated basement faults which is consistent with other neotectonic structures throughout the Western Australia shear zone. CRN and OSL estimates of exposure and burial ages of fault-related folds and fold derived colluvium provide constraint on Late Quaternary slip rates on the underlying faults of ~0.05 - 0.1 mm/a. In the case of the Roderick River fault scarp, 2-3m high tectonic risers separating inset terraces where the Murchison River crosses the scarp are consistent with multiple late Quaternary seismic events on the order of magnitude Mw 7.1-7.3. Mid-Pleistocene ages of tectonically deformed strata in the MNfz are consistent with the timing of collision between the Australian extended margin and Savu-Rote ridge 0.2-1.8 Ma.

  3. Late Neogene structural inversion around the northern Gulf of Tonkin, Vietnam: Effects from right-lateral displacement across the Red River fault zone

    NASA Astrophysics Data System (ADS)

    Fyhn, Michael B. W.; Phach, Phung V.

    2015-02-01

    Continental extrusion may take up much of the deformation involved in continental collisions. Major strike-slip zones accommodate the relative extrusion displacement and transfer deformation away from the collision front. The Red River fault zone (RRFZ) accommodated left- and right-lateral displacements when Indochina and South China were extruded during the Indian-Eurasian collision. The northern Song Hong basin onshore and offshore in the Gulf of Tonkin delineates the direct extension of the RRFZ and thus records detailed information on the collision-induced continental extrusion. We assess the rapidly evolving kinematics of the fault zone buried within the basin based on seismic analysis. Contrary to previous studies, we do not identify indications for latest Miocene left-lateral motion across the RRFZ. We tentatively consider the shift from left- to right-lateral motion to have occurred already during the middle Late Miocene as indicated by inversion of NE-SW-striking faults in the Bach Long Vi area. Right-lateral displacement terminated around the end of the Miocene in the Song Hong basin. However, continued inversion in the Bach Long Vi area and NNW-SSE-striking normal faulting suggests a stress regime compatible with right-lateral motion across the onshore part of the RRFZ continuing to the present. Inversion around the Bach Long Vi Island may have accommodated up to a few kilometers of right-lateral displacement between the Indochina and South China blocks. Comparable NE-SW-striking fault zones onshore may have accommodated a larger fraction of the right-lateral slip across the RRFZ, thus accounting for the restricted transfer of lateral displacement to the offshore basins.

  4. Fethiye-Burdur Fault Zone (SW Turkey): a myth?

    NASA Astrophysics Data System (ADS)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan

    2017-04-01

    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible

  5. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    SciTech Connect

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.

    1994-04-01

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30{degrees} {minus} 40{degrees}W {minus} trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the proposed repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the ``Sundance fault system`` and the dominant structure, occurring near the middle of the zone, the ``Sundance fault.`` Some field relations suggest left-stepping deflections of north-trending faults along a preexisting northwest-trending structural fabric. Other field observations suggest that the ``Sundance fault system`` offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies, however, are needed to better understand structural complexities at Yucca Mountain.

  6. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  7. Satellite geodetic monitoring of the Vladikavkaz active fault zone: First results

    NASA Astrophysics Data System (ADS)

    Milyukov, V. K.; Mironov, A. P.; Steblov, G. M.; Ovsyuchenko, A. N.; Rogozhin, E. A.; Drobyshev, V. N.; Kusraev, A. G.; Khubaev, Kh. M.; Torchinov, Kh.-M. Z.

    2017-07-01

    A geodetic network of Global Satellite Navigation System (GNSS) observation sites was organized in 2014-2015 for studying the contemporary crustal motions in the zone of the Vladikavkaz deep fault (Milyukov et al., 2014; 2015). The measurements were conducted and the first velocity estimates obtained testifying to the consistency of crustal motions in the Vladikavkaz fault zone and the Ossetian region overall in the ITRG2008 system. The first results show that the velocities and directions of horizontal motions do not change upon the transition of the fault zone. In correspondence with the northeastern orientation of the site displacement vectors and sublatitudinal trend of the disjunctive zone, the presence of left-lateral strike-slip displacements along the branches of an active fault should be expected. However, the signs pointing to the activation of motion in the fault zone are absent. Besides, even the manifestation of weak seismicity has not been observed within the high-magnitude seismogenic Vladikavkaz zone associated with this fault for more than 25 years. This suggests the passive present state of this structure, one of the largest disjunctive structures of the Northern Caucasus. In order to verify this conclusion and revealing the kinematic pattern of the displacements associated with the fault structure it is reasonable to continue the measurements.

  8. Geologic map of the Hayward fault zone, Contra Costa, Alameda, and Santa Clara counties, California: a digital database

    USGS Publications Warehouse

    Graymer, R.W.; Jones, D.L.; Brabb, E.E.

    1995-01-01

    The Hayward is one of three major fault zones of the San Andreas system that have produced large historic earthquakes in the San Francisco Bay Area (the others being the San Andreas and Calaveras). Severe earthquakes were generated by this fault zone in 1836 and in 1868, and several large earthquakes have been recorded since 1868. The Hayward fault zone is considered to be the most probable source of a major earthquake in the San Francisco Bay Area, as much as 28% chance for a magnitude 7 earthquake before the year 2021 (Working Group on California Earthquake Probabilities, 1990). The Hayward fault zone, as described in this work, is a zone of highly deformed rocks, trending north 30 degrees west and ranging in width from about 2 to 10 kilometers. The historic earthquake generating activity has been concentrated in the western portion of the zone, but the zone as a whole reflects deformation derived from oblique right-lateral and compressive tectonic stress along a significant upper crustal discontinuity for the past 10 million or more years. The Hayward fault zone is bounded on the east by a series of faults that demarcate the beginning of one or more structural blocks containing rocks and structures unrelated to the Hayward fault zone. The eastern bounding faults are, from the south, the Calaveras, Stonybrook, Palomares, Miller Creek, and Moraga faults. These faults are not considered to be part of the Hayward fault zone, although they are shown on the map to demarcate its boundary. The western boundary of the zone is less clearly defined, because the alluvium of the San Francisco Bay and Santa Clara Valley basins obscures bedrock and structural relationships. Although several of the westernmost faults in the zone clearly project under or through the alluvium, the western boundary of the fault is generally considered to be the westernmost mapped fault, which corresponds more or less with the margin of thick unconsolidated surficial deposits. The Hayward fault

  9. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    NASA Astrophysics Data System (ADS)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; Nussbaum, Christophe; Birkholzer, Jens

    2017-08-01

    We studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite difference modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. The plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).

  10. When did movement begin on the Furnace Creek fault zone

    SciTech Connect

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  11. Tectonic Geomorphology of the Hanging Wall Blocks of the Cimandiri Fault Zone, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.

    2014-12-01

    In areas where regional strain is accommodated by broad zones of short and low slip-rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments and undetectable until the next earthquake. In Java, despite the frequency of damaging shallow earthquakes, active faults are diffuse and their characterization is challenging. Among them is the ENE-trending Cimandiri fault. Cumulative displacement along the fault produces prominent ENE-oriented ranges with the east side moving relatively upward and to the north. Along its length, the few hundred meter wide fault zone is expressed in the bedrock by numerous NE, E and NW-trending thrust- and strike slip faults and folds. However, it is unclear which of these structures are active, as the diffuse nature of the fault zone has so far stymied conventional paleoseismic study. To address this, we performed a tectonic geomorphology analysis of the fault zone. We used the 30-m resolution SRTM-DEM to construct longitudinal profiles of 601 bedrock rivers along the ranges and calculated the normalized channel steepness index (ksn). Our preliminary results rely on the assumption that ksn is a reasonable proxy for relative rock uplift rate in a region, assuming variations in rock type and climate are insignificant. While the active traces of the Cimandiri fault are obscured, the spatial variation in ksn allows us to delineate 4 discontinuous hanging wall blocks that vary between E and NE striking along the zone. The largest ksn values are along the central-western block (Cibeber area). The longest block is in the central eastern portion of the fault zone and comprises 45 km of the 100 km long fault zone. The fault bifurcates at its eastern termination and steps into the Lembang fault. The distribution of ksn suggests that reverse motion is more dominant than lateral because of a lack of

  12. Phase mixing and the spatial distribution of material heterogeneities in a crustal fault zone: Insights from New Zealand's Alpine Fault

    NASA Astrophysics Data System (ADS)

    Sauer, Katrina M.; Renard, Francois; Toy, Virginia G.

    2017-04-01

    Large-scale continental faults represent zones of inherent weakness and focused deformation in the crust. Heterogeneities in fault zone rocks, such as grain-boundary pores, fine-grained secondary phases, and fluid inclusions can provide nucleation points for deformation instabilities, which are required for strain localisation. However, these heterogeneities are not uniformly distributed at any scale within fault zones. Therefore, a systematic characterisation of the nature and distribution of fault rock heterogeneities will improve our understanding of the mechanisms of strain localisation and fault zone dynamics. The Alpine Fault is the main Pacific-Australian plate-boundary structure on the South Island of New Zealand, with rapidly exhumed hangingwall mylonite and cataclasite sequences that are equivalent to the fault rocks currently deforming at depth. We have sampled across the ductile strain gradient of the Alpine Fault zone to examine how microstructures and material heterogeneities evolve with increasing strain. Synchrotron micro-computed x-ray tomography (Sµ-CT), electron microprobe analyses (EPMA), and scanning electron microscopy (SEM) imaging reveal that at lower strains, pure quartz domains are common and grain-boundary pores are concentrated on monophase quartz boundaries, while with increasing strain phase mixing is more prominent and pores are progressively found on boundaries between different phases. Electron backscatter diffraction (EBSD) is used to evaluate the evolution of fabric anisotropy, such as crystallographic preferred orientations (CPO) across the strain gradient. Using both the J-index and M-index to quantify quartz CPO strength, we find a decrease in the CPO intensity with increasing strain in polyphase rocks. We infer this is due to a switch in the dominant deformation mechanism associated with increased phase mixing. Here we explore the relationship between phase mixing, microstructural evolution, and the spatial distribution of

  13. Geometry and kinematics of the fold-thrust belt and structural evolution of the major Himalayan fault zones in the Darjeeling -- Sikkim Himalaya, India

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kathakali

    The Darjeeling-Sikkim Himalaya lies in the eastern part of the Himalayan fold-thrust belt (FTB) in a zone of high arc-perpendicular convergence between the Indian and Eurasian plates. In this region two distinct faults form the Main Central thrust (MCT), the structurally higher MCT1 and the lower MCT2; both these faults have translated the Greater Himalayan hanging wall rocks farther towards the foreland than in the western Himalaya. The width of the sub-MCT Lesser Himalayan rocks progressively decreases from the western Himalaya to this part of the eastern Himalaya, and as a result, the width of the FTB is narrower in this region compared to the western Himalaya. Our structural analysis shows that in the Darjeeling-Sikkim Himalaya the sub-MCT Lesser Himalayan duplex is composed of two duplex systems and has a more complex geometry than in the rest of the Himalayan fold-thrust belt. The structurally higher Dating duplex is a hinterland-dipping duplex; the structurally lower Rangit duplex varies in geometry from a hinterland-dipping duplex in the north to an antiformal stack in the middle and a foreland-dipping duplex in the south. The MCT2 is the roof thrust of the Daling duplex and the Ramgarh thrust is the roof thrust of the Rangit duplex. In this region, the Ramgarh thrust has a complex structural history with continued reactivation during footwall imbrication. The foreland-dipping component of the Rangit duplex, along with the large displacement associated with the reactivation of the Ramgarh thrust accounts for the large translation of the MCT sheets in the Darjeeling-Sikkim Himalaya. The growth of the Lesser Himalayan duplex modified the final geometry of the overlying MCT sheets, resulting in a plunge culmination that manifests itself as a broad N-S trending "anticline" in the Darjeeling-Sikkim Himalaya. This is not a "river anticline" as its trace lies west of the Teesta river. A transport parallel balanced cross section across this region has accommodated

  14. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  15. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed

  16. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  17. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    NASA Astrophysics Data System (ADS)

    Ryan, H. F.; Parsons, T.; Sliter, R. W.

    2008-10-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3 mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15 cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6 cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5 km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  18. Full Waveform Misfit Kernels for Fault Zone Seismic Waves in the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Tape, C.; Ben-Zion, Y.; Thurber, C. H.

    2016-12-01

    Fault zones have strong 3D heterogeneities including vertical interfaces and fault-parallel zones of low seismic velocity which result in complicated seismic phases. We present waveform modeling results, misfit kernels, and time-frequency goodness-of-fit measurements for body waves, surface waves, and trapped waves recorded along the San Jacinto fault zone in Southern California. This work is part of an ongoing effort to develop and implement a framework for full waveform tomographic inversion that accounts for the strong multi-scale 3D heterogeneity observed in fault zones. Using moment tensor solutions of 26 events with Mw>4.0 obtained by applying the CAP method (Zhu & Helmberger, 1996), we simulate these events using the spectral element method (Komatitsch & Tromp 1999) in the best seismic velocity models currently available including CVM-H (Shaw et al., 2015), CVM-S4.26 (Lee et al., 2014), and Fang et al. (2016). To quantify model performance, we employ the goodness-of-fit analysis of Kristekova et al. (2009), decomposing 3-component signals into the time-frequency domain and measuring the phase and amplitude difference of the signal envelopes in each time-frequency window. This method allows us to dissect the misfit, ascertaining not just how much two signals disagree, but specifically which phases and at which frequencies they disagree. Applying this method to recorded data and modeled waveforms, we find that the models generally fit P and S wave arrivals well, but do not accurately reproduce observed late-arriving high-amplitude surface and trapped waves especially between 0.4 and 2.3 Hz frequencies. Using this analysis to guide our choice of time and frequency windows, we construct fully 3D misfit kernels between data and synthetics using the adjoint method (Tromp et al., 2005) emphasizing phases with the largest time-frequency misfit. These kernels are the basis for a full waveform inversion, as they provide quantitative constraints on how the seismic

  19. Kinematics at Death Valley-Garlock fault zone junction

    SciTech Connect

    Abrams, R.B.; Verosub, K.; Finnerty, A.

    1987-08-01

    The Garlock and Death Valley fault zones in southeast California are two active strike-slip faults that come together on the east side of the Avawatz Mountains. The kinematics of this intersection, and the possible continuation of either fault zone, is being investigated using a combination of detailed field mapping, and processing and interpretation of remotely sensed image data from satellite and aircraft platforms. Regional and local relationships are derivable from the thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution data over more limited areas. Hypotheses that are being considered are (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault that continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. Kinematic considerations, image analysis, and field work results favor the third hypothesis. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.

  20. Geological and geomorphological evidence for the southwestern extension of the East Anatolian Fault Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Yönlü, Önder; Altunel, Erhan; Karabacak, Volkan

    2017-07-01

    The left lateral strike slip East Anatolian Fault Zone (EAFZ) is the main structural link between the North Anatolian Fault Zone (NAFZ) in north and subduction in the Mediterranean Sea and the transform Dead Sea Fault Zone (DSFZ) in south. We studied the southwestern continuation of the EAFZ using combined field investigations including geomorphology, geology and paleoseismology. Mapping of offset drainages, lineaments, shutter ridges and fault planes in young geological units suggests existence of active faults between the Mediterranean coast and Türkoğlu where it intersects with the DSFZ. Yumurtalık and Toprakkale faults are the main tectonic structures and detailed examination of geological and geomorphological evidences suggest their Quaternary activity. Paleoseismic trenching on these faults provided evidence for at least two surface rupturing events in the last 9,000 yr. Detailed examination of paleo-valleys of the Ceyhan River suggests that the course of the river migrated due to the activity of the Toprakkale Fault. Obtained geological and geomorphological data indicates that the EAFZ continues across the Amanos Mountains and the slip transfer is mainly accommodated by the Toprakkale and Yumurtalık faults.

  1. Seismic imaging of deformation zones associated with normal fault-related folding

    NASA Astrophysics Data System (ADS)

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard

    2016-04-01

    Folds associated with normal faulting, which are mainly the result of fault propagation and linkage of normal fault segments, can exhibit complex deformation patterns, with multiple synthetic splay faults, reverse faults and small antithetic Riedel structures accommodating flexure of the beds. Their identification is critical in evaluating connectivity of potential hydrocarbon reservoirs and sealing capacity of faults. Previous research showed that seismic attributes can be successfully used to image complex structures and deformation distribution in submarine thrust folds. We use seismic trace and coherency attributes, a combination of instantaneous phase, tensor discontinuity and semblance attributes to identify deformation structures at the limit of seismic resolution, which accommodate seismic scale folding associated with normal faulting from Inner Moray Firth Basin, offshore Scotland. We identify synthetic splay faults and reverse faults adjacent to the master normal faults, which are localized in areas with highest fold amplitudes. This zone of small scale faulting is the widest in areas with highest fault throw / fold amplitude, or where a bend is present in the main fault surface. We also explore the possibility that changes in elastic properties of the rocks due to deformation can contribute to amplitude reductions in the fault damage zones. We analyse a pre-stack time-migrated 3D seismic data-set, where seismic reflections corresponding to a regionally-continuous and homogeneous carbonate layer display a positive correlation between strain distribution and amplitude variations adjacent to the faults. Seismic amplitude values are homogeneously distributed within the undeformed area of the footwall, with a minimum deviation from a mean amplitude value calculated for each seismic line. Meanwhile, the amplitude dimming zone is more pronounced (negative deviation increases) and widens within the relay zone, where sub-seismic scale faults, which accommodate

  2. Fluid flow and permeabilities in basement fault zones

    NASA Astrophysics Data System (ADS)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  3. Imaging Faults and Shear Zones Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Mahan, Kevin H.

