Science.gov

Sample records for fazenda brasileiro gabbro

  1. Drilling to gabbro in intact ocean crust.

    PubMed

    Wilson, Douglas S; Teagle, Damon A H; Alt, Jeffrey C; Banerjee, Neil R; Umino, Susumu; Miyashita, Sumio; Acton, Gary D; Anma, Ryo; Barr, Samantha R; Belghoul, Akram; Carlut, Julie; Christie, David M; Coggon, Rosalind M; Cooper, Kari M; Cordier, Carole; Crispini, Laura; Durand, Sedelia Rodriguez; Einaudi, Florence; Galli, Laura; Gao, Yongjun; Geldmacher, Jörg; Gilbert, Lisa A; Hayman, Nicholas W; Herrero-Bervera, Emilio; Hirano, Nobuo; Holter, Sara; Ingle, Stephanie; Jiang, Shijun; Kalberkamp, Ulrich; Kerneklian, Marcie; Koepke, Jürgen; Laverne, Christine; Vasquez, Haroldo L Lledo; Maclennan, John; Morgan, Sally; Neo, Natsuki; Nichols, Holly J; Park, Sung-Hyun; Reichow, Marc K; Sakuyama, Tetsuya; Sano, Takashi; Sandwell, Rachel; Scheibner, Birgit; Smith-Duque, Chris E; Swift, Stephen A; Tartarotti, Paola; Tikku, Anahita A; Tominaga, Masako; Veloso, Eugenio A; Yamasaki, Toru; Yamazaki, Shusaku; Ziegler, Christa

    2006-05-19

    Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.

  2. [The archeology of slavery on Jesuit fazendas: first research notes].

    PubMed

    Symanski, Luís Cláudio P; Gomes, Flávio

    2012-12-01

    These preliminary research notes present theoretical and methodological questions regarding a recently inaugurated investigation in historical archeology that intends to analyze daily life under slavery, demographic regimes, cultural practices, and so on. A survey of archeological sites on former 'senzalas' (slave quarters) and slave-owning fazendas in the Paraíba Valley and northern part of the state of Rio de Janeiro is currently in progress. With the cooperation of historians, archeologists, and anthropologists, records of the material culture of slave populations, which originally comprised indigenes and later Africans, are being located at excavations underway on the fazenda that is part of the Jesuit school in Campos dos Goytacazes, Rio de Janeiro, first run by the clergy and later by members of the laity in the seventeenth, eighteenth, and nineteenth centuries.

  3. Shock wave properties of anorthosite and gabbro

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1984-01-01

    Hugoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from particl velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  4. The Amphiolite Layers In The Cumulate Gabbros, (Northern-Turkey)

    NASA Astrophysics Data System (ADS)

    Özkan, Mutlu; Faruk Çelik, Ömer; Altıntaş, İsmail Emir; Sherlock, Sarah; Chelle-Michou, Cyril; Marzoli, Andrea; Ulianov, Alexey; Melih Çörtük, Rahmi; Topuz, Gültekin

    2016-04-01

    The Early-Middle Jurassic SSZ type dismembered ophiolite sequence, which is remnants of the Tethyan oceanic lithosphere, crop out in the accretionary complex around Tokat-Çamlıbel region (Northern Turkey). The main lithology of the ophiolite sequence are cumulate gabbros, isotropic gabbros and basalts. The amphibolite layers, which their thickness are up to 2 m, are observed in the cumulate gabbros. In this study, we aim to discuss a possible formation mechanism of the amphibolitic rocks in the cumulate gabbros, based on the field, mineralogical, geochemical and geochronological data. The cumulate gabbros (olivine-gabbro, gabbro-norite and gabbro) have generally well developed magmatic layers and they show cumulate texture. They are cross cut by pegmatite gabbros, dolerites and plagiogranite dikes. In terms of the mechanism of formation, the amphibolite layers in the cumulate gabbros are different from dolerite, pegmatite gabbro and plagiogranite dikes crosscutting the cumulate gabbros. Although the cumulate gabbros, the mafic and felsic dikes have not undergone any metamorphism (except the hydrothermal metamorphism), the amphibolite layers show well developed foliation and banded structure. Moreover, field and petrographic observations showed that the amphibolitic rocks were highly subjected to shearing. The amphibolitic rocks are mainly composed of magnesio-hornblende + plagioclase (andesine), ± biotite and opaque minerals and they exhibit nematoblastic texture. The amphibolite layers in the cumulate gabbros are crosscut by the plagiogranite dikes. The plagiogranites consist mainly of quartz, plagioclase, biotite and opaque minerals and they show granular texture. Undulose extinction and sub-grain formation in quartz minerals indicate to the presence of deformation phase affecting the plagiogranite dikes. LA-ICP-MS dating on zircon from plagiogranite dikes which is cross-cutting of the amphibolite layers, yielded Middle Jurassic ages. 40Ar/39Ar dating of

  5. Particle velocity experiments in anorthosite and gabbro

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1984-01-01

    Shock wave experiments were conducted in San Gabriel anorthosite and San Marcos gabbra 10 11 GPa using a 40 mm-borne propellant gun. Particle velocities were measured directly at several points in each target by means of electromagnetic gauges. Hugoniot states were calculated by determining shock-transit time from the gauge records. Sound speeds indicate a loss of shear strength upon sock compression for both rocks, with the strength loss persisting upon release to zero stress om the anorthosite. Stress-density release paths in the anorthosite indicate possible transformation of albite to jadeite + (quartz or coesite), with the amount of material transformed increasing as a function of shock stress. Electrical interferene effects in the gabbro precluded the determination of accurate release paths for the rock.

  6. Impact cratering and spall failure of gabbro

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.; Boslough, M. B.

    1984-01-01

    Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro. The impact experiments carried out with 0.04 to 0.2 g, 5-6 km/sec projectiles produced deci-centimeter-sized craters and demonstrated crater efficiencies of 6/10 to the -9 g/erg, and order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80 percent) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 gram yield values of b = d(log10N sub f)dlog10(m) of -0.5 to -0.6, where N sub f is the cumulate number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejecta resides in a few large fragments.

  7. Impact cratering and spall failure at gabbro

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.; Boslough, M. B.

    1983-01-01

    Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro. The impact experiments carried out with 0.04 to 0.2g, 5-6 km/sec projectiles produced deci-centimeter-sized craters and demonstrated crater efficiencies of 6/10 to the - 9 g/erg, and order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80%) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 gram yield values of b = d(log10N sub f)dlog10(m)of -0.5 to -0.6, where N sub f is the cumulate number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejectra resides in a few large fragments.

  8. The Fazenda Largo off-craton kimberlites of Piauí State, Brazil

    NASA Astrophysics Data System (ADS)

    Kaminsky, Felix V.; Sablukov, Sergei M.; Sablukova, Ludmila I.; Zakharchenko, Olga D.

    2009-10-01

    In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area - Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos - this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the 'Transbrasiliano Lineament'. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.

  9. Stress-Activated Electromagnetic Emission and Reflection from Gabbro and Gabbro-Diorite

    NASA Astrophysics Data System (ADS)

    Cherukupally, A.; Freund, F. T.; Vanderbilt, V. C.; Tsoflias, G. P.; Dahlgren, R.

    2010-12-01

    Thermal Infrared (TIR) anomalies seen in night-time satellite images are thought to be a promising pre-earthquake signature, driven by the build-up of stress in the crust [1]. The reported radiative surface temperature increase is on the order of 2-6°C, occasionally higher. The cause of this effect is still debated. To produce TIR anomalies in the laboratory we stressed cut blocks of gabbro and boulders of gabbro-diorite using a hydraulic press and/or Bustar expanding cement. Using a Bruker Vertex 70 FT-IR spectrometer with an infrared emission accessory, we measured the IR emission off the rock surface far from where the stresses are applied. We also gathered information about the surface potential by measuring the voltage between the stressed rock and the rock surface at an unstressed part. In addition we monitored the concentration of airborne ions above the rock boulders and changes in radar reflectivity. Upon application of stress we record a positive surface potential, a slight increase in gray body emission, and IR emission bands in the 11-12.5 micron region. The increase in gray body emission indicates a temperature increase of the emitting rock surface. The 11-12.5 micron IR bands suggest a contribution from a non-thermal emission process. We record occasional bursts of air ions, mostly positive. All these observations, plus changes in radar reflectivity, are consistent with the activation of positive hole charge carriers in the stressed subvolume of the rocks and their flow to the surface [2]. At the surface the positive holes lead to a surface charge with an associated electric field, which can become high enough to cause air ionization [3]. The positive holes recombine at the surface, releasing some of their recombination energy as 11-12.5 micron IR photons, the rest as heat [4]. 1] D. Ouzounov et al., “Satellite thermal IR phenomena associated with some of the major earthquakes in 1999-2003,” Phys. Chem. Earth, 31, 154-163 (2006) [2] F. Freund et

  10. Gabbro-Metagabbro association: a Mössbauer effect study

    NASA Astrophysics Data System (ADS)

    Bahgat, A. A.; El-Leil, I. Abu; Radadan, T. M.

    1992-04-01

    Six different samples of Gabbro-Metagabbro rocks from Gebel (Mountain) Atud area located in the central Eastern Desert of Egypt were collected and studied using Mössbauer effect of iron and x-ray diffraction. The study pointed out the degree of alteration from the point of view of mineralogical identification together with the amount and different of states of iron. A mixed valence iron state was observed in one sample.

  11. Fluid infiltration of the Tudor Gabbro during regional metamorphism

    SciTech Connect

    Dunn, S.R.; Valley, J.W.

    1985-01-01

    The Tudor Gabbro (TG), an ovate body (4 x 9 km) 40 km SE of Bancroft. Ontario, was metamorphosed to upper greenschist facies along with surrounding sediments and volcanics. Allen (1976) delineated concentric isograds around the gabbro, including +sphene, +tremolite (to 1.5 km), +tremolite + clinozoisite, +diopside (approx. 120 m), and +garnet (approx. 80 m). Metamorphic conditions are inferred to be 490+/-50/sup 0/C, 5 kb with no thermal gradient. Allen suggested that H/sub 2/O infiltration of the marble and calc-schist accounts for the isograds. The gabbro mineralogy of titanaugite, andesine to labradorite, and minor hornblende is extensively recrystallized to albite and/or oligoclase + actinolite + epidote + ilmenite + calcite (up to 4 wt%) +/- biotite +/- chlorite +/- sphene +/- scapolite. Isotopic analyses of calcite from 39 TG samples show delta/sup 18/O = 9.4 to 16.6 and delta/sup 13/C = -1.9 to 3.4. Bulk silicate delta/sup 18/O of TG range from 7.1 to 10.2. Calcites in metasediment have delta/sup 18/O = 18.1 to 25.3 and delta/sup 13/C = 1.3 to 5.6. Two whole rock silicate analyses of a skarn developed locally at the contact show intermediate delta/sup 18/O of 16.2 and 17.3. The stability of Czo component in epidote requires H/sub 2/O-rich fluids. The delta/sup 13/C of TG calcites average +0.7 nearly identical to the average of 178 carbonates from Grenville marbles (+1.0), showing that metasediment-derived CO/sub 2/ pervasively infiltrated the TG. The infiltration of H/sub 2/O into both the TG and the metasediment suggests that H/sub 2/O-rich fluids migrated upward along the contact.

  12. Contribution of oceanic gabbros to sea-floor spreading magnetic anomalies.

    PubMed

    Kikawa, E; Ozawa, K

    1992-10-30

    The contribution of oceanic gabbros, representative rocks for layer 3 of the oceanic crust, to sea-floor spreading magnetic anomalies has been controversial because of the large variation in magnetic properties. Ocean Drilling Program (ODP) Leg 118 contains a continuous 500.7-meter section of oceanic gabbro that allows the relations between magnetization and petrologic characteristics, such as the degree of metamorphism and the magmatic evolution, to be clarified. The data suggest that oceanic gabbros, together with the effects of metamorphism and of magmatic evolution, account for a significant part of the marine magnetic anomalies.

  13. Basalts and gabbros from Mare Crisium - Evidence for extreme fractional crystallization

    NASA Technical Reports Server (NTRS)

    Lu, F.; Taylor, L. A.; Jin, Y.

    1989-01-01

    Petrographic and electron microprobe techniques were used to examine igneous fragments in Luna 24 samples 24088 and 24105. It is the complex chemistry of the pyroxenes that distinguishes the different rock types. Basaltic pyroxenes exhibit an Fe-enrichment trend; the evolutionary trends are more complex in the gabbros, with enrichments in both Fe and Ti and a depletion in Cr. These chemical evolutionary trends are displayed by a progressive variation in rock types from Mg-rich olivine-gabbro to olivine-gabbro, and to ferrogabbro and ferrotroctolite. The low TiO2 content of the primary melt, possibly represented by the least-evolved Mg-rich olivine-gabbro, retarded the formation of early ilmenite and spinel, such that 'Fenner Trend' Fe enrichment occurred. The ferrotroctolite is probably the end product of chemical evolution by extreme fractional crystallization, controlled primarily by olivine and pyroxene crystallization.

  14. From isotropic to layered gabbro: evolution record in the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Jousselin, D.; Morales, L. G.; Stephant, A.; Nicolle, M.

    2010-12-01

    The origin of gabbro layering in ophiolites is widely debated because it is linked to the processes of melt circulation beneath spreading ridges. The Moho Transition Zone (MTZ) of the Oman ophiolite contains layered gabbro lenses that are tens of meters wide. At meter scale, these rocks are not distinguishable from crustal layered gabbros. We describe the first known occurrence of an outcrop of isotropic gabbro in the Oman ophiolite MTZ; the outcrop extends over three hundreds meters and grades into poorly to nicely layered gabbros towards the periphery of the outcrop. When they are present, layering, and magmatic lineation are parallel to the host peridotite plastic foliation and lineation respectively, with microstructures indicative of simple shear deformation. Dunite heterogeneities within the isotropic gabbro, and diffuse limits, suggest that the isotropic gabbro results from melt impregnation of the host dunite, and that olivine within the gabbro is of mantelic origin. Crystallographic preferred orientations (CPO) measurements of olivine and plagioclase show a progressive evolution from a random fabric in the isotropic gabbro, to a well defined fabric in the roughly to nicely layered gabbros. Olivine show [001] (010) B-TYPE fabrics that we interpret as a magmatic flow fabric. In the most deformed samples, the plagioclase texture remains magmatic but olivine CPO is indicative of plastic deformation with a classic A-TYPE pattern. We argue that as a critical threshold of olivine connectivity is reached in the well defined olivine-rich layers, olivine deformation rapidly switches from magmatic to plastic. This last stage of deformation probably contributes to the layering sharpening, as deformation in olivine and in plagioclase rich layers must tend to be decoupled at this stage. We conclude that our observations illustrate rarely preserved transitional stages for the layered gabbros formation, showing that layering can result from the progressive tectonic

  15. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    NASA Astrophysics Data System (ADS)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  16. The permeability of gabbro in oceanic core complexes

    NASA Astrophysics Data System (ADS)

    Titarenko, S.; McCaig, A. M.

    2013-12-01

    ridges in the Pacific, and volcanic plateaux in the Atlantic, suggest that the topmost basalts are extremely permeable even in crust up to 60 Ma, with estimates ranging from 10-13 to 10-9 m2. This has profound effects on the thermal structure of the crust, particularly where bare seamounts allow access of seawater to this shallow aquifer. In the Atlantic, up to 50% of the cuts has formed in the detachment mode of seafloor spreading, and lacks a continuous basaltic layer. The most prominent bare seamounts are often oceanic core complexes exposing gabbro and serpentinite. It follows that the hydrological and thermal regime in the Atlantic is likely to be inhomogeneous and unpredictable. Additionally, our data show that even in a tectonically active massif <1.2 M.y. in age, the large scale permeability of gabbro at low temperature is much less than that normally used in black smoker modelling (10-14 to 10-12 m2). Sheeted sill models of crustal construction at fast spreading ridges require removal of heat by deep circulation of seawater close to the ridge crest. Any permeability allowing such deep circulation is likely to be extremely transient in nature.

  17. Creep of Fine-grained Gabbro in dry Condition

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Rybacki, E.; Dresen, G.; He, C.

    2008-12-01

    Natural fine-grained gabbro were deformed at 300MPa confining pressure in a paterson-type deformation apparatus in GFZ. Creep tests were performed at temperatures ranging from 950-1150'C, stresses from 25-500 MPa, and strain rates between2.3x10-4 to 6.7x10-8s-1. The fine-grained gabbro is composed of 60 vol percent plagioclase, 30 vol percent pyroxene, 10 vol percent magnetite and ilmenite. The samples were dried at 1000`C for 167 hours before experiments. FTIR measurements show a water content of 0.008 wt percent H2O for starting samples, and 0.03 wt percent H2O for deformed samples. We performed three kinds of tests: stress step creep tests, temperature step creep test and constant stress creep with a long creep time. The data of stress-stepping creep tests and the constant stress creep test with long creep time show that the strain rates under the same stress level were increasing with cumulated creep time beyond a threshold time, which is 24 hours for temperature up to 1050 `C and 5 hours for temperature of 1100 `C, and a linear relation with slope of 1.0 was found between logarithm of strain rate and logarithm of accumulated time, suggesting time-proportional strain-rate enhancement, or equivalently, time-weakening effect of flow strength. Microstructural observations of deformed samples show that melt films occurred between grain boundaries of samples, and the melt contents increase with the creep time, indicating the mechanism of the weakening behavior. The strain rate enhancement related to melt fraction agrees to the data of Dimanov et al. [2000], and is fitted well with the model of Paterson [2000]. In order to determine a steady-state flow law with the effect of melt film excluded, the original steady-state strain rates are converted to the case with t=24 hours for experiments with temperatures up to 1050 `C, and data for temperature of 1100 `C are converted to the case with t=5 hours. The time-corrected creep data were fitted to the most commonly used

  18. Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone

    NASA Astrophysics Data System (ADS)

    Jousselin, David; Morales, Luiz F. G.; Nicolle, Marie; Stephant, Aurore

    2012-05-01

    We investigate the origin of modal layering in gabbro lenses of the Moho transition zone in the Oman ophiolite with a microstructural study. Gabbro lenses exhibit a shape preferred orientation of plagioclase crystals, that are euhedral and devoid of any intracrystalline deformation. This texture and field kinematic indicators show a strong simple shear deformation in magmatic conditions. The parallelism of the lineation in gabbros and the plastic lineation of the host dunite indicate that their development is contemporaneous, and that the magmatic features are passively coupled to the solid-plastic flow of the host mantle. We also found undeformed-isotropic and weakly deformed-roughly layered gabbros. The host rock is plagioclase and clinopyroxene impregnated dunite; it contains euhedral plagioclase suggesting that some grains crystallized in suspension. There is no clear boundary between the gabbro and the host rock; on the contrary, the limit is diffuse, with increasing plagioclase and clinopyroxene content from the dunite to the gabbro over tens of meters. This suggests that the gabbro corresponds to melt impregnated dunite. We defined 4 gabbro types, from unlayered (type 1) to well layered (type 4) with progressively more continuous and distinct layers. We characterized deformation with crystal shape and crystallographic preferred orientation (CPO) measurements. Unlayered samples have a random fabric; type 2 have a very weak shape fabric and planar CPO, defined by olivine and plagioclase (010) planes; type 3 have a weak fabric, with a lineation defined by the [001] olivine axis and the [100] plagioclase axis, which reflects the shape fabric; type 4 have a strong shape fabric and CPO, with a lineation defined by the [100] olivine and plagioclase axis. We interpret the progression from isotropic to clear S-L fabrics as a result of increasing deformation imposed by the flowing host mantle. The type 2 gabbros must result from compaction; with increasing simple

  19. Gabbro-peridotite Interaction in the Northern Cache Creek Composite Terrane Ophiolite, British Columbia and Yukon

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.

    2015-12-01

    The northern Cache Creek composite terrane comprises a thrust stack of chert, limestone, siltstone, basalt, gabbro and ultramafic complexes ranging in age from Mississippian to Triassic. Fields studies and geochemical investigations indicate that ophiolitic mafic-ultramafic complexes formed in a supra-subduction zone setting. Ophiolitic rocks in the southeast form a structurally disrupted Penrose-type ophiolite; however, northwestern ophiolitic rocks generally lack lower and middle crust in most sections, exhibit a direct contact between supracrustal and mantle sections and locally contain ophicalcites suggesting that supracrustal rocks were structurally emplaced over mantle along extensional detachment(s). Mantle peridotite in the footwall of the detachment is extensively intruded by vari-textured, fine-grained to pegmatitic gabbro sills, dykes and stocks. These gabbro intrusions are locally boudinaged within fresh peridotite suggesting that the host mantle was rapidly exhumed prior to emplacement of the gabbro. Intrusive relationships between gabbro and variably serpentinized mantle peridotite are observed throughout the northern Cache Creek terrane (>300 km) suggesting a presence of a regional-scale Middle Triassic ocean-core complex. Overall, these data indicate that parts of the northern Cache Creek terrane formed in a setting analogous to backarc ocean core complexes such as the Godzilla Megamullion in the Parece Vela backarc basin, western Pacific.

  20. A pristine eucrite-like gabbro from Descartes and its exotic kindred

    NASA Technical Reports Server (NTRS)

    Marvin, U. B.; Warren, P. H.

    1980-01-01

    A coarse-grained plagioclase-pyroxene gabbro (61224,6) with a cumulate texture suggestive of a slowly cooled plutonic rock was recovered from the 4-10 mm fraction of an Apollo 16 soil. The rock is uncommonly poor in feldspar and rich in Na for a lunar highlands lithology. Trace element analyses show extremely low siderophile element concentrations which confirm the pristine character indicated by the texture. The composition of 61224,6 is compared with those of 3 other pristine, exceptionally mafic, nonmare gabbros and of certain eucrites. 61224,6 and the three other gabbros have notable chemical differences but share relatively high ratios of Ti/Sm and Sc/Sm which suggest a possible genetic relationship. We conclude that 61224,6 represents a Na-rich cumulate from a layered intrusion within the highlands crust.

  1. Stream water chemistry in a gabbro/granite watershed, Quabbin reservation, central Massachusetts

    SciTech Connect

    Reid, J.B. Jr.; Gallant, J.; Christensen, C.; Mengason, M. . School of Natural Science)

    1993-03-01

    While monitoring pH-alkalinity relationships in tributaries of the Quabbin Reservoir, the authors have discovered an anomalous brook whose waters become progressively more acidic downstream. The watershed's bedrock is roughly half Prescott hornblende gabbro and half Cooleyville granitic gneiss with the contact crossing the watershed diagonally; gabbroic bedrock dominates the stream's upper reaches. Outcrop density and topography suggest relatively thin till cover (< [approximately]2m). All parts of the stream get some contribution from both bedrock types, through gabbro contribution diminishes smoothly downstream. Springs in gabbro (pH [approximately]7, alk 20--30mg/1, cond [approximately]50[mu]mho) and in granite (pH [approximately]5, alk 2--6 mg/1, cond [approximately]15[mu]mho) retain these characteristics through dry and wet seasons; the stream's response to high rain events is more complex and can be used to estimate where surface water and groundwater each make their greatest contributions. Each point along the brook can be assigned a value of %gabbro characterizing the bedrock proportions in the watershed upstream of it; plots of major cations, alkalinity and conductivity vs. %gabbro show strong positive correlation. Two-week leaching experiments (initial pH = 4) with A, B and C soil horizons from both sides of the contact show greatest rises (to pH = 5.5) in gabbro soils distant from the contact, and progressively smaller increases crossing the contact to granite soils (pH rises to 4.5). The data suggest that bedrock and soil chemistry are primarily responsible for stream chemistry; topography and residence time here play secondary roles.

  2. Comparison of Lunar Basalts and Gabbros with those of the Terrestrial Ocean Crust

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2012-12-01

    Initial studies of lunar samples returned from the Apollo and Luna missions took place before rocks of the Earth's lower ocean crust, chiefly varieties of gabbro cumulates, were widely known or understood. Continuing exploration of the ocean crust invites some new comparisons. When volcanic rocks and glass from Apollo 11 and 17 were discovered to have very high TiO2 contents (8-14%), nothing comparable was known from Earth. The high-TiO2 lunar samples were soon described as primary melts derived from considerable depths in the lunar mantle. Other lunar samples have only very low TiO2 contents (~0.2%) and very low concentrations of highly incompatible elements such as Zr and Sr. Today, dredging and drilling results indicate that oxide gabbros rich in magmatic oxides and sulfides and with up to 12% TiO2 comprise a significant percentage of the gabbroic portion of the ocean crust especially at slowly spreading ridges. These are very late stage differentiates, and are commonly juxtaposed by high-temperature deformation processes with more primitive olivine gabbros and troctolites having only ~0.2% TiO2 and low concentrations of Zr and other incompatible elements. The rocks are mainly adcumulates, with very low concentrations of incompatible elements set by proportions of cumulus minerals, and with little contribution from the liquids that produced them. In addition, some lunar gabbros with highly calcic plagioclase (~An93-98) are similar to gabbros and troctolites found in island arcs. All of these similarities suggest that very few lunar basaltic rocks are pristine; instead they all could be nearly complete shock fusion products produced by meteorite impact into a diverse assemblage of lunar gabbros that included both low- and high-TiO2 gabbroic facies. On this hypothesis, no lunar basalt is a primary melt derived from the Moon's mantle. Although magmatic environments on the ancient Moon and in the modern ocean crust were different in important ways, the general

  3. Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1985-01-01

    Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  4. Paleoproterozoic gabbro-diorite-granite magmatism of the Batomga Rise (NE Aldan Shield): Sm-Nd isotope geochemical evidence

    NASA Astrophysics Data System (ADS)

    Kuzmin, V. K.; Bogomolov, E. S.; Glebovitskii, V. A.

    2016-02-01

    The geochemical similarity and almost simultaneous (2055-2060 Ma) formation of Utakachan gabbro-amphibolite, Jagdakin granodiorite-diorite, Khoyunda granitoid, and Tygymyt leucogranite complexes, which inruded metamorphic formations of the Batomga Group are evidence of their formaton from unified magmatic source. All this makes it possibble to combine aforementioned complexes into the unified Early Proterozoic diferentiated gabbro-diorite-granite complex.

  5. Lherzolite, anorthosite, gabbro, and basalt dredged from the mid-Indian ocean ridge.

    PubMed

    Engel, C G; Fisher, R L

    1969-11-28

    The Central Indian Ridge is mantled with flows of low-potassium basalt of uniform composition. Gabbro, anorthosite, and garnet-bearing lherzolite are exposed in cross fractures, and lherzolite is the bedrock at the center of the ridge. The Iherzolites are upper-mantle rock exposed by faulting.

  6. Lherzolite, anorthosite, gabbro, and basalt dredged from the Mid-Indian Ocean Ridge

    USGS Publications Warehouse

    Engel, C.G.; Fisher, R.L.

    1969-01-01

    The Central Indian Ridge is mantled with flows of low-potassium basalt of uniform composition. Gabbro, anorthosite, and garnet-bearing lherzolite are exposed in cross fractures, and lherzolite is the bedrock at the center of the ridge. The lherzolites are upper-mantle rock exposed by faulting.

  7. Paleomagnetism of the Middle Proterozoic Electra Lake Gabbro, Needle Mountains, southwestern Colorado

    USGS Publications Warehouse

    Harlan, S.S.; Geissman, J.W.

    1998-01-01

    The Electra Lake Gabbro is a small 1.435 Ga pluton that intrudes 1.7 to 1.6 Ga gneisses and schists of the Needle Mountains in southwestern Colorado. Paleomagnetic samples were collected from the main phases of the gabbro, diabase dikes, granite, and alaskite dikes that cut the gabbro and from a partially melted zone in gneiss along the southern margin of the pluton. Gabbro, diabase, and some melt zone samples have a single-polarity characteristic magnetization of northeast declination (D) and moderate negative inclination (I). Demagnetization behavior and rock magnetic characteristics indicate that the remanence is carried by nearly pure magnetite. After correction for the minor west dip of overlying Paleozoic strata, we obtain a mean direction of D = 32.1??, I = -41.9?? (k = 94, ??95 = 3.3??, N = 21 sites) and a paleomagnetic pole at 21.1?? S, 221.1 ??E, (K= 89, A95 = 3.4??). This pole is similar to poles from the Middle Proterozoic Belt Supergroup but is located at a higher southerly latitude than poles from other 1.47-1.44 Ga plutons from North America, most of which plot at equatorial latitudes. The reason for this discrepancy is not clear but may result from a combination of factors, including unrecognized tilting of the gabbro, the failure of this relatively small pluton to fully average paleosecular variation, and uncertainties in the overall reliability of other 1.5-1.4 Ga poles of the North American apparent polar wander path.

  8. Metamorphic zircon formation at the transition from gabbro to eclogite in Trollheimen-Surnadalen, Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Beckman, Victoria; Möller, Charlotte; Söderlund, Ulf; Corfu, Fernando; Chamberlain, Kevin

    2013-04-01

    A transition zone from gabbro to eclogite via coronitic stages has been investigated at Vindøldalen in south central Norway, with the aim of linking reaction textures to metamorphic zircon growth and obtaining a direct U-Pb zircon age of the metamorphic process. Different rocks from the transition zone contain various types of zircon: I) as igneous prismatic grains; II) metamorphic polycrystalline rims and pseudomorphs after baddeleyite, and III) tiny (> 10µm) bead-like zircon grains associated with a) oxidation and b) resorption of Ti-Fe oxides. During progressive transformation from gabbro to eclogite, titanomagnetite (magnetite with ilmenite lamellae) was oxidised to titanohematite (hematite + ilmenite); at advanced stages of recrystallization to eclogite, rutile was produced at the expense of Fe-Ti oxide. Textural relations suggests that the FeTi-oxides were the main source of Zr. Subsolidus liberation of Zr and formation of zircon beads took place by oxidation of titanomagnetite during fluid-assisted metamorphism in undeformed corona gabbro, and by resorption of FeTi-oxide in undeformed and strongly deformed rock domains that were recrystallized to eclogite. Secondary ionization mass spectrometry (SIMS) and Thermal ionization mass spectrometry (TIMS) were used to obtain U-Pb ages of zircon and baddeleyite. Magmatic baddeleyite yields a TIMS age of 1.46 Ga dating igneous crystallisation, whereas the SIMS age for baddeleyite and magmatic zircon from the same gabbro is slightly younger. Bead-type metamorphic zircon from eclogite gives an age of 425±10 Ma (TIMS), and dates directly the metamorphic transition from gabbro to eclogite in the upper basement of the Lower Allochthon in the south-central Scandinavian Caledonides. The metamorphic zircon age does not necessarily date the peak metamorphic temperature, but reflects fluid-induced reactions and oxidation of primary phases.

  9. Formation of anorthosite-Gabbro rhythmic phase layering: an example at North Arm Mountain, Bay of Isands ophiolite

    USGS Publications Warehouse

    Komor, S.C.; Elthon, D.

    1990-01-01

    Rhythmically layered anorthosite and gabbro are exposed in a 4-10-m thick interval at the base of the layered gabbro unit on North Arm Mountain, one of four massifs that compose the Bay of Islands ophiolite, Newfoundland. The rhythmically layered interval is sandwiched between thick layers of adcumulate to orthocumulate uniform gabbro. Calculated fractional crystallization paths and correlated cryptic variation patterns suggest that uniform and rhythmically layered gabbros represent 20-30% in situ crystallization of two distinct magma batches, one more evolved and the other more primitive. When the more primitive magma entered the crystallization site of the NA300-301 gabbros, it is estimated to have been ~40??C hotter than the resident evolved magma, and may have been chilled by contact with a magma chamber margin composed of uniform gabbro. In this model, chilling caused the liquid to become supercooled with respect to plagioclase nucleation temperatures, resulting in crystallization of gabbro deficient in plagioclase relative to equilibrium cotectic proportions. Subtraction of a plagioclase-poor melagabbro enriched the liquid in normative plagioclase, which in turn led to crystallization of an anorthosite layer. -from Authors

  10. Effect of Pressure and Stress on Water Transport in Intact and Fractured Gabbro and Granite

    SciTech Connect

    Trimmer, D.; Bonner, B.; Heard, H.C.; Duba, A.

    1980-12-10

    New laboratory data are reported on the effect of confining pressure (to 60 MPa), pore-water pressure (to 30 MPa), and stress difference (to 0.88 of the fracture stress) on permeability of intact and fractured White Lake gneissic granite. Westerly granite, and Creighton gabbro. Permeabilities as low as 10/sup -24/ m/sup 2/ (10/sup -2/ darcy) have been measured using a transient technique. Fracture displacement, electrical conductance, compressional velocity, and pulse amplitude are determined simultaneously. The loads applied to the 0.15-m-diameter by 0.28-m-length test sample are controlled automatically, and most data are taken by microprocessor. Tests on the intact gneissic granite indicated permeabilities of 10/sup -22/ to 10/sup -24/ m/sup 2/ that appeared to be unaffected either by effective pressure or by stress. The granite yielded permeabilities of 4 +- 10/sup -20/ m/sup 2/ that decreased by a factor of 2 as effective pressure increased to 25 MPa and varied by a factor of 2 as stress was increased to 0.5 of the fracture stress. Permeability of the gabbro linearly decreased from 2 x 10/sup -22/ to 8 x 10/sup -24/ m/sup 2/ with effective pressures to 25 MPa. Loading of the gabbro up to 0.88 of the fracture stress increased permeability by a factor of 7. The introduction of a throughgoing fracture increased the apparent permeability by 10/sup 6/ to 10/sup 9/ over the intact values in both granite and gabbro. When compared to the initial value, compressional velocities increased by 5% with pressure to 30 MPa in the gneissic granite. For granite, pressurization from 2 to 25 MPa increased the velocity and pulse amplitude by 5 and 30%, and decreased the conductance by 50%. Velocity, amplitude, and conductance were weakly dependent on pressure in gabbro. The addition of stress decreased velocity and amplitude while increasing conductance markedly on both granite and gabbro.

  11. Subsolidus physical and chemical mixing of granite and gabbro during mylonitization, South Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Rachel Walcott, C.; Craw, Dave

    1993-12-01

    At Dromedary Massif, Southern Victoria Land, Antarctica, a suite of coarse-grained granite dykes cross-cuts a gabbro pluton which has been partially metamorphosed at amphibolite facies. During regional deformation, strain has been inhomogeneously distributed through the gabbro pluton and has been concentrated in granite dykes. In zones of relatively high strain, the granite dykes have developed a mylonitic fabric. A high strain gradient between granitic mylonite and metagabbroic host rock has induced isochemical mylonitization of the margin of the host. This grain size reduction allowed chemical diffusion between granitic and metagabbroic mylonites, resulting in a marginal zone of biotite-rich mylonite with intermediate composition. Biotite-rich mylonite decoupled from metagabbroic mylonite and flowed with granitic mylonite. Continued folding and transposition of granitic mylonite and biotite-rich mylonite has produced compositionally banded mylonite zones through thorough and irreversible mixing of the two lithologies.

  12. Thermal and impact histories of pyroxenes in lunar eucrite-like gabbros and eucrites

    NASA Astrophysics Data System (ADS)

    Takeda, H.; Mori, H.; Ishii, T.; Miyamoto, M.

    Pyroxenes located at levels which are below those at which the near-surface basalts are found must be investigated to obtain more information on the cooling histories of primitive crusts. However, lunar analogs of the cumulate eucrites are rare. The discovery of the pristine eucrite-like gabbro from Descartes by Marvin and Warren (1980) provided an opportunity to investigate more slowly cooled and presumably deep crustal lunar rocks. The present investigation is, therefore, concerned with a comparison of pyroxene in lunar eucrite-like gabbro (61223,47 and 61224,36) and a KREEP-rich quartz monzodiorite (15405,148) with pyroxenes in lunar eucritic analogs (Moore County, Juvinas, and Yamato-74356). Attention is given to differences between lunar and meteoritic eucrites. It is found that the lunar analogs were subjected to complex shock effects of a much higher degree than the meteoritic eucrites.

  13. Characteristics and petrogenesis of Alaskan-type ultramafic-gabbro intrusions, southeastern Alaska

    SciTech Connect

    Loney, R.A. ); Himmelberg, G.R. Univ. of Missouri, Columbia, MO )

    1993-04-01

    Alaskan-type ultramafic-gabbro intrusions occur along a belt that extends from Duke Island to Klukwan in southeastern Alaska and fall into two age groups, 400 to 440 Ma and 100 to 110 Ma. Most of the smaller bodies are magnetite-bearing hornblende clinopyroxenite; the larger ones consist of dunite, wehrlite, olivine clinopyroxenite, with some gabbro, in addition to hornblende clinopyroxenite and hornblendite. Textural, mineralogical, and chemical characteristics of the Alaskan-type ultramafic bodies indicate that they originated by fractional crystallization of a basaltic magma and accumulation in a crustal magma chamber. The Al[sub 2]O[sub 3] content of clinopyroxene shows a marked enrichment with differentiation, suggesting crystallization from progressively more hydrous melts like those characteristics of arc magmas. REE abundance levels and patterns are markedly similar for given rock units in all the bodies studied suggesting that all the bodies were derived by differentiation of closely similar parent magmas under near identical conditions. The exact composition of the primary melt is uncertain but the authors' preferred interpretation is that the parental magma of most Alaskan-type bodies was a subalkaline hydrous basalt. The striking similarity between the REE abundance levels and patterns of the Alaskan-type clinopyroxenites and gabbros, and the clinopyroxenite xenoliths and plutonic gabbros associated with Aleutian Island Arc volcanism, further suggests that the primary magma was probably a hydrous olivine basalt similar to the primary magma proposed for the Aleutian arc lavas. The mineral chemistry and phase equilibria of the ultramafic bodies suggest that they crystallized in magma chambers at depths greater than about 9 km. Except for the Duke Island body, which has sedimentary structures and shows evidence of ubiquitous current activity, most of the other bodies appear to have accumulated under static conditions.

  14. The gabbro-eclogite phase transition and the elevation of mountain belts on Venus

    NASA Technical Reports Server (NTRS)

    Namiki, Noriyuki; Solomon, Sean C.

    1992-01-01

    Among the four mountain belts surrounding Lakshmi Planum, Maxwell Montes is the highest and stands up to 11 km above the mean planetary radius and 7 km above Lakshmi Planum. The bulk composition and radioactive heat production of the crust on Venus, where measured, are similar to those of terrestrial tholeiitic basalt. Because the thickness of the low-density crust may be limited by the gabbro-garnet granulite-eclogite phase transitions, the 7-11 km maximum elevation of Maxwell Montes is difficult to understand except in the unlikely situation that the crust contains a large volume of magma. A possible explanation is that the base of the crust is not in phase equilibrium. It has been suggested that under completely dry conditions, the gabbro-eclogite phase transition takes place by solid-state diffusion and may require a geologically significant time to run to completion. Solid-state diffusion is a strongly temperature-dependent process. In this paper we solve the thermal evolution of the mountain belt to attempt to constrain the depth of the gabbro-eclogite transition and thus to assess this hypothesis quantitatively. The one-dimensional heat equation is solved numerically by a finite difference approximation. The deformation of the horizontally shortening crustal and mantle portions of the thermal boundary layer is assumed to occur by pure shear, and therefore the vertical velocity is given by the product of the horizontal strain rate and depth.

  15. Brittle Asperities and Stick-Slip Motion: Insight from Friction Experiments along A Gabbro/Marble Interface

    NASA Astrophysics Data System (ADS)

    Xu, S.; Takizawa, S.; Fukuyama, E.; Yamashita, F.; Mizoguchi, K.; Kawakata, H.

    2015-12-01

    We conduct a series of meter-scale direct shear experiments along a gabbro/marble fault interface at NIED in Japan. Unlike the transitional behavior from stick-slip to stable sliding along a marble/marble interface under 1.3 MPa normal stress and 0.01 mm/s loading rate, the gabbro/marble case shows persistent stick-slip behavior under the same loading conditions as well as under 2.6 MPa normal stress in subsequent tests. Visual observations of the damage pattern reveal quite different features between the marble/marble case and the gabbro/marble case. For the former, the generated damage typically shows a low aspect ratio between loading-parallel and loading-perpendicular directions, suggesting that some diffusional deformation is effective during slip. For the latter, intruded gabbro pieces with preferred growing direction parallel to loading are distributed on top of the marble side, showing that hard rocks like gabbro can be partially fractured off when sheared against soft rocks like marble. Strain array data show that the apparent friction before failure is high or even above 1 near locations where fractured-off gabbro pieces are later observed, confirming that intact rock strength of gabbro has to be overcome upon the onset of fracture. Although at this moment we do not fully understand the behind mechanism, we believe that the brittleness of gabbro dominates in making the difference. If true, this result will highlight the role of brittle asperities in generating stick-slip fault behavior in a surrounding ductile-like environment. An analogous natural example may be found by the role of seamount in generating earthquakes through or underneath sediments in subduction zones (Cloos, 1992). However, instead of shearing off long-wavelength feature as illustrated by Cloos (1992), our study suggests that the collective behavior of tiny pieces along a nominally flat surface may also generate unstable ruptures macroscopically.

  16. The origin of layered gabbros from the mid lower ocean crust, Hess Deep, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Cheadle, M. J.; Brown, T. C.; Ceuleneer, G.; Meyer, R.

    2014-12-01

    IODP Exp. 345 Holes U1415 I & J cored a ~30m thick unit of conspicuously layered gabbroic rocks from the lower plutonic crust at Hess Deep. These rocks likely come from >1500m below the dike gabbro transition and thus provide an unique opportunity to study the origin of layering and the formation of relatively deep, fast spread plutonic crust formed at the EPR. Here we report the initial results of a comprehensive high-resolution petrologic, geochemical and petrographic study of this unit, which focuses on a fairly continuous 1.5m long section recovered at Hole I. The rocks consist of opx-bearing olivine gabbro, olivine gabbro and gabbro and exhibit 1-10cm scale modal layering. Some layers host spectacular 2-3 cm diameter cpx oikocrysts encapsulating partially resorbed plagioclase laths. Downhole variations in mineral chemistry are complicated. Olivine, cpx and opx Mg#'s partly reflect equilibration and show a subtle metre-scale variation (1-2 Mg#), whereas, for example, plagioclase anorthite, and cpx TiO2 contents reveal a more complicated 10-20 cm-scale variation (2-4 An, and 0.2 TiO2). Mineral zonation, for all but Mg# in equilibrated olivine, is of higher magnitude than downhole variations in average mineral compositions. Trace element geochemistry reveals rather homogeneous plagioclase and opx compositions; however cpx exhibits variation at the mineral scale. Cpx shows an increased range of, and highest REE concentrations, in the more olivine rich, near cotectic, composition gabbros, whereas the more plagioclase rich, cumulates show no variation of, and low REE, concentrations.Plagioclase fabrics are moderate to weak and partially modally controlled, but the strength of the plagioclase crystallographic preferred orientation (CPO) varies dramatically, within the 1.5m core showing a significant part of the variation recorded by Oman ophiolite plutonic crust. Plagioclase shape preferred orientation and CPO match well suggesting that diffusion enabled compaction

  17. Percussive tool use by Taï Western chimpanzees and Fazenda Boa Vista bearded capuchin monkeys: a comparison

    PubMed Central

    Visalberghi, Elisabetta; Sirianni, Giulia; Fragaszy, Dorothy; Boesch, Christophe

    2015-01-01

    Percussive tool use holds special interest for scientists concerned with human origins. We summarize the findings from two field sites, Taï and Fazenda Boa Vista, where percussive tool use by chimpanzees and bearded capuchins, respectively, has been extensively investigated. We describe the ecological settings in which nut-cracking occurs and focus on four aspects of nut-cracking that have important cognitive implications, namely selection of tools, tool transport, tool modification and modulation of actions to reach the goal of cracking the nut. We comment on similarities and differences in behaviour and consider whether the observed differences reflect ecological, morphological, social and/or cognitive factors. Both species are sensitive to physical properties of tools, adjust their selection of hammers conditionally to the resistance of the nuts and to transport distance, and modulate the energy of their strikes under some conditions. However, chimpanzees transport hammers more frequently and for longer distances, take into account a higher number of combinations of variables and occasionally intentionally modify tools. A parsimonious interpretation of our findings is that morphological, ecological and social factors account for the observed differences. Confirmation of plausible cognitive differences in nut-cracking requires data not yet available. PMID:26483529

  18. Percussive tool use by Taï Western chimpanzees and Fazenda Boa Vista bearded capuchin monkeys: a comparison.

    PubMed

    Visalberghi, Elisabetta; Sirianni, Giulia; Fragaszy, Dorothy; Boesch, Christophe

    2015-11-19

    Percussive tool use holds special interest for scientists concerned with human origins. We summarize the findings from two field sites, Taï and Fazenda Boa Vista, where percussive tool use by chimpanzees and bearded capuchins, respectively, has been extensively investigated. We describe the ecological settings in which nut-cracking occurs and focus on four aspects of nut-cracking that have important cognitive implications, namely selection of tools, tool transport, tool modification and modulation of actions to reach the goal of cracking the nut. We comment on similarities and differences in behaviour and consider whether the observed differences reflect ecological, morphological, social and/or cognitive factors. Both species are sensitive to physical properties of tools, adjust their selection of hammers conditionally to the resistance of the nuts and to transport distance, and modulate the energy of their strikes under some conditions. However, chimpanzees transport hammers more frequently and for longer distances, take into account a higher number of combinations of variables and occasionally intentionally modify tools. A parsimonious interpretation of our findings is that morphological, ecological and social factors account for the observed differences. Confirmation of plausible cognitive differences in nut-cracking requires data not yet available.

  19. Oxygen-isotope exchange and mineral alteration in gabbros of the Lower Layered Series, Kap Edvard Holm Complex, East Greenland

    SciTech Connect

    Fehlhaber, K.; Bird, D.K. )

    1991-08-01

    Multiple intrusions of gabbros, mafic dikes, and syenites in the Kap Edvard Holm Complex gave rise to prolonged circulation of meteoric hydrothermal solutions and extreme isotope exchange and mineral alteration in the 3,600-m-thick Lower Layered Series gabbros. In the Lower Layered Series, {delta}{sup 18}O of plagioclase varies from +0.3{per thousand} to {minus}5.8{per thousand}, and it decreases with an increase in the volume of secondary talc, chlorite, and actinolite. In the same gabbros, pyroxenes have a more restricted range in {delta}{sup 18}O, from 5.0{per thousand} to 3.8{per thousand}, and values of {delta}{sup 18}O{sub pyroxene} are independent of the abundance of secondary minerals, which ranges from 14% to 30%. These relations indicate that large amounts of water continued to flow through the rocks at temperatures of < 500-600C, altering the gabbros to assemblages of talc + chlorite + actinolite {plus minus}epidote {plus minus}albite and causing significant oxygen-isotope exchange in plagioclase, but not in pyroxene. The extensive low-temperature secondary mineralization and {sup 18}O depletion of plagioclase in the Lower Layered Series are associated with the later emplacement of dikes and gabbros and syenites, which created new fracture systems and provided heat sources for hydrothermal fluid circulation. This produced subsolidus mineral alteration and isotope exchange in the Lower Layered Series that are distinct from those in the Skaergaard and Cuillin gabbros of the North Atlantic Tertiary province, but are similar to those observed in some oceanic gabbros.

  20. Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps).

    PubMed

    Miller, C; Thöni, M; Goessler, W; Tessadri, R

    2011-07-01

    The northern part of the Karawanken plutonic belt is a gabbro-granite complex located just north of the Periadriatic lineament near the Slovenian-Austrian border. Petrographic and geochemical studies of the Eisenkappel intrusive complex indicate that this multiphase plutonic suite developed by a combination of crystal accumulation, fractional crystallization and assimilation processes, magma mixing and mingling. The mafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from an enriched mantle source. The mafic melts triggered partial melting of the crust and the formation of granite. The granitic rocks are alkalic, metaluminous and have the high Fe/Fe + Mg characteristics of within-plate plutons. Temperature and pressure conditions, derived from amphibole-plagioclase and different amphibole thermobarometers, suggest that the analysed Eisenkappel gabbros crystallized at around 1000 ± 20 °C and 380-470 MPa, whereas the granitic rock crystallized at T ≤ 800 ± 20 °C and ≤ 350 MPa. Mineral-whole rock Sm-Nd analyses of two cumulate gabbros yielded 249 ± 8.4 Ma and 250 ± 26 Ma (εNd: + 3.6), garnet-whole rock Sm-Nd analyses of two silicic samples yielded well-constrained ages of 238.4 ± 1.9 Ma and 242.1 ± 2.1 Ma (εNd: - 2.6).

  1. Partial eclogitization of the Ambolten gabbro-norite, north-east Greenland Caledonides

    USGS Publications Warehouse

    Gilotti, J.A.; Elvevold, S.

    1998-01-01

    Partially eclogitized igneous bodies composed of gabbro, leucogabbro, anorthosite and cross-cutting diabase dikes are well represented in the North-East Greenland Eclogite Province. A 200 x 100 meter intrusive body on Ambolten Island (78?? 20' N, 19?? 15' W) records a prograde transition from gabbro-norite to eclogite facies coronitic metagabro-norite surrounded by hydrated margins of undeformed to strongly foliated amphibolite. Igneous plagioclase + olivine + enstatite + augite + oxides convert to eclogite facies assemblages consisting of garnet, omphacite, diopside, enstatite, kyanite, zoisite, rutile and pargasitic amphibole through several coronitic reactions. Relict cumulus plagioclase laths are replaced by an outer corona of garnet, an inner corona of omphacite and an internal region of sodic plagioclase, garnet, kyanite, omphacite and zoisite. Olivine and intercumulus pyroxene are partly replaced by metamorphic pyroxenes and amphibole. The corona structures, zoning patterns, diversity of mineral compositions in a single thin section, and preservation of metastable asemblages are characteristic of diffusion-controlled metamorphism. The most extreme disequilibrium is found in static amphibolites, where igneous pyroxenes, plagioclase domains with eclogite facies, assemblages, and matrix amphibole coexist. Complete eclogitization was not attained at Ambolten due to a lack of fluids needed to drive diffusion during prograde and retrograde metamorphism. The P-T conditions of the high-pressure metamorphism are estimated at ??? 750??C and > 18 kbar. Well-equilibrated, foliated amphibolites from the margin of the gabbro-norite supports our contention that the entire North-East Greenland Eclogite Province experienced Caledonian high-pressure metamorphism, even though no eclogite facies assemblages have been found in the quartzofeldspathic host gneisses to date.

  2. Structure and petrology of the La Perouse gabbro intrusion, Fairweather Range, southeastern Alaska.

    USGS Publications Warehouse

    Loney, R.A.; Himmelberg, G.R.

    1983-01-01

    The gabbro was intruded during the Middle Tertiary into a Mesozoic granulite-facies metamorphic environment dominated by strike-slip fault movement, compression and possible minor subduction. The asymmetric funnel form of the intrusion is due to subsidence from magmatic loading at high T, coupled with control from pre-existing structures, and not from tectonic compression. The intrusion is 12 X 27 km and has exposed cumulate layering of approx 6000 m. Probe analyses of olivines (24), Ca-poor pyroxenes (28), augites (22) and plagioclases (35) are tabulated. Cumulus mineral compositions in the basal cumulates are: olivine Fo86-71, plagioclase An81-63, bronzite Ca3Mg82Fe15 - Ca4Mg75Fe21, augite Ca45Mg47Fe8 - Ca42Mg48Fe10. The layered gabbro above the basal cumulates consists dominantly of lenticularly interlayered plagioclase-augite-orthopyroxene-olivine, plagioclase-augite- olivine and plagioclase-orthopyroxene-augite cumulates, the composition ranges being olivine Fo75-50, plagioclase An78-42, orthopyroxene and inverted pigeonite Ca2.8Mg76.4Fe20.8 - Ca1.4Mg31.0Fe67.6, augite Ca43.1Mg46.9Fe10.0 - Ca40.5Mg27.1Fe32.4. The most iron-rich pyroxene and albite-rich plagioclase occur in a zone near the margin of the intrusion and are probably related to exchange reactions with the country rock. It is considered that the gabbro did not accumulate by simple fractional crystallization of a single or even several large batches of magma, but by numerous influxes of previously fractionated magma from a deeper reservoir. Conditions of crystallization are interpreted as approx 1055oC, 5.4 kbar and fO2 near the wustite-magnetite buffer.-R.A.H.

  3. Cyclic units in the Somerset Dam layered gabbro intrusion, southeastern Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Mathison, Charter I.

    1987-06-01

    The well-preserved Somerset Dam intrusion probably represents a small, relatively shallow, subvolcanic magma chamber. The 500-m-thick exposed sequence consists of 22 macrolayers which are defined by sharp phase, modal and textural contacts. At least six cyclic units, 30-150 m thick, are exposed, and the sequence from the base to the top of a cyclic unit is inferred to be leucogabbro (plagioclase cumulate), troctolite (plagioclase-olivine cumulate), olivine gabbro (plagioclase-augite-olivine cumulate), and oxide gabbro (plagioclase-augite-(olivine)-magnetite-ilmenite cumulate). Mineral compositions in a typical cyclic unit show a reversed fractionation trend in the sequence leucogabbro-troctolite, and a normal fractionation trend from troctolite (the least fractionated rock type) to the oxide gabbro (the most fractionated rock type). The most sensitive parameters for defining the cryptic trends are An in plagioclase, Fo and Ni in olivine, and Cr in magnetite and augite. Whole-rock compositions also show marked changes, and Fe, Ti, V, S and Cu increase and Al, {Mg}/{Fe}, Cr and Ni decrease from troctolite to oxide gabbro. Despite the remarkable similarity of successive cyclic units, significant differences exist between them in the sequences of layers, thicknesses of individual layers and of the cyclic units, mineral compositions and cryptic patterns, average level of fractionation and the size of the reversals. Unit 3 is particularly unusual because it is the least fractionated and consists of two incomplete subunits. Unit 1, the lowest exposed, is the most fractionated. These differences between the units cannot be explained in terms of a closed system, and are strong evidence for an open system involving periodic injections of magma. The formation of a cyclic unit appears to reflect the dominant control of the order of crystallisation from a batch of replenished magma, which is essentially plagioclase first, followed by olivine, augite, magnetite and ilmenite, and

  4. Geometric Features For Hydrogeologic Modelling The Gabbro of Beja Aquifer System

    NASA Astrophysics Data System (ADS)

    Duque, J.; Almeida, C.

    The Gabbro of Beja Aquifer System is one of the most important hard rock aquifer in the south Portugal. It is implanted in a NW-SE igneous-metamorphic structure with ofiolític affinities. It is a free aquifer (sometimes with some confinement), with pro- ductivities that can reach 30 l/s. It is also a very shallow aquifer, the deepness mean is about 30 m. The median of groundwater productivity is about 5 L/s. In 1997 it was made the first attempt to characterize the regional groundwater flow through a regional model with MODFLOW. At that time hydrogeological data was scarce and the challenge to define the aquifer geometry was very high and risky. In this aquifer the definition of a model for transport of contaminants MT3D, needs a more accu- rately the definition of the aquifer geometry. With this aim new data is now available, namely almost 1000 borehole log data all over the aquifer. This data will allow the best definition of the geometry of the gabbro of Beja aquifer allowing a more robust definition of the aquifer bottom surface as well as some geological limits, which are very important to the redefinition of the flow and transport model.

  5. Salvaging primary remanence from hydrothermally altered oceanic gabbros in the Oman ophiolite: A selective destructive demagnetization approach

    NASA Astrophysics Data System (ADS)

    Usui, Yoichi; Yamazaki, Shusaku

    2010-07-01

    Widespread hydrothermal alteration and formation of secondary magnetite have been problems for paleomagnetic work on gabbros in the Oman ophiolite. Mechanical removal of hydrothermally altered ferromagnesian minerals from gabbro and gabbronorite in the Wadi Rajmi area revealed a cryptic remanence which could not be detected by stepwise demagnetization of bulk rock core samples. After the mechanical removal, samples consist of plagioclase and clinopyroxene. These samples exhibit remanence directions of southeast declination and shallow inclination. This direction is consistent with previously reported paleomagnetic directions at crystallization of the Oman ophiolite. In contrast, bulk rock core samples yielded north declination, resembling the younger remanence directions associated with the obduction of the ophiolite. Microscopic observation and paleomagnetic directional comparison concluded that the cryptic remanence is a primary magnetization carried by exsolved magnetite in plagioclase and clinopyroxene. Our results suggest that previous paleomagnetic data from whole rock gabbros in the Oman ophiolite as well as tectonically active ocean floor should be taken with care.

  6. sup 40 Ar- sup 39 Ar dating of the Beja gabbro: Timing of the accretion of southern Portugal

    SciTech Connect

    Ruffet, G. )

    1990-11-01

    The {sup 40}Ar-{sup 39}Ar dating of the amphibole from the Beja gabbro (Southern Portugal) yields a plateau age at 336.4 {plus minus} 0.8 Ma (2{sigma} level). The corresponding calculated isotopic closure temperature is around 800C. The comparison of this temperature with the magnetic blocking temperature ({approximately}570C) allows an estimation of a probable thermoremanent acquisition age for the characteristic magnetization component of the Beja gabbro between 335Ma and 315Ma, assuming cooling rates between 10C/Ma and 100C/Ma. These results, combined wtih paleomagnetic results from the Beja gabbro and Late Paleozoic rocks from Southern Portugal (Perroud et al., 1985), suggest that the southermost part of Spain and Portugal was separated from Northern Iberia in Early Carboniferous times and was accreted to Europe during the Late Carboniferous.

  7. Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309)

    NASA Astrophysics Data System (ADS)

    Delacour, Adélie; Früh-Green, Gretchen L.; Bernasconi, Stefano M.

    2008-10-01

    In-situ uplifted portions of oceanic crust at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were drilled during Expeditions 304 and 305 of the Integrated Ocean Drilling Program (IODP) and a 1.4 km section of predominantly gabbroic rocks with minor intercalated ultramafic rocks were recovered. Here we characterize variations in sulfur mineralogy and geochemistry of selected samples of serpentinized peridotites, olivine-rich troctolites and diverse gabbroic rocks recovered from Hole 1309D. These data are used to constrain alteration processes and redox conditions and are compared with the basement rocks of the southern wall of the Atlantis Massif, which hosts the Lost City Hydrothermal Field, 5 km to the south. The oceanic crust at the central dome is characterized by Ni-rich sulfides reflecting reducing conditions and limited seawater circulation. During uplift and exhumation, seawater interaction in gabbroic-dominated domains was limited, as indicated by homogeneous mantle-like sulfur contents and isotope compositions of gabbroic rocks and olivine-rich troctolites. Local variations from mantle compositions are related to magmatic variability or to interaction with seawater-derived fluids channeled along fault zones. The concomitant occurrence of mackinawite in olivine-rich troctolites and an anhydrite vein in a gabbro provide temperature constraints of 150-200 °C for late circulating fluids along local brittle faults below 700 m depth. In contrast, the ultramafic lithologies at the central dome represent domains with higher seawater fluxes and higher degrees of alteration and show distinct changes in sulfur geochemistry. The serpentinites in the upper part of the hole are characterized by high total sulfide contents, high δ34S sulfide values and low δ34S sulfate values, which reflect a multistage history primarily controlled by seawater-gabbro interaction and subsequent serpentinization. The basement rocks at the central dome record lower

  8. Creep of partially molten fine-grained gabbro under dry conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; Rybacki, Erik; Wirth, Richard; He, Changrong; Dresen, Georg

    2012-05-01

    Natural fine-grained gabbro was deformed in a Paterson deformation apparatus to evaluate the flow strength of lower crustal rocks containing partial melt. We performed 94 creep stepping tests on seven samples at 300 MPa confining pressure, temperatures between 950°C and 1150°C, and axial stresses of 25-510 MPa, resulting in strain rates between 2.3 × 10-4 and 6.7 × 10-8 s-1. Water content of samples predried at 1000°C at 1 atm was about 0.035 wt % H2O. The drying process induced partial melting of the starting material of ˜1 vol % Si-poor and Fe-rich melt at grain boundaries, which increased further up to ˜2 vol % during creep tests. Creep tests reveal strain rates increasing with duration of the tests related to increasing melt content present in the samples. Microstructural observations of deformed samples show melt in triple junctions and melt films contained in grain boundaries. The observed microstructures indicate that the samples were deformed in the dislocation creep regime. Dislocation walls are present in pyroxene and plagioclase grains. Very fine grained (about 10 μm) pyroxene and olivine were produced by mineral reactions and dynamic recrystallization at temperatures >1000°C. Melt fraction ϕ of creep test samples and annealed samples increases linearly with logarithm of time (log(t)), suggesting that strain rate enhancement by partial melting can be described by an exponential function of melt fraction with an exponent coefficient of 128. After applying a correction for the time-dependent increase of melt content the data were fitted to a power law creep equation, resulting in a stress exponent of n = 4.0 ± 0.3, an activation energy of Q = 644 ± 75 kJ mol-1, and a preexponential factor of A = 1010.3 ± 0.4 MPan s-1 for dry gabbro that contains ˜1 vol % melt. The flow law for gabbro from this study is compared to published flow law parameters of basaltic composition rocks.

  9. Zoned Cr, Fe-spinel from the La Perouse layered gabbro, Fairweather Range, Alaska

    USGS Publications Warehouse

    Czamanske, G.K.; Himmelberg, G.R.; Goff, F.E.

    1976-01-01

    Zoned spinel of unusual composition and morphology has been found in massive pyrrhotite-chalcopyrite-pent-landite ore from the La Perouse layered gabbro intrusion in the Fairweather Range, southeastern Alaska. The spinel grains show continuous zoning from cores with up to 53 wt.% Cr2O3 to rims with less than 11 wt.% Cr2O3. Their composition is exceptional because they contain less than 0.32 wt.% MgO and less than 0.10 wt.% Al2O3 and TiO2. Also notable are the concentrations of MnO and V2O3, which reach 4.73 and 4.50 wt.%, respectively, in the cores. The spinel is thought to have crystallized at low oxygen fugacity and at temperatures above 900??C, directly from a sulfide melt that separated by immiscibility from the gabbroic parental magma. ?? 1976.

  10. VERY High Temperature Hydrothermal Record in Plagioclase of BLACK Gabbros in Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Boudier, F. I.; Mainprice, D.; Nicolas, A. A.

    2014-12-01

    The lower crustal section in Oman ophiolite includes 'black gabbros' that have escaped the common medium-low temperature hydrous alteration. Their plagioclases are totally fresh, but contain in their mass, nebulous inclusions most times below the resolution of optical microscope, or expressed as solid silicate phases clinopyroxene and pargasitic amphibole, up to 10 µm sized, having T equilibrium above 900°C with their host plagioclase. These gabbros have a well-expressed magmatic foliation, relayed by plastic strain marked by stretched olivine crystals, and pinching twins in plagioclase. In addition to major elements analyses, the crystallographic relationships of these Mg silicate inclusions to their host plagioclase are explored by Electron Back Scattering Diffraction (EBSD) processing. - Diopsidic clinopyroxene inclusions are dominant over pargasitic amphibole that tend to locate close to the margins of host plagioclase (Fig 1). Some inclusions are mixed clinopyroxene-amphibole, separated by a non-indexed phase that could represent a pyribole-type structure, suggesting transformation from clinopyroxene to amphibole during cooling. High chlorine content in the amphibole sign the seawater contamination at least during the development of this phase. - Preliminary statistical pole figures (Fig. 2) in the six joined plagioclase grains studied, show that both plagioclase and diopside inclusions have a strong crystal preferred orientation (CPO) connected such that the strong [010]pl maximum coincide with the strong [100]di. In addition, a coincidence appears between three sub-maxima of [100]pl and [001]di. These interesting relationships are refined. It is inferred that clinopyroxene developed through corrosion of the plagioclase by a Mg-bearing hydrous fluid, penetrating possibly via twin interface and diffusing at T~1100°C, upper limit of clinopyroxene stability in hydrous conditions. Development of pargasite implies increasing hydration during cooling.

  11. Palaeomagnetism of the Ezhimala Granite-Granophyre-Gabbro Complex, Southwest Coast of India

    NASA Astrophysics Data System (ADS)

    Joseph, Mathew; Perrin, Mireille; Radhakrishna, Tallavjhala; Dautria, Jean Marie; Camps, Pierre; Balasubramonium, G.

    2010-05-01

    The igneous complex at Ezhimala, southwestern coast of India, consists mainly of granite, granophyre and gabbro and is cut by dolerites. It occurs as a linear ridge with a NNW-SSE trend. This complex is considered to be Precambrian in age, following Rb-Sr determinations at 678 Ma. Paleomagnetic samples were collected from one site in the doleritic dyke and six sites in the complex, out of which three are from gabbro, two from granophyre and one from granite. The high-temperature susceptibility measurements on selected specimens from each site have indicated magnetite as the main carrier of magnetization. Samples were subjected to detailed step-wise alternating field demagnetisation. After removal of a secondary viscous component, a characteristic mean remanent magnetization could be estimated for all samples. The mean directions per sites are very well defined with 95 confidence circles between 2.5° and 5.0° (kappa between 243 and 580). The mean paleomagnetic direction associated with the complex corresponds to D/I = 308.6/-58.9 (k = 473 and α95 = 3.1°) with a paleopole position at 66.0°W/19.4°N. This direction is almost identical to the direction obtained from the cross-cutting doleritic dyke with D/I = 301.8/-62.9 (kappa = 755 and α95 = 1.9°), and similar to 90 Ma poles derived from other areas in south western India (St. Mary Group of Islands, leucogabbro dykes of central and north Kerala and dykes of the Coimbatore-Agali area). Therefore palaeomagnetic analysis of the complex strongly suggests a Cretaceous age for the Ezhimala complex and would indicate a much more widespread magmatic activity around 90 Ma along the south western coast of India. Geochemical studies and Ar-Ar dating of the complex are in progress to confirm the paleomagnetic observation.

  12. Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps)

    PubMed Central

    Miller, C.; Thöni, M.; Goessler, W.; Tessadri, R.

    2011-01-01

    The northern part of the Karawanken plutonic belt is a gabbro–granite complex located just north of the Periadriatic lineament near the Slovenian–Austrian border. Petrographic and geochemical studies of the Eisenkappel intrusive complex indicate that this multiphase plutonic suite developed by a combination of crystal accumulation, fractional crystallization and assimilation processes, magma mixing and mingling. The mafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from an enriched mantle source. The mafic melts triggered partial melting of the crust and the formation of granite. The granitic rocks are alkalic, metaluminous and have the high Fe/Fe + Mg characteristics of within-plate plutons. Temperature and pressure conditions, derived from amphibole-plagioclase and different amphibole thermobarometers, suggest that the analysed Eisenkappel gabbros crystallized at around 1000 ± 20 °C and 380–470 MPa, whereas the granitic rock crystallized at T ≤ 800 ± 20 °C and ≤ 350 MPa. Mineral-whole rock Sm–Nd analyses of two cumulate gabbros yielded 249 ± 8.4 Ma and 250 ± 26 Ma (εNd: + 3.6), garnet-whole rock Sm–Nd analyses of two silicic samples yielded well-constrained ages of 238.4 ± 1.9 Ma and 242.1 ± 2.1 Ma (εNd: − 2.6). PMID:26525511

  13. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge.

    PubMed

    Abelson, M; Baer, G; Agnon, A

    2001-01-04

    The lateral flow of magma and ductile deformation of the lower crust along oceanic spreading axes has been thought to play a significant role in suppressing both mid-ocean ridge segmentation and variations in crustal thickness. Direct investigation of such flow patterns is hampered by the kilometres of water that cover the oceanic crust, but such studies can be made on ophiolites (fragments of oceanic crust accreted to a continent). In the Oman ophiolite, small-scale radial patterns of flow have been mapped along what is thought to be the relict of a fast-spreading mid-ocean ridge. Here we present evidence for broad-scale along-axis flow that has been frozen into the gabbro of the Troodos ophiolite in Cyprus (thought to be representative of a slow-spreading ridge axis). The gabbro suite of Troodos spans nearly 20 km of a segment of a fossil spreading axis, near a ridge-transform intersection. We mapped the pattern of magma flow by analysing the rocks' magnetic fabric at 20 sites widely distributed in the gabbro suite, and by examining the petrographic fabric at 9 sites. We infer an along-axis magma flow for much of the gabbro suite, which indicates that redistribution of melt occurred towards the segment edge in a large depth range of the oceanic crust. Our results support the magma plumbing structure that has been inferred indirectly from a seismic tomography experiment on the slow-spreading Mid-Atlantic Ridge.

  14. Moisture-related Weakening and Strengthening of Faults for Quartz-poor Gabbro and Quartz-rich Granite

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.; Hirose, T.; Shimamoto, T.; Fukuyama, E.

    2006-12-01

    Significance of moisture-related mechanisms has been pointed out from the slide-hold-slide tests on gabbro (quartz-poor rock) under dry and room-humid conditions using high-speed rotary-shear apparatus [Mizoguchi et al., 2006, GRL]. In this paper, we conducted similar experiments using granite (quartz-rich rock) and discuss the results from the viewpoints of the quartz content. In the experiments, one of the two solid-cylindrical specimens (diameter ~ 25 mm) was rotated with a speed of 100 rpm (equivalent slip velocity is ~ 85 mm/s) under a constant normal stress of 0.62MPa. We conducted the tests using initially bare rock sample (1) and rock sample initially containing wear materials produced during sliding (2). A typical result for the gabbro case (1) is that friction coefficient decreased from more than 1.0 (we call initial friction) to less than 0.4 when the amount of slip was between 10 and 30 m then it became a steady state. The layer of wear materials along the fault was about 50 μm thick at steady state. Since the fault was not covered with a jacket, wear materials were squeezed out from the fault during sliding. The result for the gabbro case (2) showed a similar slip-weakening curve to that of the gabbro case (1), it represented a remarkable dependence of the initial friction on hold time and humidity. Under a room-humidity condition, the initial friction increased from 0.2 to 1.2 as hold time increased as 200 ~ 400 s. In contrast, under the dry condition, the initial friction did not increase with hold time and kept the level of 0.2. To explain this time- and humidity- dependent frictional behavior of gabbro, a mechanism of moisture-drained weakening due to frictional heating and moisture-absorbed strengthening due to cooling is proposed. The result for the granite case (1) showed that the friction decreased from more than 0.9 down to less than 0.2 when the slip was between 50 and 75 m. The dynamic slip weakening behavior is similar to that of gabbro

  15. Mineral chemistry as a tool for understanding the petrogenesis of Cryogenian (arc-related)-Ediacaran (post-collisional) gabbros in the western Arabian Shield of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.; Ahmed, Ahmed H.; Harbi, Hesham M.

    2016-07-01

    Metagabbros and gabbros in the Ablah-Shuwas belt (western Saudi Arabia) represent part of significant mafic magmatism in the Neoproterozoic Arabian Shield. The metagabbros are Cryogenian, occasionally stratified and bear calcic amphiboles (hornblende, magnesio-hornblende and actinolite) typical of calc-alkaline complexes. These amphiboles suggest low pressure ( 1-3 kbar), high f_{O2 } and crystallization temperature up to 727 °C, whereas it is 247-275 °C in the case of retrograde chlorite. Rutile and titanite in metagabbros are Fe-rich and replace Mn-bearing ilmenite precursors at high f_{O2} . On the other hand, younger gabbros are fresh, layered and comprised of olivine gabbro and olivine-hornblende gabbro with an uppermost layer of anorthositic gabbro. The fresh gabbros are biotite-bearing. They are characterized by secondary magnetite-orthopyroxene symplectitic intergrowth at the outer peripheries of olivine. The symplectite forms by deuteric alteration from residual pore fluids moving along olivine grain boundaries in the sub-solidus state. In fresh gabbros, ortho- and clinopyroxenes indicate crystallization at 1300-900 and 800-600 °C, respectively. Geochemically, the Cryogenian metagabbros ( 850-780 Ma) are tholeiitic to calc-alkaline in composition and interpreted as arc-related. Younger, fresh gabbros are calc-alkaline and post-collisional ( 620-590 Ma, i.e., Ediacaran), forming during the late stages of arc amalgamation in the southern Arabian Shield. The calc-alkaline metagabbros are related to a lithospheric mantle source previously modified by subduction. Younger, fresh gabbros were probably produced by partial melting of an enriched mantle source (e.g., garnet lherzolite).

  16. Electrical properties of slow-spreading ridge gabbros from ODP Site 735, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Ildefonse, B.; Pezard, P.

    2001-01-01

    ODP hole 735B (ODP Legs 118 and 176) samples a block of igneous crust which was accreted at the ultraslow-spreading Southwest Indian Ridge, and was uplifted to seafloor by progressive unroofing along a north-dipping low-angle detachment fault. Physical properties of a set of gabbroic samples from ODP Hole 735B have been measured in the laboratory, with a particular emphasis on the analysis of electrical properties. The electrical formation factor ( F) and surface conductivity ( Cs) are calculated using the model of Revil and Glover [Geophys. Res. Lett., 25 (1998) 691], from measurements at room pressure, and different salinities of the saturating fluid. The acoustic compressional velocities are in the same range as those previously measured on ODP Leg 118 samples [Proc. ODP, Sci. Results, 118 (1991) 227]. The porosity ( φ) is low (<1%) in most, fresh samples. The analysis of the porosity structure, characterised by the electrical tortuosity ( τ) and the electrical cementation factor ( m), reveals that the cored gabbro section is segmented in two parts. The upper part (approximately the upper half) has a nearly constant τ of 15, independent of the degree of alteration of the sample, indicating that the porous network is controlled by primary microstructures, such as grain boundaries, and by extension plastic foliations. Modifications with time and alteration are restricted to increases of φ and m, i.e. a higher variability of the channel thicknesses. In the lower part of the hole, fresh rocks predominate, and the porosity structure is different, with variable τ (3-10), very low m (1.4±SEM) and low φ (0.8±SEM%). This indicates a simpler porous network compared to that at shallower depths, probably dominated by well aligned cracks. The change in porosity structure downhole may be explained several ways, and may integrate the whole history of the crustal section cored at ODP site 735 since accretion, including plastic deformation related to unroofing of the

  17. REE-SIO2 Systematics in Mor Gabbros and Associated Plagiogranites from the Fournier Oceanic Fragment, New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Brophy, J. G.

    2010-12-01

    Seawater influx into hot, dry MOR gabbro can initiate hydration-induced melting and the generation of intermediate to felsic partial melts collectively referred to as plagiogranite. In a recent modeling study, Brophy (2009) suggested that the REE abundances of partial melts generated in this fashion should be characterized by unique patterns of REE-SiO2 variation. Specifically, REE abundances (modeled as enrichment factors, Cl/Co) should show a positive correlation with increasing SiO2 up to around 60 wt. % followed by a steady decrease in abundance as liquid SiO2 increases to around 76%. For liquids of around 55% SiO2 the degree of enrichment is around 2 for all of the REE. However, Cl/Co in the intermediate liquids of around 60 % SiO2 steadily decreases from ~5 for La to ~3 for Yb. Simarlarly, Cl/Co in the high SiO2 liquids of around 76% SiO2 decrease from ~3 for La to ~1 for Yb. If these model predictions are correct, the REE-SiO2 systematics of any naturally occurring suite of plagiogranite and MOR gabbro could be used to assess a partial melting as opposed to crystal fractionation origin. To test the model predictions, a suite of MOR gabbros and intrusive veins of plagiogranite were collected from the Fournier Oceanic Fragment, a middle Ordovician ophiolite sequence located along the northern shore of New Brunswick, and the type exposure for plagiogranites generated by hydration-induced MOR gabbro melting (Flagler and Spray, 1991). The MOR gabbros range from 48 to 55 % SiO2 while the intrusive plagiogranites range from 57 to 78 % SiO2 (anhydrous basis). When REE abundances are plotted against whole rock SiO2 they show all of the model features described above, though the absolute abundances require an initial gabbroic source rock that is more enriched in the REE than the host gabbros themselves. This correspondence between modeled and observed REE- SiO2 variations confirms the model predictions of Brophy (2009) and suggests that REE- SiO2 systematics represent

  18. Elastic wave velocities in anorthosite and anorthositic gabbros from Apollo 15 and 16 landing sites

    NASA Technical Reports Server (NTRS)

    Chung, D. H.

    1973-01-01

    Laboratory measurements of ultrasonic velocities in lunar samples 15065, 15555, 15415, 60015, and 61016 as well as in synthetic materials corresponding to compositions of anorthositic gabbros are presented as a function of hydrostatic pressure to about 7 kb. The author examined the seismic velocity distributions in the moon with reference to the variations to be expected in a homogeneous medium. The lunar mantle begins about 60 km, and the velocity of P waves in this area is about 7.7 km/sec. Variation of the seismic parameter with depth in the upper crust (about 20 km thick) is much too rapid to be explained by compression of a uniform material and the departure from expectation is so great that no reasonable adjustment of the material parameters can bring agreement; therefore, this author concludes that this result in this region of the moon is not due to self-compression but to textural gradients. In the lower crust (about 40 km thick), the region is shown to be relatively homogeneous, consisting probably of anorthositic rocks.

