Development of high temperature acoustic emission sensing system using fiber Bragg grating
NASA Astrophysics Data System (ADS)
Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang
2018-03-01
In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.
Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching
2011-01-01
In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, Maxence, E-mail: M.E.P.Borot@um
Purpose: The development of MR-guided high dose rate (HDR) brachytherapy is under investigation due to the excellent tumor and organs at risk visualization of MRI. However, MR-based localization of needles (including catheters or tubes) has inherently a low update rate and the required image interpretation can be hampered by signal voids arising from blood vessels or calcifications limiting the precision of the needle guidance and reconstruction. In this paper, a new needle tracking prototype is investigated using fiber Bragg gratings (FBG)-based sensing: this prototype involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensorsmore » each. This stylet can be inserted into brachytherapy needles and allows a fast measurement of the needle deflection. This study aims to assess the potential of FBG-based sensing for real-time needle (including catheter or tube) tracking during MR-guided intervention. Methods: First, the MR compatibility of FBG-based sensing and its accuracy was evaluated. Different known needle deflections were measured using FBG-based sensing during simultaneous MR-imaging. Then, a needle tracking procedure using FBG-based sensing was proposed. This procedure involved a MR-based calibration of the FBG-based system performed prior to the interventional procedure. The needle tracking system was assessed in an experiment with a moving phantom during MR imaging. The FBG-based system was quantified by comparing the gold-standard shapes, the shape manually segmented on MRI and the FBG-based measurements. Results: The evaluation of the MR compatibility of FBG-based sensing and its accuracy shows that the needle deflection could be measured with an accuracy of 0.27 mm on average. Besides, the FBG-based measurements were comparable to the uncertainty of MR-based measurements estimated at half the voxel size in the MR image. Finally, the mean(standard deviation) Euclidean distance between MR- and FBG-based needle position measurements was equal to 0.79 mm(0.37 mm). The update rate and latency of the FBG-based needle position measurement were 100 and 300 ms, respectively. Conclusions: The FBG-based needle tracking procedure proposed in this paper is able to determine the position of the complete needle, under MR-imaging, with better accuracy and precision, higher update rate, and lower latency compared to current MR-based needle localization methods. This system would be eligible for MR-guided brachytherapy, in particular, for an improved needle guidance and reconstruction.« less
Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura
2015-06-01
A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.
Smart architecture for stable multipoint fiber Bragg grating sensor system
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung
2017-12-01
In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.
Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; ...
2015-05-21
A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersivemore » line. Signals are recorded using a single 35 GHz photodetector and a 50 GSamples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO₃. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10⁻⁴) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. In conclusion, both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.« less
NASA Technical Reports Server (NTRS)
Wang, Gang; Banks, Curtis E.
2015-01-01
This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.
NASA Technical Reports Server (NTRS)
Wang, Gag; Banks, Curtis E.
2016-01-01
This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.
Laser Self-Mixing Fiber Bragg Grating Sensor for Acoustic Emission Measurement.
Liu, Bin; Ruan, Yuxi; Yu, Yanguang; Xi, Jiangtao; Guo, Qinghua; Tong, Jun; Rajan, Ginu
2018-06-16
Fiber Bragg grating (FBG) is considered a good candidate for acoustic emission (AE) measurement. The sensing and measurement in traditional FBG-based AE systems are based on the variation in laser intensity induced by the Bragg wavelength shift. This paper presents a sensing system by combining self-mixing interference (SMI) in a laser diode and FBG for AE measurement, aiming to form a new compact and cost-effective sensing system. The measurement model of the overall system was derived. The performance of the presented system was investigated from both aspects of theory and experiment. The results show that the proposed system is able to measure AE events with high resolution and over a wide dynamic frequency range.