    2014-11-01

    The geometry of faults at seismogenic depths and their continuation into the ductile zone is of interest for a number of applications ranging from earthquake hazard to modes of lithospheric deformation. Teleseismic passive source imaging of faults and shear zones can be useful particularly where faults are not outlined by local seismicity. Passive seismic signatures of faults may arise from abrupt changes in lithology or foliation orientation in the upper crust, and from mylonitic shear zones at greater depths. Faults and shear zones with less than near-vertical dip lend themselves to detection with teleseismic mode-converted waves (receiver functions) provided that they have either a contrast in isotropic shear velocity ( V s), or a contrast in orientation or strength of anisotropic compressional velocity ( V p). We introduce a detection method for faults and shear zones based on receiver functions. We use synthetic seismograms to demonstrate common features of dipping isotropic interfaces and contrasts in dipping foliation that allows determination of their strike and depth without making further assumptions about the model. We proceed with two applications. We first image a Laramide thrust fault in the western U.S. (the Wind River thrust fault) as a steeply dipping isotropic velocity contrast in the middle crust near the surface trace of the fault; further downdip and across the range, where basin geometry suggests the fault may sole into a subhorizontal shear zone, we identify a candidate shear zone signal from midcrustal depths. The second application is the use of microstructural data from exhumed ductile shear zones in Scotland and in the western Canadian Shield to predict the character of seismic signatures of present-day deep crustal shear zones. Realistic anisotropy in observed shear fabrics generates a signal in receiver functions that is comparable in amplitude to first-order features like the Moho. Observables that can be robustly constrained without

  4. Possible Connections Between the Coronado Bank Fault Zone and the Newport-Inglewood, Rose Canyon, and Palos Verdes Fault Zones Offshore San Diego County, California.

    NASA Astrophysics Data System (ADS)

    Sliter, R. W.; Ryan, H. F.

    2003-12-01

    High-resolution multichannel seismic-reflection and deep-tow Huntec data collected by the USGS were interpreted to map the Coronado Bank fault zone (CBFZ) offshore San Diego County, California. The CBFZ is comprised of several major strands (eastern, central, western) that change in both orientation and degree of deformation along strike. Between Coronado Bank and San Diego, the CBFZ trends N25W and occupies a narrow 7 km zone. Immediately north of La Jolla submarine canyon (LJSC), the easternmost strand changes orientation to almost due north and appears to be offset in a right-lateral sense across the canyon axis. The strand merges with a prominent fault that follows the base of the continental slope in about 600 m water depth. The central portion of the CBFZ is mapped as a negative flower structure and deforms seafloor sediment as far north as 15 km north of LJSC. Farther north, this structure is buried by more than 400 m of basin sediment. Along the eastern edge of the Coronado Bank, the western portion of the CBFZ is characterized by high angle normal faults that dip to the east. North of the Coronado Bank, the western segment follows the western edge of a basement high; it cuts through horizontal basin reflectors and in places deforms the seafloor. We mapped an additional splay of the CBFZ that trends N40W; it is only observed north and west of LJSC. Although the predominant trend of the CBFZ is about N40W, along strike deviations from this orientation of some of the strands indicate that these strands connect with other offshore fault zones in the area. Based on the limited data available, the trend of the CBFZ south of Coronado Bank suggests that it might connect with the Rose Canyon fault zone (RCFZ) that has been mapped in San Diego Bay. North of Coronado Bank, the CBFZ is a much broader fault zone (about 25 km wide) composed of diverging fault strands. The westernmost strand may merge with the western strand of the Palos Verdes fault zone (PVFZ) south of

  5. Discovery of amorphous carbon veins in the 2008 Wenchuan earthquake fault zone: implications for the fault weakening mechanism

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, J.; Zhang, B.; Li, H.

    2013-12-01

    The 2008 Wenchuan earthquake generated 270- and 80-km-long surface ruptures along Yingxiu-Beichuan fault and Guanxian-Anxian fault, respectively. At the outcrop near Hongkou village, southwest segment of Yingxiu-Beichuan rupture, network black amorphous carbon veins were discovered near fault planes in the 190-m-wide earthquake fault zone. These veins are mainly composed of ultrafine- and fine-grained amorphous carbon, usually narrower than 5mm and injected into faults and cracks as far as several meter. Flowage structures like asymmetrical structures around few stiff rock fragments indicate materials flew when the veins formed. Fluidization of cataclastic amorphous carbon and the powerful driving force in the veins imply high pore pressure built up during earthquakes. High pore pressure solution and graphite reported in the fault gouge (Togo et al., 2011) can lead very low dynamic friction during the Wenchuan earthquake. This deduction hypothesis is in accordance with the very low thermal abnormal measured on the principle fault zone following the Wenchuan earthquake (Mori et al., 2010). Furthermore, network amorphous carbon veins of different generations suggest similar weakening mechanism also worked on historical earthquakes in Longmenshan fault zone. Reference: Brodsky, E. E., Li, H., Mori, J. J., Kano, Y., and Xue, L., 2012, Frictional Stress Measured Through Temperature Profiles in the Wenchuan Scientific Fault Zone Drilling Project. American Geophysical Union, Fall Meeting. San Francisco, T44B-07 Li, H., Xu, Z., Si, J., Pei, J., Song, S., Sun, Z., and Chevalier, M., 2012, Wenchuan Earthquake Fault Scientific Drilling program (WFSD): Overview and Results. American Geophysical Union, Fall Meeting. San Francisco, T44B-01 Mori, J. J., Li, H., Wang, H., Kano, Y., Pei, J., Xu, Z., and Brodsky, E. E., 2010, Temperature measurements in the WFSD-1 borehole following the 2008 Wenchuan earthquake (MW7.9). American Geophysical Union, Fall Meeting. San Francisco, T53E

  6. Fault zone processes in mechanically layered mudrock and chalk

    NASA Astrophysics Data System (ADS)

    Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach

    2017-04-01

    A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.

  7. Earthquake faulting in subduction zones: insights from fault rocks in accretionary prisms

    NASA Astrophysics Data System (ADS)

    Ujiie, Kohtaro; Kimura, Gaku

    2014-12-01

    Subduction earthquakes on plate-boundary megathrusts accommodate most of the global seismic moment release, frequently resulting in devastating damage by ground shaking and tsunamis. As many earthquakes occur in deep-sea regions, the dynamics of earthquake faulting in subduction zones is poorly understood. However, the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) and fault rock studies in accretionary prisms exhumed from source depths of subduction earthquakes have greatly improved our understanding of earthquake faulting in subduction zones. Here, we review key advances that have been made over the last decade in the studies of fault rocks and in laboratory experiments using fault zone materials, with a particular focus on the Nankai Trough subduction zone and its on-land analog, the Shimanto accretionary complex in Japan. New insights into earthquake faulting in subduction zones are summarized in terms of the following: (1) the occurrence of seismic slip along velocity-strengthening materials both at shallow and deep depths; (2) dynamic weakening of faults by melt lubrication and fluidization, and possible factors controlling coseismic deformation mechanisms; (3) fluid-rock interactions and mineralogical and geochemical changes during earthquakes; and (4) geological and experimental aspects of slow earthquakes.

  8. The Influence of a Local Fault Zone on High Energy Tremor Occurrence During Longwall Mining of a Coal Seam

    NASA Astrophysics Data System (ADS)

    Wojtecki, Łukasz; Knopik, Małgorzata; Zuberek, Wacław Marian

    2016-08-01

    Underground mining of coal seams in the Upper Silesian Coal Basin in Poland is accompanied by seismic activity of varying magnitude. The investigations which have been performed for several years distinguished high energy mine tremors connected directly with mining or coupled with geological structures, such as large faults. In mined seams, local fault zones occur. Faults in these zones are usually small, with throws comparable with coal seams thicknesses. Local fault zone may be responsible for the occurrence of high energy tremors as well as large faults, as presented in this article. An analysis of source mechanism of high energy tremors generated during longwall mining of the coal seam No. 510, with presence of a local fault zone, in one of the Polish hard coal mines in the Upper Silesian Coal Basin was performed. For this purpose, the seismic moment tensor inversion method was used. In most of foci, the process of shear predominated. Determined nodal plane parameters were correlated with parameters of faults forming the local fault zone. High energy tremors were generated mostly by dislocations on faults of the local fault zone. Weakening of roof rocks in the neighborhood of local fault zone takes an important role too, and was responsible for share of implosion in the focal mechanism.

  9. A numerical approach for modelling fault-zone trapped waves

    NASA Astrophysics Data System (ADS)

    Gulley, A. K.; Kaipio, J. P.; Eccles, J. D.; Malin, P. E.

    2017-08-01

    We develop a computationally efficient approach to compute the waveforms and the dispersion curves for fault-zone trapped waves guided by arbitrary transversely isotropic across-fault velocity models. The approach is based on a Green's function type representation for FL and FR type fault-zone trapped waves. The model can be used for simulation of the waveforms generated by both infinite line sources (2-D) and point sources (3-D). The numerical scheme is based on a high order finite element approximation and, to increase computational efficiency, we make use of absorbing boundary conditions and mass lumping of finite element matrices.

  10. Dynamic Rupture Simulations with Plastic Yielding in Fault Damage Zone

    NASA Astrophysics Data System (ADS)

    Day, S. M.; Roten, D.; Olsen, K. B.; Cui, Y.

    2016-12-01

    Observations of fault-zone trapped waves indicate that faults are surrounded by damage zones with reduced seismic velocities. We investigate how plastic effects around the fault, enhanced by the reduced strength of pre-fractured rocks inside the low-velocity zone (LVZ), affect ground motions at various distances from the fault. 3-D dynamic rupture simulations are performed with the AWP-ODC finite difference code, using a slip-weakening fault friction law, a Drucker-Prager (DP) yield criterion and depth-dependent stress. We simulate M 7.5 earthquakes with a LVZ embedded in a horizontally layered model, as well as M 7.7 earthquakes on the southern San Andreas fault with a LVZ added to the 3D heterogeneous mesh (SCEC CVM 3c). Within a 500 m wide and 4 km deep inner fault zone, we assume a 30% reduction in shear-wave velocity with respect to wallrock, and a reduced Geological Strength Index (GSI) of 30, 50 or 75, representative of a fractured rock mass of poor, moderate and good quality, respectively. The Hoek-Brown criterion is then used to derive equivalent friction angles and cohesions, consistent with these GSI values, for the DP criterion. In the linear case, the presence of a LVZ increases mean near-surface peak slip rates by 50%, from 2 to 3 m/s. These amplifications are compensated by fault zone plasticity in poor and moderate quality rock masses, where near-surface peak slip rates average to 0.5 m/s and 1.5 m/s, respectively; no significant reduction is obtained in good quality (almost unfractured) fault zones. Trapping of seismic waves inside the LVZ results in reduced peak ground velocities (PGVs) outside of the fault zone even in the linear case; these reductions are more pronounced if plasticity is taken into account. Plasticity acts by truncating frequency-distribution curves of PGVs obtained near the fault. In the horizontally layered medium, the highest PGVs are reduced from 2.6 m/s to 2.2 for moderate, and to 1.7 m/s for poor quality fault zones. In

  11. Fault linkages and activities in a transition zone of compression to transpression in Hsinchu area, northwestern Taiwan based on 3-D structural geometry

    NASA Astrophysics Data System (ADS)

    Huang, H.; Hu, J.; Huang, S.; Huang, C.

    2010-12-01

    The Taiwan orogenic belt is resulted from the convergence between Philippine Sea plate and Eurasian plate. Serious earthquakes occurred in west and northwest flanks of main mountain belt of the island in 1935 and 1999, caused more than 5000 deaths in total. In addition, Hsinchu Science and Industrial Park (HSIP) located in northwest Taiwan is one of the world's most important areas for semiconductor manufacturing. There are more than 400 technology companies in this park, and accounted for 10% of Taiwan's GDP. Consequently, active Hsincheng and Hsinchu faults in study area become the major threat of the industrial park, thus the understanding of complex subsurface seismogenic structures are crucial issue of earthquake hazard assessment and mitigation in Hsinchu area. Several geological cross sections have been constructed and discussed to suggest possible deep structures of these two major faults in previous study. However, how subsurface fault system and folding intersect still remains unclear and the evolution of fault and fold geometry in Hsinchu area is not fully understood. The main purpose of this study is to clarify the spatial linkage between the major thrust faults, folds, and adjacent transverse structures. In this study, we first construct the NW-SE trending cross-section which is sub-parallel to the regional shortening direction, and then balance this cross section to derive the structure evolution in Hsinchu area. We also incorporate several cross-sections and relocated seismicity to get detail 3D fault geometry for the numerical modeling in order to assess the interseismic strain accumulation and seismic potential based on geodetic measurements.

  12. San andreas fault zone head waves near parkfield, california.

    PubMed

    Ben-Zion, Y; Malin, P

    1991-03-29

    Microearthquake seismograms from the borehole seismic network on the San Andreas fault near Parkfield, California, provide three lines of evidence that first P arrivals are "head" waves refracted along the cross-fault material contrast. First, the travel time difference between these arrivals and secondary phases identified as direct P waves scales linearly with the source-receiver distance. Second, these arrivals have the emergent wave character associated in theory and practice with refracted head waves instead of the sharp first breaks associated with direct P arrivals. Third, the first motion polarities of the emergent arrivals are reversed from those of the direct P waves as predicted by the theory of fault zone head waves for slip on the San Andreas fault. The presence of fault zone head waves in local seismic network data may help account for scatter in earthquake locations and source mechanisms. The fault zone head waves indicate that the velocity contrast across the San Andreas fault near Parkfield is approximately 4 percent. Further studies of these waves may provide a way of assessing changes in the physical state of the fault system.

  13. Multiscale seismic imaging of active fault zones for hazard assessment: A case study of the Santa Monica fault zone, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Dolan, J.F.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.; Templeton, M.E.

    1998-01-01

    High-resolution seismic reflection profiles at two different scales were acquired across the transpressional Santa Monica Fault of north Los Angeles as part of an integrated hazard assessment of the fault. The seismic data confirm the location of the fault and related shallow faulting seen in a trench to deeper structures known from regional studies. The trench shows a series of near-vertical strike-slip faults beneath a topographic scarp inferred to be caused by thrusting on the Santa Monica fault. Analysis of the disruption of soil horizons in the trench indicates multiple earthquakes have occurred on these strike-slip faults within the past 50 000 years, with the latest being 1000 to 3000 years ago. A 3.8-km-long, high-resolution seismic reflection profile shows reflector truncations that constrain the shallow portion of the Santa Monica Fault (upper 300 m) to dip northward between 30?? and 55??, most likely 30?? to 35??, in contrast to the 60?? to 70?? dip interpreted for the deeper portion of the fault. Prominent, nearly continuous reflectors on the profile are interpreted to be the erosional unconformity between the 1.2 Ma and older Pico Formation and the base of alluvial fan deposits. The unconformity lies at depths of 30-60 m north of the fault and 110-130 m south of the fault, with about 100 m of vertical displacement (180 m of dip-slip motion on a 30??-35?? dipping fault) across the fault since deposition of the upper Pico Formation. The continuity of the unconformity on the seismic profile constrains the fault to lie in a relatively narrow (50 m) zone, and to project to the surface beneath Ohio Avenue immediately south of the trench. A very high-resolution seismic profile adjacent to the trench images reflectors in the 15 to 60 m depth range that are arched slightly by folding just north of the fault. A disrupted zone on the profile beneath the south end of the trench is interpreted as being caused by the deeper portions of the trenched strike

  14. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    NASA Astrophysics Data System (ADS)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  15. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  16. Powder lubrication of faults by powder rolls in gouge zones

    NASA Astrophysics Data System (ADS)

    Chen, X.; Madden, A. S.; Reches, Z.

    2013-12-01

    Powder-lubrication by fault gouge can be an effective mechanism of dynamic weakening of faults (Reches & Lockner, 2010); however, the physical mechanisms of this lubrication are poorly understood. While the flow of coarse-grained (> 100 μm) materials, e.g. glass beads or quartz sand, was extensively studied, the flow of fine-grained (< 1 μm) powders, e.g., fault-gouge and nano-powders, have remained enigmatic. We report here experimental results of a new efficient mechanism for powder lubrication. We conducted friction tests on high-velocity rotary shear apparatus (Reches & Lockner, 2010). Two types of experimental faults were tested: (1) faults made of solid, igneous rocks (granite, tonalite and diorite); and (2) fault-zones made of 2-3 mm thick layer of granular materials (oolites, calcite or gypsum) sheared in a confined cell. We performed 21 runs with total slip of 0.14-13 m, normal stress of 1.2-14.5 MPa, slip velocity of 0.012-0.97 m/s. The ultra-microscopic (SEM and AFM) analysis of the experimental slip surfaces revealed two outstanding features in 17 out of the 21 experiments: (1) localized fault-slip along Principal Slip Zones (PSZs) that are composed of a dense, shiny, cohesive crust, 0.5-1 micron thick, that overlaid a porous substrate, and (2) elongated rolls composed of gouge-powder into three-dimensional structures of closely-packed powder grains, (20-50 nm in size). The rolls are cylindrical, 0.75-1.4 micron wide, and 1.7-30 micron long, with smooth outer surface, and laminated, concentric layers of compacted grains. The rolls were exclusively found on the PSZs. Many rolls were destroyed fracturing and smearing on the PSZ, suggesting that the rolls underwent a life cycle of formation and destruction. Significant macroscopic friction reduction was measured in experiments with observed rolls, and no (or minor) friction reduction in the four experiments without rolls. The final, reduced friction coefficients have a general reciprocal relation to the

  17. Underground Testing of Permeability and Earthquake Nucleation in Fault Zones

    NASA Astrophysics Data System (ADS)

    guglielmi, Y.; Cappa, F.; Derode, B.; Jeanne, P.; Rutqvist, J.