  19. 'Melt welt' mechanism of extreme weakening of gabbro at seismic slip rates.

    PubMed

    Brown, Kevin M; Fialko, Yuri

    2012-08-30

    Laboratory studies of frictional properties of rocks at slip velocities approaching the seismic range (∼0.1-1 m s(-1)), and at moderate normal stresses (1-10 MPa), have revealed a complex evolution of the dynamic shear strength, with at least two phases of weakening separated by strengthening at the onset of wholesale melting. The second post-melting weakening phase is governed by viscous properties of the melt layer and is reasonably well understood. The initial phase of extreme weakening, however, remains a subject of much debate. Here we show that the initial weakening of gabbro is associated with the formation of hotspots and macroscopic streaks of melt ('melt welts'), which partially unload the rest of the slip interface. Melt welts begin to form when the average rate of frictional heating exceeds 0.1-0.4 MW m(-2), while the average temperature of the shear zone is well below the solidus (250-450 °C). Similar heterogeneities in stress and temperature are likely to occur on natural fault surfaces during rapid slip, and to be important for earthquake rupture dynamics.

  20. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific subduction

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin; Yang, Shu-Feng

    2015-09-01

    The Dongfanghong hornblende gabbro is located in the western part of the Wandashan Orogen and to the east of the Jiamusi Block in NE China. It was emplaced into Early Paleozoic oceanic crust (i.e. Dongfanghong ophiolite) at ~ 275 Ma and both later collided with the eastern margin of the Jiamusi Block. The Dongfanghong gabbro is sub-alkaline with high Na2O contents and is characterized by enrichment in light rare earth elements (LREE), large ion lithosphile elements (LILE), Sr, Eu, and Ba, and depletion in high field strength elements (HFSE). The enriched isotopic signatures (87Sr/86Sri = ~ 0.7065, εNd(t) = ~- 0.5, 208Pb/204Pbi = ~ 38.05, 207Pb/204Pbi = ~ 15.56, 206Pb/204Pbi = ~ 18.20 and zircon εHf(t) = ~+ 5.8) indicate an enriched mantle (EM2) source, with some addition of continental material. It has arc geochemical affinities similar to Permian arc igneous rocks in the eastern margin of the Jiamusi Block, the Yakuno Ophiolite in SW Japan, arc rocks along the western margin of the North America Craton, and also the Gympie Group in eastern Australia. All these features, together with information from tectonic discrimination diagrams, suggest that the Dongfanghong gabbro formed in an immature island arc. The spatial configuration of ~ 290 Ma immature continental arc rocks in the eastern part of the Jiamusi Block and the ~ 275 Ma immature island arc Dongfanghong gabbro in the Wandashan Orogen to the east is best explained by eastward arc retreat and slab roll-back of the Paleo-Pacific Plate. This model is also supported by the Carboniferous-Permian stratigraphic transition in the Jiamusi Block from oceanic carbonate rocks to coal-bearing terrestrial clastic rocks and andesites. We thus suggest that both Paleo-Pacific subduction and roll-back occurred in the Early Permian along the eastern margin of Asia.

  1. Melt/rock reaction at oceanic peridotite/gabbro transition as revealed by trace element chemistry of olivine

    NASA Astrophysics Data System (ADS)

    Rampone, Elisabetta; Borghini, Giulio; Godard, Marguerite; Ildefonse, Benoit; Crispini, Laura; Fumagalli, Patrizia

    2016-10-01

    Several recent studies have documented that reactions between melt and crystal mush in primitive gabbroic rocks (via reactive porous flow) have an important control in the formation of the lower oceanic crust and the evolution of MORBs. In this context, olivine-rich rocks can form either by fractional crystallization of primitive melts or by open system reactive percolation of pre-existing (possibly mantle-derived) olivine matrix. To address this question, we performed in-situ trace element analyses (by LA-ICP-MS) of olivine from the Erro-Tobbio ophiolite Unit (Ligurian Alps), where mantle peridotites show gradational contacts with an hectometer-scale body of troctolites and plagioclase wehrlites, and both are cut by later decameter-wide lenses and dykes of olivine gabbros. Previous studies inferred that troctolites and olivine gabbros represent variably differentiated crystallization products from primitive MORB-type melts. Olivines in the three rock types (mantle peridotites, troctolites, olivine gabbros) exhibit distinct geochemical signature and well-defined elemental correlations. As expected, compatible elements (e.g. Ni) show the highest concentrations in peridotites (2580-2730 ppm), intermediate in troctolites (2050-2230 ppm) and lowest in gabbros (1355-1420 ppm), whereas moderate incompatible elements (e.g. Mn, Zn) show the opposite behaviour. By contrast, highly incompatible elements like Zr, Hf, Ti, HREE are variably enriched in olivines of troctolites, and the enrichment in absolute concentrations is coupled to development of significant HFSE/REE fractionation (ZrN/NdN up to 80). AFC modelling shows that such large ZrN/NdN ratios in olivines are consistent with a process of olivine assimilation and plagioclase crystallization at decreasing melt mass, in agreement with textural observations. In-situ trace element geochemistry of olivine, combined with microstructural investigations, thus appears a powerful tool to investigate reactive percolation and the

  2. Distribution of Sc, Ta, Hf, Zr, Co, and Fe in the crust of weathering of metalliferous gabbro-norites in volodarsk-volyn rock body

    SciTech Connect

    Borisenko, L.F.; Chudinov, V.I.

    1986-09-01

    Nuclear physics methods are used to determine the Sc, Ta, Hf, Zr, Co, and Fe contents in gabbro-norites and the component minerals of these rocks, as well as in the various zones of the crusts of weathering developed on gabbro-norites. It has been established that Sc, Ta, Hf, and Zr accumulate in the kaolinite zone, but Co is partly washed out of it.

  3. Formation of plagioclase-bearing peridotite and plagioclase-bearing wehrlite and gabbro suite through reactive crystallization: an experimental study

    NASA Astrophysics Data System (ADS)

    Saper, Lee; Liang, Yan

    2014-03-01

    Plagioclase-bearing peridotites are commonly associated with gabbroic rocks sampled around the Moho Transition Zone. Based on mineral chemistry, texture, and spatial relations, the formation of plagioclase-bearing peridotites has been attributed to impregnation of basalt into residual peridotites. We conducted reactive dissolution and crystallization experiments to test this hypothesis by reacting a primitive mid-ocean ridge basalt with a melt-impregnated lherzolite at 1,300 °C and 1 GPa and then cooling to 1,050 °C as pressure decreased to 0.7 GPa. Crystallization during cooling produced lithologic sequences of gabbro-wehrlite or gabbro-wehrlite-peridotite, depending on reaction time. Wehrlitic and peridotitic sections contain significant amounts of plagioclase interstitial to olivine and clinopyroxene and plagioclase compositions are spatially homogeneous. Clinopyroxene in the wehrlite-peridotite section is reprecipitated from the melt and exhibits poikilitic texture with small rounded olivine chadacrysts. Mineral composition in olivine and clinopyroxene varies spatially, both at the scale of the sample and within individual grains. Olivine grains that crystallized close to the melt-peridotite interface are enriched in iron due to their proximity to the basaltic melt reservoir. Consistent with many field studies, we observed gradual spatial variation in olivine and clinopyroxene composition across a lithologically sharp boundary between the gabbro and wehrlite-peridotite. Plagioclase compositions show no obvious dependence on distance from the melt-rock interface and were precipitated from late-stage trapped melts. Compositional trends of olivine, pyroxene, and plagioclase are consistent with previous experimental results and natural observations of the Moho Transition Zone. Different lithological sequences form based primarily on the melt-rock ratio, composition of the melt and host peridotite, and thermochemical conditions, but are expected to grade from

  4. Peninsular terrane basement ages recorded by Paleozoic and Paleoproterozoic zircon in gabbro xenoliths and andesite from Redoubt volcano, Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Vazquez, Jorge A.; Wooden, Joseph L.

    2012-01-01

    Historically Sactive Redoubt volcano is an Aleutian arc basalt-to-dacite cone constructed upon the Jurassic–Early Tertiary Alaska–Aleutian Range batholith. The batholith intrudes the Peninsular tectonostratigraphic terrane, which is considered to have developed on oceanic basement and to have accreted to North America, possibly in Late Jurassic time. Xenoliths in Redoubt magmas have been thought to be modern cumulate gabbros and fragments of the batholith. However, new sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages for zircon from gabbro xenoliths from a late Pleistocene pyroclastic deposit are dominated by much older, ca. 310 Ma Pennsylvanian and ca. 1865 Ma Paleoproterozoic grains. Zircon age distributions and trace-element concentrations indicate that the ca. 310 Ma zircons date gabbroic intrusive rocks, and the ca. 1865 Ma zircons also are likely from igneous rocks in or beneath Peninsular terrane basement. The trace-element data imply that four of five Cretaceous–Paleocene zircons, and Pennsylvanian low-U, low-Th zircons in one sample, grew from metamorphic or hydrothermal fluids. Textural evidence of xenocrysts and a dominant population of ca. 1865 Ma zircon in juvenile crystal-rich andesite from the same pyroclastic deposit show that this basement has been assimilated by Redoubt magma. Equilibration temperatures and oxygen fugacities indicated by Fe-Ti–oxide minerals in the gabbros and crystal-rich andesite suggest sources near the margins of the Redoubt magmatic system, most likely in the magma accumulation and storage region currently outlined by seismicity and magma petrology at ∼4–10 km below sea level. Additionally, a partially melted gabbro from the 1990 eruption contains zircon with U-Pb ages between ca. 620 Ma and ca. 1705 Ma, as well as one zircon with a U-Th disequilibrium model age of 0 ka. The zircon ages demonstrate that Pennsylvanian, and probably Paleoproterozoic, igneous rocks exist in, or possibly beneath, Peninsular

  5. Mineral chemistry of isotropic gabbros from the Manamedu Ophiolite Complex, Cauvery Suture Zone, southern India: Evidence for neoproterozoic suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Tsunogae, T.; Chetty, T. R. K.; Santosh, M.

    2016-11-01

    The dismembered units of the Neoproterozoic Manamedu Ophiolite Complex (MOC) in the Cauvery Suture Zone, southern India comprises a well preserved ophiolitic sequence of ultramafic cumulates of altered dunites, pyroxenites, mafic cumulates of gabbros, gabbro-norites and anorthosites in association with plagiogranites, isotropic gabbros, metadolerites, metabasalts/amphibolites and thin layers of ferruginous chert bands. The isotropic gabbros occur as intrusions in association with gabbroic anorthosites, plagiogranite and metabasalts/amphibolites. The gabbros are medium to fine grained with euhedral to subhedral orthopyroxenes, clinopyroxenes and subhedral plagioclase, together with rare amphiboles. Mineral chemistry of isotropic gabbros reveal that the clinopyroxenes are diopsidic to augitic in composition within the compositional ranges of En(42-59), Fs(5-12), Wo(31-50). They are Ca-rich and Na poor (Na2O < 0.77 wt%) characterized by high-Mg (Mg# 79-86) and low-Ti (TiO2 < 0.35 wt%) contents. The tectonic discrimination plots of clinopyroxene data indicate island arc signature of the source magma. Our study further confirms the suprasubduction zone origin of the Manamedu ophiolitic suite, associated with the subduction-collision history of the Neoproterozoic Mozambique ocean during the assembly of Gondwana supercontinent.

  6. IODP Expedition 345: Primitive Layered Gabbros From Fast-Spreading Lower Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Ildefonse, Benoit; Gillis, Kathryn M.; Snow, Jonathan E.; Klaus, Adam

    2014-05-01

    Three-quarters of the ocean crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the seafloor. However, owing to the nearly continuous overlying extrusive upper crust, sampling in situ the lower crust is challenging. Hence, models for understanding the formation of the lower crust are based essentially on geophysical studies and ophiolites. Integrated Ocean Drilling Program (IODP) Expedition 345 recovered the first significant sections of primitive, modally layered gabbroic rocks from the lowermost plutonic crust formed at a fast-spreading ridge, and exposed at the Hess Deep Rift (Gillis et al., Nature, 2014, doi:10.1038/nature12778). Drilling Site U1415 is located along the southern slope of the intrarift ridge. The primary science results were obtained from coring of two ~110 m deep reentry holes and one 35-m-deep single-bit hole, all co-located within an ~100-m-wide area. Olivine gabbro and troctolite are the dominant plutonic rock types recovered, with minor gabbro, clinopyroxene oikocryst-bearing gabbroic rocks, and gabbronorite. All rock types are primitive to moderately evolved, with Mg# 89-76, and exhibit cumulate textures similar to ones found in layered mafic intrusions and some ophiolites. Spectacular modal and grain size layering, prevalent in >50% of the recovered core, confirm a long held paradigm that such rocks are a key constituent of the lowermost ocean crust formed at fast-spreading ridges. Magmatic foliation is largely defined by the shape-preferred orientation of plagioclase. It is moderate to strong in intervals with simple modal layering but weak to absent in troctolitic intervals and typically absent in intervals with heterogeneous textures and/or diffuse banding. Geochemical analysis of these primitive lower plutonics, in combination with previous geochemical data for shallow-level plutonics

  7. Recycled gabbro signature in Upper Cretaceous Magma within Strandja Massif: NW Turkey

    NASA Astrophysics Data System (ADS)

    Ulusoy, Ezgi; Kagan Kadioglu, Yusuf

    2016-04-01

    Basic magma intrusions within plate interiors upwelling mantle plumes have chemical signatures that are distinct from mid-ocean ridge magmas. When a basic magma interact with continental crust or with the felsic magma, the compositions of both magma changes, but there is no consensus as to how this interaction occurs. Here we analyse the mineral behavior and trace element signature of gabbroic rocks of the samples collected from the Strandja Massif. Srednogorie magmatic arc is a part of Apuseni- Banat-Timok-Srednogorie magmatic belt and formed by subduction and closure of the Tethys Ocean during Upper Cretaceous times. Upper Cretaceous magmatic rocks cutting Strandja Massif in NW Turkey belong to eastern edge of Srednogorie Magmatic arc. Upper Cretacous magmatic rocks divided into four subgroup in Turkey part of Strandja massif: (I) granitic rocks, (II) monzonitic rock, (III) syenitic rocks and (IV) gabbroic rocks. Gabbroic rocks outcropped around study area in phaneritic - equigranular texture. According to mineralogic - petrographic studies gabbros have mainly holocrystalline texture and ophitic to subophitic texture composed of plagioclase, amphibole, pyroxene, and rarely olivine and opaque minerals. Also because of special conditions there have been pegmatitic texture on mafic minerals with euhedral form up to 3 cm in size and orbicular texture which reach 15cm in size and rounded - elliptical form. Confocal Raman Spectroscopy studies reveals that plagioclase are ranging in composition from labradorite to bytownite, the pyroxene are ranging in composition from diopside to augite acting with uralitization processes and the olivine are generally in the composition of forsterite. Petrographic and mineralogical determination reveals some metasomatic magmatic epidote presence. Confocal Raman Spectroscopy studies on anhydrous minerals within gabbroic rocks shows affect of hydrous process because of magma mixing. The gabbroic rocks have tholeiitic and changed towards

  8. Diffusion-Reaction Between Basaltic Andesite and Gabbro at 0.5 GPa: an Explanation for Anorthitic Plagioclase?

    NASA Astrophysics Data System (ADS)

    Lundstrom, C. C.; Boudreau, A. E.; Pertermann, M.

    2004-12-01

    Despite the remarkably smooth variation in bulk composition of erupted lavas at Arenal volcano (1968-2003), mineral compositions vary widely. Plagioclase ranges from An52 to An95 while Cr2O3 in CPX varies from 0.7 to 0.05 wt % (Streck et al., 2003). To address the question "how do bulk compositions remain near-steady-state while crystal compositions vary widely," we have performed 2 diffusion-reaction experiments in the piston cylinder at 0.5 GPa. These juxtaposed Arenal basaltic andesite AR-8 at 1200° C with a Stillwater Complex gabbro, lying in a thermal gradient toward the piston. In one experiment, we synthesized a glass-plagioclase (An67-75) aggregate of AR-8 in a graphite-Pt-Ti capsule at P-T, polished one end, dried tracer solutions of 45Ca, 6Li, 84Sr and 136Ba on its surface, and juxtaposed it with gabbro for 13 days. Profiles of bulk composition as a function of distance from the interface show that AR-8 gains Al2O3, MgO and CaO from the gabbro and loses Na2O, K2O, SiO2 and FeO to it. Notably, a plagioclase rich (65%) layer develops at the interface between the two materials as CPX disappears. This layer and the compositional profiles are reproduced by diffusion-reaction models using IRIDIUM (Boudreau, 2003). Plagioclase at the interface develops a texture of homogeneous anorthitic cores (An90) that abruptly shift to 10μ m rims having compositions (An67) in Na-Ca exchange equilibrium with the co-existing melt. A beta track map shows that 45Ca is incorporated into the plagioclase cores while SIMS analyses indicate isotopic equilibration between core and melt. Thus, these anorthitic plagioclase result from diffusion-reaction with efficient chemical communication between the melt and the plagioclase core. Microchannels cutting through the rim, rather than solid-state diffusion, appear to control re-equilibration. Other observations from the experiment parallel Arenal lavas: Mg# variation in OPX is small in both experiments and lavas while profiles of Cr

  9. Comagmatic contact relationships between the Rock Creek Gabbro and Round Valley Peak granodiorite, central Sierra Nevada, CA

    SciTech Connect

    Christensen, C.C.; Bown, C.J. . School of Natural Science)

    1993-03-01

    The Rock Creek Gabbro (RCG) in Little Lakes Valley, near Tom's Place, CA abuts three granodiorites with distinctive contact characteristics. Against within a cm in most places. The contact with Round Valley Peak (RVP) on the north, however, is a zone at least 3 km wide and records a mode of mafic magmatic enclave formation. A northward traverse of the zone begins 300--400 m within the RCG with progressively lighter, though still uniform rock. Next is a 100--200m wide jumble of sharp-edged angular 10--30m gabbroic xenoliths, variable in grainsize and plastic deformation and interspersed with stretched partially disaggregated enclaves in normal RVP granodiorite. Xenoliths are essentially absent from the RVP from here north; stretched enclaves with very consistent strikes paralleling (within 20[degree]) the mapped RCG-RVP contact and high angle dips (70--90[degree]), occur singly and in dense swarms and fall from 4% to 0.5% of outcrop area in the remaining traverse. Rock Creek gabbros including xenoliths at the contact cluster chemically with RVP enclaves on all major and trace element plots, suggesting a common parentage; some of each group show evidence of plagioclase flotation. Trace element data (esp. Zr/Nb) suggests that fractional crystallization dominates mixing in the evolution of the gabbroic/enclave magma.

  10. Ortigalita Peak gabbro, Franciscan complex: U-Pb dates of intrusion and high-pressure low-temperature metamorphism

    NASA Astrophysics Data System (ADS)

    Mattinson, James M.; Echeverria, Lina M.

    1980-12-01

    Paleontological and isotopic age data from the Franciscan complex in the Ortigalita Peak quadrangle, Diablo Range, California, provide new insight into the tectonic evolution of at least part of the Franciscan complex. Graywacke, shale, pillowed greenstone, and chert in the quadrangle were deposited in Late Jurassic (Tithonian) time, about 135 to 150 m.y. ago, on the basis of radiolaria. These rocks then were incorporated in an accretionary wedge prior to the intrusion of gabbroic magma 95 m.y. ago (U-Pb dating on zircons). Subduction (metamorphism of gabbro and surrounding sedimentary rocks to blueschist grade) closely followed intrusion at about 92 m.y. ago (U-Pb dating on metamorphic titanite and “plagioclase” = albite + pumpellyite ± quartz). The brief interval between intrusion and subduction confirms the idea that the gabbro was intruded into the accretionary wedge, essentially at the site of plate convergence. The much longer interval (about 40 to 55 m.y.) between deposition and subduction reveals that the Franciscan had a long presubduction history and provides a time frame within which more speculative concepts such as extensive northward translation of the Franciscan must be constrained.

  11. A mineralogical investigation of the Late Permian Doba gabbro, southern Chad: Constraints on the parental magma conditions and composition

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. Gregory; Lee, Tung-Yi; Yang, Chih-Cheng; Hu, Shin-Tai; Wu, Jong-Chang; Iizuka, Yoshiyuki

    2016-02-01

    The late Permian Doba (257 ± 1 Ma) gabbro was discovered at the base of an exploration well through the Cretaceous Doba Basin of Southern Chad. The gabbro is at least 250 m thick, has cumulus mineral textures and consists of plagioclase, clinopyroxene, orthopyroxene, Fe-Ti oxide, apatite and quartz. The composition of the silicate minerals (i.e. plagioclase, pyroxenes) from the lowest part of the intrusion tend to be more primitive (i.e. An59, Wo40-44En33-47Fs12-25) than the upper part (i.e. An41, Wo39-43En30-44Fs14-29) suggesting the magmatic system differentiated internally by crystal fractionation and crystal redistribution. Based on the chemistry of the pyroxenes, the parental magma was compositionally similar to a Ti-rich, within-plate continental tholeiite that had a bulk Mg# of ˜44. The relative oxidation state of the magma was initially moderately reducing (i.e. ΔFMQ-0.3) and then became more reducing after a period of fractionation (i.e. ΔFMQ-1.2). The estimated initial magma temperature was at least 1100 °C. The within-plate composition suggests there was rifting-related magmatism near the boundary of the Saharan Metacraton that could be related to edge-driven mantle convection.

  12. Helium Isotope Variations in Peridotite, Gabbro and Basalt from the Kane Oceanic Core Complex

    NASA Astrophysics Data System (ADS)

    Konrad, K.; Graham, D. W.; Dick, H. J.

    2012-12-01

    value is elevated compared to the median value for MORBs (8 RA). Our observations suggest that domains of highly depleted MORB mantle tend to have higher 3He/4He ratios, approaching 9 RA, consistent with what is observed in depleted MORB glasses globally. Kane gabbroic rocks are more variable, and typically show lower 3He/4He ratios, often accompanied by lower He concentrations. This likely reflects an increased importance of atmospheric and radiogenic components. Lower initial 3He/4He ratios (<8 RA) may also be present in some of the gabbros, perhaps from partial meting of a lithologically heterogeneous mantle source.

  13. Geochemistry of Site U1309 Gabbros, IODP Expeditions 304/305 at the Atlantis Massif, Mid-Atlantic Ridge 30°N

    NASA Astrophysics Data System (ADS)

    Miller, J.; Awaji, S.; Godard, M.; Rosner, M.; Yamasaki, T.

    2005-12-01

    IODP Site U1309 was drilled at Atlantis Massif (western rift flank of Mid-Atlantic Ridge 30°N; Expeditions 304 and 305), a 1.5-2 Myr old oceanic core complex, through an exposed detachment fault in the shallow part of the dome. The main hole, Hole U1309D, penetrated 1415.5 mbsf and recovery averaged 75%. Over 96% of Hole U1309D is made up of gabbroic rock types, which comprise amongst the most primitive as well as freshest plutonic rocks known from the ocean floor. The most abundant rock type is from the gabbro group, comprising 55.7% of the core recovered. This group spans a wide range in modal composition, including minor amount of olivine, Fe-Ti oxides, and/or orthopyroxene. Olivine gabbro is the second most abundant rock type recovered (25.5%), with modal olivine varying widely (5 to 50%). The modal composition of this rock type is highly variable and locally grades into troctolitic gabbro and troctolite. The gabbros and olivine gabbros from Site U1309 have compositions that are among the most primitive sampled by drilling along the MAR (23°N and 15°20N) and on the Southwest Indian Ridge (ODP Hole 735B). This is reflected in Mg numbers ranging from 67 to 87, low TiO 2 (< 0.72 wt%), Na 2 O, and trace element contents. Site U1309 gabbroic rocks are interpreted as cumulates related to the basalt and diabase cross-cutting the gabbroic section through crystal fractionation processes and a common parental magma. Olivine-rich rocks with relatively low modal plagioclase and clinopyroxene are grouped as olivine-rich troctolite. They represent 5.4 % of the recovered rocks in Hole U1309D, with the thickest interval between 1092 and 1236 mbsf. The olivine-rich troctolites contain >70% olivine by mode, and are commonly intercalated with olivine and troctolitic gabbro. Olivine-rich rocks may represent the most primitive cumulates of the gabbroic sequence. However, they overlap in composition with the impregnated peridotites drilled at 15°20N along the MAR with high Mg

  14. Magmatism and metamorphism at the sheeted dyke-gabbro transition zone: new insight from beerbachite from ODP/IODP Hole 1256D and Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Python, Marie; Abily, Bénédicte; France, Lydéric

    2014-05-01

    During IODP Expedition 335, two-pyroxenes bearing granulites (beerbachites) were extensively recovered as drilling cuttings at the gabbro-sheeted dyke transition zone of ODP Hole 1256D (East Pacific Rise, 6°44.163'N, 91°56.061'W). This lithology results from high-temperature metamorphism of previously hydrothermally altered diabases, basalts and/or gabbros; the heat source likely stems from the melt lens located at the top of the magmatic chambers imaged along present-day fast-spreading ridges. This lithology, associated with gabbroic bodies, characterises the transition zone between the sheeted dyke complex and the uppermost gabbroic section and represents the interface between magmatic and hydrothermal convecting systems in an oceanic crust formed at fast-spreading ridges. Samples acquired during IODP Exp. 335 show a particularly high degree of recrystallisation and are characterised by the absence of hydrous phases like amphibole, suggesting very high-T metamorphism. The Beerbachites mineral chemical characteristics are rather homogeneous compared to gabbros or dolerite from the sheeted dyke but pyroxenes Mg#, Ti, Al and Cr contents as well as the anorthite content of plagioclase are closer to gabbro than dolerite. This similarity may be explained by two hypothesis: either beerbachites in Hole 1256D are metamorphosed gabbros, or they underwent a melt-rock reaction process with the gabbros parental magma and were re-equilibrated at high temperature until their mineral composition become similar to that of gabbros. The gabbro-sheeted dyke transition zone in the Oman ophiolite is also outlined by the presence of high grade metamorphic rocks. Fine grained granulites and amphibolites that may be derived from the transformation of altered sheeted dyke diabases are in direct contact with fresh gabbroic and troctolitic bodies which are themselves cross-cut by dolerite dykes. The observation of textures show that high-T recrystallisation occurred in the fine grained

  15. U-Pb isotopic ages and Hf isotope composition of zircons in Variscan gabbros from central Spain: evidence of variable crustal contamination

    NASA Astrophysics Data System (ADS)

    Villaseca, Carlos; Orejana, David; Belousova, Elena; Armstrong, Richard A.; Pérez-Soba, Cecilia; Jeffries, Teresa E.

    2011-03-01

    Ion microprobe U-Pb analyses of zircons from three gabbroic intrusions from the Spanish Central System (SCS) (Talavera, La Solanilla and Navahermosa) yield Variscan ages (300 to 305 Ma) in agreement with recent studies. Only two zircon crystals from La Solanilla massif gave slightly discordant Paleoproterozoic ages (1,848 and 2,010 Ma). Hf isotope data show a relatively large variation with the juvenile end-members showing ɛHfi values as high as +3.6 to +6.9 and +1.5 to +2.9 in the Navahermosa and Talavera gabbros, respectively. These positive ɛHfi values up to +6.9 might represent the composition of the subcontinental mantle which generates these SCS gabbros. This ɛHfi range is clearly below depleted mantle values suggesting the involvement of enriched mantle components on the origin of these Variscan gabbros, and is consistent with previous whole-rock studies. The presence of zircons with negative ɛHfi values suggest variable, but significant, crustal contamination of the gabbros, mainly by mixing with coeval granite magmas. Inherited Paleoproterozoic zircons of La Solanilla gabbros have similar trace element composition (e.g. Th/U ratios), but more evolved Hf-isotope signatures than associated Variscan zircons. Similar inherited ages have been recorded in zircons from coeval Variscan granitoids from the Central Iberian Zone. Granitic rocks have Nd model ages (TDM) predominantly in the range of 1.4 to 1.6 Ga, suggesting a juvenile addition during the Proterozoic. However, Hf crustal model ages of xenocrystic Proterozoic zircons in La Solanilla gabbro indicate the presence of reworked Archean protoliths (TDM2 model ages of 3.0 to 3.2 Ga) incorporated into the hybridized mafic magma.

  16. Fe-Ti-oxide textures and microstructures in shear zones from oceanic gabbros at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Morales, Luiz F. G.; Rybacki, Erik

    2016-04-01

    Ocean drilling expeditions at several oceanic core complexes formed at slow- and ultra-slow-spreading ridges have recovered cores containing numerous zones of oxide-rich gabbros containing ilmenite and magnetite. In these cores, high modal concentrations of Fe-Ti-oxides are systematically associated with high-temperature plastic deformation features in silicates. We present observations of Fe-Ti-oxide mineral structures and textural characteristics from a series of oxide-rich shear zones from Atlantis Bank (ODP Site 735B) on the Southwest Indian Ridge aimed at determining how oxide mineral abundances relate to strain localization. Fe-Ti-oxide minerals in undeformed oxide gabbros and in highly deformed samples from natural shear zones generally have morphologies characteristic of crystallized melt, including highly cuspate grains and low dihedral angles. Anisotropy of magnetic susceptibility in oxide-rich shear zones is very strong, with fabrics mainly characterized by strong magnetic foliations parallel to the macroscopic foliation. Crystallographic preferred orientations (CPO) in magnetite are generally weak, with occasionally well-defined textures. Ilmenite typically displays well-developed CPOs, however, the melt-like ilmenite grain shapes indicate that at least part of the crystallographic texture results from oriented ilmenite growth during post-deformation crystallization. The oxides are hypothesized to have initially been present as isolated pockets of trapped melt (intercumulus liquid) in a load-bearing silicate framework. Progressive plastic deformation of silicate phases at high-temperature mainly produced two features: (i) elongated melt pockets, which crystallized to form strings of opaque minerals and (ii), interconnected networks of melt regions. The latter lead to intense strain localization of the rock, which appears as oxide-rich mylonites in the samples. In some samples, abundant low-angle grain boundaries in both magnetite and ilmenite suggest

  17. Origin of the 'Gabbro' Signature in Ocean Island Basalts: Constraints from Osmium Isotopic Ratios of Galapagos Basalts

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Dale, C. W.; Geist, D.; Harpp, K. S.

    2014-12-01

    The Re-Os isotope system has become increasingly used as a tracer of lithological heterogeneity in the convecting mantle, with radiogenic 187Os/188Os in high-Os oceanic basalts and picrites widely interpreted as evidence of a melt contribution from ancient recycled oceanic crust. When combined with 206Pb/204Pb and O isotopes, 187Os/188Os ratios have been used to identify distinct lithological units (i.e. sediments, gabbros and basalts). We report new 187Os/188Os for basalts with high Os (>40 ppt) and MgO from Galápagos, which range from near primitive mantle values (0.130) to highly radiogenic (0.155). While co-variations in 187Os/188Os and 206Pb/204Pb for some Galápagos basalts (Floreana-type) are HIMU like, and consistent with melting of ancient recycled oceanic crust, others have variable 187Os/188Os ratios and primitive to depleted mantle like 206Pb/204Pb. Similar variations in Os and Pb isotopic space have been interpreted in other OIB suites as melts from recycled ancient oceanic gabbros, entrained by upwelling mantle plumes. Nevertheless, a marked east-west spatial variation in 187Os/188Os of Galápagos basalts does not correlate with postulated lithological variations in the Galápagos plume (Vidito et al., 2013). We show that basalts in eastern Galápagos with elevated 187Os/188Os and positive Sr anomalies occur in the vicinity of over-thickened 10 Ma gabbroic crust, that formed when the Galápagos plume was on-axis. We propose the elevated 187Os/188Os of Galápagos basalts are due to in-situ assimilation of young gabbroic lower crust, with high Re/Os, rather than melting of ancient recycled material in the Galápagos plume. In western Galápagos recent plume accreted crust is thick but more mafic, the melt flux higher and assimilation more sporadic. The contamination thresholds of Os and MgO in Galápagos basalts occur at higher contents than for many global OIBs (Azores, Iceland, Hawaii) and may reflect both a relatively low melt flux into the crust

  18. Sm-Nd and Rb-Sr Ages for Northwest Africa 2977, A Young Lunar Gabbro from the PKT

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.; Irving, A. J.

    2009-01-01

    Northwest Africa (NWA) 2977 is an olivine gabbro cumulate equivalent to one of the lithologies in lunar mare breccia NWA 773 [1,2,3]. The Ar-39-Ar-40 age is 2.77+/-0.04 Ga based on the last approx.57% of the gas release [4], similar to results for NWA 773 [5]. A Sm-Nd age (T) of 2.865+/-0.031 Ga and Epsilon(sub Nd) = -7.84+/-0.22 for the NWA 773 gabbro reported by [6] has been revised to T = 2.993+/-=0.032 Ga, Epsilon(sub Nd) -4.5+/-0.3 [7]. Sm-147-Nd-143 isochron for NWA 2977: Whole rock, pyroxene, olivine, plagioclase, whole rock leachate (approx.phosphate) and the combined leachates from the mineral separates yield a well defined Sm-Nd isochron for an age T = 3.10+/-0.05 Ga and Epsilon(sub Nd-CHUR) = -3.74+/-0.26 [8], or Epsilon(sub Nd-HEDR) = -4.61+/-0.26 [9]. Rb-87-Sr-87 isochron: NWA 2977 contains only a modest amount of Rb and/or Sr contamination. The Sr-isotopic composition of the contaminant closely resembles that of seawater. The whole rock residue after leaching combined with leach residues for plagioclase and pyroxene define an isochron age of 3.29+/-0.11 Ga for initial Sr-87/Sr-86 = 0.70287+/-18. The olivine residue, with lower Sr abundance of approx 1.5 ppm, is only slightly displaced from the isochron. The relatively small uncertainties of the Rb-Sr isochron parameters and near-concordancy with the Sm-Nd age indicate that both the Rb-Sr and the Sm-Nd ages are reliable.

  19. Magnetic and microscopic features of silicate-hosted Fe-oxide inclusions in an oceanic gabbro section

    NASA Astrophysics Data System (ADS)

    Till, Jessica

    2015-04-01

    The magnetic mineralogy of oceanic gabbros is typically dominated by magnetite, which occurs in several forms: as a cumulus or intercumulus phase, as a secondary phase formed through alteration, or as exsolved inclusions in plagioclase and pyroxene. This study characterizes the contribution of magnetic inclusions in plagioclase and pyroxene to the bulk rock remanence and examines changes in the distribution of remanence carriers with crustal depth. Selected samples were taken throughout a 1500-m-long section of drilled oceanic gabbro cores collected from the Oceanic Drilling Program Site 735B at Atlantis Bank on the Southwest Indian Ridge. Hysteresis parameters and curves of isothermal remanence acquisition were measured for plagioclase and clinopyroxene mineral separates and compared with whole rock measurements for samples from various depths to determine the relative contributions of each to the bulk sample remanence properties. In whole-rock samples, bulk saturation magnetization decreases and coercivity distributions become dominated by harder magnetic components with increasing depth. The changes in rock magnetic properties with depth are interpreted to result from variations in composition as well as cooling rates. Coercivity distributions in both plagioclase and pyroxene systematically shift to higher coercivities with increasing depth in the section, although the change is more pronounced in plagioclase, indicating that the size distributions of magnetic inclusions in plagioclase become progressively finer. First-order reversal curves for plagioclase separates provide a striking example of non-interacting single-domain particles. Variations in exsolution textures and compositions of the inclusions were also investigated by microanalysis and electron microscopy. Microscopic examination revealed unexpected complexity in the structure of exsolution features, with several oxide phases commonly present as inclusions in plagioclase and multiple generations of

  20. Dependencies of pore pressure on elastic wave velocities and Vp/Vs ratio for thermally cracked gabbro

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Uehara, S. I.; Mizoguchi, K.

    2015-12-01

    Marine seismic refraction have found that there are high Vp/Vs ratio regions in oceanic crusts at subducting oceanic plates (e.g, Cascadia subduction zone (2.0-2.8) (Audet et al., 2009)). Previous studies based on laboratory measurements indicated that Vp/Vs ratio is high when porosity and/or pore pressure is high (Christensen, 1984; Peacock et al., 2011). Although several studies have investigated the relationships between fracture distributions and Vp, Vs (e.g., Wang et al., 2012; Blake et al., 2013), the relationships for rocks (e.g., gabbro and basalt) composing oceanic crust are still unclear. This study reports the results of laboratory measurements of Vp, Vs (transmission method) at controlled confining and pore pressure and estimation of Vp/Vs ratio for thermally cracked gabbro which mimic highly fractured rocks in the high Vp/Vs ratio zone, in order to declare the dependence of fracture distributions on Vp/Vs. For the measurements, we prepared three type specimens; a non-heated intact specimen, specimens heated up to 500 °C and 700 °C for 24 hours. Porosities of intact, 500 °C and 700 °C specimens measured under the atmospheric pressure are 0.5, 3.4 and 3.5%, respectively. Measurements were conducted at a constant confining pressure of 50 MPa, with decreasing pore pressure from 49 to 0.1 MPa and then increasing to 49 MPa. While Vp/Vs for the intact specimen is almost constant at elevated pore pressure, the Vp/Vs values for the thermally cracked ones were 2.0~2.2 when pore pressure was larger than 30 MPa. In future, we will reveal the relationship between the measured elastic wave velocities and the characteristics of the microfracture distribution. This work was supported by JSPS Grant-in-Aid for Scientific Research (Grant Number 26400492).

  1. Plagioclase zonation styles in hornblende gabbro inclusions from Little Glass Mountain, Medicine Lake volcano, California: Implications for fractionation mechanisms and the formation of composition gaps

    USGS Publications Warehouse

    Brophy, J.G.; Dorais, M.J.; Donnelly-Nolan, J.; Singer, B.S.

    1997-01-01

    The rhyolite of Little Glass Mountain (73-74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54-61% SiO2) and partially crystalline cumulate hornblende gabbro (53-55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54-61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide??olivine, +/-orthopyroxene, +/-hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53-55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70-74% SiO2). The gabbros record a two-stage crystallization history of plagioclase + olivine + augite (Stage I) followed by plagioclase+orthopyroxene + hornblende + Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the

  2. Application of Downhole Magnetic Field Measurements in the Identification of Petrological Variations in Basalts, Gabbros and Volcaniclastic Sediments

    NASA Astrophysics Data System (ADS)

    Bartetzko, A.; Heike, D.

    2002-12-01

    Downhole magnetic field measurements are routinely carried out during many downhole-logging operations for spatial orientation of borehole wall images. The tools used for this purpose, like the Schlumberger General Purpose Inclinometer Tool (GPIT), were not specifically developed for geological interpretations but comparisons with measurements from precise magnetometers show very good correlations. However, systematic value shifts sometimes occur in some holes and this means that data from the GPIT should be used only qualitatively. We show examples from several holes drilled by the ODP demonstrating the potential of magnetic field logs for geologic and petrologic purposes. Variations in the magnetic field data are caused by different geologic processes in these examples. Injections of Fe-Ti-oxide rich gabbros into olivine gabbro of the lower oceanic crust drilled in ODP Holes 735B and 1105A (SW Indian Ridge) cause distinct signals in the magnetic field logs. The vertical resolution of the tool allows detection of thin layers (10 cm minimum thickness) with small anomalies in the magnetic field logs. Cyclicity in eruption processes at mid-ocean ridges can be revealed using the magnetic field logs. Slight petrologic differences between magmas from different eruptions and changes in the Earth?s magnetic field due to reversals, or secular variations in pauses between the eruptions cause characteristic patterns in the logs (e.g. ODP Holes 395A and 418A). Cooling and subsequent alteration processes cause the formation of different types of Fe- and/or Ti-oxide minerals. Typical examples of the formation of secondary magnetic minerals in subaerial lava flows are seen in ODP Hole 1137A (Kerguelen Plateau). Characteristic anomalies in the magnetic field log correlate well with total gamma ray measurement, which is an indicator for alteration in this type of rocks. Grain Size linked with crystallinity variations in basaltic volcaniclastic deposits and debris flows influence

  3. Slow Slip Predictions Based on Gabbro Dehydration and Friction Data Compared to GPS Measurements in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Rice, J. R.; Liu, Y.

    2008-12-01

    For episodic slow slip transients in subduction zones, a large uncertainty in comparing surface deformations predicted by rate and state friction modeling [Liu and Rice, JGR, 2007] to GPS measurements lies in our limited knowledge of the frictional properties and fluid pore pressure along the fault. In this study, we apply petrological data [Peacock et al., USGS, 2002; Hacker et al., JGR 2003; Wada et al., JGR, 2008] and recently reported friction data [He et al., Tectonophys, 2006, 2007] for gabbro, as a reasonable representation of the seafloor, to a Cascadia-like 2D model in order to produce simulations which show spontaneous aseismic transients. We compare the resulting inter-transient and transient surface deformations to GPS observations along the northern Cascadia margin. An inferred region along dip of elevated fluid pressure is constrained by seismological observations where available, and by thermal and petrological models for the Cascadia and SW Japan subduction zones. For the assumed a and a-b profiles, we search the model parameter space, by varying the level of effective normal stress σ, characteristic slip distance L in the source areas of transients, and the fault width under that low σ, to identify simulation cases which produce transient aseismic slip and recurrence interval similar to the observed 20-30 mm and 14 months, respectively, in northern Cascadia. Using a simple planar fault geometry and extrapolating the 2D fault slip to a 3D distribution, we find that the gabbro gouge friction data allows a much better fit to GPS observations than is possible with the granite data [Blanpied et al., JGR, 1995, 1998] which, for lack of a suitable alternative, has been used as the basis for most previous subduction earthquake modeling, including ours. Nevertheless, the values of L required to reasonably fit the geodetic data during a transient event are somewhat larger than 100 microns, rather than in the range of 10 to a few 10s of microns as might be

  4. Gravity and magnetic expression of the San Leandro gabbro with implications for the geometry and evolution of the Hayward Fault zone, northern California

    USGS Publications Warehouse

    Ponce, D.A.; Hildenbrand, T.G.; Jachens, R.C.

    2003-01-01

    The Hayward Fault, one of the most hazardous faults in northern California, trends north-northwest and extends for about 90 km along the eastern San Francisco Bay region. At numerous locations along its length, distinct and elongate gravity and magnetic anomalies correlate with mapped mafic and ultramafic rocks. The most prominent of these anomalies reflects the 16-km-long San Leandro gabbroic block. Inversion of magnetic and gravity data constrained with physical property measurements is used to define the subsurface extent of the San Leandro gabbro body and to speculate on its origin and relationship to the Hayward Fault Zone. Modeling indicates that the San Leandro gabbro body is about 3 km wide, dips about 75??-80?? northeast, and extends to a depth of at least 6 km. One of the most striking results of the modeling, which was performed independently of seismicity data, is that accurately relocated seismicity is concentrated along the western edge or stratigraphically lower bounding surface of the San Leandro gabbro. The western boundary of the San Leandro gabbro block is the base of an incomplete ophiolite sequence and represented at one time, a low-angle roof thrust related to the tectonic wedging of the Franciscan Complex. After repeated episodes of extension and attenuation, the roof thrust of this tectonic wedge was rotated to near vertical, and in places, the strike-slip Hayward Fault probably reactivated or preferentially followed this pre-existing feature. Because earthquakes concentrate near the edge of the San Leandro gabbro but tend to avoid its interior, we qualitatively explore mechanical models to explain how this massive igneous block may influence the distribution of stress. The microseismicity cluster along the western flank of the San Leandro gabbro leads us to suggest that this stressed volume may be the site of future moderate to large earthquakes. Improved understanding of the three-dimensional geometry and physical properties along the

  5. Component mobility at 900 °C and 18 kbar from experimentally grown coronas in a natural gabbro

    NASA Astrophysics Data System (ADS)

    Keller, Lukas M.; Wunder, Bernd; Rhede, Dieter; Wirth, Richard

    2008-09-01

    Several approximately 100-μm-wide reaction zones were grown under experimental conditions of 900 °C and 18 kbar along former olivine-plagioclase contacts in a natural gabbro. The reaction zone comprises two distinct domains: (i) an irregularly bounded zone with idiomorphic grains of zoisite and minor corundum and kyanite immersed in a melt developed at the plagioclase side and (ii) a well-defined reaction band comprising a succession of mineral layers forming a corona structure around olivine. Between the olivine and the plagioclase reactant phases we observe the following layer sequence: olivine|pyroxene|garnet|partially molten domain|plagioclase. Within the pyroxene layer two micro-structurally distinct layers comprising enstatite and clinopyroxene can be discerned. Chemical potential gradients persisted for the CaO, Al 2O 3, SiO 2, MgO and FeO components, which drove diffusion of Ca, Al and Si bearing species from the garnet-matrix interface to the pyroxene-olivine interface and diffusion of Mg- and Fe-bearing species in the opposite direction. The systematic mineralogical organization and chemical zoning across the corona suggest that the olivine corona was formed by a "diffusion-controlled" reaction. We estimate a set of diffusion coefficients and conclude that LAlAl < LCaCa < ( LSiSi, LFeFe) < LMgMg during reaction rim growth.

  6. An Early Neoproterozoic gabbro-granite association in the Bureya Continental Massif (Central Asian fold belt): First geochemical and geochronological data

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Ovchinnikov, R. O.; Kudryashov, N. M.; Sorokina, A. P.

    2016-12-01

    The fact that gneissose granites and gabbros of the Nyatygran Complex in the Bureya Continental Massif are not Palaeoproterozoic in age, as previously thought, but Neoproterozoic, 933 Ma is proved. New data with the first direct evidence of Early Neoproterozoic magmatism in continental massifs composing the Bureya-Jiamusi Superterrane are given. At the moment, the obtained age estimates are the oldest for the magmatic rocks of this superterrane.

  7. Petrochemistry and mineral chemistry of Late Permian hornblendite and hornblende gabbro from the Wang Nam Khiao area, Nakhon Ratchasima, Thailand: Indication of Palaeo-Tethyan subduction

    NASA Astrophysics Data System (ADS)

    Fanka, Alongkot; Tsunogae, Toshiaki; Daorerk, Veerote; Tsutsumi, Yukiyasu; Takamura, Yusuke; Endo, Takahiro; Sutthirat, Chakkaphan

    2016-11-01

    In the Wang Nam Khiao area, Nakhon Ratchasima, northeastern Thailand, there are various mafic-ultramafic plutons composed of hornblendite, hornblende gabbro and hornblende microgabbro. The rocks are generally dominated by hornblende, plagioclase and clinopyroxene. The mineral chemistry and whole-rock geochemistry of hornblendite, hornblende gabbro and hornblende microgabbro show their similarities, suggesting a close relationship of their magmatic evolution. The flat REE pattern and low HREE concentration indicate fractional crystallization from hydrous magma. The enrichment in LILE (e.g. Ba, K, Sr) and depletion of HFSE (e.g. Nb, Ta, Zr) together with compositions of clinopyroxene and hornblende reflect arc-related subduction. Hornblende-plagioclase geothermometry and Al-in-hornblende geobarometry indicate the PT conditions of crystallization are 5.3-9.8 kbar and 670-1000 °C, 7.6-9.0 kbar and 850-950 °C, and 7.6-8.8 kbar and 750-850 °C for hornblendite, hornblende gabbro and hornblende microgabbro, respectively, at the lower crustal depth (28-31 km). Zircon U-Pb age of hornblende microgabbro dike, that intruded into hornblendite, yields 257 Ma of intrusion age, suggesting the emplacement of the mafic-ultramafic rock in this area is related to Late Permian arc magmatism resulted from subduction of Palaeo-Tethys beneath Indochina Terrane.

  8. Subduction of Indian continent beneath southern Tibet in the latest Eocene (˜ 35 Ma): insights from the Quguosha gabbros in southern Lhasa block

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Wang, Qiang; Li, Zheng-Xiang; Wyman, Derek; Jiang, Zi-Qi

    2016-04-01

    Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau. However, when the Indian continental lithosphere started to subduct remain unclear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U-Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros, which are within a magmatism gap of the Lhasa block. The Quguosha gabbros samples exhibit Sr-Nd isotopic compositions ([87Sr/86Sr]initial = 0.7056-0.7058 and ɛNd(t) = -2.2 - -3.6) different from those of the Jurassic-Eocene magmatic rocks with depleted Sr-Nd isotopic characteristics, but somewhat similar to those of Oligocene-Miocene K-rich magmatic rocks with enriched Sr-Nd isotopic characteristics. We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Our data also suggest that the Indian continental crust has started to be underthrusted beneath the mantle lithosphere of the southern Lhasa sub-block by at least ca. 35 Ma.

  9. Occurrences of Orthopyroxene in the "Multi-textured" Layered Gabbros from the Hess Deep Rift, East Pacific Rise (the Site U1415P, IODP Expedition 345)

    NASA Astrophysics Data System (ADS)

    Hoshide, T.; Machi, S.; Maeda, J. I.

    2015-12-01

    IODP Exp.345 drilled three main holes (Holes U1415 I, J & P) from the lowermost plutonic crust exposed at the Hess Deep Rift, East Pacific Rise and primitive layered gabbroic rocks were newly discovered from these holes (Gillis et al., 2014). One of the mysteries about the layered gabbros is the fact that Opx, which is considered to appear in the late stage of crystallization on the basis of crystallization experiments of MORB, occurs as a dominant phase in many of the layered gabbros. In this presentation, we report the occurrence of Opx from the Hole U1415P and consider the significance of Opx in the origin of the layered gabbros. Hole U1415P (about 100m in thickness) is divided into two units, the upper Multi-textured Layered Gabbro Series (MLGS) and lower Troctolite Series (TS). Gabbroic rocks from the MLGS contain Opx (< 4 vol%) and are macroscopically classified into Opx-bearing olivine gabbro. However, these rocks are mesoscopically (on cm scale) inhomogeneous and have a great variation of mode, grain size and texture. On the other hand, TS consists of homogeneous troctolites and Opx rarely occurs in the series. The occurrences of Opx from the MLGS are as follows: (i) coarse-grained Opx+Cpx+Pl vein parallel to the layered structure of the surrounding troctolite (ii) undeformed Opx+Pl veinlets in kinked Ol (iii) Opx in the concave of anhedral Ol (iv) Opx rimming Cr-spl crystals in contact with Ol. The occurrence of Opx like (ii) and (iii) resembles the texture which is considered to be formed by the reaction between mantle peridotite and a SiO2-saturated melt (e.g, Piccardo et al., 2007). The facts that Opx is often found in association with Cr-spl and Cr-spl lamellae occur in pyroxenes of the Opx+Cpx+Pl vein suggest that the SiO2-saturated melt which reacted with Ol was rich in chromium. In addition, Cr-spl crystals rimmed by Opx contain multiphase-solid inclusions. The inclusions should be key in understanding the chemical composition of the reacted melt.

  10. Hyperextension of continental to oceanic-like lithosphere: The record of late gabbros in the shallow subcontinental lithospheric mantle of the westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Varas-Reus, Maria Isabel; Garrido, Carlos J.; Marchesi, Claudio; Acosta-Vigil, Antonio; Padrón-Navarta, José Alberto; Targuisti, Kamal; Konc, Zoltán

    2015-05-01

    We report gabbroic dikes in the plagioclase tectonite domains of the Ojén and Ronda massifs (Betic Cordillera, southern Spain), which record crystallization at low-pressure syn-, or slightly postkinematic to the late ductile history of the Betic Peridotite in the westernmost Mediterranean. We present mineral major and trace element compositional data of discordant gabbroic dikes in the Ojén massif and gabbroic patches in the Ronda massif, complemented by the whole rock and electron backscattered diffraction (EBSD) data of the Ojén occurrence. In the Ojén massif, gabbro occurs as 1-3 centimeter wide discordant dikes that crosscut the plagioclase tectonite foliation at high angle. These dikes are composed of cm-scale igneous plagioclase and clinopyroxene crystals that show shape preferred orientations subparallel to the lineation of the host peridotite and oblique to the trend of the dike. Intrusion of Ojén gabbro dikes is coherent with the stress field that formed the high temperature, ductile plagioclase tectonite foliation and then attests for a mantle igneous event prior to the intracrustal emplacement of the massif. In the Ronda massif, gabbroic rocks crystallized in subcentimeter wide anastomozing veins, or as interstitial patches in the host dunite. They are mostly composed of plagioclase and clinopyroxene. Plagioclase composition is bytownitic in the Ojén, and andesinic in the Ronda massif. Clinopyroxene in both places shows identical, light Rare-Earth Element (LREE) depleted trace element patterns. The calculated trace element composition of melts in exchange equilibrium with the studied igneous clinopyroxenes reflects LREE-enriched character coupled with negative Eu anomaly, and indicates that gabbro-forming melts in Ronda and Ojén share a common melt source with an island arc tholeiitic affinity. Geothermobarometric data and liquidus mineralogy indicate that gabbro crystallization occurred at shallow depths (0.2-0.5 GPa) in a 7-16 km thick

  11. From Gabbro to Granulite to Kyanite- and bimineralic Eclogite: A petrological, geochemical and mass balance approach to mantle eclogites

    NASA Astrophysics Data System (ADS)

    Sommer, H.; Jacob, D.

    2013-12-01

    In this study, we present the phase transition from gabbro into granulite and finally into kyanite- bearing and bimineralic eclogite. The investigated rock sample is a heterogeneous kyanite- bearing and bimineralic eclogite from the earth's mantle collected at the Roberts Victor Diamond mine in South Africa. Plagioclase of the former granulite reacted completely out under low H2O activity (fH2O) to form this kyanite- bearing and bimineralic eclogite. To quantify the phase transitions of the original gabbroic precursor, which was first metamorphosed under H-T granulite facies conditions followed by metamorphism under Earth's mantle conditions into both types of eclogite, a petrological, geochemical and a mass balance approach has been made. i) The results from our petrological approach show that Ca-rich garnet, which is coexistent with Ca-rich omphacite are the metastable phases from the original granulite in the kyanite-bearing relict while Mg-rich garnet, coexistent with Na-rich omphacite are the stable phases in the bimineralic eclogite part which shows equilibration conditions of ~5.5 Gpa and ~1200°C. ii) Our geochemical results show a positive Eu anomaly in garnet from the kyanite-bearing part, which indicates that the igneous precursor of the granulite was a gabbro, probably oceanic crust. Most of the rare earth elements show an excellent correlation with the major elements of the rock forming minerals during the plagioclase-out reaction of the former granulite. The LREE in garnet are removed during the formation of the bimineralic eclogite due to loss of the anorthite component in plagioclase of the former granulite. Contrary, the HREE are enriched in garnets in the bimineralic part of the eclogite compared to those in the kyanite zone, and correlate with the Mg-Ca exchange between both garnet generations. iii) The results from our mass balance approach indicate that garnet in bimineralic eclogite was formed by 0.925 mole of garnet and 0.075 mole of

  12. Study on the Hymenoptera parasitoid associated with Lepidoptera larvae in reforestation and agrosilvopastoral systems at Fazenda Canchim (Embrapa Pecuária Sudeste) São Carlos, SP, Brazil.

    PubMed

    Pereira, A G; Silva, R B; Dias, M M; Penteado-Dias, A M

    2015-11-01

    The aim of this study was to characterize the local fauna of Hymenoptera parasitoids associated with Lepidoptera larvae in areas of reforestation and agrosilvopastoral systems at Fazenda Canchim (Embrapa Pecuária Sudeste, São Carlos, SP, Brazil). Lepidoptera larvae collected with entomological umbrella were kept in the laboratory until emergence of adults or their parasitoids. From those collected in the agrosilvopastoral system, emerged 267 specimens of hymenopteran parasitoids belonging to 16 genera: Braconidae, Agathidinae (Alabagrus), Braconinae (Bracon), Microgastrinae (Cotesia, Diolcogaster, Glyptapanteles, Pholetesor and Protapanteles), Orgilinae (Orgilus); Ichneumonidae, Campopleginae (Casinaria, Charops and Microcharops); Chalcididae, Chalcidinae (Brachymeria and Conura); Eulophidae, Entedoninae (Horismenus), Eulophinae (Elachertus and Euplectrus). From the Lepidoptera larvae collected in the reforestation, emerged 68 specimens of hymenopteran parasitoids, belonging to 8 genera: Chalcididae, Chalcidinae (Conura); Ichneumonidae, Pimplinae (Neotheronia), Campopleginae (Charops and Microcharops) and Braconidae, Microgastrinae (Apanteles, Diolcogaster, Distatrix, Glyptapanteles and Protapanteles). The results of this study suggest the occurrence of a wide variety of Hymenoptera parasitoids in the studied environments.

  13. Martian crust: what is the effect of the gabbro-eclogite transition on the crustal gravitational stability?

    NASA Astrophysics Data System (ADS)

    Ferrachat, S.; Pauer, M.; Breuer, D.

    2005-12-01

    Getting information about the martian crust thickness is of primary interest for better understanding Mars dynamics and secular evolution. On a more specific point of view, the crustal thickness is crucial to better constrain how the Mars silicate layer differentiated into crust and mantle. On the one hand, coupled gravity-topography inversion models usually predict a mean crustal thickness of about 50-60 km (Wieczorek & Zuber, JGR 2004) to 100 km (Turcotte et al, JGR 107 2002), local values ranging from basically 0 to 150-200 km. On the other hand, thermal evolution models (Breuer & Spohn JGR 108 2003, Hauck & Phillips, JGR 107 2002) tend to predict a mean crustal thickness close to the highest estimates of the former models, or even significantly larger, depending on the initial temperature, on the viscosity, and on the thermal diffusivity. A very thick crust (from 100 to 250 km) is also inferred from global interior structure models (Sohl & Spohn, JGR 102 1997). From SNC analysis and surface spectroscopy measurements, the martian crust is thought to be mainly basaltic, with some possible andesitic material at the surface of the Northern hemisphere. As a consequence, the gabbro-eclogite type transition is likely to be relevant for the martian crust. Depending on the temperature profile, this transition can be initiated at a depth of about 50 to 100 km (Babeyko & Zharkov, PEPI 117 2000). The density of eclogite is much larger than basalt, and might even be slightly above that of the martian mantle (up to ~3.53 kg.m-3 versus ~3.4 to 3.55 kg.m-3 for the mantle). In these conditions, the question of a possible recycling of the lower crust back into the mantle is worth investigating: this could possibly lead to important consequences on the global dynamics of the planet, and may limit the crustal thickness. In the framework of 2D thermo-chemical convection models in presence of temperature-dependent viscosity, we will show that key parameters for this problem are: a

  14. The Easternmost Southwest Indian Ridge: A Laboratory to Study MORB and Oceanic Gabbro Petrogenesis in a Very Low Melt Supply Context

    NASA Astrophysics Data System (ADS)

    Paquet, M.; Cannat, M.; Hamelin, C.; Brunelli, D.

    2014-12-01

    Our study area is located at the ultra-slow Southwest Indian Ridge, east of the Melville Fracture Zone, between 61 and 67°E. The melt distribution in this area is very heterogeneous, with corridors of ultramafic seafloor where plate separation is accommodated by large offset normal faults [Sauter, Cannat et al., 2013]. These ultramafic corridors also expose rare gabbros and basalts. We use the major and trace elements composition of these magmatic rocks to document the petrogenesis of MORB in this exceptionnally low melt supply portion of the MOR system. Basalts from the easternmost SWIR represent a global MORB end-member for major element compositions [Meyzen et al., 2003], with higher Na2O and Al2O3 wt%, and lower CaO and FeO wt% at a given MgO. Within this group, basalts from the ultramafic corridors have particularly high Na2O, low CaO and FeO wt%. Best fitting calculated liquid lines of descent are obtained for crystallization pressures of ~8 kbar. Gabbroic rocks recovered in the ultramafic corridors include gabbros, oxide-gabbros and variably impregnated peridotites. This presentation focuses on these impregnated samples, where cpx have high Mg#, yet are in equilibrium with the nearby basalts in terms of their trace element compositions. Plagioclase An contents vary over a broad range, and there is evidence for opx resorption. These characteristics result from melt-mantle interactions in the axial lithosphere, which may explain several peculiar major element characteristics of the basalts. Similar interactions probably occur beneath ridges at intermediate to slow and ultraslow spreading rates. We propose that they are particularly significant in our study area due to its exceptionnally low integrated melt-rock ratio.

  15. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhao, Guochun; Han, Yigui; Eizenhöfer, Paul R.; Zhu, Yanlin; Hou, Wenzhu; Zhang, Xiaoran

    2017-03-01

    Connecting the North China Craton to the east and the Tarim Craton to the west, the Alxa Terrane is a key place in investigating the timing of the final closure of the Paleo-Asian Ocean (PAO). New LA-ICPMS zircon U-Pb dating results reveal ca. 300-268 Ma gabbros and diorites in the Bayan Nuru area in the eastern part of the Alxa Terrane. The 300 Ma gabbros show plagioclase accumulations with anorthite compositions, arc-like geochemical affinities with relative enrichment in large ionic lithophile elements and depletion in high field strength elements (e.g., Ti, Nb and Ta), as well as negative εHf(t) and εNd(t) values and high initial 87Sr/86Sr ratios. These features indicate a magma source of an enriched lithospheric mantle metasomatized by high fluid activities. In comparison, the 280-268 Ma gabbros and diorites also have arc-like geochemical affinities but show increasingly evolved isotope compositions, implying more sediment inputs. Compiled zircon εHf(t) and whole-rock εNd(t) values of the magmatic rocks in the Alxa Terrane decrease from the Late Carboniferous to the Early Permian, and increase from the Middle Permian to the Triassic. The significantly large variation in zircon εHf(t) and whole-rock εNd(t) values at ca. 280-265 Ma likely reflects a tectonic switch from a subduction setting to a post-collisional setting, corresponding to the timing of the final closure of the PAO in the Alxa Terrane. Thus, the PAO progressively closed from west to east along the northern margin of the Tarim Craton, the Alxa Terrane, and then the northern margin of the North China Craton during Late Carboniferous to Middle Triassic time.

  16. Sm-Nd geochronology of the Erro-Tobbio gabbros (Ligurian Alps, Italy): Insights into the evolution of the Alpine Tethys

    NASA Astrophysics Data System (ADS)

    Rampone, Elisabetta; Borghini, Giulio; Romairone, Anna; Abouchami, Wafa; Class, Cornelia; Goldstein, Steven L.

    2014-09-01

    The Alpine-Apennine ophiolites are considered analogs of the oceanic lithosphere formed at ocean-continent transition zones and very slow oceanic spreading centers. They are lithospheric remnants of the Jurassic Piedmont-Ligurian ocean, a branch of the Mesozoic Tethys separating the European and Adriatic continental margins. Previous geochronological studies on gabbroic rocks of the Alpine Tethys indicated a rather large time span of crust formation. In this paper, we present Sm-Nd geochronological data on well-preserved olivine gabbros intruded in mantle peridotites from the Erro-Tobbio ophiolitic unit (Ligurian Alps, Italy). Borghini et al. (2007) documented that these gabbros crystallized at low-P conditions (< 5 kb) from primitive N-MORB melts, similar to many gabbroic rocks from Alpine-Apennine ophiolites. Here four plagioclase-clinopyroxene internal Sm-Nd isochrons are presented, yielding equivalent ages and initial εNd values. The ages are 177 ± 7 Ma, 179 ± 7 Ma, 178 ± 21 Ma and 182 ± 19 Ma, reflecting a weighted mean age of 178 ± 5 Ma with initial εNd of 9.2 ± 0.4 (2SD). Similar ages are only recorded in gabbroic rocks from the External Liguride Units (Northern Apennines) and represent the oldest ages available for the gabbroic crust of the Alpine Tethys. These Mg-rich gabbros can therefore be considered as representative of early (syn-rift) melt intrusions in thinned lithospheric mantle exhumed at ocean-continent transition domains, likely close to Adria's continental margin, similar to the hyper-extended Western Iberian Margin. Our new results together with previous ages of the Tethys oceanic crust allow for the reconstruction of the spatial distribution of oceanic gabbros over time, and evaluation of the spreading and propagation rates of this paleo-ocean. The northward propagation rifting velocity, estimated at ~ 5 cm/year, is presumably higher than the lateral spreading rate of ~ 2 cm/year. Our rate estimates suggest that the Red Sea is a

  17. Rb‐Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon

    PubMed Central

    Levine, Jonathan; Whitaker, Tom J.

    2015-01-01

    Rationale We report new 87Rb‐87Sr isochron data for the Duluth Gabbro, obtained with a laser ablation resonance ionization mass spectrometer that is a prototype spaceflight instrument. The gabbro has a Rb abundance and a range of Rb/Sr ratios that are similar to those of KREEP‐rich basalts found on the nearside of the Moon. Dating of previously un‐sampled young lunar basalts, which generally have a KREEP‐rich composition, is critical for understanding the bombardment history of the Moon since 3.5 Ga, which in turn informs the chronology of the solar system. Measurements of lunar analogs like the Duluth Gabbro are a proof of concept for in situ dating of rocks on the Moon to constrain lunar history. Methods Using the laser ablation resonance ionization mass spectrometer we ablated hundreds of locations on a sample, and at each one measured the relative abundances of the isotopes of Rb and Sr. A delay between the resonant photoionization processes separates the elements in time, eliminating the potential interference between 87Rb and 87Sr. This enables the determination of 87Rb‐87Sr isochron ages without sophisticated sample preparation that would be impractical in a spaceflight context. Results We successfully dated the Duluth Gabbro to 800 ± 300 Ma using traditional isochron methods like those used in our earlier analysis of the Martian meteorite Zagami. However, we were able to improve this to 1100 ± 200 Ma, an accuracy of <1σ, using a novel normalization approach. Both these results agree with the age determined by Faure et al. in 1969, but our novel normalization improves our precision. Conclusions Demonstrating that this technique can be used for measurements at this level of difficulty makes ~32% of the lunar nearside amenable to in situ dating, which can complement or supplement a sample return program. Given these results and the scientific value of dating young lunar basalts, we have recently proposed a spaceflight mission called the Moon Age

  18. Elastic moduli, thermal expansion, and inferred permeability of Climax quartz monzonite and Sudbury gabbro to 500/sup 0/C and 55 MPa

    SciTech Connect

    Page, L.; Heard, H.C.

    1981-03-17

    Young's modulus (E), bulk modulus (K), and the coefficient of thermal linear expansion (..cap alpha..) have been determined for Climax quartz monzonite to 500/sup 0/C and pressures (P) to 55 MPa and for Sudbury gabbro to 300/sup 0/C and 55 MPa. For each rock, both E and K decreased with T and increased with P in a nonlinear manner. In the monzonite, E and K decreased by up to 60% as P decreased from 55.2 to 6.9 MPa isothermally, while the gabbro indicated a decrease up to 70% over the same pressure range. As T increased isobarically, E and K for the monzonite decreased by up to a factor of approx. 80% from 19 to 500/sup 0/C. The moduli of the gabbro decreased by as much as 70% from 19 to 300/sup 0/C. ..cap alpha.. for the monzonite increased with T and decreased with P in a nonmonotonic fashion, with most measured values for ..cap alpha.. greater than values calculated for the crack-free aggregate. Depending on P, ..cap alpha.. in the monzonite increased from 8 to 11.10/sup -6/ /sup 0/C/sup -1/ at 40/sup 0/C to 22 to 25.10/sup -6/C/sup -1/ at 475/sup 0/C. For the gabbro, ..cap alpha.. also generally decreased with increasing P. Values ranged from 6 to 11.10/sup -6/ /sup 0/C/sup -1/, showing a nonlinear trend and very little net increas over the T range from 19 to 300/sup 0/C. Calculated permeability of these rocks based on the ..cap alpha.. determinations indicated that permeabilities may increase by up to a factor of 3 over the temperature interval 19 to 300/sup 0/C, and the permeability of the monzonite is inferred to increase by up to a factor of 8 by 500/sup 0/C. In both rocks, most measurements are consistent with microcracks controlling the thermoelastic response by opening with T and closing with sigma and P.

  19. Enrichment of PGE through interaction of evolved boninitic magmas with early formed cumulates in a gabbro-breccia zone of the Mesoarchean Nuasahi massif (eastern India)

    NASA Astrophysics Data System (ADS)

    Mondal, Sisir K.; Zhou, Mei-Fu

    2010-01-01

    The Mesoarchean Nuasahi chromite deposits of the Singhbhum Craton in eastern India consist of a lower chromite-bearing ultramafic unit and an upper magnetite-bearing gabbroic unit. The ultramafic unit is a ˜5 km long and ˜400 m wide linear belt trending NNW-SSE with a general north-easterly dip. The chromitite ore bodies are hosted in the dunite that is flanked by the orthopyroxenite. The rocks of the ultramafic unit including the chromitite crystallized from a primitive boninitic magma, whereas the gabbro unit formed from an evolved boninitic magma. A shear zone (10-75 m wide) is present at the upper contact of the ultramafic unit. This shear zone consists of a breccia comprising millimeter- to meter-sized fragments of chromitite and serpentinized rocks of the ultramafic unit enclosed in a pegmatitic and hybridized gabbroic matrix. The shear zone was formed late synkinematically with respect to the main gabbroic intrusion and intruded by a hydrous mafic magma comagmatic with the evolved boninitic magma that formed the gabbro unit. Both sulfide-free and sulfide-bearing zones with platinum group element (PGE) enrichment are present in the breccia zone. The PGE mineralogy in sulfide-rich assemblages is dominated by minerals containing Pd, Pt, Sb, Bi, Te, S, and/or As. Samples from the gabbro unit and the breccia zone have total PGE concentrations ranging from 3 to 116 ppb and 258 to 24,100 ppb, respectively. The sulfide-rich assemblages of the breccia zone are Pd-rich and have Pd/Ir ratios of 13-1,750 and Pd/Pt ratios of 1-73. The PGE-enriched sulfide-bearing assemblages of the breccia zone are characterized by (1) extensive development of secondary hydrous minerals in the altered parts of fragments and in the matrix of the breccia, (2) coarsening of grain size in the altered parts of the chromitite fragments, and (3) extensive alteration of primary chromite to more Fe-rich chromite with inclusions of chlorite, rutile, ilmenite, magnetite, chalcopyrite, and PGE

  20. Time-resolved interaction of seawater with gabbro: An experimental study of rare-earth element behavior up to 475 °C, 100 MPa

    NASA Astrophysics Data System (ADS)

    Beermann, Oliver; Garbe-Schönberg, Dieter; Bach, Wolfgang; Holzheid, Astrid

    2017-01-01

    High metal and rare-earth element (REE) concentrations with unusual ('atypical') normalized REE patterns are documented in fluids from active hydrothermal vent fields on the Mid-Atlantic Ridge, 5°S and the East Scotia Ridge. Those fluids show relative enrichment of middle heavy REEs and almost no Eu anomalies in chondrite-normalized patterns. To understand the processes that produce such atypical REE patterns we ran a series of experiments, in which natural bottom seawater or aqueous solutions (NaCl, NaCl-MgCl2, or NaCl-CaCl2) were reacted with gabbro and gabbro mineral assemblages from 300 to 475 °C and 40 and 100 MPa. These P-T conditions are representative for water-rock interactions in hydrothermal root and discharge zones. Fluid flux variability and kinetics were addressed in the experiments by varying the water-to-rock mass ratio (w/r) from 0.5-10 and using different run durations from 3-720 h. Only seawater and synthetic MgCl2-bearing fluid mobilized significant amounts of REEs, Si, Ca, Fe, and Mn from gabbro, from clinopyroxene, and from plagioclase. At 425 °C and 40 MPa, fluids were initially acidic with pH (25 °C) of ∼2 increasing to values between ∼4 and 7 upon progressing reactions. Rare earth element and Fe contents peaked within 3-6 h after interaction with gabbroic mineral grains (125-500 μm) at w/r of 5 (REEs) and 2-5 (Fe) but decreased with continuing reaction without strong REE fractionation. Most of the REEs that were leached from primary minerals and dissolved in the fluids early became redeposited into solid reaction products after 720 h. Contents of dissolved SiO2 were pressure-dependent, being about twofold higher at 100 MPa than at 40 MPa (425 °C) and were below quartz saturation with gabbro and clinopyroxene as solid starting material and close to quartz saturation with plagioclase reactant. However, Si in fluids from the rock-dominated experiments at 100 MPa with gabbro (w/r 0.5-1) dropped to very low contents. A concomitant

  1. Olivine-gabbros and olivine-rich troctolites genesis through melt-rock reactions in oceanic spreading lithosphere: an experimental study up to 0.7 GPa

    NASA Astrophysics Data System (ADS)

    Francomme, Justine E.; Fumagalli, Patrizia; Borghini, Giulio

    2016-04-01

    Extensive melt-rock reaction and melt impregnation significantly affect not only the physical and chemical properties at mantle-crust transition, but also control the evolution of migrating melts. We performed reactive dissolution and crystallization experiments at pressure ≤ 0.7 GPa in a piston-cylinder apparatus to provide experimental constraints on genesis of olivine-rich troctolites and olivine-gabbros at mantle-crust transition in oceanic spreading lithosphere by melt-rock reaction. Our experiments are carried out by using Salt-Pyrex-Graphite-Magnesium assemblies and graphite-lined platinum capsules. Experimental charges are prepared with three layers: (1) basalt powder, (2) fine powder (1-10μm) of San Carlos olivine (Fo90.1), and (3) carbon spheres used as a melt trap. Three synthetic MORB-type melts have been used, two tholeiitic basalts (Mg#: 0.62, SiO2: 47.70 wt%, Na2O: 2.28 wt% and Mg#: 0.58, SiO2: 49.25 wt%, Na2O: 2.49 wt%) and a primitive one (Mg#: 0.74, SiO2: 48.25 wt%, Na2O: 1.80 wt%), in order to investigate the effect of melt composition. A rock/melt ratio of 0.7 has been kept fixed. Experiments have been conducted at temperatures from 1200 to 1300°C, at both step cooling and isothermal conditions for different run durations (from 12 to 72 hrs). They resulted in layered samples in which all the initial San Carlos olivine powder, analog of a dunitic pluton infiltrated by basaltic melt, is replaced by different lithologies from olivine-rich troctolite to olivine gabbro. In isothermal experiments, reacted melts have been successfully trapped in the carbon spheres allowing their chemical analysis; as expected the reacted melt has a higher Mg# than the initial one (e.g. from Mg#=0.62 to 0.73). Across the different lithologies Mg# of olivine is decreasing from the olivine-rich troctolite to the gabbro. Replacive olivine-rich troctolite has a poikilitic texture with rounded euhedral olivine and interstitial poikilitic plagioclase and clinopyroxene

  2. U-Pb dating and composition of inclusions in zircon from ophiolitic gabbro of the Klyuchevsk massif (Middle Urals): Results and geological interpretation

    NASA Astrophysics Data System (ADS)

    Smirnov, V. N.; Ivanov, K. S.; Koroteev, V. A.; Erokhin, Yu. V.; Khiller, V. V.

    2016-06-01

    The U-Pb (SHRIMP) dating of zircon from the layered complex of ophiolitic gabbro in the Klyuchevsk massif yielded an age of 456 ± 6 Ma corresponding within the limits of error to zircon dates obtained for other petrographic varieties from this massif. The investigation of the composition of silicate inclusions in dated zircon grains revealed that they are represented by typical metamorphic minerals: albite, zoisite, and secondary amphiboles. The data indicate that zircon was crystallized during metamorphic transformations of gabbroids and its U-Pb age (Late Ordovician-Silurian) is characteristic of all rocks in the ophiolite association of the Klyuchevsk massif indicating the age of metamorphism, not their formation time.

  3. Petrology and tectonic significance of gabbros, tonalites, shoshonites, and anorthosites in a late Paleozoic arc-root complex in the Wrangellia Terrane, southern Alaska

    SciTech Connect

    Beard, J.S. ); Barker, F. )

    1989-11-01

    Plutonic rocks intrusive into the late Paleozoic Tetelna Formation of southern Alaska are the underpinnings of the late Paleozoic Skolai arc of the Wrangellia Terrane. There are four groups of intrusive rocks within the Skolai arc: (1) Gabbro-diorite plutons that contain gabbroic to anorthositic cumulates along with a differentiated series of gabbros and diorites of basaltic to andesitic composition; (2) Silicic intrusions including tonalite, granodiorite, and granite; (3) Monzonitic to syenitic plutonic rocks of the Ahtell complex and related dikes and sills; (4) Fault-bounded bytownite anorthosite of uncertain age and association. These anorthosites may be related to post-Skolai, Nikolai Greenstone magmatism. The silicic rocks yield discordant U-Pb zircon ages of 290-320 Ma (early to late Pennsylvanian). The monzonitic rocks of the Ahtell complex have shoshonitic chemistry. Similar shoshonitic rocks are widespread in both the Wrangellia terrane and the neighboring Alexander terrane and intrude the contact between the two. In modern oceanic arcs, shoshonitic rocks are typically associated with tectonic instability occurring during the initial stages of subduction or just prior to or during termination or flip of an established subduction zone. The nature of any tectonic instability which may have led to the cessation of subduction in the Skolai arc is unclear. Possibilities include collision of the arc with a ridge, an oceanic plateau, another arc, or a continental fragment. One possibility is that the shoshonitic magmatism marks the late Paleozoic amalgamation of Wrangellia and the Alexander terrane. The scarcity of arc rocks predating the shoshonites in the Alexander terrane supports this possibility, but structural corroboration is lacking.