An FPGA-based demodulation system for fiber Bragg grating sensing
NASA Astrophysics Data System (ADS)
Li, Yongqian; He, Haitao; Yao, Guozhen
2010-11-01
This paper introduces the principle of fiber Bragg grating (FBG) sensor, designs and realizes a compact wavelength demodulation system for FBG sensing using a Fabry-Perot (F-P) filter. FPGA is adopted as a main controller to control a D/A converter to produce a sawtooth wave for driving the F-P filter, and to design the data acquisition circuit for collecting the output signals of photoelectric detector. The collected data is processed after transmitting to PC through the data transmission circuit, and then the demodulation of FBG wavelength is completed finally. This compact FBG wavelength demodulation system is expected to have wide applications in on-line monitoring of electric power equipment and large structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: This study assesses the potential of Fiber Bragg Grating (FBG)-based sensing for real-time needle (including catheter or tube) tracking during MR-guided HDR brachytherapy. Methods: The proposed FBG-based sensing tracking approach involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. When the stylet is inserted inside the lumen of the needle, the FBG sensing system can measure the needle’s deflection. For localization of the needle in physical space, the position and orientation of the stylet base are mandatory. For this purpose, we propose to fix the stylet base and determine its positionmore » and orientation using a MR-based calibration as follows. First, the deflection of a needle inserted in a phantom in two different configurations is measured during simultaneous MR-imaging. Then, after segmentation of the needle shapes on the MR-images, the position and orientation of the stylet base is determined using a rigid registration of the needle shapes on both MR and FBG-based measurements. The calibration method was assessed by measuring the deflection of a needle in a prostate phantom in five different configurations using FBG-based sensing during simultaneous MR-imaging. Any two needle shapes were employed for the calibration step and the proposed FGB-tracking approach was subsequently evaluated on the other three needles configurations. The tracking accuracy was evaluated by computing the Euclidian distance between the 3D FBG vs. MR-based measurements. Results: Over all needle shapes tested, the average(standard deviation) Euclidian distance between the FBG and MR-based measurements was 0.79mm(0.37mm). The update rate and latency of the FBG-based measurements were 100ms and 300ms respectively. Conclusion: The proposed FBG-based protocol can measure the needle position with an accuracy, precision, update rate and latency eligible for accurate needle steering during MR-guided HDR brachytherapy. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
Advanced end-to-end fiber optic sensing systems for demanding environments
NASA Astrophysics Data System (ADS)
Black, Richard J.; Moslehi, Behzad
2010-09-01
Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.
NASA Astrophysics Data System (ADS)
Elgaud, M. M.; Zan, M. S. D.; Abushagur, A. G.; Bakar, A. Ashrif A.
2017-07-01
This paper reports the employment of autocorrelation properties of Golay complementary codes (GCC) to enhance the performance of the time domain multiplexing fiber Bragg grating (TDM-FBG) sensing network. By encoding the light from laser with a stream of non-return-to-zero (NRZ) form of GCC and launching it into the sensing area that consists of the FBG sensors, we have found that the FBG signals can be decoded correctly with the autocorrelation calculations, confirming the successful demonstration of coded TDM-FBG sensor network. OptiGrating and OptiSystem simulators were used to design customized FBG sensors and perform the coded TDM-FBG sensor simulations, respectively. Results have substantiated the theoretical dependence of SNR enhancement on the code length of GCC, where the maximum SNR improvement of about 9 dB is achievable with the use of 256 bits of GCC compared to that of 4 bits case. Furthermore, the GCC has also extended the strain exposure up to 30% higher compared to the maximum of the conventional single pulse case. The employment of GCC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse case, under the same conditions.
Acoustic emission localization based on FBG sensing network and SVR algorithm
NASA Astrophysics Data System (ADS)
Sai, Yaozhang; Zhao, Xiuxia; Hou, Dianli; Jiang, Mingshun
2017-03-01
In practical application, carbon fiber reinforced plastics (CFRP) structures are easy to appear all sorts of invisible damages. So the damages should be timely located and detected for the safety of CFPR structures. In this paper, an acoustic emission (AE) localization system based on fiber Bragg grating (FBG) sensing network and support vector regression (SVR) is proposed for damage localization. AE signals, which are caused by damage, are acquired by high speed FBG interrogation. According to the Shannon wavelet transform, time differences between AE signals are extracted for localization algorithm based on SVR. According to the SVR model, the coordinate of AE source can be accurately predicted without wave velocity. The FBG system and localization algorithm are verified on a 500 mm×500 mm×2 mm CFRP plate. The experimental results show that the average error of localization system is 2.8 mm and the training time is 0.07 s.