    2012-12-01

    The magnitude of fault and fracture zones permeability variations induced by the complex inelastic effects of effective stress variations, and the relationships to seismicity represent gaps of our knowledge of these systems. Here we show how experiments developed in the low noise and well constrained geomechanical environment of an Underground Research Laboratory (http://www.insu.cnrs.fr/co/sites-instrumentes-terre interne/laboratoire-souterrain-a-bas-bruit-lsbb) provide unusual data that contribute to the fundamental understanding of the seismicity caused by non-uniform distributions of fluids and stresses, and hydromechanical heterogeneities. We conducted step-rate water injections (order MPa) to induce the local pressurization and the slip of a critically stressed fault zone at 0.28 km-depth. We took advantage of the underground research laboratory geometry to simultaneously monitor dynamic pressure and deformations at the injection point in the fault, and seismicity in the fault near field 2-to-3 meters around. The striking result of these experiments is to show how off-fault ruptures triggered in the fault damage zone by fluid pressurization or by stress transfer from nearby source zones can be a possible fault weakening mechanism that controls the coupling between fault slip and permeability variations. Experiments also show that fault slow slip which is associated to 80% of the seismic energy released through tremor-like events nucleates after the drastic decrease of fault friction which is associated to the initial 20% of the seismic energy released. Such results are of interest for seismologists and reservoir engineers in natural and induced earthquakes prediction and risk assessment.

  18. Transition Zone of the Cascadia Subduction Fault: Insights from Seismic Imaging of Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    2012-12-01

    Transition zone lies between the updip locked and downdip freely slipping zone, and presumably marks the downdip extent of rupture during large megathrust earthquakes. Tectonic behavior of the transition zone and its possible implications on the occurrence of destructive megathurst earthquakes, however, remain poorly understood mainly due to lack of seismic events in this zone. Slow earthquakes, marked by seismically observed tremor and geodetically observed slow slip, occur in the transition zone offering a unique window to this zone, and allow us to study the dynamics of this enigmatic part of the fault. I developed a novel multi beam-backprojection (MBBP) algorithm to image slow earthquakes with high resolution using small-aperture seismic arrays. Application of MBBP technique on slow earthquakes in Cascadia indicates that the majority of the tremor is located near the plate interface [Ghosh et al., JGR, 2012]. Spatiotemporal distribution of tremor is fairly complex, and strikingly different over different time scales. Transition zone appears to be characterized by several patches with dimension of tens of kilometers. The patches behave like asperities, and possibly represent more seismic part of the fault embedded within a relatively aseismic background. Tremor asperities are spatially stable and marked by prolific tremor activity. These tremor asperities seem to control evolution of slow earthquakes and likely represent rheological and/or frictional heterogeneity on the fault plane. In addition, structural features on the fault plane of the transition zone seem to play an important role in shaping the characteristics of the seismic energy radiated from here. Dynamically evolving state-of-stress during slow earthquakes and its interaction with the fault structures possibly govern near-continuous rapid streaking of tremor [Ghosh et al., G-cubed, 2010] and diverse nature of tremor propagations observed over different time scales. Overall, slow quakes are giving

  19. Seismic imaging of a megathrust splay fault in the North Chilean subduction zone (Central Andes)

    NASA Astrophysics Data System (ADS)

    Storch, Ina; Buske, Stefan; Schmelzbach, Cedric; Wigger, Peter

    2016-10-01

    Prominent trench-parallel fault systems in the arc and fore-arc of the Chilean subduction zone can be traced for several thousand kilometers in north-south direction. These fault systems possibly crosscut the entire crust above the subduction megathrust and are expected to have a close relationship to transient processes of the subduction earthquake cycles. With the motivation to image and characterize the structural inventory and the processes that occur in the vicinity of these large-scale fault zones, we re-processed the ANCORP'96 controlled-source seismic data set to provide images of the faults at depth and to allow linking geological information at the surface to subsurface structures. The correlation of the imaging results with observed hypocenter locations around these fault systems reveals the origin and the nature of the seismicity bound to these fault systems. Active and passive seismic data together yield a picture of a megathrust splay fault beneath the Longitudinal Valley at mid-crustal level, which can be observed from the top of the subduction plate interface and which seems to be connected to the Precordilleran Fault System (PFS) known at the surface. This result supports a previously proposed tectonic model where a megathrust splay fault defines the Western Altiplano as a crustal-scale fault-bend-fold. Furthermore, we clearly imaged two branches of the Uyuni-Kenayani Fault (UKF) in a depth range between 0 and 20 km. In summary, imaging of these faults is important for a profound understanding of the tectonic evaluation and characterization of the subduction zone environment, for which the results of this study provide a reliable basis.

  20. Fluid-rock Interaction and Episodic Fluid Flow within the Hurricane Fault-zone

    NASA Astrophysics Data System (ADS)

    Koger, J.; Newell, D. L.

    2015-12-01

    The Hurricane Fault is an active 250-km long, west dipping, Basin and Range bounding normal fault in SW Utah and NW Arizona. Fault rock alteration and mineralization is common in the damage zone along strike, indicating that this structure has influenced past groundwater flow. Multiple Quaternary basaltic centers are located proximal to the fault. This study tests the hypothesis that fault-zone diagenesis is being driven by deeply circulated meteoric groundwater infiltration and associated rock-water interaction that is punctuated by periods of hydrothermal alteration associated with local magmatism. Fault-parallel/oblique fractures and small-offset antithetic and synthetic normal faults have been found within fault-zone rocks. The intensity of fracturing and associated evidence of fluid-rock interaction progressively decreases away from the main fault trace into the footwall. Host rock alteration, hematite mineralized fault surfaces, and calcite and hematite cemented deformation bands and veins are observed. These features are focused in 1 - 2 m wide zones of fracturing with densities of 6 - 18 m-1 located within the footwall damage zone. Host rock alteration in the form of both "bleaching" and oxidation along fractures provides evidence for past redox reactions. Mineralization in deformation bands suggests that some fluid flow and diagenesis was penecontemporaneous with deformation. Laminations and cross-cutting relationships in veins indicate periodic mineralization that could be controlled by episodic fluid flow, or fracturing and degassing leading to calcite precipitation. Stable isotopic results from calcite veins show δ13CPDB values of -7 to 3 ‰ and δ18OPDB values of -19 to -9 ‰. Carbon stable isotope ratios suggest multiple carbon sources such as marine carbonates, organic sedimentary rocks, and mantle derived CO2. Temperature differences in paleofluids and associated fluid-rock interaction may explain the observed range in δ18O values. Fluid

  1. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  2. Spatial variability of time-constant slip rates on the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Blisniuk, K.; Oskin, M. E.; Sharp, W. D.; Meriaux, A. B.; Rockwell, T. K.; Fletcher, K.; Owen, L. A.

    2011-12-01

    In southern California, the San Andreas (SAF) and San Jacinto fault (SJF) zones account for 70-80% of the relative dextral motion between the Pacific and North American plates, with some studies suggesting that the SJF zone may be the dominant structure. However, few slip rate measurements are available for the SJF zone, making it difficult to evaluate the partitioning of deformation across the plate boundary. To more reliably constrain the late Quaternary slip history of the SJF zone, we measured the displacement of well-preserved alluvial fans along the Clark and Coyote Creek fault strands of the SJF zone using field mapping and high-resolution LiDAR topographic data, and dated the fans using U-series on pedogenic carbonate clast-coatings and in situ cosmogenic 10Be. Our results from four sites along the Clark fault strand and two sites along the Coyote Creek fault strand indicate that late Quaternary slip rates have fluctuated along their length but have remained constant since the late Pleistocene. Slip rates along the Clark fault strand over the past 50-30 kyr decrease southward over a distance of ~60 km from ~13 mm/yr at Anza, to 8.9 ± 2.0 mm/yr at Rockhouse Canyon, and 1.5 ± 0.4 mm/yr near the SE end of the Santa Rosa Mountains, probably due to transfer of slip from the Clark fault strand to the Coyote Creek fault strand and nearby zones of distributed deformation. Slip rates of up to ~14 to 18 mm/yr summed across the southern SJF zone suggest that since the latest Pleistocene, the SJF zone may rival the southern SAF zone in accommodating deformation across the Pacific-North America Plate boundary.

  3. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    NASA Astrophysics Data System (ADS)

    Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  4. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  5. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  6. Dissecting Oceanic Detachment Faults: Fault Zone Geometry, Deformation Mechanisms, and Nature of Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bonnemains, D.; Escartin, J.; Verlaguet, A.; Andreani, M.; Mevel, C.

    2015-12-01

    To understand the extreme strain localization at long-lived oceanic detachment faults rooting deeply below the axis, we present results of geological investigations at the 13°19'N detachment along the Mid-Atlantic Ridge, conducted during the ODEMAR cruise (Nov-Dec13, NO Pourquoi Pas?) with ROV Victor6000 (IFREMER). During this cruise we investigated and sampled the corrugated fault to understand its geometry, nature of deformation, and links to fluid flow. We identified and explored 7 fault outcrops on the flanks of microbathymetric striations subparallel to extension. These outcrops expose extensive fault planes, with the most prominent ones extending 40-90m laterally, and up to 10 m vertically. These fault surfaces systematically show subhorizontal striations subparallel to extension, and define slabs of fault-rock that are flat and also striated at sample scale. Visual observations show a complex detachment fault zone, with anastomosing fault planes at outcrop scale (1-10 m), with a highly heterogeneous distribution of deformation. We observe heterogeneity in fault-rock nature at outcrop scale. In situ samples from striated faults are primarily basalt breccias with prior green-schist facies alteration, and a few ultramafic fault-rocks that show a complex deformation history, with early schistose textures, brittlely reworked as clasts within the fault. The basalt breccias show variable silicification and associated sulfides, recording important fluid-rock interactions during exhumation. To understand the link between fluid and deformation during exhumation, we will present microstructural observation of deformation textures, composition, and distribution and origin of quartz and sulfides, as well as constraints on the temperature of silicifying fluids from fluid inclusions in quartz. These results allow us to characterize in detail the detachment fault zone geometry, and investigate the timing of silicification relative to deformation.

  7. Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane

    NASA Astrophysics Data System (ADS)

    Kasmolan, Madlazim; Santosa, Bagus Jaya; Lees, Jonathan M.; Utama, Widya

    2010-12-01

    Fifteen earthquakes (Mw 4.1-6.4) occurring at ten major segments of the Sumatran Fault Zone (SFZ) were analyzed to identify their respective fault planes. The events were relocated in order to assess hypocenter uncertainty. Earthquake source parameters were determined from three-component local waveforms recorded by IRIS-DMC and GEOFON broadband lA networks. Epicentral distances of all stations were less than 10°. Moment tensor solutions of the events were calculated, along with simultaneous determination of centroid position. Joint analysis of hypocenter position, centroid position, and nodal planes produced clear outlines of the Sumatran fault planes. The preferable seismotectonic interpretation is that the events activated the SFZ at a depth of approximately 14-210 km, corresponding to the interplate Sumatran fault boundary. The identification of this seismic fault zone is significant to the investigation of seismic hazards in the region.

  8. Fault roughness evolution with slip (Gole Larghe Fault Zone, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Spagnuolo, E.; Di Toro, G.; Nielsen, S. B.; Griffith, W. A.

    2011-12-01

    Fault surface roughness is a principal factor influencing fault and earthquake mechanics. However, little is known on roughness of fault surfaces at seismogenic depths, and particularly on how it evolves with accumulating slip. We have studied seismogenic fault surfaces of the Gole Larghe Fault Zone, which exploit precursor cooling joints of the Adamello tonalitic pluton (Italian Alps). These faults developed at 9-11 km and 250-300°C. Seismic slip along these surfaces, which individually accommodated from 1 to 20 m of net slip, resulted in the production of cm-thick cataclasites and pseudotachylytes (solidified melts produced during seismic slip). The roughness of fault surfaces was determined with a multi-resolution aerial and terrestrial LIDAR and photogrammetric dataset (Bistacchi et al., 2011, Pageoph, doi: 10.1007/s00024-011-0301-7). Fault surface roughness is self-affine, with Hurst exponent H < 1, indicating that faults are comparatively smoother at larger wavelengths. Fault surface roughness is inferred to have been inherited from the precursor cooling joints, which show H ≈ 0.8. Slip on faults progressively modified the roughness distribution, lowering the Hurst exponent in the along-slip direction up to H ≈ 0.6. This behaviour has been observed for wavelengths up to the scale of the accumulated slip along each individual fault surface, whilst at larger wavelengths the original roughness seems not to be affected by slip. Processes that contribute to modify fault roughness with slip include brittle failure of the interacting asperities (production of cataclasites) and frictional melting (production of pseudotachylytes). To quantify the "wear" due to these processes, we measured, together with the roughness of fault traces and their net slip, the thickness and distribution of cataclasites and pseudotachylytes. As proposed also in the tribological literature, we observe that wearing is scale dependent, as smaller wavelength asperities have a shorter

  9. Numerical investigation of fault zone roughness: Interplay between fault geometry and friction

    NASA Astrophysics Data System (ADS)

    Rathbun, A.; Renard, F.

    2012-04-01

    The influence of roughness is central in understanding the behavior of various types of shear zones including faults, landslides and deformation in glacial till. All of these zones contain a non-planar wall, which interacts with either a gouge zone, or another wall. Laboratory friction experiments have traditionally attempted to isolate the role of boundary roughness focusing on shear within the gouge. We use the 3D Discrete Element Method (DEM) and the ESyS-Particle code to investigate both the effect of boundary roughness and friction. The DEM allows us to investigate the micromechanics of the shear zone by directly visualizing force chain magnitude and orientation, and also the distributed or localized nature of shear in the numerical experiment. We use two end-member shear zones: 1) fault gouge is sandwiched between two rough walls and 2) fault gouge is contained inside of two smooth walls. For rough fault models, grooves are 0.8mm in height and have a regular spacing of 1mm, equivalent to standard laboratory friction experiments. In all models the gouge particles range from 100 to 200 micron in diameter in a 3 mm thick layer, the normal stress is held constant at 15 MPa with a constant shear velocity applied to one wall while the other is held stationary. We vary the coefficient of friction between the particles and wall and monitor the shear strength, distribution of forces between particles, force chain orientation, localization of shear, and porosity distribution in the shear zone. We find that when wall friction is equal to gouge friction, large values of interparticle friction promote localization near the shear zone boundary due to the inefficiency of shearing many high friction contacts in the granular zone. A rough fault zone balances this effect by necessitating that shear occurs within the gouge zone and not strictly at the gouge-wall interface; however, variations in the shearing layer are still observed depending on the particle friction. For rough

  10. Feedback between deformation and magmatism in the Lloyds River Fault Zone: An example of episodic fault reactivation in an accretionary setting, Newfoundland Appalachians

    NASA Astrophysics Data System (ADS)

    Lissenberg, C. Johan; van Staal, Cees R.

    2006-08-01

    The Lloyds River Fault Zone is a 10-15 km wide amphibolite-grade shear zone that formed during the Ordovician Taconic Orogeny. It separates ophiolites and arc-back-arc complexes formed in Iapetus from a peri-Laurentian microcontinent (Dashwoods microcontinent). The Lloyds River Fault Zone comprises three high-strain zones, dominantly composed of mylonitic amphibolites, separated by less deformed plutonic rocks. Structural, age and metamorphic data suggest the Lloyds River Fault Zone accommodated sinistral-oblique underthrusting of ophiolites underneath the Dashwoods microcontinent prior to 471 ± 5 Ma at 800°C and 6 kbar. Plutonic rocks within the Lloyds River Fault Zone comprise two suites dated at 464 ± 2 plus 462 ± 2 and 459 ± 3 Ma, respectively. The younger age of the plutons with respect to some of the amphibolites, evidence for magmatic deformation, and the elongate nature of the plutons parallel to the Lloyds River Fault Zone suggest they were emplaced within the fault zone during deformation. Both intrusive episodes triggered renewed deformation at high temperatures (770-750°C), illustrating the positive feedback between deformation and magmatism. Offshoots of the plutons intruded undeformed ophiolitic gabbros outside the Lloyds River Fault Zone. Deformation localized within the intrusive sheets, coeval with static contact metamorphism of the host gabbros, leading to the development of new, small-scale shear zones. This illustrates that channeling of plutons into shear zones and nucleation of shear zones in melt-rich zones may occur simultaneously within the same fault system.

  11. 3-D Vs ambient noise tomography around the Meishan fault zone in southwestern Taiwan from dense seismic array

    NASA Astrophysics Data System (ADS)

    Cheng, C. Y.; Kuochen, H.; Yao, H.; Chen, K. X.; Ma, K. F.

    2016-12-01

    1906 7.1 Meishan earthquake occurred near Chiayi city in southwestern Taiwan and resulted in more than three thousands casualties and six thousands of buildings collapsed. Based on the geological survey, the Meishan fault zone a right-lateral strike-slip fault with a length of 25 kilometers, was the main contributor for this event. In previous studies, many researchers have done lot of investigation about the Meishan Fault zone, including geologic researches at surface and seismic explorations at shallow crust. However, there is still limited information about 3-D shallow crustal structure of this study area. Therefore, we deployed 100 Texan instruments ( 2 km interval) between Aug. and Nov. 2015, covered around the Meishan Fault zone. We obtained a 3-D shear wave shallow crustal velocity structure using ambient noise tomography. The reliable periods of phase velocity from Rayleigh wave are 0.6 to 6.8 seconds, which correspond to around 0-6 km at depths. As a result, the sub-surface structure around the Meishan fault zone is very complex. The structures of the basement varied across the Meishan fault zone: the basement is thicker in the north of the fault zone than that in the south. Also, Xiaomei anicline near the fault zone is observed from this study.

  12. Variations in radon activity in the crustal fault zones: Spatial characteristics

    NASA Astrophysics Data System (ADS)

    Seminsky, K. Zh.; Bobrov, A. A.; Demberel, S.