  4. Insights into Oceanic Crust Accretion from a Comparison of Rock Magnetic and Silicate Fabrics from Lower Crustal Gabbros from Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Morris, A.; Friedman, S. A.; Cheadle, M. J.

    2014-12-01

    The mechanisms of lower crustal accretion remain a long-standing question for those who study fast-spreading mid-ocean ridges. One of the goals of Integrated Ocean Drilling Program (IODP) Expedition 345 is to test accretionary models by investigating the structure of the lower oceanic crust exposed within the Hess Deep Rift. Located near the tip of the westward-propagating Cocos-Nazca spreading center, Hess Deep Rift exposes crust formed at the East Pacific Rise. During IODP Expedition 345, primitive gabbroic rocks were recovered from a dismembered lower crustal section at ~4850 meters below sealevel. Constraints on physical processes during magmatic accretion are provided by the relative orientation and strength of rock fabrics. We present anisotropy of magnetic susceptibility (AMS) fabric data from gabbros recovered from the two deepest holes (U1415J and U1415P). AMS measurements provide petrofabric data that may be used to constrain magma emplacement and subsequent magmatic flow. Bulk susceptibility ranges from 1.15 x 10-4 to 5.73 x 10-2 SI, with a majority of the samples having susceptibility greater than 10-3 SI, suggesting magnetite is the dominant contributor to the AMS signal. Low-temperature demagnetization data show Verwey transitions near 125K indicating the presence of nearly stoichiometric magnetite in most samples. AMS reveals dominantly oblate fabrics with a moderate degree of anisotropy (P') ranging from 1.01 to 1.38 (average P' = 1.13). Fabric strength varies within each of the petrologically-defined units recovered from different crustal blocks. Additional remanence anisotropy fabric analyses of a few specimens reveal nearly identical directions of principal axes compared to AMS, but with larger degrees of anisotropy. Electron backscatter diffraction (EBSD) data from one sample shows a moderate plagioclase crystallographic preferred orientation best defined by a b-axis maxima that is coincident with the AMS minimum principal axis. This comparison

  5. Formation of plagioclase-bearing peridotite and a peridotite-wehrlite-gabbro suite through melt-rock reaction: An experimental study

    NASA Astrophysics Data System (ADS)

    Saper, L.; Liang, Y.

    2012-12-01

    Plagioclase-bearing peridotites are observed among abyssal peridotites, massif peridotites, and mantle sections of ophiolites of lherzolite subtype. Formation of plagioclase-bearing peridotites is often attributed to basalt impregnation into host harzburgite or lherzolite in a thermal boundary layer. During transport through asthenospheric mantle, melt generated in the deep mantle will inevitably interact with the overlying mantle column through reactive dissolution and may leave geochemical imprints on plagioclase-bearing peridotites. To assess the role of melt-rock reaction on the formation of plagioclase-bearing peridotites and its implications for lithosphere composition, we conducted dissolution experiments in which a 88% spinel lherzolite + 12% basalt starting mixture was juxtaposed against a primitive MORB in a graphite-lined molybdenum capsule. The reaction couples were run at 1300°C and 1 GPa for 1 or 24 hrs, and then stepped cooled to 1050°C and 0.7 GPa over the next several days. Cooling promotes in situ crystallization of interstitial melts, allowing us to better characterize the mineral compositional trends produced and observed by melt-rock reaction and crystallization. A gabbro and a plagioclase-bearing peridotite were observed in the two halves of the reaction couple after the experiments were completed. The peridotite from the 24 hr reaction experiment is mostly composed of subhedral to euhedral olivines (10-50 μm in size, Mg# 75-83), poikilitic clinopyroxene (~100 μm in size, Mg# 73-83) with olivine and spinel chadocrysts, and interstitial plagioclase (An# 68-78) and melt. In a control experiment quenched after a 24 hour reaction at 1300°C the basalt completely dissolved the pyroxenes and spinels leaving a residue of rounded olivine grains (10-100 μm in size) surrounded by a relatively large melt fraction. Textural results from the step-cooling experiments suggest the following crystallization sequence from the olivine+melt mush: olivine

  6. Natural History of a Complex Hybrid Picrite-Ferrobasalt with Gabbro Clots at IODP Site U1349, Shatsky Rise, Western Pacific

    NASA Astrophysics Data System (ADS)

    Natland, J. H.; Hellebrand, E.

    2011-12-01

    Strongly altered basalt from IODP Site U1349, Shatsky Rise, shows remarkable lithologic and mineralogic evidence for mixing between hot and primitive spinel-bearing magma on the one hand, and much cooler, strongly differentiated basalt on the other. The spinel survived almost unscathed but host olivine was nearly completely obliterated by the alteration, and is now replaced by secondary minerals. Most spinel has low CrNo (~20) but variable MgNo (70-40), which suggests an initial stage of mixing, before encountering the differentiated basalt. The differentiated basalt, which in places on the cored surface forms swirls that can be distinguished from the capturing picrite, has abundant microphenocrysts of plagioclase and clinopyroxene, many of which are intergrown and which thus crystallized along a low-pressure cotectic at a much lower temperature than the olivine and spinel. Also present are coarse-grained plagioclase-clinopyroxene clots in ophitic intergrowths, some of which enclose irregularly shaped ilmenite-magnetite plates, now modified by oxyexsolution to other oxide minerals. These clots give the rocks an "ophimottled" texture in thin section. Recalculation of clinopyroxene compositions using program QUILF (1) indicates that the clots re-equilibrated to subsolidus temperatures from 100-300 degrees lower than phenocrysts, so that they now resemble pyroxenes in abyssal gabbros from both slow- and fast-spreading ridges. The pyroxene is strongly zoned, however, with Cr-rich inner zones and Ti-rich outer zones revealing the effects of former percolating and differentiating intergranular melts. Picritic magma thus scavenged bits of a frozen but still hot magma body containing oxide gabbro before reaching a shallow reservoir or rift system laden with basaltic magma of intermediate composition. The rocks contain streaks and swirls of picrite entangled with the more differentiated lava, and erupted as pillow lava at or near sea level, with the differentiated lava

  7. Hyperextension of continental lithospheric mantle to oceanic-like lithosphere: the record of late gabbros in the Ronda subcontinental lithospheric mantle section (Betic Cordillera, S-Spain)

    NASA Astrophysics Data System (ADS)

    Hidas, Karoly; Garrido, Carlos; Targuisti, Kamal; Padron-Navarta, Jose Alberto; Tommasi, Andrea; Marchesi, Claudio; Konc, Zoltan; Varas-Reus, Maria Isabel; Acosta Vigil, Antonio

    2014-05-01

    Rupturing continents is a primary player in plate tectonic cycle thus longevity, stability, evolution and breakup of subcontinental lithosphere belongs for a long time to a class of basic geological problems among processes that shape the view of our Earth. An emerging body of evidences - based on mainly geophysical and structural studies - demonstrates that the western Mediterranean and its back-arc basins, such as the Alborán Domain, are hyperextended to an oceanic-like lithosphere. Formation of gabbroic melts in the late ductile history of the Ronda Peridotite (S-Spain) - the largest (ca. 300 km2) outcrop of subcontinental lithospheric mantle massifs on Earth - also attests for the extreme thinning of the continental lithosphere that started in early Miocene times. In the Ronda Peridotite, discordant gabbroic veins and their host plagioclase lherzolite, as well as gabbroic patches in dunite were collected in the youngest plagioclase tectonite domains of the Ojén and Ronda massifs, respectively. In Ojén, gabbro occurs as 1-3 centimeter wide discordant veins and dikes that crosscut the plagioclase tectonite foliation at high angle (60°). Within the veins cm-scale igneous plagioclase and clinopyroxene grains show a shape preferred orientation and grow oriented, subparallel to the trace of high temperature host peridotite foliation and oblique to the trend of the vein. In contrast to Ojén, mafic melts in the Ronda massif crystallized along subcentimeter wide anastomozing veins and they often form segregated interstitial melt accumulations in the host dunite composed of plagioclase, clinopyroxene and amphibole. Despite the differences in petrography and major element composition, the identical shape of calculated REE patterns of liquid in equilibrium with clinopyroxenes indicates that the percolating melt in Ronda and Ojén shares a common source. However, unlike gabbros from the oceanic lithosphere that shows clinopyroxene in equilibrium with LREE-depleted MORB

  8. The Pikes Peak batholith, Colorado front range, and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite

    USGS Publications Warehouse

    Barker, F.; Wones, D.R.; Sharp, W.N.; Desborough, G.A.

    1975-01-01

    , Mass., and syenite of Kungnat, Greenland, among others - allowing for different levels of erosion. A suite that includes gabbro or basalt, anorthosite, quartz syenite, fayalite granite, riebeckite granite, and biotite and/or hornblende granites is of worldwide occurrence. A model is proposed in which mantle-derived, convecting alkali olivine basaltic magma first reacts with K2O-poor lower crust of granulite facies to produce magma of quartz syenitic composition. The syenitic liquid in turn reacts with granodioritic to granitic intermediate crust of amphibolite facies to produce the predominant fayalite-free biotite and biotite-hornblende granites of the batholith. This reaction of magma and roof involves both partial melting and the reconstitution and precipitation of refractory phases, as Bowen proposed. Intermediate liquids include MgO-depleted and Na2O-enriched gabbro, which precipitated anorthosite, and alkali diorite. The heat source is the basaltic magma; the heat required for partial melting of the roof is supplied largely by heats of crystallization of phases that settle out of the liquid - mostly olivine, clinopyroxene and plagioclase. ?? 1975.

  9. Geological structure and ore mineralization of the South Sopchinsky and Gabbro-10 massifs and the Moroshkovoe Lake target, Monchegorsk area, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Pripachkin, Pavel V.; Rundkvist, Tatyana V.; Miroshnikova, Yana A.; Chernyavsky, Alexey V.; Borisenko, Elena S.

    2016-12-01

    The South Sopchinsky massif (SSM), Gabbro-10 (G-10) massif, and Moroshkovoe Lake (ML) target Monchegorsk area, Kola Peninsula, are located at the junction of the Monchepluton and Monchetundra layered intrusions. The intrusions were studied in detail as they are targets for platinum-group element (PGE) mineralization. The rocks in these targets comprise medium- to coarse-grained mesocratic to leucocratic gabbronorites, medium-grained mesocratic to melanocratic norites and pyroxenites, and various veins mainly comprising norite, plagioclase-amphibole-magnetite rocks, and quartz-magnetite rocks. The veins contain Ni-Cu-PGE mineralization associated with magnetite and chromite. In all targets, the contacts between gabbronorite and norite-pyroxenite are undulating, and the presence of magmatic (intrusive) breccias suggests that these rocks formed through mingling of two distinct magmatic pulses. In places, the gabbronorites clearly crosscut the modal layering of the norites and pyroxenites. Trace element data indicate that the gabbronorites have similar compositions to rocks of the upper part of the Monchetundra intrusion, whereas the norites and pyroxenites resemble rocks from the lower to intermediate stratigraphic levels of the Monchepluton, such as in the Nude-Poaz and Sopcha massifs. Sulfide mineralization in the studied targets principally consists of secondary bornite, millerite, and chalcopyrite. In contrast, the primary sulfide assemblage within the layered sequence of the adjacent Monchepluton is characterized by pentlandite, chalcopyrite, and pyrrhotite. Therefore, the mineralization in the studied targets is interpreted to be of a contact style. We argue that the studied area represents the contact zone between gabbronorites of the Monchetundra intrusion and norites and pyroxenites of the Monchepluton. In addition, the rocks were overprinted by postmagmatic veining and remobilization of contact style sulfide and PGE mineralization.

  10. Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles

    NASA Astrophysics Data System (ADS)

    Kendrick, Mark A.; Honda, Masahiko; Vanko, David A.

    2015-12-01

    Six variably amphibolitised meta-gabbros cut by quartz-epidote veins containing high-salinity brine, and vapour fluid inclusions were investigated for halogen (Cl, Br, I) and noble gas (He, Ne, Ar, Kr, Xe) concentrations. The primary aims were to investigate fluid sources and interactions in hydrothermal root zones and determine the concentrations and behaviours of these elements in altered oceanic crust, which is poorly known, but has important implications for global volatile (re)cycling. Amphiboles in each sample have average concentrations of 0.1-0.5 wt% Cl, 0.5-3 ppm Br and 5-68 ppb I. Amphibole has Br/Cl of ~0.0004 that is about ten times lower than coexisting fluid inclusions and seawater, and I/Cl of 2-44 × 10-6 that is 3-5 times lower than coexisting fluid inclusions but higher than seawater. The amphibole and fluid compositions are attributed to mixing halogens introduced by seawater with a large halogen component remobilised from mafic lithologies in the crust and fractionation of halogens between fluids and metamorphic amphibole formed at low water-rock ratios. The metamorphic amphibole and hydrothermal quartz are dominated by seawater-derived atmospheric Ne, Ar, Kr and Xe and mantle-derived He, with 3He/4He of ~9 R/Ra (Ra = atmospheric ratio). The amphibole and quartz preserve high 4He concentrations that are similar to MORB glasses and have noble gas abundance ratios with high 4He/36Ar and 22Ne/36Ar that are greater than seawater and air. These characteristics result from the high solubility of light noble gases in amphibole and suggest that all the noble gases can behave similarly to `excess 40Ar' in metamorphic hydrothermal root zones. All noble gases are therefore trapped in hydrous minerals to some extent and can be inefficiently lost during metamorphism implying that even the lightest noble gases (He and Ne) can potentially be subducted into the Earth's mantle.

  11. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang Ocean

    NASA Astrophysics Data System (ADS)

    Yan, Haoyu; Long, Xiaoping; Wang, Xuan-Ce; Li, Jie; Wang, Qiang; Yuan, Chao; Sun, Min

    2016-11-01

    Mesozoic intrusions, including MORB-type gabbros, high-Mg diorites, calc-alkaline diorites and granodiorites, were exposed in the Ando microcontinent that is bounded between the Qiangtang and Lhasa terranes. Discoveries of these Mesozoic intrusions have provided new petrogenetic constraints on our understanding of Bangong-Nujiang ocean evolution. Zircon U-Pb dating shows that these intrusions formed in the early-middle Jurassic (174-177 Ma). The gabbros have relatively flat REE distribution patterns, which is analogous to the geochemical features of MORB. Their positive εNd(t) values (εNd(t) = 4.4-5.5) are consistent with those of ophiolites along the Bangong-Nujiang suture zone. These gabbros are also characterized by enrichments of fluid-sensitive elements and negative to positive Nb anomalies, indicative of the influence of subduction-related compositions in their mantle source. These features suggest that the gabbros were most likely originated from asthenosphere-derived melts metasomatized by enriched lithospheric mantle during the upwelling. The high-Mg diorites are characterized by typical features of high compatible elements (MgO = 8.3-10.24 wt%, Cr = 400-547 ppm, Ni = 120-152 ppm), high Mg# (70-74) and low Sr/Y ratios. Their high initial 87Sr/86Sr isotopic ratios and negative εNd(t) values (- 10.5 to - 10.8), together with their sanukitic characteristics, imply that the high-Mg diorites were probably produced by partial melting of mantle peridotites metasomatized by slab-derived melts and aqueous fluids. The calc-alkaline diorites have relatively high MgO (4.04-5.50 wt%), Cr, Ni contents and Mg# (56-59), as well as high (86Sr/87Sr)i ratios and negative εNd(t) values (- 7.5 to - 7.3), suggesting that they were most likely formed by partial melting of the Ando basement rocks with significant input of mantle components. The granodiorites are peraluminous and have higher (86Sr/87Sr)i ratios and more negative εNd(t) values (- 10.6 to - 10.8), similar to

  12. New U-Pb and Sm-Nd isotope data of the age of formation and metamorphic alteration of the Kandalaksha-Kolvitsa gabbro-anorthosite complex (Baltic Shield)

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Serov, Pavel; Chashchin, Viktor

    2016-04-01

    The aim of this research was to study the isotope U-Pb age of zircon and rutile and Sm-Nd (rock forming and sulphide minerals) in Kandalaksha-Kolvitsa gabbro-anorthosite complex. Kandalaksha-Kolvitsa gabbro-anorthosite complex is located in the N-E part of Baltic shield and consists of three parts. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate metamorphism. New U-Pb and Sm-Nd isotopic and geochronological data for the rocks of the Kandalaksha-Kolvitsa Paleoproterozoic gabbro-anorthosite complex is presented. For the first time single zircon grains from metagabbros of Kolvitsa massif were dated 2448±5 Ma, using U-Pb method with an artificial 205Pb tracer. Sm-Nd isotopic age of the metamorphic minerals apatite, garnet and sulphide WR Kolvitsa array is 1985 ± 17 Ma, which is interpreted granulite metamorphism. Two fractions of single zircons from anorthosite of the Kandalaksha massif gave U-Pb age 2450± 3 Ma. Leucocratic gabbro-norite (Kandalaksha massif) were dated by U-Pb on single zircon, with age up to 2230±10 Ma. This age reflects the time of granulite metamorphism according to data of [1]. Two fractions of rutile from anorthosite of the Kandalaksha massif have been analyzed by U-Pb method and reflect age of 1700 ± 10 Ma. It is known that the closure temperature of U-Pb system rutile 400-450 ° C [2], thus cooling of the massif to these temperatures was about 1.7 Ga. These data suggested two stages of metamorphic transformations of the massif. Sm-Nd research Kandalaksha massif reflected the age of the high-temperature metasomatic transformations -1887 ± 37 Ma. Time of regional fluid processing - 1692 ± 71 Ma. A model Sm-Nd age metagabbros Kolvitsa massif is 3.3 Ga with a negative value ɛNd = -4.6, which corresponds to the most likely primary enriched mantle reservoir of

  13. Mineralogy, Petrology, Chemistry, and Ar-39 - Ar-40 and Ages of the Caddo County IAB Iron: Evidence for Early Partial Melt Segregation of a Gabbro Area Rich in Plagioclase-Diopside

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Bogard, Donald D.; Mittlefehldt, David W.; Garrison, Daniel H.

    2000-01-01

    We found coarse-grained gabbroic material rich in plagioclase and diopside in the Caddo County IAB iron meteorite. The polished thin sections studied were made from areas rich in Al and Ca detected by a micro-focus X-ray fluorescence (XRF) mapping technique. The gabbro is not a clast within a breccia, but rather this area is located mainly at silicate-metal boundaries only a few cm away from an area with fine-grained, ultramafic silicate similar to winonaites. Medium-grained orthopyroxene and olivine are found in transitional areas showing no disturbance of their crystalline textures. A vein-like region, starting at the area rich in fine-grained mafic silicate, extends towards the gabbroic area with a gradual increase in abundance of plagioclase and diopside. This texture and our accumulated knowledge of the formation mechanism of IAB/winonaltes meteorites, suggest that the gabbroic materials were formed by inhomogeneous segregation of partial melts of chondritic source materials. Compositional data on two mineralogically distinct samples of the gabbro-rich portion of the inclusion were obtained by INAA. Compared to an average of LAB silicate inclusions or winonaites, the Caddo County gabbro is enriched in the incompatible lithophile elements Na, Ca, Sc, REE and Hf, which is consistent with a melt origin for the gabbro. The cosmogenic space exposure age of Caddo County (511 Ma) is significantly younger than exposure ages of some other IAB meteorites, An 39Ar-40Ar age determination of the gabbroic material indicates a series of upward steps in age from 4.516 Ga to 4.523 Ga, with a few high temperature ages up to 4.54 Ga. The older age could approximate the primary recrystallization age of silicates. The stepped Ar age spectrum may indicate differences in Ar closure temperatures during slow cooling of -2-20'C/Myr in the parent body. Alternatively, the younger Ar-Ar ages may date a shock event which occurred while Caddo County was hot and which also created textures

  14. Rare earth element-SiO2 systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New Brunswick, Canada: a field evaluation of some model predictions

    NASA Astrophysics Data System (ADS)

    Brophy, James G.; Pu, Xiaofei

    2012-08-01

    The two most commonly invoked processes for generating plagiogranites in mid-ocean ridge environments are extended fractional crystallization of mid-ocean ridge basalt (MORB) magma and "hydration melting" of hot, dry MOR gabbro initiated by the influx of seawater-derived hydrothermal fluids within localized zones of shear. Brophy (Contrib Mineral Petrol 158:99-111, 2009) has proposed on theoretical grounds that, for liquids greater than ~62 wt. % SiO2, hydration melting should yield, among other features, a negative correlation between rare earth element (REE) abundances and increasing SiO2, while fractional crystallization should yield a positive correlation. If correct, the REE-SiO2 systematics of natural systems might be used to distinguish between the two processes. The Ordovician Fournier oceanic fragment, New Brunswick, Canada, contains MOR gabbro-hosted plagiogranite veins and dikes that are believed to have formed from hydration melting, thus forming an appropriate location for field verification of the proposed REE-SiO2 systematics for such a process. In addition to a negative correlation between liquid SiO2 and REE abundance for liquids in excess of ~62% SiO2, other important model features include the following: (1) relative to a gabbro source rock, the degree of enrichment at liquids of 62 and 75% SiO2 decreases from the LREE to the HREE; (2) the degree of enrichment at 75% SiO2 approaches 1 for the HREE; (3) the rate of change of the degree of enrichment with increasing liquid SiO2 (i.e., the slope) diminishes from the LREE to the HREE. All of these predicted features are observed in the Fournier plagiogranites. Assuming an initial source rock equivalent to the host gabbro, an additional strongly LREE-enriched component must be added prior to melting in order to make the absolute REE abundances agree with the model values. The most likely candidates are the very seawater-derived hydrothermal fluids that triggered hydration melting in the first place.

  15. Inferred paleotectonic settings and paleogeography at 500-450 Ma based on geochemical evaluation of Ordovician volcanics and gabbros of the Upper Allochthon, Mid Norway

    NASA Astrophysics Data System (ADS)

    Hollocher, K.; Roberts, D.; Robinson, P.; Walsh, E.

    2012-04-01

    Evaluation of major- and trace-element analyses of Ordovician volcanics and gabbros from the Støren Nappe of the Upper Allochthon, Mid Norway, including 87 new analyses, covers the Late Cambrian-earliest Ordovician ophiolite complexes and overlying Ordovician volcanics. The older rocks have mainly MORB-like compositions likely formed in a back-arc basin, plus less abundant oceanic-arc basalts and andesites. Compositions characteristic of fore-arc environments are absent. The Upper Allochthon has three elements: A) The Gula Nappe of probable Cambrian and Tremadocian, epicontinental sedimentary rocks, B) The Støren and Meråker nappes with their basal suprasubduction-zone ophiolitic volcanics and intrusions plus younger Ordovician successions, C) In northwestern parts of the Støren Nappe, a complex of predominantly calc-alkaline arc intrusive rocks 482 to 441 Ma. The structural and stratigraphic history indicates obduction of ophiolites occurred at 480-475 Ma soon after formation, followed by uplift, erosion, and deposition of conglomerates incorporating ophiolite debris. The overlying sequence includes shelly Toquima-Table Head faunas of Laurentian affinity and younger strata into Upper Ordovician. Field relations suggest that the ophiolites were obducted onto rocks of the Gula Complex. A Tremadocian, graptolite-bearing black shale/phyllite in the eastern part of the Gula has close geochemical affinities with the reducing V- and U-enriched Alum shale of the Baltoscandian margin, black shales in the lower Köli nappes of the Upper Allochthon in Sweden, and similar shales in the Gander and Avalon zones of Maritime Canada. Such shales originated in high-latitude (40-50° south) cool-water environments, as existed in Late Cambrian-earliest Ordovician Baltica, Avalonia, and Ganderia, and have not been recorded in equatorial paleolatitudes, such as the earliest Ordovician margin of Laurentia. Our paleotectonic account for these features is in three time slices: 1) A

  16. Trace element composition of olivine - implications for the evolution of the olivine gabbro-troctolite-hosted Voisey's Bay Ni-Cu-Co sulfide deposit, Labrador

    NASA Astrophysics Data System (ADS)

    Bulle, F.; Layne, G. D.

    2011-12-01

    The Mesoproterozoic Voisey's Bay intrusion is part of the Nain Plutonic Suite, which transects the 1.85 Ga collisional boundary between the Proterozoic Churchill Province and the Archean Nain Province in Eastern Labrador. The intrusion comprises a group of troctolitic to olivine gabbroic bodies linked by olivine gabbro dikes; together these rocks host the world-class Voisey's Bay Ni-Cu-Co sulfide deposit. Zones of massive and disseminated sulfide mineralization (Reid Brook, Discovery Hill, Mini-Ovoid and Ovoid) occur within a dike and at the entry line of this dike into a larger intrusion termed the Eastern Deeps [1, 2, 3]. At least two pulses of magma have generated the intrusion and the associated sulfide mineralization; an initial surge that achieved sulfide saturation by interacting with upper crustal rocks, and a later pulse of fresh, undepleted magma that forced the initial magma upwards and both remobilized the immiscible sulfide liquid and upgraded it in metal content [1, 2, 3]. Previous research [1, 2] has shown that the Ni content of olivine from the distinct sulfide-bearing host rocks is highly variable, and also indicative of both magma mixing and interaction of silicate magmas with sulfide. To further validate the significance of the olivine chemistry as a tracer for ore-forming petrological processes, we have determined the abundances of Cr, Mn, Co, Ni, Zn in olivines from the various mafic lithologies of the Eastern Deeps intrusion using Secondary Ion Mass Spectrometry. We present systematic variations in Mn, Co, Ni and Zn with Fo-content in olivines for both sulfide-free and sulfide-bearing zones. Olivines from mineralized and brecciated troctolitic/gabbroic zones display significantly higher Mn (up to 11,000 ppm) and Zn (up to 550 ppm) concentrations than those from nominally barren counterparts. The barren troctolite, broadly termed normal troctolite (NT), is a petrographically homogenous plagioclase and olivine cumulate. However, olivine

  17. Geochronology and geochemistry of late Carboniferous-middle Permian I- and A-type granites and gabbro-diorites in the eastern Jiamusi Massif, NE China: Implications for petrogenesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Bi, Jun-Hui; Ge, Wen-Chun; Yang, Hao; Wang, Zhi-Hui; Xu, Wen-Liang; Yang, Jin-Hui; Xing, De-He; Chen, Hui-Jun

    2016-12-01

    Late Carboniferous-middle Permian magmatism in the Jiamusi Massif of northeast China, in the eastern segment of the Central Asian Orogenic Belt (CAOB), provides critical evidence regarding the tectonic history and geodynamic processes in the region. The gabbro-diorites of the Longtouqiao pluton and two groups of coeval granite in the study area comprise a bimodal magmatic suite. Precise LA-ICP-MS U-Pb zircon ages indicate that the granitoids and gabbro-diorites were emplaced in the late Carboniferous-middle Permian (302-267 Ma). Group I granites have high SiO2 (70.75-77.04 wt.%) and K2O (3.65-5.89 wt.%) contents, are enriched in LILEs (e.g., Rb, Th, and U) relative to HFSEs and LREEs, and have negative Nb, Ta, P, and Ti anomalies, which collectively indicate affinities with subduction-related magmas. Group II granites are weakly peraluminous (A/CNK = 1.03-1.07) and are characterized by enrichment in alkalis (Na2O + K2O = 8.22-8.90 wt.%), low MgO (0.04-0.09 wt.%) and P2O5 (0.01-0.04 wt.%) contents, high Zr and Nb contents, high 10,000 × Ga/Al ratios, and they are geochemically similar to aluminous A-type granites. All the magmatic zircons in these granitoids have great variations of εHf(t) (+ 7.89 to - 5.60) and two-stage Hf model ages (TDM2) of 0.8-1.7 Ga, which suggest that the precursor magmas originated from a heterogeneous source that involved juvenile components derived from a depleted mantle source during magma generation. The aluminous A-type granite magmas were probably derived by high-temperature partial melting of a felsic crustal source, whereas the other granite magmas probably resulted from partial melting of a mafic lower crust. The gabbro-diorites of the Longtouqiao pluton are depleted in Nb, Ta, P, and Ti, and show flat distributions of most LILEs and HFSEs, except for large positive anomalies in Ba, K, and Pb. These features reflect a limited degree of crustal contamination associated with the subduction-related magmatic processes. These data

  18. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Shi, Xingjun; Wang, Tao; Zhang, Lei; Castro, Antonio; Xiao, XuChang; Tong, Ying; Zhang, Jianjun; Guo, Lei; Yang, Qidi

    2014-11-01

    The Late Paleozoic tectonic setting and location of the southernmost boundary of the Central Asian Orogenic Belt (CAOB) with respect to the Alxa Block or Alxa-North China Craton (ANCC) are debated. This paper presents new geochronological, petrological, geochemical and zircon Hf isotopic data of the Late Paleozoic intrusions from the Shalazhashan in northern Alxa and discusses the tectonic setting and boundary between the CAOB and ANCC. Using zircon U-Pb dating, intrusions can be broadly grouped as Late Carboniferous granodiorites (~ 301 Ma), Middle Permian gabbros (~ 264 Ma) and granites (~ 266 Ma) and Late Permian granodiorites, monzogranites and quartz monzodiorites (254-250 Ma). The Late Carboniferous granodiorites are slightly peraluminous and calcic. The remarkably high zircon Hf isotopes (εHf(t) = + 6-+ 10) and characteristics of high silica adakites suggest that these granodiorites were mainly derived from "hot" basaltic slab-melts of the subducted oceanic crust. The Middle Permian gabbros exhibited typical cumulate textures and were derived from the partial melting of depleted mantle. The Middle Permian granites are slightly peraluminous with high-K calc-alkaline and low εHf(t) values from - 0.9 to + 2.9. These granites were most likely derived from juvenile materials mixed with old crustal materials. The Late Permian granodiorites, monzogranites and quartz monzodiorites are characterized as metaluminous to slightly peraluminous, with variable Peacock alkali-lime index values from calc-alkalic to alkali-calcic. These rocks were mainly derived from juvenile crustal materials, as evidenced by their high εHf(t) values (+ 3.3 to + 8.9). The juvenile sources of the above intrusions in the Shalazhashan are similar to those of the granitoids from the CAOB but distinct from the granitoids within the Alxa Block. These findings suggest that the Shalazhashan Zone belongs to the CAOB rather than the Alxa Block and that its boundary with the Alxa block can be

  19. Protótipo do primeiro interferômetro brasileiro - BDA

    NASA Astrophysics Data System (ADS)

    Cecatto, J. R.; Fernandes, F. C. R.; Neri, J. A. C. F.; Bethi, N.; Felipini, N. S.; Madsen, F. R. H.; Andrade, M. C.; Soares, A. C.; Alonso, E. M. B., Sawant, H. S.

    2004-04-01

    A interferometria é uma poderosa ferramenta usada para investigar estruturas espaciais de fontes astrofísicas fornecendo uma riqueza de detalhes inatingível pelas técnicas convencionais de imageamento. Em particular, a interferometria com ondas de rádio abre o horizonte de conhecimento do Universo nesta ampla banda do espectro eletromagnético, que vai de cerca de 20 kHz até centenas de GHz já próximo ao infravermelho, e que está acessível a partir de instrumentos instalados em solo. Neste trabalho, apresentamos o interferômetro designado por Arranjo Decimétrico Brasileiro (BDA). Trata-se do primeiro interferômetro a ser desenvolvido no Brasil e América Latina que já está em operação na fase de protótipo. Apresentamos o desenvolvimento realizado até o momento, o sítio de instalação do instrumento, o protótipo e os principais resultados dos testes de sua operação, as perspectivas futuras e a ciência a ser desenvolvida com o instrumento nas fases II e III. Neste trabalho é dada ênfase ao desenvolvimento, testes de operação e principais resultados do protótipo. É discutida brevemente a ciência que pode ser feita com o instrumento. Tanto os detalhes técnicos quanto os principais parâmetros estimados para o instrumento nas próximas fases de desenvolvimento e o desempenho do protótipo serão publicados em breve.

  20. Reaction of seawater with fresh mid-ocean ridge gabbro creates ';atypical' REE pattern and high REE fluid fluxes: Experiments at 425 and 475 °C, 400 and 1000 bar

    NASA Astrophysics Data System (ADS)

    Beermann, O.; Garbe-Schönberg, D.; Holzheid, A. D.

    2013-12-01

    High-temperature MOR hydrothermalism significantly affects ocean chemistry. The Sisters Peak (SP) hydrothermal field at 5°S on the slow-spreading Mid-Atlantic Ridge (MAR) emanates fluids >400°C [1] that have high concentrations of H2, transition metals, and rare earth elements (REE) exhibiting ';atypical' REE pattern characterized by depletions of LREE and HREE relative to MREE and no Eu anomaly [2]. This is in contrast to the ';typical' LREE enrichment and strong positive Eu anomaly known from many MOR vent fluids observed world-wide [e.g., 3]. Besides temperature, the seawater-to-rock ratio (w/r ratio) has significant control on the fluid chemistry [e.g., 4, 5]. To understand how vent fluid REE-signatures are generated during water-rock interaction processes we reacted unaltered gabbro with natural bottom seawater at 425 °C and 400 bar and at 425 and 475 °C at 1000 bar at variable w/r (mass) ratios ranging from 0.5-10 by using cold seal pressure vessels (CSPV). The run durations varied from 3-72 h. Reacted fluids were analysed for major and trace elements by ICP-OES and ICP-MS. In our experiments, ';atypical' REE fluid pattern similar to those of SP fluids were obtained at high w/r ratio (5 and 10) that might be characteristic for focused fluid-flow along e.g., detachment faults at slow-spreading MOR [6]. In contrast, more ';typical'-like REE pattern with elevated LREE and slightly positive Eu anomalies have been reproduced at low w/r ratio (0.5-1). Results of numerical simulations imply that strong positive Eu anomalies of fluids and altered gabbro from high temperature MOR hydrothermal systems can be created by intense rock leaching processes at high w/r ratio (5-10). This suggests that hydrothermal circulation through the ocean crust creates ';typical' REE fluid pattern with strong positive Eu anomalies if seawater reacts with gabbroic host rock that has been already leached in REE at high fluid fluxes. Simulations of the temporal chemical evolution of

  1. [Arquivos Brasileiros de Nutrição: a review of scientific research on nutrition in Brazil from 1944 to 1968].

    PubMed

    Guedes de Vasconcelos, F D

    1999-01-01

    This study reviews 209 original articles published in the journal Arquivos Brasileiros de Nutrição (1944/1968), a periodical edited by Josué de Castro, physician, specialist in nutrition, and founder-director of the Institute of Nutrition at the University of Brazil (now the Federal University of Rio de Janeiro). Our methodology was based on quantitative and qualitative analyses, aimed at summarizing both the topic itself and the authors' backgrounds. Results showed that 134 of the articles (64%) adopted a biological perspective to nutrition, mostly focusing on laboratory research concerning the chemical composition and nutritional value of Brazilian foodstuffs. On the other hand, 75 articles (36%) took a social perspective, testifying to the first efforts by Brazilian nutritional experts to create and improve specific methodological tools for investigating our population's nutritional conditions, thereby helping to consolidate the field of nutrition in the country.

  2. Factors governing the textural development of Skaergaard gabbros: A review

    NASA Astrophysics Data System (ADS)

    McBirney, Alexander R.

    2009-07-01

    Recent work has shown that the nomenclature and earlier interpretations of "cumulates" no longer provide an adequate conceptual framework for understanding basic plutonic rocks. Most of the rocks have undergone extensive recrystallization and no longer preserve their original textures, compositions, or modal proportions. Depending on the conditions governing these metasomatic changes, they can produce a wide variety of effects. We still have much to learn, but with the abundant evidence available in well-studies bodies like the Skaergaard Intrusion it should be possible to reach a better understanding of the late-stage processes that have had such pervasive effects on mafic layered intrusions.

  3. Primitive layered gabbros from fast-spreading lower oceanic crust.

    PubMed

    Gillis, Kathryn M; Snow, Jonathan E; Klaus, Adam; Abe, Natsue; Adrião, Alden B; Akizawa, Norikatsu; Ceuleneer, Georges; Cheadle, Michael J; Faak, Kathrin; Falloon, Trevor J; Friedman, Sarah A; Godard, Marguerite; Guerin, Gilles; Harigane, Yumiko; Horst, Andrew J; Hoshide, Takashi; Ildefonse, Benoit; Jean, Marlon M; John, Barbara E; Koepke, Juergen; Machi, Sumiaki; Maeda, Jinichiro; Marks, Naomi E; McCaig, Andrew M; Meyer, Romain; Morris, Antony; Nozaka, Toshio; Python, Marie; Saha, Abhishek; Wintsch, Robert P

    2014-01-09

    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

  4. Primitive layered gabbros from fast-spreading lower oceanic crust

    NASA Astrophysics Data System (ADS)

    Gillis, Kathryn M.; Snow, Jonathan E.; Klaus, Adam; Abe, Natsue; Adrião, Álden B.; Akizawa, Norikatsu; Ceuleneer, Georges; Cheadle, Michael J.; Faak, Kathrin; Falloon, Trevor J.; Friedman, Sarah A.; Godard, Marguerite; Guerin, Gilles; Harigane, Yumiko; Horst, Andrew J.; Hoshide, Takashi; Ildefonse, Benoit; Jean, Marlon M.; John, Barbara E.; Koepke, Juergen; Machi, Sumiaki; Maeda, Jinichiro; Marks, Naomi E.; McCaig, Andrew M.; Meyer, Romain; Morris, Antony; Nozaka, Toshio; Python, Marie; Saha, Abhishek; Wintsch, Robert P.

    2014-01-01

    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

  5. Morphology and composition of gold in a lateritic profile, Fazenda Pison “Garimpo”, Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Larizzatti, J. H.; Oliveira, S. M. B.; Butt, C. R. M.

    2008-05-01

    This study describes the morphological evolution of gold grains in a lateritic weathering profile in an equatorial rainforest climate. Primary sources of gold are quartz veins associated with shallow granophyric intrusion. Gold grains were found in fresh ore, saprolite, transition zones, ferruginous duricrust, red latosol, and yellow latosol. Irregularly shaped grains predominate, with smaller proportions of dendritic and prismatic forms. Gold grains are weathered in the uppermost 10 m of the regolith. Mean gold grain size is maximum in the duricrust (>125 μm) and decreases progressively upward into the yellow latosol (<90 μm). Voids and corrosion pits appear on grain surfaces, and progressive rounding is observed from the bottom of the profile to the top. Gold grains can be classified as either homogeneous or zoned with respect to their chemical composition. Homogeneous grains contain 2-15% Ag (mean 8.3%). Zoned grains have more variable Ag contents; grain cores have means of approximately 10% or 23% Ag, with Ag-poor zones of approximately 3.7% Ag along internal discontinuities and/or outer rims. Formation of Ag-poor rims is due to preferential depletion of silver. Processes responsible for duricrust formation may preserve some grains as large aggregates, but subsequent transformation into latosol further modifies them.

  6. Aquisição fonológica do português brasileiro por crianças ouvintes bilíngues bimodais e surdas usuárias de implante coclear

    PubMed Central

    Cruz, Carina Rebello; Finger, Ingrid

    2014-01-01

    Resumo O presente estudo investiga a aquisição fonológica do Português Brasileiro (PB) por 24 crianças ouvintes bilíngues bimodais, com acesso irrestrito à Língua Brasileira de Sinais (Libras), e por 6 crianças surdas que utilizam implante coclear (IC), com acesso restrito ou irrestrito à Libras. Para a avaliação do sistema fonológico das crianças em PB, foi utilizada a Parte A, Prova de Nomeação, do ABFW – Teste de Linguagem Infantil (ANDRADE et al. 2004). Os resultados revelaram que as crianças ouvintes bilíngues bimodais e a criança surda usuária de IC com acesso irrestrito à Libras apresentaram processo de aquisição fonológica esperada (normal) para a sua faixa etária. Considera-se que a aquisição precoce e o acesso irrestrito à Libras podem ter sido determinantes para o desempenho dessas crianças no teste oral utilizado. PMID:25506105

  7. Chronology and isotopic geochemistry of apollo 14 basalts and Skaergard Gabbro, Eastern Greenland

    NASA Technical Reports Server (NTRS)

    Dasch, E. J.

    1986-01-01

    Work completed on Apollo 14 basalts has been published. The two dates obtained from these rocks comprised the oldest and two of the three oldest ages (4.1 and 4.3 billion years) known for lunar maria basalts; thus their ages are important in understanding the moon's earliest history. Owing to the antiquity of these rocks, two more fragments have been dated as part of a second ASEE/NASA SFF program. The new ages are 3.95 and 4.12 billion years, thus further establishing and amplifying the earlier results. This work, although perhaps more interesting for its chronologic information, was begun as a test of chemical and petrographic models. Fragments of Apollo basalt were placed into five categories, based on petrologic and chemical, especially rare-earth element, composition. Isotopic studies were begun in an attempt to determine if the five groups of basalts were related by age or initial isotopic composition (isotopic composition of lava at time of extrusion). Although a few of the representatives of the five groups have the same age and/or initial strontium-isotopic composition, within the analtytical uncertainties, most apparently are unrelated. Petrologic implications of these data will be published in an appropriate journal.

  8. The gabbro-eclogite phase transition and the elevation of mountain belts on Venus

    NASA Technical Reports Server (NTRS)

    Namiki, Noriyuki; Solomon, Sean C.

    1993-01-01

    The hypothesis is explored that the crust-mantle boundary of Venus is not in phase equilibrium but rather is rate-limited by the temperature-dependent volume diffusion of the slowest ionic species. The 1D thermal evolution problem is solved assuming that the mountains formed by uniform horizontal shortening of the crust and the lithospheric mantle at a constant rate. The time-dependent density structure and surface elevation are calculated by assuming a temperature-dependent reaction rate and local Airy isostatic compensation. For a horizontal strain rate of 10 exp -15/s or greater, the temperature increase at the base of the crust during mountain formation is modest to negligible, the deepening lower crust is metastable, and the surface elevation increases as the crust thickens. For strain rates less than 10 exp -16/s, crustal temperature increases with time because of internal heat production and the lower crust is more readily transformed to the dense eclogite assemblage. For such models, a maximum elevation is reached during crustal shortening.

  9. Petrology and crystal chemistry of poikilitic anorthositic gabbro 77017. [lunar rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.; Mathez, E. A.; Okamura, F. P.; Ghose, S.

    1974-01-01

    Aspects of mineralogy are considered, taking into account the occurrence and the characteristics of plagioclase, pyroxene, and olivine. Attention is also given to oxides, opaque minerals, and glass components. Questions regarding the temperature of formation and the origin of the considered lunar poikilitic rocks are discussed. It is pointed out that the presented hypothesis may not be applicable to other poikilitic lunar rocks.

  10. Kyanite/corundum eclogites from the Kaapvaal Craton: subducted troctolites and layered gabbros from the Mid- to Early Archean

    NASA Astrophysics Data System (ADS)

    Shu, Qiao; Brey, Gerhard P.; Hoefer, Heidi E.; Zhao, Zhidan; Pearson, D. Graham

    2016-02-01

    An oceanic crustal origin is the commonly accepted paradigm for mantle-derived eclogites. However, the significance of the aluminous members of the eclogite suite, containing kyanite and corundum, has long been underrated and their role neglected in genetic models of cratonic evolution. Here, we present a geochemical and petrological study of a suite of kyanite- and corundum-bearing eclogites from the Bellsbank kimberlite, S. Africa, which originate from depths between 150 and 200 km. Although clearly of high-pressure provenance, these rocks had a low-pressure cumulative origin with plagioclase and olivine as major cumulate phases. This is shown by the very pronounced positive Eu anomalies, low REE abundances, and δ 18O values lower than the Earth's mantle. Many chemical features are identical to modern-day troctolitic cumulates including a light REE depletion akin to MORB, but there are also distinguishing features in that the eclogites are richer in Na, Fe, and Ni. Two of the eclogites have a minimum age of ~3.2 Ga, defined by the extremely unradiogenic 87Sr/86Sr (0.7007) in clinopyroxene. Phase equilibria indicate that the parent melts were formed by partial melting below an Archean volcanic center that generated (alkali-)picritic to high-alumina tholeiitic melts from a mantle whose oxygen fugacity was lower than today. Fractional crystallization produced troctolites with immiscible sulfide melt droplets within the mafic crust. Instability of the mafic crust led to deep subduction and re-equilibration at 4-6 GPa. Phase relationships plus the presence of a sample with appreciable modal corundum but no Eu anomaly suggest that kyanite- and corundum-bearing eclogites may also originate as plagioclase-free, higher pressure cumulates of highly aluminous clinopyroxene, spinel, and olivine. This is consistent with the crystallizing phase assemblage from an olivine tholeiitic to picritic magma deeper in the Archean oceanic crust or uppermost mantle. We postulate that the magmatic and subduction processes driving modern plate tectonics already existed in the Meso- to Early Archean.

  11. A Astronomia no Ensino Superior Brasileiro entre 1808 e 1889

    NASA Astrophysics Data System (ADS)

    Bretones, Paulo S.; Videira, Antonio A. P.

    2003-05-01

    Este artigo apresenta os principais eventos ocorridos na história do ensino de astronomia nos cursos superiores que existiram no Brasil desde a chegada da Família Real portuguesa em 1808 até o final do período monárquico. Para compor esse esboço histórico, utilizamos, principalmente, livros didáticos, regulamentos, decretos e leis responsáveis pelas organizações dos conteúdos oferecidos e das carreiras dos responsáveis pela disciplina. Na análise do material empregado, investigamos a presença de concepções filosóficas e científicas, que podem ter norteado os conteúdos disciplinares. Não realizamos nenhuma comparação com o ensino de astronomia em outros países. Concluímos mostrando que o estudo de astronomia, durante o período monárquico, foi mais direcionado para a formação d engenheiros do que astrônomos. Gostaríamos de observar que o presente artigo não tem a pretensão de abordar o assunto de maneira completa e detalhada.

  12. Rare earth abundances and Rb-Sr systematics of basalts, gabbro, anorthosite and minor granitic rocks from the Indian Ocean Ridge System, Western Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Futa, K.; Engel, C.G.; Fisher, R.L.

    1979-01-01

    Basalts dredged from the Mid-Indian Ocean Ridge System have rare earth, Rb, and Sr concentrations like those from other mid-ocean ridges, but have slightly higher Sr87/Sr86 ratios. Underlying gabbroic complexes are similar to the basalts in Sr87/Sr86, but are poorer K, Rb, and in rare earths. The chemical and isotopic data, as well as the geologic relations suggest a cumulate origin for the bulk of the gabbroic complexes. ?? 1979 Springer-Verlag.

  13. Coincidence of gabbro and granulite formation and their implication for Variscan HT metamorphism in the Moldanubian Zone (Bohemian Massif), example from the Kutná Hora Complex

    NASA Astrophysics Data System (ADS)

    Faryad, Shah Wali; Kachlík, Václav; Sláma, Jiří; Jedlicka, Radim

    2016-11-01

    Leucocratic metagabbro and amphibolite from a mafic-ultramafic body within migmatite and granulite in the Kutná Hora Complex were investigated. The mafic-ultramafic rocks show amphibolite facies metamorphism, but in the central part of the body some metagabbro preserves cumulus and intercumulus plagioclase, clinopyroxene and spinel. Spinel forms inclusions in both clinopyroxene and plagioclase and shows various degree of embayment structure, that was probably a result of reaction with melt during magmatic crystallization. In the metagabbro, garnet forms coronae around clinopyroxene at the contacts with plagioclase. Amphibolite contains garnet with prograde zoning and plagioclase. Phase relations of igneous and metamorphic minerals indicate that magmatic crystallization and subsequent metamorphism occurred as a result of isobaric cooling at a depth of 30-35 km. U-Pb dating on zircon from leucogabbro yielded a Variscan age (337.7 ± 2 Ma) that is similar or close to the age of granulite facies metamorphism (ca 340 Ma) in the Moldanubian Zone. Based on the calculated PT conditions and age data, both the mafic-ultramafic body and surrounding granulite shared the same exhumation path from their middle-lower crustal position at the end of Variscan orogeny. The coincidence of mafic-ultramafic intrusives and granulite-amphibolite facies metamorphism is explained by lithospheric upwelling beneath the Moldanubian Zone that occurred due to slab break-off during the final stages of subduction of the Moldanubian plate beneath the Teplá Barrandian Block. The model also addresses questions about the preservation of minerals and/or their compositions from the early metamorphic history of the rocks subjected to ultradeep subduction and subsequent granulite facies metamorphism.

  14. O Romantismo Brasileiro: Leitura e Transformacao Social (Brazilian Romanticism: Reading and Social Transformation).

    ERIC Educational Resources Information Center

    Augusti, Valeria

    1997-01-01

    Considers the set of representations that configure the images of the literature of Brazilian Romanticism. Notes the capacity of this literature to transform both values and social patterns of behavior. (PA)

  15. Prevalence of heart disease demonstrated in 60 years of the Arquivos Brasileiros de Cardiologia.

    PubMed

    Evora, Paulo Roberto Barbosa; Nather, Julio Cesar; Rodrigues, Alfredo José

    2014-01-01

    Considering the historical and academic relevance of the Brazilian Archives of Cardiology (ABC), as its MEDLINE indexing began in 1950, it was assumed as a hypothesis that the analysis of the publications over the last 60 years could reflect the changing trends of heart disease in Brazil. The study data were collected using a program developed for this purpose, allowing the automatic extraction of information from the MEDLINE database. The study information were collected by searching "Brazilian Archives of Cardiology AND selected parameter in English". Four observational groups were determined: (1) major groups of heart diseases (coronary artery disease, valvular heart disease, congenital heart disease and cardiomyopathies); (2) relevant diseases in clinical practice (cardiac arrhythmias, cor pulmonale, myocardial infarction and congestive heart failure); (3) cardiovascular risk factors (hypertension, diabetes, dyslipidemia and atherosclerosis); and (4) group determined due to the growing trend of publications on congestive heart failure seen in previous groups (congestive heart failure, myocardial infarction, rheumatic heart disease and Chagasic heart disease) All publications within the established groups were described, highlighting the increasing importance of heart failure and diabetes as risk factors. A relatively easy search was carried out, using the computer program developed for literature search covering six decades. Emphasizing the limitations of the study, we suggest the existence of an epidemiological link between cardiac diseases that are prevalent in Brazil and the publications of the Brazilian Archives of Cardiology.

  16. Comment on "Timing and nature of the Xinlin-Xiguitu Ocean: constraints from ophiolitic gabbros in the northern Great Xing'an Range, eastern Central Asian Orogenic Belt" by Feng et al. (2016)

    NASA Astrophysics Data System (ADS)

    Ni, Dong-Hong

    2016-10-01

    We disagree the transitional supra-subduction zone model of Feng et al. (Int J Earth Sci (Geol Rundsch) 105:491-505, 2016) for the tectonic setting of Jifeng ophiolite suite in NE China. Existence of the komatiite in the Jifeng ophiolite indicates an oceanic plateau environment for this ophiolite suite within the so-called Xinlin-Xiguitu ocean.

  17. Age constraints on felsic intrusions, metamorphism and gold mineralisation in the Palaeoproterozoic Rio Itapicuru greenstone belt, NE Bahia State, Brazil

    USGS Publications Warehouse

    Mello, E.F.; Xavier, R.P.; McNaughton, N.J.; Hagemann, S.G.; Fletcher, I.; Snee, L.

    2006-01-01

    U-Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152??6 Ma in monazite crystals and 2,155??9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130??7 Ma and 2,128??8 Ma in zircon crystals derived from the Teofila??ndia tonalite. The emplacement age of the syntectonic Ambro??sio dome as indicated by a 2,080??2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar-Ar plateau age of 2,080??5 Ma obtained in hornblendes from an amphibolite and with a U-Pb SHRIMP age of 2,076??10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambro??sio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937??16, 3,111??13 and 3,162??13 Ma. Ar-Ar plateau ages of 2,050??4 Ma and 2,054??2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar-Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen. ?? Springer-Verlag 2006.

  18. [The policy of disseminating Germanism through the Bayer periodicals Revista Terapêutica and O Farmacêutico Brasileiro].

    PubMed

    Rolim, Marlom Silva; Sá, Magali Romero

    2013-03-01

    The article analyzes two periodicals published by the chemical and pharmaceutical company Bayer - as they played into scientific relations between Brazil and Germany. At the close of World War I, a number of countries, including Brazil, broke off political, economic, and scientific relations with Germany. Germany's medical and scientific community moved to implement a policy of disseminating Germanism through science and medicine, aimed above all at Latin America. Germany's chemical and pharmaceutical industry was impacted by this policy, as it both supported and was a beneficiary of the endeavor to disseminate German science and to promote international scientific exchange, which opened new markets. In Brazil, these efforts were backed by physician Renato Kehl.

  19. Um satélite brasileiro para observação do diâmetro solar

    NASA Astrophysics Data System (ADS)

    Emilio, M.; Leister, N. V.; Benevides Soares, P.; Teixeira, R.; Kuhn, J.

    2003-08-01

    Propomos uma missão espacial para medir a forma e o diâmetro solar com o objetivo de ajudar a determinar o potencial gravitacional do Sol e a sua rotação com precisão, testar modelos teóricos de variação de energia e pela primeira vez medir os modos g de oscilação. As observações serão obtidas através do instrumento denominado APT (Astrometric and Photometric Telescope) descrito por Kuhn(1983). A sensibilidade do instrumento é de 0,2 mas em 27 dias para as observações do diâmetro solar feitas a cada minuto. Esta é uma missão de três anos de duração e pode complementar as medidas que serão feitas pelo satélite PICARD (a ser lançado em 2007). Outros parâmetros físicos podem ser obtidos com as mesmas imagens o que certamente interessará à comunidade de física solar. Um primeiro contato foi realizado com a agência espacial brasileira que pretende lançar um satélite científico a cada dois anos.

  20. Loran-C Signal Analysis Propagation Model Evaluation.

    DTIC Science & Technology

    1979-07-01

    Terrestrial Extrusive Intrusive Chemical Age sedimentary sedimentary rocks (basalt, rocks (gra. precipitates rocks rocks rhyolite) nite, gabbro ) (limestone,salt...Granite, gabbro , gneiss, 530 312-813 southern Appalachians metabasalt, aporhyolite Algonkian rocks, Montana Wallace formation Limestone, shale, 320 323

  1. Introduction to the LRAPP Environmental-Acoustic Data Bank

    DTIC Science & Technology

    1979-06-01

    areas of interest to LRAPP. LRAPP’s data banking efforts began in 1973 with the CHURCH GABBRO Exercise in the Caribbean. Since that time, all LRAPP data...Observed Hydrocast Data B. Gulf of Mexico/Caribbean-Standard Depth Hydrocast Data C. Gulf of Mexico/Caribbean-Church Gabbro -Hydrocast Data in W...Caribbean D. Gulf of Mexico/Caribbean-Church Gabbro -Current Profiles in W. Caribbean VII. DOCUMENTATION: Fenner, D. F. and Burca, P. J., "CHURCH GABBRO

  2. Gulf of Mexico and Caribbean Sea Data and Model Base Report

    DTIC Science & Technology

    1979-07-01

    obtained during the CHURCH GABBRO experiment. The steeply sloping walls of the Cavman Trench may have a significant impact on propagation. vi...6 3-5 Source and Sensor Depths CHURCH GABBRO Exercise . . .. 1-0 3-6 TABBS and Sonobuoy Locations for Aircraft SUS Runs, CHURCH GABBRO Exercise...3-33 3-19 Ambient Noise Spectra from KIWI in Yucatan Basin .................... 3-35 3-20 CHURCH GABBRO Depth

  3. Oceanic Lithosphere Magnetization: Marine Magnetic Investigations of Crustal Accretion and Tectonic Processes in Mid-Ocean Ridge Environments

    DTIC Science & Technology

    2007-09-01

    the four sampled lithologies (basalts, diabase , gabbros and serpentinized peridotites) are defined and quantified. Both normal and reverse polarity...1978; Kent and Gee, 1994]. In contrast, our understanding of how the lower lithologic units, including diabase dikes, gabbros and serpentinized...and 69 dredged from the seafloor. Over 1600 rocks were collected in total, including basalts, diabases , gabbros and altered peridotites (peridotites

  4. [The photographic archive of the Instituto Brasileiro de Geografia e Estatística and Tibor Jablonszky's view of female labor].

    PubMed

    Abrantes, Vera Lucia Cortes

    2013-03-01

    Shining a light on the photographic archive of geographic missions assigned to do reconnaissance of the country's territory, sponsored by the Brazilian Institute of Geography and Statistics, the article describes the conditions under which this archive was compiled and how it can serve as a historical source. It addresses the presentation of images and the range of topics and places found in Tibor Jablonszky's work as far as the representations that this photographer constructed of female labor in Brazil during the 1950s and 1960s, from the viewpoint of a photographer working for a government agency.

  5. Fractionation of Mantle-Derived Melts in the Annieopsquotch Ophiolite, Newfoundland.

    NASA Astrophysics Data System (ADS)

    Lissenberg, C.; Bédard, J. H.; van Staal, C. R.

    2004-12-01

    The Annieopsquotch ophiolite exposes a tectonically bounded section through c. 5.5 km tholeiitic gabbros, sheeted dykes and pillow basalts. The gabbro zone is divided into three parts. The lower 500 m comprises massive cumulate gabbros with enclaves (<50 m) of partly-reacted and digested layered troctolite/leucotroctolite. These are interpreted as relics of the substrate into which the gabbro-sheeted dyke-basalt sequence was emplaced. Overlying this is 1500 m of cumulate olivine gabbros and gabbros which form sills c. 30 m thick that are oriented parallel to the ophiolite pseudostratigraphy. Finer grain sizes at contacts and inward-growing crescumulates indicate cooling from both top and bottom. Gabbros in the sill complex are characterized by cumulate textures with minor intercumulus amphibole and oxides, and rarely show shape-preferred orientations. The upper 500 m of the gabbro zone is dominated by massive gabbros with more abundant interstitial Fe-Ti-oxides, and diabasic pods that grade up into sheeted dykes, suggesting it represents a level of frozen melt. Incompatible element contents of cumulate gabbros in the sill complex generally increase upwards, and modeling indicates that the cumulate sills crystallized from melts with compositions similar to those of the overlying sheeted dykes and basalts. Trapped melt fractions are estimated to be c. 20%, consistent with the absence of compaction structures in these gabbros. Models indicate that the parental magmas of the gabbros, as well as lavas and dykes, can be produced by an average of c. 40-45% fractionation of mantle-derived melts. Both field- and geochemical data thus suggests the Annieopsquotch lower crust records repeated in-situ intrusion and fractionation during upward migration of mantle-derived melts towards the surface, with localized ponding in an axial melt lens at the base of the dyke complex. The similarity in composition and degree of fractionation between the lower and upper crust suggest that

  6. Sound Speed Structure of the Northeast Atlantic Ocean in Summer 1973 during the SQUARE DEAL Exercise

    DTIC Science & Technology

    1980-03-01

    from the CHUIJRCH GABBRO the similar periodicity in the spectral Exercise (Fenner and Bucca, 1973) and ambient noise intensity observed at the NORLANT...Permanent International pour Fenner, D.F. and P.J. Bucca (1973). I’Exploration de Ia Mer,.v. 157, July, CHURCH GABBRO Sound Velocity Analysis p. 173-183...target. MIW: MediterrAnfian Intermediate WaLer QCIRCH GABBRO - A LRAPP acoustic/envi- (high salinity). ronmental exercise in the Cayman Trough and

  7. Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH)

    DTIC Science & Technology

    2010-10-01

    VERSA replacement, to be known as Gabbro . Users will interact with a GUI implemented in Java. Java was selected as the implementation language for...bridge) are used to facilitate distribution of computing load and an efficient connection between Java and native code. Figure 1: Gabbro System...ongoing. The long-term goal for the Gabbro tool is to provide an environment that can be used to formally analyze realistic specifications of encoded

  8. Maskelynite: Formation by Explosive Shock.

    PubMed

    Milton, D J; de Carli, P S

    1963-05-10

    When high pressure (250 to 300 kilobars) was applied suddenly (shock-loading) to gabbro, the plagioclase was transformed to a noncrystalline phase (maskelynite) by a solid-state reaction at a low temperature, while the proxene remained crystalline. The shock-loaded gabbro resembles meteorites of the shergottite class; this suggests that the latter formed as a result of shock. The shock-loading of gabbro at 600 to 800 kilobars raised the temperature above the melting range of the plagioclase.

  9. ARL Preliminary Data Analysis from ACODAC System Analysis of the Blake Test ACODAC Data

    DTIC Science & Technology

    1974-10-15

    PEMflNRY DATA ANALYSIS FROM ACODAC SYSTEM A. Introduction The duplicate data tape from the ACODAC System used during the Church Gabbro Exercise was...tapes were examined for "quality" prior to the analysis. The signal levels on the Blake Test tapes were compared to the Church Gabbro tape previously...analyzed (Section I). Table I gives the signal level on the tape, using identical playback electronics, for the Church Gabbro , Blake WHOI, and Blake

  10. Reprints of ONR (Office of Naval Research) Work, December 1986-November 1987.

    DTIC Science & Technology

    1988-02-01

    8217-unt rocks such as hyaloclastites, pillow large a family of models is compatible with every exterior lavas, dikes, ano gabbros may differ...basalts, such as pillow lavas, and dikes as well their difference. We decompose an arbitrary magnetiza- as in seamount gabbros . It is not known what...magnitude at every interior point of the tive to basalts or gabbros . However, it has been put for- seamount) and another, nonuniform part that may vary in

  11. Quality Control Analysis of SUS Processing from ACODAC Data

    DTIC Science & Technology

    1974-10-15

    corresponds to hydrophone 2 and the lower trace corresponds to hydrophone 3 of the ACODAC system deployed at Site D of the CHURCH GABBRO propagation...SUMMATION SHOT 1: CHURCH GABBRO HYDROPHONE 3 FREQUENCY RANGE: 44.5-56.1 Hz u--- REFERENCE LEVEL .... COHERENT SUMMATION 000 INCOHERENT SUMMATION SIGNAL-TO...ERROR = 1.2 dB FIGURE 13 COMPARISON OF 1/3 OCTAVE BAND ENERGIES OBTAINED BY COHERENT AND INCOHERENT SUMMATION SHOT 2: CHURCH GABBRO HYDROPHONE 2

  12. USSR Report, Earth Sciences.

    DTIC Science & Technology

    2007-11-02

    temperature. It was found that the ophiolite gabbros crystallized from melts at 1250-1260°C. ’ The ultrabasic effusives had the highest formation...temperatures, 1290-1320°C. Basic effusives had formation temperatures of 1250-1280°C, close to the crystallization temperature of the gabbros . The...Northern Kazakhstan containing garnet and pyroxene: gabbro -drusites, eclogites and Mg-Fe-Ca metasomatites. Uranium and thorium in the samples were

  13. Maskelynite: Formation by explosive shock

    USGS Publications Warehouse

    Milton, D.J.; De Carli, P. S.

    1963-01-01

    When high pressure (250 to 300 kilobars) was applied suddenly (shock-loading) to gabbro, the plagioclase was transformed to a noncrystalline phase (maskelynite) by a solid-state reaction at a low temperature, while the proxene remained crystalline. The shock-loaded gabbro resembles meteorites of the shergottite class; this suggests that the latter formed as a result of shock. The shock-loading of gabbro at 600 to 800 kilobars raised the temperature above the melting range of the plagioclase.

  14. Fault Evaluation Study. Marysville Lake Project, Parks Bar Alternate, Yuba River, California: Butte, Yuba, Nevada and Placer Counties, California

    DTIC Science & Technology

    1977-05-01

    JUR K3 i , Mesozoic intrusive granodiorite , tonal Ju Metasedimentary roc -- (contact migmatite "Jdv Metavolcanic rocks. \\A pillowed and non-pi crystal... granodiorite , tonalite, gabbro, diorite, and quartz. UPPER JURASSIC [ Ju Metasedimentary rocks (?). Possibly a schistose or gneissose J contact...JURASSIC TO CRETACEOUS Mesozoic intrusive igneous rocks. Includes variations of granite, granodiorite , tonalite, gabbro, diorite, and quartz. IUPPER

  15. Monitoring Stone Degradation on Coastal Structures in the Great Lakes - Summary Report

    DTIC Science & Technology

    2005-06-01

    quartzite, gabbro, diabase , or basalt.) 2. REFERENCES: a. Accelerated Weathering of Armorstone and Riprap – U.S. Army Corps of Engineers, Ohio River...metamorphic crystalline rock types, including granite, quartzite, gabbro, basalt, and diabase , may also exhibit planar zones of weakness at boundaries

  16. Graphitization of Organic Material in a Progressively Metamorphosed Precambrian Iron Formation.

    PubMed

    French, B M

    1964-11-13

    Organic matter in the sedimentary Biwabik iron formation in northern Minnesota shows a progressive increase in crystallinity where the formation is metamorphosed by the intrusive Duluth gabbro complex. X-ray diffraction of acid-insoluble residues shows that there is a complete range in crystallinity, from amorphous material in the unmetamorphosed sediments to completely crystalline graphite adjacent to the gabbro.

  17. Obtaining Unique, Comprehensive Deep Seismic Sounding Data Sets for CTBT Monitoring and Broad Seismological Studies

    DTIC Science & Technology

    2007-07-02

    is made up of thick diabase sequences with intervening meta-clastic sedimentary and meta-volcanic rocks, together with gabbro and ultramafic rocks...harzburgites below, an overlying layered complex, gabbro , sheeted dikes, pillow lavas, and sediments. Island-arc complexes are distributed over the

  18. A summary of Selected Data: DSDP Legs 20-44,

    DTIC Science & Technology

    1980-09-01

    545, 1969. Compressional Wave Velocity in Selected Saturated Bulk Density, Grain Density Samples of Gabbro , Schist, Limestone, and Porosity of...Physical Properties of Basalts, pt. 6, Chap. 46, p. 547, 1974. Gabbros , and Ultramafic Rocks from DSDP Leg 37, R. D. Hyndman and M. J. Drury, Physical

  19. A Summary of Selected Data: DSDP Legs 1-19,

    DTIC Science & Technology

    1980-09-01

    Selected Saturated Bulk Density, Grain Density Samples of Gabbro , Schist, Limestone, and Porosity of Sediment Cores from the Anhydrite, Gypsum and Halite...Physical Properties of Basalts, pt. 6, Chap. 46, p. 547, 1974. Gabbros , and Ultramafic Rocks from DSDP Leg 37, R. D. Hyndman and M. J. Drury, Physical

  20. Platinum potential of mafic-ultramafic massifs in the western part of the Dambuka ore district (Upper Amur Region, Russia)

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Stepanov, V. A.; Moiseenko, V. G.

    2016-02-01

    New data on the Pt potential of mafic-ultramafic massifs of the Khani-Maya, Uldegit, and Dzhalta complexes in the western part of the Dambuka ore district are discussed. The Khani-Maya Complex is represented by metamorphosed gabbro, gabbronorites, gabbro anorthosites, subordinate pyroxenites, hornblendites, and peridotites. The Uldegit Complex is composed of pyroxenites, hornblendites, gabbro, gabbronorites, norites, troctolites, peridotites, dunites, actinolite-tremolites, serpentinites, anthophyllites, and tremolite-plagioclase rocks. The Dzhalta Complex is formed of peridotites, gabbro, eclogitized gabbro, hornblendites, cortlandites, and pyroxenites. All these complexes differ from each other by the concentrations of Ni, Cu, Co, Au, and platinoids depending on the composition of the constituting rocks and the presence of sulfide minerals.

  1. Sr isotopic tracer study of the Samail ophiolite, Oman

    SciTech Connect

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-04-10

    We have measured Rb and Sr concentrations and Sr isotopic compositions in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite diabase dikes, and gabbro and websterite dikes within the metamorphic peridotite. Ten samples of cummulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have mean /sup 87/Sr//sup 86/Sr ratios and standard deviations of 0.70314 +- 0.00030 and 0.70306 +- 0.00034, respectively. The dispersion in Sr isotopic composition may reflect real heterogeneities in the magma source region. The average Sr isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern midocean ridge basalt. The /sup 87/Sr//sup 86/Sr ratios of noncumulate gabbro, plagiogranite, and diabase dikes range from 0.7034 to 0.7047, 0.7038 to 0.7046, and 0.7037 to 0.7061, respectively. These higher /sup 87/Sr//sup 86/Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with seawater. Mineral separates from dikes that cut harzburgite tectonite have Sr isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dikes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.

  2. Sr isotopic tracer study of the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.

  3. Mechanical Properties of Shock-Damaged Rocks

    NASA Technical Reports Server (NTRS)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  4. Loss of High Frequency Upon Propagation through Shock-Damaged Rock,

    DTIC Science & Technology

    1995-08-14

    which are pre-damaged by shock waves. EXPERIMENTAL TECHNIOUE: Sample Preparation The rock studied was San Marcos gabbro which has been studied previously...Ahrens and Rubin, 1993; Rubin and Ahrens, 1991] The density of San Marcos gabbro is 2.87 g/cm 3, and there is very low initial crack density...Initially a large gabbro target with dimensions 200x200x150 mm was impacted by a lead projectile at a velocity of 1.2 km/s, the projectile had a diameter of

  5. An Analysis of the Seismic Source Characteristics of Explosions in Low-Coupling Dry Porous Media

    DTIC Science & Technology

    2011-09-29

    1x101 1x102 W (kt) m b Clay Salt Sandstone Limestone m b = 4.45 + 0.75logW B J H F G Apatite Tuff Granite Gabbro Water-filled Cavity ABTFD Figure 4...Limestone m b = 4.45 + 0.75logW B J H F G Apatite Tuff Granite Gabbro Water-filled Cavity ABTFD Figure 4. Comparison of mb/yield data for shallow...Apatite Tuff Granite Gabbro Water-filled Cavity ABTFD Figure 4. Comparison of mb/yield data for shallow Soviet PNE explosions in various media (Sultan

  6. Dating the growth of oceanic crust at a slow-spreading ridge.

    PubMed

    Schwartz, Joshua J; John, Barbara E; Cheadle, Michael J; Miranda, Elena A; Grimes, Craig B; Wooden, Joseph L; Dick, Henry J B

    2005-10-28

    Nineteen uranium-lead zircon ages of lower crustal gabbros from Atlantis Bank, Southwest Indian Ridge, constrain the growth and construction of oceanic crust at this slow-spreading midocean ridge. Approximately 75% of the gabbros accreted within error of the predicted seafloor magnetic age, whereas approximately 25% are significantly older. These anomalously old samples suggest either spatially varying stochastic intrusion at the ridge axis or, more likely, crystallization of older gabbros at depths of approximately 5 to 18 kilometers below the base of crust in the cold, axial lithosphere, which were uplifted and intruded by shallow-level magmas during the creation of Atlantis Bank.

  7. Dating the growth of oceanic crust at a slow-spreading ridge

    USGS Publications Warehouse

    Schwartz, J.J.; John, Barbara E.; Cheadle, Michael J.; Miranda, E.A.; Grimes, Craig B.; Wooden, J.L.; Dick, H.J.B.

    2005-01-01

    Nineteen uranium-lead zircon ages of lower crustal gabbros from Atlantis Bank, Southwest Indian Ridge, constrain the growth and construction of oceanic crust at this slow-spreading midocean ridge. Approximately 75% of the gabbros accreted within error of the predicted seafloor magnetic age, whereas ???25% are significantly older. These anomalously old samples suggest either spatially varying stochastic intrusion at the ridge axis or, more likely, crystallization of older gabbros at depths of ???5 to 18 kilometers below the base of crust in the cold, axial lithosphere, which were uplifted and intruded by shallow-level magmas during the creation of Atlantis Bank.

  8. [The occurrence of Biomphalaria straminea (Pulmonata: Planorbidae) on an aquaculture farm of IBAMA in Uberlândia, MG. Instituto Brasileiro do Meio Ambiente a dos Recursos Naturais Renováveis].

    PubMed

    Silveira, E de P; Marçal Júnior, O; Machado, M I

    1997-01-01

    This work evaluates the occurrence of freshwater snails in the IBAMA's fish breeding station in Uberlândia, Minas Gerais State. We verified the presence of Biomphalaria straminea in 39.5% of all breeding tanks. None of the snails were infected by Schistosoma mansoni, but further investigation should be done in the area.

  9. The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle.

    PubMed

    Kusky, T M; Li, J H; Tucker, R D

    2001-05-11

    We report a thick, laterally extensive 2505 +/- 2.2-million-year-old (uranium-lead ratio in zircon) Archean ophiolite complex in the North China craton. Basal harzburgite tectonite is overlain by cumulate ultramafic rocks, a mafic-ultramafic transition zone of interlayered gabbro and ultramafic cumulates, compositionally layered olivine-gabbro and pyroxenite, and isotropic gabbro. A sheeted dike complex is rooted in the gabbro and overlain by a mixed dike-pillow lava section, chert, and banded iron formation. The documentation of a complete Archean ophiolite implies that mechanisms of oceanic crustal accretion similar to those of today were in operation by 2.5 billion years ago at divergent plate margins and that the temperature of the early mantle was not extremely elevated, as compared to the present-day temperature. Plate tectonic processes similar to those of the present must also have emplaced the ophiolite in a convergent margin setting.

  10. Macquarie island and the cause of oceanic linear magnetic anomalies.

    PubMed

    Varne, R; Gee, R D; Quilty, P G

    1969-10-10

    Macquarie Islands is formed of probably Pliocene oceanic crust. Intruded into pillow lavas is a belt of harzburgite and layered gabbro mnasses cut by dike swarms. Similar belt-like structures may cause the linear magnetic anomalies of the ocean.

  11. Samples from the Jurassic ocean crust beneath Gran Canaria, La Palma and Lanzarote (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Schmincke, Hans-Ulrich; Klügel, Andreas; Hansteen, Thor H.; Hoernle, Kaj; van den Bogaard, Paul

    1998-11-01

    Gabbro and minor metabasalt fragments of MORB composition were found on three of the seven Canary Islands. On Gran Canaria, they occur as metamorphosed (greenschist facies) metabasalt and metagabbro clasts in Miocene fanglomerates and sandstones overlying the shield basalts. On Lanzarote and La Palma, MORB gabbros occur as xenoliths in Pleistocene and historic basanite scoria cones and lava flows. The MORB xenoliths are interpreted as fragments of layers 2 and 3 of the underlying Mesozoic oceanic crust, based on mineral compositions (An-rich plagioclase, Ti- and Al-poor clinopyroxene, ± orthopyroxene ± olivine), depleted major and trace element signatures, and Jurassic ages (ca. 180 Ma) determined on single primary plagioclase and secondary amphibole crystals using the 40Ar/ 39Ar laser technique. The Lanzarote gabbros are very mafic (mg# 87 to 89 in clinopyroxene), moderately deformed, and highly depleted. Gran Canaria gabbros are more evolved (mg# 69 to 83 in clinopyroxene) and texturally mostly isotropic. La Palma MORB gabbros have a range of compositions (mg# 68 to 83 in clinopyroxene), some rocks being strongly metasomatized by interaction with basanite magma. The occurrence of MORB fragments on Lanzarote provides definite evidence that oceanic crust beneath the Canary Island archipelago continues at least as far east as the eastern Canary Islands. We postulate that MORB gabbros on Lanzarote which are commonly associated with peridotite xenoliths, represent the base of oceanic layer 3 where gabbros and peridotites were possibly tectonically interleaved. Such tectonic mixing would explain the enigmatic seismic velocities in this area. Gabbro xenoliths from La Palma were derived from within layer 3, probably from wall rock close to magma reservoirs emplaced during the Pleistocene/Holocene growth of La Palma. The Gran Canaria xenoliths are interpreted to represent the metamorphosed layer 2 and upper layer 3. The abundance of lower crustal xenoliths emphasizes

  12. Santa Ana River Design Memorandum Number 1. Phase 2. GDM on the Santa Ana River Mainstem, Including Santiago Creek. Volume 4. Mill Creek Levee

    DTIC Science & Technology

    1988-08-01

    schist, and various Precambrian metamorphic rocks. The granite, granodiorite , and diorite predominate in samples from these suppliers, along with...produced at the C. L. Pharris plant is predominantly Mesozoic diorite, granodiorite , and gabbro, along with Precambrian schist. A small proportion of...by this supplier is composed primarily of Mesozoic granite, granodiorite , gabbro, and diorite. Pelona schist is also present, as well as gneiss and

  13. The Influence of Ridge Geometry at the Ultraslow-Spreading Southwest Indiean Ridge (9 deg - 25 deg E): Basalt Composition Sensitivity to Variations in Source and Process

    DTIC Science & Technology

    2006-02-01

    diabase , 4% peridotite/dunite, 3% gabbro, and 2% hydrothermal/volcanoclastics. Of 57 dredges, 14 were in the Rift Mountains and the rest were on the axial...supersegment yielded 50% basalt/pillow basalt, 32% peridotite/dunite, 8% hydrothermal/volcanoclastics, and 5% erratics, but little gabbro (1%) or diabase (5...basalt (74%). Dredging on the steep, heavily faulted rift valley walls recovered II % diabase , more than in any other province, and 13% hydrothermal

  14. The Effect of Pressure and Deviatoric Stress on Rock Magnetism

    DTIC Science & Technology

    1988-10-31

    potentially suitable for piezomagnetic studies are given in Table 1. These five rock types, a gabbro (Rapidan, VA), the Ralston diabase (Golden, CO...I, the composition of magnetic mineralogy is almost pure magnetite; only the magnetic carriers in the diabase contain a significant amount of titanium...magnetization of the basalt and andesite is most certainly controlled by pseudo-single-domain magnetic minerals. The diabase , gabbro and granite contain

  15. Geological Structure of the Semipalatinsk Region,

    DTIC Science & Technology

    1987-08-10

    are acid, the younger they are. In this complex they are included: the I phase - gabbro, quartz gabbro, diorite, syenite and syenite -diorites; the II...trondhjemites and fine-grained porphyritic granites. The veins/strands of granite-porphyries, granodioritoporphyries, syenite -porphyries, granotsyenite...quartz syenite , less DOC - 87068900 PAGE 41 frequently, syenites ; II phase - coarse-grained or large- prophyricide alkaline granites, sometimes with

  16. Petrology of gabbroic xenoliths in 1960 Kilauea basalt: crystalline remnants of prior (1955) magmatism

    USGS Publications Warehouse

    Fodor, R.V.; Moore, R.B.