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
Damages such as cracking or impact loading in civil, aerospace, and mechanical structures generate transient ultrasonic waves, which can be used to reveal the structural health condition. Hence, it is necessary to find a practical tool based on ultrasonic detection for structural health monitoring. In this work, we describe an intelligent fiber-optic ultrasonic sensing system, which is designed based on a fiber Bragg grating (FBG) and a reflective semiconductor optical amplifier (RSOA) used as an adaptive source, and demodulated by an adaptive photorefractive two wave mixing (TWM) technique without any active compensation of quasi-static strains and temperature. As the wavelength of the FBG shifts due to the excited ultrasonic waves, the wavelength of the optical output from the fiber cavity laser shifts accordingly. With regard to the shift of the FBG reflective spectrum, the adaptivity of the RSOA-based laser is analyzed theoretically and verified by the TWM demodulator. Additionally, due to the response time of the photorefractive crystal, the TWM demodulator is insensitive to low frequency-FBG spectral shift. The results demonstrate that this proposed FBG ultrasonic sensing system has high sensitivity and can respond the ultrasonic waves into the megahertz frequency range, which shows a potential for acoustic emission detection in practical applications.
NASA Astrophysics Data System (ADS)
Kishore, Pabbisetti Vayu Nandana; Madhuvarasu, Sai Shankar; Moru, Satyanarayana
2018-01-01
This paper proposes a chemo-mechanical-optical sensing approach for the detection of carcinogenic chromium (VI) metal ion using an etched fiber Bragg grating (FBG) coated with stimulus responsive hydrogel. Hydrogel synthesized from the blends of (3-acrylamidopropyl)-trimethylammonium chloride, which is highly responsive to chromium ions suffers a volume change when placed in Cr solution. When the proposed sensor system is exposed to various concentrations of Cr (VI) ion solution, FBG peak shifts due to the mechanical strain induced by the swelling of the hydrogel. The peak shift is correlated with the concentration of the Cr (VI) metal ion. Due to the reduction in the cladding diameter of FBG, wastage of swelling force due to hydrogel on FBG is lowered and utilized for more wavelength peak shift of FBG resulting in the increase in the sensitivity. The resolution of the sensor system is found to be 0.072 ppb. Trace amounts of chromium (VI) ion as low as 10 ppb can be sensed by this method. The sensor has shown good sensitivity, selectivity, and repeatability. The salient features of the sensors are its compact size, light weight, and adoptability for remote monitoring.
FBG-Based Monitoring of Geohazards: Current Status and Trends
Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng
2017-01-01
In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented. PMID:28245551
FBG-Based Monitoring of Geohazards: Current Status and Trends.
Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng
2017-02-24
In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.
Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser
NASA Astrophysics Data System (ADS)
Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng
2012-04-01
A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.
Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems
NASA Astrophysics Data System (ADS)
Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad
2014-11-01
In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.
Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system
NASA Astrophysics Data System (ADS)
Li, Tianliang; Tan, Yuegang; Cai, Lin
2015-10-01
This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.
NASA Astrophysics Data System (ADS)
Zhang, Chuang; Bond, Leonard J.