    2014-11-01

    The data of the profile gas emanation survey conducted on three spatial scales in separate regions of the Mongolia-Baikal seismic belt are generalized to establish the regularities of the spatially heterogeneous distribution of soil radon activity above the active faults in the Earth's crust. It is shown that the shapes, sizes, and contrast of the near-fault radon anomalies are complicated by erosion and weathering; however, the critical role in their formation is played by the structural-geological controls, which determine the internal structure and recent activity of the fault zones. As a consequence, the cross-fault shape of the studied radon anomalies is vitally controlled by four structural situations, which correspond to the combinations of the structural type of the fault (localized/distributed) and the presence/absence of the fine filler material in the zone controlled by the fault. The cross-fault dimension of the emanation anomaly is commensurate or slightly larger than the width of the fault zone comprising all the fractures and joints associated with the formation of the main fault, which, due to the low permeability of the tectonites, is in most cases marked by the lowest concentration of soil radon. The contrast of the emanation anomalies, which we suggest to estimate in terms of a relative parameter K Q, gravitates to certain levels of this parameter. This provides the basis for distinguishing five groups of the fault zones with low ( K Q ≤ 2), moderate (2 < K Q ≤ 3), increased (3 < K Q ≤ 5), high (5 < K Q ≤ 10), and ultrahigh ( K Q > 10) radon activity. The previous studies show that for increasing the efficiency of the emanation survey in the fault zones, it is advisable to set up long profiles, reduce the measurement step in the vicinities of the main faults, specify the threshold of identifying the anomalies at the arithmetic mean level over the profile, and use the relative parameter K Q for comparing and estimating the faults in terms

  13. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  14. Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D.; Finkel, R. C.

    2010-12-01

    We examine patterns in fault slip rates through time and space across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38-39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and Be-10 surface exposure dating, we define mean fault slip rates, and by utilizing markers of different ages (generally, ~20 ka and ~150 ka), we examine rates through time and interactions among multiple faults over 10-100 ky timescales. At each site for which data are available for the last ~150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~20 ky and ~150 ky timescales): 0.3 ± 0.1 mm/yr (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 +0.3/-0.1 mm/yr along the West Fork of the Carson River at Woodfords. Our data permit that rates are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~20 km between the northern Mono Basin (1.3 +0.6/-0.3 mm/yr at Lundy Canyon site) and the Bridgeport Basin (0.3 ± 0.1 mm/yr). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin reflects a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveal that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection, extension is accommodated within a diffuse zone of

  15. Structure and Particle Size Distribution of Non-tectonic Faults - Difference from Tectonic Faults

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Chigira, M.

    2009-04-01

    Non-tectonic faults are commonly formed by mass movements but their structures and formative processes have been scarcely studied in spite of their importance in slope development and slope stability. We observed structures of non-tectonic faults and analyzed particle size distribution of the material from the shear zones of non-tectonic faults and compared these results with those of tectonic faults. We clarified the structures of non-tectonic faults in pelitic schist by observing X-ray computer tomography images and cross-sections of paraffin-impregnated core samples that have been recovered from the subsurface by the hybrid drilling technique. We identified structures at various stages of non-tectonic fault development. Shearing within black layers, which are rich in graphite, dominates at an incipient stage. Then, rotation, fracturing, and pulverization of rock proceed, forming breccias and fine fractions in a fracture zone. Fracture zone at an early stage have many open fractures, which indicates a low confining pressure during deformation. With the development of a fracture zone, open fractures decrease and fine fractions increase in amount. Finally shearing deformation would be dominated by cataclastic flow in fine fractions. This stage is at a mature stage, where the structure becomes very similar to that of tectonic faults so that it cannot be distinguished from a tectonic fault by structure only. However, particle size distribution could indicate the formative condition of fine fractions in a fracture zone. We sampled "gauge" from several mature fracture zones in two landslide sites of pelitic schist, and analyzed their particle size distributions from 20 nm to 1 mm by using a laser diffraction particle size analyzer. The ultra micro particles in the fracture zone of a non-tectonic fault can be assumed to be primary particles which are less affected by alteration, and their particle size distributions could reflect the conditions of fracturing. The

  16. Southeastern extension of the Lake Basin fault zone in south- central Montana: implications for coal and hydrocarbon exploration ( USA).

    USGS Publications Warehouse

    Robinson, L.N.; Barnum, B.E.

    1986-01-01

    The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors

  17. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  18. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    NASA Astrophysics Data System (ADS)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars; Boldreel, Lars Ole

    2015-04-01

    The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area, although none of the mapped earthquakes appear to have occurred on the Carlsberg Fault. We examined the fault evolution by a combination of very high resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The chalk stratigraphy and the localization of the fault zone at depth was inferred from previous studies by other authors. We extrapolated the Jurassic and Triassic stratigraphy from the Pomeranian Bay to the area of investigation. The fault zone shows a flower structure in the Triassic as well as in Cretaceous sediments. The faulting geometry indicates strong influence of Triassic processes when subsidence and rifting prevailed in the Central European Basin System. Growth strata within the surrounding Höllviken Graben reveal syntectonic sedimentation in the lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighbouring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise

  19. Structural superposition in fault systems bounding Santa Clara Valley, California

    USGS Publications Warehouse

    Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.

    2015-01-01

    Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.

  20. Mechanical Evolution of Relay Zones in Normal Faulted Terranes: Insights From Three Dimensional Elastoplastic Finite Element Models

    NASA Astrophysics Data System (ADS)

    Goteti, R.; Mitra, G.; Sussman, A.; Lewis, C.

    2009-05-01

    We present a 3D nonlinear finite element model to gain insights into the evolution of relay zones in normal faulted terranes. The model comprises two listric frictional sliding surfaces that act as faults and are arranged en echelon in an elastoplastic medium. We have investigated various Synthetic and Antithetic (both convergent and divergent) relay zone configurations to study the influence of (1) fault overlap/spacing ratio (-2 to 2), (2) material strength (3) coefficient of sliding friction on the faults (0.1 - 0.6) and (4) orthogonal vs. oblique extension, on the incremental evolution of stresses and strain paths in relay zones. The results suggest that a relay zone evolves in a three dimensional strain field under a combination of rotational and distortional strains. In isotropic rocks, the maximum extensional strains in the relay zone initiate oblique to regional extension and progressively rotate toward regional extension with increasing displacement on the faults. The relay zone evolves along a non-coaxial strain path and the total strain ellipsoid shape (oblate vs. prolate) is dependent on the relative orientation of the primary faults and amount of extension on them, and structural position in the relay zone. With all other parameters being identical, magnitudes of von Mises stresses at the ground surface are highest in convergent relay zones and lowest in divergent relay zones. Thus subsidiary oblique structures are more likely to develop in convergent relay zones than in synthetic or divergent relay zones. Assuming uniform fault propagation, it is possible to gain insights into relay zone evolution during fault tip propagation by comparing models with different fault overlap/spacing ratios. Model plastic strains suggest that hard linkage can develop between adjacent faults with a gap or minimal overlap; however, the occurrence of oblique, strain transferring structures increases with increasing fault overlap. The orientations of the maximum extensional

  1. Shallow-generated damage within non-planar strike-slip fault zones: role of sedimentary rocks in slip accommodation, SW Holy Cross Mountains, Poland

    NASA Astrophysics Data System (ADS)

    Rybak-Ostrowska, Barbara; Konon, Andrzej; Domonik, Andrzej; Poszytek, Anna; Uroda, Joanna

    2017-09-01

    We investigated exhumed damage zones of dextral strike-slip faults dissecting the south-western part of the Mesozoic cover of the Late Palaeozoic Holy Cross Mountains Fold Belt. Structural observations allow to examine the top 1-2 km of the fault zones that deformed asymmetrically with the most intense damage controlled by the non-planar geometry of the faults. The deformational style of fault zones and the roughness of slip surfaces on subsidiary faults within deflections of fault traces in the restraining and releasing bends were facilitated by rock fabric and porosity. High porous sandstones enhanced genesis of cataclastic shear bands within the damage zone and the smooth slip surfaces. Low porous limestones enhanced the formation of dilatant structures infilled with calcite within damage zones and rough slip surfaces. The complex structural pattern of damage zones records multiple episodes of slip and shows evidence of continuous seismic-aseismic modes of fault slip behaviour.

  2. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  3. Fault zone evolution in a Cenozoic inversion tectonic setting, SE Korea

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Lee, Minjoo; Han, Seung-Rok

    2010-05-01

    The Korean peninsula has been considered as a tectonically safe region from earthquakes, because it is located in a stable margin of the Eurasian plate. However, more than 30 Quaternary faults have recently been reported from the southeastern part of the Korean peninsula. The studied fault zone is an N-S trending fault located in the northern extent of the Quaternary Eupcheon Fault, which composed of several fault gouges indicating multiple deformations. The fault zone (fault core) is exposed over 1 km long and the thickness is up to 2m. The fault gouge zone is composed of several different colored gouge bands. Well-exposed vertical and horizontal sections are analyzed so as to understand the characteristics of the fault and fault zone evolution. The analyzed kinematic indicators such as cleavages, lineations and slickenlines suggest that the fault underwent early normal slip under SE extension and was later reactivated under NNW compression resulting in inversion tectonics. Major fault zones do not cross-cut each other; instead, the fault gouges within the fault zone split and merge into other fault zones. Fault rocks developed in this fault zone show asymmetrical features including lens-shaped breccias blocks in gouge zones, and asymmetric distributions of grain size and fracture density, indicating mature fault system and asymmetric fault zone evolution. The hanging wall block of the fault shows relatively highly damaged fracture patterns indicating that the hanging wall is weaker than footwall. Therefore, detailed analysis of fault and fracture patterns, and characteristics of fault zones must be very useful in evaluation of fault zone evolution and characteristics of foundation.

  4. Late Neogene kinematics of intra-arc oblique shear zones: The Petilia-Rizzuto Fault Zone (Calabrian Arc, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    van Dijk, J. P.

    1994-10-01

    The kinematics of intra-arc shear zones play a key role in the secondary shaping of orogenic arcs such as the Calabrian Arc (central Mediterranean). Comparison of the Neogene structural development of the Petilia-Rizzuto Fault Zone and the basement structure of the bordering Sila massif reveals that the fault zone is the surface expression of a deep NW-SE trending sinistral crustal oblique shear zone. This shear zone continues over a length of more than 130 km across the northern segment of the Calabrian Arc and shows a post-Eocene sinistral displacement of about 50 km. The late Neogene forearc basin development and syndepositional tectonics along the fault zone are reconstructed in great detail by analyzing the middle Miocene-Recent tectonic sequence stratigraphy. A strike-slip cycle can be recognized whereby the subsequent activity of Riedel shears, tensional faults, and P shears, positive flower structures and principle displacement wrench faults, can accurately be traced in time. Observed phenomena are discussed in terms of the activity of a conjugate system of oblique thrust zones within the growing accretionary complex. The evolution of special types of thrust belt basins is illustrated. These include oblique thin-skinned pull-apart basins, oblique rhomboidal "harmonica" basins, and "detached slab" basins (new terms introduced here), evolving one into the other. A new feature illustrated is the recurrent basin inversion which generated passive roof duplexes through back-shear motion and out-of-sequence thrusting along the wedge. The fault patterns and the style of inversion tectonics imply an E-W directed axis of effective compressive stress in this part of the arc. This resulted from an interaction of (1) local E-W directed compression related to a differential displacement of two parallel segments of the arc (generated by the migration to the southeast of the Calabrian Arc and opening of the Tyrrhenian backarc basin); (2) alternating NW-SE directed

  5. Characteristic fault zone architectures as result of different failure modes: first results from scale models of normal faulting

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Urai, Janos L.

    2014-05-01

    It is known that fault zone architecture and structural style vary distinctly between tensile and shear failure modes, with strong effects on the associated fluid flow properties. A systematically comparative study in 3D has not been done so far, though. Inferring transport properties in sub-seismic scale from fault network geometries would have important applications in brittle lithologies such as carbonates or basalts. We present a method to investigate the structural properties of fault networks in 3D using cohesive hemihydrate powder (CaSO4 * 1/2H2O) embedded in two layers of dry fine grained sand. The material properties of the sand and powder are well known from previous studies. By increasing the overburden stress the failure mode of the powder can be changed from tensile to shear failure. Using hemihydrate powder allows us to harden and excavate the layer after the deformation by wetting the model slowly and brushing off the overburden sand. Visual investigation of the 3D structures is then possible in very high resolution. Analyses using photographs and 3D models from photogrammetry include qualitative observations as well as measurements of e.g. strike of fault segments, fault dip or graben width. We show a total of eight experiments that produce graben faults at four different overburden stresses (0, 1.5, 3, 6 cm overburden thickness) and at two increasing stages of strain (3 and 5 mm). In this set of models we describe two structural domains that show characteristic differences in their defining attributes. The tensile domain at small overburden stress (0 and 1.5 cm overburden) shows strongly dilatant faults with open fissures, vertical faults and large changes in strike at segment boundaries. The shear domain, formed by larger overburden stress (6 cm overburden), shows shallower fault dips around 65° with striations, numerous undulating fault branches and splays with low-angle fault intersections. Models with 3 cm overburden show a hybrid failure type

  6. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico

    USGS Publications Warehouse

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.

    2005-01-01

    The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep

  7. San Andreas tremor cascades define deep fault zone complexity

    USGS Publications Warehouse

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  8. An algorithm for automated identification of fault zone trapped waves

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Ben-Zion, Y.

    2015-08-01

    We develop an algorithm for automatic identification of fault zone trapped waves in data recorded by seismic fault zone arrays. Automatic S picks are used to identify time windows in the seismograms for subsequent search for trapped waves. The algorithm calculates five features in each seismogram recorded by each station: predominant period, 1 s duration energy (representative of trapped waves), relative peak strength, arrival delay and 6 s duration energy (representative of the entire seismogram). These features are used collectively to identify stations in the array with seismograms that are statistical outliers. Applying the algorithm to large data sets allows for distinguishing genuine trapped waves from occasional localized site amplification in seismograms of other stations. The method is verified on a test data set recorded across the rupture zone of the 1992 Landers earthquake, for which trapped waves were previously identified manually, and is then applied to a larger data set with several thousand events recorded across the San Jacinto fault zone. The developed technique provides an important tool for systematic objective processing of large seismic waveform data sets recorded near fault zones.

  9. An Ambient Seismic Noise Tomography Focused on the New Madrid Fault Zone

    NASA Astrophysics Data System (ADS)

    Walsh, R.; Lawrence, J. F.

    2013-12-01

    The ambient seismic field has emerged as a viable tool for imaging Earth structure through the estimation of surface-wave Green's functions. The seismotectonic context of the New Madrid Fault Zone is puzzling, and we aim to better understand the structure using surface waves. The signature of an active fault zone should translate into relatively high attenuation and clear velocity variations. We use the Spatial AutoCorrelation Method to extract phase velocity and attenuation measurements from USArray mobile seismic network data in the central and eastern United States. We produce images of spatial variation in phase velocity and attenuation, sampling the crust and upper mantle at various depths. We investigate the lithospheric context within which the New Madrid fault zone resides, to help shed light on its likelihood for future seismic hazard.

  10. Fault structure and mechanics of the Hayward Fault, California from double-difference earthquake locations

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    The relationship between small-magnitude seismicity and large-scale crustal faulting along the Hayward Fault, California, is investigated using a double-difference (DD) earthquake location algorithm. We used the DD method to determine high-resolution hypocenter locations of the seismicity that occurred between 1967 and 1998. The DD technique incorporates catalog travel time data and relative P and S wave arrival time measurements from waveform cross correlation to solve for the hypocentral separation between events. The relocated seismicity reveals a narrow, near-vertical fault zone at most locations. This zone follows the Hayward Fault along its northern half and then diverges from it to the east near San Leandro, forming the Mission trend. The relocated seismicity is consistent with the idea that slip from the Calaveras Fault is transferred over the Mission trend onto the northern Hayward Fault. The Mission trend is not clearly associated with any mapped active fault as it continues to the south and joins the Calaveras Fault at Calaveras Reservoir. In some locations, discrete structures adjacent to the main trace are seen, features that were previously hidden in the uncertainty of the network locations. The fine structure of the seismicity suggest that the fault surface on the northern Hayward Fault is curved or that the events occur on several substructures. Near San Leandro, where the more westerly striking trend of the Mission seismicity intersects with the surface trace of the (aseismic) southern Hayward Fault, the seismicity remains diffuse after relocation, with strong variation in focal mechanisms between adjacent events indicating a highly fractured zone of deformation. The seismicity is highly organized in space, especially on the northern Hayward Fault, where it forms horizontal, slip-parallel streaks of hypocenters of only a few tens of meters width, bounded by areas almost absent of seismic activity. During the interval from 1984 to 1998, when digital

  11. Mnin restraining stepover - evidence of significant Cretaceous-Cenozoic dextral strike-slip faulting along the Teisseyre-Tornquist Zone?

    NASA Astrophysics Data System (ADS)

    Konon, Andrzej; Ostrowski, Szymon; Rybak-Ostrowska, Barbara; Ludwiniak, Mirosław; Śmigielski, Michał; Wyglądała, Michał; Uroda, Joanna; Kowalczyk, Sebastian; Mieszkowski, Radosław; Kłopotowska, Agnieszka

    2016-09-01

    A newly recognized Mnin restraining stepover is identified in the Permo-Mesozoic cover of the western part of the Late Palaeozoic Holy Cross Mountains Fold Belt (Poland), within a fault pattern consisting of dextral strike-slip faults. The formation of a large contractional structure at the Late Cretaceous - Cenozoic transition displays the significant role of strike-slip faulting along the western border of the Teisseyre-Tornquist Zone, in the foreland of the Polish part of the Carpathian Orogen. Theoretical relationships between the maximum fault offsets/ mean step length, as well as between the maximum fault offsets/mean step width allowed the estimation of the values of possible offsets along the Snochowice and Mieczyn faults forming the Mnin stepover. The estimated values suggest displacements of as much as several tens of kilometres. The observed offset along the Tokarnia Fault and theoretical calculations suggest that the strike-slip faults west of the Late Palaeozoic Holy Cross Mountains Fold Belt belong to a large strike-slip fault system. We postulate that the observed significant refraction of the faults forming the anastomosing fault pattern is related also to the interaction of the NW-SE-striking faults formed along the western border of the Teisseyre- Tornquist Zone and the reactivated WNW-ESE-striking faults belonging to the fault systems of the northern margin of the Tethys Ocean.