    1994-01-01

    The 1960 Kapoho lavas of Kilauea's east rift zone contain 1-10 cm xenoliths of olivine gabbro, olivine gabbro-norite, and gabbro norite. Textures are poikilitic (ol+sp+cpx in pl) and intergranular (cpx+pl??ol??opx). Poikilitic xenoliths, which we interpret as cumulates, have the most primitive mineral compositions, Fo82.5, cpx Mg# 86.5, and An80.5. Many granular xenoliths (ol and noritic gabbro) contain abundant vesicular glass that gives them intersertal, hyaloophitic, and overall 'open' textures to suggest that they represent 'mush' and 'crust' of a magma crystallization environment. Their phase compositions are more evolved (Fo80-70, cpx Mg# 82-75, and An73-63) than those of the poikilitic xenoliths. Associated glass is basaltic, but evolved (MgO 5 wt%; TiO2 3.7-5.8 wt%). The gabbroic xenolith mineral compositions fit existing fractional crystallization models that relate the origins of various Kilauea lavas to one another. FeO/MgO crystal-liquid partitioning is consistent with the poikilitic ol-gabbro assemblage forming as a crystallization product from Kilauea summit magma with ???8 wt% MgO that was parental to evolved lavas on the east rift zone. For example, least squares calculations link summit magmas to early 1955 rift-zone lavas (???5 wt% MgO) through ???28-34% crystallization of the ol+sp+cpx+pl that comprise the poikilitic ol-gabbros. The other ol-gabbro assemblages and the olivine gabbro-norite assemblages crystallized from evolved liquids, such as represented by the early 1955 and late 1955 lavas (???6.5 wt% MgO) of the east rift zone. The eruption of 1960 Kapoho magmas, then, scoured the rift-zone reservoir system to entrain portions of cumulate and solidification zones that had coated reservoir margins during crystallization of prior east rift-zone magmas. ?? 1994 Springer-Verlag.

  17. Seawater Circulation and Thermal Sink at OCEAN Ridges - FIELD Evidence in Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Nicolas, A. A.; Boudier, F. I.; Cathles, L. M.; Buck, W. R.; Celerier, B. P.

    2014-12-01

    Exceptionally, the lowermost gabbros in the Oman ophiolite are black and totally fresh, except for minute traces of impregnation by seawater fluids at very high temperature (~1000°C). These black gabbros sharply contrast with normal, whitish gabbros altered down to Low-T~500-350°C. These hydrous alterations are ascribed to an unconventional model of seawater circulation and cooling of the permanent magma chambers of fast spreading ocean ridges. In this model, gabbros issued from the magma chamber cross a ~100 m thick thermal boundary layer (TBL) before reaching a narrow, Low-T high permeability channel where the heated return seawater is flowing towards black smokers and the local gabbros are altered. Uprising mantle diapirs in Oman diverge at ~5 km on each side of the palaeo-ridge axis and feed an overlying magma chamber that closes at this distance from axis. Preservation of black gabbros along the Moho implies that the loop of seawater alteration locally does not reach Moho beyond this ~5km distance (otherwise black gabbros would be altered in whitish gabbros). This defines an internal "thermal sink" within ~5 km to the ridge axis. There, the sink is efficiently cooled by the active hydrothermal convection that is ridge transverse. This has been documented near the Galapagos ridge by marine geophysical data, within the same distance. Beyond this critical distance, the cooling system becomes dominantly conductive and ridge-parallel. The TBL and attached return flow channels must be rising into the overcooled, accreted crust. Beyond the thermal sink, the 500°C isotherm rebounds into the crust. It is only after ~ 1My of crustal drift that this isotherm penetrates into the uppermost mantle in a sustained fashion, developing serpentinites at the expense of peridotites.

  18. Luna 24 - Opaque mineral chemistry of gabbroic and basaltic fragments from Mare Crisium

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.

    1977-01-01

    Spinels and ilmenites are relatively sparse in the Luna 24 gabbro and basalts. Spinel compositions show some affinities to those of spinels in Apollo 12, Apollo 14 and Luna 16 basalts; a characteristic feature is high Al2O3, reaching a maximum of 19.8 wt%. A comparison of spinels in the Luna 24 gabbro with those in other deep-seated lunar intrusive rocks shows a characteristic trend for Fe/Mg. This trend is systematic from gabbro to anorthosite to troctolite and is interpreted to be P-T dependent. Compositions of spinels in the gabbro fall within the Cr/Al trend defined by the spinels of the basalts, but form a Fe/Mg trend parallel to that of the basalts; this relationship suggests that both the gabbro and the basalts are derived from a closely similar source region, with the basalts originating at a slightly greater depth than the gabbro. The spinels in both rock types are considered to have formed at high crustal levels, at low pressures. The Luna 24 data suggest that the compositional discontinuities which exist between chromian spinels and titanian spinels in a large proportion of mare basalts are the result of nucleation of chromian spinels at high crustal levels prior to eruption, and of titanian spinels during melt crystallization at the lunar surface.

  19. Metamorphism in oceanic layer 3, Gorringe Bank, eastern Atlantic

    NASA Astrophysics Data System (ADS)

    Mevel, Catherine

    1988-12-01

    Gorringe Bank is an anomalously high structure of the eastern part of the north Atlantic, which was known to be composed of mantle-derived peridotites (layer 4) and gabbros (layer 3). During the submersible cruise CYAGOR II in 1981, the contact between layer 4 and layer 3 was observed on Mount Gettysburg and interpreted as tectonic. The overlying series of gabbro was extensively sampled on both mounts composing the bank, Gettysburg and Ormonde. Coarse-grained to pegmatoid clinopyroxene gabbros predominate and are associated with differentiated rocks (ferrogabbros and diorites). Cumulate gabbros are missing. The gabbroic section sampled is therefore interpreted as the upper part of the plutonic section. Most samples were strongly recrystallized during two distinct events. Metamorphism occurred close to the ridge axis, from interaction of a seawater-derived fluid with still hot gabbros. High temperature shear zones favoured fluid circulation, but the water/rock ratio — estimated from the sodium input — was very small in undeformed rocks (<1). The low W/R ratio explains the strong evolution of the fluid phase and therefore some particular compositions of secondary minerals. Low temperature alteration occurred when the gabbros were tectonically emplaced close to the sea bottom.

  20. Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.; Hirth, G.; Kelemen, P. B.

    2015-12-01

    The debate over the processes of igneous accretion of gabbroic lower crust at submarine spreading centers is centered on two end-member hypotheses: Gabbro Glaciers and Sheeted Sills. In order to determine which of these two hypotheses is most applicable to a well-studied lower crustal section, we present newly published data (VanTongeren et al., 2015 EPSL v. 427, p. 249-261) on plagioclase lattice preferred orientations (LPO) in the Wadi Khafifah section of the Samail ophiolite, Oman. Based on our results we provide five critical observations that any model for the accretion of the lower oceanic crust must satisfy: (1) There is a distinctive change in the orientation of the outcrop-scale layering from near-vertical to sub-horizontal that is also reflected in the plagioclase fabrics in the uppermost ~1000-1500 m of the gabbroic crust; (2) The distinction between the upper gabbros and lower gabbros is not a geochemical boundary. Rather, the change in outcrop-scale orientation from near-vertical to sub-horizontal occurs stratigraphically lower in the crust than a change in whole-rock geochemistry; (3) There is no systematic difference in plagioclase fabric strength in any crystallographic axis between the upper gabbros and the lower gabbros; (4) Beneath the abrupt transition from sub-vertical to sub-horizontal fabric, there is no systematic change in the geographic orientation of the plagioclase fabric, or in the development of a dominant lineation direction within the upper gabbros or the lower gabbros; (5) In the lower gabbros, the obliquity between the (010) and the modal layering remains approximately constant and indicates a consistent top to the right sense of shear throughout the stratigraphy. Our observations are most consistent with the Sheeted Sills hypothesis, in which the majority of lower crustal gabbros are crystallized in situ and fabrics are dominated by compaction and localized extension rather than by systematically increasing shear strain with

  1. Invasion of Seawater-Derived Fluids at Very High Temperatures in the Oman Ophiolite - a Key for Cooling the Deep Crust at Fast-Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Koepke, J.; Mueller, T.; Linsler, S.; Schuth, S.; Garbe-Schoenberg, C. D.; McCaig, A. M.

    2014-12-01

    Prominent conceptual models for the formation of the deep, fast-spread crust are the "gabbro-glacier" model, where the lower crust is formed in the axial melt lens, and the "sheeted sill" model, where the lower gabbros are generated by the intrusion of sills of gabbroic mushes. A requirement for the latter model is a substantial hydrothermal cooling of the oceanic crust in the depth, and as long as the "Rosetta stone" for the mechanism of this deep cooling is not found, the "sheeted sill" model and derivatives cannot be accepted as reliable option how the deep oceanic fast-spread crust is formed. In recent field campaigns for establishing a geochemical and petrological profile through typical fast-spreading oceanic crust in the Wadi Gideah (Wadi Tayin massif, Oman ophiolite), we discovered several, often more than 100 m wide fault zones, cutting a coherent series of layered gabbro at many places. These zones are characterized by pervasive alteration, mainly in greenschist and sub-greenschist facies. Isotope geochemical studies of these zones imply that these zones can be interpreted as pathways for channeled hydrothermal flux, in accord with observations of Coogan et al. (2006). In most of the fault zones, we observed the occurrence of varitextured hornblende gabbro, alternating with zones of former layered gabbros showing intense overgrowth of high- temperature amphibole, and sometimes with flasered amphibolites. The petrologic record implies fluid flux in the center of this zones at very high temperatures (≤ 1000°C), enabling even the production of hornblende gabbros by hydrous partial melting of layered gabbro, shielded by zones formed at high-temperature conditions (formation of high-T amphiboles) and at low-temperature conditions (greenschist facies rocks). First thermal modeling based on the petrological record of these zones are in progress. Coogan LA, Howard KA, Gillis KM, Bickle MJ, Chapman H, Boyce AJ, Jenkin GRT, Wilson RN (2006) Am. J. Sci. 306: 389-427

  2. Zircon record of fractionation, hydrous partial melting and thermal gradients at different depths in oceanic crust (ODP Site 735B, South-West Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Pietranik, A.; Storey, C.; Koepke, J.; Lasalle, S.

    2017-03-01

    Felsic veins (plagiogranites) are distributed throughout the whole oceanic crust section and offer insight into late-magmatic/high temperature hydrothermal processes within the oceanic crust. Despite constituting only 0.5% of the oceanic crust section drilled in IODP Site 735B, they carry a significant budget of incompatible elements, which they redistribute within the crust. Such melts are saturated in accessory minerals, such as zircon, titanite and apatite, and often zircon is the only remaining phase that preserves magmatic composition and records processes of felsic melt formation and evolution. In this study, we analysed zircon from four depths in IODP Site 735B; they come from the oxide gabbro (depth approximately 250 m below sea floor) and plagiogranite (depths c. 500, 860, 940 m below sea floor). All zircons have similar ɛHf composition of c. 15 units indicating an isotopically homogenous source for the mafic magmas forming IODP Site 735B gabbro. Zircons from oxide gabbro are scarce and variable in composition consistent with their crystallization from melts formed by both fractionation of mafic magmas and hydrous remelting of gabbro cumulate. On the other hand, zircon from plagiogranite is abundant and each sample is characterized by compositional trends consistent with crystallization of zircon in an evolving melt. However, the trends are different between the plagiogranite at 500 m bsf and the deeper sections, which are interpreted as the record of plagiogranite formation by two processes: remelting of gabbro cumulate at 500 m bsf and fractionation at deeper sections. Zircon from both oxide gabbro and plagiogranite has δ18O from 3.5 to 6.0‰. Values of δ18O are best explained by redistribution of δ18O in a thermal gradient and not by remelting of hydrothermally altered crust. Tentatively, it is suggested that fractionation could be an older episode contemporaneous with gabbro crystallization and remelting could be a younger one, triggered by

  3. The origin of rhythmic layering in the Cape Neddick Plutonic Complex, Maine

    SciTech Connect

    Shipley, J. . Dept. of Geology)

    1993-03-01

    The Cape Neddick Plutonic Complex located along the southwestern coast of Maine is a small layered gabbroic body. It contains four concentric gabbros of differing composition, From the center to the exterior these are Cortlandtitic, Anorthositic, Normal, and Pegmatitic gabbros. They vary slightly in the proportion of essential minerals; plagioclase, clinopyroxene, hornblende, and biotite [+-] opaques and olivine. Rhythmic layering is seen in all four gabbros. This layering is also concentric around the center of the complex. The best exposure of the layering is along the coast where non-graded and graded rhythmic layering is seen extensively in the Normal gabbro. Only non-graded layering is seen in the Anorthositic gabbro. Non-graded layers were sampled at two localities. One locality is on Cape Nubble Island in the Normal gabbro. The second locality is in the Anorthositic gabbro along the northern coast. The layers are roughly 5--8 cm in width and are continuous around the complex. They are identified on weathered surfaces as alternating bands of felsic and mafic minerals. Layers are not obvious in hand sample. Approximately 15--20 layers were sampled perpendicular to layering. Petrographic and geochemical studies will help constrain the origin of rhythmic layering in the Cape Neddick Complex. Crystal settling or structural processes seem highly unlikely due to the small distance between the layers and the fact that they are not graded. Possible models include multiple pulses of magma within the same magma chamber, density currents, or in situ fractionation by a nucleation-diffusion process. Modal and chemical analysis of mineral phases within individual layers will allow comparison of the bulk composition of each layer. Analysis of coexisting pyroxene and plagioclase can be used to estimate compositional variations in the parent liquid.

  4. Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks

    NASA Astrophysics Data System (ADS)

    Ji, Shaocheng; Shao, Tongbin; Salisbury, Matthew H.; Sun, Shengsi; Michibayashi, Katsuyoshi; Zhao, Weihua; Long, Changxing; Liang, Fenghua; Satsukawa, Takako

    2014-11-01

    Fractional crystallization and crystal segregation controlled by settling or floating of minerals during the cooling of magma can lead to layered structures in mafic and ultramafic intrusions in continental and oceanic settings in the lower crust. Thus, the seismic properties and fabrics of layered intrusions must be calibrated to gain insight into the origin of seismic reflections and anisotropy in the deep crust. To this end, we have measured P and S wave velocities and anisotropy in 17 plagioclase-rich mafic igneous rocks such as anorthosite and gabbro at hydrostatic pressures up to 650 MPa. Anorthosites and gabbroic anorthosites containing >80 vol% plagioclase and gabbros consisting of nearly equal modal contents of plagioclase and pyroxene display distinctive seismic anisotropy patterns: Vp(Z)/Vp(Y) ≥ 1 and Vp(Z)/Vp(X) ≥ 1 for anorthosites while 0.8 < Vp(Z)/Vp(Y) ≤ 1 and 0.8 < Vp(Z)/Vp(X) ≤ 1 for gabbros. Amphibolites lie in the same domain as gabbros, but show a significantly stronger tendency of Vp(X) > Vp(Y) than the gabbros. Laminated anorthosites with Vp(X) ≈ Vp(Y) ≪ Vp(Z) display a strong crystal preferred orientation (CPO) of plagioclase whose (010) planes and [100] and [001] directions parallel to the foliation. For the gabbros and amphibolites characterized by Vp(X) ≈ Vp(Y) > Vp(Z) and Vp(X) > Vp(Y) > Vp(Z), respectively, pyroxene and amphibole play a dominant role over plagioclase in the formation of seismic anisotropy. The Poisson's ratio calculated using the average P and S wave velocities from the three principal propagation-polarization directions (X, Y, and Z) of a highly anisotropic anorthosite cannot represent the value of a true isotropic equivalent. The CPO-induced anisotropy enhances and decreases the foliation-normal incidence reflectivity at gabbro-peridotite and anorthosite-peridotite interfaces, respectively.

  5. Mossbauer Characterization of Iron Oxide Nanoclusters Grown within Aluminosilicate Matrices

    DTIC Science & Technology

    2003-01-01

    2Facultad de Ciencias Fisicas , Universidad Mayor de San Marcos, Lima, Peru. 3Centro Brasileiro de Pesquisas Fisicas , Rio de Janeiro, Brasil. ABSTRACT...Brasileiro de Pesquisas Fisicas and the NSF: DMR 0074537 for support. Figures 1 and 2 ame reprinted with permission from reference [I]. Copyright 2001

  6. Anorthosites in Oman ophiolite crust, a clue to crust origin at a fast spreading ridge

    NASA Astrophysics Data System (ADS)

    Boudier, F. I.; Nicolas, A. J.

    2011-12-01

    A first requirement to obtain anorthosites in the gabbro unit and Moho transition zone (MTZ) in the Oman ophiolite is that anorthite be on the liquidus of the basaltic melt issued from the rising mantle beneath the ridge axis. The primitive melt having olivine+spinel on the liquidus near the Moho at ~2Kb pressure evolves to having plagioclase (+olivine) at pressure ~0.5Kb of the perched axial magma chamber (AMC). A second requirement is that some physical process segregates plagioclase from the olivine appearing along the cotectic line and clinopyroxene appearing at the solidus. Within the melt lens, this physical process is fractional crystallization from a melt intrusion in conditions ascribed in Oman and also modeled at 9°N EPR. Pure anorthosite mounds are formed within a time shorter than a few years. Mounds are relayed by swarms of thin layers of anorthosites within gabbros, pointing to voluminous melt surge on average every ~100 years. From there, the anorthosite layers are involved in the gabbro subsidence and preserved throughout the gabbro magma chamber down to the Moho. In deeper horizons, the anorhosite layers may have been contaminated by percolating melts, introducing clinopyroxene. Some anorthosites interlayered with ultramafics in the lower layered gabbros or in MTZ sills have formed in situ as a result of a very active segregation process at depth. The MTZ acts as a filter, crystallizing a limited fraction of olivine+spinel followed by clinopyroxene, from a large volume of primitive melt. Within the MTZ, ascending melt accumulated in spongy impregnated dunites is sporadically expelled through hydrofractures to feed the perched AMC. Alternatively, the fraction of melt may exceed the melt percolation threshold and a wehrlitic mush (olivine + melt) is injected in the lower gabbros as sills and local intrusions. Wehrlites injected within the magma chamber are involved in the large horizontal magmatic flow of the lower gabbros. This flow may contribute

  7. Chemistry and petrology of Luna 24 lithic fragments and less than 250-micron soils - Constraints on the origin of VLT mare basalts

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Taylor, G. J.; Warner, R. D.; Lange, D. E.; Keil, K.

    1978-01-01

    Results are reported on a combined INAA-petrologic study of 17 small (0.2-1.5 mg) Luna 24 lithic and mineral fragments and INAA study of 5 bulk soils and mineral separates from gabbro 24170. Lithic and mineral fragments are classified into VLT mare basalts (ferrobasalt and metabasalts), low-Ti, variolitic mare basalt, gabbros, melt rock and soil breccia. Data indicate 5 possible magma types, represented by: (1) VLT ferrobasalt and gabbro fragments, with low-TiO2 (about 1%), slightly bow-shaped REE pattern, and low REE concentrations (5-10X chondritic); (2) a ferrobasalt (Laul et al., 1978) and metabasalt fragments with major and trace element contents similar to (1), but positive Eu anomalies; (3) one gabbro fragment with distinctive pyroxene compositional trend (increasing Ti with nearly constant Fe/Fe + Mg) and highest REE contents of any Luna 24 mare basaltic sample, (4) a gabbro fragment with considerably less V and Cr2O3 than ferrobasalt and metabasalt fragments; and (5) variolitic basalt fragment with higher Ti2(2.3%) than other Luna 24 basalts and pyroxene that has increasing then decreasing Ti with increasing Fe/Fe + Mg. Trace element data place constraints on the nature of the source region and possible parent magmas for the Luna 24 VLT ferrobasalt.

  8. Breccias 73215 and 73255 - Siderophile and volatile trace elements

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Petrie, R. K.

    1979-01-01

    Fifteen siderophile and volatile trace elements (Os, Re, Ir, Pd, Ni, Au, Sb, Ge, Se, Ag, In, Zn, Cd, Bi, Tl) and U were determined by radiochemical neutron activation analysis in a spheroidal aphanitic clast and a clast of coarse-grained anorthositic gabbro from breccia 73215 and in three types of aphanite and two clasts of fine-grained anorthositic gabbro from breccia 73255. In common with most Apollo 17 fragment-laden melt rocks, the aphanites from 73215 and 73255 predominantly contain a Group 2 meteoritic component, which is apparently derived from the Serenitatis impact. All aphanitic lithologies contain the same meteoritic component, and are probably cogenetic. The clasts of fine-grained anorthositic gabbro contain substantial amounts (2% to 6% Cl equivalent based on Au) of a pre-Serenitatis Group 3 component. The clast of coarse-grained anorthositic gabbro is low in siderophile elements (0.4% Cl equivalent), and the meteoritic component (Group 5) is not well-defined. A strong correlation exists between Ir and Au in both the aphanites and the anorthositic gabbro clasts, which argues against the breccias 73215 and 73255 being open systems for Au

  9. Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (Central Greece)

    NASA Astrophysics Data System (ADS)

    Tsikouras, Basilios; Karipi, Sofia; Hatzipanagiotou, Konstantin

    2013-08-01

    Rodingitised rocks were collected from the neighbouring Iti and Kallidromon ophiolites. They comprise metasomatic assemblages after serpentinised lherzolite and harzburgite, gabbro and dolerite dykes. The main mineral phases in the metasomatised mantle and gabbroic rocks include grossularitic garnet, chlorite and diopside whereas epidote group minerals were mainly developed at the expense of the dolerite dykes. The fluid phase involved in the metasomatic reactions was highly alkaline in the metasomatising peridotites and less alkaline in the altered gabbro and dolerite. Under such conditions, Ti is assumed to have remained immobile in the whole process while Zr remained constant in the stratigraphically upper rodingitised gabbro and dolerite. Transportation of rare earth elements, Zr, Cr and Ni from the altered mantle segment to the upper gabbro level was assisted by the presence of carbonate and hydroxyl ligands. After consequent breakdown of the carbonate complexes, these elements were deposited in the rodingitised gabbro and dolerite. Rare earths were mainly integrated in the neoblastic diopside whereas Cr and Ni likely formed insoluble hydroxides in that less reducing environment. The metasomatic event happened in the mantle wedge close to the subduction of the Pelagonian carbonates that strongly enriched the fluid phase in CO2. The entrance of an externally derived hydrothermal fluid was responsible for the reduction of pH at the higher levels and the calculated influx of Si in the system.

  10. Two types of gabbroic xenoliths from rhyolite dominated Niijima volcano, northern part of Izu-Bonin arc: petrological and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Arakawa, Yoji; Endo, Daisuke; Ikehata, Kei; Oshika, Junya; Shinmura, Taro; Mori, Yasushi

    2017-01-01

    We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths) in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899-955°C) and pressures (3.6-5.9 kbar) than the B-type gabbro (687-824°C and 0.8-3.6 kbar). These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic) magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.

  11. Basaltic volcanism on the eucrite parent body - Petrology and chemistry of the polymict eucrite ALHA80102

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Drake, M. J.

    1985-01-01

    The polymict eucrite meteorite ALHA80102 is an unequilibrated breccia of basaltic and gabbroic clasts in a fragmental matrix. Clasts include basalts of many textural types, cumulate gabbro, black 'glass', and ferroan troctolite (plagioclase, silica, Fe-rich olivine, ilmenite, mesostasis). Ferroan troctolite has not been previously reported from eucrites or howardites; it is interpreted as the end-product of fractional crystallization of eucritic magmas. Bulk and trace element compositions (by electron microprobe and INAA) of clasts and matrix from ALHA80102 are similar to those of other eucrites; the meteorite contains clasts similar to Juvinas and to Stannern. A clast of cumulate eucrite gabbro is enriched in the light rare earths (La/Lu = 2XCI). This clast is interpreted as an unrepresentative sample of metamorphically equilibrated gabbro; LREE-enriched magmas need not be invoked. ALHA80102 is similar to other polymict eucrites from the Allan Hills and may be paired with ALHA76005, ALHA77302, and ALHA78040.

  12. Petrology and chemistry of Jebel Tanumah complex, Khamis Mushayt, Southern Arabian shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Nassief, M. O.; Ali, H. M.; Zakir, F. A.

    The mafic intrusive complex at Jebel Tanumah is located 15 km north-west of Khamis Mushayt in the southern Arabian Shield and includes olivine-bearing gabbro as well as amphibole-diopside-hornblende gabbro cumulates. These rocks have been generally metamorphosed to upper greeenschist-lower amphibolite facies. Fourteen white rock silicate analyses indicate that the majority of the rocks are calc-alkaline to tholeiitic in composition. The two major structural units in the Khamis Mushayt region identified by Coleman consist of the basement complex of Asir Mountains and the younger metamorphic rocks. Syntectonic granitic rocks intruded the antiforms characterizing the younger rocks whereas the lower parts of the synforms are intruded by post-tectonic intrusions of layered gabbros such as the one studied at Jebel Tanumah.

  13. Notes on some shear zones of northern Somalia

    NASA Astrophysics Data System (ADS)

    Sacchi, Rosalino; Zanferrari, Adriano

    Low-angle thrusts, displaying a well developed, stretching lineation, and west to south-west vergence, are reported from the basement of northern Somalia, and interpreted as the extreme evolution of a (Upper Proterozoic) phase of folding. This is seen as a late event, roughly coeval with gabbro emplacement, and later than the main metamorphism of the basement complex. Thrusting took place when the gabbros were still at a high temperature, as shown by 'hot' metamorphic assemblages within the zones of ductile shear. Development of abundant pegmatite and of some muscovite granite also took place, probably triggered by gabbro emplacement. Tectonic style suggests that here we may be dealing with the continuation of the collision zone with the East Gondwana Plate, recently recognized by some researchers near the eastern margin of the Saudi Arabian shield.

  14. Geochemistry of a long in-situ section of intrusive slow-spread crust: Results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge)

    NASA Astrophysics Data System (ADS)

    Godard, M.; Abratis, M.; Awaji, S.; Brunelli, D.; Christie, D.; Hansen, H.; Hellebrand, E.; Johnson, K.; Maeda, J.; Yamasaki, T.; Kato, Y.

    2007-12-01

    IODP Site U1309 was drilled at Atlantis Massif (western rift flank of Mid-Atlantic Ridge (MAR) 30°N; Expeditions 304 and 305), a 1.5-2 Myr old oceanic core complex. The main hole, Hole U1309D, is the second deepest hole drilled into an intrusive slow-spread oceanic lithosphere: it penetrated 1415.5 mbsf (75% recovery). We present here the results of a bulk rock geochemical study (major and trace elements - ICPMS -) carried out on 234 samples representative of the different lithologies sampled at Site U1309. Over 96% of Hole U1309D is made up of gabbroic rocks, cross-cut by late diabases and basaltic dykes in the upper part of the section. Diabases and basalts have depleted MORB compositions (La/Yb ~0.8 and Yb ~ 3.5 ppm) similar to basalts sampled at MAR 30°N. Relics of mantle were recovered at shallow depth. Mantle peridotites show petrographic evidence of melt impregnation. They have relatively fertile compositions, similar to MARK peridotites, with Mg# (100xMg/(Mg+Fe)) of 89-90, Ni>2400ppm and Yb 0.03-0.11 ppm. Gabbroic rocks span a wide range of lithologies and geochemical compositions. They comprise olivine-rich troctolites (>70% modal olivine), troctolites, olivine and troctolitic gabbros (5 to 50% modal olivine), gabbros (including gabbronorites) and oxide gabbros (>2% modal Fe-Ti oxides), which represent respectively 5.4 %, 2.7%, 25.5%, 55.7% and 7% of the core recovered at Hole U1309D. Minor felsic ("leucocratic") dikes cross- cutting gabbros were also sampled. Troctolites and olivine-rich troctolites have high Mg# (82-89), high Ni (up to 2300 ppm) and low trace element contents (Yb 0.06-0.8 ppm). They overlap in composition with peridotites sampled at Atlantis Massif and with impregnated peridotites drilled along the MAR (e.g., ODP Site 1271 (MAR 15°20'N)). Gabbros and olivine gabbros have high Mg# (60-86) and low trace element contents (Yb 0.125-2.5 ppm - (La/Yb)CN ~ 0.4-0.7); these gabbros are among the most primitive and depleted yet sampled along

  15. Unusual shape of pyrrhotite inclusions in scapolite of igneous rocks from the southernern Urals

    NASA Astrophysics Data System (ADS)

    Korinevsky, V. G.; Korinevsky, E. V.

    2016-12-01

    The unique igneous rock (scapolite-diopside gabbro) from the Ilmeny Mountains in the southern Urals is described. Gabbro fills a segment of dike 1.3 m thick that cuts through calcite-dolomite carbonatite. Medium-grain pyroxenite with scapolite that occurs at selvages gradually passes to scapolite-bearing gabbro in the central part of the dike. Scapolite crystals display surfaces of concurrent growth, which are evidence of their magmatic origin. Scapolite (Me 63-70%) contains numerous pyrrhotite inclusions as platelets 0.001 mm thick oriented parallel to the cleavage plane {100}. The calculated pyrrhotite formula is consistent with its stoichiometry (Fe1-xS). The morphology of the platelets (hexagonal sections) and their optical properties indicate a hexagonal symmetry of pyrrhotite. As follows from the insignificant difference between scapolite grains with and without pyrrhotite inclusions, scapolite and pyrrhotite should be regarded as products of synchronous magmatic melt crystallization.

  16. Mitigation of Adverse Effects of Long Branch Lake Project upon the Archaeological Resources. Part 3.

    DTIC Science & Technology

    1986-01-01

    481g Argillite lp 90:k 105 64* 55* 35* 183g* Gabbro ip? 90:1 Sur. 86 71 35 281g Argillite 2p 90:m Sur. 62* 73 47 266g* Argillite ip? 90:n Sur. 56* 50...47* 207g* Gabbro ip? 90:o 2154 87 70 38 352g Argillite ip oO:p Sur. 94 85 53 642g Quartzite 2p 9 0:q Sur. 102 80 51 607g Quartzite ip 90:r Sur. 84 77...Flint Hill Sandstone 2p 90:e 151 87* 45* 24* 96g* Argillite ip? 90:f 151 73* 50* 30* l12g* Gabbro ip? 90:g 171 69 69 55 4 15g Diorite 2p 90:h 166

  17. Formation and emplacement ages of the Masirah ophiolite, Sultanate of Oman

    SciTech Connect

    Smewing, J.D. ); Abbotts, I.L. ); Dunne, L.A. ); Rex, D.C. )

    1991-05-01

    Hornblende separates from gabbros and biotite separates from crosscutting potassic granites of the Masirah ophiolite have been analyzed by conventional K-Ar techniques. The gabbros have Late Jurassic-Early Cretaceous ages (126-158 Ma), and the granites have broadly similar ages (124-146 Ma). Because the gabbros are likely to give ophiolite formation ages and the granites ophiolite emplacement ages, it can be concluded that the Masirah ophiolite was emplaced very soon after formation. The Late Jurassic-Early Cretaceous ages contrast with the middle Cretaceous ages (90-95 Ma) of the Semail ophiolite, confirming earlier suggestions that the Masirah ophiolite cannot simply be a right-laterally displaced fragment of the Semail ophiolite, but is instead an uplifted block of Indian Ocean crust. The formation and emplacement of the Masirah ophiolite are discussed in the context of the late Mesozoic evolution of the western Indian Ocean.

  18. Spatiotemporal Distribution and Population Structure of Monokalliapseudes schubarti (Tanaidacea: Kalliapseudidae) in an Estuary in Southern Brazil

    PubMed Central

    Freitas-Júnior, Felipe; Christoffersen, Martin Lindsey; de Araújo, Joafrâncio Pereira; Branco, Joaquim Olinto

    2013-01-01

    Monokalliapseudes schubarti is an endemic tanaidacean microcrustacean from southeastern Brazil to Uruguay inhabiting low energy estuaries. Saco da Fazenda is located in the estuary of the Itajaí-Açú River, state of Santa Catarina, Brazil. It is exposed to strong anthropic impact and receives intensive flows of domestic wastewater, solid residues, and drainage activities. Specimens of M. schubarti were collected monthly, in the intertidal and subtidal regions of Saco da Fazenda, in four stations defined as a function of the physiography of the environment during the period of July 2003 to June 2004. Fecundity values were high, with continuous reproductive activity during the whole period of study. The greatest population densities were observed in the intertidal region, where they are nevertheless intensely consumed by birds, swimming crabs, and fish. This species represents a fundamental link in the food chain of Saco da Fazenda, transferring energy from the detritus level to higher trophic levels. Habitat disturbance and high organic matter may represent factors controlling the distribution of populations of M. schubarti. For this reason, the species may be used to monitor anthropic effects in estuarine areas. PMID:24298211

  19. High Temperature Hydrothermal Circulation in the Deep Oceanic Crust - Sr Isotopes and Trace Elements Modelisation Constraints on the Origin of the Fluids

    NASA Astrophysics Data System (ADS)

    Bosch, D.; Lamour, M.; Jamais, M.; Bodinier, J.

    2003-12-01

    Previous field, petrological and geochemical works have identified high temperature hydrous alteration traces throughout the gabbros of the Samail ophiolite. Temperatures have been calibrated for the successive stages of alteration, starting with orthopyroxene-pargasite coronas (above 975 \\deg C) and ending with the low temperature (LT) lizardite serpentinisation (below 500 \\deg C). Sr isotopic analyses performed on massive gabbros, dikes and veins and associated minerals depart from typical mantle signatures and are characterized by radiogenic Sr isotopic ratios suggesting seawater as the most likely hydrothermal contaminant. The main water channels may be submillimetric microcracks with a dominantly vertical attitude and constituting the recharge hydrothermal system, whereas dikes and veins represent the discharge part. This model requires that these dikes have been generated by hydration of the crystallizing gabbros via seawater penetration, near the internal wall of the LVZ-magma chamber, i.e. at temperatures well above the near 1000 \\deg C temperature recorded so far. We used the numerical plate model of VerniŠres et al. (1997) to simulate the chemical evolution of Sr isotopes and some trace elements in fluids through the gabbro column. This approach takes into account mineralogical and porosity variations due to dissolution-precipitation processes, as well as variations of partition coefficients as a function of distance from the fluid source. The aim of modelling was twofold: (1) to provide estimates of the chemical evolution of fluids as a result of high-temperature interaction with gabbros, and (2) to constrain the fluid-rock ratios throughout the gabbros sequence. Such an approach sheds new lights on the importance of high temperature hydrothermal processes and on the geochemical modifications they induced during oceanic crust formation at fast spreading ridge. VerniŠres J., Godard M., Bodinier J.-L., 1997. A plate model for the simulation of trace

  20. Platinum-group element geochemistry of the Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block, SW China: control of platinum-group elements by magnetite

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Peng; Zhu, Wei-Guang; Zhong, Hong; Bai, Zhong-Jie; He, De-Feng; Ye, Xian-Tao; Chen, Cai-Jie; Cao, Chong-Yong

    2014-06-01

    Platinum-group element (PGE) geochemistry combined with elemental geochemistry and magnetite compositions are reported for the Mesoproterozoic Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in the western Yangtze Block, SW China. All the Zhuqing gabbros display extremely low concentrations of chalcophile elements and PGEs. The oxide-rich gabbros contain relatively higher contents of Cr, Ni, Ir, Ru, Rh, and lower contents of Pt and Pd than the oxide-poor gabbros. The abundances of whole-rock concentrations of Ni, Ir, Ru, and Rh correlate well with V contents in the Zhuqing gabbros, implying that the distributions of these elements are controlled by magnetite. The fractionation between Ir-Ru-Rh and Pt-Pd in the Zhuqing gabbros is mainly attributed to fractional crystallization of chromite and magnetite, whereas Ru anomalies are mainly due to variable degrees of compatibility of PGE in magnetite. The order of relative incompatibility of PGEs is calculated to be Pd < Pt < Rh < Ir < Ru. The very low PGE contents and Cu/Zr ratios and high Cu/Pd ratios suggest initially S-saturated magma parents that were highly depleted in PGE, which mainly formed due to low degrees of partial melting leaving sulfides concentrating PGEs behind in the mantle. Moreover, the low MgO, Ni, Ir and Ru contents and high Cu/Ni and Pd/Ir ratios for the gabbros suggest a highly evolved parental magma. Fe-Ti oxides fractionally crystallized from the highly evolved magma and subsequently settled in the lower sections of the magma chamber, where they concentrated and formed Fe-Ti-V oxide ore layers at the base of the lower and upper cycles. Multiple episodes of magma replenishment in the magma chamber may have been involved in the formation of the Zhuqing intrusions.

  1. Deep Drilling Results in the Atlantic Ocean: Ocean Crust

    DTIC Science & Technology

    1979-01-01

    Basal Group Lower Pillow Lava Basal Group Diabase Diabase Fig. 3. Diagrammatic sketch showing the relationships in cross-section between dikes, flows and...ultramafic, amphibolite. diabase (one sample) and crystalline basalt. The samples BASALT GLASS ANALYSES CAYMAN TROUGH22 + FAMOUS 1WWII volley, 2wR.MAlt... Diabase Greenschist3A ’. Facies 6.3-6.7 Meta-Gabbro ....................... \\ 41 I *. 3 "’.’ Plutonic Complex 6.8-7.5 /\\ Gabbro/’/t• I, \\ i %%, 4-4 Fig

  2. Evidence from the lamarck granodiorite for rapid late cretaceous crust formation in California

    USGS Publications Warehouse

    Coleman, D.S.; Frost, T.P.; Glazner, A.F.

    1992-01-01

    Strontium and neodymium isotopic data for rocks from the voluminous 90-million-year-old Lamarck intrusive suite in the Sierra Nevada batholith, California, show little variation across a compositional range from gabbro to granite. Data for three different gabbro intrusions within the suite are identical within analytical error and are consistent with derivation from an enriched mantle source. Recognition of local involvement of enriched mantle during generation of the Sierran batholith modifies estimates of crustal growth rates in the United States. These data indicate that parts of the Sierra Nevada batholith may consist almost entirely of juvenile crust added during Cretaceous magmatism.

  3. Premiers résultats des plongées du Nautile sur le banc de Gorringe (Ouest Portugal)

    NASA Astrophysics Data System (ADS)

    Girardeau, Jacques; Cornen, Guy; Agrimer, Pierre; Beslier, Marie-Odile; Dubuisson, Gilles; LeGall, Bernard; Monnier, Christophe; Pinheiro, Luis; Ribeiro, Antonio; Whitechurch, Hubert

    1998-02-01

    The oceanic crust exposed on the Gorringe Bank (SW Portugal) presents a laccolith-like body of gabbros, 500 m thick by 50 km long, within mantle peridotites. It also shows rare tholeiitic dikes and pillow-lavas resting locally directly over the peridotites. Gabbros, that crystallized in a closed system, subsequently underwent strong deformation in highto low-temperature conditions, in a west to east extensional flat shear zone system. This massif would likely be formed during the early stages of oceanic spreading, at the end of continental rifting. This is in agreement with kinematic reconstructions for the North Atlantic Ocean.

  4. Luminescence of apollo 11 lunar samples.

    PubMed

    Greenman, N N; Gross, H G

    1970-01-30

    Luminescence measurements were made of four lunar rocks, two terrestrial rocks (granite and gabbro), and one terrestrial mineral (willemite) by comparing the spectral curves with the curve of a barium sulfate standard. Efficiencies with 3000 angstrom excitation were < 6 x 10(-5) for the lunar samples, < 8 x 10(-5) for gabbro of very similar composition to the lunar samples, approximately 10(-4) for granite, and approximately 2 X 10(-2) for willemite. If these are typical values for other ultraviolet excitation wavelengths, the Apollo 11 site appears to contribute little to the observed lunar luminescence.

  5. Evidence from the lamarck granodiorite for rapid late cretaceous crust formation in california.

    PubMed

    Coleman, D S; Glazner, A F; Frost, T P

    1992-12-18

    Strontium and neodymium isotopic data for rocks from the voluminous 90-million-year-old Lamarck intrusive suite in the Sierra Nevada batholith, California, show little variation across a compositional range from gabbro to granite. Data for three different gabbro intrusions within the suite are identical within analytical error and are consistent with derivation from an enriched mantle source. Recognition of local involvement of enriched mantle during generation of the Sierran batholith modifies estimates of crustal growth rates in the United States. These data indicate that parts of the Sierra Nevada batholith may consist almost entirely of juvenile crust added during Cretaceous magmatism.

  6. An Intensive Survey of Archaeological Resources in the Proposed Long Branch Reservoir. Volume 2B

    DTIC Science & Technology

    1977-01-01

    GcGb - Gneissic Gabbro Hematite TGn - Talc Gneiss c - chipped ShGb - Schistic Gabbro a - scratched ShD - Schistic Dolerite f - flake FH/SS - Flint...Hill Sandstone g - ground Mss - Micaceous Sandstone fss - Ferruginous Sandstone A - Argillite c - chert Qtz - Quartz FGQtt - Fine-grained Quartzite Qtt...ARTIFACTS - LONG BRANCI RESERVOIR 41 0 Points Contracti~ng-@ taed, square-based points l a 23MC55 4-4 50 25 9 9.6g b 23MCSS 2-1 74 39 9 22.8g c

  7. Gabbroic and Peridotitic Enclaves from the 2008 Kasatochi Eruption, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Kentner, A.; Nadin, E. S.; Izbekov, P. E.; Nye, C. J.; Neill, O. K.

    2012-12-01

    Kasatochi volcano of the Andreanof Islands in the western Aleutian Arc violently erupted over a two day period from August 7-8, 2008. The eruption involved multiple explosive events generating pyroclastic flows, which included abundant mafic and ultramafic enclaves that have since weathered out and accumulated in talus along the coast. These and other mafic enclaves sampled by modern island arc lavas provide insight into subduction magmatism because they emerge from a section of the subduction system that is less likely than shallower zones to be modified by magmatic processes such as mixing, assimilation, or fractionation. We present new whole rock, clinopyroxene, amphibole, plagioclase, and melt compositions from Kasatochi enclaves of the 2008 eruption. The highly crystalline (~40 vol. % phenocryst content), medium-K basaltic andesite host rock contains ~52-55 wt. % SiO2 and 0.6-0.9 wt. % K2O, and is composed of plagioclase, ortho- and clinopyroxene, amphibole, and Ti-magnetite in a microlite-rich groundmass. Upon eruption, this magma sampled two distinct enclave populations: gabbro and peridotite. The gabbro has abundant amphibole (mostly magnesio-hastingsite) and plagioclase with minor clinopyroxene, olivine, and magnetite, while the peridotite is composed of olivine with minor amounts of clinopyroxene and orthopyroxene. There is little textural variation amongst the peridotitic samples collected, but the gabbroic samples vary from layered to massive and cover a range in grain size from fine-grained to pegmatitic. The layered gabbros display centimeter-scale bands of alternating plagioclase- and amphibole-rich layers, with a strong preferential alignment of the amphibole grains. The coarser-grained samples are very friable, with ~10% pore space; disaggregation of these upon host-magma ascent likely formed the amphibole and plagioclase xenocrysts in the andesitic host. Based on the textural and compositional differences, we divide the enclaves into four groups

  8. Insight in Ridge Axial Melt Lens in the Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Boudier, F.; Nicolas, A.; Daignieres, M.

    2008-12-01

    As in fast spreading ridges, the Oman ophiolite had a melt lens perched on top of the magma chamber where the gabbro unit was crystallizing. This melt lens is now reduced to an horizon where its roof and floor are coinciding and this horizon is now identified in the field. It is generally marked by a sharp discordance between the isotropic gabbros from the root zone of sheeted dike complex (RZSDC) and steeply dipping foliated gabbros. These gabbros are issued from the mush settled on the floor of the melt lens, after subsidence inside the magma chamber. After stretching, compaction and rotation in the chamber, the mush has drifted through the wall of the chamber with, as a result, the observed steep foliated gabbros. Depending on its vertical distance beneath the lens horizon, a given gabbro derives from increasing distances inside the melt lens. Insights in the active melt lens are possible in three ways. 1) Looking at gabbros from the lens horizon, which virtually have not subsided. 2) Considering uncommon areas which display flat-lying foliated gabbros, below the contact with RZSDC and which grade down section into the steep foliated gabbros. Such situations are ascribed to a retreat of the melt lens, exposing gabbros which crystallized on its floor. Their good foliation points to a dynamic deposition on the floor, presumably by convection currents. 3) Considering the ubiquitous occurrence of anorthosites which are interlayered with the foliated gabbros. The anorthosites carry several important messages such as: - compaction of the mush at early stage of subsidence; - chemical nature of the rising melt which drops plagioclase first, followed by either olivine or clinopyroxene; - frequency and volume of melt intrusions, each one coming as short and massive melt surge; - spacing of areas of melt delivery on the lens floor. These results are essentially derived from anorthosites description and distribution in the field. It is concluded that melt lens activity is

  9. 138-121 Ma asthenospheric magmatism prior to continental break-up in the North Atlantic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Schärer, Urs; Girardeau, Jacques; Cornen, Guy; Boillot, Gilbert

    2000-09-01

    Along the Galicia and Gorringe banks and in the Iberia Abyssal Plain of the North Atlantic, unroofed sub-continental mantle fills the gap between 'true' oceanic crust and the continental crust margin. These lithospheric peridotites are intruded by gabbros and dolerites, and locally covered by basalts. Primary magmatic zircons extracted from gabbros and meta-gabbros of the two banks were dated by the U-Pb chronometer, and initial hafnium isotope signatures ( ɛHf i) were determined on the same grains. For Mt. Gettysburg at Gorringe, gabbro emplacement ages of 137.5±0.5 (2σ) Ma and 135.7±0.8 Ma are obtained, and corresponding ɛHf i lie at +20.5±0.3 (2σ) and +19.5±0.4, substantiating magma formation from severely LILE-depleted mantle domains. Gabbro zircons from Mt. Ormonde at Gorringe yield a much younger age of 77.1±0.4 Ma and the Hf isotopes document an intermediately LILE-depleted mantle source having a ɛHf i of +7.6±0.4. Given its age and Hf signature, emplacement of this rock can be ascribed to the alkaline magmatic event that also affected the Iberian Continent in Upper Cretaceous time. Concerning the Galicia section, zircons from a meta-gabbro yield an emplacement age of 121.7±0.4 Ma and a ɛHf i of +14.0±0.2, and a ɛHf i of +14.6±0.2 is obtained for zircons from a previously dated meta-gabbro of identical age. These results indicate magma extraction from mantle reservoirs that are slightly less LILE-depleted than those sampled by the about 20 Myr older Gorringe gabbros. The data demonstrate that magmatism occurring prior to complete separation of Europe from America was essentially of asthenospheric origin. Both the 138-135 Ma ages for the Gorringe gabbros and 122 Ma ages for the Galicia gabbros are at least 5 Myr older than the oldest sediments on Gorringe, and the break-up unconformity at the Galicia Bank, respectively. Magma source signatures of the syn-rift gabbros are in agreement with values expected for differently depleted Cretaceous

  10. Detachment Fault Initiation and Control by Partially Molten Zones in the Lower Ocean Crust

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Natland, J. H.; MacLeod, C. J.; Robinson, P. T.

    2012-12-01

    The close association of oxide gabbro and deformation in interleaved ferrogabbro and olivine gabbro at Atlantis Bank on the SW Indian Ridge explains the formation of this enormous single-domed gabbroic oceanic core complex. ODP Holes 735B and 1105A show that the stratigraphy is defined by 100's of zones of intense deformation and strain localization in the upper 500-m where various melts percolated including late-stage iron-titanium rich melts. The latter created highly deformed oxide-rich gabbro zones at scales from millimeters to over 100 meters. Mapping by ROV, over-the-side rock drilling, dredging, and submersible shows that this stratigraphy exists uniformly over the bank. Deep drilling and sampling up the headwalls of major landslips cutting into the core complex show that the fault zone was imbricate, likely reflecting relocation of the active slip plane due to cyclic intrusion in the lower crust. The detachment originated as a high-angle fault on the rift valley wall that propagated into a zone of partially molten gabbro beneath the sheeted dikes. This zone then pinned the footwall block, creating a plutonic growth fault along which gabbro intruded beneath the ridge axis was continuously uplifted and exposed on the Antarctic plate for ~3.9 myr. The overlying basaltic carapace spread more slowly to the north on the African Plate. Textural evidence, particularly that provided by iron-titanium oxides, shows that melts migrated along complex shear zones in which several creep mechanisms operated, ranging from crystal plastic dislocation creep, diffusion creep, grain boundary sliding, and brittle deformation. More than one of these mechanisms may have occurred concurrently. Subsequently, these zones localized later solid-state creep, often producing texturally complex rocks where separation of the timing and duration of different creep mechanisms is difficult to unravel. As uplift of the plutonic section progressed, the footwall passed through the zone of diking

  11. Geochemical and zircon U-Pb dating analysis of metamagmatic rocks from the Yuli belt in Taiwan

    NASA Astrophysics Data System (ADS)

    Hung, Chia-Chia

    2016-04-01

    The Tananao Schist Complex of the oldest rocks in Taiwan is exposed at the eastern limb of Backbone Range. Based on the lithologic and metamorphic characteristics, the complex can be divided into the Tailuko and Yuli belts. The Tailuko belt consists of marble, gneiss, and subordinate scattered metabasite; the Yuli belt is composed of greenschist, serpentinite, meta-tuff, meta-gabbro, metabasite, and glaucophane-schist blocks which enclosed by spotted schist of the host rocks. The metamorphic belts were inferred as a Mesozoic mélange. It's still controversial due to the difficulty of analyzing metamorphic rocks. In this study, we focus on the zircon U-Pb dating, geochemistry, and petrographic analysis of spotted schist, metabasite, meta-gabbro, and meta-tuff in order to constrain the formation and crystallization ages and interpret its tectonic setting. Based on zircon U-Pb dating, the host rocks of spotted schist and the exotic blocks of meta-tuff, meta-gabbro (the peak age of 14.4, 15.8, and 16.7 Ma), and metabasite occurred at Miocene. Geochemical characteristics for metabasite and meta-gabbro blocks show Ta-Nd-Ti depletion and LREE depletion in spidergram occurring volcanic arc and N-MORB type affinities, respectively. Results as above mentioned, we suggest that the metamagmatic rocks in the Yuli belt occur within a mélange during the Eurasia continental margin subduction at the Middle-Late Miocene.

  12. Ultramafic and mafic rocks from the Garret Transform Fault near 13°30'S on the East Pacific Rise: Igneous petrology

    NASA Astrophysics Data System (ADS)

    Hébert, Réjean; Bideau, Daniel; Hekinian, Roger

    1983-10-01

    Serpentinized peridotites, metagabbros and fresh basaltic rocks were dredged from the Garret Transform Fault near 13°S on the East Pacific Rise. Two dredge hauls taken on the northern wall (from about 3100-3600 m) consisted of aphyric and picritic basalts; while peridotites, gabbros and moderately phyric basalts were recovered in a single dredge located near the deepest part (4616-4820 m) of the transform valley. Well preserved igneous textures and mineralogical assemblages enable us to differentiate between tectonites (including harzburgites and clinopyroxene-bearing harzburgites) and cumulates (consisting of plagioclase-dunite, troctolites, olivine-gabbros and ilmenite-gabbros). The harzburgites are likely to represent deep-seated peridotites left after extraction of basaltic melt during upper mantle partial melting of a lherzolite. The ultramafic cumulates underwent some deformation and show textural and mineralogical evidences which suggest formation at a minimum depth corresponding to the very lower crust. It is also inferred that the composition of the coexisting liquid along with early cumulus crystals has a ratio Mg/(Mg + Fe 2+) of 0.7, high CaO/Na 2O ratios and a low Ni content (about 150 ppm) when compared to similar rock types from Atlantic fracture zones. Subsequent uplift during rifting of the oceanic lithosphere enhanced plastic deformation, subsolidus recrystallization and retrogressive metamorphism of the gabbros and the ultramafics.

  13. The crustal section of the Siniktanneyak Mountain ophiolite, Brooks Range, Alaska

    SciTech Connect

    Bickerstaff, D.; Harris, R.A.; Miller, M.A. . Dept. of Geology and Geography)

    1993-04-01

    Fragments of the upper crustal section of the Brooks Range Ophiolite on the west flank of Siniktanneyak Mountain expose important contact relations and paleohorizontal indicators. The nearly complete crustal sequence faces northwest. Based on field observations, the crustal units encountered at Siniktanneyak Mountain from bottom to top are: (1) layered gabbro, (2) isotropic gabbro, (3) high level and late-stage intrusions of diorite and diabase, (4) rare sheeted dikes, (5) basalt, and (6) a bedded volcanic tuff. Potassium feldspar-bearing pegmatites are also found. Of particular interest is the orientation of the layered gabbro, sheeted dikes, and the bedded volcanic tuff. The steeply dipping gabbro layers strike N-S, the adjacent vertical sheeted dikes strike NE-SW. Bedded volcanic tuff and lavas are flat lying. Contacts within the upper crust units are often covered by talus. Contacts between various plutonic rocks are both sharp and gradational, suggesting syn- and post-cooling intrusions. Contacts between plutonic rock and higher volcanic rock appear to be fault contacts.

  14. Magma mixing and mingling on Deer, Niblack, and Etolin Islands, southeastern Alaska

    SciTech Connect

    Lindline, J.; Crawford, W.A.; Crawford, M.L. . Geology Dept.)

    1993-03-01

    Intimately associated 20 m.a. hornblende-biotite granites and olivine gabbro norites occur on Etolin, Niblack and Deer Islands, southwest of Wrangell, Alaska. The field relationships suggest multiple injections of mafic and felsic phases within this igneous complex. Ellipsoidal to angular mafic magmatic enclaves occur in the granite, ranging in number from sparse to tightly packed swarms. Slightly curved decimeter sized rafts of fine grained mafic enclaves comprise a frozen fountain of mafic magma in the felsic host. Course-grained felsic dikes containing gabbroic zenoliths and ubiquitous fine-grained mafic pillows exhibiting sharp and sutured chilled borders intrude the layered gabbro. Synplutonic northeast trending fine-grained mafic and fine-grained felsic dikes mutually cross-cut the felsic pillow-bearing dikes. The granite consists of green hornblende, dark brown biotite, plagioclase and quartz. The mafic mineral assemblage changes from olivine, orthopyroxene, clinopyroxene, and plagioclase in the gabbro through intermediate-grained phases containing altered clinopyroxene, brown hornblende, red-brown biotite, plagioclase and quartz. The increase in proportion of hydrous mafic minerals from the gabbro to the fine-grained mafic enclaves and changes in pleochroic colors of biotite and hornblende from the intermediate-grained phases to the fine-grained mafic enclaves suggest chemical interaction between the mafic enclaves and their felsic host.

  15. Low-Velocity Zone of the Earth's Mantle: Incipient Melting Caused by Water.

    PubMed

    Lambert, I B; Wyllie, P J

    1970-08-21

    Experimental phase diagrams for the systems gabbro-water and peridotite-water indicate that, if there is any water in the upper mantle, then traces of hydrous interstitial silicate magma will be produced at depths corresponding to the beginning of the low-velocity zone. This explanation for the zone is more satisfactory than others proposed.

  16. Boring Information and Subsurface Data Base Package User’s Guide.

    DTIC Science & Technology

    1984-09-01

    COOR 16* 08/28/1975 17* MOB. A.B. TAYLOR I 18* CHILDERS 19* APP IIIDM 22* COMPLETE 24* FOUND INVES % 2𔃿* 23200 26* 1 󈧟* 126.50 28* 14 29* 18...Serpentine SLA Slate GRN Granite GAB Gabbro DIO Diorite RHY Rhyolite PHY Phyllite AND Andesite BAS Basalt DIA Diabase DAC Dacite PEG Pegmatite COQ Coquina

  17. Recycled oceanic crust observed in 'ghost plagioclase' within the source of Mauna Loa lavas

    PubMed

    Sobolev; Hofmann; Nikogosian

    2000-04-27

    The hypothesis that mantle plumes contain recycled oceanic crust is now widely accepted. Some specific source components of the Hawaiian plume have been inferred to represent recycled oceanic basalts, pelagic sediments or oceanic gabbros. Bulk lava compositions, however, retain the specific trace-element fingerprint of the original crustal component in only a highly attenuated form. Here we report the discovery of exotic, strontium-enriched melt inclusions in Mauna Loa olivines. Their complete trace-element patterns strongly resemble those of layered gabbros found in ophiolites, which are characterized by cumulus plagioclase with very high strontium abundances. The major-element compositions of these melts indicate that their composition cannot be the result of the assimilation of present-day oceanic crust through which the melts have travelled. Instead, the gabbro has been transformed into a (high-pressure) eclogite by subduction and recycling, and this eclogite has then been incorporated into the Hawaiian mantle plume. The trace-element signature of the original plagioclase is present only as a 'ghost' signature, which permits specific identification of the recycled rock type. The 'ghost plagioclase' trace-element signature demonstrates that the former gabbro can retain much of its original chemical identity through the convective cycle without completely mixing with other portions of the former oceanic crust.

  18. California earthquakes: why only shallow focus?

    PubMed

    Brace, W F; Byerlee, J D

    1970-06-26

    Frictional sliding on sawcuts and faults in laboratory samples of granite and gabbro is markedly temperature-dependent. At pressures from 1 to 5 kilobars, stick-slip gave way to stable sliding as temperature was increased from 200 to 500 degrees Celsius. Increased temperature with depth could thus cause the abrupt disappearance of earthquakes noted at shallow depths in California.

  19. Shallow drilling investigation of contact relationships in the Wichita Mountains igneous province

    SciTech Connect

    Gilbert, M.C.; Hogan, J.P. . School of Geology and Geophysics); Luza, K. )

    1993-02-01

    Within the Wichita Mountains Igneous Province, a variety of mineralogically, texturally and compositionally diverse hybrid rock types (i.e. gabbro-diorites, monzonites and granodiorites) crop out at gabbro-grants contacts. Possible coeval sedimentary rocks associated with crustal rifting are restricted to a few scattered, isolated exposures of a mineralogically variable group of meta-quartzites (Meers Quartzite). Typically these outcrops of meta-quartzite are of limited areal extent and are surrounded by either gabbro, granite, rhyolite or a combination of these rock types. However, the origin of both the hybrid rock types and the Meers Quartzite remains enigmatic because outcrops containing complete and clear contact relationships are extremely rare. At present, direct testing of models is difficult as complete exposure of contacts between these units is extremely rare due to deposition of younger sedimentary units and severe degradation by weathering. Poor condition of existing samples has hampered geochemical and other petrologic methods in evaluating models. Four potential drilling sites have been selected where critical contacts between major geologic units are interpreted to be present in the shallow subsurface (<300 ft.). Objectives of drilling are (1) direct observation of contacts between rock units by retrieval of a complete core sample from the drill hole, (2) retrieval of freshest possible rock material for petrographic and geochemical analysis and (3) retrieval of a complete transect beginning in Mount Scott Granite or Meers Quartzite across the hybrid rock zone and into the substrate gabbro to document variations associated with the transition.

  20. Geochemical characteristics of hydrous basaltic magmas due to assimilation and fractional crystallization: the Ikoma gabbroic complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Koizumi, N.; Okudaira, T.; Ogawa, D.; Yamashita, K.; Suda, Y.

    2016-10-01

    To clarify the processes that occur in hydrous basaltic magma chambers, we have undertaken detailed petrological and geochemical analyses of mafic and intermediate rocks from the Ikoma gabbroic complex, southwest Japan. The complex consists mainly of hornblende gabbros, hornblende gabbronorites, and hornblende leucogabbros. The hornblende leucogabbros are characterized by low TiO2 and high CaO contents, whereas the hornblende gabbronorites have high TiO2 and low CaO contents. The initial 87Sr/86Sr ratios (SrI) of the hornblende gabbronorites and hornblende gabbros are higher than those of the hornblende leucogabbros and plagioclase, and they may have resulted from a higher degree of assimilation of metasediments. The geochemical features of the hornblende leucogabbros and hornblende gabbronorites can be explained by accumulation of plagioclase and ilmenite, respectively, in a hybrid magma that formed by chemical interaction between mafic magma and metasediment, whereas the hornblende gabbros were produced by a high degree of crustal assimilation and fractional crystallization of this hybrid magma. As a result of the density differences between crystals and melt, the Ikoma gabbroic rocks formed by the accumulation of plagioclase in the middle of the magma chamber and by the accumulation of ilmenite in the bottom of the chamber. Taking into account the subsequent assimilation and fractional crystallization, our observations suggest an enriched mantle (SrI = ~0.7071) as the source material for the Ikoma gabbros.

  1. Late orogenic mafic magmatism in the North Cascades, Washington: Petrology and tectonic setting of the Skymo layered intrusion

    USGS Publications Warehouse

    Whitney, D.L.; Tepper, J.H.; Hirschmann, M.M.; Hurlow, H.A.

    2008-01-01

    The Skymo Complex in the North Cascades, Washington, is a layered mafic intrusion within the Ross Lake fault zone, a major orogen-parallel structure at the eastern margin of the Cascades crystalline core. The complex is composed dominantly of troctolite and gabbro, both with inclusions of primitive olivine gabbro. Low-pressure minerals in the metasedimentary contact aureole and early crystallization of olivine + plagioclase in the mafic rocks indicate the intrusion was emplaced at shallow depths (<12 km). The Skymo rocks have trace-element characteristics of arc magmas, but the association of Mg-rich olivine (Fo88-80) with relatively sodic plagioclase (An75-60) and the Al/Ti ratios of clinopyroxene are atypical of arc gabbros and more characteristic of rift-related gabbros. A Sm-Nd isochron indicates crystallization in the early Tertiary (ca. 50 Ma), coeval with the nearby Golden Horn alkaline granite. Mantle melting to produce Skymo magma likely occurred in a mantle wedge with a long history of arc magmatism. The Skymo mafic complex and the Golden Horn granite were emplaced during regional extension and collapse of the North Cascades orogen and represent the end of large-scale magmatism in the North Cascades continental arc. ?? 2008 Geological Society of America.

  2. In Situ California Bearing Ration Database

    DTIC Science & Technology

    2007-10-01

    Engelen and Wen (1995) include: I Igneous rock IA Acid Igneous IA1 Granite IA2 Grano- Diorite IA3 Quartz- Diorite IA4 Rhyolite...II Intermediate Igneous II1 Andesite, Trachyte, Phonolite II2 Diorite -Syenite IB Basic Igneous IB1 Gabbro IB2 Basalt IB3

  3. Influence of water on rheology and strain localization in the lower continental crust

    NASA Astrophysics Data System (ADS)

    Getsinger, A. J.; Hirth, G.; Stünitz, H.; Goergen, E. T.

    2013-07-01

    We investigated deformation processes within a lower crustal shear zone exposed in gabbros from Arnøya, Norway. Over a distance of ˜1 m, the gabbro progresses from nominally undeformed to highly sheared where it is adjacent to a hydrous pegmatite. With increasing proximity to the pegmatite, there is a significant increase in the abundance of amphibole and zoisite (which form at the expense of pyroxene and calcic plagioclase) and a slight increase in the strength of plagioclase lattice-preferred orientation, but there is little change in recrystallized plagioclase grain size. Phase diagrams, the presence of hydrous reaction products, and deformation mechanism maps all indicate that the water activity (aH2O) during deformation must have been high (˜1) in the sheared gabbro compared with the nonhydrated, surrounding host gabbro. These observations indicate that fluid intrusion into mafic lower crust initiates syn-deformational, water-consuming reactions, creating a rheological contrast between wet and dry lithologies that promote strain localization. Thus, deformation of lower continental crust can be accommodated in highly localized zones of enhanced fluid infiltration. These results provide an example of how fluid weakens lower continental crust lithologies at high pressures and temperatures.

  4. Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Yi, Sang-Bong; Oh, Chang Whan; Lee, Seung-Yeol; Choi, Seon-Gyu; Kim, Taesung; Yi, Keewook

    2016-03-01

    Triassic coeval mafic and intermediate magmatism occurred in the area suggested to be the southern margin of the North China Craton (NCC) in the Gyeonggi Massif (GM) of the Korean Peninsula. This study investigates aspects of the mafic and intermediate magmatism using SHRIMP zircon ages and whole-rock chemical and isotopic Sr-Nd data. The mafic and intermediate rocks intruded into a basement paragneiss in three areas (Yangpyeong, Odesan and Yangyang) within the GM at ca. 230 Ma. The paragneiss was metamorphosed in both the Paleoproterozoic and Triassic. Gabbros (hornblende gabbro and pyroxene-mica gabbro) from the study areas exhibit strong light REE (LREE) enrichment relative to chondrite (LaN/YbN = 11.1-30.6) and a high LILE/HFSE pattern, Ta-Nb-P-Ti troughs and positive Ba-K-Pb-Sr spikes on the N-MORB-normalized multi-element variation diagram. These features are typical characteristics of arc-related gabbros. The gabbros also show strongly enriched initial isotopic compositions (87Sr/86Sr(i) = 0.7100-0.7137; εNd(t) = - 13.1 to - 19.7). The coeval intermediate intrusive rocks also exhibit whole-rock chemical and isotopic features (87Sr/86Sr(i) = 0.7099-0.7143; εNd(t) = - 10.8 to - 18.6) similar to those of the gabbros. The mafic and intermediate intrusive rocks plot in the within-plate and/or post-collisional fields on tectonic discrimination diagrams. These data indicate that the mafic and intermediate magmatism in the study areas occurred during the Triassic post-collisional relaxation period via partial melting of sub-continental lithospheric mantle (SCLM) that was enriched in a subduction environment prior to (or during) the Permo-Triassic continental collision between the NCC and the South China Craton (SCC). The highly enriched mantle signatures revealed by the gabbros from the study areas are matched to the enriched features identified in Cretaceous mafic igneous rocks (ca. 130 Ma) on the southern margin of the NCC. Thus, this study suggests that the

  5. Geology and petrology of the plutonic complexes in the Wadi Fizh area: Multiple magmatic events and segment structure in the northern Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiko; Miyashita, Sumio

    2003-09-01

    Multiple magmatic events are recorded in the gabbroic unit in the Fizh area of the northern Oman ophiolite. Gabbroic blocks intruded by sheeted dike complex and upper gabbros of the main crustal sequence show the oldest event. Gabbronorite sills in the gabbroic blocks are nearly coeval with the host gabbro. Wehrlitic intrusions (wehrlite I) mark the third event of magmatism. These three magmatic events occurred at the retreating (dying) ridge axis because all these rocks are intruded by dolerite dike swarm, which is generally regarded as a precursor of advancing ridge axis. The next stage of magmatism is a main phase of oceanic crust generation in this area. Wehrlite II and then gabbronorite dikes intrude the still hot main gabbro unit. All of these above rocks have similar signatures with respect to clinopyroxene compositions and covariations between plagioclase and mafic minerals, though slight differences are present in the compositional ranges and clinopyroxene compositions of each unit. After considerable cooling of the main gabbro unit, primitive basalt dikes intrude the main gabbro unit, which may correspond to the Lasail unit. Finally, the Fizh-South complex intrudes into considerably cooled crustal sequence, being below the brittle-plastic transition temperatures. The Fizh-South complex, which was regarded as a common wehrlitic intrusion, is significantly different from all of the above mentioned rocks, with respect to the covariation between plagioclase and associating mafic minerals, crystallization order, and clinopyroxene compositions. The clinopyroxenes are characterized by extremely low Ti and Na contents, comparable with those of the V2 unit (Alley volcanics), suggesting that the Fizh-South complex correlates with the plutonic facies of the V2 unit during arc stage. Layered gabbros in the Wadi Zabin area, about 10 km north of the Fizh area, may be a northern extension of the gabbro blocks of the Fizh area, because they are intruded by numerous

  6. Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.; Hirth, G.; Kelemen, P. B.

    2015-10-01

    Oceanic crust represents more than 60% of the earth's surface and despite a large body of knowledge regarding the formation and chemistry of the extrusive upper oceanic crust, there still remains significant debate over how the intrusive gabbroic lower oceanic crust is accreted at the ridge axis. The two proposed end-member models, the Gabbro Glacier and the Sheeted Sills, predict radically different strain accumulation in the lower crust during accretion. In order to determine which of these two hypotheses is most applicable to a well-studied lower crustal section, we present data on plagioclase lattice preferred orientations (LPO) in the Wadi Khafifah section of the Samail ophiolite. We observe no systematic change in the strength of the plagioclase LPO with height above the crust-mantle transition, no dominant orientation of the plagioclase a-axis lineation, and no systematic change in the obliquity of the plagioclase LPO with respect to the modal layering and macroscopic foliation evident in outcrop. These observations are most consistent with the Sheeted Sills hypothesis, in which gabbros are crystallized in situ and fabrics are dominated by compaction and localized extension rather than by systematically increasing shear strain with increasing depth in a Gabbro Glacier. Our data support the hypothesis of MacLeod and Yaouancq (2000) that the rotation of the outcrop-scale layering from sub-horizontal in the layered gabbros to sub-vertical near the sheeted dikes is due to rapid vertical melt migration through upper gabbros close to the axial magma chamber. Additionally, our results support the hypothesis that the majority of extensional strain in fast spreading ridges is accommodated in partially molten regions at the ridge axis, whereas in slow and ultra-slow ridges large shear strains are accommodated by plastic deformation.

  7. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.

    2016-05-01

    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the

  8. Decoupling of Serpentinization and Prehnitization in Lower East Pacific Rise Crust at Hess Dee

    NASA Astrophysics Data System (ADS)

    Deasy, R. T.; Wintsch, R. P.; Meyer, R.; Bish, D. L.; Gasaway, C.; Heimdal, T.

    2014-12-01

    Our down-hole mineralogical and geochemical analyses from the East Pacific Rise fast-spreading lower oceanic crust indicate that alteration of olivine to serpentine and of plagioclase to prehnite were independent, and neither alone monitors the total "alteration." The results are based on representative channel sub-samples recovered from every Hole J core during IODP Expedition 345 to the Hess Deep tectonic window. Samples have been analyzed for trace element, Sr isotopic, and quantitative mineralogical compositions (the latter by Rietveld refinement using X-ray diffraction data). Hole J is the most representative rock succession drilled at the Hess Deep as it penetrated the two principle plutonic lithologies: an upper gabbro and a lower troctolite. Units are significantly distinguished by XRD modal mineralogy and trace element abundances. The more heterogeneous gabbro contains 23-32 wt% clinopyroxene (cpx), 34-54 wt% plagioclase (plag), and <4 wt% olivine (ol). The troctolite contains 3-11% cpx, 14-36% plag, and ≤6% ol. Alteration minerals comprise together 18-31% in the gabbro versus 55-80% of the troctolite. The most abundant alteration products are prehnite and chlorite. Gabbro samples with lowest abundances of alteration minerals (18-20 wt%) preserve 87Sr/86Sr ratios (0.70275-0.7028) consistent with unaltered mantle. The abundance of plag in the gabbro, the major host for Sr, suggests retention of mantle Sr isotopic compositions there is due to the large reservoir of magmatic Sr. 87Sr/86Sr ratios of 0.70300-0.70342 in the troctolite samples indicate seawater interaction, even where olivine is most abundant, and serpentine is at or below the ~1% detection limit by XRD. Significant alteration of the deep crust by seawater thus predates the first appearance of serpentine. These data suggest that the timing and operation of prehnite- and serpentine-producing alteration reactions are independent.

  9. The Igneous Architecture of IODP Hole U1309D: Constructing Oceanic Crust from Multiple Sills

    NASA Astrophysics Data System (ADS)

    Christofferson, C. A.; John, B. E.; Cheadle, M. J.; Swapp, S. M.; Grimes, C. B.

    2010-12-01

    Gabbroic rocks comprise a significant portion of the footwall of many oceanic core complexes. The decreasing age of these gabbros from the breakaway to the termination suggests that they are continuously accreted as the bounding detachment fault slips. But, questions remain; how are these large (>1 km diameter) gabbroic bodies constructed and at what scale and frequency is melt added to the system? Here we report a detailed lithologic analysis of IODP Hole U1309D drilled into the Atlantis Massif core complex (30° N, MAR). We present new, high resolution (1m scale) downhole lithological diagrams, compiled from observations of the archive core, refined using other available data including magnetic susceptibility. These data show that the thickness of the individual magmatic units is on the order of 1 to a few 10’s of m. Contacts between many of these units are sharp; many of the units are interpreted to result from small injections of melt as opposed to in-situ fractionation. However, these units are often disaggregated by later intrusive bodies and hence, it is likely that individual gabbro units were initially somewhat thicker. Downhole plots of magmatic fabric dip from both shipboard data and new electron backscatter diffraction (EBSD) data are consistent with the units having initially been intruded as sills, and subsequently rotated by ~40-50°, as constrained by paleomagnetic data (Morris et al., 2009). Using all of the available data, we propose the IODP Hole 1309D gabbro section is a composite body that grew episodically by relatively small (10’s m) repeated sill-like injections of melt. We conclude that the melt lens that formed these gabbros was relatively small at any one time. The EBSD data also provide textural constraints on the model for crustal accretion. Gabbroic samples analyzed so far show a moderate to weak plagioclase and clinopyroxene foliation, similar to those in continental mafic intrusions and are thus interpreted to be magmatic fabrics

  10. Physical Properties of Samples Cored From Atlantis Oceanic Core Complex, Mid-Atlantic Ridge 30 N

    NASA Astrophysics Data System (ADS)

    Searle, R.; Blackman, D.; Karner, G.; Harris, A.; Frost, R.