2017-02-01
Structural health monitoring (SHM) of engineering structures in service has assumed a significant role in assessing their safety and integrity. Several sensing modalities have been developed to monitor cracking, using acoustic emission (AE). Piezoelectric sensors are commonly used in AE systems, however, for some applications there are limitations and challenges. One alternative approach that is being investigated is using Fiber Bragg Grating (FBG) sensors which have emerged as a reliable, in situ and nondestructive tool in some applications for monitoring and diagnostics in large-scale structure. The main objective of this work is to evaluate and compare the AE sensing characteristics for FBG and piezoelectric sensors. A ball drop impact is used as the source for generating waves in an Aluminum plate. The source repeatability was verified and a 4-channel FBG AE detection device was used to compare with the response of PZT sensors, investigating amplitude and frequency response which can indicate sensitivity. The low sensitivity and slow sampling rate are identified, for the unit investigated, as the main factors limiting FBG engineering AE applications.
Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi
2017-10-12
A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing
Hu, Chenyuan; Bai, Wei
2018-01-01
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.
Hu, Chenyuan; Bai, Wei
2018-02-24
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.
Applications of FBG sensors on telecom satellites
NASA Astrophysics Data System (ADS)
Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.
2017-11-01
Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.
Fiber-optic temperature profiling for thermal protection system heat shields
NASA Astrophysics Data System (ADS)
Black, Richard J.; Costa, Joannes M.; Zarnescu, Livia; Hackney, Drew A.; Moslehi, Behzad; Peters, Kara J.
2016-11-01
To achieve better designs for spacecraft heat shields for missions requiring atmospheric aero-capture or entry/reentry, reliable thermal protection system (TPS) sensors are needed. Such sensors will provide both risk reduction and heat-shield mass minimization, which will facilitate more missions and enable increased payloads and returns. This paper discusses TPS thermal measurements provided by a temperature monitoring system involving lightweight, electromagnetic interference-immune, high-temperature resistant fiber Bragg grating (FBG) sensors with a thermal mass near that of TPS materials together with fast FBG sensor interrogation. Such fiber-optic sensing technology is highly sensitive and accurate, as well as suitable for high-volume production. Multiple sensing FBGs can be fabricated as arrays on a single fiber for simplified design and reduced cost. Experimental results are provided to demonstrate the temperature monitoring system using multisensor FBG arrays embedded in a small-size super-light ablator (SLA) coupon which was thermally loaded to temperatures in the vicinity of the SLA charring temperature. In addition, a high-temperature FBG array was fabricated and tested for 1000°C operation, and the temperature dependence considered over the full range (cryogenic to high temperature) for which silica fiber FBGs have been subjected.
Smart textile sensing system for human respiration monitoring based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Chang-yun; Li, Hong-qiang; Song, Hui-chao; Xu, Fan-jie
2009-07-01
Magnetic resonance imaging (MRI) has become an indispensable aid to diagnosis and treatment. As the doctor cannot accompany the patient, it is essential that the patient be monitored remotely to avoid the risk of respiration being impaired by anesthetic drugs or upper airway obstruction. A smart wearable textile sensing system is described in this paper. A fiber Bragg grating (FBG) with polymer encapsulation has been woven into an elastic bandage to detect the respiration motion. According to the strain principle of FBG, the breathing rate and intensity can be obtained by measuring the variety of FBG reflected wavelength. In order to eliminate the temperature cross-sensitivity, a FBG temperature sensor has also been woven into the bandage to achieve the temperature compensation computing. Based on the tunable Fabry-Perot filter wavelength demodulated theory, wavelength measuring method and data processing arithmetic have been presented, and the system with ARM microprocessor has been designed to process and display the breathing information. The experiments to the system have proved that the wavelength measuring range is about 40nm, the resolution of wavelength can arrive at 2pm, and the sampling rate is 5Hz.
High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.
2014-06-01
Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550more » nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.« less
Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.
Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon
2017-07-18
FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.