  12. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  13. Thrust fault zones in the Allegheny Plateau of north-central Pennsylvania

    USGS Publications Warehouse

    Pohn, Howard A.; Purdy, Terri L.

    1979-01-01

    Field investigations in the Williamsport Valley identify lineaments found on Landsat III images, have shown the presence of six discrete fault zones that strike subparallel to the trend of the Appalachian folds. These zones range from 0.5 to 1.75 km in width and from at least 10 km to more than 50 km in length. The individual thrust faults within each zone occur in 'staircase-type' folds and are at a low angle to bedding. Although each individual fault may have 0nly centimeters to displacement, many of these individual faults appear to exist within the six zones. We believe that the stress that produced that Valley and Ridge folds to the south was largely dissipated in faulting in the Williamsport Valley. This dissipation of the stress would explain the presence of only broad open folds to the north on the Allegheny Plateau. The extreme faulting in the Williamsport Valley along with the unique 'staircase' and 'reverse staircase' structures may result in fracture porosity traps at depth.

  14. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Kuo, Li-Wei; Song, Sheng-Rong; Suppe, John; Yeh, En-Chao

    2016-03-01

    Fault mirrors (FMs) are naturally polished and glossy fault slip surfaces that can record seismic deformation at shallow depths. They are important for investigating the processes controlling dynamic fault slip. We characterize FMs in borehole samples from the hanging wall damage zone of the active Hsiaotungshi reverse fault, Taiwan. Here we report the first documented occurrence of the combination of silica gel and melt patches coating FMs, with the silica gel resembling those observed on experimentally formed FMs that were cataclastically generated. In addition, the melt patches, which are unambiguous indicators of coseismic slip, suggest that the natural FMs were produced at seismic rates, presumably resulting from flash heating at asperities on the slip surfaces. Since flash heating is efficient at small slip, we propose that these natural FMs represent fossils of small earthquakes, formed in either coseismic faulting and folding or aftershock deformation in the active Taiwan fold-and-thrust belt.

  15. Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California

    USGS Publications Warehouse

    Spudich, P.; Olsen, K.B.

    2001-01-01

    The Calaveras fault lies within a low velocity zone (LVZ) 1-2 km wide near Gilroy, California. Accelerographs G06, located in the LVZ 1.2 km from the Calaveras fault, and G07, 4 km from G06, recorded both the M 6.2 1984 Morgan Hill and the M 6.9 1989 Loma Prieta earthquakes. Comparison of the ground motions shows that a large 0.6-1.0 Hz velocity pulse observed at G06 during the Morgan Hill event may be amplified by focussing caused by the LVZ. Such amplified waves might be a mappable seismic hazard, and the zone of increased hazard can extend as much as 1.2 km from the surface trace of the fault. Finite-difference simulations of ground motions in a simplified LVZ model show a zone of amplified motion similar to the observations.

  16. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  17. Holocene activity of the Rose Canyon fault zone in San Diego, California

    NASA Astrophysics Data System (ADS)

    Lindvall, Scott C.; Rockwell, Thomas K.

    1995-12-01

    The Rose Canyon fault zone in San Diego, California, has many well-expressed geomorphic characteristics of an active strike-slip fault, including scarps, offset and deflected drainages and channel walls, pressure ridges, a closed depression, and vegetation lineaments. Geomorphic expression of the fault zone from Mount Soledad south to Mission Bay indicates that the Mount Soledad strand is the most active. A network of trenches excavated across the Mount Soledad strand in Rose Creek demonstrate a minimum of 8.7 m of dextral slip in a distinctive early to middle Holocene gravel-filled channel that crosses the fault zone. The gravel-filled channel was preserved within and east of the fault but was removed west of the fault zone by erosion or possibly grading during development. Consequently, the actual displacement of the channel could be greater than 8.7 m. Radiocarbon dates on detrital charcoal recovered from the sediments beneath the channel yield a maximum calibrated age of about 8.1±0.2 kyr. The minimum amount of slip along with the maximum age yield a minimum slip rate of 1.07±0.03 mm/yr on this strand of the Rose Canyon fault zone for much of Holocene time. Other strands of the Rose Canyon fault zone, which are east and west of our site, may also have Holocene activity. Based on an analysis of the geomorphology of fault traces within the Rose Canyon fault zone, along with the results of our trenching study, we estimate the maximum likely slip rate at about 2 mm/yr and a best estimate of about 1.5 mm/yr. Stratigraphie evidence of at least three events is present during the past 8.1 kyr. The most recent surface rupture displaces the modern A horizon (topsoil), suggesting that this event probably occurred within the past 500 years. Stratigraphie and structural relationships also indicate the occurrence of a scarp-forming event at about 8.1 kyr, prior to deposition of the gravel-filled channel that was used as a piercing line. A third event is indicated by the

  18. Fault-Tolerant, Multiple-Zone Temperature Control

    NASA Technical Reports Server (NTRS)

    Granger, James; Franklin, Brian; Michalik, Martin; Yates, Phillip; Peterson, Erik; Borders, James

    2008-01-01

    A computer program has been written as an essential part of an electronic temperature control system for a spaceborne instrument that contains several zones. The system was developed because the temperature and the rate of change of temperature in each zone are required to be maintained to within limits that amount to degrees of precision thought to be unattainable by use of simple bimetallic thermostats. The software collects temperature readings from six platinum resistance thermometers, calculates temperature errors from the readings, and implements a proportional + integral + derivative (PID) control algorithm that adjusts heater power levels. The software accepts, via a serial port, commands to change its operational parameters. The software attempts to detect and mitigate a host of potential faults. It is robust to many kinds of faults in that it can maintain PID control in the presence of those faults.

  19. Strain compatibility and fault linkage in relay zones on normal faults

    NASA Astrophysics Data System (ADS)

    Long, Jonathan J.; Imber, Jonathan

    2012-03-01

    Relay zones on normal faults are unlikely to have tabular geometries as depicted in idealised models. Rotation of a relay ramp between non-parallel and non-planar relay-bounding faults will inevitably lead to strain compatibility problems causing open gaps or overlaps within the relay zone. Linkage of relay-bounding faults does not evolve from a single branch point. Rather, linkage occurs at multiple points along the fault tip lines giving rise to initially discontinuous branch lines. Where linkage occurs along a discontinuous slip-aligned branch line, displacement at different levels within the relay zone is partitioned between variable amounts of ramp rotation and slip across the branch line. The linking fault propagates when strain compatibility can no longer be maintained by continuous deformation processes, such as thickening or thinning of incompetent layers within the relay ramp. Step-like changes in vertical displacement vs. distance (D - x) profiles on horizons containing apparently intact relay ramps are probably indicative of incipient breaching and can be used predict the presence of a slip-aligned branch line in the sub-surface. Despite the complexity of the strain distribution within relay zones, the total vertical displacement across the relay remains geometrically coherent at all levels.

  20. Comparing slip behavior and hydromechanical properties of fault systems in the Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Saffer, D. M.; Marone, C.; Knuth, M. W.

    2010-12-01

    At subduction zones, the plate boundary system includes several active faults, including the master décollement and splay faults that branch from it and cut the overriding margin wedge. The partitioning of strain accumulation and slip on these structures may provide important information about the mechanical behavior of the plate boundary, and for earthquake rupture and tsunamigenesis. We conducted laboratory experiments to measure the frictional and hydrologic properties of fault and wall rock from three distinct fault zone systems sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These fault zones are: (1) a major out-of-sequence thrust fault that terminates ~25 km landward of the trench and extends for >120 km along-strike, termed the “megasplay”; (2) the frontal thrust, comprising a region of diffuse thrust faulting near the trench; and (3) the décollement zone sampled 2 km from the trench. We observe predominantly low friction (µ ≤ 0.46), and low permeability (k ≤ 7.00x10-19 m2) consistent with the clay-rich composition of the samples. Samples from the décollement zone are both consistently weaker (µ ≤ 0.30) and less permeable than those from the megasplay area and the frontal thrust system. Fault zone material from the megasplay is both significantly weaker and less permeable than the surrounding wall rocks, a pattern not observed in the frontal thrust and décollement. All samples exhibit velocity-strengthening frictional behavior over most of the experimental conditions we explored, consistent with aseismic slip at shallow depths. Slip stability does not vary between fault zone and wall rock in any of the three settings. A previously observed minimum in the friction rate parameter a-b at sliding velocities of ~1-3 µm/s (~0.1-0.3 m/d) for samples from the megasplay fault zone is also observed for both the frontal thrust and décollement, and our data suggests that this phenomenon may be controlled

  1. Interseismic Strain Localization in the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Lindsey, Eric O.; Sahakian, Valerie J.; Fialko, Yuri; Bock, Yehuda; Barbot, Sylvain; Rockwell, Thomas K.

    2014-11-01

    We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2-3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2-1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181-1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14-18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.

  2. Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2015-12-01

    High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.

  3. Are faults preferential flow paths through semiarid and arid vadose zones?

    NASA Astrophysics Data System (ADS)

    Sigda, John M.; Wilson, John L.

    2003-08-01

    Numerous faults crosscut the poorly lithified, basin-fill sands found in New Mexico's Rio Grande rift and in other extensional regimes. The deformational processes that created these faults sharply reduced both fault porosity and fault saturated hydraulic conductivity by altering grains and pores, particularly in structures referred to as deformation bands. The resulting pore distribution changes, which create barriers to saturated flow, should enhance fault unsaturated flow relative to parent sand under the relatively dry conditions of the semiarid southwest. We report the first measurements of unsaturated hydraulic properties for undisturbed fault materials, using samples from a small-displacement normal fault and parent sands in the Bosque del Apache Wildlife Refuge, central New Mexico. Fault samples were taken from a narrow zone of deformation bands. The unsaturated flow apparatus (UFA) centrifuge system was used to measure both relative permeability and moisture retention curves. We compared these relations and fitted hydraulic conductivity-matric potential models to test whether the fault has significantly different unsaturated hydraulic properties than its parent sand. Saturated conductivity is 3 orders of magnitude less in the fault than the undeformed sand. As matric potential decreases from 0 to -200 cm, unsaturated conductivity decreases roughly 1 order of magnitude in the fault but 5-6 orders of magnitude in undeformed sands. Fault conductivity is greater by 2-6 orders of magnitude at matric potentials between -200 and -1000 cm, which are typical potentials for semiarid and arid vadose zones. Fault deformation bands have much higher air-entry matric potential values than parent sands and remain close to saturation well after the parent sands have begun to approach residual moisture content. Under steady state, one-dimensional, gravity-driven flow conditions, moisture transport and solute advection is 102-106 times larger in the fault material than

  4. Elongation Of The North Anatolian Fault Zone in the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Kurtulus, C.; Canbay, M. M.

    2003-04-01

    The North Anatolian Fault Zone (NAFZ) is a 1500 km long, seismically active, right lateral strike sleep fault that accommodates the relative motion between the Anatolian and Pontide blocks. The Sea of Marmara is an intra-continental sea lying along the western part of the NAFZ. There are two major fault systems in the Sea of Marmara one of which consists of the east-west striking faults and the other one is made up of NE-SW-trending faults that dissect the first group. The east, middle and the south parts of the Sea of Marmara are interpreted as pull-apart basins characterized by shear stresses. The interpretation of the structural framework indicates that the northern strand of the NAFZ traverses the Gulf of Izmit and deep Marmara to bind the Gulf of Saros and the middle strand of it traverses the Gulf of Gemlik, Bandirma and the Gulf of Erdek.

  5. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  6. Paleoseismic results of the east strand of the Lower Tagus Valley Fault Zone, Central Portugal.

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana; Besana-Ostman, Glenda; Heleno, Sandra; Fonseca, Joao; Domingues, Ana; Pinheiro, Patricia; Pinto, Luis

    2014-05-01

    The Lower Tagus Valley Fault Zone (LTVFZ) is a northeast-southwest trending tectonic structure located within the Lower Tagus Valley (LTV), in central Portugal associated with at least two historical events: the 1909 Mw 6.0-6.2 Benavente earthquake and the 1531 Mw 6.9 earthquake. Recent investigations indicate that the relatively linear valley associated with the Lower Tagus River is controlled by active faults in varying geometry and slip rates. Based on mapped traces, LTVFZ is about 80 kilometers long and transects Miocene to Holocene deposit. The east and west strands of the fault zone may have different level of activity based on the variable clarity of mapped morphological expressions. In recent studies new fault strands were identified using aerial photos and field survey on eastern side of LTV. These eastern faults have a trend that almost parallel those active traces previously mapped by Besana-Ostman et al., 2012 on the western side of the valley. Quaternary activity of this fault deforms fluvial terraces and produces morphological features related to left-lateral strike-slip movement like river offsets. In this work we present the results of the first paleoseismic analysis carried out on this strand of the fault. Trenching studies shows that surface rupture events have occurred affecting Tagus fluvial terraces. The geometry of faulting exposed in the trench provides valuable insights into the kinematics of the fault, and provides a preliminary minimum net slip rate. New relative ages of the deformation are established on preliminary trenching results, and recurrence intervals will be determined upon receipt of results of sample processing for C14 dating. The aim of this work is to contribute with new data to parameterize the paleoseismic activity of this active fault in order to be included in the future seismic hazard assessments. Further studies are proposed and underway to characterize the LTVFZ, including high-resolution LIDAR images analysis, more

  7. The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.

    2013-12-01

    Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins

  8. Paleostress analysis of a subduction zone megasplay fault - An example from the Nobeoka Thrust, Japan

    NASA Astrophysics Data System (ADS)

    Kawasaki, R.; Hamahashi, M.; Hashimoto, Y.; Otsubo, M.; Yamaguchi, A.; Kitamura, Y.; Kameda, J.; Hamada, Y.; Fukuchi, R.; Kimura, G.

    2014-12-01

    The megasplay faults in subduction zones, branching from plate boundary thrusts, are thought to have a potential to generate earthquakes and accompany tsunamis. Paleo-splay faults exposed on land often preserve clear deformation features of the seismogenic zone and provide information on the fault mechanisms at depth. One of the important information that can be obtained from exhumed faults is paleo-stress field. Here we investigated the Nobeoka Thrust, a fossilized megasplay fault in the Shimanto Belt in Kyushu, which consists of phyllite and sandstone-shale mélanges that have experienced maximum burial temperatures of ~250 -320°C, [Kondo et al., 2005, Tectonics 24.6(2005)]. Kondo et al. (2005) described two orientations of slickensides from the outcrop, suggesting the existence of flexural gentle fold in kilometer scale. The paleo-stress fields preserved in the Nobeoka Thrust is likely to represent multiple stages occurring during burial and uplift, enabling the reconstruction of fault motions along the fault. In this study, we analyzed paleo-stress from slip vectors on small faults observed in the drilled cores of the Nobeoka Thrust obtained from scientific drilling performed in 2011. Small faults are expected to be less-reactivated and their population is much larger than that of large faults, providing high statistical reliability. Multiple inverse method [MIM; Yamaji, 2000, Journal of Structural Geology, 22, 441-452] was applied to the small faults. K-means clustering [Otsubo et al. , 2006, Journal of Structural Geology, 28, 991-997] was applied to stress tensors detected by the MIM for estimating optimal solutions. The results reveal stress solution of four directions existing throughout the drilled range. The stress solution is applied to faults distributed among different lithology, and therefore the paleo-stress is thought to have acted on the whole cores. By drawing the stress polygon from the direction of the stress solution and the stress rate, we

  9. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.-A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  10. Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

    SciTech Connect

    Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

    2009-03-30

    Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

  11. Deep view of the Subduction-Transform Edge Propagator (STEP) fault in the Calabrian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco Emanuele; Tiberti, Mara Monica; Basili, Roberto

    2016-04-01

    The Calabrian Subduction Zone plays a key role in the evolution of the central Mediterranean in the framework of the convergence between Africa and Europe. Here, the remnants of the World's oldest oceanic crust form a narrow NW-dipping slab passively subducting beneath the Calabrian Arc. Recently published high-resolution seismic profiles and bathymetric data of the western Ionian Sea highlight the presence of a NNW-SSE faulting system connected with a series of Plio-Pleistocene syn-tectonic basins. These features are correlated with the recent activity of a major NNW-SSE deformation zone confining the active subduction to the SW and interpreted as a Subduction-Transform Edge Propagator (STEP) fault. The goal of this work is to jointly reconstruct the geometry of the STEP fault and the subduction interface in its surroundings. We use multichannel seismic profiles acquired in the southwestern part of the Calabrian accretionary wedge to focus on the STEP fault geometry at depth and to analyse its relationships with shallow deformation features. The quantitative analysis and enhancement of seismic data provided an accurate image of the internal structure of the accretionary wedge at various depths, showing growth strata in the Plio-Pleistocene succession and major discontinuities in the lower crust. Our results depict a main subvertical, slightly east-dipping, lithospheric fault cutting the oceanic crust down to the Moho, and a rich set of associated secondary synthetic and antithetic faults. This picture also provides new insights on the STEP fault propagation mechanism. In addition, the tridimensional correlation of the STEP fault occurrences in various seismic profiles provides a preliminary scheme of its segmentation and highlights the relationships of this master fault with other main structural elements of the Calabrian Arc and Eastern Sicily, including some of the faults deemed to be responsible for major historical earthquakes in the area.