    2005-12-01

    IODP expedition 304/305 penetrated 1415 m into Atlantis Oceanic Core Complex, in 1.5 - 2.0 My crust, 12 km W of the Mid-Atlantic Ridge axis. Bulk magnetic susceptibility (MS), non-contact resistivity (NCR), P-wave velocity (Vp), bulk density, porosity and thermal properties were measured on recovered samples of peridotite, olivine-rich troctolite, olivine gabbro, gabbro, oxide gabbro, diabase and basalt. The most variable properties were MS and NCR, which were highly correlated, implying that the same minerals carry each signal, most likely Fe-Ti oxides such as magnetite and ilmenite and possibly minor sulfides. MS generally increased with iron content and decreased in intervals where magnetite had altered to ilmenite in diabase. High MS tends to concentrate in narrow bands and correlates with oxide- and sulfide-bearing gabbros and serpentinized zones (reflecting magnetite production during alteration). It exceeds 0.00001 SI in some oxide gabbros, equivalent to 8% magnetite by volume. MS is thus a valuable aid for mapping zones of oxide injection and serpentinization or other alteration and for stratigraphic correlation between holes. Core sample Vp is generally constant at about 5.5 km/s to 350 mbsf, increases to around 6.0 km/s at 450 mbsf and maintains this value to 750 mbsf, below which there is a steady decrease to about 5.8 km/s at 1200 mbsf, then a sharper decrease to 5.5 km/s at the bottom of the hole. The initial increase may be caused by closing cracks. The 10% decrease from 750 mbsf is a surprise: it may be real or perhaps due to overburden stress release. However, there is no corresponding reduction in bulk density with depth to indicate microscopic cracking during recovery. The final sharp decrease may reflect progressively increasing alteration. The largest local Vp variations are associated with massive olivine gabbros and troctolitic gabbros. A minimum between 300 and 350 mbsf reflects a zone of serpentinization. There is no significant seismic

  11. Bi-cycles petrographic association in middle part of East Pana PGE layers deposit

    NASA Astrophysics Data System (ADS)

    Asavin, Alex; Veksler, Ilya; Gorbunov, Artem

    2016-04-01

    The PGE mineralization in the East Pana layered gabbroic intrusion forms three discrete layers at different stratigraphic levels, which are traditionally labeled as zones A, B and C. In order to investigate possible relationships of mineralization with magmatic layering we sampled a 120 m long drill core section across zone B in the middle part of the intrusion and carried out detailed petrographic, mineralogical and geochemical studies of the samples. The ore zone is located in medial part of the of East's Pana deposite. The samples represent mainly from a layered sequence of gabbro and gabbro-norite. This zone is composed of interlayers of gabbroic sequences and gabbro-norite of various color, with different structures and different relationship of rock-forming minerals of Ol-Opx-Cpx-Pl. We studied one of key's drill-hole section of ore zone, in which is located two ore horizons. Fundamental feature layered intrusions are presence in cross-section cycles includes of stable petrographic association. In section of ore zone it is possible to select two most contrast petrographic types. Whole-rock analyses and petrographic observations reveal two units of modal layering comprising, from bottom to top, melanocratic gabbro grading upwards into mesocratic gabbro and gabbro-norite overlain by pegmatoidal, gabbroic rock with has sharp footwall and hanging wall contacts.There is also an olivine-bearing gabbro at the bottom of the lower unit. The ore horizons are located in same gabbro-norite type rock. The ore horizons are located in same gabbro-norite type part. The second upper ore zone located in more differential species types. There is the common trend of system evolution of well distinguished on triangle of Ol-Pl-Di, Ol-Pl-Q and other. However composition of the rocks in the two parts of our section show us similar, but independent trends. For example on diagram differentiation of rocks composition, with normative content of anorthite on the X axis, trends of

  12. Crustal Heterogeneity and Stratigraphy on the Mid-Atlantic Ridge at 16°-17°N

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Smith, D. K.; Cann, J. R.; Schouten, H.; Marschall, H.; Parnell-Turner, R. E.; Yoerger, D.

    2013-12-01

    RV Knorr Cruise 210, Leg 5 conducted bathymetric, dredging and AUV surveys of a series of detachment faults along an ~120 km stretch of the MAR focused on the neovolcanic zone and western rift mountains from 16° to 17°N. Two major complexes, located to the north and south respectively, and an intervening smaller complex were studied. These complexes generally crested at and often were connected by linear back-tilted volcanic ridges that constituted breakaway zones. While bathymetrically very similar at first order, the southern complex is flanked by a large axial neovolcanic high, while a deep axial rift flanks the northern complex. Mantle peridotite, gabbro, dikes and pillow lavas were dredged at these complexes, but in entirely different proportions. Fresh or weathered pillow basalt was overall the most abundant rock dredged, both from outcrops at the crests of the core complexes and as hanging wall debris on fault surfaces. Other than extrusives, intermingled peridotite and gabbro, including high-temperature mylonites, were abundant at the northern complex with only minor diabase. Peridotite was abundant, with subordinate diabase at the central core complex, while gabbro was largely absent. At the southern complex abundant greenschist facies diabase was recovered along with minor peridotite, but again gabbro was absent. Moreover, greenschist facies pillow basalts and pillow breccias, while common in the south, were absent to the north. These results may seem counter-intuitive, as the detachment faulting in the south rooting beneath a robust magma center might be expected to expose abundant gabbro, while the opposite might seem likely to the north. However, the scarcity of dike rock and greenschist pillow lavas to the north, together with an abundance of peridotites and intermingled gabbros should be expected exposed from beneath a deep magma-poor rift. This is consistent with a crust consisting of a veneer of pillow lavas overlying scattered dikes and

  13. Monitoring of reforested areas using LANDSAT data. [Ribas do Rio Pardo, Mato Grosso do Sul, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.

    1981-01-01

    Imagery obtained with channels 5 and 7 was visually interpreted in an effort to determine the spatial, spectral, and temporal characteristics of a 105,000 hectare area of Fazenda Mutum which was reforested with various species of pine and eucalyptus. It was possible to map a reforested area as small as 6 hectare in its initial implantation using contrast with the surrounding targets. Five classes were mapped: nondeforested areas, partially deforested areas, deforested areas, partially reforested areas, and fully reforested areas. In 1979, 12,000 hectare were deforested, 4,330.83 hectare were partially reforested, and 42,744.71 hectare were reforested.

  14. ESR dating of teeth from Brazilian megafauna

    NASA Astrophysics Data System (ADS)

    Oliveira, L. C.; Kinoshita, A.; Barreto, A. M. F.; Figueiredo, A. M.; Silva, J. L. L.; Baffa, O.

    2010-11-01

    The study of radiation defects created in biomaterials, such as bone and teeth, can be used in dating with importance to palaeontology and archaeology. Two Stegomastodon teeth (AL1 and AL2) from north-eastern Brazilian megafauna were studied by electron spin resonance (ESR) spectroscopy. The samples were collected in Fazenda Ovo da Ema, (913349 / 3714965) UTM, Alagoas state, Brazil. The dating of these samples can contribute to the better knowledge of megafauna presence in this region as well as to the events associated to the extinction of these species.

  15. An evolved axial melt lens in the Northern Ibra Valley, Southern Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Loocke, M. P.; Lissenberg, C. J.; MacLeod, C. J.

    2014-12-01

    The axial melt lens (AML) is a common feature lying at the base of the upper crust at fast-spreading mid-ocean ridges. It is thought to play a major role in the evolution of MORB and, potentially, accretion of the plutonic lower crust. In order to better understand the petrological processes that operate in AMLs we have examined the nature and variability of the horizon equivalent to the AML preserved in the Oman ophiolite. We present the results of a detailed investigation of a section east of Fahrah in the Ibra Valley. Here, a suite of 'varitextured' gabbros separates the sheeted dykes above from foliated gabbros below. It comprises 3 distinct units: an ophitic gabbro with pegmatitic patches (patchy gabbro; 70 m thick), overlain by a spotty gabbro (50 m), capped by a quartz-diorite (120 m). The sheeted dykes are observed to root in the quartz-diorite. Contacts between the plutonic units are gradational and subhorizontal. All of the units are isotropic. A total of 110 samples were collected for detailed petrographic and chemical analysis. With the exception of a small number of the diorites, all of the samples have a 'cumulate' component. Primary igneous amphibole is ubiquitous, present even as a minor phase in the foliated gabbros beneath, and indicating extensive differentiation and/or the presence of water in the primary liquid. France et al. (2014, Lithos) report patches of granoblastic material from this horizon in the Fahrah area, and suggest they represent the restites of partially melted pieces of the sheeted dykes. We did not, however, find any such granoblastic material, nor can the quartz-diorites represent partial melt; instead, preliminary geochemical modeling suggests that all of the units can be related by simple progressive fractional crystallization of an Oman axial ('V1' or 'Geotimes') melt. Along with the field relationships, as well as the basaltic andesite to dacite composition of the overlying sheeted dykes, this suggests that the AML was the

  16. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman

    PubMed Central

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M.; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S.

    2017-01-01

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3-, SO42-, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the

  17. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman.

    PubMed

    Rempfert, Kaitlin R; Miller, Hannah M; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S

    2017-01-01

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite ("gabbro," "alkaline peridotite," "hyperalkaline peridotite," and "gabbro/peridotite contact") that vary strongly in pH and the concentrations of H2, CH4, Ca(2+), Mg(2+), [Formula: see text], [Formula: see text], trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation

  18. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman

    DOE PAGES

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; ...

    2017-02-07

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and

  19. Laser /39/Ar-/40/Ar dating of two clasts from consortium breccia 73215

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.; Schaeffer, O. A.; James, O. B.; Mueller, H. W.

    1978-01-01

    A laser Ar-39-Ar-40 study of the components of an ANT-suite anorthositic gabbro and a black aphanite from a consortium breccia is reported. A wide range of K-Ar ages is found for the plagioclase in the anorthositic gabbro; at the centers of the largest grains is material showing the greatest age (older than 4.11 billion years) while the youngest material (3.81-3.88 billion years) is found near the grain margins. Partial outgassing of the clasts upon incorporation into the breccia could account for the age patterns. The black aphanite clast appears to be cogenetic with the aphanite that forms the breccia matrix. The time of crystallization of a lunar granite has also been measured by the laser technique.

  20. Origin and modal petrography of Luna 24 soils

    NASA Technical Reports Server (NTRS)

    Basu, A.; Mckay, D. S.; Fruland, R. M.

    1978-01-01

    Petrographic modal analyses of polished grain mounts of fractions in the 20 to 250 micron size range from Luna 24 soil samples are presented and used to infer the nature and relative contributions of source rocks. It is found that more than 90% of the identifiable rock fragments are mare basalts, with about 11% of the soil consisting of the crystalline form. Soil breccias, which make up nearly 10% of the soil, are found to be immature. Electron probe analysis of glass particles reveals principle clusters conforming to anorthosite, anorthositic gabbro and mare basalts. More than half of the soil is composed of monomineralic particles, with pyroxene as the most abundant mineral. It is concluded that 85% of the regolith is derived from local mare basalts and gabbros and about 10% is derived from early cumulates of local mare basalt magma. Highland sources are considered to contribute not more than 3% of the regolith.

  1. Results from the Apollo passive seismic experiment

    NASA Technical Reports Server (NTRS)

    Latham, G.; Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.

    1977-01-01

    Recent results from the Apollo Seismic Network suggest that primitive differentiation occurred in the outer shell of the moon to a depth of approximately 300 km and the central region of the moon is presently molten to a radius of between 200 and 300 km. If early melting to a depth of 300 to 400 km was a consequence of accretional energy, very short accretion times are required. It was shown that the best model for the zone of original differentiation is a crust 40 to 80 km thick, ranging in composition from anorthositic gabbro to gabbro, and overlying an ultramafic cumulate about 250 km thick. The best candidate for the molten core appears to be iron or iron sulphide. A new class of seismic signals recently were identified that may correspond to shallow moonquakes. These are rare, but much more energetic than the more numerous, deep moonquakes.

  2. Luna 24 - Mineral chemistry of 90-150 micron clasts

    NASA Technical Reports Server (NTRS)

    Meyer, H. O. A.; Hwang, J.-Y.; Mccallister, R. H.

    1978-01-01

    The mineralogy, composition and source relations of monomineralic clasts in the size range 0.09 to 0.15 mm have been studied for seven grain mounts from the Luna 24 core, obtained in Mare Crisium. One of the core horizons, which showed the greatest number of mafic mineral clasts, apparently represents a less reworked level or one which received a greater average influx of gabbroic and/or basaltic ejecta. Most of the mafic minerals in the core were probably derived from the comminution of clasts of very low titanium basalts and/or gabbros. A small number of mineral clasts may have originated from a Mg-rich gabbro. A mixture of local mare basalts and ejecta from Fahrenheit crater probably makes up most of the regolith at the Luna 24 site.

  3. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel

    NASA Astrophysics Data System (ADS)

    Lemoine, Marcel; Tricart, Pierre; Boillot, Gilbert

    1987-07-01

    The ophiolites of the Alps, of Corsica, and of the Apennines, which originate from the basement of the Ligurian segment of the Mesozoic Tethys ocean, are not consistent with the classical mid-ocean ridge spreading models; neither a continuous and thick basaltic layer nor a true sheeted-dike complex ever existed. The first oceanic floor that appeared between the divergent European and Apulian passive margins was made up of mantle-derived serpentinite and associated minor gabbro bodies; some of the ocean-floor gabbros were already foliated and metamorphosed to amphibolite facies. To explain these features, we suggest use of the model of Wernicke, which postulates a major, oblique, normal detachment fault that cuts across the lithosphere. The model explains some asymmetrical features on both sides of the preoceanic continental rift. An increase of the offset of the detachment fault may lead to the tectonic denudation of the upper mantle and thus give birth to an ultramafic ocean floor.

  4. Petrology of lunar rocks from the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Pavlenko, A. S.; Tarasov, L. S.; Shevaleyevskiy, I. D.; Ivanov, A. V.

    1974-01-01

    Based on a comparative analysis of the petrochemistry of an integrated sample of gabbro basalts and a fine fraction from regolith returned by Luna 16 automatic station from the Sea of Fertility, with the mean compositions of various types of mare basalts, anorthosites, and regolith from the Sea of Tranquillity and the Ocean of Storms, with reference to several data on rare elements, the nature of the fine fractions is discussed. It is shown that the integrated sample of gabbro basalt from the coarse fraction in the lower part of the core can be represented as a mixture of mare basalts of the Sea of Tranquillity and nonmare basalts of the krip type in the ratio of about 3 to 2. It is confirmed that the compositions of the Apollo 11 and Apollo 12 regolith are complementary with the compositions of basalts and anorthosites of the Sea of Tranquillity and the Ocean of Storms.

  5. Compositions of Normal and Anomalous Eucrite-Type Mafic Achondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Mertzman, S. A.

    2016-01-01

    The most common asteroidal igneous meteorites are eucrite-type mafic achondrites - basalts and gabbros composed of ferroan pigeonite, ferroan augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites. However, high precision O-isotopic analyses have shown that some mafic achondrites have small, well-resolved, non-mass-dependent differences that have been interpreted as indicating derivation from different asteroids. Some of these O-anomalous mafic achondrites also have anomalous petrologic characteristics, strengthening the case that they hail from distinct parent asteroids. We present the results of bulk compositional studies of a suite of normal and anomalous eucrite-type basalts and cumulate gabbros.

  6. Petrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, California

    USGS Publications Warehouse

    Wilshire, H.G.; McGuire, A.V.; Noller, J.S.; Turrin, B.D.

    1991-01-01

    Basaltic rocks of the Cima Volcanic Field in the southern Basin and Range province contain abundant gabbro, pyroxenite, and peridotite xenoliths. Composite xenoliths containing two or more rock types show that upper-mantle spinel peridotite was enriched by multiple dike intrusions in at least three episodes; the mantle was further enriched by intergranular and shear-zone melt infiltration in at least two episodes. Because of their high densities, the gabbros and pyroxenites can occupy the zone immediately above the present Moho (modeled on seismic data as 10-13 km thick, with Vp 6.8 km/s) only if their seismic velocities are reduced by the joints, partial melts, and fluid inclusions that occur in them. Alternatively, these xenoliths may have been derived entirely from beneath the Moho, in which case the Moho is not the local crust-mantle boundary. -from Authors

  7. Results from the Apollo passive seismic experiment

    NASA Technical Reports Server (NTRS)

    Lathum, G.; Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.

    1974-01-01

    Recent results from the Apollo seismic network suggest that primitive differentiation occurred in the outer shell of the moon to a depth of approximately 300 km; and the central region of the moon is presently molten to a radius of between 200 and 300 km. If early melting to a depth of 300 to 400 km was a consequence of accretional energy, very short accretion times are required. The best model for the zone of original differentiation appears to be a crust 40 to 80 km thick, ranging in composition from anorthositic gabbro to gabbro; overlying an ultramafic cumulate (olivine-pyroxene) about 250 km thick. The best candidate for the molten core appears to be iron or iron sulphide. A new class of seismic signals has recently been identified that may correspond to shallow moonquakes. These are rare, but much more energetic than the more numerous, deep moonquakes.

  8. Zircon coronas around Fe-Ti oxides: a physical reference frame for metamorphic and metasomatic reactions

    NASA Astrophysics Data System (ADS)

    Austrheim, Håkon; Putnis, Christine V.; Engvik, Ane K.; Putnis, Andrew

    2008-10-01

    Ilmenite in coronitic gabbros from the Bamble and Kongsberg sectors, southern Norway, is surrounded by zircons ranging in diameters from a fraction of a micrometer to 10 μm across. The zircons are inert during subsequent metamorphism (amphibolite- to pumpellyite-prehnite facies) and metasomatism (scapolitization and albitization) and can be found as trails in silicates (phlogopite, talc, chlorite, amphibole, albite, and tourmaline) in the altered rocks. The trails link up to form polygons outlining the former oxide grain boundary. This 3-dimensional framework of zircons is used to (a) recognize metasomatic origin of rocks, (b) quantify the mobility of elements during mineral replacement, (c) establish the growth direction of reaction fronts and to identify the reaction mechanism as dissolution-reprecipitation. Zircon coronas on Fe-Ti oxides have been described from a number of terrains and appear to be common in mafic rocks (gabbros and granulites) providing a tool for a better understanding of metasomatic and metamorphic reactions.

  9. Alpine-type sensu strictu(ophiolitic) peridotites: Refractory residues from partial melting or igneous sediments? A contribution to the discussion of the paper: "The origin of ultramafic and ultrabasic rocks" by P.J. Wyllie

    USGS Publications Warehouse

    Thayer, T.P.

    1969-01-01

    Although Alpine peridotites and basaltic lavas are widely associated in eugeosynclines and oceanic areas, their genetic ties are obscure. Three major characteristics of olivine-rich Alpine peridotite and dunite-relict cumulus textures, aggregated masses of chromitite, and intimate association with magnesium-rich gabbro - cannot be explained by partial melting of garnet peridotite to form tholeiite. Association of magnesium-rich gabbro with the chromite-bearing and so-called high-temperature Alpine peridotites is believed to present problems that have not been considered by advocates of the partial-melting hypothesis. The chromite-bearing Alpine peridotites and related feldspathic rocks are believed to have formed near the top of the mantle by gravitational differentiation processes which are largely independent of the melting processes that produce basaltic magma at depths of 50 km or more. ?? 1969.

  10. The relationships between geology and soil chemistry at the Apollo 17 landing site

    NASA Technical Reports Server (NTRS)

    Rhodes, J. M.; Rodgers, K. V.; Bansal, B. M.; Wiesmann, H.; Shih, C.; Nyquist, L. E.; Hubbard, N. J.

    1974-01-01

    Within the wide compositional range of the Apollo 17 soils, three distinct chemical groups have been recognized, each one corresponding broadly with a major geological and physiographic unit. These groups are: (1) Valley Floor type soils, (2) South Massif type soils, and (3) North Massif type soils. The observed chemical variations within and between these three groups is interpreted by means of mixing models in terms of lateral transport and mixing of prevailing local rock types, such as high-titanium basalts, KREEP-like noritic breccias, anorthositic gabbro breccias and orange glass. According to these models, North Nassif types evolved on the lower slopes of the North Massif and Sculptured Hills where anorthositic gabbro predominates over noritic breccia and where lateral mixing with basalt is effective, whereas the South Massif type soils originally developed on the upper slopes of the South Massif, where anorthositic breccia and noritic breccias are equally abundant, and where lateral mixing with basalt was minimal.

  11. Velocities of southern Basin and Range xenoliths: insights on the nature of lower crustal reflectivity and composistion

    USGS Publications Warehouse

    Parsons, Thomas E.; Christensen, Nikolas I.; Wilshire, Howard G.

    1995-01-01

    To reconcile differences between the assessments of crustal composition in the southern Basin and Range province on the basis of seismic refraction and reflection data and lower-crustal xenoliths, we measured velocities of xenoliths from the Cima volcanic field in southern California. Lower-crustal samples studied included gabbro, microgabbro, and pyroxenite. We find that the mafic xenolith velocities are compatible with regional in situ measurements from seismic refraction studies, provided that a mixture of gabbro and pyroxenite is present in the lower crust. Supporting this model are observations that many of the lower-crustal xenoliths from the Cima volcanic field are composites of these rock types, with igneous contacts. Vertical incidence synthetic seismograms show that a gabbroic lower crust with occasional pyroxenite layering can produce a reflective lower crust that is similar in texture to that shown by seismic reflection data recorded nearby.

  12. AFBC bed material performance with low-rank coals

    SciTech Connect

    Goblirsch, G.M.; Benson, S.A.; Karner, F.R.; Rindt, D.K.; Hajicek, D.R.

    1983-01-01

    The purpose of this paper is to describe the reasons for carefully screening any candidate bed material for use in low-rank coal atmospheric fluidized-bed combustion, before the final selection is made. The sections of this paper describe: (1) the experimental equipment used to obtain the data, as well as the experimental and analytical procedures used in evaluation; (2) the results of tests utilizing various bed materials with particular emphasis on the problem of bed material agglomeration; and (3) the conclusions and recommendations for bed material selection and control for use with low-rank coal. Bed materials of aluminum oxide, quartz, limestone, dolomite, granite, gabbro, and mixtures of some of these materials have been used in the testing. Of these materials, gabbro appears most suitable for use with high available sodium lignites. 17 figures, 8 tables. (DMC)

  13. Magnetism of the oceanic crust: Evidence from ophiolite complexes

    SciTech Connect

    Banerjee, S.K.

    1980-07-10

    The magnetic properties of six ophiolite complexes from around the world, ranging in age from Jurassic to Miocene, are presented. An emphasis is placed in our study on the petrologic and isotopic data from these ophiolite complexes in order to determine first whether the rock samples presently available represent the pristine ocean crust or whether they have been altered subaerially since their formation. Five of the ophiolites are found to be acceptable, and the conclusion is overwhelmingly in favor of a marine magnetic source layer that includes not only the pillow lavas but also the underlying dikes and gabbro. At the moment, however, our observations do not suggest that the magnetic contributions of the basaltic dikes should be overlooked in favor of gabbro. A second important conclusion is that nearly pure magnetite could indeed be a magnetic carrier which contributes to marine magnetic anomanies. It only awaits discovery by deeper ocean crustal penetration by future Deep Sea Drilling Project legs.

  14. Mesosiderite clasts with the most extreme positive europium anomalies among solar system rocks

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Rubin, Alan E.; Davis, Andrew M.

    1992-01-01

    Pigeonite-plagioclase gabbros that occur as clasts in mesosiderites (brecciated stony-iron meteorites) show extreme fractionations of the rare-earth elements (REEs) with larger positive europium anomalies than any previously known for igneous rocks from the earth, moon, or meteorite parent bodies and greater depletions of light REEs relative to heavy REEs than known for comparable cumulate gabbros. The REE pattern for merrillite in one of these clasts is depleted in light REEs and has a large positive europium anomaly as a result of metamorphic equilibration with the silicates. The extreme REE ratios exhibited by the mesosiderite clasts demonstrate that multistage igneous processes must have occurred on some asteroids in the early solar system. Melting of the crust by large-scale impacts or electrical induction from an early T-Tauri-phase sun may be responsible for these processes.

  15. Constraints on the Composition and Hydrothermal Alteration History of the Pacific Lower Crust beneath the Hawaiian Islands: Geochemical Investigation of Gabbroic Xenoliths from Hualalai Volcano

    NASA Astrophysics Data System (ADS)

    Gao, R.; Lassiter, J. C.

    2013-12-01

    Understanding the composition and hydrothermal alteration history of the lower oceanic crust (LOC) can help constrain deep hydrothermal circulation at mid-ocean ridges, which may have a substantial impact on the thermal regime and magmatic processes at spreading centers. Previous studies of LOC primarily examined ophiolites or layer-3 gabbros exposed at the seafloor through faulting. These potentially have experienced secondary hydrothermal alteration in response to faulting, uplift and exposure. We examined major and trace element and isotopic compositions of a suite of gabbroic xenoliths derived from the 1800-1801 Kapulehu flow, Hualalai, Hawaii to constrain the composition and 'primary' hydrothermal alteration history of the in situ Pacific crust beneath the Hawaiian Islands (HI). Although most Hualalai gabbros have trace element and isotopic compositions consistent with derivation from Hualalai magmas, a subset has characteristics indicative of an origin from MORB-related melts. These gabbros contain LREE-depleted clinopyroxene, have Sr-Nd-Hf isotopic compositions that overlap the range of EPR basalts, and are geochemically distinct from Hualalai-related xenoliths and lavas. Despite the limited range recorded, plagioclase and clinopyroxene oxygen isotope compositions correlate well for both MORB-related and Hualalai-related gabbroic xenoliths. This suggests clinopyroxene and plagioclase are in equilibrium. The △plag-cpx (~0.6-0.9‰) is consistent with closure temperatures of ~1170-1220 C.δ18Ocpx (+4.9-5.3‰) of the MORB-related gabbros are negatively correlated with cpx 87Sr/86Sr, but not with 143Nd/144Nd or La/Sm. In contrast, δ18Oplag does not correlate with plag 87Sr/86Sr. Cpx Sr-isotopes may be affected by seawater alteration, which is not as apparent in plag due to higher Sr concentrations. However, the MORB-related gabbros have δ18O values that are largely in the range for normal, fresh MORB (δ18Omelt/NMORB = +5.7-6.0‰, △melt-cpx~0.7‰). This

  16. Apollo 17, Station 6 boulder sample 76255 - Absolute petrology of breccia matrix and igneous clasts

    NASA Technical Reports Server (NTRS)

    Warner, J. L.; Phinney, W. C.; Simonds, C. H.

    1976-01-01

    The matrix of 76255 is the finest-grained, most clast-laden, impact-melt polymict breccia sampled from the Station 6 boulder. The paper speculates on how the matrix of 76255 fits into and enhances existing thermal models of breccia lithification. Emphasis is on the detailed petrology of five lithic clasts, two of which display mineralogical and textural affinities to mare basalts, while three, a gabbro, a norite, and a troctolite are considered primitive plutonic rocks.

  17. New Lunar Meteorite Northwest Africa 773: A Tholeiite from the Moon?

    NASA Astrophysics Data System (ADS)

    Fagan, T. J.; Taylor, G. J.; Keil, K.; Hicks, T. L.; Killgore, M.; Bunch, T. E.; Wittke, J. H.; Mittlefehldt, D. W.

    2002-12-01

    Olivines and pyroxenes in gabbroic rock fragments from the recently found meteorite Northwest Africa 773 (NWA773) show evidence of Fe-enrichment broadly similar to the tholeiitic trend defined for terrestrial rocks. The meteorite consists of two main lithologies: a two-pyroxene olivine gabbro and a fragmental, heterolithic breccia. The olivine gabbro lithology consists of olivine (Fo68), pigeonite (Wo11En65), augite (Wo36En50), and plagioclase (An90), with minor K,Ba-feldspar (Or89Cs04Ab04An02), chromite, Ca-phosphates, ilmenite, troilite and metal. The texture is dominated by cumulate olivine crystals up to 1300 æm across and pyroxenes of slightly smaller grain size. Plagioclase feldspar is interstitial and K,Ba-feldspar is restricted to interstitial sites enriched in incompatible elements. The breccia lithology consists of a variety of clasts, but most of these can be plausibly linked to the olivine gabbro or more Fe-rich differentiates from the same magmatic system. Pyroxenes from the breccia exhibit continuous trends in Mg/(Mg+Fe) and Ti/(Ti+Cr) from values similar to the olivine gabbro (0.79 and 0.18, respectively) to extremely differentiated compositions (0.06 and 1.00, respectively). Olivines are characterized by compositions ranging over Fo71-55 and Fo13-01. The fayalitic olivines occur in clasts with silica, +/- hedenbergitic pyroxene. These variations in mineral composition can be explained as a consequence of extreme Fe-enrichment in a single pluton or related plutonic bodies on the Moon. The presence of silica in NWA 773 is due primarily to Fe-enrichment of residual liquid into ?the forbidden zone? of the pyroxene quadrilateral. The Fe-enrichment trend and cumulate textures suggest that NWA 773 may have originated from a magmatic system broadly similar to terrestrial layered mafic intrusives.

  18. Martabah gabbro—monzonite complex, Hijaz region, Kingdom of Saudi Arabia; petrography and structure

    NASA Astrophysics Data System (ADS)

    Douch, Colin J.; Al-Hazmi, Hassan; Aidrous, Abdullah

    The Martabah complex consists of an almost circular gabbroic rim, the outer portion of which is intruded by ring dikes of alkali-feldspar granite, and a core of (quartz) monzonite intruded by arcuate lenses and dikes of (quartz) syenite. A central lens of kaolinized, porphyritic quartz alkali-feldspar syenite is possibly derived from monzonitic rocks. There is an intense aeromagnetic anomaly over the gabbro and a low-intensity radiometric anomaly over the core.

  19. Isotopic evidence of source variations in commingled magma systems: Colorado River extensional corridor, Arizona and Nevada

    SciTech Connect

    Metcalf, R.V.; Smith, E.I.; Martin, M.W. . Dept. of Geoscience); Gonzales, D.A.; Walker, J.D. . Isotope Geochronology Lab.)

    1993-04-01

    Mixing of mantle derived mafic and crustal derived felsic magmas is a major Province-wide process forming Tertiary intermediate magmas within the Basin and Range. Major variations in magma sources, however, may exist in temporally and spatially related systems. Such variations are exemplified by two closely spaced plutons within the northern Colorado River extensional corridor. The 15.96 Ma Mt. Perkins pluton (MPP) was emplaced in three major phases: phase 1 (oldest) gabbro; phase 2 quartz diorite to hornblende granodiorite; and phase 3 biotite granodiorite ([+-]hbld). Phases 2 and 3 contain mafic microgranitoid enclaves (MME) that exhibit evidence of magma mingling. Combined data from phase 2 and 3 rocks, including MMW, shows positive [sup 87]Sr/[sup 86]Sr and negative [var epsilon]Nd correlations vs. SiO[sub 2] (50--72 wt %). Phase 2 rocks, which plot between phase 2 MME and MME-free phase 3 granodiorite, represent hybrid magmas formed by mixing of mantle and crustal derived magmas. Phase 1 gabbro falls off isotope-SiO[sub 2] trends and represents a separate mantle derived magma. The 13.2 Ma Wilson Ridge pluton (WRP), <20 km north of MPP, is cogenetic with the river Mountains volcano (RMV). In WRP an early diorite was intruded by a suite of monzodiorite to quartz monzonite. The monzodiorite portion contains MME and mafic schlieren representing mingled and mixed mafic magmas. The WRP and MPP represent two closely spaced isotopically distinct and separate magma systems. There are five magma sources. The two felsic mixing end members represent two different crustal magma sources. Two mantle sources are presented by MPP phase 1 gabbro and phase 2 MME, reflecting lithospheric and asthenospheric components, respectively. The latter represents the oldest reported Tertiary asthenospheric component within the region. A single lithospheric mantle source, different from the MPP gabbro, is indicated for the mafic mixing end member in the WRP-RMV suite.

  20. Mechanical and transport properties of rocks at high temperatures and pressures. Task I, the physical nature of fracturing at depth. Technical progress report No. 1, 1 March 1980-30 November 1980

    SciTech Connect

    Carter, N.L.

    1980-12-15

    Research progress is reported in the following areas: (1) the delineation of the boundary separating elastic-brittle and transient-1 semibrittle behavior of granite and of its volcanic and metamorphic equivalents, rhyolite and granite gneiss; (2) the variation of fracture permeability in Sioux Quartzite, Westerly Granite and a fine-1 grained gabbro as a function of effective pressure and hydrothermal alterations; and (3) determine the mechanical properties of selected rocks at high temperatures and pressures. (ACR)

  1. Abrasion-Erosion Evaluation of Concrete Mixtures for Stilling Basin Repairs, Kinzua Dam, Pennsylvania.

    DTIC Science & Technology

    1983-09-01

    The material prop- erties have not changed significantly since that time. 11. The second coarse aggregate, SL serial No. PITT-8 G-2, was a diabase ...The third coarse aggregate, SL serial No. PITT-8 G-3, was a diabase from the Luck Quarry, Leesburg, Virginia. The petrographic examination (Appendix...That question concerns the performance of the two traprocks ( diabases /gabbros) in comparison to the limestone. Based 12 I

  2. Experimental and Seismological Constraints on the Rheology, Evolution, and Alteration of the Lithosphere at Oceanic Spreading Centers

    DTIC Science & Technology

    2007-02-01

    granite [Dell’Angelo and Tullis, 1988], diabase [Fredrich and Evans, 1990], and peridotite [Bussod and Christie, 1991]. In addition to preventing the... Diabase , Eos Trans. Fall Meeting Supp., 71, 1750. Fujii, T., and I. Kushiro (1977), Density, viscosity and compressibility of basaltic liquid at high...Tucholke and Lin, 1994), and gabbro and diabase outcrops have been observed on the eastern rift valley wall (Reves-Sohn et al., 2004; Zonenshain et al

  3. Stress Wave Induced Damage in Rock

    DTIC Science & Technology

    1989-06-01

    LANGE, M.A., T.J. AHRENS, AND M.B. BOSLOUGH, (1984). Impact cratering and spall fracture of gabbro. Icarus, 58, 383-395. MELOSH , H. J., (1984). Impact ...increases rather uniformly with distance from the impact site, reaching the unshocked velocity at a distance of approximately one crater radius. The...horizontal distance from the impact , reaching typical unshocked velocities at distances approximately equal to or slightly greater than the crater radius

  4. Baddeleyite and zircon U Pb ages from the Kærven area, Kangerlussuaq: Implications for the timing of Paleogene continental breakup in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Holm, Paul Martin; Heaman, Larry M.; Pedersen, Lise E.

    2006-11-01

    We report U-Pb zircon and baddeleyite age results for two mafic units in the Kangerlussuaq area which are part of the Paleogene East Greenland igneous province; the Kangerlussuaq macrodyke, which represents a feeder to some flood basalts, and the nearby Kærven Gabbro. Baddeleyite from the macrodyke yielded a concordant age of 54.7 ± 0.4 (2 σ) Ma and this is among the most precise age determinations from the province. This age is interpreted to reflect the time of emplacement. The macrodyke belongs to a swarm of dykes emplaced perhaps in a failed arm during continental rifting, and the age predates the completion of continental breakup at the end of emplacement of the Plateau Basalts of the East Greenland eruption sequence. Geochemically the macrodyke is correlated with the Milne Land Formation lavas. The magma experienced slight crustal contamination. Based on the age and geochemistry of the macrodyke, the age of the Skaergaard intrusion and Skrænterne Formation lavas, an age span of 1-2 Ma is confirmed for the extrusion of the entire Plateau Basalts. U-Pb analysis of zircon from the Kærven Gabbro yields an age of 53.0 ± 0.3 (2 σ) Ma. The Kærven Gabbro was intruded after extension had ceased in the area and we suggest that the post plateau basalt magmatism did not take place at a distinct later time, but instead that igneous activity continued for some time at a lower rate. Slightly fractionated HREEs indicate that the Kærven Gabbro magma was extracted at relatively shallow levels in the mantle.

  5. Major chemical characteristics of Mesozoic Coast Range ophiolite in California

    USGS Publications Warehouse

    Bailey, E.H.; Blake, Jr., M.C.

    1974-01-01

    Sixty-four major element analyses of rocks representative of the Coast Range ophiolite in California were compared with analyses of other onland ophiolite sequences and those of rocks from oceanic ridges. The rocks can be classed in five groups harzburgite-dunite, clinopyroxenite-wehrlite, gabbro, basalt-spilite, and keratophyre-quartz keratophyre which on various diagrams occupy nonoverlapping fields. The harzburgite-dunite from onland ophiolite and ocean ridges are comparable and very low in alkalies. Possible differentiation trends defined on AFM diagrams by other rocks from onland ophiolites and ocean ridges suggest two lines of descent: (1) A trend much like the calc-alkalic trend, though shifted somewhat toward higher iron, and (2) an iron-enrichment trend defined chiefly by the more iron-rich gabbros and amphibolite. MgO-variation diagrams for rocks from the Coast Range ophiolite further distinguish the iron-rich gabbros and amphibolite from the other rock groups and indicate that the iron enrichment, unlike that of the Skaergaard trend, is related to the formation of amphibole. Ophiolite sequences that include the most silicic rock types, such as quartz keratophyre, also exhibit the most pronounced dual lines of descent, suggesting that the silicic rocks and the amphibole-rich gabbros are somehow related. Although the major element chemistry of the Coast Range ophiolite is clearly like that of rocks dredged from oceanic ridges, it is not sufficiently diagnostic to discriminate among the choices of a spreading ridge, an interarc basin, or perhaps even the root zone of an island arc as the site of ophiolite formation.

  6. Magnetic anomalies in Bahia Esperanza: A window of magmatic arc intrusions and glacier erosion over the northeastern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Galindo-Zaldívar, Jesús; Ruiz-Constán, Ana; Pedrera, Antonio; Ghidella, Marta; Montes, Manuel; Nozal, Francisco; Rodríguez-Fernandez, Luis Roberto

    2013-02-01

    Bahia Esperanza, constituting the NE tip of the Antarctic Peninsula, is made up of Paleozoic clastic sedimentary rocks overlain by a Jurassic volcano-sedimentary series and intruded by Cretaceous gabbros and diorites. The area is located along the southern part of the Pacific Margin magnetic anomaly belt. Field magnetic researches during February 2010 contribute to determining the deep geometry of the intermediate and basic intrusive rocks. Moreover, the new field data help constrain the regional Pacific Margin Anomaly, characterized up to now only by aeromagnetic and marine data. Field magnetic susceptibility measurements of intrusive intermediate and basic rocks, responsible for magnetic anomalies, ranges from 0.5 × 10- 3 SI in diorites to values between 0.75 × 10- 3 SI and 1.3 × 10- 3 SI in gabbros. In addition, a significant remanent magnetism should also have contributed to the anomalies. The regional magnetic anomaly is characterized by a westward increase from 100 nT up to 750 nT, associated with large intrusive diorite bodies. They probably underlie most of the western slopes of Mount Flora. Gabbros in the Nobby Nunatak determine local residual rough anomalies that extend northwards and westwards, pointing to the irregular geometry of the top of the basic rocks bodies below the Pirámide Peak Glacier. However, the southern and eastern boundaries with the Buenos Aires Glacier are sharp related to deep glacier incision. As a result of the glacier dynamics, magnetic anomalies are also detected north of the Nobby Nunatak due to the extension of the anomalous body and the presence of gabbro blocks in the moraines. The Bahia Esperanza region is a key area where onshore field geological and magnetic research allows us to constrain the shape of the crustal igneous intrusions and the basement glacier geometry, providing accurate data that complete regional aeromagnetic research.

  7. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan plateau: Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhai, Qing-guo; Wang, Jun; Bao, Pei-sheng; Qiangba, Zhaxi; Tang, Suo-han; Tang, Yue

    2016-02-01

    The Dongqiao ophiolite occurs in the central segment of the Bangong-Nujiang suture zone, in north-central Tibet, China. It is still debated on the tectonic setting of the Dongqiao ophiolite despite after more than 30 years' studies. The Dongqiao ophiolite has a complete section of a typical ophiolite, composed of harzburgite, dunite, layered and isotropic gabbros, pillow and massive basalts, as well as radiolarian chert. Whole-rock geochemical analyses show that harzburgite displays a broad U-shaped REE pattern and has a fore-arc affinity, whereas basalts show affinities of E-MORB, OIB and IAB. The basalts were probably formed in different tectonic settings, that is, mid-ocean ridge, oceanic island and island arc. The gabbros and basalts are characterized by positive εNd(t) (+1.6 to +6.7) and εHf(t) (+8.1 to +13.9) values. Zircon U-Pb dating yielded ages of 188 ± 1 Ma for the layered gabbro and 181 ± 1 Ma for the amphibole gabbro. The new ages and the published age data of the Dingqing and Dong Co ophiolites led us to conclude that the Bangong-Nujiang Ocean existed from the Late Triassic to Early Cretaceous. The new geochemical data also suggested that the Dongqiao ophiolite was a typical SSZ-type ophiolite formed in an initial fore-arc oceanic basin. Fore-arc ophiolites are probably widely distributed along the Bangong-Nujiang suture zone. If so, the Tethys Ocean of the Bangong-Nujiang area probably existed as a fore-arc oceanic basin during the Late Triassic to Early Jurassic.

  8. The petrogenesis of late Neoproterozoic mafic dyke-like intrusion in south Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Azer, M. K.; Abu El-Ela, F. F.; Ren, M.

    2012-08-01

    New field, petrographical and geochemical studies are presented here for the late Neoproterozoic Rimm intrusion (˜15 km long) exposed in the southern Sinai Peninsula, Egypt in the northernmost Arabian-Nubian Shield (ANS). Field relations indicate that the Rimm intrusion is younger than the surrounding metamorphic rocks and calc-alkaline syn-tectonic granodiorite and it was not affected by regional metamorphism. The anorogenic peralkaline granite of Gebel Serbal crosscuts the Rimm intrusion. The Rimm intrusion is made up of several consanguineous rock types with gradational contacts. It is composed chiefly of pyroxene-hornblende gabbro, hornblende gabbro and minor quartz diorite. The chemical composition of the mafic minerals indicated that the studied rocks derived from calc-alkaline mafic magma. Geochemically, the studied rocks are characterized by enrichment in LILE relative to HFSE and LREE relative to HREE [(Ce/Yb)N = 4.50-6.36]. Quartz diorite display slightly concave HREE pattern and slightly negative Eu-anomaly [(Eu/Eu*)n = 0.91] which may be the result of fractionation of amphibole and plagioclase from the source melt, respectively. The Rimm intrusion evolved from mafic mantle magma into different type rocks by fractional crystallization with minor crustal contamination. The initial magma corresponds to pyroxene-hornblende gabbro and the crystallization of hornblende was caused by slight H2O increase in magma after crystallization of near-liquidus clinopyroxene and Ca-rich plagioclase. Amphiboles geobarometer indicate that the gabbroic rocks of the Rimm intrusion crystallized at pressures between 4.8 and 6.4 Kb, while quartz diorite crystallized at 1.3-2.1 Kb. Crystallization temperatures range between 800 and 926 °C for the gabbros and between 667 and 784 °C for the quartz diorite. The Rimm intrusion represents a post-orogenic phase formed during the crustal thinning and extension of the Arabian-Nubian Shield.

  9. Evaluation of Alternative Causes of Wide-Spread, Low Concentration Perchlorate Impacts to Groundwater

    DTIC Science & Technology

    2011-07-01

    piping. 2.1.2 Site Geology and Hydrogeology The geology of the North Carolina Piedmont is a complex of very old metamorphic and igneous rocks . Sharp...boundaries separate many of the major rock bodies and produce abrupt changes in soil materials in relatively short distances. The Oxford station is...gneiss, mica gneiss and mica schist. Areas of slightly more mafic rock or a complex of felsic rock cut by dikes of gabbro and diorite can also be

  10. Natural Processes Influencing Terrain Attributes. Report 1. Prediction of Residual Soil Texture in Humid Temperate Climates of the Federal Republic of Germany and Selected Analogous Portions of the United States-Pilot Study,

    DTIC Science & Technology

    1982-06-01

    stage: quartzite > chert - granite > granodiorite > tonolite > rhyolite > quartz latitc, > dacite > syenite > monzonite > diorite > gabbro > trachyte...common USDA soil type, followed by loam (L) (Fig- ure 11). The percentage of gravel increased significantly with slope. 184. Syenite and nepheline syenite ... Syenite is closely akin to granite, but the quartz content is much lower, although the two may be gradational. The chief feldspar is still potassium

  11. Final Technical Report for Contract Number N00014-81-K-0457.

    DTIC Science & Technology

    1986-01-01

    hydration of peridotite at relatively low (< 450’ C) temperatures. Seismic velocities of the peridotites are lowered to crustal values, and hence the...earth called ophiolite model for the oceanic crust. In would serpentinize the mantle peridotites and sciences. The oceanic crust, which we define as that...turn, overlie units of massive ary within the mantle peridotite , and as much ily studied by indirect means, usually seismic and cumulate gabbros, which

  12. Domestic Production Issues in Chromium and Platinum-Group Metals

    DTIC Science & Technology

    1988-09-01

    recovered. A typical origin scenario involves peridotite altering to serpentine which is subsequently weathered into a soil in a tropical environment...made up of darker minerals. Typical examples of ultramafic rocks are dunite and peridotite and for mafic rocks, basalt and gabbro (24:39,42). The rock...layers, are believed to contain potential chromite resources 158:33,341. The the olivine-rich rocks in the Ultramafic zone are known as the Peridotite

  13. Solonker ophiolite in Inner Mongolia, China: A late Permian continental margin-type ophiolite

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-wen; Xu, Bei; Shi, Guan-zhong; Zhao, Pan; Faure, M.; Chen, Yan

    2016-09-01

    The Solonker ophiolite is exposed along the border between Mongolia and China within the Solonker zone, the southeastern Central Asian Orogenic Belt (CAOB), and it is composed dominantly of serpentinized peridotite with subordinate gabbro, basaltic lava, radiolarian-bearing siliceous rocks, and minor plagiogranite. Meanwhile, layered mafic-ultramafic cumulates are not ubiquitous. In this study, zircon grains from two gabbros and a plagiogranite yield 206Pb/238U ages of 259 ± 6 Ma, 257 ± 3 Ma and 263 ± 1 Ma. These data were interpreted to represent the formation age of the Solonker ophiolite. The studied gabbros and basalts have a tholeiitic composition, showing a MORB affinity. They are also characterized by enrichment of Pb and depletion of Nb relative to La and Th. Furthermore, the studied gabbros contain inherited zircon grains and display a large range of zircon Hf isotopes (εHf(t) = - 5.27 to + 10.19). These features imply that crustal contamination played an important role in the generation of these mafic rocks. Major elements derived from the radiolarian-bearing siliceous rocks suggest a continental margin setting. This is confirmed by rock association. Terrigenous rocks (sandstones and siltstones) interstratified with siliceous rocks. U-Pb dating of detrital zircon grains in sandstones from both the northern and southern sides of the Solonker ophiolite belt, along with published data, reveals that the Late Carboniferous-Early Permian strata in fault contact with the Solonker ophiolite was deposited above Early Paleozoic orogens. The lines of petrological, geochemical, geochronological, and isotopic evidence led us to propose that the Solonker ophiolite is a Late Permian continental margin-type body formed during the early stages of opening of an ocean basin, following rifting and break-up of the Early Paleozoic orogens. Accordingly, the Permian Solonker zone is characterized by an intra-continental extensional setting.

  14. The petrographic criteria of selection of geological environments for building high-level waste (HLW) repository

    SciTech Connect

    Omelyanenko, B.I.; Petrov, V.A.; Yudintsev, S.V.; Zaraisky, G.P.; Starostin, V.I.

    1993-12-31

    Igneous rocks of basic composition (basalts, diabases, gabbro-dolerites, dunites, etc.) are an appropriate geological environment for high-level waste disposal. During interaction with hot ground waters their isolation ability will increase due to the decrease of hydraulic permeability and increase of their sorption ability. According to petrophysical characteristics, such rocks are viscous-rigid media with the highest mechanical stability and do not undergo any changes in properties over the whole temperature range, which is possible in a HLW repository.

  15. Geochemistry and zircon geochronology of the Neoarchean volcano-sedimentary sequence along the northern margin of the Nilgiri Block, southern India

    NASA Astrophysics Data System (ADS)

    Samuel, Vinod O.; Santosh, M.; Yang, Qiong-Yan; Sajeev, K.

    2016-10-01

    The Nilgiri Block is one of the major Archean crustal blocks that define the tectonic framework of southern India. Here we report geologic, petrologic, geochemical, and zircon U-Pb, -REE, and -Lu-Hf data of a highly metamorphosed and disrupted sequence of amphibolite, meta-gabbro, websterite, volcanic tuff, meta-sediment, and banded iron formation (BIF) from the northern fringe of the Nilgiri Block. Geochemically, the amphibolite shows altered ocean floor basalt signature, whereas the meta-gabbro and the websterite samples form part of a volcanic arc. The metamorphosed volcanic tuff shows subalkaline rhyolitic signature. U-Pb isotope analysis of zircon grains from the volcanic tuff and meta-gabbro shows 207Pb/206Pb ages of 2490 ± 12 Ma and 2448 ± 16 Ma, respectively. Zircons from the meta-sediments show an age range of 2563 ± 33 Ma to 2447 ± 34 Ma. The dominantly positive εHf (t) values of the zircons in the analyzed rock suite suggest that the magmas from which the zircons crystallized evolved from a Neoarchean depleted mantle source. The Hf model ages (TDM) of volcanic tuff, meta-sediment and meta-gabbro samples are ranging between 2908-2706 Ma, 2849-2682 Ma, and 2743-2607 Ma, respectively. The ca. 2500 Ma ages for the arc-related magmatic rock suite identified along the northern periphery of Nilgiri Block suggest prominent Neoarchean arc magmatism and early Paleoproterozoic convergent margin processes contributing to the early Precambrian crustal growth in Peninsular India.

  16. Mineral resources of the Prospect Mountain Wilderness Study Area, Carbon County, Wyoming

    SciTech Connect

    du Bray, E.A.; Bankey, V.; Hill, R.H.; Ryan, G.S.

    1989-01-01

    The Prospect Mountain Wilderness Study Area is about 20 mi east-southeast of Encampment in Carbon County, Wyoming. This study area is underlain by middle Proterozoic gabbro, granite, and hornblende gneiss, which is locally cut by pegmatite dikes. There are no identified resources and no potential for undiscovered energy resources in this study area. Resource potential for all undiscovered metallic commodities and for industrial mineral is low.

  17. The Mars Hill Terrane: An enigmatic southern Appalachian terrane

    SciTech Connect

    Raymond, L.A.; Johnson, P.A. . Dept. of Geology)

    1994-03-01

    The Mars Hill Terrane (MHT) in the Appalachian Blue Ride Belt is bordered by complex, locally reactivated thrust and strike-slip faults. On the east, the MHT is bounded by the allochthonous, ensimatic Toe Terrane (TT) across the diachronous, ductile Holland Mountain-Soque River Fault System. The MHT is separated on the northwest from ensialic Laurentian basement (LB), by the Fries-Hayesville Fault System. On the south, the MHT is truncated by the Shope Fork Fault. The MHT is characterized by migmatitic biotite-pyroxene-hornblende gneiss, but contains 1--1.8 b.y. old quartz-feldspar gneisses, plus ultramafic rocks, calc-silicate rocks, mica schists and gneisses, and Neoproterozoic Bakersville gabbros. This rock assemblage contrasts with that of the adjoining terranes. The only correlative units between the MHT and adjoining terranes are Neoproterozoic gabbro, Ordovician-Devonian granitoid plutons, and ultramafic rocks. Gabbro links the MHT with LB rocks. Apparently similar calc-silicate rocks differ petrographically among terranes. During Taconic or Acadian events, both the TT and MHT reached amphibolite to granulite metamorphic grade, but the LB did not exceed greenschist grade. The data conflict. The O-D plutons, ultramafic rocks, and metamorphic histories suggest that the TT had docked with the MHT by Ordovician time. The premetamorphic character of the Holland Mtn.-Soque River Fault System supports that chronology. Neoproterozoic gabbros suggest a MHT-LB link by Cambrian time, but the LB experienced neither O-D plutonism nor Paleozoic amphibolite-granulite facies metamorphism.

  18. The Classifications of Metamorphic Rocks and Their Applications to Air Photo Interpretation Procedures,

    DTIC Science & Technology

    1983-09-01

    improtant pattern ele- .. ments for this evaluation are landform and drainage•* For example, a mapping unit that consists of hills , has angular and straight...A FIUR 1. elortie membe of te Bullon Forea.in adapthe West CaZ eto For- mation. black . graphlitic. pyritiferous slate and pilyllite, and E, thle Mudd...granite gneiss, gn 4, hornblende diorite gneiss; gn 5, biotite gneiss; a. amnphibolite; s, schist; ga. gabbro, dotted pattern, pegmatite dikes; solid

  19. Cretaceous crust-mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Zhang, Qian; Zhao, Hai-Xiang; Zhao, Kui-Dong

    2015-10-01

    Cretaceous tectono-magmatic evolution of the Cathaysia Block in South China is important but their mechanism and geodynamics remain highly disputed. In this study we carried out a detailed geochemical study on the recently found Kuokeng mafic dikes in the western Fujian Province (the Interior Cathaysia Block) to reveal the petrogenesis and geodynamics of the Cretaceous magmatism. Kuokeng mafic dikes were emplaced in three principal episodes: ~ 129 Ma (monzogabbro), ~ 107 Ma (monzodiorite), and ~ 97 Ma (gabbro). Geochemical characteristics indicate that the monzogabbros were derived from the unmodified mantle source, while gabbros were likely derived from metasomatized mantle by subducted slab (fluids and sediments). Sr-Nd isotope compositions indicate that the parental magmas of the monzodiorites were generated by mixing of enriched, mantle-derived, mafic magmas and felsic melts produced by partial melting of crustal materials. Until the Early Cretaceous (~ 123 Ma), the dominant ancient Interior Cathaysia lithospheric mantle exhibited insignificant subduction signature, indicating the melting of asthenospheric mantle and the consequent back-arc extension, producing large-scale partial melting of the crustal materials under the forward subduction regime of the paleo-Pacific plate. The monzodiorites and gabbros appear to be associated with northwestward subduction of Pacific plate under an enhanced lithospheric extensional setting, accompanying with mantle modification, which triggered shallower subduction-related metasomatically enriched lithospheric mantle to melt partially. After ca. 110 Ma, the coastal magmatic belts formed due to a retreat and rollback of the subducting Pacific Plate underneath SE China in the continental margin arc system.

  20. Petrology of four clasts from consortium breccia 73215

    NASA Technical Reports Server (NTRS)

    James, O. B.; Hammarstrom, J. G.

    1977-01-01

    One felsite ('granite') and three ANT-suite anorthositic gabbro clasts extracted from breccia 73215 are described. The felsite clast has two components - fragments of crystalline felsite and veins and patches of felsic glass. The crystalline felsite, which consists largely of a vermicular intergrowth of quartz and Ba-K-feldspar, crystallized from a highly differentiated melt between 3.90 and 4.05 b.y. The felsic glass component consists of crystallized brown and colorless glasses and uncrystallized colorless glass which are all K and Si rich. The relation of glass features to past heating and the breccia-forming event is considered. In the three anorthositic gabbros, which have similar mineralogies and gradational textures, plagioclase is dominant, and olivine and orthopyroxene are the major mafic minerals. The petrologic data suggest that the gabbros formed as heated, partly melted, and/or recrystallized polymict breccias. It is possible that the approximately 4.25 b.y. age obtained for the three rocks is the date of the melting/recrystallization event.

  1. Age of the Mulcahy Lake intrusion, northwest Ontario, and implications for the evolution of greenstone-granite terrains

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.; Bogard, D. D.; Phinney, W. C.; Davis, D. W.; Wooden, J. L.; Ashwal, L. D.; Maczuga, D. E.

    1985-01-01

    An investigation of zircon data from the Mulcahy Lake gabbro, a 63 sq km layered mafic intrusion in the Wabigoon subprovince of Ontario, which show that the gabbro crystallized at 2733.2 +1.0, -0.9 Ma, is considered. It is shown that the gabbro intrudes tholeiites of the Crow Lake-Savant Lake greenstone belt. Whole rock samples and mineral separates from the Mulcahy Lake intrusion are dated by Rb-Sr, Sm-Nd, and Ar-30-Ar-40 techniques. Disturbances in the system are revealed by the Rb-Sr data and an initial Sr ratio of 0.7007 for an age of 2733 Ma is indicated by samples with low Rb/Sr ratios. The age determined for the Sm-Nd data is 2744 + or 55 Ma with an epsilon Nd value of +2.6 + or - 1.2 which indicates a source region depleted in a light rare earth element. Primary hornblende is analyzed for Ar-40/Ar-39 and an age of 2703 + or - 20 is obtained. Some implications for the development of greenstone-granite belts are discussed.

  2. The lunar highland melt-rock suite

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1978-01-01

    Size can be used as a criterion to select 18 large (larger than 1 cm) samples from among 148 melt-rock fragments of all sizes. This selection provides a suite of large samples which represent the important chemical variants among highland melt rocks; each large sample has enough material for a number of sample-destructive studies, as well as for future reference. Cluster analysis of the total data base of 148 highland melt rocks shows six distinct groups: anorthosite, gabbroic anorthosite, anorthositic gabbro ('highland basalt'), low K Fra Mauro, intermediate-K Fra Mauro, and high-K. Large samples are available for four of the melt-rock groups (gabbroic anorthosite, anorthositic gabbro, low-K Fra Mauro, and intermediate-K Fra Mauro). This sample selection reveals two subgroups of anorthositic gabbro (one anorthite-poor with negative Eu anomaly and one anorthite-rich without Eu anomaly). There is a sharp distinction between those Apollo 16 melt rocks and glasses which have both been classified as 'gabbroic anorthosite'.

  3. Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses

    NASA Astrophysics Data System (ADS)

    Morales, Luiz F. G.; Boudier, FrançOise; Nicolas, Adolphe

    2011-04-01

    Microstructures and crystallographic preferred orientation (CPO) of anorthosite samples interlayered in the upper and lower gabbro sections in the Oman ophiolite were analyzed in this paper. In the anorthosites registering the dynamics of the melt lenses, foliation is flat lying and starts to develop a few meters below the root zone of the sheeted dike complex (RZSDC). Microstructures and CPO of these rocks were developed in response to four different mechanisms: (1) density-controlled settling of plagioclase on the lens floor, (2) deposition of anorthosites related to convection currents, (3) melt compaction, and (4) uncompacted melt accumulation. In these anorthosites, the poles to (010) of plagioclase are parallel to the flow plane of convection, whereas the [100] axes and poles to (001) express the convection flow direction and the axis of convection rolls, respectively. The effect of subsidence of melt lens floor is recorded immediately below the RZSDC and is characterized by the rapid (but progressive) development of dipping foliation and lineation, reflecting the increase of deformation downsection. The degree of foliation and CPO development in the anorthosites is directly related to the distance of the center of the melt lenses before the subsidence starts. Despite the uncertain origin of the anorthosites from the lower gabbro section, all the samples lost the magmatic microstructural characteristics and presently are reequilibrated aggregates. However, they still preserve plagioclase CPO, where some of these patterns present similarities with the anorthosites from the upper gabbro section, but no evidence of intracrystalline deformation under high temperatures.

  4. Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 MM soil particles from 76503

    NASA Astrophysics Data System (ADS)

    Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.

    1992-12-01

    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.

  5. Middle Jurassic U-Pb crystallization age for Siniktanneyak Mountain ophiolite, Brooks Range, Alaska

    SciTech Connect

    Moore, T.E. ); Aleinikoff, J.N.; Walter, M. )

    1993-04-01

    The authors report here a U-Pb age for the Siniktanneyak Mountain Ophiolite klippe in the west-central Brooks Range, the first U-Pb ophiolite age in northern Alaska. Like klippen of mafic and ultramafic rocks in the Brooks Range, the Siniktanneyak Mountain klippe is composed of a lower allochthon of Devonian and younger( ) diabase and metabasalt with trace-element characteristics of seamount basalts and an upper allochthon of ophiolite. The ophiolite is partial, consisting of (1) abundant dunite and subordinate harzburgite and wehrlite; (2) cumulate clinopyroxene gabbro, and (3) minor noncumulate clinopyroxene gabbro and subordinate plagiogranite; no sheeted dikes or volcanic rocks are known in the ophilitic allochthon. The plagiogranite forms small dikes and stocks that intrude the noncumulate gabbro and consists of zoned Na-rich plagioclase + clinopyroxene with interstial quartz and biotite. Five fractions of subhedral, tan zircon from the plagiogranite yield slightly discordant U-Pb data with an upper intercept age of 170 [+-] 3 Ma. The U-Pb data indicate that the Siniktanneyak Mountain ophiolite crystallized in the Middle Jurassic and was emplaced by thrusting onto mafic accretionary prism rocks within about 10 m.y. of crystallization. The U-Pb data provide an upper limit to the age of initiation of the Brookian orogeny.

  6. Geology of the Zambales ophiolite, Luzon, Philippines

    USGS Publications Warehouse

    Rossman, D.L.; Castanada, G.C.; Bacuta, G.C.

    1989-01-01

    The Zambales ophiolite of western Luzon, Philippines, exposes a typical succession of basalt flows, diabasic dikes, gabbro and tectonized harzburgite. The age established by limiting strata is late Eocene. Lack of evidence of thrust faulting and the general domal disposition of the lithologie units indicate that the ophiolitic rocks are exposed by uplift. Highly complex internal layered structures within the complex are related to processes developed during formation of the ophiolite and the Zambales ophiolite may be one of the least disturbed (by emplacement) ophiolitic masses known. The exposed mass trends north and the upper surface plunges at low angles (a few degrees) to the north and south. The chemistry and composition of the rocks in the northwest part of the Zambales area (Acoje block) is distinct from that in the southeastern segment (Coto block). The Acoje block, according to Evans (1983) and Hawkins and Evans (1983), resembles (on a chemical basis) arc-tholeiite series rocks from intra-island arcs and the rocks in the Coto block are typical back-arc basin rock series. The present writer believes that the ophiolite composes a single genetic unit and that the changes in composition are the result of changes that took place during the initial formation. The gabbro probably formed below a spreading center in an elongate, in cross section, V-shaped, magma chamber. The gabbro is estimated by the writer to be less than 2 km thick and may be less than 1 km in places. Numerous erosional windows through the gabbro in the northern and eastern side of the Zambales area show that the gabbro remaining in those areas is likely to be only a few hundred meters thick. Harzburgite is exposed to a depth of about 800 m in the Bagsit River area and this may be the deepest part of the ophiolite accessible for study on which there is any control on depth. A transitional zone, about 200 m thick lying between the gabbro and harzburgite, is composed of serpentinized dunite

  7. 40Ar/ 39Ar ages for the alkaline volcanism and the basement of Gorringe Bank, North Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Féraud, Gilbert; Gastaud, Janine; Auzende, Jean-Marie; Olivet, Jean-Louis; Cornen, Guy

    1982-01-01

    Gorringe Bank is situated on the Europe-Africa plate boundary at the eastern end of the Azores-Gibraltar fracture zone. It has two summits, Gettysburg Bank to the Southwest and Ormonde Bank to the northeast. We applied the 40Ar/ 39Ar stepwise heating method to date six samples of the alkaline volcanic rocks, two gabbros from the Ormonde Bank and a dolerite from the Gettysburg Bank. The results that the alkaline volcanism lasted probably for less than 6 Ma(66-60 Ma). Although the nature of this volcanism precludes any subduction feature during its setting, the alkaline volcanism of Ormonde is probably linked to Upper Cretaceous/Eocene compressive tectonic events. The basement rocks of Gorringe Bank reveal distrubed 40Ar/ 39Ar age spectra. One plagioclase and one biotite from a gabbro give evidence for a thermic event whose age is tentatively estimated at about 75 Ma, and related to a variation in the direction of the relative movement between Europe and Africa. The more probable age given by a plagioclase of another gabbro and by a dolerite (110 Ma) corresponds to tilting northeastward of the Gorringe massif.

  8. Rock types of South Pole-Aitken basin and extent of basaltic volcanism

    USGS Publications Warehouse

    Pieters, C.M.; Head, J. W.; Gaddis, L.; Jolliff, B.; Duke, M.

    2001-01-01

    The enormous pre-Nectarian South Pole-Aitken (SPA) basin represents a geophysically and compositionally unique region on the Moon. We present and analyze the mineralogical diversity across this basin and discuss the implications for basin evolution. Rock types are derived from Clementine multispectral data based on diagnostic characteristics of ferrous absorptions in fresh materials. Individual areas are characterized as noritic (dominated by low-Ca pyroxene), gabbroic/basaltic (dominated by high-Ca pyroxene), feldspathic (<3-6% FeO), and olivine-gabbro (dominated by high-Ca pyroxene and olivine). The anorthositic crust has effectively been removed from the interior of the basin. The style of volcanism within the basin extends over several 100 Myr and includes mare basalt and pyroclastic deposits. Several areas of ancient (pre-Orientale) volcanism, or cryptomaria, have also been identified. The nonmare mafic lithology that occurs across the basin is shown to be noritic in composition and is pervasive laterally and vertically. We interpret this to represent impact melt/breccia deposits derived from the lower crust. A few localized areas are identified within the basin that contain more diverse lithologies (gabbro, olivine-gabbro), some of which may represent material from the deepest part of the lower crust and perhaps uppermost mantle involved in the SPA event. Copyright 2001 by the American Geophysical Union.

  9. New evidence for Early Paleozoic orogeny in the eastern Klamath terrane, northern California

    SciTech Connect

    Masson, P.H.

    1993-04-01

    The Grey Rocks outlier, in the east-central part of the Trinity mafic-ultramafic complex, has two localities in which metamorphosed and strongly deformed rocks lie unconformably between the Trinity complex and overlying, less deformed, volcanic and sedimentary sections. At one locality, a bouldery metaconglomerate and schistose sedimentary melange consist of detritus derived from Trinity serpentine, gabbros, and dikes. Foliation is vertical, striking discordantly beneath mafic submarine flows and a thick argillite section assigned questionably to the Mississippian Bragdon formation. At the second locality, interbedded argillite, thin discontinuous flows, and hyaloclastic lapilli tuffs are metamorphosed and isoclinally folded. Steep foliation is truncated beneath the gently dipping base of the Grey Rocks submarine volcanic pile. Undeformed dikes cut the folded sequence and enter the Grey Rocks volcanics, possibly as late feeders. The Grey Rocks lavas and volcanic breccias have been compared with the Early Devonian Copley greenstone of the Redding section. Timing of the orogenic event or events is poorly constrained. Accepting a questionable correlation between the submarine volcanics and the Copley greenstone, the orogenic event(s) would be Early Devonian or older. Clasts in the schists and conglomerates at the first locality are clearly derived from gabbros and dikes considered by some workers to be Silurian. The folded sequence at the second locality contains no Trinity complex detritus and rests on a strong, low-angle, schist and mylonite zone that truncates the Silurian( ) dike and gabbro complex.

  10. Igneous intrusions in coal-bearing sequences

    SciTech Connect

    Gurevich, A.B.; Shishlov, S.B.

    1987-08-01

    Intrusions of various compositions, sizes, and shapes have been observed in 115 out of 620 coal basins or deposits on all the continents. They are mainly subvolcanic and hypabyssal, with depths of emplacement estimated as ranging from a few hundred meters to 6 km, but usually 3-4 km. Compositionally, 42% are basic, 31% intermediate, 23% acid, and 4% ultrabasic. Mafic (and related) rock types include dolerites, trachydolerites, gabbro-dolerites, gabbro-monzonites, monzonites, diabases, gabbrodiabases, and less often gabbros and basalts (subvolcanic bodies). These mafic intrusions occur in coal formations of various ages from Carboniferous through Neogene, but predominate in Paleozoic (47%) and Cenozoic beds (45%). They also occur in coal formations of all genetic types, apart from those on ancient stable platforms, where there are no signs of intrusive activity. The mafic intrusions are almost everywhere associated with comagmatic lavas and tuffs (mainly in the younger strata), and the coal beds themselves are to some extent enriched in pyroclastic material, particularly in the upper horizons. This paper gives a worldwide review of igneous intrusions in coal beds. 24 references.

  11. Hugoniot equation of state of rock materials under shock compression

    NASA Astrophysics Data System (ADS)

    Zhang, Q. B.; Braithwaite, C. H.; Zhao, J.

    2017-01-01

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5-12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure-particle velocity (P-up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  12. Feruvite from the Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; McDonald, A.M.; Slack, J.F.; Leitch, C.H.B.

    1996-01-01

    Feruvite, an uncommon Ca- and Fe2+-rich tourmaline species, has been discovered in the footwall of the Sullivan Pb-Zn-Ag deposit (British Columbia) near gabbro sills and dikes. Its chemical composition varies according to occurrence: feruvite from the shallow footwall has lower Ca, higher Al, and higher X-site vacancies than that from the deep footwall. The major chemical substitution involved in the feruvite is the exchange vector CaMgO???-1Al-1(OH)-1. The most important factor controlling feruvite formation at Sullivan is likely the reaction of Fe-rich hydrothermal fluids with Ca-rich minerals in gabbro and host rocks. This reaction led to the breakdown of Ca-rich minerals (plagioclase and hornblende), with release of Ca to solution and its incorporation into feruvite. This process probably postdated the main stages of formation of fine-grained, intermediate schorl-dravite in the tourmalinite pipe in the footwall, and is attributed to postore intrusion of gabbro and associated albite-chlorite-pyrite alteration.

  13. Thermal diffusivity of igneous rocks at elevated pressure and temperature

    SciTech Connect

    Durham, W.B.; Mirkovich, V.V.; Heard, H.C.

    1987-10-10

    Thermal diffusivity measurements of seven igneous rocks were made to temperatures of 400 /sup 0/C and pressures of 200 MPa. The measuring method was based on the concept of cylindrical symmetry and periodic heat pulses. The seven rocks measured were Westerly (Rhode Island) granite, Climax Stock (Nevada) quartz monzonite, Pomona (Washington) basalt, Atikokan (Ontario, Canada) granite, Creighton (Ontario, Canada) gabbro, East Bull Lake (Ontario, Canada) gabbro, and Stripa (Sweden) granite. The diffusivity of all the rocks showed a positive linear dependence on inverse temperature and, excluding the East Bull Lake gabbro, showed a linear dependence on quartz content. (Quartz content varied from 0 to 31% by volume.) Diffusivity in all cases rose or remained steady with increasing confining pressure. The pressure effect was strongest at lowest pressures and vanished by levels between 10 and 100 MPa, depending on rock type. The pressure effect (measured as a percentage change in diffusivity) is stronger in the four rocks of granite composition than in the three of basaltic composition. Our results agree well with existing thermal diffusivity measurements at atmospheric pressure.

  14. Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.

    1992-01-01

    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.

  15. Tectonic Evolution of the Careón Ophiolite (Northwest Spain): A Remnant of Oceanic Lithosphere in the Variscan Belt.

    PubMed

    Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning

    1999-09-01

    Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin.

  16. Hugoniot equation of state of rock materials under shock compression.

    PubMed

    Zhang, Q B; Braithwaite, C H; Zhao, J

    2017-01-28

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5-12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure-particle velocity (P-up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  17. Rooted Brooks Range ophiolite: Implications for Cordilleran terranes

    USGS Publications Warehouse

    Saltus, R.W.; Morin, R.L.; Hudson, T.L.

    2001-01-01

    Modeling of gravity and magnetic data shows that areally extensive mafic and ultramafic rocks of the western Brooks Range, Alaska, are at least 8 km thick, and that gabbro and ultramafic rocks underlie basalt in several places. The basalt, gabbro, and ultramafic rocks have been considered parts of a far-traveled ophiolite assemblage. These rocks are the highest structural elements in the Brooks Range thrust belt and are thought to be hundreds of kilometers north of their origin. This requires these rocks to be thin klippen without geologic ties to the continental shelf sedimentary rocks that now surround them. The geophysically determined, thick and interleaved subsurface character of the basalt, gabbro, and ultramafic rocks is inconsistent with this interpretation. An origin within an extensional setting on the continental shelf could produce the required subsurface geometries and explain other perplexing characteristics of these rocks. Early Mesozoic Alaska, from the North Slope southward to the interior, may have had many irregular extensional basins on a broad, distal continental shelf. This original tectonic setting may apply elsewhere in Cordilleran-type margins where appropriate mafic and ultramafic analogs are present.

  18. Microstructure, shear modulus and attenuation in igneous rocks approaching melting at seismic frequencies

    NASA Astrophysics Data System (ADS)

    Chien, S.; Redfern, S. A.

    2010-12-01

    Melt-related attenuation mechanisms, such as viscous flow and squirt processes, are of paramount importance in understanding high seismic wave attenuation in partially molten regions of the deep Earth. Strong temperature dependence of the anelastic quality factor, Q, is one obvious consequence of such mechanisms. Mineralogical composition, grain size, melt viscosity and microstructure (morphology and size of the inter-granular pores/micro-cracks), are important parameters for modeling attenuation mechanisms, and are control rock properties, particularly in the partially molten rocks. There have been many theoretical studies linking creep or viscosity models and laboratory experiments for partially molten rocks. However, experimental data on the relationship between temperature and attenuation remains. In this study, the shear modulus (G) and inverse quality factor (1/Q) of two igneous rocks (gabbro and basalt) were measured in the laboratory at temperatures approaching the melting point using the inverted forced torsion pendulum. Attenuation increases exponentially when shear modulus drops rapidly towards to melting temperature in both gabbro (1400 K) and basalt (1250 K). For measurements conducted using cyclic shear stresses at 1Hz, two attenuation relaxation peaks are found in gabbro at 1214 K and 1410 K, while only one attenuation relaxation peak occurs in basalt at 1151 K. These attenuation peaks may result from grain boundary sliding, diffusion creep and/or melt squirt. In addition to the relaxation peaks, there is a rising exponential increase in attenuation approaching the melting point from below. A power law model has been used to determine the effective activation energy associated with this high-temperature attenuation background. An activation energy of 68 kJ/mole in basalt and 882 kJ/mole in gabbro is found. The result for gabbro is in a good agreement with the study of Fontaine et al. in 2005 (873 kJ/mol), and the very different behaviour of basalt

  19. Oxygen isotope evidence for crustal assimilation and magma mixing in the Granite Harbour Intrusives, Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Dallai, L.; Ghezzo, C.; Sharp, Z. D.

    2003-03-01

    The stable isotope composition (O,H) of whole-rock and mineral separates of Cambrian-Ordovician gabbros, diorites, granodiorites and granites forming the Mt. Abbott composite intrusions (Northern Victoria Land, Antarctica) was measured to constrain the origin and evolution of the magmas postdating the Ross Orogen. The δ18O values of olivine gabbros plot in the field of slightly evolved mantle-derived melts ( δ18O WR=6.8-7.4‰). The O-isotope character of the mantle source inferred from the δ18O values of cumulous olivine in gabbros (5.7-6.8‰) is enriched in 18O compared to modern arc-related magmas. Geochemical data and concurrent high δ18O values, and initial strontium ( 87Sr/ 86Sr=0.7060) and neodymium ( 143Nd/ 144Nd=0.5122) isotope ratios indicate that the olivine gabbros formed by crustal contamination of a primary calc-alkaline basaltic melt. The diorites have high δ18O values, among the highest ever measured for dioritic rocks (8.7-10.3‰), and Sr-isotope ratios that partially overlap with the adjacent and mingled felsic lithologies (0.708-0.710). The diorites have pyroxene with high, nearly constant δ18O values (8.2-8.6‰) that are independent from the silica content of the rocks; thus, they did not increase in response of the chemical evolution of the rocks. The diorites originated from the same primary calc-alkaline basalt experiencing different amounts of crustal contamination, and underwent different degrees of mixing with the adjacent granites, producing granodioritic facies and quartz/feldspar xenocrystic diorites. The δ18O, 87Sr/ 86Sr and 143Nd/ 144Nd compositions of the granites and granodiorites overlap (10.8-12.1‰, 0.7096-0.7108, 0.5119-0.5120). They are distinct from the values of the mafic rocks and indicate that gabbros and granites were not cogenetic. The granites are a separate melt component likely derived from nonmodal partial melting of fertile meta-igneous protoliths.

  20. Dynamic tensile strength of terrestrial rocks and application to impact cratering

    NASA Astrophysics Data System (ADS)

    Ai, Huirong-Anita; Ahrens, Thomas J.

    2004-02-01

    Dynamic tensile strengths and fracture strengths of 3 terrestrial rocks, San Marcos gabbro, Coconino sandstone, and Sesia eclogite were determined by carrying out flat-plate (PMMA and aluminum) impact experiments on disc-shaped samples in the 5 to 60 m/sec range. Tensile stresses of 125 to 300 MPa and 245 to 580 MPa were induced for gabbro and eclogite, respectively (with duration time of ~1 ms). For sandstone (porosity 25%), tensile stresses normal to bedding of ~13 to 55 MPa were induced (with duration times of 2.4 and ~1.4 ms). Tensile crack failure was detected by the onset of shock-induced (damage) P and S wave velocity reduction. The dynamic tensile strength of gabbro determined from P and S wave velocity deficits agrees closely with the value of previously determined values by post-impact microscopic examination (~150 MPa). Tensile strength of Coconino sandstone is 20 MPa for a 14 ms duration time and 17 MPa for a 2.4 ms duration time. For Sesia eclogite, the dynamic tensile strength is ~240 MPa. The fracture strength for gabbro is ~250 MPa, ~500 MPa for eclogite, and ~40 MPa for sandstone. Relative crack induced reduction of S wave velocities is less than that of post-impact P wave velocity reductions for both gabbro and eclogite, indicating that the cracks were predominantly spall cracks. Impacts upon planetary surfaces induce tensile failure within shock-processed rocks beneath the resulting craters. The depth of cracking beneath impact craters can be determined both by seismic refraction methods for rocks of varying water saturation and, for dry conditions (e.g., the Moon), from gravity anomalies. In principle, depth of cracking is related to the equations-of-state of projectile and target, projectile dimension, and impact velocity. We constructed a crack-depth model applicable to Meteor Crater. For the observed 850 m depth of cracking, our preferred strength scaling model yields an impact velocity of 33 km/s and impactor radius of 9 m for an iron

  1. Understanding the Magmatic Construction of the Dufek Complex, Antarctica

    NASA Astrophysics Data System (ADS)

    Cheadle, M. J.; Meurer, W. P.; Grimes, C. B.; Gee, J. S.; McCullough, B. C.