Stability test of the silicon Fiber Bragg Grating embroidered on textile for joint angle measurement
NASA Astrophysics Data System (ADS)
Apiwattanadej, Thanit; Chun, Byung Jae; Lee, Hyub; Li, King Ho Holden; Kim, Young-Jin
2017-06-01
Recently, Fiber Bragg Grating (FBG) sensors are being used for motion tracking applications. However, the sensitivity, linearity and stability of the systems have not been fully studied. Herein, an embroidered optical Fiber Bragg Grating (FBG) on a stretchable supportive textile for elbow movement measurement was developed. The sensing principle of this system is based on the alteration of Bragg wavelength due to strain from the elbow movements. The relationship between elbow movements and reflected Bragg wavelength was found to be linear. The dynamic range of FBG sensor on elbow support is between 0 and 120 degree. Finally, the stability of the FBG sensor on the supportive textile was tested during the exercise and the cleaning process with water. The sensitivity of FBG sensors for joint angle measurement and the effect of the movement and cleaning process to signals from FBG sensors after using in the real activity will be the basis knowledge for design and actual implementation of future optical fiber based wearable devices.
Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung
2013-01-01
We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744
Cheng, Rui; Xia, Li; Sima, Chaotan; Ran, Yanli; Rohollahnejad, Jalal; Zhou, Jiaao; Wen, Yongqiang; Yu, Can
2016-02-08
Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.
Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands
Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi
2017-01-01
FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands. PMID:28718826
Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui
2006-09-15
A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.
Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony
2008-01-01
Fiber Optic Wing Shape Sensing on Ikhana involves five major areas 1) Algorithm development: Local-strain-to-displacement algorithms have been developed for complex wing shapes for real-time implementation (NASA TP-2007-214612, patent application submitted) 2) FBG system development: Dryden advancements to fiber optic sensing technology have increased data sampling rates to levels suitable for monitoring structures in flight (patent application submitted) 3) Instrumentation: 2880 FBG strain sensors have been successfully installed on the Ikhana wings 4) Ground Testing: Fiber optic wing shape sensing methods for high aspect ratio UAVs have been validated through extensive ground testing in Dryden s Flight Loads Laboratory 5) Flight Testing: Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008) Real-time fiber optic wing shape sensing successfully demonstrated in flight
NASA Astrophysics Data System (ADS)
Chandler, K.; Ferguson, S.; Graver, T.; Csipkes, A.; Mendez, A.
2008-03-01
We report in this paper on the design and development of a novel on-line structural health monitoring and fire detection system based on an array of optical fiber Bragg grating (FBG) sensors and interrogation system installed on a new, precommercial compact aircraft. A combined total of 17 FBG sensors - strain, temperature and high-temperature - were installed at critical locations in an around the wings, fuselage and engine compartment of a prototype, Comp Air CA 12 all-composite, ten-passenger personal airplane powered by a 1,650 hp turbine engine. The sensors are interrogated online and in real time by a swept laser FBG interrogator (Micron Optics sm125-700) mounted on board the plane. Sensors readings are then combined with the plane's avionics system and displayed on the pilot's aviation control panel. This system represents the first of its kind in commercial, small frame, airplanes and a first for optical fiber sensors.