  12. Anatomy of a Complex Fault Zone: Land Seismic Reflection Imaging of the Tacoma Fault Zone, Washington State

    NASA Astrophysics Data System (ADS)

    Pape, K.; Liberty, L. M.; Pratt, T. L.

    2005-12-01

    Preliminary interpretations of new land-based seismic reflection images across the Tacoma fault zone in western Washington State document a complex pattern of faulting and folding. The Tacoma fault zone bounds gravity and aeromagnetic anomalies for 50 km across the central Puget Lowland west of the city of Tacoma, and tomography data suggest there is as much as 6 km of post-Eocene uplift of the hanging wall relative to Tacoma basin sediments to the south. We acquired four north-south seismic reflection profiles to define the character and tectonic history of the Tacoma fault zone. The 6-km long Powerline Road profile, located west of Case Inlet, perpendicularly crosses the 4-km-long Catfish Lake scarp discerned from Lidar data and trenching. The profile shows flat-lying strata on the south, but the north part of the profile is dominated by south-dipping Tertiary and older strata that appear to form the limb of an anticline. There appears to be at least one, and likely two faults in the Tertiary and older strata, although it is not clear these faults penetrate the shallowest Pleistocene strata. The 8.5-km long Carney Lake profile is located east of Case Inlet and spans two scarps imaged on Lidar data. This profile shows a similar geometry to the Powerline Road profile, folded and faulted Tertiary and older strata adjacent to flat-lying marine sediments of the Tacoma Basin. The 9-km long Bethel-Burley profile across the east portion of the Tacoma fault near Gig Harbor shows a significantly different reflector geometry than the profiles to the west. The Bethel-Burley profile is dominated by a strong, south-dipping reflection that becomes a prominent arch near the north end of the section. The strength of the reflector suggests that it marks the top of the Eocene basement rocks. South-dipping strata on this profile match those imaged on marine profiles from Carr Inlet. The new seismic reflection data support an interpretation in which the north edge of the Tacoma basin

  13. Structural character of the Ghost Dance fault, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, R.W.; Braun, C.A.; Linden, R.M.; Martin, L.G.; Ross-Brown, D. M.; Blackburn, R.L.

    1993-01-01

    Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: 1) dominantly north trending, 2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, 3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and 4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundance of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).

  14. Geometry and faults tectonic activity of the Okavango Rift Zone, Botswana: Evidence from magnetotelluric and electrical resistivity tomography imaging

    NASA Astrophysics Data System (ADS)

    Bufford, Kelsey Mosley; Atekwana, Estella A.; Abdelsalam, Mohamed G.; Shemang, Elijah; Atekwana, Eliot A.; Mickus, Kevin; Moidaki, Moikwathai; Modisi, Motsoptse P.; Molwalefhe, Loago

    2012-04-01

    We used Magnetotelluric (MT) and Electrical Resistivity Tomography (ERT) to investigate the geometry and nature of faults activity of the Okavango Rift Zone (ORZ) in Botswana, an incipient rift at the southern tip of the Southwestern Branch of the East African Rift System. The ORZ forms a subtle topographic depression filled with Quaternary lacustrine and fluvio-deltaic sediments and is bounded by NE-trending normal faults that are more prominent in the southeastern portion of the rift basin. An MT model from a regional (˜140 km) NW-SE trending MT transect shows that much of the rift basin is underlain by a broad asymmetrical low resistivity anomaly that slopes gently (˜1°) from NW to SE reaching a depth of ˜300 m. This anomaly suggests that faults in the southeastern part of the rift form a NW-dipping border fault zone and that the lacustrine and fluvio-deltaic sediments contain brackish to saline water filling the broad half-graben structure. Furthermore, MT and ERT models from detailed (4-13 km long) MT transects and resistivity profiles show that one border fault (Thamalakane) and two within-basin faults (Lecha and Tsau) in the southeastern part of the ORZ are characterized by a localized high conductivity anomaly while another border fault (Kunyere) lacks such an anomaly. These localized anomalies are attributed to channelized fresh surface water and saline groundwater percolating through these faults forming "fault zone conductors" and suggest actively displacing faults. The lack of a "fault zone conductor" in the Kunyere fault is interpreted as indicating diminishing displacement on this fault, and that strain was transferred to the Thamalakane fault further to the east. The fluids provide lubricant for the ORZ faults, hence preventing infrequent large magnitude earthquakes, but favoring frequent micro-seismicity.

  15. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  16. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    Donald Sweetkind; Ronald M. Drake II

    2007-11-27

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  17. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  18. Inelastic deformations of fault and shear zones in granitic rock

    SciTech Connect

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads.

  19. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports

  20. Heat flow and energetics of the San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Lachenbruch, Arthur H.; Sass, J. H.

    1980-11-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate (1) there is no evidence for local factional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, (2) average heat flow is high (˜2 HFU, ˜80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were ≲100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. Explanations for the low dynamic friction fall into two intergradational classes: those in which the fault is weak all of the time and those in which it is weak only during earthquakes (possibly just large ones). The first class includes faults containing anomalously weak gouge materials and faults containing materials with normal frictional properties under near-lithostatic steady state fluid pressures. In the second class, weakening is caused by the event (for example, a thermally induced increase in fluid pressure, dehydration of clay minerals, or acoustic fluidization). In this class, unlike the first, the average strength and ambient tectonic shear stress may be large, ˜1 kbar, but the stress allocated to elastic radiation (the apparent stress) must be of similar magnitude, an apparent contradiction with seismic estimates. Unless seismic radiation is underestimated for large earthquakes, it is difficult to justify average tectonic stresses on the main trace of the San Andreas fault in excess of

  1. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  2. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, C.; Kilgore, B.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  3. Late Quaternary slip rate and seismic hazards of the West Klamath Lake fault zone near Crater Lake, Oregon Cascades

    USGS Publications Warehouse

    Bacon, C.R.; Lanphere, M.A.; Champion, D.E.

    1999-01-01

    Crater Lake caldera is at the north end of the Klamath graben, where this N10??W-trending major Basin and Range structure impinges upon the north-south-trending High Cascades volcanic arc. East-facing normal faults, typically 10-15 km long, form the West Klamath Lake fault zone, which bounds the graben on its west side. The fault zone terminates on the south near the epicentral area of the September 1993 Klamath Falls earthquakes. It continues north past Crater Lake as the Annie Spring fault, which is within ~1 km of the west caldera rim, and Red Cone Spring fault. We have determined a long-term vertical slip rate of 0.3 mm/yr for these two faults using high-precision K-Ar and 40Ar/39Ar age measurements on offset lava flows ranging in age from ca. 35 to 300 ka. Holocene offset reported by Hawkins et al. and epicenters of eight MW 2 earthquakes in 1994 and 1995 indicate that the West Klamath Lake fautl zone is active. Empirical relations between earthquake magnitudes and scarp heights or fault lengths suggest that the fault zone is capable of producing earthquakes as large as MW 7 1/4 . Earthquakes on these or other faults of the zone could trigger landslides and rockfalls from the walls of the caldera, possibly resulting in large waves on Crater Lake.

  4. The Cenzonic tail derived structures of transtensional faults in Bohai Sea, East China

    NASA Astrophysics Data System (ADS)

    Wang, Guangzeng; Wu, Zhiping

    2017-04-01

    Two pre-exsiting giant strike-slip fault zones, Tanlu Fault Zone and Zhangpeng Fault Zone, comprise a conjugate strike-slip fualt system in Bohai Sea. They reactivated and developped into many branches under the extensional and shear stresses indued by the combined action of plate collision and deep mantle upwelling in Cenzonic. In response to the stress concentration at the tails of those branches, various kinds of tail derived structures develop. To systematically describe and distinguish above tail derived structures, we reviewed numerous high-resolution seismic sections and plandimetric maps of Bohai Sea, such as deteiled fault system diagroms, coherence slices and 3D visualization structural diagrams, and distinguished three types of tail derived structures at the tails of the transtensional branches of Tanlu Fault Zone and Zhangpeng Fault Zone, based on their geometric characteristics, namely, extensional horsetail/imbricate fan, wedge-shaped tail, and mixed tail of extensional horsetail fan and wedge-shaped tail (the tail derived structures develops in stepovers of transtensioanl branches are not discussed in this paper). Extensional horsetail fan mainly develops at fault tails with releasing single bend and the horsetail splay faults are T faults (about 45° to main strike-slip fault), while the wedge-shaped tail mainly develops at fault tails unfavorable for strike slip, they could be straight or with gentle restaining single bend and the derived faults are mainly antithetic faults (R' shears, normally above 70° to main strike-slip fault). If the fault tail developing a wedge-shaped tail has a small releasing single bend at its tip, a extensional horsetail fan would occur at the tip of the wedge-shaped tail, viz., mixed tail derived structure. All above tail derived faults show normal throws in profile and develop in extensional quadrant of the hanging wall of those branches. And with the shear of above main strike-slip faults, the angles bewteen the main

  5. Pore fluid pressure in impermeable fault zones throughout earthquake cycles

    NASA Astrophysics Data System (ADS)

    Goswami, A. S.; Barbot, S.; Moore, J. D. P.; Lambert, V.

    2016-12-01

    Earthquakes affect the pore pressure in the crust, leading to dynamic changes in the water table and deformation of the surrounding rocks. Variations in pore pressure can have a strong effect on fault strength and modulate the earthquake cycle, potentially affecting the recurrence and the magnitude of seismicity. Poroelastic rebound has been observed following large and moderate earthquakes but its effect has been challenging to incorporate in time-dependent dynamic models of earthquake cycles, or even in dynamic models of postseismic relaxation. Here, we present a new methodology to incorporate the pore fluid diffusion and poroelastic effects in quasi-dynamic models of slip evolution. We study the case of a dipping thrust fault surrounded by an impermeable fault zone in plane strain condition. The solution method employs newly derived analytic solutions for the stress interactions caused by isotropic strain in finite volume of deformation. We use the integral method to solve the coupled governing equations of poroelasticity and fault slip evolution. We consider the full coupling of fault strength with pore pressure and solve for the evolution of the water table throughout multiple earthquake cycles. We then present simulations of postseismic rebound in the case of three-dimensional deformation following thrust and strike-slip earthquakes on finite faults. Our formulation opens the door to assimilating time-dependent deformation and pore pressure data to constrain the physical properties of crustal rocks. Our approach constitutes an important step towards a unified representation of all the important mechanisms of deformation throughout the earthquake cycle.

  6. Kinematics at the Intersection of the Garlock and Death Valley Fault Zones, California: Integration of TM Data and Field Studies

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Brady, Roland H., III; Abrams, Michael

    1989-01-01

    Kinematic relationships at the intersection of the southern Death Valley and Garlock fault zones were examined to identify and delineate the eastern structural boundary between the Mojave and the Basin and Range geologic terrains, and to construct a model for the evolution of this boundary through time. In order to accomplish this, satellite imagery was combined with field investigations to study six areas in the vicinity of the intersection, or possible extensions, of the fault zones. The information gathered from these areas allows the test of various hypotheses that were proposed to explain the interaction between the Death Valley and Garlock fault zones.

  7. Off-fault deformations and shallow slip deficit from dynamic rupture simulations with fault zone plasticity

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Day, S. M.

    2017-08-01

    Kinematic source inversions of major (M≥7) strike-slip earthquakes show that the slip at depth exceeds surface displacements measured in the field, and it has been suggested that this shallow slip deficit (SSD) is caused by distributed plastic deformation near the surface. We perform dynamic rupture simulations of M 7.2-7.4 earthquakes in elastoplastic media and analyze the sensitivity of SSD and off-fault deformation (OFD) to rock quality parameters. While linear simulations clearly underpredict observed SSD and OFDs, nonlinear simulations for a moderately fractured fault damage zone predict a SSD of 44-53% and OFDs of 39-48%, consistent with the 30-60% SSD and 46 ± 10% (1σ) OFD reported for the 1992 M 7.3 Landers earthquake. Both SSD and OFDs are sensitive to the quality of the fractured rock mass inside the fault damage zone, and surface rupture is almost entirely suppressed in poor quality material.

  8. Impacts of off-fault plasticity on fault slip and interaction at the base of the seismogenic zone

    NASA Astrophysics Data System (ADS)

    Nevitt, Johanna M.; Pollard, David D.

    2017-02-01

    Direct observations of faults exhumed from midcrustal depths indicate that distributed inelastic deformation enhances fault slip and interaction across steps. Constrained by field measurements, finite element models demonstrate that the slip distribution for a fault in a Mises elastoplastic continuum differs significantly from that of a linear elastic model fault. Lobes of plastic shear strain align with fault tips and effectively lengthen the fault, resulting in greater maximum slip and increased slip gradients near fault tips. Additionally, distributed plastic shear strain facilitates slip transfer between echelon fault segments. Fault arrays separated by contractional steps, which are subjected to greater mean normal stress and Mises equivalent stress, produce greater maximum slip than do those separated by extensional steps (with no fractures). These results provide insight into fault behavior at the base of the seismogenic zone, with implications for rupture dynamics of discontinuous faults.

  9. The Suckling Hills Fault, Kayak Island Zone, and accretion of the Yakutat microplate, Alaska

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Worthington, Lindsay L.; Pavlis, Terry L.; Bruhn, Ronald L.; Gulick, Sean P.

    2011-12-01

    The Suckling Hills and Kayak Island are isolated mountain blocks located along strike from each other within the foreland of the St. Elias orogen in southern Alaska. These blocks preserve an erosional surface that was deformed by slip on northwest-dipping reverse faults in the Pleistocene. We suggest that the Suckling Hills Fault and Kayak Island Zone form a segmented fault network that links with the Bering Glacier structure to the north. This fault network separates the central Yakataga fold and thrust belt from complex, multiply deformed structures in the western syntaxis. Ongoing accretion of the Yakutat microplate to North America results in translation of structures of the fold and thrust belt into the western syntaxis. The composite Suckling Hills Fault, Kayak Island Zone, and Bering Glacier structure may have formed because the older structures of the fold and thrust belt were unfavorably oriented within the western syntaxis region. This pattern of deformation provides a template for understanding the complex deformation within the core of the western syntaxis and predicts refolding and straightening of the western syntaxis margin with continued accretion. This study provides an analog for structural overprinting and changing deformation patterns through time in orogenic corners.

  10. Remote sensing analysis for fault-zones detection in the Central Andean Plateau (Catamarca, Argentina)

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Massironi, Matteo; Zampieri, Dario; Carli, Cristian

    2015-04-01

    Remote sensing techniques have been extensively used to detect the structural framework of investigated areas, which includes lineaments, fault zones and fracture patterns. The identification of these features is fundamental in exploration geology, as it allows the definition of suitable sites for the exploitation of different resources (e.g. ore mineral, hydrocarbon, geothermal energy and groundwater). Remote sensing techniques, typically adopted in fault identification, have been applied to assess the geological and structural framework of the Laguna Blanca area (26°35'S-66°49'W). This area represents a sector of the south-central Andes localized in the Argentina region of Catamarca, along the south-eastern margin of the Puna plateau. The study area is characterized by a Precambrian low-grade metamorphic basement intruded by Ordovician granitoids. These rocks are unconformably covered by a volcano-sedimentary sequence of Miocene age, followed by volcanic and volcaniclastic rocks of Upper Miocene to Plio-Pleistocene age. All these units are cut by two systems of major faults, locally characterized by 15-20 m wide damage zones. The detection of main tectonic lineaments in the study area was firstly carried out by classical procedures: image sharpening of Landsat 7 ETM+ images, directional filters applied to ASTER images, medium resolution Digital Elevation Models analysis (SRTM and ASTER GDEM) and hill shades interpretation. In addition, a new approach in fault zone identification, based on multispectral satellite images classification, has been tested in the Laguna Blanca area and in other sectors of south-central Andes. In this perspective, several prominent fault zones affecting basement and granitoid rocks have been sampled. The collected fault gouge samples have been analyzed with a Field-Pro spectrophotometer mounted on a goniometer. We acquired bidirectional reflectance spectra, from 0.35μm to 2.5μm with 1nm spectral sampling, of the sampled fault rocks

  11. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  12. Directional Resonance and Wavefield Polarization in the Damage Zone of the Campo Imperatore Fault Zone (central Italy).

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Fondriest, M.; Demurtas, M.; Di Toro, G.; Rovelli, A.

    2014-12-01

    To infer the occurrence of directional amplification effects, we performed ambient noise measurements along a 200m transect crossing the Campo Imperatore fault zone (Central Italy), an exhumed analogue of the faults responsible of the L'Aquila 2009 earthquake sequence, We have recently found in several fault zones that ambient noise is not randomly polarized, but it is amplified on the horizontal plane along a specific site-dependent direction. The analysis repeated using earthquake signals revealed that S-coda waves and surface waves show the same polarization direction, independently of the earthquake backazimuth and focal mechanism. We have explained the observed directional amplifications in terms of fractured rocks in the fault damage zone, polarization being oriented orthogonally to fractures produced by the kinematic stress component. Therefore ground motion directional amplification could be related to the higher compliance of fractured rocks. In the other studies the fracture pattern was derived from numerical-analytical modeling based on the fault geometry and kinematics, or compared with the fast direction of shear wave obtained by seismic anisotropy analysis. The aim of this study is to compare observations with fracture measurements (strike, dip, dip-azimuth, spacing, later continuity, etc.) performed in the selected fault zone. We thus acquired ambient noise using 25 stations installed along a transect where detailed structural geological measurements were carried out. Ambient noise was recorded for around 1 hour, and was processed to compute the horizontal-to-vertical noise spectral ratio as a function of frequency and direction of motion. Wavefield polarization was investigated in the time-frequency domain as well. We found that, in spite of the complexity of the seismic data, the observed polarization pattern is generally oriented orthogonal to the measured dominant fracture system, confirming the existence of a high angle relation between ground

  13. En echelon knolls in the Nosappu Fracture Zone, NW Pacific: A possible leaky transform fault zone

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.; Hirano, N.; Shipboard Scientific Party Kr03-07, .