    2007-12-01

    The Jurassic (~180Ma) Dufex Complex in the Pensacola Mountains of Antarctica is arguably one of the largest layered mafic intrusions in the world, with a minimum areal extent of 6600km2. It is mostly buried beneath the Antarctic Icesheet, but is exposed in two parallel mountain ranges; the 45km long Dufek Massif and the 85km long Forrestal Range, which have exposed stratigraphic thicknesses of ~1.8 km and ~1.7 km respectively (Ford, 1976). The two sections appear to be petrologically related, showing a continuous differentiation trend; although some geophysical studies suggest they may represent separate intrusive events (Ferris et al., 1998). The Dufek Massif section consists of the ~230m thick Walker Anothosite unit overlain by the 1550m thick Augenbaugh Gabbro unit. The bottom of the intrusion is not exposed, although geophysical data suggest the presence of an ultramafic basal unit. In the Antarctic summer of 2006/07, we collected and logged 630 oriented rock cores from the lowermost 600m of the section producing a revised and more detailed stratigraphy for this part of the intrusion. In particular, we re-located the boundary between the Walker Anorthosite upwards, so that the Lower Anorthosite of the Augenbaugh Gabbro unit becomes the top of the Walker Anorthosite. We also collected and logged an additional 210 cores from a 100m section higher in the Augenbaugh Gabbro unit. Magnetic susceptibility variation with height was used to correlate between stratigraphic sections. The Walker Anorthosite consists of ortho- and clinopyroxene-bearing spotted anorthosites, interbedded on the meter scale with norites and layered gabbronorites. Modal plagioclase exceeds 65%. Slumped horizons a few meters thick are common, demonstrating a lack of stability of the accumulating mush. The lower part of the Augenbaugh Gabbro unit consists of massive and weakly banded gabbronorites with both cumulus pyroxene and plagioclase, and modal plagioclase ranging from 55- 65%. Rare, thin

  2. On the Skaergaard intrusion and forward modeling of its liquid line of descent: A reply to “Principles of applied experimental igneous petrology” by Morse, 2008, Lithos 105, pp. 395-399

    NASA Astrophysics Data System (ADS)

    Thy, Peter; Lesher, Charles E.; Nielsen, Troels F. D.; Brooks, C. Kent

    2008-10-01

    Forward modeling based on an experimental investigation successfully duplicated main features of the gabbros in the Skaergaard layered series [Thy, P., Lesher, C.E., Nielsen, T.F.D., and Brooks, C.K. 2006. Experimental constraints on the Skaergaard liquid line of descent. Lithos 92, 154-180.]. The foundation for the modeling was equilibrium melting experiments that were controlled by temperature and oxygen fugacity at low-pressure conditions. The experimental techniques and methods were chosen to represent a reasonable approximation to the inferred emplacement and crystallization conditions of the Skaergaard intrusion. The dike rocks used as starting materials define a strong differentiation trend that represents the Skaergaard liquid line of descent. This suite of dikes allowed liquidus conditions to be defined for a range of composition and temperature. The initial redox conditions were chosen based on measured and calculated estimates for the gabbros of interest. The melting experiments defined liquidus and subliquidus conditions that were used to understand crystallization of the lower and middle zones of the Skaergaard layered series, and can be extrapolated to the upper zone gabbros assuming perfect fractional crystallization. The forward modeling reproduces the cryptic variation seen in the main gabbro minerals (olivine, augite, plagioclase) well into the upper zone and provides reasonable liquidus temperatures and compositions. It can be shown that based on the assumption of Fe-Ti oxide modes in the middle and upper zones, a range of oxygen fugacity trends can be obtained. We repeat our previous conclusion that iron depletion and strong reduction in oxygen fugacity in the upper zone are only feasible for very high Fe-Ti oxide modes that exceed the experimental evidence as well as the observations from the gabbros. A strong drop in oxygen fugacity in the upper zone requires a significant sink for Fe-Ti oxides that so far has not been identified. We thus

  3. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  4. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7

  5. The magmatic-hydrothermal transition in the lower oceanic crust: Clues from the Ligurian ophiolites, Italy

    NASA Astrophysics Data System (ADS)

    Tribuzio, Riccardo; Renna, Maria Rosaria; Dallai, Luigi; Zanetti, Alberto

    2014-04-01

    The gabbroic bodies from the Jurassic Ligurian ophiolites are structurally and compositionally similar to the gabbroic sequences from the oceanic core complexes of the Mid Atlantic Ridge. Initial cooling of the Ligurian gabbros is associated with local development of hornblende-bearing felsic dykes and hornblende vein networks. The hornblende veining is correlated with the widespread development of hornblende as coronas/pseudomorphs after the clinopyroxene in the host gabbros. In addition, the studied gabbroic body includes a mantle sliver locally containing hornblende gabbros and hornblendite veins. The hornblendes from the felsic dykes and the hornblende-rich rocks within the mantle sliver show a similar geochemical signature, characterized by low Mg#, CaO and Al2O3, negligible Cl, and high TiO2, K2O, REE, Y, Zr and Nb concentrations. The whole-rock Sm-Nd isotopic compositions of the felsic dykes and the hornblende-rich rocks define a Sm-Nd isochron corresponding to an age of 154 ± 20 Ma and an initial ɛNd of 9.2 ± 0.5. The δ18O of the hornblendes and coexisting zircons from these rocks (about +4.5‰ and +5.8‰, respectively) do not indicate the presence of a seawater component in these melts. The formation of the felsic dykes and of the hornblende-rich rocks within the mantle sliver involved SiO2-rich silicate melts with negligible seawater component, which presumably were derived from high degree fractional crystallization of MOR-type basalts. The vein and the coronitic/pseudomorphic hornblendes show high Mg# and CaO, significant Cl (0.02-0.17 wt%) and low TiO2 and K2O concentrations. The coronitic/pseudomorphic hornblendes have trace element compositions similar to those of the clinopyroxenes from the gabbros and δ18O values (+1.0‰ to 0.7‰) close to seawater, suggesting an origin by reaction between migrating seawater-derived fluids and the host gabbros. The vein hornblendes commonly show slight LREE enrichment, relatively high concentrations of Nb

  6. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology

    NASA Astrophysics Data System (ADS)

    Kakar, Mohammad Ishaq; Kerr, Andrew C.; Mahmood, Khalid; Collins, Alan S.; Khan, Mehrab; McDonald, Iain

    2014-08-01

    The geology of the Muslim Bagh area comprises the Indian passive continental margin and suture zone, which is overlain by the Muslim Bagh Ophiolite, Bagh Complex and a Flysch Zone of marine-fluvial successions. The Muslim Bagh Ophiolite has a nearly-complete ophiolite stratigraphy. The mantle sequence of foliated peridotite is mainly harzburgite with minor dunite and contains podiform chromite deposits that grade upwards into transition zone dunite. The mantle rocks (harzburgite/dunite) resulted from large degrees of partial melting of lherzolite and have also been affected by melt-peridotite reaction. The Muslim Bagh crustal section has a cyclic succession of ultramafic-mafic cumulate with dunite at the base, that grades into wehrlite/pyroxenite with gabbros (olivine gabbro, norite and hornblende gabbro) at the top. The sheeted dykes are immature in nature and are rooted in crustal gabbros. The dykes are mainly metamorphosed dolerites, with minor intrusions of plagiogranites. The configuration of the crustal section indicates that the crustal rocks were formed over variable time periods, in pulses, by a low magma supply rate. The whole rock geochemistry of the gabbros, sheeted dykes and the mafic dyke swarm suggests that they formed in a supra-subduction zone tectonic setting in Neo-Tethys during the Late Cretaceous. The dykes of the mafic swarm crosscut both the ophiolite and the metamorphic sole rocks and have a less-marked subduction signature than the other mafic rocks. These dykes were possibly emplaced off-axis and can be interpreted to have been generated in the spinel peridotite stability zone i.e., < 50-60 km, and to have risen through a slab window. The Bagh Complex is an assemblage of Triassic-Cretaceous igneous and sedimentary rocks, containing tholeiitic, N-MORB-like basalts and alkali basalts with OIB-type signatures. Nb-Ta depletion in both basalt types suggests possible contamination from continental fragments incorporated into the opening Tethyan

  7. Anatomy of a frozen axial melt lens from a fast-spreading paleo-ridge (Wadi Gideah, Oman ophiolite)

    NASA Astrophysics Data System (ADS)

    Müller, T.; Koepke, J.; Garbe-Schönberg, C.-D.; Dietrich, M.; Bauer, U.; Wolff, P. E.

    2017-02-01

    At fast-spreading mid-ocean ridges, axial melt lenses (AMLs) sandwiched between the sheeted dyke section and the uppermost gabbros are assumed to be the major magma source of crust formation. Here, we present our results from a field study based on a single outcrop of a frozen AML in the Samail ophiolite in the Sultanate of Oman which presents a whole suite of different lithologies and complex cutting relationships: varitextured gabbro with relics of primitive poikilitic clinopyroxene is intruded by massive quartz diorites and tonalites bearing relics of assimilated sheeted dykes, which in turn are cut by trondhjemite dykes. The whole is cut by basaltic dykes with chilled margins. The geochemical evolutionary trend of the varitextured gabbros, including some of the quartz diorites and tonalites, can be best modelled by fractional crystallisation of an experimental MORB parental melt composition containing 0.4 to 0.8 wt.% H2O. Patchy varitextured gabbros containing domains of primitive poikilitic clinopyroxene and evolved granular networks represent the record of in situ crystallisation. Some quartz diorites, often with xenoliths of sheeted dykes and exceptionally high Al2O3 contents, show a bulk trace element pattern more in accord with melts generated by experimental partial melting of dyke material. Highly evolved, crosscutting trondhjemite dykes show characteristic trace element patterns implying a formation by partial melting of sheeted dykes under lower water activity which is indicated by relatively low Al2O3 contents. The late basaltic dykes with chilled margins crosscutting all other lithologies show a relatively depleted geochemical character with pronounced negative Nb-Ta anomalies implying a genetic relationship to the second phase of magmatic Oman paleo-ridge activity (V2). The field relationships in combination with the petrological/geochemical trends reveal multiple sequences of MORB-type magma cooling (resulting in fractional crystallisation) and re

  8. Insights on the Formation and Evolution of the Upper Oceanic Crust from Deep Drilling at ODP/IODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Teagle, D. A. H.

    2009-04-01

    Deep drilling of Hole 1256D on ODP Leg 206 and IODP Expeditions 309/312 provides the first complete section of intact upper oceanic crust down to gabbros. Site 1256 is located on ocean crust of the Cocos Plate that formed at the East Pacific Rise (EPR) 15 million years ago during an episode of superfast rate ocean spreading in excess of 200 mm/yr. Past deep drilling of intact ocean crust has been fraught with difficulties due to the highly fractured nature of oceanic lavas. Site 1256 was specifically chosen because the observed relationship between spreading rate and the depth to axial seismic low velocity zones at modern mid-ocean ridges (thought to be magma chambers), suggests that gabbroic rocks should occur at the shallowest levels in ocean crust formed at the highest spreading rates. In line with pre-drilling predictions, gabbroic rocks were first encountered 1157 m into the basement. Hole 1256D penetrates 754 m of lavas, a 57-m thick transition zone and a thin (346 m) sheeted dike complex. The lower ~60 m of the sheeted dikes are contact metamorphosed to granoblastic textures. After encountering gabbros the hole was deepened a further 100 m before the cessation of drilling operations and the plutonic section comprises two gabbroic sills, 52 and 24 m-thick, intruded into a 24 m screen of granoblastic dikes. The gabbro sills have chilled margins and compositions similar to the overlying lavas and dikes, precluding formation of the cumulate lower oceanic crust from the melt lenses so far penetrated by Hole 1256D. A vertical seismic experiment conducted in Hole 1256D indicates that the bottom of the Hole is still within seismic layer 2 despite gabbroic rocks having been recovered. These data together with 1-D and imaging wire-line logs, have been used to construct a continuous volcano-stratigraphy for Site 1256. Comparison of this data with the recovered cores and the styles of eruption occurring at the modern EPR indicate that ~50% of lava sequences were formed

  9. The Blackwater Intrusion of the Grampian Orogeny: Implications for the Younger Basics and the Tectonic-Metamorphic Zonation of the Grampian Terrane, NE Scotland

    NASA Astrophysics Data System (ADS)

    Webb, Gareth; Raub, Timothy

    2014-05-01

    The Dalradian Supergroup of NE Scotland hosts the classic Buchan low-pressure high-temperature metamorphic domain, as well as a suite of substantial ~470Myr syn-orogenic mafic intrusions (the 'Younger Basics') and a set of major, steeply-inclined shear zones which deform both the Dalradian country rocks and the Younger Basics. The Blackwater mafic intrusion is situated within one such shear zone, the Portsoy-Duchray Hill Lineament (PDHL), which runs SW inland from the coast at Portsoy and corresponds with the westernmost limit of Buchan metamorphism. Occupying a position between the Appin and Argyll Groups, the Blackwater Intrusion is emplaced at a deeper structural level than other more extensively studied Younger Basics to the East towards Aberdeen (such as the Insch Intrusion) and North along the PDHL (such as the Portsoy Gabbro). Uniquely for a Younger Basic mass, it is also in contact with older Dalradian meta-basic rocks, the somewhat enigmatic Blackwater Formation. A well as examining the Blackwater Intrusion, this study presents new evidence pertaining to the history of the Younger Basics and the PDHL, and their place within the Grampian Orogeny. The Blackwater Intrusion has an elongate shape roughly parallel to the strike of the surrounding Dalradian rocks, covers ~9km2 and mainly comprises blue-grey gabbro with scattered serpentinised ultramafic zones. Both the gabbro and serpentinite generally have massive texture, although some evidence of cm-scale modal layering (interpreted as cumulate texture) is present the north of the intrusion. It is in contact to the east with psammites, schists and meta-basic extrusives of the Argyll Group Blackwater Formation, and to the west with the Appin Group Glenfiddich Pelite Formation. Evidence for shearing is widespread, with sheared microstructures in pelites and meta-basites, mylonitised meta-sediments adjacent and parallel to the NW contact of the gabbro and vertical/sub-vertical NE-SW trending shear zones within

  10. Protracted construction of gabbroic crust at a slow-spreading ridge: Constraints from SHRIMP Pb/U zircon ages in IODP hole 1309D, Atlantis Massif, MAR (30°N)

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; John, B. E.; Wooden, J. L.

    2007-12-01

    We present U-Pb zircon ages for 18 samples from lower oceanic crust recovered by IODP Hole 1309D in the footwall to an oceanic detachment fault. These samples are evolved oxide gabbros and felsic dikes from between 40-1415 meters below sea floor (mbsf). Ages range from 1.08±0.07 Ma to 1.28±0.05 Ma with errors as low as 1.6%, and reveal a protracted history of accretion. U-Pb zircon dating was performed using the U.S.G.S.-Stanford SHRIMP-RG. Seven ages from both oxide gabbros and felsic dikes above 570 mbsf give a weighted mean of 1.17±0.02 Ma (MSWD=1.03). Oxide gabbros between 620-1040 mbsf are consistently older and give a weighted mean age of 1.24±0.03 (MSWD=1.4). Two felsic dikes within this interval (867 and 1040 mbsf) give younger ages of 1.14±0.05 Ma. In the deepest section (below ~1040 mbsf) oxide gabbros give varied ages of 1.27±0.05 Ma (1175 mbsf) and 1.14±0.04 (1240 and 1327 mbsf). The deepest sample is a felsic dike intruding gabbro at 1415 mbsf, and has an age of 1.28±0.05 Ma. Abrupt changes in the age of the oxide gabbros (at ~600 and below 1040 mbsf) coincide with petrologic and geochemical variations, and indicate the presence of distinct intrusive bodies, which we interpret as sills. The overall weighted mean age of the crust penetrated by 1309D is 1.20±0.02 Ma (MSWD=7.1). However, the range of zircon crystallization ages indicates that this section of crust was constructed over at least ~100-200kyr. This is a minimum estimate because dated samples intrude more primitive olivine-rich rocks and are cut by later diabase. Shallow paleomagnetic remanence inclinations of -38° to -31.5° from below 180 mbsf in Hole 1309D, along with generally steep magmatic fabrics (~40-60°), imply up to 55° of counter- clockwise rotation associated with detachment faulting. The mean age of the hole, together with additional Pb/U zircon ages determined from dive and dredge samples from the southern wall of Atlantis Massif constrain the slip rate of the

  11. Cooling rates and depth of detachment faulting of the Atlantis Massif and Kane oceanic core complexes at the slow-spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Schoolmeesters, N.; Cheadle, M. J.; John, B. E.; Grimes, C. B.; Reiners, P. W.

    2010-12-01

    Understanding the cooling history of lithosphere exposed in oceanic core complexes helps establish denudation rates, depth of detachment faulting, and depth of gabbro emplacement. We use thermochronometric data to constrain the crystallization history of gabbros hosted in the footwalls of the Atlantis Massif oceanic core complex at 30°N (IODP Hole U1309D), and the Kane Oceanic Core Complex at 23°N, on the Mid-Atlantic Ridge. Combined U-Pb zircon crystallization ages taken with (U-Th)/He zircon ages allows the determination of the cooling rate of rocks sampled from these core complexes. The closure temperature for U-Pb in zircons from oceanic gabbros is ~800+/-50°C; the closure temperature for the (U-Th)/He system in zircon is ~220°C for these rapidly cooled rocks. Intermediate temperatures can be potentially constrained by multi-component remnant magnetization (300-600°C). Thus thermochronometry and geomagnetic studies help delimit the cooling history from ~800°C to 200°C (John et al., 2004). We have determined (U-Th)/He ages for nine samples from depths ranging between 40 and 1415 mbsf in IODP Hole U1309D, which together with U-Pb zircon ages, constrain the cooling rate of gabbros emplaced into the central dome of Atlantis Massif. Assuming monotonic cooling, cooling rates vary from 1293 (+827 -395) °C/My (for the ~800°C to ~220°C temperature interval) to 284 (+97 -62) °C/My (for ~220°C to present day). Downhole variation in (U-Th)/He age, combined with the present day geothermal gradient constrained by the bottom hole temperature of ~120°C, also limits the orientation of the ~200°C isotherm as the core complex was denuded. Assuming a conservative detachment fault slip rate of 16km/Ma, the age difference between the U-Pb and (U-Th)/He ages constrains the vertical distance between the ~800°C and the ~220°C isotherms to be ~6km. This distance, together with a plausible depth of 1-2km to the 220°C isotherm implies that the detachment fault at Atlantis

  12. Protracted construction of gabbroic crust at a slow-spreading ridge: Constraints from SHRIMP Pb/U zircon ages in IODP hole 1309D, Atlantis Massif, MAR (30°N)

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; John, B. E.; Wooden, J. L.

    2004-12-01

    We present U-Pb zircon ages for 18 samples from lower oceanic crust recovered by IODP Hole 1309D in the footwall to an oceanic detachment fault. These samples are evolved oxide gabbros and felsic dikes from between 40-1415 meters below sea floor (mbsf). Ages range from 1.08±0.07 Ma to 1.28±0.05 Ma with errors as low as 1.6%, and reveal a protracted history of accretion. U-Pb zircon dating was performed using the U.S.G.S.-Stanford SHRIMP-RG. Seven ages from both oxide gabbros and felsic dikes above 570 mbsf give a weighted mean of 1.17±0.02 Ma (MSWD=1.03). Oxide gabbros between 620-1040 mbsf are consistently older and give a weighted mean age of 1.24±0.03 (MSWD=1.4). Two felsic dikes within this interval (867 and 1040 mbsf) give younger ages of 1.14±0.05 Ma. In the deepest section (below ~1040 mbsf) oxide gabbros give varied ages of 1.27±0.05 Ma (1175 mbsf) and 1.14±0.04 (1240 and 1327 mbsf). The deepest sample is a felsic dike intruding gabbro at 1415 mbsf, and has an age of 1.28±0.05 Ma. Abrupt changes in the age of the oxide gabbros (at ~600 and below 1040 mbsf) coincide with petrologic and geochemical variations, and indicate the presence of distinct intrusive bodies, which we interpret as sills. The overall weighted mean age of the crust penetrated by 1309D is 1.20±0.02 Ma (MSWD=7.1). However, the range of zircon crystallization ages indicates that this section of crust was constructed over at least ~100-200kyr. This is a minimum estimate because dated samples intrude more primitive olivine-rich rocks and are cut by later diabase. Shallow paleomagnetic remanence inclinations of -38° to -31.5° from below 180 mbsf in Hole 1309D, along with generally steep magmatic fabrics (~40-60°), imply up to 55° of counter- clockwise rotation associated with detachment faulting. The mean age of the hole, together with additional Pb/U zircon ages determined from dive and dredge samples from the southern wall of Atlantis Massif constrain the slip rate of the

  13. Geophysical and geologic studies in southern Mecklenburg County and vicinity, North Carolina and South Carolina

    USGS Publications Warehouse

    Wilson, Frederick A.

    1983-01-01

    Geophysical methods consisting of gravity, aeromagnetics and aeroradioactivity have been applied to part of the Charlotte and Carolina slate belts in southern Mecklenburg County and vicinity to help interpret geology, lithology and structure. High aeroradioactivity is associated with potassium-rich granitic plutons, muscovite-rich gneisses, schists, and metavolcanic rocks; positive gravity and magnetic anomalies are associated with gabbro plutons; and negative gravity anomalies are associated with granitic plutons. At the west side of the slate belt, the Tillery phyllite is interpreted as having undergone progressive metamorphism. The underlying Uwharrie Formation extends into the Charlotte belt where it is mapped as metavolcanic rocks. Gravity models of the Carolina slate belt indicate that it is a synform containing a wedge of metasedimentary and volcanoclastic rock on plutonic basement. The basement is exposed in the adjacent Charlotte belt antiform. The northern Charlotte belt contains mainly plutonic rocks which have been divided into 3 supergroups of plutons based upon chemistry, mineralogy, texture, and age. They are: 1. Old Plutonic supergroup - plutons 545-490 m.y. that are medium to coarse-grained tonalite, quartz diorite, and granodiorites. 2. Concord-Salisbury supergroup -- plutons 426-350 m.y. which form sheet-like intrusions of differentiated gabbro; local volcanic centers with ring complexes 13 km in diameter that suggest magma chambers 0 - 8 km deep; smaller bodies of diorite, monzonite, and syenite; and small Salisbury type granodiorites. 3. Landis supergroup -- plutons 350-280 m.y. that are usually very coarse-grained, porphyritic, 'big feldspar,' potassium-rich granites. The Mecklenburg-Weddington gabbro complex of the Concord-Salisbury supergroup, the largest feature in the study area, contains three large gabbro plutons. The gabbro intruded old Plutonic complex rocks and could-have produced the metamorphic reaction K-feldspar + sillimanite

  14. MOBRAL--Seminario Interamericano de Educacion de Adultos (MOBRAL--Interamerican Seminar on Adult Education). Final Report.

    ERIC Educational Resources Information Center

    Ministerio da Educacao e Cultura, Rio de Janeiro (Brazil). Movimento Brasileiro de Alfabetizacao.

    The report contains the substance of the MOBRAL (Movimento Brasileiro de Alfabetizacao)--Interamerican Seminar on Adult Education held in Rio de Janeiro from April 9th to 18th, 1973, for invited representatives from 21 Latin America and Caribbean countries. The object was to make a contribution to the collective task of identifying, defining, and…

  15. Computerized System to Aid Deaf Children in Speech Learning

    DTIC Science & Technology

    2007-11-02

    normalized in order to display a standard length, avoiding to penalize the words correctly articulated but during different periods of time. The...IBGE, "Instituto Brasileiro de Geografia e Estatística. Tipos de Deficiências". Available in the Internet: http://www.sidra.ibge.gov.br/bda/tabela

  16. Photoproduction of charm particles at Fermilab

    SciTech Connect

    Cumalat, John P.

    1997-03-15

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  17. [Mortality in metropolitan regions].

    PubMed

    Simoes Ccds

    1980-01-01

    Data from the 1970 census and a 1974-1975 survey carried out in Brazil by the Fundacao Instituto Brasileiro de Geografia e Estatistica are used to examine recent mortality trends in urban areas. Specifically, life expectancy in nine metropolitan areas is analyzed in relation to income, diet, and sanitary facilities in the home.

  18. Brazil for Sale? Does Sino-Brazilian Trade or Investment Significantly Influence Brazil’s United Nations General Assembly (UNGA) Voting Pattern?

    DTIC Science & Technology

    2011-12-01

    are projects with Petróleo Brasileiro ( Petrobras ), Brazil’s state-owned oil company; Embraco, a Brazilian compressor manufacturer; Embraer, a Brazilian...such as Petrobras and Embaer, an aircraft manufacturer. Brazil also has a capable banking sector that has a growing interest in China.95

  19. Literacy Training and the Brazilian Political Economy. An Essay on Sources.

    ERIC Educational Resources Information Center

    Fletcher, Philip R.

    An annotated bibliography is presented in essay form of sources concerning Brazil's literacy program for adults, MOBRAL (Movimento Brasileiro de Alfabetizacao), and its implications for the country's economy. General sources on literacy training are followed by works concerning Brazil's political system. Descriptions of the MOBRAL program, mostly…

  20. Communist Exploitation of Nationalism in Brazil

    DTIC Science & Technology

    1966-04-08

    the crowd and prolonged cheers at his closing phrases: "We are all Brazilians.’" (Somos todos Brasileiros) , "Long live Brazil."’ (Viva o Brasil ...Jornal do Comercio , 6 Jan. 1952, p. 3. 30FBIS No. 51, 12 Mar. 1952, ZYC9 Rio de Janeiro, 12 Mar. 1952. 31FBIS No. 194, 5 Oct. 1953, PRL7 Rio de

  1. Consortium wins major Brazilian gas contract

    SciTech Connect

    O`Driscoll

    1994-08-16

    An international consortium of BHP of Australia, Tenneco Gas of the U.S. and British Gas was selected Monday by Petroleo Braileiro SA (Petrobras) to Monday by Petroleo Brasileiro SA (Petrobras) to develop a $2 billion natural gas pipeline linking reserves in Bolivia with markets in southern and southeastern Brazil.

  2. Transnational Education in the Late Nineteenth Century: Brazil, France and Portugal Connected by a School Museum

    ERIC Educational Resources Information Center

    Vidal, Diana Gonçalves

    2017-01-01

    This article focuses on the circulation of a single artefact, the "Museu Escolar Brasileiro" (Brazilian School Museum) and its use in education through the pedagogical method of object lessons. Concentrating on the activities of particular individuals and enterprises (Menezes Vieira, Oliveira Lopes and Maison Deyrolle), within three…

  3. Trace element partitioning in rock forming minerals of co-genetic, subduction-related alkaline and tholeiitic mafic rocks in the Ural Mountains, Russia

    NASA Astrophysics Data System (ADS)

    Krause, J.; Brügmann, G. E.; Pushkarev, E. V.

    2009-04-01

    The partitioning of trace elements between rock forming minerals in igneous rocks is largely controlled by physical and chemical parameters e.g. temperature, pressure and chemical composition of the minerals and the coexisting melt. In the present study partition coefficients for REE between hornblende, orthopyroxene, feldspars, apatite and clinopyroxene in a suite of co-genetic alkaline and tholeiitic mafic rocks from the Ural Mountains (Russia) were calculated. The results give insights to the influence of the chemical composition of the parental melt on the partitioning behaviour of the REE. Nepheline-bearing, alkaline melanogabbros (tilaites) are assumed to represent the most fractionated products of the melt that formed the ultramafic cumulates in zoned mafic-ultramafic complexes in the Ural Mountains. Co-genetic with the latter is a suite of olivine gabbros, gabbronorites and hornblende gabbros formed from a tholeiitic parental melt. Negative anomalies for the HFSE along with low Nb and Ta contents and a positive Sr anomaly indicate a subduction related origin of all parental melts. The nepheline gabbros consist predominantly of coarse-grained clinopyroxene phenocrysts in a matrix of fine grained clinopyroxene, olivine, plagioclase, K-feldspar and nepheline with accessory apatite. The tholeiitic gabbros have equigranular to porphyric textures with phenocrysts of olivine, pyroxene and hornblende in a plagioclase rich matrix with olivine hornblende, pyroxene and accessory apatite. Element concentrations of adjacent matrix grains and rims of phenochrysts were measured with LA-ICPMS. The distribution of REE between hornblende and clinopyroxene in the tholeiitic rocks is similar for most of the elements (DHbl•Cpx(La-Tm) = 2.7-2.8, decreasing to 2.6 and 2.4 for Yb and Lu, respectively). These values are about two times higher than published data (e.g. Ionov et al. 1997). Partition coefficients for orthopyroxene/clinopyroxene systematically decrease from the HREE

  4. Intermediate-depth earthquake generation: what hydrous minerals can tell us

    NASA Astrophysics Data System (ADS)

    Deseta, N.; Ashwal, L.; Andersen, T. B.

    2012-04-01

    Subduction zone seismicity has commonly been causally related to the dehydration of minerals within the subducting slab(Hacker et al. 2004, Jung et al. (2004), Dobson et al. 2002, Rondenay et al. 2008). Other models for release of intermediate- and deep earthquakes include spontaneous reaction(s) affecting large rock-bodies along overstepped phase boundaries ( e.g. Green and Houston, 1995) and various shear heating-localization models (e.g. Kelemen and Hirth 2007, John et al. 2009). These concepts are principally reliant on seismic and thermo-petrological modeling; both of which are indirect methods of analysis. Recent discoveries of pseudotachylytes (PST) formed under high pressure conditions (Ivrea-Verbano Zone, Italy, Western Gneiss Region, Norway and Corsica) provide the first tangible opportunity to evaluate these models (Austrheim and Andersen, 2004, Lund and Austrheim, 2003, Obata and Karato, 1995, Jin et al., 1998). This case study focuses on observations based on ultramafic and mafic PST within the Ligurian Ophiolite of the high pressure-low temperature metamorphic (HP-LT) 'Shistes Lustres' complex in Cima di Gratera, Corsica (Andersen et al. 2008). These PST have been preserved in pristine lenses of peridotite and gabbro surrounded by schistose serpentinites. The PST range in thickness from 1mm to 25 cm (Andersen and Austrheim, 2006). Petrography and geochemistry on PST from the peridotite and gabbro samples indicates that total/near-total fusion of the local host rock mineral assemblage occurred; bringing up the temperature of shear zone from 350° C to 1400 - 1700° C; depending on the host rock (Andersen and Austrheim, 2006). The composition of the PST is highly variable, even at the thin section scale and this has been attributed to the coarse-grained nature of the host rock, its small scale inhomogeneity and poor mixing of the fusion melt. Almost all the bulk analyses of the PST are hydrous; the peridotitic PST is always hydrous (H2O content from 3

  5. Pollen analysis of honey and pollen collected by Apis mellifera linnaeus, 1758 (Hymenoptera, Apidae), in a mixed environment of Eucalyptus plantation and native cerrado in Southeastern Brazil.

    PubMed

    Simeão, C M G; Silveira, F A; Sampaio, I B M; Bastos, E M A F

    2015-11-01

    Eucalyptus plantations are frequently used for the establishment of bee yards. This study was carried on at Fazenda Brejão, northwestern region of the State of Minas Gerais, Brazil. This farm is covered both with native Cerrado vegetation (Brazilian savanna) and eucalyptus plantations. This paper reports on the botanic origin of pollen pellets and honey collected from honeybee (Apis mellifera) hives along a thirteen-month period (January 2004 to January 2005). The most frequent pollen types found in the pollen pellets during the rainy season were Trema micrantha (Ulmaceae), Copaifera langsdorffii (Fabaceae), an unidentified Poaceae, unidentified Asteraceae-2, Cecropia sp. 1 (Cecropiaceae) and Eucalyptus spp. (Myrtaceae); during the dry season the most frequent pollen types were Acosmium dasycarpum (Fabaceae), Cecropia sp. 1 (Cecropiaceae) and Eucalyptus spp. (Myrtaceae). Pollen grains of Baccharis sp. (Asteraceae), Cecropia sp. 1 (Cecropiaceae), Copaifera langsdorffii (Fabaceae), Mimosa nuda (Fabaceae), Eucalyptus spp. (Myrtaceae) and Trema micrantha (Ulmaceae) were present in the honey samples throughout the study period.

  6. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  7. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    SciTech Connect

    Fearnside, P.M.; Leal, N. Jr.; Fernandes, F.M.

    1993-09-20

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha{sup {minus}1} (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimonas. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m{sup 2} quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha{sup {minus}1} (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m{sup 3} ha{sup {minus}1} (approximately 164 t ha{sup {minus}1} of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all {approximately} 50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO{sub 2} and trace gases. 66 refs., 6 figs., 2 tabs.

  8. Geology of the Alaska-Juneau lode system, Alaska

    USGS Publications Warehouse

    Twenhofel, William Stephens

    1952-01-01

    The Alaska-Juneau lode system for many years was one of the worlds leading gold-producing areas. Total production from the years 1893 to 1946 has amounted to about 94 million dollars, with principal values in contained gold but with some silver and lead values. The principal mine is the Alaska-Juneau mine, from which the lode system takes its name. The lode system is a part of a larger gold-bearing belt, generally referred to as the Juneau gold belt, along the western border of the Coast Range batholith. The rocks of the Alaska-Juneau lode system consist of a monoclinal sequence of steeply northeasterly dipping volcanic, state, and schist rocks, all of which have been metamorphosed by dynamic and thermal processes attendant with the intrusion of the Coast Range batholith. The rocks form a series of belts that trend northwest parallel to the Coast Range. In addition to the Coast Range batholith lying a mile to the east of the lode system, there are numerous smaller intrusives, all of which are sill-like in form and are thus conformable to the regional structure. The bedded rocks are Mesozoic in age; the Coast Range batholith is Upper Jurassic and Lower Cretaceous in age. Some of the smaller intrusives pre-date the batholith, others post-date it. All of the rocks are cut by steeply dipping faults. The Alaska-Juneau lode system is confined exclusively to the footwall portion of the Perseverance slate band. The slate band is composed of black slate and black phyllite with lesser amounts of thin-bedded quartzite. Intrusive into the slate band are many sill-like bodies of rocks generally referred to as meta-gabbro. The gold deposits of the lode system are found both within the slate rocks and the meta-gabbro rocks, and particularly in those places where meta-gabbro bodies interfinger with slate. Thus the ore bodies are found in and near the terminations of meta-gabbro bodies. The ore bodies are quartz stringer-lodes composed of a great number of quartz veins from 6

  9. Chemical variations in the Triple Group of the Skaergaard intrusion: insights for the mineralization and crystallization process

    NASA Astrophysics Data System (ADS)

    Nielsen, T. F.; Bernstein, S.

    2009-12-01

    The 54 Ma. old Skaergaard intrusion ( East Greenland) is a type example for fractionation of basaltic melt along the Fenner Trend. The Triple Group is the upper most 100 m of the Middle Zone and consists of FeTi-oxide rich layered gabbro with three distinct leugabbro layers 2-5 m thick ( L-layers; L1-L3, 2-5m thick) and a less marked layer (L0) c.20 m below L1. These are the most marked of many such layers. Apart from the pronounced layering the lower part of the Triple Group also hosts a world class Au-PGE mineralization. The mineralization is perfectly concordant with the L-layers, and the Triple Group invites investigation of the relationship between host and mineralization. The mineralization includes 5 main levels defined by palladium concentration. The chemical variation across the mineralization is covered by ca. 250 bulk major and trace element compositions, each representing 25cm of stratigraphy giving a continuum of ca. 60m. Proportions of normative plagioclase (plag) and pyroxene (px, including cpx and opx) are complementary, except in mineralized gabbro which is rich in FeTi-oxides. Cumulus ilmenite (ilm) is strongly enriched in layers (7m apart). They occur in both plag- and px-rich gabbro, whereas magnetite (mt) shows no simple correlation with ilm and is mainly a poikilitic intercumulus phase. The L-layers are composed of an upper part rich in plag and px and poor in FeTi-oxides, and a lower part rich in plag and FeTi-oxides and poor in px. The marked breaks in the mineralogy in the L-layers separate one layered succession from the next. The layered successions consist of a lower oxide-poor px-plag adcumulate, followed by complex mesocratic orthocumulate with poikilitic interstitial FeTi-oxide, and an upper part of increasingly simple plag-rich adcumulate with decreasing content of interstitial mt. The Au-PGE mineralized levels are found in the complex FeTi-rich gabbros at and in the base of the leucogabbro layers. The stratigraphic variation in

  10. The Generation of Oceanic Lithosphere in an Embryonic Oceanic Crust : the Example of the Chenaillet Ophiolite in the Western Alps

    NASA Astrophysics Data System (ADS)

    Masini, E.; Manatschal, G.; Muntener, O.

    2007-12-01

    The Chenaillet Ophiolite exposed in the Franco-Italian Alps represents a well-preserved ocean-floor sequence that was only weakly affected by later Alpine convergence. Based on the similarity between rock types and structures reported from ultraslow spreading ridges and those observed in the Chenaillet Ophiolite, it may represent a field analogue for slow to ultraslow spreading ridges such as the Gakkel Ridge or the Southwest Indian Ridge. Mapping of the Chenaillet Ophiolite enabled to identify an oceanic detachment fault that extends over a surface of about 16 km2 capping exhumed mantle and gabbros onto which clastic sediments have been deposited. The footwall of the detachment is formed by mafic and ultramafic rocks. The mantle rocks are strongly serpentinized lherzolites and subordinate harzburgites and dunites. Microstructures reminiscent of impregnation, and cpx major and trace element chemistry indicate that spinel peridotite is (locally) replaced by plagioclase-bearing assemblages. Pyroxene thermometry on primary minerals indicates high temperatures of equilibration ( max 1200°C) for the mantle rocks. Gabbros range from troctolite and olivine-gabbros to Fe-Ti gabbros and show clear evidence of syn-magmatic deformation, partially obliterated by retrograde amphibolite and low-grade metamorphic conditions. In sections perpendicular to the detachment within the footwall, syn-tectonic gabbros and serpentinized peridotites grade over some tens of meters into cataclasites that are capped by fault gouges. Petro-structural investigations of the fault rocks reveal a syn-tectonic retrograde metamorphic evolution. Clasts of dolerite within the fault zone suggest that detachment faulting was accompanied by magmatic activity. Hydrothermal alteration is indicated by strong mineralogical and chemical modifications. Gabbro and serpentinized peridotite, together with serpentinite cataclasites occur as clasts in tectono-sedimentary breccias overlying directly the detachment

  11. Textures and geochemistry of zircons in ODP holes 735B and 1105A, Atlantis Bank, SWIR

    NASA Astrophysics Data System (ADS)

    John, B. E.; Cheadle, M. J.; Rioux, M. E.; Wooden, J. L.; Baines, G.

    2012-12-01

    Zircon is a common accessory mineral in ocean crust, and an important chronometer for studying the timing and duration of crustal accretion. Here, we present a comprehensive textural/geochemical study of zircon in 25 samples from the length of ODP Hole 735B (1508m) and adjacent Hole 1105A (158m) at Atlantis Bank, South West Indian Ridge (SWIR). Two zircon-bearing rock suites include i) a dioritic suite comprising amphibole granodiorite, quartz diorite and diorite dikes/veins, and ii) a suite of oxide gabbro segregations/veins. Combined TIMS U/Pb dating (Rioux et al, this meeting) and SIMS REE and other trace element (TE) chemical analyses of these zircons provide constraints on the growth and thermal history of ocean crust, and melt evolution. Zircons from both drill holes vary in morphology, but are typically pristine, colorless euhedral to anhedral grains from ~50-1000 μm in the long dimension. Over 90% show weak sector zoning, and ~50% show oscillatory zoning in CL. Additional textures include: 1. resorbed rims in two dioritic veins; 2. high U rims in two additional dioritic veins; 3. internal resorption/recrystallization boundaries in one diorite dike and one oxide gabbro; 4. a sub-population of high U grains hosting mottled/spongy interiors, possibly indicative of disequilibrium/reaction, in one diorite dike; and 5. mineral/melt inclusions in zircons in most of the dioritic veins, and in ~50% of oxide gabbros. SIMS analyses of 390 zircons (>750 spot analyses) confirm that the zircons have TE concentrations (including U/Yb vs Hf) typical of those from ocean crust. U ranges from <10 to >800 ppm in zircons from the dioritic veins (mean 123 ppm), and 5 to >500 ppm in zircons from the oxide gabbros (mean 59 ppm). All analyzed zircons have steep positive REE slopes with distinct positive Ce and negative Eu anomalies (Ce/Ce* and Eu/Eu*), similar to other oceanic zircons. Zircons from dioritic veins are REE-enriched (ΣREE = 216-15670; mean 3000 ppm) and have

  12. Neoproterozoic oceanic arc remnants in the Moroccan Anti-Atlas: reconstructing deep to shallow arc crustal sequence and tracking Pan-African subduction-accretion processes

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Spagna, Paul; Watlet, Arnaud; Vandycke, Sara

    2015-04-01

    The Pan-African belt of West and North Africa exposes many intra-oceanic arc complexes while they are rather uncommon in Phanerozoic orogenic belts. Intra-Oceanic Subduction Zone (IOSZ) in the Moroccan Anti-Atlas crop out in two tectonic windows moulded along the Anti-Atlas Major fault: the Sirwa (western-) and the Bou Azzer (eastern- part) inliers, associated with 760 Ma back-arc ophiolites. These arc sequences are located at the south of the ophiolites and are named the Iriri-Tachakoucht (Sirwa window) and the Asmlil arc complexes (Bou Azzer inlier). (i) The Iriri-Tachakoucht unit is composed of coarse grained hornblendite lenticular plugs, medium-grained hornblende gabbro dykes intruding andesitic to dacitic porphyroclastic gneiss. The contact between both lithologies is gradual and marked by an increasing migmatitization of the gneisses towards hornblendite intrusions. Phase diagram calculation were performed on garnet-bearing gneisses. Garnet cores have grown during a prograde P-T path up to upper amphibolite facies conditions (660°C at ~9 kbar) and recorded the burial of the Tachakoucht metavolcanics, while rims composition indicates that the rock recrystallized under higher temperature conditions (800°C at 4-5 kbar). These HT conditions match those for hornblendites igneous emplacement (850°C and 4 kbar) and this event leaded to more pronounced but still limited partial melting (< 10% melting) of the porphyroclastic gneisses. New geochronological data on the migmatitic gneiss (zircon U-Pb dating) constrain the protolith age at 733 ±7 Ma (zircons core) and the HT tectono-metamorphic event at 654 ±7 Ma (zircons rim). (ii) The Asmlil arc complex is made of hornblende gabbros and garnet-bearing gabbros intruded under HT conditions by dykes of medium-grained hornblendites, hornblende-gabbros and leucodiorites. These metagabbroic intrusions have been dated at 697 ± 8 Ma (U-Pb zircons). P-T pseudosections were calculated for garnet-bearing gabbros and

  13. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    NASA Astrophysics Data System (ADS)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  14. Decoding low dihedral angles in gabbroic layered intrusions

    NASA Astrophysics Data System (ADS)

    Holness, M. B.; Humphreys, M.; Veksler, I. V.

    2010-12-01

    Texturally equilibrated rocks are granular with a unimodal grain size, smoothly curved grain boundaries, and angles at three-grain junctions of 110-140°. Gabbros are not texturally equilibrated: primocrysts commonly have planar faces whereas later-formed phases fill in the interstitial spaces. Augite-plagioclase-plagioclase dihedral angles (Θcpp) rarely attain the equilibrium value in gabbros and the population of disequilibrium angles preserves otherwise inaccessible information about rock history. The Θcpp population varies significantly between different basaltic bodies. In a rapidly cooled dolerite Θcpp has a low median (60-70°) and a high standard deviation (20-25°). The plagioclase-augite grain boundaries are generally planar. In more slowly cooled gabbros in layered intrusions, the angle populations have a higher median (80-110°) with a low standard deviation (10-15°). The plagioclase-augite grain boundaries are generally planar far from the triple junction, but curve within 10 microns of the junction. This curvature is commonly asymmetric. The angle population in solidified gabbros infiltrated by low-temperature melts is similar to that in dolerites, although the low angles are associated with cuspate interstitial grains. The dihedral angle is a function of both the original solidification process and subsequent high-temperature (melt-absent) grain boundary migration. Infilling of a melt pocket by overgrowth of the bounding solid phases necessitates supersaturation, and this is easier to attain for planar faces, resulting in inhibition of augite growth into pores bounded by planar plagioclase grains and an asymmetry of the initial augite-plag-plag junction. If the solidified gabbro is kept sufficiently hot these initial junction geometries can change during textural equilibration. In the Skaergaard, Rum and Bushveld intrusions, the median Θcpp varies with liquidus assemblage, increasing step-wise on the addition of a new liquidus phase. Locally

  15. Augustine Volcano's late Pleistocene rhyolite eruption and its modern-day residuum

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Vazquez, J. A.

    2012-12-01

    The pre-Holocene eruptive history of Augustine Volcano, the most active volcano in the populated Cook Inlet region of Alaska, is poorly known due to the effects of glaciation and voluminous products of Holocene eruptions that cover the majority of this island volcano. Among its oldest known deposits, thought to be latest Pleistocene in age, are a basalt-rhyolite hyaloclastite, which is interbedded with an overlying pumiceous rhyolite tephra fall, that crop out on the south side of the island (Waitt and Beget, 2009). Dense and pumiceous rhyolite clasts from the deposits are compositionally similar (71-74 wt. % SiO2; Larsen et al., 2010) and contain phenocrysts of plagioclase, quartz, amphibole, and Fe-Ti oxides. These basalt-rhyolite deposits are the most compositionally extreme products of the volcano; Holocene eruptions, including historical eruptions in 1976, 1986, and 2006, produced andesites and dacites. In 2006, one such eruption produced gabbro inclusions (54.4-60.2 wt% SiO2) that consist of plagioclase, amphibole, pyroxenes, Fe-Ti oxides, and small amounts of interstitial glass, suggesting a cumulate origin. Both the Pleistocene-age rhyolite and the 2006 gabbro inclusions fall along a whole-rock compositional trend depleted in incompatible elements relative to mid-Holocene-present andesites and dacites. To investigate differentiation and the timing of rhyolite magma generation at Augustine, we have determined high-spatial resolution 238U-230Th ages of zircon crystallization for the rhyolite as well as for the gabbros and high-silica andesites erupted in 2006. Sensitive high-resolution ion microprobe (SHRIMP-RG) analyses of indium-mounted, unpolished zircon rims from the rhyolite yield a single 238U-230Th isochron age of ca. 27 ka, which we interpret to reflect the final interval of crystallization immediately prior to eruption. Sectioned core ages for rhyolite zircon, however, fall into two populations: one at ca. 27 ka, and a second, smaller population that

  16. New paleomagnetic data from the Wadi Abyad crustal section and their implications for the rotation history of the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Meyer, Matthew; Morris, Antony; Anderson, Mark; MacLeod, Chris

    2015-04-01

    The Oman ophiolite is an important natural laboratory for understanding the construction of oceanic crust at fast spreading axes and its subsequent tectonic evolution. Previous paleomagnetic research in lavas of the northern ophiolitic blocks (Perrin et al., 2000) has demonstrated substantial clockwise intraoceanic tectonic rotations. Paleomagnetic data from lower crustal sequences in the southern blocks, however, have been more equivocal due to complications arising from remagnetization, and have been used to infer that clockwise rotations seen in the north are internal to the ophiolite rather than regionally significant (Weiler, 2000). Here we demonstrate the importance and advantages of sampling crustal transects in the ophiolite in order to understand the nature and variability in magnetization directions. By systematically sampling the lower crustal sequence exposed in Wadi Abyad (Rustaq block) we resolve for the first time in a single section a pattern of remagnetized lowermost gabbros and retention of earlier magnetizations by uppermost gabbros and the overlying dyke-rooting zone. Results are supported by a positive fold test that shows that remagnetization of lower gabbros occurred prior to the Campanian structural disruption of the Moho. NW-directed remagnetized remanences in the lower units are consistent with those used by Weiler (2000) to infer lack of significant rotation of the southern blocks and to argue, therefore, that rotation of the northern blocks was internal to the ophiolite. In contrast, E/ENE-directed remanences in the uppermost levels of Wadi Abyad imply large, clockwise rotation of the Rustaq block, of a sense and magnitude consistent with intraoceanic rotations inferred from extrusive sections in the northern blocks. We conclude that without the control provided by systematic crustal sampling, the potential for different remanence directions being acquired at different times may lead to erroneous tectonic interpretation.

  17. New Paleomagnetic Data from the Wadi Abyad Crustal Section and their Implications for the Rotation History of the Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Morris, A.; Anderson, M.; MacLeod, C. J.

    2014-12-01

    The Oman ophiolite is an important natural laboratory for understanding the construction of oceanic crust at fast spreading axes and its subsequent tectonic evolution. Previous paleomagnetic research in lavas of the northern ophiolitic blocks (Perrin et al., 2000, Mar. Geophys. Res.) has demonstrated substantial clockwise intraoceanic tectonic rotations. Paleomagnetic data from lower crustal sequences in the southern blocks, however, have been more equivocal due to complications arising from remagnetization, and have been used to infer that clockwise rotations seen in the north are internal to the ophiolite rather than regionally significant (Weiler, 2000, Mar. Geophys. Res.). Here we demonstrate the importance and advantages of sampling crustal transects in the ophiolite in order to understand the nature and variability in magnetization directions. By systematically sampling the lower crustal sequence exposed in Wadi Abyad (Rustaq block) we resolve for the first time in a single section a pattern of remagnetized lowermost gabbros and retention of earlier magnetizations by uppermost gabbros and the overlying dyke-rooting zone. Results are supported by a positive fold test that shows that remagnetization of lower gabbros occurred prior to the Campanian structural disruption of the Moho. NW-directed remagnetized remanences in the lower units are consistent with those used by Weiler (2000, Mar. Geophys. Res.) to infer lack of significant rotation of the southern blocks and to argue, therefore, that rotation of the northern blocks was internal to the ophiolite. In contrast, E/ENE-directed remanences in the uppermost levels of Wadi Abyad imply a large, clockwise rotation of the Rustaq block, of a sense and magnitude consistent with intraoceanic rotations inferred from extrusive sections in the northern blocks. We conclude that without the control provided by systematic crustal sampling, the potential for different remanence directions being acquired at different times

  18. Insights into magmatic processes and hydrothermal alteration of in situ superfast spreading ocean crust at ODP/IODP site 1256 from a cluster analysis of rock magnetic properties

    NASA Astrophysics Data System (ADS)

    Dekkers, Mark J.; Heslop, David; Herrero-Bervera, Emilio; Acton, Gary; Krasa, David

    2014-08-01

    analyze magnetic properties from Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6°44.1' N, 91°56.1' W) on the Cocos Plate in ˜15.2 Ma oceanic crust generated by superfast seafloor spreading, the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Fuzzy c-means cluster analysis and nonlinear mapping are utilized to study down-hole trends in the ratio of the saturation remanent magnetization and the saturation magnetization, the coercive force, the ratio of the remanent coercive force and coercive force, the low-field magnetic susceptibility, and the Curie temperature, to evaluate the effects of magmatic and hydrothermal processes on magnetic properties. A statistically robust five cluster solution separates the data predominantly into three clusters that express increasing hydrothermal alteration of the lavas, which differ from two distinct clusters mainly representing the dikes and gabbros. Extensive alteration can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. Thus, the analysis complements interpretation based on electrofacies analysis. All clusters display rock magnetic characteristics compatible with an ability to retain a stable natural remanent magnetization suggesting that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Paleointensity determination is difficult because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.

  19. Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ghent, Edward D.; Coleman, Robert Griffin; Hadley, Donald G.

    1979-01-01

    A variety of mafic and ultramafic inclusions occur within the pyroclastic components of the Al Birk basalt, erupted on the southern Red Sea coastal plain of Saudi Arabia from Pleistocene time to the present. Depleted harzburgites are the only inclusions contained within the basalts that were erupted through Miocene oceanic crust (15 km thick) in the vicinity of Jizan, whereas to the north in the vicinity of Al Birk, alkali basalts that were erupted through a thicker Precambrian crust (48 km thick) contain mixtures of harzburgites, cumulate gabbro, and websterite inclusions accompanied by large (> 2 cm) megacrysts of glassy alumina-rich clinopyroxene, plagioclase, and spinel. Microprobe analyses of individual minerals from the harzburgites, websterites, and cumulate gabbros reveal variations in composition that can be related to a complex mantle history during the evolution of the alkali basalts. Clinopyroxene and plagioclase megacrysts may represent early phases that crystallized from the alkali olivine basalt magma at depths less than 35 km. Layered websterites and gabbros with cumulate plagioclase and clinopyroxene may represent continuing crystallization of the alkali olivine basalt magma in the lower crust when basaltic magma was not rapidly ascending. It is significant that the megacrysts and cumulate inclusions apparently form only where the magmas have traversed the Precambrian crust, whereas the harzburgite-bearing basalts that penetrated a much thinner Miocene oceanic crust reveal no evidence of mantle fractionation. These alkali olivine basalts and their contained inclusions are related in time to present-day rifting in the Red Sea axial trough. The onshore, deep-seated, undersaturated magmas are separated from the shallow Red Sea rift subalkaline basalts by only 170 km. The contemporaneity of alkaline olivine and subalkaline basalts requires that they must relate directly to the separation of the Arabian plate from the African plate.

  20. Plume-orogenic lithosphere interaction recorded in the Haladala layered intrusion in the Southwest Tianshan Orogen, NW China

    NASA Astrophysics Data System (ADS)

    He, Peng-Li; Huang, Xiao-Long; Xu, Yi-Gang; Li, Hong-Yan; Wang, Xue; Li, Wu-Xian

    2016-03-01

    The plume-orogenic lithosphere interaction may be common and important for the generation of large igneous provinces. The information regarding such a process is recorded by the Haladala gabbroic intrusion (~300 Ma), the largest layered ultramafic-mafic intrusion hosting V-Ti magnetite deposits in the Southwest Tianshan Orogen, NW China. The Haladala gabbros exhibit unfractionated chondrite-normalized rare earth element patterns with negative Nb and Ta anomalies and positive Pb anomaly on the primitive mantle-normalized multielement variation diagram. They are characterized by low initial Sr isotopes, slightly decoupled but high positive bulk rock ɛNd(t) and ɛHf(t), and high 207Pb/204Pb and 208Pb/204Pb relative to 206Pb/204Pb, delineating a DUPAL signature in the sources. The Haladala gabbros cannot be arc or postcollisional magmatism, given the lack of hydrous minerals and low K contents, respectively. This is further supported by the relatively low oxygen fugacity required for the gradual enrichment of V-Ti magnetite during the magma fractionation and by an overall anhydrous mantle source suggested by troctolite mineral assemblage (olivine + plagioclase). The emplacement age of the Haladala gabbros is identical to that of the Wajilitag kimberlites in the Tarim's interior, which have been interpreted as the first magmatic expression of the Tarim mantle plume. We thus propose that the Haladala gabbroic intrusion was generated in a hybrid geodynamic setting in which the Southwest Tianshan Orogen was impacted by an upwelling mantle plume. In this sense, the Haladala layered gabbroic intrusion records the early phase of magmatism of the Tarim plume, which was preferentially emplaced in a lithospheric weak zone.

  1. Crystallization depth beneath an oceanic detachment fault (ODP Hole 923A, Mid-Atlantic Ridge)

    NASA Astrophysics Data System (ADS)

    Lissenberg, C. Johan; Rioux, Matthew; MacLeod, Christopher J.; Bowring, Samuel A.; Shimizu, Nobumichi

    2016-01-01

    Oceanic detachment faults are increasingly recognized as playing an integral role in the seafloor spreading process at slow and ultraslow spreading mid-ocean ridges, with significant consequences for the architecture of the oceanic lithosphere. Although melt supply is considered to play a critical control on the formation and evolution of oceanic detachments, much less well understood is how melts and faults interact and influence each other. Few direct constraints on the locus and depth of melt emplacement in the vicinity of detachments are available. Gabbros drilled in ODP Hole 923A near the intersection of the Mid-Atlantic Ridge and the Kane transform fault (23°N; the MARK area) represent magmas emplaced into the footwall of such a detachment fault and unroofed by it. We here present U-Pb zircon dates for these gabbros and associated diorite veins which, when combined with a tectonic reconstruction of the area, allow us to calculate the depths at which the melts crystallized. Th-corrected single zircon U-Pb dates from three samples range from 1.138 ± 0.062 to 1.213 ± 0.021 Ma. We find a crystallization depth of 6.4 +1.7/-1.3 km, and estimate that the melts parental to the gabbros were initially emplaced up to 1.5 km deeper, at <8 km below the seafloor. The tectonic reconstruction implies that the detachment fault responsible for the exposure of the sampled sequence likely crossed the ridge axis at depth, suggesting that melt emplacement into the footwall of oceanic detachment faults is an important process. The deep emplacement depth we find associated with "detachment mode" spreading at ˜1.2 Ma appears to be significantly greater than the depth of magma reservoirs during the current "magmatic mode" of spreading in the area, suggesting that the northern MARK segment preserves a recent switch between two temporally distinct modes of spreading with fundamentally different lithospheric architecture.

  2. Neodymium, strontium, and lead isotopes in the Maloin Ranch Pluton, Wyoming: Implications for the origin of evolved rocks at anorthosite margins

    SciTech Connect

    Kolker, A.; Hanson, G.N. ); Frost, C.D. ); Geist, D.J. )

    1991-08-01

    Neodymium, strontium, and lead isotopic data are used in this study to investigate the origin of chemically evolved rocks in the Maloin Ranch Pluton, a composite body that borders and intrudes the Laramie Anorthosite. In the Maloin Ranch Pluton, these include ferrodiorite at the base of the intrusion, overalain progressively by fine-grained monzonite, monzosyenite, and porphyritic granite. Biotite gabbro and fine-grained granitic dikes are present locally at various levels of this sequence. The origin of the evolved rocks and their possible relation to associated anorthositic bodies has been much debated. In the Maloin Ranch Pluton, each rock type has distinct isotopic characteristics which, together with trace-element data previously reported, suggest different source characteristics for each member. Strontium and neodymium isotopic data for Maloin Ranch ferrodiorite and Laramie anorthositic rocks show considerable overlap, consistent with a comagmatic relation. Biotite gabbro is chemically and isotopically the most primitive rock type in the Maloin Ranch Pluton. The data suggest that biotite gabbro has a mantle source, but has undergone extensive fractionation in the crust. The authors' results suggest that the remainder (and bulk) of the intrusion formed by partial melting of the lower crust due to the emplacement of the Laramie Anorthosite. Trace-element and isotopic characteristics of the fine-grained monzonite are explained by partial melting of mantle-dervied lower crust, added to the margin of the Archean Wyoming craton at about 1.8 Ga. Neodymium, strontium, and lead isotope data for Maloin Ranch monzosyenite and porphyritic granite also suggest a lower crustal source.

  3. Boron contents and isotopic compositions of the hydrothermally altered oceanic crust from the Troodos ophiolite, Cyprus

    NASA Astrophysics Data System (ADS)

    Matsukura, S.; Yamaoka, K.; Ishikawa, T.; Kawahata, H.

    2010-12-01

    The boron contents and isotopic compositions were determined for the hydrothermally altered oceanic crust through the Troodos ophiolite. The samples were represented by the International Crustal Research Drilling Group (ICRDG) drill-Holes CY1 (479m), CY2A (689m), CY4 (2263m), and selected outcrops along the Akaki river. Hole CY1 was composed upper and lower pillow lava, CY4 constituted sheeted dike complex and gabbro section, and the samples along Akaki river formed from pillow lava to sheeted dike complex. Hole CY2A was composed pillow lava and sheeted dike, drilled near Agrokipia ‘B’ deposit a stockwork type which completely enclosed within the lower pillow lava. The goal of this study is to understand the Boron geochemistry during hydrothermal alteration of the oceanic crust including hydrothermal ore deposit as Agrokipia ‘B’. The average boron contents of each sequence from Troodos ophiolite were pillow lava (63.2ppm), sheeted dike complex (4.5ppm), gabbro section (1.6ppm). But then, those of Oman ophiolite were 7.9ppm, 5.3ppm, 1.7ppm (Yamaoka et al., 2010 submitted). Thus, both of these ophiolites, the vertical profile of boron content decreased with depth, also the boron contents were much richer than fresh-MORB (0.5ppm) (Spivack and Edmond, 1987; Chaussidon and Jambon, 1994). This indicates boron rich of the altered oceanic crust were derived from seawater. And sheeted dike complex and gabbro section were similar value relatively, but pillow lava differed widely. These results may represent the difference of length being submarine, because these ophiolites were generated in deep water of the Tethys sea about 90Ma (Late Cretaceous) (Tilton et al., 1981; Mukasa and Ludden, 1987), and Oman ophiolite was obducted about 70Ma (Lanphere, 1981) but Troodos ophiolite uplifted about 10Ma (Middle Miocene) (Robertson and Woodcock, 1979).

  4. Hydrothermal circulation in fast spread ocean crust - where and how much? Insight from ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Harris, M.; Coggon, R. M.; Smith-Duque, C. E.; Teagle, D. A. H.

    2014-12-01

    Understanding and quantifying hydrothermal circulation is critical to testing models of the accretion of lower ocean crust and quantifying global geochemical cycles. However, our understanding is principally limited by a lack of direct observations from intact ocean crust. Key questions remain about the magnitude of hydrothermal fluid fluxes, the nature and distribution of fluid pathways and their global variability. ODP Hole 1256D in the eastern equatorial Pacific samples a complete section of 15 Myr old upper ocean crust down to the dike/gabbro transition zone. A high spatial resolution Sr isotope profile is integrated with wireline studies, volcanostratigraphy, petrography and mineral geochemistry to document fluid pathways and develop a model for the evolving hydrothermal system during volcanic construction of the crust. Major off-axis fluid conduits in the volcanic sequence are restricted to the flow margins of two anomalously thick (>25 m) massive flows, indicating that massive flows act as a permeability barrier for fluid flow. Dike margins are pathways for both recharge and discharge hydrothermal fluids. Sub-horizontal channeling of high temperature fluids at the dike/gabbro boundary is a common attribute of most cartoons of mid ocean ridge hydrothermal systems. Hole 1256D provides the first in situ observations of the dike/gabbro transition zone and records lateral fluid transport along intrusive boundaries. The time-integrated fluid flux in the sheeted dikes of Hole 1256D calculated using Sr isotope mass balance is ~1.8 x 106 kg/m2. This is similar to fluid fluxes from other studies (Hole 504B, Pito Deep, Hess Deep) despite large variations in the thickness and Sr isotope profiles of the sheeted dike complexes, suggesting that hydrothermal fluid fluxes are remarkably uniform and independent of the local structure of the crust. This fluid flux is not large enough to completely remove the heat flux from crystallizing and cooling the lower crust and requires

  5. A Neoproterozoic seamount in the Paleoasian Ocean: Evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Santosh, M.; Gu, Pingyang; Yang, Baokai; Zhang, Bing; Wang, Haibo; Zhong, Xing; Tong, Lili

    2012-05-01

    The Mayile ophiolitic mélange (MOM) is located in the southwestern part of the West Junggar (NW China) and forms part of the Southern Altaids. The MOM comprises ultramafic rocks, gabbro, pillow and massive lavas, abyssal radiolarian cherts and volcaniclastic rocks. Zircons with magmatic crystallization features including oscillatory zoning and high Th/U values from the isotropic gabbro within the MOM yield LA-ICP-MS U-Pb age of 572 ± 9 Ma (MSWD = 1.0) marking the timing of crystallization of these rocks as late Neoproterozoic. Geochemically, the basalts of the corresponding gabbros from MOM display OIB-type alkali basalt and E-MORB-type tholeiitic basalt features. Both of these groups are characterized by LILE and LREE enrichment and HREE depletion, very weak or no Eu anomalies (Eu/Eu* = 0.9-1), and no obvious Nb, Ta and Ti negative anomalies, suggesting a typical OIB affinity. We propose that these volcanic rocks were derived from a mantle plume-related magmatism associated with the evolution of the Paleoasian Oceanic system, with the mantle source containing 2%-5% garnet, ˜ 2% spinel and ˜ 2% amphibole. The basalts show within-plate affinity marked geochemical similarities with those from Hawaii and Xigaze seamount, suggestive of their intra-oceanic setting. Subduction of the oceanic lithosphere commenced during late Cambrian to early Ordovician, with the eventual accretion of the seamounts in the fore-arc together with oceanic fragments forming the Mayile ophiolitic mélange.

  6. Incidence of Metamorphism on Magnetic Mineralogy in the Sarmiento Ophiolitic Complex, Southern Chile

    NASA Astrophysics Data System (ADS)

    Singer, S.; Rapalini, A.; Calderon, M.; Herve, F.

    2005-05-01

    The Sarmiento Ophiolitic Complex (SOC), located in the southern Andes of Chile, represents the mafic portion of the Late Jurassic to Early Cretaceous oceanic floor of a back-arc basin closed and uplifted in the Mid Cretaceous. Its igneous pseudostratigraphy consists of mainly mafic pillow lavas, dikes, and gabbros. These rocks underwent a non - deformative "ocean floor metamorphism" which developed secondary mineral assemblages in a vertical steep metamorphic gradient passing from zeolite to actinolite facies, followed by a transition to fresh gabbros Syntectonic greenschist facies assemblages in mylonitic rocks bordering the thrust slices that expose the SOC, represent a different metamorphic event, that probably occured before the latest Cretaceous. A paleomagnetic study of these rocks has shown that a post-tectonic widespread remagnetization affected the whole ophiolite. Incidence of the mentioned metamophic processes on the natural remanent magnetization of the ophiolite was evaluated thru a susceptibility survey and a study of ferromagnetic (s.l ) minerals. These were identified by microscope observations under reflected and transmitted light. A very good agreement between magnetic susceptibility values and optical observations was found. Metamorphic processes have produced strong effects on ferromagnetic minerals. These metabasites are disctintly poor in titanomagnetites, except the metagabbros and dikes crosscutting gabbros, which show high susceptibilities due to magnetite from serpentinisation of olivines and uralitization of pyroxenes. Sheeted dikes and pillow lavas show low susceptibilities controlled by paramagnetic minerals with titanite as witness of a primary titanium-bearing mineral. Pure microcrystalline magnetite, main carrier of natural remanent magnetization, likely formed during the greenschist post-tectonic overprint. Sulfide mineralization in the Complex requires further studies. Finally, equilibria between Fe3+ in oxides and Fe3+ in

  7. Xenoliths of mafic/ultramafic igneous rocks as carriers of information on lower crust beneath Złotoryja - Jawor volcanic complex (SW Poland).

    NASA Astrophysics Data System (ADS)

    Dajek, Michał; Matusiak-Malek, Magdalena; Puziewicz, Jacek; Lipa, Danuta; Ntaflos, Theodors

    2016-04-01

    The Cenozoic alkaline volcanic rocks in Lower Silesia (SW Poland) are known for their mantle peridotite xenoliths. However, the mafic and ultramafic xenoliths with cumulative textures and of composition of olivine- or hornblende clinopyroxenite, clinopyroxenite, websterite, norite and gabbro occur in some of the lavas (6 sites) of the Złotoryja-Jawor volcanic complex. The xenoliths are anhydrous, only in Wilcza Góra minor amount of amphibole occurs. The Mg# of clinopyroxene varies from 0.54 (Ostrzyca Proboszczowicka clinopyroxenite) to 0.89 (Góra Świątek clinopyroxenite). Forsterite content in olivine varies from 64% (Winna Góra gabbro) to 86% (Wilcza Góra hornblende clinopyroxenite). Anortite content in plagioclase in nortite and gabbros is 33-56%. The Mg# in amphibole is 0.43 to 0.76. Clinopyroxene trace element composition is typically LREE enriched, but in Wilcza Góra norite and Mnisza Góra clinopyroxenite it is LREE-depleted. The calculated pressures of clinopyroxene crystallization (calculated by the algorithm of Nimis and Ulmer, 1998, CMP, 1998, 122-135, assuming all Fe to be 2+) is from 0.45 to 0.96 GPa pointing to crystallization of the pyroxenitic rocks in lower crust or at crust/mantle boundary. Theoretical melts in equilibrium with clinopyroxene enriched in LREE resemble the alkaline lavas from the area and we suggest they are cognate with host magmas. We explain variations in composition of mafic xenoliths from Wilcza Góra, Winna Góra and Grodziec to be a result of magma fractionation. Xenoliths containing clinopyroxene impoverished in LREE may represent lithologies inherited from Variscan oceanic crust. Megacrysts of clinopyroxene present in some of the localities cannot result from disintegration of mafic xenoliths This study was possible thanks to project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science.

  8. Evidence for multiple pulses of crystal-bearing magma during emplacement of the Doros layered intrusion, Namibia

    NASA Astrophysics Data System (ADS)

    Owen-Smith, T. M.; Ashwal, L. D.

    2015-12-01

    The Doros Complex is a relatively small (maximum 3.5 km × 7.5 km) shallow-level, lopolithic, layered mafic intrusion in the early Cretaceous Paraná-Etendeka Large Igneous Province. The stratigraphy broadly comprises a minor, fine-grained gabbroic sill and a sequence of primitive olivine-cumulate melagabbros, with a basal chilled margin, an intermediate plagioclase-cumulate olivine gabbro, and a sequence of mineralogically and texturally variable, intermediate, strongly foliated, plagioclase-, olivine- or magnetite-cumulate gabbros. An evolved syenitic (bostonite) phase occurs as cross-cutting dykes or as enclaves within the foliated gabbros. Major element modelling of the liquid line of descent shows that the spectrum of rock types, including the bostonite, is consistent with the fractionation of a basaltic parental magma that crystallised olivine, clinopyroxene, plagioclase, magnetite, K-feldspar and apatite. However, the stratigraphic succession does not correspond to a simple progressive differentiation trend but instead shows a series of punctuated trends, each defined by a compositional reversal or hiatus. Incompatible trace element concentrations do not increase upwards though the body of the intrusion. The major units show similar, mildly enriched rare earth element patterns, with minimal Eu anomalies. Back-calculation of the rare earth element concentrations of these cumulate rocks produces relatively evolved original liquid compositions, indicating fractionation of this liquid from a more primitive precursor. Based on combined field, petrographic, geochemical and geophysical evidence, we propose an origin for the Doros Complex by a minimum of seven closely spaced influxes of crystal-bearing magmas, each with phenocryst contents between 5% and 55%. These findings represent a departure from the traditional single-pulse liquid model for the formation of layered mafic intrusions and suggest the presence of an underlying magmatic mush column, i.e., a large

  9. Early Permian East-Ujimqin mafic-ultramafic and granitic rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, chronology, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Cheng, Yinhang; Teng, Xuejian; Li, Yanfeng; Li, Min; Zhang, Tianfu

    2014-12-01

    The East-Ujimqin complex, located north of the Erenhot-Hegenshan fault, North China, is composed of mafic-ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing'an-Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U-Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic-ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic-ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U-Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2-14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9-12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic-ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic-ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280-276 Ma.

  10. Late Permian Melt Percolation through the Crust of North-Central Africa and Its Possible Relationship to the African Large Low Shear Velocity Province

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. G.; Lee, T. Y.; Yang, C. C.; Wu, J. C.; Wang, K. L.; Lo, C. H.

    2014-12-01

    The Doba gabbro was collected from an exploration well through the Cretaceous Doba Basin of Southern Chad. The gabbro is comprised mostly of plagioclase, clinopyroxene and Fe-Ti oxide minerals and displays cumulus mineral textures. Whole rock 40Ar/39Ar step-heating geochronology yielded a Late Permian plateau age of 257 ± 1 Ma. The major and trace elemental geochemistry shows that the gabbro is mildly alkalic to tholeiitic in composition and has trace element ratios (i.e. La/YbN > 7; Sm/YbPM > 3.4; Nb/Y > 1; Zr/Y > 5) indicative of a basaltic melt derived from a garnet-bearing sublithospheric mantle source. The moderately enriched Sr-Nd isotopes (i.e. ISr = 0.70495 to 0.70839; eNd(T) = -1.0 to -1.3) fall within the mantle array (i.e. OIB-like) and are similar to other Late Permian plutonic rocks of North-Central Africa (i.e. ISr = 0.7040 to 0.7070). The Late Permian plutonic igneous complexes of North-Central Africa are geologically associated with tectonic lineaments suggesting they acted as conduits for sublithospheric melts to migrate to middle/upper crustal levels. The source of the magmas may be related to the spatial-temporal association of North-Central Africa with the African large low shear velocity province (LLSVP). The African LLSVP has remained stable since the Late Carboniferous and was beneath the Doba basin during the Permian. We suggest that melts derived from deep seated sources related to the African LLSVP percolated through the North-Central African crust via older tectonic lineaments and form a discontiguous magmatic province.

  11. Trace element distribution in silicate phases from the cumulate mafic xenoliths of Puy Beaunit (French Massif Central): A LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Demaiffe, D.; Berger, J.; Femenias, O.; Coussaert, N.

    2003-04-01

    A large diversity of xenoliths is present in the scoria cones of the quaternary Puy Beaunit (French Massif Central). Mafic xenoliths are abundant, they are mainly gabbronorites with minor pyroxenites and anorthositic gabbros. It has been shown recently that they derived from a deep layered complex emplaced at the crust-mantle boundary during Late Permian (257+/- 6Ma). These rocks still partly show magmatic structures. However, sub-solidus recrystallisation and pyrometamorphic overprinting (while the xenoliths were taken up by the lava) have partly blurred the magmatic primary textures. The xenoliths now have polygonal and coronitic textures, so intercumulus phases cannot be easily identified. The abundance of orthopyroxene (generally missing in alkaline series), the low content of REE and trace elements and the nearly flat spidergram profiles suggest that these xenoliths are of subalkaline affinity. They commonly show mm- to cm- scale layering indicative of a cumulate origin. Positive (in whole rock plagioclase-rich gabbros) and negative (in pyroxene-rich gabbros) Eu anomalies also argue for a cumulate origin. The trace element contents (REE, Zr, Hf, Rb, Sr, Nb, Ta, Ba) of the main silicate phases (plagioclase, orthopyroxene, clinopyroxene and the very fine-grained coronites) have been obtained by LA-ICP-MS. Two processes control the REE content of these mafic xenoliths: 1) the degree of differentiation, which is indicated by the Mg# of the cumulus orthopyroxene; 2) the proportion of trapped interstitial liquid which is indicated by the content of highly incompatible elements (U, Th, Zr and Rb) in whole rock analyses. Plagioclases and orthopyroxenes have relatively low REE contents compared to clinopyroxene and coronitic association suggesting that they are the cumulus phases. High REE and trace element contents of clinopyroxenes and of the very fine-grained coronites point to an intercumulus origin. Moreover, in situ REE patterns show that the very fine

  12. Petrogenesis and geodynamics of plagiogranites from Central Turkey (Ekecikdağ/Aksaray): new geochemical and isotopic data for generation in an arc basin system within the northern branch of Neotethys

    NASA Astrophysics Data System (ADS)

    Köksal, Serhat; Toksoy-Köksal, Fatma; Göncüoglu, M. Cemal

    2016-09-01

    In the Late Cretaceous, throughout the closure of the Neotethys Ocean, ophiolitic rocks from the İzmir-Ankara-Erzincan ocean branch were overthrusted the northern margin of the Tauride-Anatolide Platform. The ophiolitic rocks in the Ekecikdaǧ (Aksaray/Central Turkey) region typify the oceanic crust of the İzmir-Ankara-Erzincan branch of Neotethys. The gabbros in the area are cut by copious plagiogranite dykes, and both rock units are intruded by mafic dykes. The plagiogranites are leucocratic, fine- to medium-grained calc-alkaline rocks characterized mainly by plagioclase and quartz, with minor amounts of biotite, hornblende and clinopyroxene, and accessory phases of zircon, titanite, apatite and opaque minerals. They are tonalite and trondhjemite in composition with high SiO2 (69.9-75.9 wt%) and exceptionally low K2O (<0.5 wt%) contents. The plagiogranites in common with gabbros and mafic dykes show high large-ion lithophile elements/high-field strength element ratios with depletion in Nb, Ti and light rare-earth elements with respect to N-MORB. The plagiogranites together with gabbros and mafic dykes show low initial 87Sr/86Sr ratios (0.70419-0.70647), high ƐNd(T) (6.0-7.5) values with 206Pb/204Pb (18.199-18.581), 207Pb/204Pb (15.571-15.639) and 208Pb/204Pb (38.292-38.605) ratios indicating a depleted mantle source modified with a subduction component. They show similar isotopic characteristics to the other supra-subduction zone (SSZ) ophiolites in the Eastern Mediterranean to East Anatolian-Lesser Caucasus and Iran regions. It is suggested that the Ekecikdaǧ plagiogranite was generated in a short time interval from a depleted mantle source in a SSZ/fore-arc basin setting, and its nature was further modified by a subduction component during intra-oceanic subduction.