    2003-12-01

    During JAMSTEC R/V KAIREI cruise KR03-07, we mapped significant en echelon arrays of knolls and ridges on the NNW-trending Nosappu Fracture Zone between Hokkaido and Shatsky Rise, NW Pacific. This fracture zone has been known to be irregular, including a deep-sea channel, the Nakwe Channel, enigmatic for inside the wide oceanic plate. Considering the previously recognized magnetic lineament dislocation, the fracture zone has long (more than 150 km) left-lateral strike-slip component as a ridge-ridge transform fault zone between the Izanagi and Pacific plates during Early Cretaceous. Detail multi-narrowbeam mapping around 37 N latitude, 150 E longitude (covering 78 km x 137 km), indicated many small knolls and ridges that form en echelon arrangement. Some are boomerang, sock or E-letter in shape. The two dominant directions of ridges are recognized, one is parallel to the fracture zone and the other is in left-handed en echelon fashion. Besides these ridges, there are other types of ridges or conical knolls lower than 500 m in relief; one is a group of rather large knolls extending to NE, roughly perpendicular to the fracture zone direction, and the other is independent small knolls, summing up to five or six in number. Another expression of a depression zone was recognized with a moderate angle to the fracture zone in a crank fashion. This may correspond to the so-called _gNakwe Channel_h which has been wrongly mistaken. Such en echelon arrays are involved in a 50 km wide NNW-SSE zone, which is sharply demarcated by fault scarps. These characteristics in the fracture zone area and associated knolls suggest that this part of the Nosappu Fracture Zone might have developed in a fault interaction area which has a left-lateral component of leaky transform faulting close to the spreading ridge.

  14. High-yielding aquifers in crystalline basement: insights about the role of fault zones, exemplified by Armorican Massif, France

    NASA Astrophysics Data System (ADS)

    Roques, Clément; Bour, Olivier; Aquilina, Luc; Dewandel, Benoît

    2016-12-01

    While groundwater constitutes a crucial resource in many crystalline-rock regions worldwide, well-yield conditions are highly variable and barely understood. Nevertheless, it is well known that fault zones may have the capacity to ensure sustainable yield in crystalline media, but there are only a few and disparate examples in the literature that describe high-yield conditions related to fault zones in crystalline rock basements. By investigating structural and hydraulic properties of remarkable yielding sites identified in the Armorican Massif, western France, this study discusses the main factors that may explain such exceptional hydrogeological properties. Twenty-three sites, identified through analysis of databases available for the region, are investigated. Results show that: (1) the highly transmissive fractures are related to fault zones which ensure the main water inflow in the pumped wells; (2) the probability of intersecting such transmissive fault zones does not vary significantly with depth, at least within the range investigated in this study (0-200 m); and (3) high yield is mainly controlled by the structural features of the fault zones, in particular the fault dip and the presence of a connected storage reservoir. Conceptual models that summarize the hydrological properties of high-yield groundwater resources related to fault zones in crystalline basement are shown and discussed.

  15. Seismicity around the Cimandiri fault zone, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Febriani, Febty

    2016-02-01

    We analyzed the seismicity activity around the Cimandiri fault zone, West Java, Indonesia by using the earthquake catalogs listed by Indonesian Meteorological Climatological and Geophysical (BMKG) and International Seismological Centre (ISC) from 1973 to 2013 (M>=1 and depth ≤ 0-50 km), along with the focal mechanism data from National Research Institute of Earth Science and Disaster Prevention (NIED) from 2007 to 2014 (M>4; depth ≤ 50 km) and Global CMT catalog from 1976 to 2014 (M=0-10 and depth ≤ 50 km). The result from earthquake catalogs suggest that there are earthquake activities around the Cimandiri fault zone in the recent years, which is also supported by the results of focal mechanism data analysis from NIED data and Global CMT catalog.

  16. Heat flow and energetics of the San Andreas fault zone.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1980-01-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors

  17. Constraints on Fault Damage Zone Properties and Normal Modes from a Dense Linear Array Deployment along the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Lin, F. C.; Share, P. E.; Ben-Zion, Y.; Vernon, F.; Schuster, G. T.; Karplus, M. S.

    2016-12-01

    We present earthquake data and statistical analyses from a month-long deployment of a linear array of 134 Fairfield three-component 5 Hz seismometers along the Clark strand of the San Jacinto fault zone in Southern California. With a total aperture of 2.4km and mean station spacing of 20m, the array locally spans the entire fault zone from the most intensely fractured core to relatively undamaged host rock on the outer edges. We recorded 36 days of continuous seismic data at 1000Hz sampling rate, capturing waveforms from 751 local events with Mw>0.5 and 43 teleseismic events with M>5.5, including two 600km deep M7.5 events along the Andean subduction zone. For any single local event on the San Jacinto fault, the central stations of the array recorded both higher amplitude and longer duration waveforms, which we interpret as the result of damage-related low-velocity structure acting as a broad waveguide. Using 271 San Jacinto events, we compute the distributions of three quantities for each station: maximum amplitude, mean amplitude, and total energy (the integral of the envelope). All three values become statistically lower with increasing distance from the fault, but in addition show a nonrandom zigzag pattern which we interpret as normal mode oscillations. This interpretation is supported by polarization analysis which demonstrates that the high-amplitude late-arriving energy is strongly vertically polarized in the central part of the array, consistent with Love-type trapped waves. These results, comprising nearly 30,000 separate coseismic waveforms, support the consistent interpretation of a 450m wide asymmetric damage zone, with the lowest velocities offset to the northeast of the mapped surface trace by 100m. This asymmetric damage zone has important implications for the earthquake dynamics of the San Jacinto and especially its ability to generate damaging multi-segment ruptures.

  18. Shallow subsurface structure of the Wasatch fault, Provo segment, Utah, from integrated compressional and shear-wave seismic reflection profiles with implications for fault structure and development

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.

    2010-01-01

    Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.

  19. Fluid Flow, Reactions and Exhumation of Mantle Peridotite Along a Serpentinite Fault Zone.

    NASA Astrophysics Data System (ADS)

    Tulley, C. J.; Smith, S. A. F.; Scott, J.; Tarling, M. S.; le Roux, P. J.

    2016-12-01

    The last phase of exhumation of a > 1000 km long belt of Permian mantle (Dun Mountain Ophiolite Belt) in New Zealand was achieved by movements along the Livingstone Fault. At Mt Raddle and Mt Richards in the Olivine Range, near-pristine mantle harzburgite shows a complete transition through to the serpentinite melange of the Livingstone Fault, which juxtaposes the ultramafics against quartzofeldspathic crust. A talc-tremolite-diopside reaction zone developed at the serpentinite-crustal contact, with diopside overgrowing tremolite. We suspect that the initial formation of frictionally weak talc helped to localise deformation within the reaction zone. The hydration of peridotite is intimately linked to fluid flow along the Livingstone Fault, since water-bearing phases increase with proximity to the fault melange. The transformation of harzburgite to serpentinite is marked by serpentinisation of clinopyroxene and olivine, development of chromite from Cr spinel (Cr# increases from 45 to 97) and overgrowths of secondary olivine ( Fo82-85) around orthopyroxene. As the melange is approached, magnetite forms at the expense of Fe-bearing mantle minerals. The replacement of primary spinel released Al and Mg, which now forms nano-scale intergrowths of chlorite and lizardite. The scaly serpentinite melange is up to 80 m wide at Mt Raddle and contains pods of massive serpentinite, some with remnant peridotite texture. At Mt Richards, 2 km along strike, the melange narrows and fresh peridotite is exposed within 20 m of the quartzofeldspathic rocks. This change in fault zone structure implies that fluid ingress into the ultramafics was highly variable during the exhumation process. The Livingstone Fault may provide insights in to the decoupling of crust and mantle above a subduction zone. The infiltration of fluid along the fault interface acted as a lubricant, driving hydration reactions and enabling adjacent fresh mantle peridotite to be brought towards the Earth's surface.

  20. Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.

    1997-01-01

    A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.

  1. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea

    2016-04-01

    A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate

  2. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  3. High-velocity frictional properties and microstructures of clay-rich fault gouge in megasplay fault zone, Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Tsutsumi, A.

    2010-12-01

    In accretionary margins, a large out-of-sequence fault system (the megasplay fault) commonly branches from the megathrust and intersects the seafloor along the lower slope of the margin. Detailed seismic reflection surveys and theoretical studies have suggested that the propagation of earthquake rupture occurred repeatedly along the megasplay fault during great subduction earthquakes. Recently, IODP Expedition 316 drilled into the shallow portion of the megasplay fault zone in the Nankai subduction zone offshore the Kii Peninsula, southwest Japan and found the evidence for the slip localization and past frictional heating along ~10-mm-thick dark gouges in the microbreccia. Thus, high-velocity frictional properties of the megasplay fault material are crucial for understanding whether the megasplay fault efficiently transfers displacement toward the seafloor and fosters a tsunami genesis during a subduction earthquake. We conducted high-velocity friction experiments on clay-rich fault gouge taken from the Nankai megasplay fault zone at a slip rate of 1.3 m/s and normal stresses of 0.6-2.0 MPa under dry and wet conditions. After the experiments, the microstructures of the fault gouges were examined by optical microscope and SEM. In the dry tests, dehydration of clay minerals occurred by frictional heating, and the slip weakening is related to the fault gouge expansion due to a water phase transition from liquid to vapor. The water is derived from the dehydration of clay minerals by frictional heating. The resulting microstructure in the gouge layer is a random distribution of spherical clay-clast aggregates (CCA) in the optically isotropic, dark matrix. In the wet tests, the slip weakening is caused by pore-fluid pressurization resulting from shear-enhanced compaction of the water-saturated gouge and frictional heating. Compared to the dry tests, the wet tests show smaller dynamic stress drops and slip weakening distance. The steady-state shear stress in the wet tests

  4. Physical and Transport Properties of the carbonate-bearing faults: experimental insights from the Monte Maggio Fault zone (Central Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Scuderi, Marco Maria; Collettini, Cristiano

    2015-04-01

    Physical properties of fault zones vary with time and space and in particular, fluid flow and permeability variations are strictly related to fault zone processes. Here we investigate the physical properties of carbonate samples collected along the Monte Maggio normal Fault (MMF), a regional structure (length ~10 km and displacement ~500 m) located within the active system of the Apennines. In particular we have studied an exceptionally exposed outcrop of the fault within the Calcare Massiccio formation (massive limestone) that has been recently exposed by new roadworks. Large cores (100 mm in diameter and up to 20 cm long) drilled perpendicular to the fault plane have been used to: 1) characterize the damage zone adjacent to the fault plane and 2) to obtain smaller cores, 38 mm in diameter both parallel and perpendicular to the fault plane, for rock deformation experiments. At the mesoscale two types of cataclastic damage zones can be identified in the footwall block (i) a Cemented Cataclasite (CC) and (ii), a Fault Breccia (FB). Since in some portions of the fault the hangingwall (HW) is still preserved we also collected HW samples. After preliminary porosity measurements at ambient pressure, we performed laboratory measurements of Vp, Vs, and permeability at effective confining pressures up to 100 MPa in order to simulate crustal conditions. The protolith has a primary porosity of about 7 %, formed predominantly by isolated pores since the connected porosity is only 1%. FB samples are characterized by 10% and 5% of bulk and connected porosity respectively, whilst CC samples show lower bulk porosity (7%) and a connected porosity of 2%. From ambient pressure to 100 MPa, P-wave velocity is about 5,9-6,0 km/s for the protolith, ranges from 4,9 km/s to 5,9 km/s for FB samples, whereas it is constant at 5,9 km/s for CC samples and ranges from 5,4 to 5,7 for HW sample. Vs shows the same behaviour resulting in a constant Vp/Vs ratio from 0 to 100 MPa that ranges from 1

  5. San Jacinto Fault Zone guided waves: A discrimination for recently active fault strands near Anza, California

    NASA Astrophysics Data System (ADS)

    Li, Yong-Gang; Aki, Keiiti; Vernon, Frank L.

    1997-06-01

    We deployed three 350-m-long eight-element linear seismic arrays in the San Jacinto Fault Zone (SJFZ) near Anza, California, to record microearthquakes starting in August through December 1995. Two arrays were deployed 18 km northwest of Anza, across the Casa Loma fault (CLF) and the Hot Springs fault (HSF) strands of the SJFZ. The third array was deployed across the San Jacinto fault (SJF) in the Anza slip gap. We observed fault zone guided waves characterized by low-frequency, large amplitudes following S waves at the CLF array and the SJF array for earthquakes occurring within the fault zone. However, we did not observe guided waves at the HSF array for any events. The amplitude spectra of these guided waves showed peaks at 4 Hz at the CLF and 6 Hz at the SJF, which decreased sharply with the distance from the fault trace. In contrast, no spectral peaks at frequency lower than 6 Hz were registered at the HSF array. We used a finite difference method to simulate these guided modes as 5 waves trapped in a low-velocity waveguide sandwiched between high-velocity wall rocks. The guided mode data are adequately fit by a waveguide on the CLF with the average width of 120 m and S velocity of 2.5 km/s, about 25% reduced from the S velocity of the surrounding rock; this waveguide becomes 40 to 60 m wide with the 5 velocity of 2.8 km/s in the Anza slip gap. On the other hand, there is not a continuous waveguide on the HSF at depth. Locations of the events with guided modes suggest that the fault plane waveguide extends along the CLF between the towns of San Jacinto and Anza, dipping northeastward at 75°-80° to a depth of about 18 km; it becomes nearly vertical in the Anza gap. We speculate that the existence of a continuous low-velocity waveguide on the CLF can be caused by the rupture of the magnitude 6.9 earthquake on April 21, 1918, occurring near the towns of San Jacinto and Hemet. Further, the lack of a clear waveguide on the HSF suggests that it was not ruptured in

  6. Application of electric and electromagnetic prospection methods for the investigation of geological fault zones

    NASA Astrophysics Data System (ADS)

    Schaumann, G.; Günther, T.; Musmann, P.; Grinat, M.

    2012-04-01

    Electric and electromagnetic prospection methods are applied in combination and investigated concerning their ability to image geological fault zones with depths up to a few km. Faults are prominent targets to explore because they bear possible flow paths for hydrothermal fluids. Therefore resistivity can become a valuable key parameter. Within the German Research Association gebo (Geothermal Energy and High Performance Drilling, www.gebo-nds.de) the electric/electromagnetic methods are operated alongside with the seismic exploration method. While seismic investigations yield information about the subsurface structure, electric and electromagnetic methods supplement these results with their ability to provide information about the resistivity distribution. Commonly used survey setups are analysed with respect to their investigation depth. Non-standard large-scale DC resistivity measurements in a dipole-dipole configuration energized by a high current source were applied in the field. Furthermore, Transient electromagnetic (TEM) soundings with a high transmitter moment were carried out. The setup in the field was modified in order to reach greater investigation depths. The course of seismic reflectors was incorporated into the inversion of the DC resistivity data by structural constraints. Especially thin low-resistive layers, detected by a 1D interpretation of the TEM data show a correlation to the seismic reflectors. While the 2D DC results give information about the resistivity structure of the fault zone, layers of low resistivity that are poorly determined with the DC measurements can be observed with an adapted TEM survey setup. After an initial investigation of known shallow fault zones more emphasis will be attached to the exploration of deeper structures in the subsurface, significant for geothermal tasks. A concept for a suitable field survey design is under development, especially adapted to the specific geological features in the sedimentary basin of

  7. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as

  8. Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington

    USGS Publications Warehouse

    ten Brink, U.S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.

    2002-01-01

    The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.

  9. Measuring Transient Signals in Plate Boundary Faults Zones with Strainmeters

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen; Mencin, Dave; Phillips, David; Henderson, Brent; Gottlieb, Mike; Gallaher, Warren; Johnson, Wade; Pyatt, Chad; Van Boskirk, Elizabeth; Fox, Otina; Mattioli, Glen; Meertens, Chuck

    2014-05-01

    One of the fundamental goals the U.S. National Science Foundation (NSF) funded Earthscope program was to provide a high-quality, continuous geodetic data set that would allow the scientific community to study the evolution of plate boundary zones. Of particular importance was enabling investigation of the role aseismic transient deformation plays in the release of accumulated stress. For example, to allow the comparison of the amount of strain released through Episodic Tremor and Slip (ETS) events to that released in subduction zone earthquakes or, provide the ability to geodetically illuminate the kinematics of fault creep in strike-slip fault zones. The ability to easily integrate these measurements with compatible geophysical data sets was also an essential objective. With goals such as these in mind NSF funded the Plate Boundary Observatory (PBO) to record the continuous deformation field across the western US Plate Boundary. PBO, built and operated by UNAVCO, now consists of over 1100 GPS stations, 76 co-located borehole strain and seismic sites, 6 long baseline strainmeters, Depending on the scientific questions being addressed sites may also have tiltmeter, meteorological, pore pressure and meteorological instrumentation. This presentation will focus on the transient deformation signals recorded by the PBO strainmeter network. PBO strainmeters, which excel in recording signals on the order of nanostrain over hours, have provided unprecedented temporal resolution of aseismic transients such as ETS events in the Cascadia subduction zone, creep signals along the central section of the San Andreas fault system and tsunami generated strain waves. UNAVCO is responsible not only for the ongoing operation of PBO but also the generation of data products associated with each instrument type. In this presentation we will highlight some of the transient signals these instruments have captured, outline the processing steps required to extract these signals data and

  10. Early structural development of the Okavango rift zone, NW Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, B. D.; Atekwana, E. A.; Hogan, J. P.; Modisi, M. P.; Wheaton, D. D.; Kampunzu, A. B.

    2007-06-01

    Aeromagnetic and gravity data collected across the Okavango rift zone, northwest Botswana are used to map the distribution of faults, provide insights into the two-dimensional shallow subsurface geometry of the rift, and evaluate models for basin formation as well as the role of pre-existing basement fabric on the development of this nascent continental rift. The structural fabric (fold axes and foliation) of the Proterozoic basement terrane is clearly imaged on both gravity and magnetic maps. The strike of rift-related faults (030-050° in the north and 060-070° in the south) parallels fold axes and the prominent foliation directions of the basement rocks. These pre-existing fabrics and structures represent a significant strength anisotropy that controlled the orientation of younger brittle faults within the stress regime present during initiation of this rift. Northwest dipping faults consistently exhibit greater displacements than southeast dipping faults, suggesting a developing half-graben geometry for this rift zone. However, the absence of fully developed half-grabens along this rift zone suggests that the border fault system is not fully developed consistent with the infancy of rifting. Three en-echelon northeast trending depocenters coincide with structural grabens that define the Okavango rift zone. Along the southeastern boundary of the rift, developing border faults define a 50 km wide zone of subsidence within a larger 150 km wide zone of extension forming a rift-in-rift structure. We infer from this observation that the localization of strain resulting from extension is occurring mostly along the southeastern boundary where the border fault system is being initiated, underscoring the important role of border faults in accommodating strain even during this early stage of rift development. We conclude that incipient rift zones may provide critical insights into the development of rift basins during the earliest stages of continental rifting.

  11. Shear-wave velocity model of the Chukuo fault zone, Southwest Taiwan, from cross correlation of seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Lien; Wen, Strong; Lee, Kung-Jer; Chen, Chau-Huei

    2013-10-01

    The Chia-Nan (Chiayi-Tainan) area is in the southwestern Taiwan, and is located at the active deformation front of the collision of the Eurasian continental plate and the Philippine Sea plate, which causes complex folds as well as thrust fault systems in the area. The Chukuo fault zone is a boundary between the Western Foothill and the Western Coastal Plain in the Chia-Nan area. The nature of the crustal structure beneath the fault zone, especially the eastern part of the fault zone with mountain topography, has not been well known in detailed due to lack of drilling data as well as its limitation in using other geophysical methods, such as active source survey. In this study, we deployed an array with 11 broadband seismic stations to monitor the seismicity of the Chukuo fault zone. The array has recorded more than 1000 microearthquakes around this area. It provides an opportunity to use P- and S-wave travel time data to investigate the both the crustal P- and S-velocity in the fault zone, however due to the nature of the earthquake distribution, the ray density is relatively low at depth between 0 and 7 km. In addition, the uncertainty of S-wave reading for small earthquake also a limit in building precise S-velocity profile, Thus, we take the advantages of using cross-correlation of seismic ambient noise to investigate crustal S-velocity profile in the Chukuo fault area, especially in the mountain area where crustal faulting is a dominated phenomenon. The results indicate that S-wave velocity in the uppermost crust in the Chukuo fault zone is shown to be slower than previous studies. A low velocity layer exists at depth between 1 and 2 km in the east of the Chukuo Fault. The low S-velocity is related to a highly fractured upper crust due to intensive deformation caused by the orogenic process.

  12. The Fethiye-Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Hall, J.; Aksu, A. E.; Elitez, I.; Yaltırak, C.; Çifçi, G.

    2014-11-01

    The Hellenic and Cyprus Arcs, that mark the convergent boundary of the African and Aegean-Anatolian plates, are offset along a subduction transform edge propagator ('STEP') fault running NE-SW along the Pliny and Strabo Trenches. The continuation of the fault to the northeast through the Rhodes Basin and into SW Anatolia is assessed. Seismic reflection profiles show that the structural architecture of the northern sector of the Rhodes Basin includes a large crustal-scale fold-thrust belt which is overprinted by numerous faults with small extensional stratigraphic separations. A protracted episode of convergence in the Miocene resulted in the development of a prominent NE-SW-striking and NW-verging fold-thrust belt in the Rhodes Basin. The absence of evaporites in the Rhodes Basin and several seaward prograded vertically stacked Quaternary delta successions resting at 2500-3500 m water depth collectively suggest that the Rhodes Basin must have remained above the depositional base of marine evaporite environment during the Messinian and that the region must have subsided very rapidly during the Pliocene-Quaternary. During the Pliocene-Quaternary, a NE-SW-trending belt developed across the Rhodes Basin: while the structural framework of this belt was characterised by reactivated thrusts in the central portion of the basin, a prominent zone of NE-SW-striking and NW- and SE-dipping faults with extensional separations developed in the northern portion of the basin. Two seismic profiles running parallel to the present-day coastline provide the much needed linkage between the Fethiye-Burdur Fault Zone onland and the reactivated thrusts in central Rhodes Basin, and show that the Pliocene-Quaternary zone of high-angle faults with extensional separations clearly link with the similarly trending and dipping strike-slip faults onland in the Eşen Valley, thus providing the continuity between the Pliny-Strabo Trenches in the southwest and the Fethiye-Burdur Fault Zone in the

  13. Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran

    NASA Astrophysics Data System (ADS)

    Nadimi, Alireza; Konon, Andrzej

    2012-07-01

    The Sanandaj-Sirjan Zone (SSZ) is one of the main basement tectonic blocks located close to the northeastern margin of the Zagros Orogenic Belt. New observations in the central part of the zone indicate that the fault pattern is dominated by NW-trending longitudinal faults. The components of movement on the fault planes are interpreted as dextral oblique thrusting and dextral strike-slip. The identified structures along the faults were associated with the strike-slip faults (e.g., Hasan-Robat and Najafabad dextral restraining stepovers) and rotated tectonic blocks (arranged in a 'domino' configuration) near to the Foladshahr and Kolah-Ghazi mountains. Along the longitudinal faults, the dextral offsets of the rock units, streams, alluvial deposits and rivers were measured. The dextral offset values range from 2.4 to 2.7 km, while the estimated offsets based on the geomorphological features are between 50 and 61 m for streams, up to approximately ˜50 m for alluvial deposits and up to 2.2 km for rivers. The dextral strike-slip component on the fault planes occurs along the northern and southern margins of the SSZ, as well as directly within the zone, west and east of the study area. The evidence for strike-slip faulting in the internal part of the zone suggests that the central part of the SSZ probably was horizontally sheared in a manner consistent with a simple shear 'card-deck model'.

  14. Active faulting in the internal zones of the central Betic Cordilleras (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Galindo-Zaldívar, J.; Gil, A. J.; Borque, M. J.; González-Lodeiro, F.; Jabaloy, A.; Marín-Lechado, C.; Ruano, P.; Sanz de Galdeano, C.

    2003-09-01

    The internal zones of the Betic Cordilleras show a present-day relief that is mainly controlled by kilometre-size, symmetrical or north-vergent folds which developed mostly since Middle Miocene times. The Sierra Nevada, Sierra Alhamilla, Sierra de Los Filabres, Sierra Tejeda and Sierra de Gádor, among others, are roughly E-W trending high mountain ranges, corresponding to antiforms where metamorphic rocks crop out. The surrounding depressions are located in synforms, where Neogene rocks are preserved from erosion. Field evidence shows that the growth of the folds is coeval with fault development, and that at least three of them, i.e. the Padul Fault, the Zafarraya Fault, and the Balanegra Fault, may be considered to be active seismogenetic structures. The Zafarraya Fault, in particular, is thought to be responsible for the 1884 Andalucı´a Earthquake. The fault is located at the northern limb of the Sierra Tejeda antiform, and could be interpreted as a collapse structure developed along the external arch of the uplifted fold. The Padul and Balanegra faults are located at the southeastern border of the Granada Basin and south of the Sierra de Gádor, respectively. They belong to a set of NW-SE oriented faults that are mainly normal in character and indicate NE-SW extension. The set up, since 1999, of a GPS network within and around the Granada Basin and the planed installation of a new network in the Sierra Tejeda, will give us new insights on the present-day deformation behaviour of both folds and faults in the area.

  15. Morphometric analysis of El Salvador Fault Zone. Implications to the tectonic evolution. Central America.

    NASA Astrophysics Data System (ADS)

    Alonso-Henar, Jorge; Jesús Martínez-Díaz, José; Álvarez-Gómez, José Antonio

    2013-04-01

    It is considered that the study of the recent topography development, and the use of geomorphological indexes are good tools for the quantification of the active tectonics. We have used quantitative geomorphology in order to improve our understanding of the recent activity and tectonic evolution of the El Salvador Fault Zone (ESFZ); an E-W oriented strike-slip fault zone that extends 150 km through El Salvador (Martínez-Díaz et al. 2004). Previous studies propose a transtensive tectonic regime at the Central America Volcanic Arc in El Salvador, which induces relative vertical motions on the faults within El Salvador Fault Zone (i.e. Álvarez-Gómez et al., 2008, Cáceres et al. 2005,). This relative vertical displacement can be quantified with the use of hypsometry as a geomorphological character. The morphometric analysis done contributes to a better understanding of the ESFZ. We have defined km scale tectonic block relative displacements that may be useful to constrain the strain distribution along the ESFZ, length of segments with homogeneous vertical movements and lateral relay of active structures. This study supports the hypothesis of a recent migration in the maximum shortening direction, and the accomodation of the current deformation through the reactivation of pre-existing structures inherited from a previous tectonic frame. A similar tectonic evolution as described Weinberg (1992) in Nicaragua, is interpreted from the results of this study.

  16. Fault Segmentation and Earthquake Behavior: A High Resolution Paleoseismic Study in The Southern San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Ragona, D.; Rockwell, T. K.; Orgil, A.

    2001-12-01

    The southern San Jacinto fault zone consists of three main fault strands or segments: the Coyote Creek (CCF), Superstition Mountain (SMF) and Superstition Hills (SHF) faults. The CCF is divided into northern, central and southern segments, defined after its rupture in the 1968 Borrego Mountain earthquake. The boundaries of these segments are delineated by step-overs and/or fault bends. In contrast, the segment boundary between the southern segment of the CCF and the northern end of the SMF is defined only by a 10o bend or change in strike. However, the main reason that these two faults are considered separate is that the 1968 rupture terminated along the southern segment of the CCF. The only way to demonstrate how individual segments have behaved in the past and how segment boundaries work is to resolve their past rupture histories through high-resolution paleoseismic studies. We studied the earthquake history of the southern CCF and northern SMF to obtain a complete record of how and which boundaries have controlled past ruptures. We exposed faulted sediments of the regionally-correlative Lake Cahuilla at Carrizo Wash along the northernmost SMF, and correlated the stratigraphy and earthquake history to sites along the CCF using radiocarbon dates and sequence stratigraphy. We exposed a 5 m-thick section of very well stratified fluvial, deltaic and lacustrine sediments, part of which have been displaced by the fault. Four and probably five surface rupturing events are recorded in this section. The last two lake Cahuilla high-stand deposits are not faulted, indicating that the northern Superstition Mountain fault has not ruptured for at least 330 years and probably 500 years. Using high resolution 3D trenching techniques we obtained information of fault geometry and slip for the last two events. The last earthquake rupture consisted of en echelon faults with a minimum horizontal displacement of 6 to 9 cm of slip in each. Minimum total slip across the whole fault zone

  17. Multi-scale characterization of the seismogenic Gole Larghe Fault Zone (Southern Alps, Italy): methodology and results

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Smith, S. A.; Di Toro, G.; Jones, R.; Griffith, W. A.; Mittempergher, S.; Mitchell, T. M.; Spagnuolo, E.; Rempe, M.; Nielsen, S.; Niemeijer, A.

    2012-04-01

    The Gole Larghe Fault Zone (GLFZ) in the Italian Southern Alps is characterized by the occurrence of cataclasites and pseudotachylytes (solidified frictional melts) formed along pre-existing magmatic cooling joints over a fault zone width of ca. 500 m, under ambient conditions of 9-11 km depth and 250-300°C (the "base" of the seismogenic zone in the crust). The fault zone is seamlessly exposed in glacier-polished outcrops both parallel and perpendicular to fault strike. We have studied in a very detailed way these outcrops, which are considered as a world-class natural laboratory for seismic faulting, combining two complementary strategies: (1) areal imaging/mapping and (2) linear transects. A considerable attention has been paid in order to make the results of these different strategies always coherent and consistent, thanks to a 3D spatial database where the entire dataset is stored. Areal imaging and mapping of structures like individual fault traces was performed over almost five orders of magnitude (from km to mm scale) using high-resolution orthophotos, aerial and terrestrial laser-scanning, photogrammetry and 3D mosaics of high-resolution rectified digital photographs. LIDAR scans and imagery were georeferenced in 3D using a Differential Global Positioning System (DGPS), allowing centimetric precision. The analysis of these data has been performed in 3D with Gocad® and custom Matlab® toolboxes. DGPS has been also used to collect linear transects across the fault zone, along which conventional structural measurements have been carried out. The particularity of these transects is that they allow an unprecedented > 100% coverage of the fault zone. In other words, each individual structure (visible with naked eyes), occurring along a continuous transect across the fault zone, has been measured, geolocated, and recorded in the database. In addition, 44 samples collected along the linear transect have been characterized for petrophysical parameters and much

  18. Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling project (WFSD-3)

    NASA Astrophysics Data System (ADS)

    Li, Haibing; Wang, Huan; Yang, Guang; Xu, Zhiqin; Li, Tianfu; Si, Jialiang; Sun, Zhiming; Huang, Yao; Chevalier, Marie-Luce; Zhang, Wenjing; Zhang, Jiajia

    2016-11-01

    Drilling in an active fault quickly after a large earthquake is an effective way to study earthquake mechanisms. In order to better understand the mechanical, physical, and chemical characteristics of the faults that ruptured during the 2008 Wenchuan earthquake (Mw 7.9), six boreholes were drilled on the two main strands (Yingxiu-Beichuan and Guanxian-Anxian faults) by the Wenchuan earthquake Fault Scientific Drilling project (WFSD). This paper focuses on the cores from the WFSD-3 borehole which drilled across the Guanxian-Anxian fault. A detailed petrological study shows that fault gouge and fault breccia are developed in the WFSD-3 cores in the Late Triassic Xujiahe Formation. The thicknesses of fault gouge range from 1 mm to 2.3 m. According to the characteristics of the fault rock combinations and their distribution, at least 22 subsidiary fault zones were recognized in the WFSD-3 cores. The Guanxian-Anxian fault zone is composed of fault rocks from 1192 to 1250.09 m depth, with a real thickness of 50 m ( 60 m thick in the WFSD-3 cores), and an actual damage zone of 160 m ( 980-1192 m depth in the WFSD-3 cores), and shows characteristics of multiple high-strain fault cores. The damage zone is only present in the hanging wall. The actual total thickness of the Guanxian-Anxian fault zone is 210 m. Based on the analyses of comprehensive logging data, characteristics of the fault gouge, and seismic fault structures, the principal slip zone for the Wenchuan earthquake is identified in the black fault gouge at 1249.95 m depth in the cores, which lies almost at the bottom of the Guanxian-Anxian fault zone, and is also confirmed by surface rupture zone observations. The slip plane of the Wenchuan earthquake is a low-angle thrust fault with a dip angle of 38° as estimated from the results of the WFSD-3 core analyses. The results from WFSD-1 showed that the Yingxiu-Beichuan segment is a high-angle thrust fault striking NW with a dip angle of 65°. These two fault

  19. The presence, characteristics and earthquake implications of the St. Lawrence fault zone within and near Lake Ontario (Canada USA)

    NASA Astrophysics Data System (ADS)

    Wallach, J. L.

    2002-08-01

    consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock-sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.

  20. Active tectonics of the Imperial Valley, southern California: fault damage zones, complex basins and buried faults

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.

    2016-12-01

    Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.

  1. Strike-Slip displacement along the Furnace Creek Fault Zone, southern Basins and Ranges, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Baucke, W.; Cemen, I.

    2007-12-01

    The southern Basins and Ranges contain several strike-slip fault zones in addition to predominant normal faults. One of the strike-slip faults is the Furnace Creek fault zone (FCFZ) which extends from the Amor¬gosa Valley in eastern California northwestward continuously about 200 km and termi¬nates in the Fish Lake Valley in Nevada. The fault zone is a part of the Eastern California Shear Zone. Although the right-lateral sense of strike-slip movement along the FCFZ is undisputed, the magnitude of displacement has been controversial since the 1970s. Recently, we have mapped conglomerates exposed in the Travertine point area of the Furnace Creek Wash of the Death Valley region. The conglomerates are composed of Paleozoic clasts from the following formations: Bonanza King, Nopah, Pogonip, Eureka Quartzite, Hidden Valley, and Ely Springs Dolomite. Our analysis of these breccias showed that they are made out of clasts of one composition and a matrix that was slightly different. This observation and our microscopic analysis suggest to us that these breccias were formed as fault breccias along the Furnace Creek fault zone. We have also mapped breccias in the Desolation Canyon on the southwestern side of the FCFZ where the Bonanza King Formation is brought into structural contact over the Ely Spring Dolomite and Eureka Quartzite suggesting the presence of a thrust fault. We correlate this thrust fault with a similar structural setting along the Clery Thrust of the southern Funeral Mountains on northeastern sides of the FCFZ where the Clery thrust brings the Cambrian Bonanza King Formation over the Eureka Quartzite and Ely Spring Dolomite in the southern Funeral Mountains. These observations suggest to us that the thrust fault in the Desolation Canyon area is the continuation of the Clery Thrust of the southern Funeral Mountains. If this interpretation is correct, the strike-slip displacement along the FCFZ is about 30 km.

  2. Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy).

    NASA Astrophysics Data System (ADS)

    Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina; De'Haven Hyman, Jeffrey; Valocchi, Albert J.

    2017-04-01

    The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a numerical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). This fault zone is considered a good analogue for the massive presence of fluid migration in the form of tar. Faults are mechanical features and cause permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead the fault zone to act as a conduit, a barrier, or a combined conduit-barrier system. We integrated existing information and our own st