  13. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    USGS Publications Warehouse

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  14. Geochemical studies of mafic and other low silica, Precambrian intrusive rocks in the Adirondack lowlands, New York

    SciTech Connect

    Antibus, J.; Carl, J.D. . Dept. of Geology)

    1993-03-01

    Mafic metaigneous rocks in the Adirondack Lowlands include gabbros, amphibolites and diorites that are associated with, and hard to distinguish from, a host of dark colored, low-silica, alkali feldspar-bearing rocks that include syenogabbros, syenites and monzonites. All rocks intrude metasedimentary and metavolcanic host rocks and occur as isolated, pre- to syn-metamorphic bodies, generally with elongate, sheet-like form. Some occur within or marginal to deformation zones. Lacking are the massive igneous complexes of the Highlands where anorthosites, charnockites and mangerites comprise a common field association. Amphibolites vary from mappable sheets that are hundreds of meters thick to thin (<1 m) layers within the host gneisses. Gabbros and diorites vary from circular to oval-shaped bodies, generally <2 km across, that may be infolded with the host rocks. Pervasive shear in Lowland granitic rocks (Hyde School Gneiss) that resulted in major sheath folds, as proposed by Tewksbury, extends into the mafic bodies whose margins show strong gneissic textures and grain size reduction, but the cores are less deformed. The Balmat gabbro varies inwardly and systematically from monzonitic to gabbroic composition in decreasing Si, Na, K, Rb, Zr and Ba, and in increasing Ca, Mg, Fe, Ti, P, Sr, Cr, V and Ni content. Y/Nb ratios remain constant at 3-4. Among explanations of assimilation and metasomatism, the authors tentatively prefer an hypothesis of exclusion of alkali material during crystallization of mafic magma. Calc alkali and low potassium tholeiites are indicated in plots of the Balmat and other mafic bodies on Ti/100-Zr-Yx3 and Ti-Zr discrimination diagrams, although there is much scatter of data. Within-plate basalts are lacking, and ocean floor basalts are indicated for some amphibolites.

  15. Origin and interaction of some alkalic and silicic plutons in the Vermilion Granitic Complex, NE Minnesota

    SciTech Connect

    McCall, G.W.; Nabelek, P.I.; Bauer, R.L.; Glascock, M.D.

    1985-01-01

    Alkalic gabbros and tonalites comprise a significant portion of the Archaean crust in the Vermilion Granitic Complex of NE Minnesota. The origin of these and associated rocks has been modeled using major and trace element approaches. Samples of the alkalic gabbro collected from three different intrusions have similar major element, REE, and transition metal concentrations. The REE patterns of these rocks can be modeled as the result of 1% to 3% melting of an undepleted garnet herzolite mantle with REE concentrations three times that of chondrites. However, their Al/sub 2/O/sub 3//CaO ratios of 2 - 3, Sr content of 900-1400 ppm and Ba of 100 - 1600 ppm suggest that the source may have been an enriched, metasomatized mantle. The hornblendites associated with these alkalic rocks have REE patterns which are consistent with crystallization and accumulation from the gabbroic magma. Major and trace element modeling suggest that the granitic dikes which are common throughout the area may be residual liquids formed by 60% crystallization of plagioclase, biotite, hornblende and apatite from the nearby tonalites such as the Burntside of Wakemup Bay plutons. Porphyritic hornblende monzonites composed of centimeter sized hornblende crystals floating in a granitic matrix occur locally. The field relations as well as the major and trace element data are consistent with the formation of these monzonitic rocks by mixing of the granite with partially consolidated hornblendite. These results suggest a complex interaction between alkalic gabbros and tonalites involving fractionation and mixing during the development of the Archaean crust of NE Minnesota.

  16. Lateral variation in oxygen fugacity and halogen contents in early Cretaceous magmas in Jiaodong area, East China: Implication for triggers of the destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Long; He, Peng-Li; Wang, Xue; Zhong, Jun-Wei; Xu, Yi-Gang

    2016-04-01

    Pacific subduction has been suggested as the trigger of the destruction of the North China Craton, but evidence for it remains ambiguous. To further investigate this issue, we studied Wulian pyroxene monzonite (123 ± 1 Ma) in the west and Rushan gabbro-diorite (115 ± 1 Ma) in the east of the Sulu orogen, East China. The rocks of both locations are characterized by low TiO2 but high SiO2 and K2O, fractionated REE patterns with notable negative Ta-Nb-Ti anomalies, and by high initial 87Sr/86Sr ratios and strongly negative εNd (t) and εHf (t) values. These geochemical and isotopic characteristics can be interpreted to be formed by partial melting of enriched lithosphere mantle refertilized by recycled crustal materials that were associated with the Sulu orogeny. Oxygen fugacities of the Rushan gabbro-diorites, estimated based on magnetite-ilmenite equilibration, are significantly higher than those of Wulian pyroxene monzonite. This lateral difference is mirrored by lower F and F/Cl but higher Cl in biotite in the Rushan gabbro-diorite compared to Wulian pyroxene monzonite. All these data suggest a spatially heterogeneous Cretaceous mantle source in terms of halogens and water contents beneath the Sulu orogen, which was most likely caused by the subduction processes of the Pacific plate. H2O-rich fluid in the mantle beneath the east of the Sulu orogen closer to the mantle wedge was prominently from early dehydration of subducted slab at shallow depth, while F-bearing fluid to further west was released by dehydrated deeper slab or stagnant oceanic slab within the mantle transition zone.

  17. Petrogenesis of the magmatic complex at Mount Ascutney, Vermont, USA - I. Assimilation of crust by mafic magmas based on Sr and O isotopic and major element relationships

    USGS Publications Warehouse

    Foland, K.A.; Henderson, C.M.B.; Gleason, J.

    1985-01-01

    The Ascutney Mountain igneous complex in eastern Vermont, USA, is composed of three principal units with compositions ranging from gabbro to granite. Sr and O isotopic and major element relationships for mafic rocks, granites, and nearby gneissic and schistose country rock have been investigated in order to describe the petrogenesis of the mafic suite which ranges from gabbro to diorite. The entire complex appears to have been formed within a short interval 122.2??1.2 m.y. ago. The granites with ??18O near +7.8??? had an initial 87Sr/86Sr of 0.70395(??6) which is indistinguishable from the initial ratio of the most primitive gabbro. Initial 87Sr/86Sr ratios and ??18O values for the mafic rocks range from 0.7039 to 0.7057 and +6.1 to +8.6???, respectively. The isotopic ratios are highly correlated with major element trends and reflect considerable crustal contamination of a mantle-derived basaltic parent magma. The likely contaminant was Precambrian gneiss similar to exposed bedrock into which the basic rocks were emplaced. A new approach to modelling of assimilation during the formation of a cogenetic igneous rock suite is illustrated. Chemical and isotopic modelling indicate that the mafic rocks were produced by simultaneous assimilation and fractional crystallization. The relative amounts of fractionation and assimilation varied considerably. The mafic suite was not produced by a single batch of magma undergoing progressive contamination; rather, the various rocks probably were derived from separate batches of magma each of which followed a separate course of evolution. The late stage granite was apparently derived from basaltic magma by fractionation with little or no crustal assimilation. The early intrusive phases are much more highly contaminated than the final one. The observed relationships have important implications for the formation of comagmatic complexes and for isotopic modelling of crustal contamination. ?? 1985 Springer-Verlag.

  18. Anisotropy of thermal contraction controls deep hydrothermal circulation at oceanic ridges

    NASA Astrophysics Data System (ADS)

    Boudier, F.; Nicolas, A.; Mainprice, D.; Baronnet, A.

    2003-04-01

    A deep and high-T (up to 1000^oC) hydrothermal contamination of the oceanic crust at the ridge axis has been documented in the Oman ophiolite. In the deep and hot gabbros, the main water channels are submillimetric microcracks with a dominantly vertical attitude (Nicolas et al, in press). Sr and O isotopic investigations point to seawater as the most likely hydrothermal contaminant (Bosch et al. submitted). We propose that the mechanism allowing seawater ingression at temperatures above 700^oC is anisotropy of thermal contraction, opening microcracks that are controlled by fabric. The exceptionally large anisotropy of thermal contraction of single crystal of calcic plagioclase, when introduced in the strong lattice fabrics in the lower gabbros results in finding the maximum thermal contraction direction parallel to maximum crystals elongation L1. This direction in the oceanic ridge referential is horizontal and perpendicular to microcracks dominant orientation. This high-T hydrothermal alteration in gabbros reaches the Moho. In the underlying peridotites, preliminary Sr isotopic data on clinopyroxene from wehrlites suggest that seawater was able to ingress at crystallization temperature for clinopyroxene. Interestingly, in these peridotites with horizontal foliation, thermal contraction, calculated as above from fabrics and thermal expansion coefficients in olivine, is vertical, being responsible for subhorizontal cracking, as deduced from serpentine dominant veining. Thus, during off-axis drifting of newly accreted lithosphere, thermal contraction opens vertical cracks, favoring seawater ingression down to the Moho. Below, in peridotites, the horizontal microcrack system would favor closing of hydrothermal circuit at Moho level.

  19. Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey)

    NASA Astrophysics Data System (ADS)

    Çelik, Ömer Faruk; Chiaradia, Massimo; Marzoli, Andrea; Özkan, Mutlu; Billor, Zeki; Topuz, Gültekin

    2016-03-01

    The Kızılırmak accretionary complex near Kargı is tectonically bounded by the Jurassic and Early Cretaceous metamorphic massives of the Central Pontides. It consists mainly of serpentinite, serpentinized peridotite, gabbro, basalt, metabasite and deep-marine sedimentary rocks. The metabasites in the Kızılırmak accretionary complex are tectonically located within a serpentinite, radiolarian chert, spilitized basalt, gabbro association and commonly display a steep contact with serpentinites. Amphiboles from metabasites yielded robust 40Ar/39Ar plateau ages ranging between 159.4 ± 0.4 Ma and 163.5 ± 0.8 Ma. These are interpreted as cooling ages of the metabasites. The metabasites have 87Sr/86Sr(i) between 0.7035 and 0.7044 and 206Pb/204Pb(i) ranging between 18.18 and 18.92. The gabbros have higher 87Sr/86Sr(i) between 0.7044 and 0.7060 and 206Pb/204Pb(i) ranging between 17.98 and 18.43. Three basalt samples display 87Sr/86Sr(i) between 0.7040 and 0.7059. Their 206Pb/204Pb(i) are unrealistically low (15.42 and 15.62), suggesting, most likely, Pb loss which results in over-corrected values for decay through time. Pb-Sr-Nd isotopic compositions for all samples consistently plot between the fields of MORB or the Depleted MORB Mantle reservoirs and enriched mantle reservoirs (EMII rather than EMI). All the samples (except one dolerite dike) have negative ɛNdDM(t = 160 Ma) values, suggesting derivation from a reservoir more enriched than the depleted mantle. The protoliths of metabasites correspond to diverse sources (N-MORB, E-MORB, OIB and IAT) based on whole rock major and trace element composition. An IAT-like protolith for the metabasites indicates that the İzmir-Ankara-Erzincan ocean domain was subducting and the tectonic regime was compressional during Late Jurassic and before. The protoliths of these rocks were metamorphosed during the subduction/accretion processes, as observed in the metamorphic rocks located along the Balkan, Northern Turkey and

  20. Crystal fractionation in the SNC meteorites: Implications for sample selection

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1988-01-01

    Almost all rock types in the SNC meteorites are cumulates, products of magma differentiation by crystal fractionation (addition or removal of crystals). If the SNC meteorites are from the surface of Mars or near subsurface, then most of the igneous units on Mars are differentiated. Basaltic units probably experienced minor to moderate differientation, but ultrabasic units probably experienced extreme differentiation. Products of this differentiation may include Fe-rich gabbro, pyroxenite, periodotite (and thus serpentine), and possibly massive sulfides. The SNC meteorites include ten lithologies (three in EETA79001), eight of which are crystal cumulates. The other lithologies, EETA79001 A and B are subophitic basalts.

  1. Apollo 16 exploration of Descartes - A geologic summary.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Cayley Plains at the Apollo 16 landing site consist of crudely stratified breccias to a depth of at least 200 meters, overlain by a regolith 10 to 15 meters thick. Samples, photographs, and observations by the astronauts indicate that most of the rocks are impact breccias derived from an anorthosite-gabbro complex. The least brecciated members of the suite include coarse-grained anorthosite and finer-grained, more mafic rocks, some with igneous and some with metamorphic textures. Much of the transverse area is covered by ejecta from North Ray and South Ray craters, but the abundance of rock fragments increases to the south toward the younger South Ray crater.

  2. Dating samples of lunar soil from the Mare Crisium by the Ar/39/-Ar/40/ technique

    NASA Astrophysics Data System (ADS)

    Shanin, L. L.; Arakeliants, M. M.; Bogatikov, O. A.; Ivanenko, V. V.; Pupyrev, Iu. G.; Tarasov, L. S.; Frikh-Khar, D. I.

    1981-07-01

    Two samples (dolerite and gabbro fragments) from a depth of 184 cm in the Luna 24 core are dated using the Ar(39)-Ar(40) technique. The values obtained are found to be lower than all published isotopic ages for the Luna 24 samples. An analysis of possible dating errors of the lunar samples, together with the good agreement of the results from the Ar(39)-Ar(40) technique of geochronologic standards and anorthosite from the Korosten pluton with the results from Rb-Sr, U-Pb, and Sm-Nd methods, attests the reliability of the values.

  3. Dynamic Tensile Strength of Crustal Rocks and Application to Impact Cratering

    NASA Astrophysics Data System (ADS)

    Ai, H.; Ahrens, T. J.

    2003-01-01

    Dynamic tensile strengths of two crustal rocks, San Marcos gabbro and Coconino sandstone (Meteor Crater, Arizona), were determined by carrying out flat plate impact experiments. Porosity of San Marcos gabbro is very low, and the reported porosity for Coconino sandstone is approx. 25%. Aluminum flyer plates were used for gabbro with impact velocities of 13 to 50 m/s, which produce tensile stresses in the range of 120 to 450 MPa. PMMA flyer plates were used for sandstone with impact velocities of 5 to 25 m/s, resulting tensile stresses in the range of approx. 13 to 55 MPa. Impact was normal to the bedding of sandstone. Tensile duration times for two cases were approx. 1 and approx. 2.3 microns, respectively. Pre-shot and post-shot ultrasonic P and S wave velocities were measured for the targets. Velocity reduction for gabbro occurred at approx. 150 MPa, very close to the earlier result determined by microscopic examination. The reduction of S wave is slightly higher than that of P wave. This indicates that the impact-induced cracks were either aligned, or there were residual fluids within cracks, or both. Data for sandstone velocity reduction was few and scattered caused by its high porosity. The range of dynamic tensile strength of Coconino sandstone is within 25 and 30 MPa. Obvious radial cracks at certain stresses indicate that deformation was not restricted to one dimensional strain as being assumed. Spall fragmentation occurred above 40 MPa. The combination of impact velocities, U (km/s), and impactor radii, a0)(m, are constrained by Meteor Crater fracture depth, approx. 850 m, and the dynamic tensile fracture strength from our experiments, 40 MPa. Volume of the crater for each impact was calculated using V = 0.009mU1.65, where V is crater volume (cu m), m is the mass of the impactor (kg). Volume of impact with U = 28 km/s, a0 = 10 m is close to the real Meteor Crater volume, 7.6e7 cu m. Impact energy for this case is 3.08 Mt., which agrees well with theoretical

  4. A geochemical evaluation of the Ash Sha'ib mineral prospect, Asir quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Allcott, Glenn H.

    1970-01-01

    The mineralized zone at the remotely located Ash Sha'ib ancient mine contains only a small tonnage of moderately low grade sulfide- bearing rock. Based on present data the gross value of the deposit, with a value of $25.00 or more per ton, is $20,000,000. A belt of metasedimentary rocks, intruded by gabbro to the south and granite to the north, was the host for fissure vein-replacement type mineralization. Most of the mineralization is in a siliceous dolomite transected by fissures. The main sulfide mineral is sphalerite, but minor amounts of chalcopyrlte and argentlferous galena contribute to the value of the mineralized sections.

  5. PERMEABILITY CHANGES IN CRYSTALLINE ROCKS DUE TO TEMPERATURE: EFFECTS OF MINERAL ASSEMBLAGE.

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Byerlee, J.D.; ,

    1985-01-01

    The change in permeability with time of granite, quartzite, anorthosite and gabbro was measured while these rocks were subjected to a temperature gradient. Permeability reductions of up to two orders of magnitude were observed, with the greatest reactions occurring in the quartzite. These changes are thought to be caused by dissolution of minerals at high temperatures, and redeposition of the dissolved material at lower temperatures. Quartz appears to be an important mineral in this self-sealing process. If very low permeability is desired around a nuclear waste repository in crystalline rocks, then a quartz-rich rock may be the most appropriate host.

  6. Breccias from the lunar highlands: preliminary petrographic report on apollo 16 samples 60017 and 63335.

    PubMed

    Kridelbaugh, S J; McKay, G A; Weill, D F

    1973-01-05

    Lunar samples 60017,4 and 63335,14 are composed of microbreccias and devitrified glass. These components are predominantly anorthositic, with the exception of a cryptocrystalline clast found in the microbreccia portion of 63335,14 which contains 2.7 percent potassium oxide and 66.7 percent silicon dioxide. The samples have been subjected to extreme shock and thermal metamorphism. The parent materials of the microbreccias include both a coarse-grained anorthosite and a fine-grained subophitic anorthositic gabbro.

  7. Lunar anorthosites.

    PubMed

    Wood, J A; Dickey, J S; Marvin, U B; Powell, B N

    1970-01-30

    Sixty-one of 1676 lunar rock fragments examined were found to be anorthosites, markedly different in composition, color, and specific gravity from mare basalts and soil breccias. Compositional similiarity to Tycho ejecta analyzed by Surveyor 7 suggests that the anorthosites are samples of highlands material, thrown to Tranquillity Base by cratering events. A lunar structural model is proposed in which a 25-kilometer anorthosite crust, produced by magmatic fractionation, floats on denser gabbro. Where early major impacts punched through the crust, basaltic lava welled up to equilibrium surface levels and solidified (maria). Mascons are discussed in this context.

  8. High- & Low-δ18O magma: Comparative study of crustal and mantle plagiogranites from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Alberts, R. C.; Grimes, C. B.; Koepke, J.; Erdmann, M.; Kitajima, K.; Spicuzza, M. J.; Valley, J. W.

    2015-12-01

    Plagiogranite (PLGT) from the crust and mantle sections of the Oman ophiolite preserve widely varied δ18O values that monitor different processes occurring during ophiolite construction. Mantle-like δ18O values are expected if MORB fractionation played a dominant role in PLGT genesis. Magmatic values (monitored here by zircon) shifted away from the mantle-like range indicate open system processes which include partial melting of hydrothermally-altered crust or influx of subduction-related, sediment-derived melt. Zircon (zrn) and quartz (qtz) from twenty-four new samples of PLGT from the crustal and mantle sections of the Oman ophiolite were analyzed for δ18O. Rock-averaged δ18O from the sheeted dikes (zrn: 4.3-4.5‰, qtz: 6.7-6.9‰) and dike-gabbro transition (zrn: 3.9-4.8‰, qtz: 4.7-7.7‰) are mostly below values in magmatic equilibrium with MORB (zrn = 5.2±0.5‰, qtz = 7.0-7.5‰). δ18O for PLGT in the gabbro section (zrn: 4.8-5.1‰, qtz: 7.7-8.3‰) are mostly mantle-like. Quartz is generally found to be more variable than coexisting zrn and likely experienced some sub-solidus exchange. When organized into a relative structural position, δ18Ozrn values typically increase with depth. The lowest δ18Ozrn are observed near the dike-gabbro transition and are consistent with petrogenesis involving hydrous partial melting of mafic crust previously hydrothermally-altered at high-T. The return to nominally mantle-equilibrated δ18Ozrn deeper in the gabbro section may reflect decreasing seawater-signatures of fluids penetrating to depth, lower water/rock ratios, or extreme fractional crystallization. Crustal PLGT thus predate the development of high δ18O signatures in the upper oceanic crust as it cools and experiences low temperature hydrothermal alteration. Mantle PLGT intrusions (1-3 m thick) from the Haylayn block extend to considerably higher rock-averaged δ18O values (zrn: 5.1-15.4‰, qtz: 7.0-18.5‰). Individual rocks (5 samples) were uniform in

  9. Trace Gases - A Warning Signs of Impending Major Seismic Activity

    NASA Astrophysics Data System (ADS)

    Baijnath, J.; Freund, F.; Li, J.

    2013-12-01

    Seismological models can predict future earthquakes only with wide uncertainty windows, typically on the order of decades to centuries. To improve short-term earthquake forecasts, it is essential to understand the non-seismic processes that take place in Earth's crust during the build-up of tectonic stresses. Days prior to the January 2001 M 7.6 Gujurat earthquake in India, there was a significant increase in the regional CO concentration, reaching 240 ppbv over a 100 squared kilometers, as derived from data of the MOPITT sensor onboard the NASA Terra satellite. A possible explanation for these observations is that when stresses in Earth's crust are building, positive hole charge carriers are activated, which are highly mobile and spread from deep below the earth to the surface. Positive holes act as highly oxidizing oxygen radicals, oxidizing water to hydrogen peroxide. It is hypothesized that, as positive hole charge carriers arrive from below and traverse the soil, they are expected to oxidize soil organics, converting aliphatics to ketones, formaldehyde, CO and CO2. This is tested by using a closed chamber with a slab of gabbro rock. Ultrasound generated by a pair of 50 W, 40 kHz piezoelectric transducers, applied to one end of the gabbro slab was used to activate the positive holes. This created a high concentration of positive holes at the end of the rock that the electrical conductivity through the rock increased more than 1000-fold, while the increase in conductivity through the other end of the gabbro slab was on the order of 100-fold. On the other end of the slab, rock dust and various soils were placed. A stainless steel mesh was also placed over the soil and dust to allow a current to flow through the granular material. When the far end of the slab was subjected to the ultrasound, currents as large as 250 nA were recorded flowing through the length of the gabbro slab and through the dust/soil pile. Dry dust/soil and dust samples impregnated with

  10. Character of High Temperature Mylonitic Shear Zones Associated with Oceanic Detachment Faults at the Ultra-Slow Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.

    2014-12-01

    Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm

  11. The Skaergaard liquid line of descent revisited

    NASA Astrophysics Data System (ADS)

    Thy, Peter; Lesher, Charles E.; Tegner, Christian

    2009-06-01

    There is a fundamental conflict between the suggestion that the iron content of Skaergaard liquids increases during Fe-Ti oxide fractionation and the observation that at the same time oxygen fugacity ( f_{{text{O}_{text{2}}}} ) drops by two log-units below the fayalite-magnetite-quartz oxygen buffer (FMQ). A new petrographic study of average Skaergaard gabbros shows that the total modal content of Fe-Ti oxides is about 22% in the early LZc and markedly decreases to below 5% in the UZc. Forward modeling based on these modal constraints, as well as experimental results on Skaergaard-related dikes, predicts that fractionation of troctolitic LZa gabbros drives the derivative liquid towards a high-iron content. Strong iron enrichment continues, together with a small decline in silica, during LZb crystallization due to the appearance of augite as a fractionating phase. The fractionation of Fe-Ti oxides in the LZc initially suppresses iron enrichment and reverses the silica trend to one of slight enrichment. However, continued evolution into the UZ produces liquids with maximum UZc FeO* content of 23-25 wt.% and SiO2 content of 53 wt.% (FeO* is total iron as FeO). The maximum in FeO* is dependent on several factors of which the Fe-Ti oxide mode has the strongest effect. The f_{{text{O}_{text{2}}}} during crystallization of the LZc is widely thought to have been at, or slightly below, the fayalite-magnetite-quartz oxygen buffer (FMQ). Under closed system evolution, incorporation of ferric iron into augite during formation of the LZb restricts the increase in f_{{text{O}_{text{2}}}} to about 0.1 log-units above FMQ (=0.1 ΔFMQ). Likewise, crystallization of the LZc through the UZa, involving Fe-Ti oxide minerals, leads to a decline in f_{{text{O}_{text{2}}}} of less than 0.1 ΔFMQ. Crystallization of the UZb-c gabbros results in oxidation to a maximum of 0.5 ΔFMQ. This behavior can account for the iron-rich character of the UZ gabbros, as well as, the low modal content of

  12. Ophiolites and oceanic crust

    USGS Publications Warehouse

    Moores, E.M.; Jackson, E.D.

    1974-01-01

    OPHIOLITES consist of a pseudostratiform sequence, of harzburgite, tectonite, ultramafic and mafic cumulates sometimes including gabbro and quartz diorite (plagiogranite) intrusions, dolerite dyke swarms, pillow lava 1, and deep-sea sediments2-4. This assemblage occurs in all Phanerozoic mountain systems and is interpreted as fossil oceanic crust and uppermost mantle5-10. Outstanding problems include differences between the chemical properties of Ophiolites and rocks thought to represent present-day oceanic crust11,12, the lack in some complexes of recognised dyke swarms or cumulates, and the relative thinness of ophiolite mafic rocks compared with standard oceanic crustal sections5,8,13. ?? 1974 Nature Publishing Group.

  13. Zircon dating of oceanic crustal accretion.

    PubMed

    Lissenberg, C Johan; Rioux, Matthew; Shimizu, Nobumichi; Bowring, Samuel A; Mével, Catherine

    2009-02-20

    Most of Earth's present-day crust formed at mid-ocean ridges. High-precision uranium-lead dating of zircons in gabbros from the Vema Fracture Zone on the Mid-Atlantic Ridge reveals that the crust there grew in a highly regular pattern characterized by shallow melt delivery. Combined with results from previous dating studies, this finding suggests that two distinct modes of crustal accretion occur along slow-spreading ridges. Individual samples record a zircon date range of 90,000 to 235,000 years, which is interpreted to reflect the time scale of zircon crystallization in oceanic plutonic rocks.

  14. Composition of olivine-rich gabbroic rocks at the Atlantis Massif (MAR 30°N,IODP site U1309D). In situ trace element geochemistry.

    NASA Astrophysics Data System (ADS)

    Drouin, M.; Godard, M.; Ildefonse, B.

    2006-12-01

    IODP Site U1309 was drilled at Atlantis Massif, an oceanic core complex located on the western flank of the Mid-Atlantic ridge at 30°N (IODP Expeditions 304 and 305). The 1415 m deep hole U1309D mostly recovered gabbroic rock types. Olivine-rich rocks (ol > 70%) represent 5.4% of the recovered rocks. Here, we present a multi-elemental study (LA-ICPMS) of ol-rich rocks and associated gabbros coming from four ol- rich zones along Hole U1309D. Ol-rich rocks have compositions that overlap the most primitive gabbroic rocks drilled at the Mid-Atlantic Ridge (23°N and 15°N) and at the Southwest Indian Ridge (ODP Hole 735B), with Mg# ranging from 83 to 90 and Ni contents up to 2400 ppm. These compositions reflect not only olivine abundance in these samples but also the primitive compositions of olivine (Mg# 84 to 88 and Ni = 1500-2300 ppm). Cpx associated mafic phases in ol-rich rocks have primitive compositions with high Mg# (85-89.5). In interstitial Cpx, TiO2 average contents vary from 0.3% in the cores to 0.5 to 0.7% in the rims. Poikilitic Cpx are also zoned. In zone 1 (300.91mbsf to 362.9 mbsf) plagioclase have the higher An contents (79-81.6 %). They have compositions of impregnated dunite. Cumulus Cpx and Plg in gabbro show no major elements variation between cores and rims. Cpx are depleted in trace element (on average <10 x PM), and have light REE depleted patterns (La < 1 Yb 10 x chondrites). They are in equilibrium with MORBs in both gabbros and ol-rich rocks. Cpx composition varies as a function of sample texture. Poikilitic Cpx show variable trace element contents in a single large grain (Yb normalized to chondrites: 7.5 ppm to 12.4 ppm), while cumulus Cpx show no variation. All rock types in the 4 olivine-rich zones are in the same range of trace element compositions. Gabbros have the more depleted composition (YbN: 5.7 to 10.5 ppm). Pl are also depleted in trace elements (<1 x PM) and REE (La < 1 - Yb 0.1 x chondrites) throughout the whole core. These

  15. Temperature emission spectrum of exoelectrons of lunar regolith

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Petukhova, T. M.; Kunin, L. L.; Tarasov, L. S.

    1974-01-01

    Thermostimulated exoelectronic emission of eight fragments of regolith returned by the Soviet Luna 16 automatic station was studied. The nature of the exoemission glove-curves was determined by particle type. Fragments of breccia, sinter, slag, anorthosite, glass plate, and leucocratic gabbro after the first heating disclosed a single exoemission maximum, whose temperature position is in the range 115 to 200 C. The data obtained indicate the complex and inhomogeneous energy structure of some regolith fragments. The presence of surface states capable of forming sorptive bonds can be assumed for most particles. The exoemission of anorthosite, olivine, and the glass spherule is due to the presence of formation defects at their surfaces.

  16. Morphology and types of particles of regolith sample from the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Ivanov, A. V.; Tarasov, L. S.; Stakheyev, Y. I.; Rode, O. D.

    1974-01-01

    A brief description of the morphology of lunar surface material returned by Luna 16 automatic lunar station is given. Adhesiveness of the surface material and its ability to be electrified is noted. Two main genetic groups of regolith particles are differentiated: primary, represented mainly by fragments of magmatic rocks of the basalt and gabbro types, as well as mineralized grains of their constituent minerals, and secondary, particles subjected to appreciable exogenic transformation on the surface of the Moon. The second group, representing more than 70 percent of the material in coarse fractions, includes particles of breccias, sintered aggregates of complex dendritic form, and glass and vitrified particles of varied composition.

  17. Geochemistry and geochronology of the Late Permian mafic intrusions along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions, northeastern China: Petrogenesis and implications for the tectonic evolution of the Mudanjiang Ocean

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Ge, Wen-chun; Yang, Hao; Xu, Wen-liang; Bi, Jun-hui; Wang, Zhi-hui

    2017-01-01

    This paper presents zircon U-Pb ages, whole-rock major and trace element data, and Hf isotope data for the metagabbros from the Zhushan pluton and gabbros from the Taiping pluton along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions, which will not only place important constraints on the rock-forming ages, source characteristics and tectonic setting of these gabbros, but will also provide insights into understanding the Permian tectonic evolution between the Jiamusi Massif and the Songnen-Zhangguangcai Range Massif. Zircon U-Pb dating, determined using laser ablation-inductively coupled plasma-mass spectrometry and secondary-ion mass spectrometry, indicates that the magmatic zircons from the Zhushan and Taiping plutons yield 206Pb/238U ages of 256 ± 2 Ma and 259 ± 3 Ma, respectively, interpreted as the emplacement ages of the intrusions. The metagabbros from the Zhushan pluton display the geochemical characteristics of calc-alkaline series rocks, and are enriched in light rare earth and large ion lithophile elements, and depleted in Nb, Ta, P, Zr and Hf. The εHf(t) values of magmatic zircons in these metagabbros vary from - 5.47 to + 0.74. All these geochemical features indicate that the primary magma of the Zhushan pluton was derived from an enriched lithospheric mantle source that was metasomatized by subducted slab-derived fluids. The gabbros from the Taiping pluton are also enriched in large ion lithophile elements (e.g., Rb, Ba and U) relative to high field strength elements, and have negative Nb-Ta-P anomalies, with εHf(t) values of - 4.02 to - 1.70. It is inferred that they also formed from a primary magma generated by the partial melting of enriched lithospheric mantle that was metasomatized by subducted slab-derived fluids. The rocks from the Zhushan and Taiping plutons have similar petrogenetic processes, but their primary magmas are likely to be derived from two distinct magma sources based on geochemical and

  18. The axial melt lens as a processor of evolved melts at fast-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Loocke, M. P.; Lissenberg, J. C. J.; MacLeod, C. J.

    2015-12-01

    The axial melt lens is a steady-state, generally magma-rich body located at the dyke-gabbro transition at mid-crustal levels beneath intermediate- and fast-spreading ridges. It is widely believed to be the reservoir from which mid-ocean ridge basalt (MORB) erupts. Using a remotely-operated vehicle, cruise JC21 to the Hess Deep Rift recovered the first comprehensive sample suite of the uppermost plutonics from a fast-spreading ridge. We present the results of a detailed microanalytical investigation of 23 samples (8 dolerites, 14 gabbronorites, and 1 gabbro) recovered by ROV dive 78 from a section traversing the transition from the uppermost gabbros into the sheeted dykes. With the exception of a single olivine-bearing sample (78R-6), dive 78 is dominated by evolved, varitextured (both in hand sample and thin section) oxide gabbronorites. Full thin section quantitative element maps were acquired on serial thin sections from each sample using the analytical scanning electron microscope in the at Cardiff University. The resulting maps were post-processed in MatlabTM to determine the full distribution of plagioclase compositions across entire thin sections (typically 500,000 analyses per sample); an approach we term 'quantitative assessment of compositional distribution' (QACD). By so doing we are able to conduct the first fully rigorous assessment of gabbro compositions, and, by extension, melt compositions present at this level beneath the ridge axis. Critically, we only found 2 grains of high-An plagioclase (An>80) in all of the samples (N = 51). These occur as cores within a sample dominated by lower-An plagioclase. Instead, the vast majority (75%) of plagioclase within the samples have compositions of An65 or lower; compositions too evolved to be in equilibrium with MORB. The most primitive sample, 78R-6, is an olivine-bearing gabbronorite with Fo67 olivine, and plagioclase ranging from An52-77 (median An = 65). These data are difficult to reconcile with models in

  19. A paleomagnetic and magnetic fabric study of the Illapel Plutonic Complex, Coastal Range, central Chile: Implications for emplacement mechanism and regional tectonic evolution during the mid-Cretaceous

    NASA Astrophysics Data System (ADS)

    Ferrando, Rodolfo; Roperch, Pierrick; Morata, Diego; Arriagada, César; Ruffet, Gilles; Córdova, Maria Loreto

    2014-03-01

    The Illapel Plutonic Complex (IPC), located in the Coastal Range of central Chile (31°-33° S), is composed of different lithologies, ranging from gabbros to trondhjemites, including diorites, tonalites and granodiorites. U/Pb geochronological data shows that the IPC was amalgamated from, at least, four different magmatic pulses between 117 and 90 Ma (Lower to mid-Cretaceous). We present new paleomagnetic results including Anisotropy of Magnetic Susceptibility (AMS) from 62 sites in the plutonic rocks, 10 sites in country rocks and 7 sites in a mafic dyke swarm intruding the plutonic rocks.

  20. Ophiolitic association of Cape Fiolent area, southwestern Crimea

    NASA Astrophysics Data System (ADS)

    Promyslova, M. Yu.; Demina, L. I.; Bychkov, A. Yu.; Gushchin, A. I.; Koronovsky, N. V.; Tsarev, V. V.

    2016-01-01

    An ophiolitic association consisting of serpentinized ultramafic rocks and serpentinite, layered mafic-ultramafic complex, gabbro and gabbrodolerite, fragments of parallel dike complex, pillow lava, black bedded chert, and jasper has been identified for the first time by authors in the Cape Fiolent area. The chemistry of pillow lavas and dolerites, including REE patterns and a wide set of other microelements, indicates suprasubduction nature of the ophiolites and their belonging to a backarc basin that has reached the stage of spreading in its evolution.

  1. Synmagmatic deformation in the underplated igneous complex of the Ivrea-Verbano zone

    USGS Publications Warehouse

    Quick, J.E.; Sinigoi, S.; Negrini, L.; Demarchi, G.; Mayer, A.

    1992-01-01

    The Ivrea-Verbano zone, northern Italy, contains an igneous complex up to 10km thick that is thought to have been intruded near the interface between the continental crust and mantle during the late Paleozoic. New data indicate that this complex is pervasively deformed and concentrically foliated. The presence of analogous features in ophiolitic gabbros suggests that emplacement of the Ivrea-Verbano zone plutonic rocks involved large-scale flow of crystal mush in a dynamic, and possibly extensional, tectonic environment. -from Authors

  2. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    NASA Astrophysics Data System (ADS)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  3. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  4. Impact spallation experiments - Fracture patterns and spall velocities

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1990-01-01

    The spall velocities produced by nine experimental impacts of 1 to 6.5 km/sec into San Marcos gabbro targets, using projectiles of Fe, Al, Pb, and basalt of various sizes, have been measured in conjunction with fragment-velocity high-speed filmings of the events. A detailed comparison is made between measured spall velocities and those predicted by the model of Melosh (1984), with a view to the compatibility of small-scale results and large planetary impacts. Attention is also given to the patterns of internal fracture generated by impact within the targets.

  5. A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD

    SciTech Connect

    Dee, J.F.; Brigham, W.E.

    1985-01-22

    The purpose of the study is to develop a simplified model to match past performances of a vapor-dominated geothermal reservoir and to predict future production rates and ultimate reserves. The data are fictitious, but are based on real data. A lumped parameter model was developed for the reservoir that is similar to the model developed by Brigham and Neri (1979, 1980) for the Gabbro zone, and a deliverability model was developed to predict the life and future producing rate declines of the reservoir. This report presents the development and results of this geothermal reservoir analysis.

  6. Melting and differentiation in Venus with a cold start: A mechanism of the thin crust formation

    NASA Technical Reports Server (NTRS)

    Solomatov, Viatcheslav S.; Stevenson, David J.

    1992-01-01

    Recent works argue that the venusian crust is thin: less than 10-30 km. However, any convective model of Venus unavoidably predicts melting and a fast growth of the basaltic crust, up to its maximum thickness of about 70 km limited, by the gabbro-eclogite phase transition. The crust is highly buoyant due to both its composition and temperature and it is problematic to find a mechanism providing its effective recycling and thinning in the absence of plate tectonics. There are different ways to solve this contradiction. This study suggests that a thin crust can be produced during the entire evolution of Venus if Venus avoided giant impacts.

  7. Impact spallation experiments - Fracture patterns and spall velocities

    SciTech Connect

    Polanskey, C.A.; Ahrens, T.J. California Institute of Technology, Pasadena )

    1990-09-01

    The spall velocities produced by nine experimental impacts of 1 to 6.5 km/sec into San Marcos gabbro targets, using projectiles of Fe, Al, Pb, and basalt of various sizes, have been measured in conjunction with fragment-velocity high-speed filmings of the events. A detailed comparison is made between measured spall velocities and those predicted by the model of Melosh (1984), with a view to the compatibility of small-scale results and large planetary impacts. Attention is also given to the patterns of internal fracture generated by impact within the targets. 29 refs.

  8. Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Rothery, D. A.; Pontual, A.

    1988-01-01

    The level of apparent lithological discrimination possible with Landsat TM images in the Oman are discussed. It is found that by using parts of the short-wavelength IR spectrum, the discrimination revealed by the TM data is sufficiently uniform throughout the Oman ophiolite to produce lithological maps at 1:100,000 scale. Decorrelation stretching of the data produces images in which allows for the recognition of variations in gabbro composition, the identification of small acidic, gabbroic, and ultramafic intrusions, the discrimation of the uppermost mantle from the deeper mantle, the precise location of the Moho, and the delineation of gossans and areas subject to choritic-epidotic alteration.

  9. On identifying parent plutonic rocks from lunar breccia and soil fragments

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Lindstrom, David J.

    1988-01-01

    Breccia fragments expected from a well-studied boulder of Stillwater anorthosite have been modeled to test the ability to identify parental rock types from examination of breccia and soil fragments. Depending on their size, the boulder fragments give distributions that suggest mixtures of rock types, including monominerallic anorthosite with subordinant amounts of more gabbroic anorthosite, anorthosite, and gabbro for small fragments. The distribution of FeO in samples of lunar ferroan anorthosite (FAN) indicates that FAN has a heterogeneous distribution of mafic minerals like the boulder.

  10. Negligible effect of grain boundaries on the thermal conductivity of rocks

    SciTech Connect

    Vandersande, J.W.; Pohl, R.O.

    1982-08-01

    The thermal conductivity of marble, gabbro, quartz-monzonite, basalt and of labradorite was measured between 0.3 and 80 K. In all cases, the phonon mean free paths l-bar were found to increase with decreasing temperature, but even at the lowest temperatures, l-bar was far smaller than the average grain sizes. This demonstrates that phonon scattering by grain boundaries has very little influence on the heat transport in these rocks. Evidence is presented that lamellae due to twinning or exsolution, rod-like large inclusions, and density fluctuations inside the grains mask the effect of grain boundaries.

  11. Processing technologies for extracting cobalt from domestic resources. Information Circular/1988

    SciTech Connect

    Jordan, C.E.

    1988-01-01

    A summary of the cobalt processing technologies for the major domestic resources is presented. The processing technologies for the Blackbird, Madison Mine, Duluth Gabbro, iron ore pyrite, laterites, and manganese sea nodules are nearly complete, but the economics are not favorable. Research on these resources should be limited to approaches that promise to cut the total processing costs by at least 50 pct. The most-promising sources of cobalt are the spent-copper leach solutions and siegenite from the Missouri lead ores. Research on cobalt processing from these two sources needs to be completed.

  12. Lunar rock compositions and some interpretations.

    PubMed

    Engel, A E; Engel, C G

    1970-01-30

    Samples of igneous "gabbro," "basalt," and lunar regolith have compositions fundamentally different from all meteorites and terrestrial basalts. The lunar rocks are anhydrous and without ferric iron. Amounts of titanium as high as 7 weight percent suggest either extreme fractionation of lunar rocks or an unexpected solar abundance of titanium. The differences in compositions of the known, more "primitive" rocks in the planetary system indicate the complexities inherent in defining the solar abundances of elemizents and the initial compositions of the earth and moon.

  13. Formation of agglutinate-like particles in an experimental regolith

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Horz, Friedrich

    1988-01-01

    Agglutinate-like particles composed predominantly of glass were produced from a fragmental gabbro target that was repetitively impacted by Ni-alloy projectiles. The experimental glasses are much more heterogeneous in composition than their lunar counterparts, and they are dominated by incomplete mixing of melted component minerals and by plagioclase-rich compositions. Most of the particles are found to be highly enriched in feldspar and to be sustantially fractionated relative to the initial bulk target. It is suggested that fractionation trends within lunar agglutinitic glasses may be partly due to phase-specific melting.

  14. Lithologic mapping of mafic intrusions in East Greenland using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Naslund, H. Richard; Birnie, R. W.; Parr, J. T.

    1989-01-01

    The East Greenland Tertiary Igneous Province contains a variety of intrusive and extrusive rock types. The Skaergaard complex is the most well known of the intrusive centers. Landsat thematic mapping (TM) was used in conjunction with field spectrometer data to map these mafic intrusions. These intrusions are of interest as possible precious metal ore deposits. They are spectrally distinct from the surrounding Precambrian gneisses. However, subpixel contamination by snow, oxide surface coatings, lichen cover and severe topography limit the discrimination of lithologic units within the gabbro. Imagery of the Skaergaard and surrounding vicinity, and image processing and enhancement techniques are presented. Student theses and other publications resulting from this work are also listed.

  15. Geochronology and geochemistry of Late Pan-African intrusive rocks in the Jiamusi-Khanka Block, NE China: Petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Ge, Wen-chun; Zhao, Guo-chun; Dong, Yu; Bi, Jun-hui; Wang, Zhi-hui; Yu, Jie-jiang; Zhang, Yan-long

    2014-11-01

    To constrain the early Paleozoic tectonic evolution of the Jiamusi-Khanka Block and its relationship to the Late Pan-African event in Gondwana, we undertook zircon U-Pb dating and geochemical analyses (major and trace elements, and Hf isotopic compositions) of early Paleozoic intrusive rocks in the Jiamusi-Khanka Block, NE China. LA-ICP-MS zircon U-Pb age data demonstrate that these intrusive rocks were emplaced at three stages during the Late Pan-African event, represented by ~ 540 Ma syenogranite, ~ 515 Ma quartz syenite, and ~ 500 Ma monzogranite and gabbro. Geochemically, the ~ 500 Ma gabbros in the Jiamusi-Khanka Block have low SiO2 (50.26-51.21 wt.%), relatively high MgO (4.08-5.67 wt.%), Ni (13.1-14.1 ppm) and Cr (28.4-56.0 ppm), and are slightly enriched in LILEs (e.g., Ba, K) and LREEs, and depleted in Zr, Hf, Nb, Ta and P. The εHf(t) values of zircons in the gabbro range from + 2.6 to + 6.4. All these geochemical features indicate that the gabbros were likely produced by the partial melting of a depleted mantle that had been metasomatized by fluids derived from a subducted slab. In contrast, the ca.540-500 Ma granites and quartz syenites contain high SiO2 (64.49-72.20 wt.%) and low MgO (0.40-0.75 wt.%), Cr (1.69-6.88 ppm) and Ni (1.26-3.26 ppm). They have relatively low 176Hf/177Hf ratios of 0.282247-0.282599 with Hf two-stage model ages of 1173-2280 Ma, and most of the magmatic zircons have positive εHf(t) values varying from + 0.2 - + 4.8, indicating that these granites and quartz syenites were probably derived from a dominantly Paleo-Mesoproterozoic "old" crustal source with possible different degrees of addition of juvenile materials. According to the geochemical data and global geological investigations, we propose that the 541-498 Ma intrusive rocks in the Jiamusi-Khanka Block formed in a post-collisional or post-orogenic extensional setting linked to the collapse of a Late Pan-African orogen associated within the Gondwana.

  16. Lunar rock compositions and some interpretations

    USGS Publications Warehouse

    Engel, A.E.J.; Engel, C.G.

    1970-01-01

    Samples of igneous "gabbro," "basalt," and lunar regolith have compositions fundamentally different from all meteorites and terrestrial basalts. The lunar rocks are anhydrous and without ferric iron. Amounts of titanium as high as 7 weight percent suggest either extreme fractionation of lunar rocks or an unexpected solar abundance of titanium. The differences in compositions of the known, more "primitive" rocks in the planetary system indicate the complexities inherent in defining the solar abundances of elements and the initial compositions of the earth and moon.

  17. Petrologic and Oxygen-Isotopic Investigations of Eucritic and Anomalous Mafic Achondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Greenwood, R. C.; Peng, Z. X.; Ross, D. K.; Berger, E. L.; Barrett, T. J.

    2016-01-01

    The most common asteroidal igneous meteorites are eucrite-type basalts and gabbros rocks composed of ferroan pigeonite and augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites (HEDs). However, Northwest Africa (NWA) 011 is mineralogically identical to eucrites, but has an O-isotopic composition distinct from them and was derived from a different asteroid. Modern analyses with higher precision have shown that some eucrites have smaller O-isotopic differences that are nevertheless well-resolved from the group mean.

  18. Stratigraphy of the late Proterozoic Murdama Group, Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1993-01-01

    The Murdama group probably was deposited in a back-arc basin on a continental platform bounded on the west by an active volcanic arc above an east-dipping subduction zone. The position of the subduction zone, which was active during most of the deposition in the Afif belt, is marked by a belt of gabbro and ultramafic rocks herein named the jabal Burqah belt. The subduction zone later stepped out to the southwest to the Nabitah belt, and Murdama strata were deposited in the Jabal Hadhah, Mistahjed, and smaller basins.

  19. Morphostructure analysis of Sapaya ancient volcanic area based lineament data

    NASA Astrophysics Data System (ADS)

    Massinai, Muhammad Altin; Kadir, Fitrah H.; Ismullah, Muh. Fawzy; Aswad, Sabrianto

    2016-05-01

    Morphostructure of Sapaya ancient volcanic have been analysis by using lineament models. In this models, two methods of retrieval data have been used. First, the field survey of the area, second, the satellite images analysis. The morphostructure of Sapaya ancient volcanic contribute to the crater, caldera, and shown an eroded cone morphology. The directions of eruption from Sapaya ancient volcanic have identified in region of Jeneponto and Takalar, which is had east - west and northeast - southwest structure. These eruptions also give contribution to the character of river in Jenelata watershed, by the presence of tuffs, pillow lava, basalt, andesite, diorite, granodiorite, granite, and gabbro, respectively.

  20. Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard; Tatu, Mihai

    2016-08-01

    The Guadalupian (Mid-Permian) Highiș massif (Apuseni Mountains, Romania) displays a bimodal igneous suite of mafic (gabbro, diorite) and A-type felsic (alkali feldspar granite, albite granite, and hybrid granodiorite) rocks. Amphibole is widespread throughout the suite, and yields markedly high chlorine contents. Three groups are identified: Cl-rich potassic hastingsite (2.60-3.40 wt% Cl) within A-type felsic rocks and diorite, mildly Cl-rich pargasite to hornblende (0.80-1.90 wt% Cl) within gabbro, and low F-Cl hornblende within gabbro and hybrid granodiorite. Coexisting biotite is either Cl-rich within diorite, or F-Cl-poor to F-rich within A-type felsic rocks. Chlorine and fluorine are distributed in both mafic phases, according to the F-Fe and Cl-Mg avoidance rules. The low-Ti contents suggest subsolidus compositions. Cl-rich amphibole within diorite and A-type felsic rocks yields a restricted temperature range - from 575 °C down to 400 °C, whereas mildly Cl-rich amphibole within gabbro displays the highest range - from 675 to 360 °C. Temperatures recorded by Cl-rich biotite within diorite range from 590 to 410 °C. Biotite within A-type felsic rocks yields higher temperatures than amphibole: the highest values- from 640 to 540 °C - are recorded in low-F-Cl varieties, whereas the lowest values- from 535 to 500 °C - are displayed by F-rich varieties. All data point to halogen-rich hydrothermal fluids at upper greenschist facies conditions percolating through fractures and shear zones and pervasively permeating the whole Highiș massif, with F precipitating as interstitial fluorite and Cl incorporating into amphibole, during one, or possibly several, hydrothermal episodes that would have occurred during a ~ 150 My-long period of time extending from the Guadalupian (Mid-Permian) to the Albian (Mid-Cretaceous).

  1. Rock types present in lunar highland soils

    NASA Technical Reports Server (NTRS)

    Reid, A. M.

    1974-01-01

    Several investigators have studied soils from the lunar highlands with the objective of recognizing the parent rocks that have contributed significant amounts of material to these soils. Comparing only major element data, and thus avoiding the problems induced by individual classifications, these data appear to converge on a relatively limited number of rock types. The highland soils are derived from a suite of highly feldspathic rocks comprising anorthositic gabbros (or norites), high alumina basalts, troctolites, and less abundant gabbroic (or noritic) anorthosites, anorthosites, and KREEP basalts.

  2. Rock preference of planulae of jellyfish Aurelia aurita (Linnaeus 1758) for settlement in the laboratory

    NASA Astrophysics Data System (ADS)

    Yoon, Won Duk; Choi, Sung-Hwan; Han, Changhoon; Park, Won Gyu

    2014-06-01

    Planulae of Aurelia aurita were exposed to 11 types of rocks (basalt, gabbro, granite, rhyolite, sandstone, limestone, conglomerate, gneiss, quartzite, marble and schist) to examine their attachment preference among rock material and position. Numbers of attached polyps was the highest on marble and the least on limestone. Their preference with regard to settling position was the same among the rocks, showing the highest density of polyps on the underside (88.5%) compared to upper (23.6%) and perpendicular sides (10.3%) of rock. The results showed that while position preference is more important than rock property, higher numbers of polyps were observed in rocks with a medium surface hardness.

  3. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    USGS Publications Warehouse

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  4. Major element composition of Luna 20 glasses.

    NASA Technical Reports Server (NTRS)

    Warner, J.; Reid, A. M.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Ten per cent of the 50 to 150-micron size fraction of Luna 20 soil is glass. A random suite of 270 of these glasses has been analyzed by electron microprobe techniques. The major glass type forms a strong cluster around a mean value corresponding to Highland basalt (anorthositic gabbro) with 70% normative feldspar. Minor glass groups have the compositions of mare basalts and of low-K Fra Mauro type basalts. The glass data indicate that Highland basalt is the major rock type in the highlands north of Mare Fecunditatis.

  5. Intelligence Reforms in Brazil: Contemporary Challenges and the Legacy of the Past

    DTIC Science & Technology

    2007-05-01

    implementing Law No. 9,883 of December 7, 1999, which created the Brazilian Intelligence System (Sistema Brasileiro de Inteligencia ,SISBIN), the SISBIN...important are the following: Brazilian Intelligence Agency (Agencia Brasileira de Inteligencia , ABIN), which is the central organ of SISBIN; the...Coordinating Office for Intelligence of the Federal Police (Coordenacao de Inteligencia do Departamento de Policia Federal, PF) of the Ministry of

  6. Attache Extraordinaire: Vernon A. Walters and Brazil

    DTIC Science & Technology

    2009-03-01

    identify the meaning- ful infl uence Brazil had upon Vernon Walters’ life. When considering that his professional career can be visualized in two main...relacionamento com o presidente Eisenhower, exceto por uma breve narrativa Walters com o presidente Eisenhower durante visita ao Congresso brasileiro, em 1960. A...tenha sido a participação de Walters nos episódios de 1964 no Brasil, de qualquer forma ele estaria errado: Sua narrativa desse período, entretanto

  7. Chemical and Sr-isotopic characteristics of the Luna 24 samples

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Mckay, G.; Wiesmann, H.; Bansal, B.; Wooden, J.

    1978-01-01

    The chemical and Sr isotopic characteristics of Luna 24 bulk soil samples are determined and interpreted within the framework of lunar mare basalt evolution. Major and trace element compositions lead to the suggestion of candidate rock types consisting of a basalt/gabbro with very low TiO2 and MgO content (52%), a very low TiO2 basalt with 10% MgO (23%), olivine vitrophyre (20%), low K Fra Mauro basalt (4%) and anorthositic gabbro (1%). The proposed compositions are supported by the agreement of mixing models based on the proposed compositions with observed soil compositions. Sr ratios for plagioclase samples imply a lower Sr-87/Sr-86 value for low Mg soils than for other mare basalts and higher Rb/Sr and a more evolved Sr ratio in high Mg basalts. Rb, Sr and rare earth element compositions for low Mg basalts fit a model of partial remelting of cumulates containing small amounts of plagioclase.

  8. Partial melting of subducted paleo-Pacific plate during the early Cretaceous: Constraint from adakitic rocks in the Shaxi porphyry Cu-Au deposit, Lower Yangtze River Belt

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Li, Shuang; Gu, Huangling; Mastoi, Abdul Shakoor; Sun, Weidong

    2016-10-01

    A large porphyry Cu-Au deposit associated with early Cretaceous intrusive rocks has been discovered and explored in the Shaxi area, Lower Yangtze River Belt (LYRB), eastern China. We studied two types of intrusive rocks in the Shaxi area: Cu-Au mineralization related diorites and quartz-diorites (adakitic rocks), and newly found high Sr/Y ratio biotite-gabbros. They were formed almost simultaneously with crystallization ages of ca. 130 to 129 Ma, younger than the early stage shoshonitic rocks (Longmenyuan, Zhuanqiao and Shuangmiao Fm.) in the Luzong volcanic basin, 10 km south of the Shaxi area. These intrusive rocks show similar distribution patterns of trace elements (enriched in LILEs and depleted in HFSEs) and REEs (enriched in LREEs and depleted in HREEs, no Eu negative anomaly, flat HREE patterns). The diorites and quartz-diorites are adakitic rocks with calc-alkaline affinity, distinguished from other adakitic rocks in the LYRB which are high-K calc-alkaline series. The biotite-gabbros are not adakitic rocks, although they are characterized by high Sr/Y ratios.

  9. Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks

    USGS Publications Warehouse

    Bacon, C.R.; Sison, T.W.; Mazdab, F.K.

    2007-01-01

    Mount Veniaminof volcano, Alaska Peninsula, provides an opportunity to relate Quaternary volcanic rocks to a coeval intrusive complex. Veniaminof erupted tholeiitic basalt through dacite in the past ???260 k.y. Gabbro, diorite, and miarolitic granodiorite blocks, ejected 3700 14C yr B.P. in the most recent caldera-forming eruption, are fragments of a shallow intrusive complex of cumulate mush and segregated vapor-saturated residual melts. Sensitive high-resolution ion microprobe (SHRIMP) analyses define 238U-230Th isochron ages of 17.6 ?? 2.7 ka, 5+11/-10 ka, and 10.2 ?? 4.0 ka (2??) for zircon in two granodiorites and a diorite, respectively. Sparse zircons from two gabbros give 238-230Th model ages of 36 ?? 8 ka and 26 ?? 7 ka. Zircons from granodiorite and diorite crystallized in the presence of late magmatic aqueous fluid. Although historic eruptions have been weakly explosive Strombolian fountaining and small lava effusions, the young ages of plutonic blocks, as well as late Holocene dacite pumice, are evidence that the intrusive complex remains active and that evolved magmas can segregate at shallow levels to fuel explosive eruptions. ?? 2007 The Geological Society of America.

  10. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust

    USGS Publications Warehouse

    Ratajeski, K.; Sisson, T.W.; Glazner, A.F.

    2005-01-01

    Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.

  11. Petrology of some lithic fragments from Luna 20

    USGS Publications Warehouse

    Roedder, E.; Weiblen, P.W.

    1973-01-01

    Microscopic and electron microprobe studies were made of polished thin sections of part of a 30-mg sample of 250-500 ??m lunar soil returned by Luna 20 from a point between Mare Fecunditatis and Mare Crisium. Very fine-grained lithic (crystalline) rock fragments, composing about one fifth of the total sample, have mineralogical compositions equivalent to various types of gabbro, anorthositic gabbro, gabbroic anorthosite and troctolite, with minor basalt. The textures now observed in these fragments are in large part metamorphic. Twentyseven electron microprobe analyses of minerals from these fragments are presented, including olivine, plagioclase, pyroxene, spinel, nickel-iron and a Zr-Ti-REE mineral possibly similar to 'phase B' of Lovering and Wark (1971). Analyses of seven melt inclusions and twenty-eight defocused beam analyses of lithic fragments are also given. Some of the fragments contain 'gas' inclusions which, along with the fine grain size, are believed to indicate final crystallization under low pressure near surface conditions. The almost complete absence of granophyric material in this sample raises the question of whether or not there are at least two distinct magmas for the plagioclase-rich terrae rocks from which this soil sample was derived in part. ?? 1973.

  12. Bidirectional reflectance spectrometry of gravel at the Sjökulla test field

    NASA Astrophysics Data System (ADS)

    Peltoniemi, Jouni I.; Piironen, Jukka; Näränen, Jyri; Suomalainen, Juha; Kuittinen, Risto; Markelin, Lauri; Honkavaara, Eija

    The Sjökulla test site is used for testing and calibrating aerial images. The permanent test field is made of four types of gravel (dark gabbro, grey granite, red granite, white limestone) in two sizes (diameters 8-16 mm and 4-8 mm) set in various patterns. The bidirectional reflection properties of the targets together with their temporal changes must be known in order to carry out radiometric and spectral evaluation and calibration. The bidirectional reflectance distribution functions (BRF) of the gravel have been measured several times in the test fields using portable field goniospectrometers belonging Finnish Geodetic Institute (FGI), and once using the European Goniometic Facility (EGO) of the Joint Research Centre (JRC) at Ispra, Italy. Detailed BRFs have been obtained, showing features typical to particulate media, e.g. a small bowl shape, strong backscattering, and smooth wavelength dependence. Temporal range measurements over several years show that the black gabbro and red granite are fairly stable, while the grey granite has changed somewhat over the years and the white limestone has experienced dramatic darkening effects, requiring action to be taken. The measured BRF data have increased the usability of the test field considerably. The results are also useful in the development and validation of scattering models for particulate media. The site has proved to be a good test bench for goniospectrometric instruments, too.

  13. Reconnaissance geology of the Jabal Hashahish Quadrangle, sheet 17/41 B, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hadley, D.G.

    1982-01-01

    The Jabal Hashahish quadrangle (sheet 17/41 B) lies between lat 17?30' and 18?00' N. and long 41?30' and 42?00' E. and encompasses an area of 2,950 km2, of which only about 600 km2 is land; the remainder is covered by the Red Sea. The geologic formations exposed in the quadrangle include Precambrian layered and intrusive rocks, Tertiary gabbro dikes, Quaternary basaltic lavas and pyroclastic rocks, and Quaternary surficial deposits. The Precambrian rocks include layered sedimentary and volcanic rocks that have been assigned to the Baish, Bahah, and Ablah groups. These rocks have been folded, metamorphosed, and invaded by intrusions. They are cut by Miocene gabbro dikes that were intruded during the initial stages of the opening of the Red Sea rift. The Quaternary rocks also include basalt that was extruded during a continuation of that opening, after the uplift that formed the escarpment that parallels the eastern shore of the Red Sea, but before the Holocene erosional cycle. Coastal, pediment, and alluvial, and eolian deposits of various kinds are also of Quaternary age. The economic potential of the quadrangle lies essentially in the agricultural value of its flood-plain deposits, though these are not so widely used as those in Wadi Hali and Wadi Yiba, which are located in the Manjamah quadrangle. The coral reefs possibly could provide raw materials for use in a cement industry, if any such industry were ever required in this area.

  14. The characteristics of lower crust and upper mantle in the Cima volcanic field deduced from xenolith studies

    NASA Astrophysics Data System (ADS)

    Cardon, K. P.; Anthony, E.

    2015-12-01

    A lithospheric model based on mineral chemistry, textures, and temperatures is used to interpret the seismic structure of the upper mantle and lower crust observed under the Cima Volcanic Field, CA. Seismic velocities calculated from xenolith compositions are used in conjunction with petrologic information to interpret geophysical models of the area. The lower crust is composed of mafic compositions and contains a high percentage of quenched partial melt. The combination of quenched partial melt and mafic composition explains the relatively low seismic velocities observed in seismic models. The mafic composition is consistent with a rift environment. Melt compositions, some with > 60 wt% SiO2 are found in all types of Cima xenoliths, although pyroxenites and gabbros contain the largest amount. Pyroxenite from the uppermost mantle transitions into gabbroic compositions and plagioclase rich lithologies in the crust. Temperatures calculated for peridotite xenoliths range from ~ 950 to 1030˚ C. Plagioclase bearing samples have the lowest temperatures and are interpreted as residing in the immediate sub-Moho mantle. Plagioclase bearing lherzolite structurally overlies spinel bearing peridotite. Strain accumulation is most prevalent in plagioclase bearing peridotite and virtually absent from pyroxenites and gabbros. Seismic velocities calculated for peridotite xenoliths are faster than pyroxenite and gabbroic samples. Despite the chemical heterogeneity and complex history of the Moho transitional are most mantle is composed dominantly by peridotite. Very little lithosphere, rhelologically speaking, remains under the volcanic field. We interpret lithospheric dismemberment to be caused by hot mantle working northward from the Gulf of California.

  15. Geochemistry and petrogenesis of anorogenic basic volcanic-plutonic rocks of the Kundal area, Malani Igneous Suite, western Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Krishnakanta Singh, A.; Vallinayagam, G.

    2004-12-01

    The Kundal area of Malani Igneous Suite consists of volcano-plutonic rocks. Basalt flows and gabbro intrusives are associated with rhyolite. Both the basic rocks consist of similar mineralogy of plagioclase, clinopyroxene as essential and Fe-Ti oxides as accessories. Basalt displays sub-ophitic and glomeroporphyritic textures whereas gabbro exhibits sub-ophitic, porphyritic and intergrannular textures. They show comparable chemistry and are enriched in Fe, Ti and incompatible elements as compared to MORB/CFB. Samples are enriched in LREE and slightly depleted HREE patterns with least significant positive Eu anomalies. Petrographical study and petrogenetic modeling of [Mg]-[Fe], trace and REE suggest cogenetic origin of these basic rocks and they probably derived from Fe-enriched source with higher Fe/Mg ratio than primitive mantle source. Thus, it is concluded that the basic volcano-plutonic rocks of Kundal area are the result of a low to moderate degree (< 30%) partial melting of source similar to picrite/komatiitic composition. Within plate, anorogenic setting for the basic rocks of Kundal area is suggested, which is in conformity with the similar setting for Malani Igneous Suite.

  16. Petrology and geochemistry of the Eastern Loma de Cabrera Batholith, Dominican Republic

    SciTech Connect

    Cribb, J.W.; Lewis, J.F.

    1985-01-01

    The Eastern Loma de Cabrera Batholith, located in the NW Cordillera Central, Dominican Republic, is a heterogeneous intrusive complex composed of a zoned ultramafic-mafic core surrounded by tonalite and diorite. The batholith intrudes metasbasaltic rocks of the Duarte Complex of early Cretaceous age. The ultramafic-mafic core consists of peridotite, olivine-pyroxenite, pyroxenite, and augite-hypersthene gabbro-norite. Pyroxenites and gabbro-norites exhibit large scale interlayering and small scale layering involving a regular variation in the proportions of ortho- and clinopyroxene. Tonalities and diorites are mafic to leucocratic, some being porphyritic. Petrographic types include hornblende, hornblende-pyroxene, hornblende-biotite, and muscovite-biotite types. Aplites are abundant. Intrusive relations suggest that ultramafic-mafic complex is the oldest intrusive phase, and was partially amphibolitized during later intrusion of the felsic rocks. Ultramafic-mafic rocks contain 43-54% SiO/sub 2/ and MgO ranges from 8-45%. Trace and REE in these rocks are relatively depleted. Tonalitic rocks range in SiO/sub 2/ from 53-76%, with K/sub 2/O varying from 0.15-2.9%. In addition, they are LREE enriched. A small Eu anomaly is best explained by fractionation of plagioclase and hornblende. Trends shown by Rb-Sr data suggest that fractional crystallization of hornblende and plagioclase, that is high level fractionation, is the important factor in controlling chemical variation in the tonalites.

  17. Ore genesis at the Monterrosas deposit in the Coastal Batholith, Ica, Peru

    NASA Astrophysics Data System (ADS)

    Sidder, G. B.

    1984-06-01

    Monterosas is a hydrothermal deposit of copper and for that is hosted by gabbro-diorites of the Upper Cretaceous Patap Superunit within the Coastal Batholith of central Peru. The ore body is localized by fractures and splays related to a nearby regional fault and is composed of massive chalcopyrite, magnetite, and pyrite. Ore and alteration minerals such as actinolite, sodic scapolite, epidotes, sphene, magnetite, apatite, tourmaline, chlorites, hematite, and quartz formed dominantly as replacements of magmatic diosside, labradorite-andesine, and ilmenite. Hydrothermal mineralization was characterized by the exchange of major, minor, and trace elements between hot saline fluids and gabbro-diorite wall rocks. Geochemical data suggest that the ore and gangue minerals were deposited at high temperatures from saline fluids derived from a magma. The evidence includes fluid inclusions within gangue quartz that exhibit homogenization temperatures of 400 to 500 C, salinites of 32 to 56 wt percent NaCl and the halite trend, and magmatic like sulfur isotopic compositions that range from 1.6 to 3.3 permit in gyrite and chalcopyrite.

  18. Cambrian Kherlen ophiolite in northeastern Mongolia and its tectonic implications: SHRIMP zircon dating and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Miao, Laicheng; Baatar, Munkhtsengel; Zhang, Fochin; Anaad, Chimedtseren; Zhu, Mingshuai; Yang, Shunhu

    2016-09-01

    The Kherlen terrane, which contains the Kherlen ophiolitic complex, is located between two Precambrian continental blocks in the northeastern Mongolia. We present new geochemical and SHRIMP zircon U-Pb data for the Kherlen ophiolitic complex and for granitic plutons intruding the complex, providing constraints on the regional evolution in Early Paleozoic time. The Kherlen ophiolite, which is geochemically similar to SSZ-type ophiolites, was originated from two distinct mantle sources, a N-MORB-like source and an E-MORB-like source. A gabbro and a plagiogranite dike intruding the gabbro from the Kherlen ophiolite yielded similar SHRIMP zircon U-Pb ages of ca. 500 Ma, suggesting that the ophiolite formed in Late Cambrian time. Post- or syn-collisional granites intruding the ophiolitic complex yielded crystallization ages of ca. 440 Ma, which is interpreted to record the minimum age of the tectonic emplacement of the ophiolite. These new data demonstrate that the Kherlen ophiolite belt is an Early Paleozoic suture between the Ereendavaa and the Idermeg continental terranes, which is generally coeval with the Bayankhongor belt in central Mongolia, indicating that they are regionally correlated, and thus they define a major Early Paleozoic suture between two Precambrian continental blocks in the central-northeastern Mongolia.

  19. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    SciTech Connect

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. )

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  20. Petrogenesis of mesosiderites. I - Origin of mafic lithologies and comparison with basaltic achondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1990-01-01

    New petrologic and trace element data on basaltic and gabbroic clasts in mesosiderites and basaltic achondrites, combined with existing petrologic and trace element data, have served as a basis for interpretation of the petrogenesis of mesosiderite clasts. Compared with the basaltic achondrites, the mesosiderite basaltic and gabbroic clasts contain more abundant modal tridymite and merrilite, and more commonly contain augite as a late magmatic phase. Their pyroxenes tend to be more MgO-rich, and have lower Fe/Mn ratios which are positively correlated with the Fe/Mg ratio. Some of the mesosiderite basaltic and gabbroic clasts contain xenocrystic plagioclase. The basaltic clasts commonly show superchondritic Eu/Sm ratios and slight LREE depletions. The cumulate gabbro clasts are extremely depleted in LIL, have very high Eu/Sm ratios and high Lu/Sm ratios. All of these features can be explained by a model in which the mafic lithologies of mesosiderites were formed by remelting of a mixed basalt-cumulate gabbro-metal source region near the parent body surface.

  1. Influence of biofilms on heavy metal immobilization in sustainable urban drainage systems (SuDS).

    PubMed

    Feder, Marnie; Phoenix, Vernon; Haig, Sarah; Sloan, William; Dorea, Caetano; Haynes, Heather

    2015-01-01

    This paper physically and numerically models the influence of biofilms on heavy metal removal in a gravel filter. Experimental flow columns were constructed to determine the removal of Cu, Pb and Zn by gabbro and dolomite gravel lithologies with and without natural biofilm from sustainable urban drainage systems (SuDS). Breakthrough experiments showed that, whilst abiotic gravel filters removed up to 51% of metals, those with biofilms enhanced heavy metal removal by up to a further 29%, with Cu removal illustrating the greatest response to biofilm growth. An advection-diffusion equation successfully modelled metal tracer transport within biofilm columns. This model yielded a permanent loss term (k) for metal tracers of between 0.01 and 1.05, correlating well with measured data from breakthrough experiments. Additional 16S rRNA clone library analysis of the biofilm indicated strong sensitivity of bacterial community composition to the lithology of the filter medium, with gabbro filters displaying Proteobacteria dominance (54%) and dolomite columns showing Cyanobacteria dominance (47%).

  2. Permeability of oceanic crustal rock samples from IODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Gilbert, L. A.; Bona, M. L.

    2016-09-01

    Permeability is an important parameter of oceanic crust: it controls hydrothermal circulation and influences the exchange of heat and chemicals between seawater and the crust. Using the most complete section of intact, in situ normal oceanic crust, this paper presents the first permeability measurements of samples from Integrated Ocean Drilling Program (IODP) Hole 1256D in a relatively undisturbed section through lavas, dikes, and into gabbros. At in situ pressures, saturated gabbro from Hole 1256D is about half as permeable as basalt (2.4 × 10-20 m2 and 4.0 × 10-20 m2, respectively). Although fresh basalt samples have higher permeabilities, the basalts at Hole 1256D contain saponite, an alteration mineral which drastically reduces permeability. These measurements represent an opportunity for comparison to models that predict permeability at IODP Hole 1256D. Similar to model predictions, sample permeability generally decreases with depth. However, even after applying the scaling rule, models predict higher permeabilities than exhibited by the samples, suggesting large-scale cracks still control permeability in the 15 My old crust at Hole 1256D.

  3. Reinterpretation of Mesozoic ophiolite arc, and blueschist terranes in southwestern Baja California

    SciTech Connect

    Sedlock, R.L. . Geology Dept.)

    1993-04-01

    The nature and significance of disrupted Mesozoic oceanic rocks on Isla Santa Margarita and Isla Magdalena, western Baja California Sur, have been reinterpreted on the basis of detailed mapping and petrologic studies. Three structural units are recognized. (1) The upper plate consists of ophiolitic, arc, and forearc basin rocks. Ophiolitic rocks, including metamorphosed ultramafic rocks, gabbro, dikes, volcanic rocks, and chert, underwent strong contractional deformation and penetrative greenschist-facies metamorphism. Arc rocks, including gabbro, a dike and sill complex, compositionally diverse volcanic rocks, lahars, and volcaniclastic strata, lack a penetrative fabric and are weakly metamorphosed. Forearc basin rocks consist of unmetamorphosed conglomerated and rhythmically bedded siliciclastic turbidites. (2) The lower plate is a subduction complex consisting of weakly to moderately foliated and metamorphosed pillow and massive lavas, breccia, and tuff( ), interbedded red and green siliceous argillite, and rare radiolarian ribbon chert and limestone. Blueschist-facies metamorphism is indicated by lawsonite, aragonite, sodic amphibole, and sodic clino-pyroxene. (3) Serpentine-matrix melange crops out in shallowly dipping fault zones between the upper and lower plates. The structural and petrologic characteristics of the Mesozoic units, the geometry of contacts between them, and the age of extension are similar to those in the Isla Cedros-Vizcalno Peninsula region, 400 km to the northwest. The author infers that syn-subduction extension was a regional event that affected much of the western Baja forearc during the Late Cretaceous and Paleogene.

  4. Compositional Evidence for Launch Pairing of the YQ and Elephant Moraine Lunar Meteorites

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.; Jollitt, B. L.; Zeigler, R. A.; Haskin, L. A.

    2003-01-01

    Arai and Warren provide convincing evidence that QUE (Queen Alexandra Range) 94281 derives from the same regolith as Y (Yamato) 793274 and, therefore, that the two meteorites were likely ejected from the Moon by the same impact. Recently discovered Y981031 is paired with Y793274. The "YQ" meteorites (Y793274/Y981031 and QUE 94281 are unique among lunar meteorites in being regolith breccias composed of subequal amounts of mare volcanic material (a VLT [very-low-Ti] basalt or gabbro) and feldspathic highland material. EET (Elephant Moraine) 87521 and its pair EET 96008 are fragmental breccias composed mainly of VLT basalt or gabbro. Warren, Arai, and colleagues note that the volcanic components of the YQ and EET meteorites are texturally similar more similar to each other than either is to mare basalts of the Apollo collection. Warren and colleagues address the issue of possible launch pairing of YQ and EET, but note compositional differences between EET and the volcanic component of YQ, as inferred from extrapolations of regressions to high FeO concentration. We show here that: (1) EET 87/96 consists of fragments of a differentiated magma body, (2) subsamples of EET represent a mixing trend between Fe-rich and Mg-rich differentiates, and (3) the inferred volcanic component of YQ is consistent with a point on the EET mixing line. Thus, there is no compositional impediment to the hypothesis that YQ is launch paired with EET.

  5. Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench: Implications for its structure and evolution

    SciTech Connect

    Bloomer, S.H.

    1983-09-10

    The landward slope of the Mariana Trench is composed largely of igneous rocks. Serpentinites and serpentinized ultramafic rocks occur at nearly all structural levels on the slope from depths of 8000 to 1200 m. Seamountlike features on the trench slope break are the surface expression of serpentinite diapirs. Cumulate and massive gabbros are found; several varieties of volcanic rocks are common including boninites, altered and metamorphosed basalts, andesites, and dacites. The chemical characteristics of the volcanic rocks indicate that nearly all are products of island arc volcanism. Together with the gabbros, these volcanic rocks represent what is probably a late Eocene arc complex. These rocks were probably the first volcanic products to result from the subduction of the Pacific plate beneath the Phillippine Sea plate; their exposure on the trench slope today implies a significant amount of tectonic erosion of the landward slope since Eocene time. Most of this removal of material appears to have occurred during the early stages of subduction. There are isolated occurrences on the landward slope of rock assemblages including alkalic basalts, chert, hyaloclastites, upper Cretaceous siliceous sediments, and shallow water limestones. These assemblages are very similar to rocks dredged from seamounts on the offshore flank of the trench, and their presence on the landward slope suggests that since the cessation of vigorous tectonic erosion, there has been episodic accretion of seamount fragments to the landward slope.

  6. Anatomy of a deep crustal volcanic conduit system; The Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    NASA Astrophysics Data System (ADS)

    Grant, Thomas B.; Larsen, Rune B.; Anker-Rasch, Lars; Grannes, Kim Rune; Iljina, Markku; McEnroe, Suzanne; Nikolaisen, Even; Schanche, Mona; Øen, Endre

    2016-05-01

    The Reinfjord Ultramafic Complex, Seiland Igneous Province represents a lower crustal magma chamber (25-30 km depth) that likely records a deep conduit system for mantle derived melts ascending through the continental crust. It consists of cumulates of dunite, wehrlite, olivine clinopyroxene as well as subordinate lherzolite and websterites, intruded into gabbro-norite and metasediment gneisses. Field, petrographic and geochemical data show that the intrusion developed through fractional crystallization and interactions between new batches of magma and partially solidified cumulates. This resulted in a 'reverse fractionation sequence' whereby cumulates became progressively more MgO and olivine rich with time. Contamination by partial melting of the gabbro-norite is evident in the marginal zones, but is limited in the central parts of the intrusion. Interrupted crystallization sequences of olivine → olivine + clinopyroxene and the absence of significant amounts of more evolved melts, suggests that large volumes of melt passed through the system to shallower levels in the crust leaving behind the cumulate sequences observed at Reinfjord. Therefore, the Reinfjord Ultramafic Complex represents a deep crustal conduit system, through which mantle derived melts passed. The parent melts are likely to have formed from partial melting of mantle with residual garnet and clinopyroxene.

  7. Mineralogy and geochemistry of altered rocks associated with Lemitar carbonatites, central New Mexico, U.S.A.

    USGS Publications Warehouse

    McLemore, V.T.; Modreski, P.J.

    1990-01-01

    The intrusion of more than 100 Cambrian-Ordovician carbonatite dikes caused minor alteration of Proterozoic granitic and mafic rocks in the Lemitar Mountains, although hematization, carbonatization and fenitization caused extensive alteration locally. Ampibolites within 15-20 m of the carbonatite dike contacts were highly altered by carbonatization. Locally the Lemitar diorite/gabbro adjacent to some carbonatites were altered in a thin, discontinuous zone by sodic-potassic fenitization. The granite at Polvadera Peak was locally altered by potassic fenitization. Most of the altered rocks have been further altered by hematization and carbonatization. The altered rocks show increases in loss on ignition and in one or more the elements Ca, K, Na and Al. Only granitic fenites in the Lemitar Mountains lost silica and some diorite/gabbro fenites gained silica. Petrologic and geochemical studies clearly indicate that the types and degree of alteration differ notably in different rock types. The fenitizing fluids were oxidizing, slightly acidic, high in volatiles (especially CO2) and possibly fairly low in alkali elements. ?? 1990.

  8. Geology of the El Recodo Cu-Mo prospect, SE. Cordille-ra central, Dominican Republic

    SciTech Connect

    Dominguez, H.S.; Lewis, J.F.

    1985-01-01

    The main intrusive phase in the El Recodo area is a small stock of leucocractic quartz diorite which intrudes an unmetamorphosed Upper Cretaceous sequence of andesites, tuffs, agglomerates, breccias and minor interbedded limestones. At least three other intrusive phases might be related to the emplacement of the main quartz diorite stock: 1) porphyritic andesites, 2) a series of gabbros and hornblende gabbros and 3) late stage aplite, porphyritic dacite and mineralized quartz-epidote veins. Emplacement of this last phase was accompanied by extensive brecciation and hydrothermal alteration.Three distinct stages of hydrothermal alteration are recognized in the andesites an associated basic to intermediate intrusives: 1) pyroxene-hornblende alteration to chlorite +/- epidote-magnetite, 2) incipient plagioclase alteration to kaolinite-quartz and 3) advanced plagioclase alteration to sericite-quartz +/- chamosite. In altered quartz diorite and dacite porphyries the association K-feldspar-biotite indicates the highest grade of hydrothermal alteration. Mineralization is ubiquitous. Pyrite, chalcopyrite and bornite occur as thin stringers, disseminations and replacements of original mafic minerals. Throughout the area mineralized outcrops are thoroughly stained with a mixture of secondary limonite-hematite and minor chalcocite-malachite. The strongest mineralized areas correspond with significant soil, rock and stream sediment Cu and Mo Anomalies.

  9. A review of cardiopulmonary research in Brazilian medical journals: clinical, surgical and epidemiological data.

    PubMed

    Serrano, Carlos; Rocha e Silva, Mauricio

    2010-04-01

    Research in the field of cardiopulmonary disease in Brazil has been very active in recent decades. The combination of PUBMED, SCieLO, open access and online searching has provided a significant increase in the visibility of Brazilian journals. This newly acquired international visibility has in turn resulted in the appearance of more original research reports in the Brazilian scientific press. This review is intended to highlight part of this work for the benefit of the readers of "Clinics." We searched through PUBMED for noteworthy articles published in Brazilian medical journals included in the Journal of Citation Reports of the Institute of Scientific Information to better expose them to our readership. The following journals were examined: "Arquivos Brasileiros de Cardiologia," "Arquivos Brasileiros de Endocrinologia e Metabologia," "Brazilian Journal of Medical and Biological Reviews," "Jornal Brasileiro de Pneumologia," "Jornal de Pediatria," "Revista Brasileira de Cirurgia Cardiovascular," "Revista da Associação Médica Brasileira," Revista da Escola de Enfermagem U.S.P." and "São Paulo Medical Journal." These journals publish original investigations in the field of cardiopulmonary disease. The search produced 71 references, which are briefly examined.

  10. [Neurological diseases in the Dalton Trevisan's short stories].

    PubMed

    Teive, Hélio A G; Munhoz, Renato P; Paola, Luciano De

    2014-01-01

    Introdução: A relação entre a Literatura ficcional e a Medicina, em particular com a Neurologia, é bastante ampla. O objetivo desta revisão é de analisar a obra de Dalton Trevisan, considerado o mais importante escritor brasileiro de contos, com foco na descrição de enfermidades neurológicas nela contida.Material e Métodos: Os autores avaliaram os livros de Dalton Trevisan que foram publicados desde 1959 até 2012.Resultados: São apresentadas, de forma resumida, descrições de condições neurológicas frequentes, como epilepsia e doenças cerebrovasculares.Discussão: Nesta revisão são abordadas várias doenças neurológicas, de grande prevalência na população em geral, como as epilepsias e as doenças cerebrovasculares, as quais são descritas de forma objetiva e prática pelo mestre brasileiro da narrativa curta.Conclusão: O mundo ficcional do famoso contista brasileiro Dalton Trevisan está associado com inúmeros fatos do cotidiano, em particular o trágico-grotesco, e desta forma, as enfermidades neurológicas, particularmente as epilepsias e os quadros de acidente vascular encefálico, são referências que aparecem em sua obra.

  11. Eclogites and their geodynamic interpretation: a history

    NASA Astrophysics Data System (ADS)

    Godard, Gaston

    2001-09-01

    Haüy coined the term eclogite, meaning "chosen rock", in 1822, but de Saussure had already observed rocks of this type in the Alps four decades earlier. Throughout the 19th century, the origin of eclogite remained an enigma, in spite of great progress in our knowledge of this rock. The first chemical analyses, carried out around 1870, showed that its bulk composition was the same as gabbro. Therefore, eclogite was thought to be either an igneous rock of gabbroic composition or a metamorphosed gabbro. This second hypothesis became preferred when progressive transitions were observed between gabbros and eclogites. In 1903, simply by comparing the molar volumes of gabbroic and eclogite parageneses, Becke inferred that eclogite was the high-pressure equivalent of gabbro. In 1920, eclogite was involved in the conception of the metamorphic facies by Eskola. However, a few researchers denied the existence of an eclogite facies, and claimed that high stress instead of high lithostatic pressure could generate eclogites. In the 1960s, consideration of the water pressure parameter also favoured the belief that eclogite was simply the anhydrous equivalent of amphibolite. Finally, eclogite was definitely considered as a high-pressure metamorphic rock following the development of experimental petrology and the application of thermodynamics. In recent years, the discovery of ultrahigh-pressure coesite-bearing rocks in the crust has drastically changed geologists' ideas concerning the limits of eclogite-facies crustal metamorphism. Eclogites have been involved in several geodynamic theories. Around 1900, kimberlite studies favoured the idea that eclogite might be abundant in the interior of the Earth. In 1912, Fermor predicted the existence of a dense eclogite-bearing zone in the mantle. This "eclogite layer" hypothesis was still envisaged as late as 1970. The alternative "peridotite" hypothesis became preferred when experimental investigations demonstrated that the gabbro

  12. Experimental Impacts into Chondritic Targets. Part 1; Disruption of an L6 Chondrite by Multiple Impacts

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Horz, Friedrich

    2007-01-01

    A fragment of an L6 chondrite (ALH 85017,13) with an initial mass (M(sub 0)) of 464.1 g was the target in a series of experimental impacts in which the largest remaining fragment (M(sub R)) after each shot was impacted by a 3.18-mm ceramic sphere at a nominal speed of 2 km/s. This continued until the mass of the largest remaining piece was less than half the mass of the target presented to that shot (M(sub S)). Two chunks of Bushveldt gabbro with similar initial masses were also impacted under the same conditions until M(sub R) was less than half M(sub 0). The two gabbro targets required a total of 1.51x10(exp 7) and 1.75x10(exp 7) erg/g to attain 0.27 and 0.33 M(sub R)/M(sub 0), respectively; the chondrite, however, was considerably tougher, reaching 0.40 and 0.21 M(sub R)/M(sub 0) only after receiving 2.37x10(exp 7) and 3.10x10(exp 7) erg g-1, respectively. The combined ejecta and spallation products from the gabbro impacts were coarser than those from the chondrite and in sufficient quantities that the new surface areas exceeded those from the meteorite until the fifth shot in the chondrite series, which was the number of impacts required to disrupt each gabbro target (i.e., MR/M0 = 0.5). Unlike the behavior shown in previous regolith-evolution series, neither gabbro target produced an enhancement in the size fraction reflecting the mean size of the crystals composing the rock (about 3 mm), an effect possibly related to the width of the shock pulse. The original chondrite was so fine-grained and fractured, and the variance in its grain-size distribution so large, that effects related to grain-size were relegated to the <63- m fraction. Impacts into ALH 85017 produced abundant, fine-grained debris, but otherwise the slopes of its size distributions were comparable to those from other experiments involving natural and fabricated terrestrial targets. The characteristic slopes of the chondrite's size distributions, however, were notably more constant over the entire

  13. Exploring the relationship between Assimilation and Fractional Crystallization of Basalts with the Magma Chamber Simulator (MCS)

    NASA Astrophysics Data System (ADS)

    Creamer, J. B.; Bohrson, W. A.; Spera, F. J.; Ghiorso, M. S.

    2010-12-01

    Assimilation of partially melted country rock into cooling and Fractionally Crystallizing magma bodies (AFC) is well known but dynamic process that has been explored by laboratory experiments and study of natural occurrences. Case studies of magmatic systems frequently invoke models that feature mass ratios of assimilation to fractional crystallization (e) that are constant. This study explores the relationship between assimilation and fractional crystallization, as affected by magma and country rock composition, water contents, and pressure using the Magma Chamber Simulator (MCS). The MCS is a computational tool that combines the framework of mass and energy conservation equations (EC-RAFC) approach of Spera and Bohrson (2001, 2002, 2003) and Bohrson and Spera (2001, 2003) with the phase equilibria modeling capabilities of MELTS (Ghiorso and Sack 1995). Using MCS results, it is found that e is often hugely dependent on even minor variations in system composition, and that e often varies systematically (usually increasing with time) during an individual instance of AFC, by up to an order of magnitude. A well-documented effect of increasing the water content of magmas is the suppression of crystallization. Indeed, among different types of basalt (Mid-Ocean Ridge Basalt MORB, High-Alumina Basalt HAB, Alkali Basalt AB), assimilation of dry gabbro (e~0.7) is less efficient than assimilation of hydrated gabbro (e~1.5-2.5). However, the effect on efficiency of assimilation, e, of magma water content, though pronounced, is more complex. Generally, however, wet magmas can yield scenarios with higher e values due to the suppression of plagioclase crystallization, which has a relatively large enthalpy of formation. The effect of higher pressure on AFC systems, all else being equal, is quite variable. For example, a MORB, HAB, or AB assimilating gabbro at 1kbar yields an e value of ~1.5. If the pressure is elevated to 5 kbar, the same systems yield an e value of ~0.3. The

  14. Stagnation and Storage of Strongly Depleted Melts in Slow-Ultraslow Spreading Oceans: Evidence from the Ligurian Tethys

    NASA Astrophysics Data System (ADS)

    Piccardo, Giovanni; Guarnieri, Luisa; Padovano, Matteo

    2013-04-01

    Our studies of Alpine-Apennine ophiolite massifs (i.e., Lanzo, Voltri, Ligurides, Corsica) show that the Jurassic Ligurian Tethys oceanic basin was a slow-ultraslow spreading basin, characterized by the exposures on the seafloor of mantle peridotites with extreme compositional variability. The large majority of these peridotites are made of depleted spinel harzburgites and plagioclase peridotites. The former are interpreted as reactive peridotites formed by the reactive percolation of under-saturated, strongly trace element depleted asthenospheric melts migrated by porous flow through the mantle lithosphere. The latter are considered as refertilized peridotites formed by peridotite impregnation by percolated silica-saturated, strongly trace element depleted melts. Strongly depleted melts were produced as low-degrees, single melt increments by near fractional melting of the passively upwelling asthenosphere during the rifting stage of the basin. They escaped single melt increment aggregation, migrated isolated through the mantle lithosphere by reactive porous or channeled flow before oceanic opening, and were transformed into silica-saturated derivative liquids that underwent entrapment and stagnation in the shallow mantle lithosphere forming plagioclase-enriched peridotites. Widespread small bodies of strongly depleted gabbro-norites testify for the local coalescence of these derivative liquids. These melts never reached the surface (i.e., the hidden magmatism), since lavas with their composition have never been found in the basin. Subsequently, aggregated MORB melts upwelled within replacive dunite channels (as evidenced by composition of magmatic clinopyroxenes in dunites), intruded at shallow levels as olivine gabbro bodies and extruded as basaltic lavas, to form the crustal rocks of the oceanic lithosphere (i.e., the oceanic magmatism). Km-scale bodies of MORB olivine gabbros were intruded into the plagioclase-enriched peridotites, which were formed in the

  15. The Neocene Magmatism in South Gangdese, Tibet and its tectonic significance: Evidences from Namuru Granitic Complex

    NASA Astrophysics Data System (ADS)

    Dong, G.; Mo, X.

    2011-12-01

    There are lots of granitic intrusions in the western Gangdese, Tibet. Namuru granite complex is one of the typical intrusions with various gabbro inclusions and mafic micro-granular enclaves (shortly MME). Field investigation has found the gradually transitional relationship between the gabbro inclusions and granite with abundant MMEs. It is lithologically biotite granite and few granodiorite for Namuru complex. The chemical analyses show that the SiO2 varies from 65-76%, average 73% for the granite and 48.5-55.6%, average 51%. The total alkali contents are high in both the granite (K2O+Na2O= 5.50%~8.71%) and mafic rocks (4.42~6.7%). The REE pattern is flat and slightly declining with no clearly Eu anomaly with the total content from up to 284.75ppm and lowest of 105.35ppm in the granite and up to 120.38ppm, and lowest 72.48×10-6 in the gabbro rocks. The normalized trace element spider is quite similar in the both with K element enriched and Nb, Ti depleted. Zircon LA-ICP-MS U-Pb dating for 4 samples both granite and gabbro inclusions gave the age of 46.11±0.78Ma, 45.47±0.4Ma, 46.7±2.9Ma and 45.4±1.4Ma respectively, falling into a range of 45.4-46.7Ma of crystalling age. All the characters indicated that magma mixing had happened between granite and mafic magma during the Neocene (45.4-46.7Ma), forming the vast granitic and gabbro rocks as an important magmatic event in western Gangdese. It happens to be consistent with the duration (40.0-52.5Ma) for the known magma mixing and underplating in eastern to middle Gangdese, such as Quxu and Xigarze. It probably represents the giant magma event with magma mixing and underplating in Gangdese during early Neocene. Therefore it was inferred, on the basis of magmatic rocks, that the collision between India-Eurasian continents are acting simultaneously in both eastern and western Gangdese in Eocene, resulting in basaltic magma underplating below and then magma mixing along whole Gangdese belt and formation of the

  16. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: Petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Mo, Xuanxue; Bader, Thomas; Scheltens, Mark; Yu, Xuehui; Dong, Guochen; Huang, Xiongfei

    2014-12-01

    The intermediate-mafic-ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr-Nd-Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U-Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74-0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu∗ = 0.64-0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb-Ta-Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb-Ta and Ti spikes, and typical Th-U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (-2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile

  17. EBSD analysis of eclogitized rocks form the Marun-Keu complex, Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Hosseini, P.; Leech, M. L.

    2010-12-01

    The transitions from amphibolite, gabbro, and quartzofeldspathic gneiss to eclogite in the high-pressure Marun-Keu complex in the Polar Urals, Russia, make this complex a good candidate for using mineral chemistries and electron backscatter diffraction (EBSD) to study the interplay between metamorphism and deformation and more broadly understand the orogenic evolution of eclogites in high-pressure subduction zone complexes. The Marun-Keu complex results from the deep crustal processes during the Uralian Orogeny formed by collision of the east European platform with Siberian-Kazakhian terranes in the Devonian to Triassic. Eclogite-facies rocks containing garnet, omphacite, and rutile occur in the central and southern part of the complex and the blueschist-facies and low-T eclogitization are found in the north part of the complex. Based on Glodny et al. (2004), Rb/Sr protolith ages for the gabbros are about 500 Ma which is near the crystallization age from U-Pb zircon data and the eclogite-facies metamorphism was occurred about 355 Ma. Field and microscopic observation of the rocks from the Marun-Keu complex show a sharp contact between the host rocks (gabbro and amphibolite) and the eclogite-facies rocks. This study will mainly focus on the chemistry and different microstructures of the minerals in the samples PU-62, J12, J26 and PU-34 which are showing the transition of the host rocks to the eclogite. Samples PU-62 and J-26 including garnets, omphacite and quartz, show the complete transformation from the gabbro to eclogite and the corona textures and replaced minerals in these two samples indicate incomplete reactions (Molina et al., 2002). Samples J12 and PU-34 - boudins in a quartz/white mica vein- are showing the transitions between the amphibolites and eclogites. There is a sharp contact between the amphibolite core and the eclogite rim in these samples. The major minerals in the eclogite rim are omphacite, garnet, phengite and quartz and the transitional part

  18. Immiscible Fe- and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): Implications for the origin of bi-modal igneous suites in large igneous provinces

    NASA Astrophysics Data System (ADS)

    Liu, Ping-Ping; Zhou, Mei-Fu; Ren, Zhongyuan; Wang, Christina Yan; Wang, Kun

    2016-09-01

    The Emeishan large igneous province (ELIP) in SW China is characterized by voluminous high-Ti and low-Ti basalts and spatially associated Fe-Ti oxide-bearing mafic-ultramafic and syenitic/granitic intrusions. The Baima layered mafic intrusion in the central part of the ELIP is surrounded by syenitic and granitic rocks and contains a Lower Zone of interlayered Fe-Ti oxide ores, troctolites and clinopyroxenites and an Upper Zone of isotropic olivine gabbros and gabbros (UZa) and apatite gabbros and Fe-Ti-P oxide ores (UZb). Polycrystalline mineral inclusions, for the first time, were observed in primocryst plagioclase from the basal part of the UZa through to the top of the UZb and consist mostly of clinopyroxene, plagioclase, magnetite, ilmenite and apatite with minor orthopyroxene, sulfide and hornblende. These minerals are commonly anhedral and form irregular shapes. Daughter plagioclase usually crystallizes on the walls of host primocryst plagioclase and has An contents typically 3-6 An% lower than the host plagioclase. Daughter clinopyroxene has similar Mg# but lower TiO2 and Al2O3 contents than primocryst clinopyroxene. These polycrystalline mineral inclusions are considered to crystallize from melts contemporaneous with host plagioclase. The compositional differences between daughter and primocryst minerals can be attributed to equilibrium crystallization in a closed system of the trapped melt inclusions in contrast to fractional crystallization and possible magma replenishment in an open system typical for primo-cumulates of large layered intrusions. Heated and homogenized melt inclusions have variable SiO2 (33-52 wt%), CaO (7-20 wt%), TiO2 (0.1-12 wt%), FeOt (5-20 wt%), P2O5 (0.2-10 wt%) and K2O (0-2.2 wt%). The large ranges of melt compositions are interpreted to result from heterogeneous trapping of different proportions of immiscible Si-rich and Fe-Ti-rich silicate liquids, together with entrapment of various microphenocrysts. The separation of micrometer

  19. Perspectives on basaltic magma crystallization and differentiation: Lava-lake blocks erupted at Mauna Loa volcano summit, Hawaii

    USGS Publications Warehouse

    McCarter, Renee L.; Fodor, R.V.; Trusdell, Frank A.

    2006-01-01

    Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.The MgO of the gabbronorites and gabbros ranges ∼ 7–21 wt.%. Those with MgO >10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO <10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s ∼83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have ∼ 3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine ∼ Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at <1 kbar P. Highly evolved mineral Mg#s, <75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene

  20. Noble gases in the Oceanic Crust: Preliminary results from ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Kurz, M. D.; Curtice, J. M.; IODP Expedition 335 Science Party

    2011-12-01

    Noble gas isotopes and abundance ratios have been extensively used as tracers of oceanic mantle sources and fluxes. Most of the existing data are from seafloor basalt glasses and hydrothermal fluids, and there are very few studies of noble gases in the oceanic crust, which is an important component in global subduction flux estimates. In an effort to determine the relative contributions of mantle, radiogenic, and atmospheric/hydrothermal noble gas components in the ocean crust, we have performed helium, neon and argon measurements on a suite of gabbros and granoblastic dikes collected during IODP Expeditions 312 and 335 to Hole 1256D, a deep crustal borehole drilled into 15 Ma ocean crust formed at the East Pacific Rise during an episode of superfast spreading (>200 mm/yr). All measurements were carried out by coupled vacuum crushing and melting of whole rock samples, in order to determine the distribution of noble gases within the ocean crust. Total helium abundances in the gabbros range from 0.46 to 1.22 micro cc STP/gram, which is 2 to 5 times higher than literature data, all of which are from the slow spreading Southwest Indian Ridge (Kumagai et al., 2003; Moreira et al., 2003). These strikingly higher helium concentrations place constraints on the thermal crustal history (due to rapid helium diffusivity) and are assumed to reflect fundamentally different emplacement/degassing processes within crust formed at a super fast spreading rate. Crushing releases 12-25 % of the total helium in the gabbros demonstrating that most of the helium resides in the solid mineral phases. Contact metamorphosed granoblastic dikes have total helium contents lower than the gabbros (typically ~ 0.15 micro cc STP/gram), but significantly higher than the assumed degassed basaltic protolith, thus suggesting that metamorphism actually adds helium to the crust, an important hypothesis that requires further testing. The helium isotopes obtained by crushing of both the gabbros and

  1. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  2. Igneous Crystallization Beginning at 20 km Beneath the Mid-Atlantic Ridge, 14 to 16 N

    NASA Astrophysics Data System (ADS)

    Kelemen, P.

    2003-12-01

    ODP Leg 209 drilled 19 holes at 8 sites along the Mid-Atlantic Ridge from 14° 43 to 15° 44 N. All sites were previously surveyed by submersible, and were chosen to be < 200 m from peridotite or dunite exposed on the seafloor; outcrops of gabbroic rock were also near some sites. One primary goal of Leg 209 was to constrain melt migration and igneous petrogenesis in this region where residual peridotites are exposed on both sides of the Ridge axis. At Sites 1269 and 1273, we penetrated 112 m of basaltic rubble; recovery was poor (3.7 m) and holes unstable, so drilling was terminated. Lavas form nearly horizontal surfaces overlying cliffs exposing peridotite and gabbro. At 6 other sites, we drilled a mixture of residual peridotite and gabbroic rocks intrusive into peridotite. We penetrated 1075 meters at these 6 sites, and recovered 354 m of core. Drilling at Sites 1268, 1270, 1271 and 1272 recovered 25% gabbroic rocks and 75% residual mantle peridotite. Core from Site 1274 is mainly residual peridotite, with a few m-scale gabbroic intrusions. Core from Site 1275 is mainly gabbroic, but contains 24% poikilitic lherzolite interpreted as residual peridotite "impregnated" by plagioclase and pyroxene crystallized from melt migrating along olivine grain boundaries; these impregnated peridotites were later intruded by evolved gabbros. Impregnated peridotites are also common at Site 1271, and present at Sites 1268 and 1270. The overall proportion of gabbroic rocks versus residual peridotites from these 6 sites is similar to previous dredging and submersible sampling in the area. The proportion of gabbro is larger than in"amagmatic" regions on the ultra-slow spreading SWIR and Gakkel Ridges. Impregnated peridotites from Site 1275 have "equilibrated" textures and contain olivine, 2 pyroxenes, plag and Cr-rich spinel. Their whole rock Mg#, Cr# and Ni are high, extending to residual peridotite values. 87 MORB glasses from 14 to 16° N with Mg# from 60 to 73 [from PetDB] could

  3. Untangling Magmatic Processes and Hydrothermal Alteration of in situ Superfast Spreading Ocean Crust at ODP/IODP Site 1256 with Fuzzy c-means Cluster Analysis of Rock Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Heslop, D.; Herrero-Bervera, E.; Acton, G.; Krasa, D.

    2014-12-01

    Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6.44.1' N, 91.56.1' W) on the Cocos Plate occurs in 15.2 Ma oceanic crust generated by superfast seafloor spreading. Presently, it is the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Here we interpret down-hole trends in several rock-magnetic parameters with fuzzy c-means cluster analysis, a multivariate statistical technique. The parameters include the magnetization ratio, the coercivity ratio, the coercive force, the low-field susceptibility, and the Curie temperature. By their combined, multivariate, analysis the effects of magmatic and hydrothermal processes can be evaluated. The optimal number of clusters - a key point in the analysis because there is no a priori information on this - was determined through a combination of approaches: by calculation of several cluster validity indices, by testing for coherent cluster distributions on non-linear-map plots, and importantly by testing for stability of the cluster solution from all possible starting points. Here, we consider a solution robust if the cluster allocation is independent of the starting configuration. The five-cluster solution appeared to be robust. Three clusters are distinguished in the extrusive segment of the Hole that express increasing hydrothermal alteration of the lavas. The sheeted dike and gabbro portions are characterized by two clusters, both with higher coercivities than in lava samples. Extensive alteration, however, can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. All clusters display rock magnetic characteristics in line with a stable NRM. This implies that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Determination of the absolute paleointensity with thermal techniques is

  4. Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, northern California

    USGS Publications Warehouse

    McCafferty, A.E.; Van Gosen, B. S.

    2009-01-01

    Serpentinized ultramafic rocks and associated soils in northern California are characterized by high concentrations of Cr and Ni, low levels of radioelements (K, Th, and U) and high amounts of ferrimagnetic minerals (primarily magnetite). Geophysical attributes over ultramafic rocks, which include airborne gamma-ray and magnetic anomaly data, are quantified and provide indirect measurements on the relative abundance of radioelements and magnetic minerals, respectively. Attributes are defined through a statistical modeling approach and the results are portrayed as probabilities in chart and map form. Two predictive models are presented, including one derived from the aeromagnetic anomaly data and one from a combination of the airborne K, Th and U gamma-ray data. Both models distinguish preferential values within the aerogeophysical data that coincide with mapped and potentially unmapped ultramafic rocks. The magnetic predictive model shows positive probabilities associated with magnetic anomaly highs and, to a lesser degree, anomaly lows, which accurately locate many known ultramafic outcrops, but more interestingly, locate potentially unmapped ultramafic rocks, possible extensions of ultramafic bodies that dip into the shallow subsurface, as well as prospective buried ultramafic rocks. The airborne radiometric model shows positive probabilities in association with anomalously low gamma radiation measurements over ultramafic rock, which is similar to that produced by gabbro, metavolcanic rock, and water bodies. All of these features share the characteristic of being depleted in K, Th and U. Gabbro is the only rock type in the study area that shares similar magnetic properties with the ultramafic rock. The aerogeophysical model results are compared to the distribution of ultramafic outcrops and to Cr, Ni, K, Th and U concentrations and magnetic susceptibility measurements from soil samples. Analysis of the soil data indicates high positive correlation between

  5. Petrogenesis of Early-Middle Jurassic intrusive rocks in northern Liaoning and central Jilin provinces, northeast China: Implications for the extent of spatial-temporal overprinting of the Mongol-Okhotsk and Paleo-Pacific tectonic regimes

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Hong; Wang, Feng; Xu, Wen-Liang; Cao, Hua-Hua; Pei, Fu-Ping

    2016-07-01

    The Mesozoic tectonic evolution of NE China was controlled mainly by the Mongol-Okhotsk and Paleo-Pacific tectonic regimes. However, the extent of the spatial and temporal overprinting of these two regimes is poorly understood. Here, we report new zircon LA-ICP-MS U-Pb dating and geochemical analyses of Jurassic intrusive rocks in northern Liaoning and central Jilin provinces, northeast China, to discuss their petrogenesis and outline the extent of spatial and temporal overprinting of these two tectonic regimes. Dating results indicate that Jurassic magmatism occurred in two stages during the Early (ca. 175 Ma) and Middle Jurassic (170-163 Ma). These rocks represent two-stage typical bimodal igneous rock associations composed mainly of olivine gabbro, gabbro, and gneissic granitoids. The Early and Middle Jurassic gabbros have low rare earth element (REE) abundances, positive Eu anomalies, depletion in high field strength elements (HFSEs), and positive εHf(t) values (+ 4.0 to + 10.3, except for one value of - 17.8), suggesting that the primary magma was derived from partial melting of depleted lithospheric mantle metasomatized by subducted-slab-derived fluids. The Early Jurassic monzogranite exhibit high REE abundances (195-201 ppm), weak negative Eu anomalies (δEu = 0.63-0.64), and negative εHf(t) values (- 11.9 to - 8.2), suggesting a primary magma that was derived from partial melting of lower continental crust of the NCC. The Middle Jurassic granodiorites are enriched in light REEs (LREEs) and large ion lithophile elements (LILEs), and are depleted in heavy REEs (HREEs) and HFSEs, as well as high Sr/Y (29-132) and (La/Yb)N (15-44) ratios. In addition, the Middle Jurassic granitoids near or within the NCC exhibit negative εHf(t) values (- 18.9 to + 0.2), whereas those within the Xing'an-Mongolia Orogenic Belt (XMOB) have generally positive εHf(t) values (- 0.6 to + 6.4), suggesting their origin from partial melting of thickened ancient NCC and newly accreted

  6. Dynamics of the Axial Melt Lens/Dike transition at fast spreading ridges: assimilation and hydrous partial melting

    NASA Astrophysics Data System (ADS)

    France, L.; Ildefonse, B.; Koepke, J.

    2009-04-01

    Recent detailed field studies performed in the Oman ophiolite on the gabbro/sheeted dike transition, compared to corresponding rocks from the EPR drilled by IODP (Site 1256), constrain a general model for the dynamics of the axial melt lens (AML) present at fast spreading ridges (France et al., 2008). This model implies that the AML/dike transition is a dynamic interface migrating up- and downward, and that the isotropic gabbro horizon on top of the igneous section represents its fossilization. It is also proposed that upward migrations are associated to reheating of the base of the sheeted dike complex and to assimilation processes. Plagiogranitic lithologies are observed close to the truncated base of the dikes and are interpreted to represent frozen melts generated by partial melting of previously hydrothermalized sheeted dikes. Relicts of previously hydrothermalized lithologies are also observed in the fossil melt lens, and are associated to lithologies that have crystallized under high water activities, with clinopyroxene crystallizing before plagioclase, and An-rich plagioclase. To better understand our field data, we performed hydrous partial melting experiments at shallow pressures (0.1 GPa) under slightly oxidizing conditions (NNO oxygen buffer) and water saturated conditions on hydrothermalized sheeted dike sample from the Oman ophiolite. These experiments have been performed between 850°C and 1030°C; two additional experiments in the subsolidus regime were also conducted (750°C and 800°C). Clinopyroxenes formed during incongruent melting at low temperature (<910°C) have compositions that match those from the corresponding natural rocks (reheated base of the sheeted dike and relicts of assimilated lithologies). In particular, the characteristic low TiO2 and Al2O3 contents are reproduced. The experimental melts produced at low temperatures correspond to compositions of typical natural plagiogranites. In natural settings, these silicic liquids would be

  7. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  8. Building monument materials during the 3rd-4rd millennium (Portugal)

    NASA Astrophysics Data System (ADS)

    Moita, Patricia; Pedro, Jorge; Boaventura, Rui; Mataloto, Rui; Maximo, Jaime; Almeida, Luís; Nogueira, Pedro

    2014-05-01

    Dolmens are the most conspicuous remains of the populations of the 4th and first half of 3rd millennia BCE. These tombs are impressive not only for their monumentality, but also because of the socioeconomic investment they represent for those Neolithic communities, namely from the Central-South of Portugal, who built them. Although dolmens have been studied for their funerary content and typologies, an interdisciplinary approach toward the geological characterization and sourcing of stones used in these constructions has not received enough attention from researchers. With MEGAGEO project a multidisciplinary group of geologist and archaeologists intends to assess the relationship between the distribution of dolmens in Central-South Portugal, their source materials, and the geological landscape. GIS will map the information gathered and will be used to analyse these relationships. The selection of the areas, with distinctive geologies (limestone vs granite), will allow to verify if human patterns of behaviour regarding the selection of megaliths are similar or different regionally. Geologically the first target area (Freixo, Alentejo) is dominated by a small intrusion of gabbro mingled/mixed within a granodioritic intrusion both related with variscan orogeny. Granodiorite exhibit several enclaves of igneous and metamorphic nature attesting the interaction between both igneous rocks as well with enclosing gneisses. Despite Alentejo region have a reduced number of outcrops the granodiorite provides rounded to tabular metric blocks. The gabbro is very coarse grained, sometimes with a cumulate texture, and their fracturing and weathering provide very fresh tabular blocks. The five studied dolmens (Quinta do Freixo #1 to #5) are implanted in a large granodioritic intrusion, around the gabbroic rocks, within an area of approximately 9km2. The medium grained granodiorite is ubiquity in all the dolmens slabs and occasionally it can be observed features of mixing and

  9. Temperature Dependent Frictional Properties of Crustal Rocks

    NASA Astrophysics Data System (ADS)

    Mitchell, Erica Kate

    In this dissertation, I study the effects of temperature on frictional properties of crustal rocks at conditions relevant to earthquake nucleation. I explore how temperature affects fault healing after an earthquake. I present results from slide-hold-slide experiments on Westerly granite that show that frictional healing rate increases slightly and shear strength increases with temperature. Based on our results, if the effects of temperature are neglected, fault strength could be under-predicted by as much as 10 percent. I use finite element numerical experiments to show that our frictional healing data can be explained by increases in contact area between viscoelastic rough surfaces. I investigate the influence of temperature on the transition from seismogenic slip to aseismic creep with depth in continental crust. I present results from velocity-stepping and constant load-point velocity experiments on Westerly granite conducted at a wide range of temperatures. I construct a numerical model incorporating the rate-state friction equations to estimate the values of (a-b) that provide the best fit to the stick-slip data. I find that sliding becomes more unstable ((a-b) < 0) with temperature up to the maximum temperature tested, 600 ºC. This contradicts a traditional view that the deep limit to seismicity in continental upper crust is caused by a transition to stable creep ((a-b) > 0) in granite at temperatures above ˜350 ºC. These results may help explain the occurrence of anomalously deep earthquakes found in areas of active extension and convergence. I explore the frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. I present results from experiments on gabbro conducted at low effective normal stress and temperatures between 20-600 ºC. I find that (a-b) decreases with temperature based on direct measurements and numerical modeling. I conclude that the occurrence of slow slip events at the base of the seismogenic

  10. Palaeomagnetic evidence for an oceanic core complex in the Mirdita ophiolite of Albania

    NASA Astrophysics Data System (ADS)

    Maffione, M.; Morris, A.; Anderson, M. W.

    2012-04-01

    Oceanic core complexes (OCCs) are the uplifted footwalls of oceanic detachment faults that unroof upper mantle and lower crustal lithologies and expose them at the seafloor. Their common occurrence in slow and ultra-slow spreading rate oceanic crust suggests they accommodate a significant component of plate divergence, representing a newly recognised class of seafloor spreading. Numerical modelling and palaeomagnetic results from the Integrated Ocean Drilling Program (IODP) have shown that the footwalls beneath oceanic detachment faults rotate during their evolution, initiating at steep angles at depth and then "rolling-over" to their present day low angle orientations as a result of flexural isostasy during unroofing. This footwall rotation provides a means of testing whether extensional structures separating upper mantle/lower crustal rocks from upper crustal rocks in ophiolites potentially represent fossil OCCs. Here we present the results of an extensive paleomagnetic study of an inferred OCC in the Mirditata ophiolite of the Albanian Dinarides, first proposed by Tremblay et al. (2009). The western part of Mirdita ophiolite is composed of mantle sequence overlain by a thin gabbro/troctolitic sequence and MORB-like pillow lavas. The sheeted dyke complex and gabbroic sequence are missing locally, and the upper crustal volcanic sequence then rests directly on the mantle sequence in tectonic contact. This anomalous situation is directly comparable to lithostratigraphic relationships in oceanic detachment fault settings. In order to understand this tectonic contact and describe its kinematics we sampled 73 sites from ultramafic rocks, gabbros, lava flows, pillow lavas and dykes, around the Puka and Krabbi massifs between the villages of Puka and Rreshen in northern Albania. Results demonstrate that gabbroic bodies in the mantle sequence preserve a highly stable remanence that differs in direction and polarity to the serpentinized peridotite host rock. A significant

  11. IODP Expedition 345: Characterizing Hydrothermal Alteration of Fast-Spreading EPR Lower Crust using O, Sr and Nd isotopics

    NASA Astrophysics Data System (ADS)

    Marks, N.; Gillis, K. M.; Lindvall, R. E.; Schorzman, K.

    2014-12-01

    The Integrated Ocean Drilling Program (IODP) Expedition 345 sampled lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) and are exposed at the Hess Deep Rift. The metamorphic mineral assemblages in the rocks recovered at Site U1415 record the cooling of primitive gabbroic lithologies from magmatic (>1000°C) to zeolite facies conditions (<200°C) associated with EPR spreading, Cocos-Nazca rifting and exposure onto the seafloor. The dominant alteration assemblage is characterized by lower grade greenschist (<400°C) and subgreenschist facies (<200°C) alteration of olivine to talc, serpentine, or clay minerals, and is commonly accompanied by prehnite microveins in plagioclase. The intensity of alteration varies with igneous lithology, in particular, the modal abundance of olivine, as well as proximity to zones of brittle fracturing and cataclasis. We have attempted to characterize the nature and extent of isotopic exchange associated alteration and cooling and present a record of variations in O, Sr, and Nd isotopic compositions in altered rocks from the lower plutonic crust at Hess Deep. The Rb-Sr and 18O/16O systems exhibit sensitivity to hydrothermal interactions with seawater; whereas the Sm-Nd system appears essentially undisturbed by the minimal alteration experienced by the rocks drilled at Site U1415. The 87Sr/86Sr isotopic compositions of olivine gabbros (Mg# 0.81-0.89) range from 0.702536-0.703950 (±0.000008). Higher 87Sr/86Sr ratios are strongly correlated with percentage of hydrous minerals, and are higher in samples with a greater modal abundance of olivine. These rocks have somewhat higher 87Sr/86Sr ratios than upper plutonic rocks from the Northern Escarpment at Hess Deep (Kirchner and Gillis, 2012), although their percentage of hydrous phases is apparently similar. The d18O in these rocks ranges from 0.23‰ to 4.65‰ (±0.67); troctolites have systematically lower d18O than the gabbro and gabbronorites

  12. Formation of dunite conduits in the mantle: observations from the Lanzo peridotite in NW-Italy

    NASA Astrophysics Data System (ADS)

    Müntener, O.; Pettke, T.; Piccardo, G.; Zanetti, A.

    2003-04-01

    Mantle dunites may be the most important conduits for melt transport in the shallow upper mantle (1). Dunites as observed in the Lanzo ophiolites are generally tabular bodies with sharp, replacive contacts and are oriented parallel or discordant to the foliation in the surrounding harzburgite and plagioclase lherzolites (2, 3). In order to evaluate the mechanisms of how dunite formed, we examined in detail dunite - plagioclase lherzolite transects by a combined field, electron microprobe and Laser ablation ICP-MS study. Field observations show that some discordant dunites locally contain small interstitial clinopyroxene, and large clinopyroxene megacrysts sometimes associated with plagioclase. Calculated liquids in equilibrium with clinopyroxenes have REE slopes and concentrations similar to MORB crystallised from low percentage aggregate liquids (less than 5%). In addition spinel in Lanzo dunite is similar to spinels from MORB (4), with high TiO2 and elevated Cr#. Preliminary results on a dunite transect containing a small gabbro dikelet in its center indicate, however, that spinel compositions consistently vary perpendicular to the contact. The Cr#, TiO2 and a number of trace elements (Zn, Co V, Cr, Mn) decrease with increasing distance from the medial gabbro, while Ni increases. In addition, spinels far from the medial gabbro rarely contain inclusions of primary hydrous phases (pargasite and phlogopite). Compositional variations in olivine are more subtle, e.g. contents of compatible trace elements (Co, Ni) are systematically lower in dunite olivine than in olivine from plagioclase lherzolite. The observed spatial chemical variations may reflect melt focussing with time even within a single dunite conduit. These data might be used to place constraints on the relative importance of focused porous flow vs cracks in the shallow mantle. 1. Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. &Dick, H. J. B. (1997) Philosophical Transactions of the Royal Society of

  13. The Queensborough mafic-ultramafic complex: a fragment of a Meso-Proterozoic ophiolite? Grenville Province, Canada

    NASA Astrophysics Data System (ADS)

    Smith, T. E.; Harris, M. J.

    1996-11-01

    The Queensborough mafic-ultramafic complex occurs as a fault-bounded block, up to 10 km wide and having an area > 220 km 2. It lies in the Grimsthorpe Domain of the Bancroft-Elzevir-Mazinaw-Sharbot Lake Terrane in the Central Metasedimentary Belt of the Grenville Province. It has been suggested, without adequate supporting data, that the complex may represent oceanic crust, a fragment of an ophiolite, or even a metavolcanic sequence made up of basaltic and komatiitic flows. The geological and tectonic significance of the complex is assessed using field relationships, petrography and geochemistry. Structurally the lowest part of the complex comprises a series of ultramafic rocks characterized by metre-scale compositional layering, represented by several different metamorphic assemblages of talc, chlorite, carbonate, anthophyllite, and actinolite-tremolite. These assemblages indicate that the original rocks were cumulate peridotites and pyroxenites. The ultramafic rocks are overlain structurally by a series of mafic rocks, predominantly massive to highly sheared gabbros. The gabbros are penetrated by a series of mafic dykes and include a few small enclaves of pillowed mafic volcanics. Major- and trace-element chemistry shows that the mafic rocks represent a fractionally crystallized sequence of tholeiitic gabbros, lavas, and mafic dykes and that the ultramafic cumulates are co-genetic. The regional geological setting, and the trace-element signatures of the mafic rocks suggest that they were formed in a back-arc basin. Comparison of the Queensborough Complex with Proterozoic and Phanerozoic igneous complexes suggests that it represents a partially preserved crustal section of a Mesoproterozoic ophiolite. In addition, the rocks of the Queensborough Complex are petrographically and geochemically similar to those of the Vavilov Basin which occurs in the deepest part of the Tyrrhenian Sea. By analogy with this Neogene back-arc basin we suggest that the Central

  14. Tectonic development of the Samail ophiolite: High-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement

    NASA Astrophysics Data System (ADS)

    Rioux, Matthew; Bowring, Samuel; Kelemen, Peter; Gordon, Stacia; Miller, Robert; DudáS, Frank

    2013-05-01

    New high-precision single grain U-Pb zircon geochronology and whole rock Nd isotopic data provide insight into the magmatic and tectonic development of the Samail ophiolite. The analyzed rocks can be broadly divided into two groups based on their structural position, dates, and isotopic composition: an older group related to on-axis magmatism and a younger group of post-ridge dikes, sills, and stocks. On-axis gabbros, tonalites and trondhjemites yielded Th-corrected 206Pb/238U dates from 96.441 ± 0.062 to 95.478 ± 0.056 Ma. These dates, combined with dates from Rioux et al. (2012), suggest that most of the ophiolite crust formed at an oceanic spreading center in <1 Ma. The post-ridge intrusions come from all depths in the crust, the upper mantle, and the metamorphic sole. Post-ridge gabbros, tonalites, and trondhjemites from the crust and mantle yielded Th-corrected 206Pb/238U dates of 95.405 ± 0.062 to 95.077 ± 0.062 Ma. A small trondhjemitic pod from the metamorphic sole yielded younger Th-corrected 206Pb/238U dates of 94.90 ± 0.38 to 94.69 ± 0.12 Ma. Isotopic data suggest two distinct sources for the post-ridge magmas: five of the gabbros and tonalites from the crust have ɛNd(96 Ma) = 6.90 ± 0.12 to 7.88 ± 0.16, and two trondhjemites from the upper mantle and metamorphic sole have ɛNd(96 Ma) = -7.77 ± 0.08 and -7.01 ± 0.16. The negative ɛNd(t) and U-Pb dates from the mantle dike require that subduction or thrusting was established below the ophiolite ≤0.25-0.5 Ma after formation of the crust. The bimodal isotopic composition of post-ridge magmas may reflect coeval decompression and/or fluid fluxed melting of the mantle and melting, dehydration, or assimilation of sediment in the down going plate at this time. The new data place temporal constraints on mid-ocean ridge and supra-subduction zone models for ophiolite formation.

  15. Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region, NE China

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Li, Hongxia; Fan, Weiming; Li, Jingyan; Zhao, Liang; Huang, Miwei

    2016-09-01

    This paper presents petrology, mineralogy, zircon U-Pb ages, and whole-rock major, trace element and Sr-Nd-Hf isotopic compositions of four Permian (273-253 Ma) subduction-related mafic intrusions (including the Qinggoushan and Qianshan gabbros, and the Wangqing and Shuguang diorites) from the Yanbian region, NE China, with aims to understand the role of subducted sediment flux in generation of arc mafic cumulates. These intrusions have mineral assemblages crystallized in water-saturated parental magmas and show variable degrees of crystal accumulation as observed in mafic cumulates in subduction zones. Mass-balance consideration indicates that their parental magmas were calc-alkaline with arc-type trace element features (enrichments in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depletions in Nb-Ta). They also have Sr-Nd-Hf isotopic compositions, i.e., 87Sr/86Sr(i) = 0.7029-0.7047, εNd(t) = + 0.9 + 6.8, εHf(t) = + 5.6 + 14.6, similar to modern arc basalts. The parental magmas were likely derived from a mantle wedge variably metasomatized by sediment melt and fluid from the subducting paleo-Asian Oceanic slab. Combined trace elemental and isotopic modeling results suggest that the parental magma of Qinggoushan gabbro was formed through 5-20% melting of the mantle wedge with 1% and 1.5% additions of sediment fluid and sediment melt, respectively; 5-10% melting of the mantle wedge through inputs of 1% sediment fluid and 2% sediment melt produced the Qianshan gabbro; 10-20% melting of the mantle wedge with additions of 1% sediment fluid and 3% sediment melt formed the Wangqing diorite; whereas 5-20% melting of the mantle wedge through an input of 1.5% sediment melt produced the Shuguang diorite. The Hf-Nd isotopic array of the Yanbian Permian mafic intrusions reflected the existence of an Indian Ocean-type mantle, which was isotopically distinct from the Pacific-type mantle during early Paleozoic in the Central Asian Orogenic Belt

  16. Petrology of ultramafic, mafic, and felsic xenoliths from Ruddon's Point basanite, Fife, Scotland, UK - preliminary results.

    NASA Astrophysics Data System (ADS)

    Sobczak, Paweł; Matusiak-Malek, Magdalena; Puziewicz, Jacek; Upton, Brian

    2016-04-01

    Numerous dykes of Carboniferous alkaline volcanic rocks occur in the county of Fife, Scotland, United Kingdom. Basanitic dyke from Ruddon's Point encloses mafic, ultramafic, and felsic xenoliths as well as megacryts of alkali feldspar and xenoliths of felsic rocks. The studied set of rocks comprises wehrlite, clinopyroxenites, gabbro, anorthosite, and anorthoclasite. Wehrlite contains pseudomorphs after biotite, the Mg# of clinopyroxene varies from 0.78 to 0.81, the Fo content in olivine is 0.68-0.71. Clinopyroxenites have cumulative textures and are typically olivine± sulfides bearing. Most of them contained biotite which is now replaced by brownish aggregates formed of chlorite with scarce biotite intergrowths. The Mg# of clinopyroxene (Al, Ti - augite) varies from 0.77 to 0.84. The Fo content in olivine is 0.81-0.85 in plagioclase-free clinopyroxenites, but in xenolith where minor amounts of plagioclase (Ab48-51An47-48) occur, the Fo content is 0.70 - 0.72. Biotite's Mg# is ~70%. Gabbro is titanite-bearing and contains trace amounts of amphibole. Diopside forming the gabbro is characterized by Mg#=0.56-0.64, plagioclase is potassium-free (Ab14-22An77-86). Anorthosite also encloses brownish post-biotitic aggregates. Plagioclase has composition of Ab35-43An54-64. Anorthoclasite (Or65-72 Ab65-72) is characterized by unusual mineral composition - it contains corundum, zircon, apatite, and niobates. Previous study on the felsic xenoliths from Scotland showed their lower crustal origin, but with possible ultramafic affinity (e.g. Upton et al., 2009, Min.Mag., 73, 943-956). Crystallization from met- and peraluminous melts was also suggested. Mantle-derived xenoliths from Scotland are from almost primitive to strongly depleted (Upton et al.; 2010, J. Geol. Soc. London, 168, 873-886), but more data from individual localities are necessary for precise description and interpretation of mantle and lower crustal processes beneath Scotland. This study was possible thanks to

  17. Growth and Construction of Oceanic Crust at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Schwartz, J. J.; John, B. E.; Cheadle, M. J.; Miranda, E. A.; Grimes, C. B.; Wooden, J. L.; Dick, H. J.

    2005-12-01

    Magmatic zircon is a common accessory mineral in oceanic crustal rocks including gabbro, oxide gabbro, diabase and felsic veins. Its presence in these rocks provides an exceptional opportunity to document crustal growth processes at slow-spreading mid-ocean ridges. We present nineteen Pb/U zircon SHRIMP-RG ion probe ages of lower crustal rocks collected by manned submersible, ROV, dredging and ODP drilling from a 20 x 30 km2 area of Atlantis Bank, Southwest Indian Ridge, which allow us to constrain the growth and construction of oceanic crust. Weighted average 206Pb/238U ages of these samples range from 10.7 to 13.9 Ma, with errors of 0.1-0.6 m.y. (<1 - 4%). At least 75% of these gabbros accreted within error of the predicted sea-surface magnetic age, whereas up to 25% are between 700,000 and 2.5 m.y. older. In one sample, we identified zircon with inherited cores as much as 1.5 m.y. older than their corresponding rims. There is no observable correlation between age and lithology, and the anomalously old samples are not from any specific part of Atlantis Bank; they appear to be randomly distributed amongst the non-anomalous age samples and come from various structural depths. We consider two models to explain the presence of these anomalously old rocks: i) a stochastic intrusion model whereby magma was intruded at different spatial locations within the rift valley as the plates spread apart, resulting in the entrapment of older lower crust by subsequent intrusions; and/or ii) a model in which some gabbroic bodies originally crystallized at depths of ~5-18 km below the base of the crust in a thick, cold, axial lithosphere and were subsequently uplifted along flow-lines and intruded by shallow-level magmas during the creation of Atlantis Bank. In this model, the difference in time between the Pb/U zircon crystallization age and the magnetic age is a proxy for the depth at which zircon crystallized (assuming a constant mantle upwelling rate during the construction of

  18. The Role of Magma Replenishment in the Construction of the Lower 500m of the Layered Mafic Dufek Intrusion, Antarctica

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; Cheadle, M. J.; Gee, J. S.; Meurer, W. P.; Swapp, S.; Lusk, M.

    2008-12-01

    The Jurassic age Dufek Intrusion is arguably one of the largest layered mafic intrusions on Earth, yet it remains relatively little studied due to the remoteness of its location. During the austral summer of 2006/07, we conducted detailed sampling and logging of exposures in the lower ~500m of the Dufek Massif section of the intrusion. We collected 630 oriented cores over this interval from the Walker Anorthosite and portions of the overlying Aughenbaugh Gabbro along two vertical transects 5 km apart - a spur of Neuburg Peak and at Walker Peak. Cryptic mineral chemistry variations have been determined by electron microprobe analysis of both the cores and the rims of cumulus and intercumulus plagioclase, orthopyroxene (inverted pigeonite), and clinopyroxene from ~50 thin sections, with an average sample spacing of 10 m over the lower 500m of the Dufek Massif. The mineral composition data reveal a dramatic change of 74 to 56 in orthopyroxene Mg# and An83 to An61 in plagioclase anorthite content with increasing stratigraphic height. The change of 22 An# occurs over an interval of 500m compared to thicknesses of 3-4 km required for a similar change in the Bushveld and Stillwater intrusions. This rapid change is consistent with these lower cumulates forming from a relatively thin magma body. Field observations and trends in the mineral chemistry are interpreted to indicate three units within the lower 500m of the intrusion. The change from three phase to two-phase cumulates and the change in the slope of plagioclase An#, FeO and K2O content, and orthopyroxene Mg# with height across the boundary between the Walker Anorthosite and the overlying Aughenbaugh Gabbro suggests crystallization from two batches of magma with different compositions. Also, the occurrence of the sharp-bottomed, several meter- thick Neuburg Pyroxenite at ~210 m above the Walker-Aughenbaugh contact together with changes in plagioclase, orthopyroxene and clinopyroxene composition and an influx of meta

  19. Coupled mechanical and hydrothermal modelling of crustal accretion at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Theissen, Sonja; Iyer, Karthik; Rüpke, Lars H.; Phipps Morgan, Jason

    2010-05-01

    Several geophysical studies imaged a melt lens beneath intermediate to fast spreading ridges, with the depth to the melt lens depending on spreading velocity. It is also widely accepted that the heat released during cooling and crystallisation during the accretion/formation of new oceanic crust is removed by hydrothermal circulation. Two competing end member models explain the formation of the oceanic crust: In the gabbro glacier model the lower crust crystallises in a shallow melt lens and the solidified material is advected to its final position, whereas in the many sill model the crust crystallises in situ from multiple sills at different levels in the lower crust. Many numerical models of crustal accretion and hydrothermal cooling have been developed in the last years, but regardless of whether the models simulate the gabbro glacier or sheeted sill assumption, the previous models focus mainly on one of the processes. They solve either for hydrothermal circulation and create the lithospheric material continuously with spreading velocity [e.g.Cherkaoui et al., 2003] or for viscous advection but parameterise the hydrothermal cooling with an enhanced thermal conductivity/diffusivity as described by Morgan and Chen [1993]. Our new approach couples both processes in one model. The formation of new oceanic crust is implemented as in the gabbro glacier assumption, where all the lower crust crystallises in a shallow melt lens. It is a two dimensional model which uses the finite element method to solve simultaneously for crustal accretion and hydrothermal cooling. The solid velocities in crust and mantle are described by viscous flow of incompressible fluids. Magma injection is implemented by a dilation term and hydrothermal circulation is described by Darcy fluid flow for water. Although the time scales for accretion of the crust and cooling due to hydrothermal circulation are different it was possible to couple the processes in one model and to solve for a steady state

  20. A new interpretation of the structure of the Sept Iles Intrusive suite, Canada

    NASA Astrophysics Data System (ADS)

    Higgins, Michael D.

    2005-08-01

    The layered mafic intrusion at Sept Iles, Canada, is one of the largest intrusions in the world. A new interpretation of its structure is proposed, based on a review of its geology and a comparison with the Skaergaard intrusion, Greenland. Several different magmatic components are recognized; hence the name Sept Iles Intrusive suite (SIIS) is proposed. Emplacement of the suite may have been preceded by eruption of flood basalts. The first magmas of the suite rose in the crust to accumulate beneath the density filter afforded by the basalts. The largest component is the Sept Iles Mafic intrusion (SIMI). The Lower series of the SIMI is dominated by leucotroctolites and leucogabbros. Above it lie the Layered series, which is largely comprised of gabbro and troctolite. Both these units are unchanged from earlier interpretations. The anorthosites (s.l.), gabbros and monzogabbros, formerly called the Transitional series, are now considered to be the Upper Border series, developed by floatation of plagioclase. Common autoliths in the Layered series are parts of the hydrothermally altered Upper Border series from towards the interior of the intrusion, which have foundered and settled through the magma. The contamination of the magma that accompanied this event oxidised iron in the magma and led to the precipitation of magnetite around the periphery of the intrusion. The subsequent depletion of Fe 3+ and/or increase in SiO 2, CaO and P 2O 5 may have induced apatite saturation and accumulation to form two layers rich in apatite, near the base and at top of the Layered series. Granitic magma was developed by fractional crystallisation and was emplaced along the roof of the chamber, where it acquired large quantities of xenoliths. These were probably derived from the flood basalts, their evolved members and fragments of mafic dykes chilled by the granitic magma. Accumulations of monzonite pillows in this unit testify to another magmatic event and a floor to the granitic magma

  1. Iron isotopes for the layered series of the Skaergaard intrusion

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Lundstrom, C.; Brown, E.; Huang, F.; Glessner, J. J.; Hoffmann-Barfod, G.; Thy, P.

    2009-12-01

    It has long been held that magmatic evolution of the Skaergaard intrusion involved strong iron enrichment accompanying gabbro fractionation. Continued enrichment of iron in evolved liquids following FeTi oxide saturation is problematic and has been ascribed to a number of related factors, including 1) the composition of the Skaergaard parental magma, 2) changes in oxidation conditions and proportion of fractionating FeTi oxide and silicates during the course of differentiation, and 3) the effects of liquid immiscibility. In most differentiation scenarios differences in the partitioning of Fe+2 and Fe+3 between fractionating minerals and silicate melt are considered to be key to maintaining the bulk distribution coefficient for total iron below unity, thus permitting iron enrichment during magmatic evolution. Recent experimental work [1] predicts measureable fractionation of iron isotopes between magnetite and silicate melt that can lead to enrichment of isotopically lighter iron in derivative liquids compared to magnetite-rich cumulates. This possibility suggests that a signature of FeTi oxide fractionation may be recorded in the Fe isotope composition of Skaergaard gabbros. Initial investigation of this possibility is based on the analysis of 15 average gabbros from the layered series by high resolution MC-ICPMS after digestion and separation of iron using AG1X8 resin. The δ56Fe values {= [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-014 - 1] × 1000} for this suite range from a low of 0.052 per mil to a high of 0.188 per mil with external precision better than ±0.05 per mil (1σ). While the entire variation is small we find a progressive decrease in δ56Fe by 0.09 per mil passing from Lower Zone a to the base of Upper Zone c (UZc). Within UZc δ56Fe increases rapidly to 0.188 per mil approaching the Sandwich Horizon. Forward modeling of closed system fractional crystallization using fractionation factors from [1] can account for the observed decrease in δ56Fe by Fe

  2. Isotopic equilibrium between mantle peridotite and melt: Evidence from the Corsica ophiolite

    NASA Astrophysics Data System (ADS)

    Rampone, Elisabetta; Hofmann, Albrecht W.; Raczek, Ingrid

    2009-11-01

    A widely used assumption of mantle geochemistry and the theory of partial melting at oceanic settings is the existence of isotopic equilibrium between mantle source and melt. Yet, recent diffusion studies and isotopic investigations of ophiolites, abyssal peridotites and associated MORBs have cast doubts on this assumption, by providing evidence for isotopic disequilibrium between residual peridotites and MORBs. Here we present Sr and Sm-Nd isotope data on mantle peridotites and gabbroic intrusions from the Mt. Maggiore (Alpine Corsica, France) Tethyan ophiolite, which document Nd isotopic homogeneity, implying isotopic equilibrium, on a 1-kilometer scale. The peridotites record multi-stage melt-rock interaction and melt intrusion occurring at different lithospheric depths. Samples studied are residual cpx-poor spinel lherzolites, reactive spinel harzburgites, impregnated plagioclase peridotites and related gabbronoritic veinlets, later gabbroic dykes. Strontium isotopes in peridotites and gabbros are highly variable, due to interaction with sea-water derived fluids, and cannot be used to test melt-residue isotopic equilibrium. In contrast, Nd isotopes are unaffected by sea-water alteration. Peridotites display present-day high 147Sm/ 144Nd (0.49-0.59) and 143Nd/ 144Nd (0.513367-0.513551) ratios, with no appreciable differences between residual and reactive spinel peridotites, and between spinel and plagioclase peridotites. Gabbroic dykes have present-day Nd isotopic compositions typical of MORB ( 143Nd/ 144Nd = 0.513122-0.513138). Internal (plag-whole rock-cpx) Sm-Nd isochrons for olivine gabbro dykes and a gabbronoritic veinlet yield Jurassic ages (162 ± 10 and 159 ± 15 Ma in ol-gabbros, 155 ± 6 Ma in gabbronorite), and initial ɛNd = 8.9-9.7 indicative of a MORB-type source. Sm-Nd isotopic compositions of peridotites conform to the linear array defined by the gabbroic rocks, and yield initial (160 Ma) ɛNd values of 7.6-8.9, again consistent with a MORB

  3. Stable isotopic constraints on fluid-rock interaction and Cu-PGE-S redistribution in the Sonju Lake intrusion, Minnesota

    USGS Publications Warehouse

    Park, Y.-R.; Ripley, E.M.; Miller, J.D.; Li, C.; Mariga, J.; Shafer, P.

    2004-01-01

    The Sonju Lake intrusion, part of the 1.1 Ga Midcontinent rift-related Beaver Bay Complex, is a 1,200-m-thick, strongly differentiated, layered sequence of mafic cumulates located in northeastern Minnesota. Basal melatroctolite and dunite layers are overlain by troctolite, gabbro, Fe-Ti oxide-rich gabbro, apatite diorite, and monzodiorite. Stratigraphic intervals rich in Pt + Pd, Cu, and S occur over ???500 m in the Fe-Ti oxide-rich gabbro and apatite diorite units. Peak concentrations show offsets that are similar to those found in other tholeiitic layered intrusions. Concentrations of Pd in excess of 100 ppb are confined to the lowermost 25 m of the interval. Copper shows a sharp increase to 630 ppm above the Pd-rich interval. Sulfur contents are low (<375 ppm) in the Cu-rich interval, but they increase to values as high as 3,150 ppm above in the apatite diorite. Disseminated sulfides in the intrusion have ??34S values that range from -2.2 to 3 per mil Vienna-Canyon Diablo Troilite (V-CDT) and suggest that contamination by country rock sulfur was not an important process in the formation of the metal-rich interval. ??18O values of plagioclase from the intrusion range from 5.6 to 12.0 per mil (V-SMOW) and indicate that a relatively low-18O fluid (??18O ???3-5 ???) interacted with the rocks of the intrusion at temperatures less than ???275??C. Clinopyroxene and Fe-Ti oxides (ilmenite with minor amounts of titanomagnetite) show much more restricted ranges in ??18O values (4.6-5.7 and 5.5-6.7 per mil, respectively) and attest to the kinetic control of the oxygen isotope exchange process. The externally derived fluid that interacted with rocks now enriched in platinum group elements (PGE) + Cu- and Fe-sulfide minerals locally liberated sulfur and replaced chalcopyrite and pyrite with goethite. In the Cu-rich zone, goethite that replaces chalcopyrite may contain up to 8.5 weight percent Cu. It is evident that hydrothermal alteration resulted in a decoupling of copper

  4. a Possible Ancient Core Complex in the Northern Cache Creek Terrane, British Columbia

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.

    2013-12-01

    The Cache Creek terrane (CCT) in Canadian Cordillera comprises a belt of Mississippian to Jurassic oceanic rocks that include Tethyan carbonates and alkaline basalts that are demonstrably exotic to Laurentia. The exotic Tethyan faunas in the CCT, combined with its inboard position with respect to Stikinia and Yukon-Tanana terranes has led to a variety of tectonic hypotheses including oroclinal enclosure of CCT by Stikinia, Yukon-Tanana and Quesnellia during the Jurassic. Detailed studies have demonstrated that the northern CCT is in fact a composite terrane that includes ophiolitic rocks of both ocean island and island arc origins. The western margin of the CCT is characterized by imbricated harzburgite, island arc tholeiite, sedimentary rocks and locally significant felsic volcanic rocks of the Kutcho arc. Gabbro is volumetrically minor and sheeted dyke complexes are either very rare or not developed. The felsic arc volcanic rocks and the pyroxenite bodies that cut the harzburgite have been previously isotopically dated as Middle Triassic (ca. 245 Ma) suggesting that melt percolation through the mantle was coeval with Kutcho arc magmatism and coincided with a magmatic gap in Stikinia. In general the contact between the mantle and supracrustal rocks is faulted making it difficult to determine the original relationships between the mantle and island arc tholeiites. Locally, the contact appears to be intact and is characterized by mantle tectonites with pyroxenite veins overlain by cumulate plagioclase-orthopyroxene gabbro and fine grained diabase. Elsewhere, volcanic and sedimentary rocks sit in fault contact structurally above the mantle. The absence of voluminous gabbro and sheeted dyke complexes, presence of coeval magmas in the crust and mantle, and low angle extensional faulting in some areas suggests that the western part of the CCT may preserve an ocean core complex similar to the Godzilla Megamullion in the Parece-Vela Basin. Such a hypothesis suggests that

  5. Reconnaissance geology of the Jabal Dalfa Quadrangle, sheet 21/43 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Jabal Dalfa quadrangle (sheet 21/43 C) is part of the Najd province in west-central Saudi Arabia. The quadrangle is mostly a plain, tilted gently northeastward, but local inselbergs and two areas of dissected uplands rise as much as 200 m above the plain. Wadi Bishah and Wadi Ranyah terminate in the quadrangle. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, and plutonic rocks. The gneiss outcrops in the northeast and east-central parts of the quadrangle are apparently the oldest rocks. After they were emplaced, a wide variety of metavolcanic and metasedimentary rocks were deposited at Jabal Dalfa and Umm Shat, and in the northeast part of the quadrangle as the Arfan formation. Subsequently, granite gneiss was emplaced in the west part of the quadrangle and intruded by gabbro. Metabasalt and meta-andesite were extruded in a wide north-trending belt through the middle of the quadrangle and at Jabal Silli. Intrusion of small bodies of granitic rocks and Najd faulting conclude the Precambrian history of the area. Surficial deposits include sand and gravel covering the plains, alluvial fans, and voluminous dune sands. In the southeast part of the quadrangle, the layered rocks strike north and dip steeply. They are oriented parallel to the Nabitah fault zone. In the northeast and east-central parts of the quadrangle, layered rocks and gneiss are sheared into slices by the southernmost faults of the major Najd fault zone. Bedding and foliation in these slices strike northwest, parallel to the faults. Gneiss in the west part of the quadrangle also strikes northwest, and dips steeply to vertically; layered rocks underlying Jabal Silli strike northeast. Layered metamorphic rocks in the Jabal Dalfa quadrangle are mostly in the greenschist facies. Projection of data from other quadrangles suggests that the oldest gneiss is about 780 Ma old and the Arfan formation, Umm Shat, and Jabal Dalfa layered rocks are about 775 to 745 Ma old. The gneiss of

  6. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  7. Mafic and ultramafic rocks of the northwestern Brooks Range of Alaska produce nearly symmetric gravity anomalies

    SciTech Connect

    Morin, R.L. )

    1993-04-01

    An arc of mafic and ultramafic rocks is mapped from Asik Mountain to Siniktanneyak Mountain in the northwestern Brooks Range of Alaska. Gravity data, although not very detailed, have been collected over the region and show some very conspicuous circular or oval gravity highs over portions of the mapped mafic-ultramafic bodies. Bodies which have large associated gravity anomalies are Asik Mountain (80 mGal), Avon Hills (20 mGal), Misheguk Mountain (30 mGal), and Siniktanneyak Mountain (20 mGal). Gabbros of the Siniktanneyak Mountain complex, where the gravity coverage is best, have densities of about 3.0 g/cm[sup 3] while the densities of the surrounding sedimentary rocks are about 2.6 g/cm[sup 3]. Volcanic rocks in the area have average densities of about 2.7 g/cm[sup 3]. Three-dimensional modeling indicates that the largest anomaly, on the southwestern part of the complex, could be caused by a polygonal prism of gabbro with vertical sides, about 6 km across and about 4.5 km deep. A smaller lobe of the anomaly on the northeast of the complex could be caused by another oblong polygonal prism about 4 km long and 2 km wide trending northeast and about 1.5 km deep. Modeling this anomaly with densities lower than gabbro would require greater thicknesses to produce the same anomaly. Modeling each anomaly along this arc in 2 1/2-dimensions shows many possible solutions using different body shapes and different density contrasts. There are several other gravity anomalies in this vicinity which could represent unexposed high density rocks. One such anomaly is in the Maiyumerak Mountains northeast of Asik Mountain (30 mGal). Another anomaly is to the northwest of Asik Mountain (20 mGal). There is also an anomaly at Uchugrak (20 mGal) east of Avan Hills. Although many of the anomalies in this region are poorly controlled, an attempt has been made to interpret the data to show possible solutions.

  8. Trace element composition of rutile and Zr-in-rutile thermometry in meta-ophiolitic rocks from the Kazdağ Massif, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat; Zack, Thomas

    2016-08-01

    In northwest Turkey, ophiolitic meta-gabbros are exposed on the Kazdağ Massif located in the southern part of the Biga Peninsula. Trace element composition of rutile and Zr-in-rutile temperatures were determined for meta-gabbros from the Kazdağ Massif. The Zr content of all rutiles range from 176 to 428 ppm and rutile grains usually have a homogeneous Zr distribution. The rutile grains from studied samples in the Kazdağ Massif are dominated by subchondritic Nb/Ta (11-19) and Zr/Hf ratios (20-33). Nb/Ta and Zr/Hf show positive correlation, which is probably produced by silicate fractionation. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents. The core of rutile grains are generally characterized by low Nb/Ta ratios of 17-18 whereas the rims exhibit relatively high Nb/Ta ratios of 19-23. Trace element analyses in rutile suggest that these rutile grains were grown from metamorphic fluids. The P-T conditions of meta-gabbros were estimated by both Fe-Mg exchange and Zr-in-rutile thermometers, as well as by the Grt-Hb-Plg-Q geothermobarometer. The temperature range of 639 to 662 °C calculated at 9 kbar using the Zr-in-rutile thermometer is comparable with temperature estimates of the Fe-Mg exchange thermometer, which records amphibolite-facies metamorphism of intermediate P-T conditions. The P-T conditions of meta-ophiolitic rocks suggest that they occur as a different separate higher-pressure tectonic slice in the Kazdağ metamorphic sequence. Amphibolite-facies metamorphism resulted from northward subduction of the İzmir-Ankara branch of the Neo-Tethyan Ocean under the Sakarya Zone. Metamorphism was followed by internal imbrication of the Kazdağ metamorphic sequence resulting from southerly directed compression during the collision.

  9. Misho mafic complex - A part of paleotethyan oceanic crust or a magmatism in continental rift?

    NASA Astrophysics Data System (ADS)

    Azimzadeh, Zohreh; Jahangiri, Ahmad; Saccani, Emilio; Dilek, Yildirim

    2013-04-01

    Misho Mafic Complex (NW Iran) represents a significant component of the West Cimmerian domain in Paleo-Tethys. The Misho Mafic Complex (MMC) consists of gabbro (mainly) and norıte,olivine gabbro, anorthosite and diorite with the east- west sereight. MMC has ıntrussıved ın Kahar sedımrtery Infta- Cambrıan rocks, crosscut by abundant basaltic dykes and the overlying basaltic sheeted dyke complex. Kahar sedimentary rocks are representing the northern margin of Gondwana. Misho mafic complex are covered by Permian sedimentary rocks. The gabbros and basaltic dykes have MORB affinities. MMC formed as a product of interactions between a depleted MORB-type asthenosphere and plume-type material. Mafic rocks represent an early Carboniferous magmatic event developed during the continental break-up of the northern edge of Gondwanaland that led to the opening of Paleotethys. Alternatively, these magmas may have been emplaced into the continental crust at the continental margin soon after the oceanic crust was formed (that is the oceanic crust was still narrow). There is no data for discriminating between these two hypotheses. In first hypothesis MMC is a part of ophiolites related to paleotethyan oceanic crust and the rocks that were above this crustal level should have necessarily been eroded. In another hypothesis Misho complex represents an aborted rift in a triple junction. Above a mantle plume, the continental crust breaks along three directions at 120 degrees. But, soon after, the extension proceeds along two of these three direction. Between them is formed the oceanic crust. The continental extension along the third direction is aborted. Here no oceanic crust if formed and there is only rifted, thinned continental crust. But, also in the aborted branch MORB magmatism can occur for short time. In this hypothesis, the Misho complex was never associated with oceanic crust, but was anyway associated with the opening of the Paleotethys. This magmatism was originally

  10. Partial crystallization of MORB in crust and mantle

    NASA Astrophysics Data System (ADS)

    Herzberg, C.

    2003-04-01

    Where does partial melting end and partial crystallization begin in the formation of oceanic crust? This question is addressed by an examination of the pressures at which partial crystallization occurs for MORB using a parameterization of experimental data in the form of projections. It is shown that olivine gabbro partial crystallization ranges from 1 atmosphere to 1.0 GPa for a global database of over 10,000 glass analyses, but there are systematic variations that correlate with spreading rate, ridge segmentation, and crustal thickness. Partial crystallization of MORB from fast and intermediate spreading centers (EPR, Galapagos, Juan de Fuca) occurs mostly in the oceanic crust, consistent with field and seismic evidence for the importance of layered gabbro crystallization in steady-state magma chambers. Partial crystallization of MORB from many but not all slow spreading centers (MAR, Cayman, SW Indian, American-Antarctic) occurs mostly in the mantle, consistent with field and seismic observations that show an absence of layered gabbros in steady-state magma chambers. Pressures are in agreement with previous petrological estimates, and support prior conclusions regarding the importance of partial crystallization of MORB in both oceanic crust and mantle (Elthon et al., 1995; Grove et al., 1992). For both slow and fast spreading centers, highest pressures are recorded by MORB from ridge segment terminations defined by tectonic fracture zones, overlapping spreading centers, and deviations from linearity. Slow spreading centers usually record the highest pressures of partial crystallization and are associated with rough and faulted topography, but there are important exceptions. The Reykjanes Ridge is a slow but unsegmented spreading center with thick crust, and erupted MORB display partial crystallization mostly in the crust rather than mantle, similar to the EPR. The Mid-Atlantic Ridge near the Azores platform is unusually thick, and bounded to the north and south

  11. Allochthonous 2.78 Ga oceanic plateau slivers in a 2.72 Ga continental arc sequence: Vizien greenstone belt, northeastern Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Skulski, T.; Percival, J. A.

    1996-04-01

    Embedded within the vast granitoid terrane of the Minto block of northeastern Superior Province are Late Archean greenstone belts of the Goudalie domain that preserve a long-lived record of continent-ocean interaction. The Vizien greenstone belt is one such belt and it contains four fault-bounded structural panels. The 2786 Ma mafic-ultramafic sequence is an allochthonous package of pillowed basaltic andesite, komatiite and volcaniclastic rocks cut by peridotite and gabbro sills. The mafic rocks are LREE-depleted tholeiites which have primitive mantle (PRIM)-normalized abundances of Th < Nb < La, and ɛNd values of +1.5 to + 3.2 reflecting extraction from a depleted mantle source. The 2724 Ma lac Lintelle continental calc-alkaline volcanic sequence consists of massive basalt, plagioclase-porphyritic andesite, dacite, rhyolite, capped by quartz-rich sandstones/conglomerates with 2.97 Ga Nd model ages. Lac Lintelle volcanic rocks are LREE enriched, with low TiO 2 (< 1%) and Zr (< 200 ppm), PRIM-normalized enrichment in Th > La > Nb, and a range of ɛNd values from -0.1 to +1.7. The ~ 2722 Ma lac Serindac bimodal, subaerial tholeiitic volcanic sequence contains andesite (locally with tonalite xenoliths), basalt, gabbro sills, lenses of quartz-rich sedimentary rocks and a thick, upper rhyolite sequence. The lac Serindac tholeiites are LREE-enriched, have PRIM-normalized Th > La > Nb, high Zr (to 300 ppm) and Ti contents, and low ɛNd values from +0.8 in basalt to -1.4 in rhyolite. The < 2718 Ma basement-cover sequence comprises 2.94 Ga tonalitic gneiss unconformably overlain by clastic sediments and a thin upper sequence of 2700 Ma gabbro, siliceous high-Mg basalt (SHMB) and andesite. The SHMB are characterised by LREE depletion and ɛNd values of +2.6, whereas the andesite is LREE-enriched and has ɛNd values of -0.3. The 2786 Ma mafic-ultramafic sequence is interpreted as a sliver of plume-related oceanic plateau crust. The 2724 lac Lintelle sequence represents a