Rajan, Ginu; Shouha, Paul; Ellakwa, Ayman; Bhowmik, Kishore; Xi, Jiangtao; Prusty, Gangadhara
2016-09-01
The characterization of the physical properties of dental resin composites is fraught with difficulties relating to significant intra and inter test parameter variabilities and is relatively time consuming and expensive. The main aim of this study was to evaluate whether optical fiber Bragg grating (FBG) sensing system may become a viable tool to study dental material characteristics. Of particular focus was the potential for the system to demonstrate a multi parameter all-in-one feature. A miniature FBG was embedded in six different dental resin composites and employed as a sensor to evaluate linear polymerization shrinkage, thermal expansion and water sorption. Six commercially available dental composites with different filler types and volume are evaluated. The tests are repeated with three sets of samples. The curing characteristics and residual strain gradient exhibited by the cured dental composites were also observed and commented. Among the studied samples, SDR shows lowest polymerization shrinkage, while Beautifil FO3 shows the highest. The results also show clear distinction between particle filler type and fiber reinforcement based composites in their polymerization shrinkage properties. The agreement of the results with existing literatures show that FBG based system provides accurate results. Polymerization shrinkage rate of the samples are also obtained. Thermal expansion of the composites are measured using the FBG sensing method for the first time and is correlated with resin type, volume, filler type and glass transition temperature. The water sorption characteristics of the dental composite are also successfully measured using the FBG sensing method. The high level of repeatability and the low standard deviations shown in the results indicate good reliability with the use of FBG sensors. This study demonstrates how optical fiber technology can provide simple and reliable methods of measuring the critical physical properties of dental composites. In addition due to the embedding and preservation of the sensor within the samples multiple parameters can be tested for with the same sample. These features are expected to greatly assist material science researchers in dentistry as well as other biomedical fields. Of some interest the phenomenon of stress relaxation of dental composite at higher temperature was observed. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fiber sensor network with multipoint sensing using double-pass hybrid LPFG-FBG sensor configuration
NASA Astrophysics Data System (ADS)
Yong, Yun-Thung; Lee, Sheng-Chyan; Rahman, Faidz Abd
2017-03-01
This is a study on double-pass intensity-based hybrid Long Period Fiber Grating (LPFG)and Fiber Bragg Grating (FBG) sensor configuration where a fiber sensor network was constructed with multiple sensing capability. The sensing principle is based on interrogation of intensity changes of the reflected signal from an FBG caused by the LPFG spectral response to the surrounding perturbations. The sensor network developed was tested in monitoring diesel adulteration of up to a distance of 8 km. Kerosene concentration from 0% to 50% was added as adulterant into diesel. The sensitivity of the double-pass hybrid LPFG-FBG sensor over multiple points was>0.21 dB/% (for adulteration range of 0-30%) and >0.45 dB/% from 30% to 50% adulteration. It is found that the sensitivity can drop up to 35% when the fiber length increased from 0 km to 8 km (for the case of adulteration of 0-30%). With the multiple sensing capabilities, normalized FBG's reflected power can be demodulated at the same time for comparison of sensitivity performance across various fiber sensors.
Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision.
Rumei Zhang; Hao Liu; Jianda Han
2017-07-01
Robust and efficient tracking of continuum robots is important for improving patient safety during space-confined minimally invasive surgery, however, it has been a particularly challenging task for researchers. In this paper, we present a novel tracking scheme by fusing fiber Bragg grating (FBG) shape sensing and stereo vision to estimate the position of continuum robots. Previous visual tracking easily suffers from the lack of robustness and leads to failure, while the FBG shape sensor can only reconstruct the local shape with integral cumulative error. The proposed fusion is anticipated to compensate for their shortcomings and improve the tracking accuracy. To verify its effectiveness, the robots' centerline is recognized by morphology operation and reconstructed by stereo matching algorithm. The shape obtained by FBG sensor is transformed into distal tip position with respect to the camera coordinate system through previously calibrated registration matrices. An experimental platform was set up and repeated tracking experiments were carried out. The accuracy estimated by averaging the absolute positioning errors between shape sensing and stereo vision is 0.67±0.65 mm, 0.41±0.25 mm, 0.72±0.43 mm for x, y and z, respectively. Results indicate that the proposed fusion is feasible and can be used for closed-loop control of continuum robots.
FBG in PVC foils for monitoring the knee joint movement during the rehabilitation process.
Rocha, R P; Silva, A F; Carmo, J P; Correia, J H
2011-01-01
This paper presents a sensing electronic-free wearable solution for monitoring the body kinematics. The measuring of the knee movements, flexion and extension, with the corresponding joint acting as the rotation axis is shown as working principle. The proposed sensing system is based on a single optical Fiber-Bragg Grating (FBG) with a resonance wavelength of 1547.76 nm. The optical fiber with the FBG is placed inside a new polymeric foil composed by three flexible layers which facilitates its placement in the anatomic parts under investigation while maintaining full sensing capabilities. The way the device is placed in the specific body part to be measured enables the clear detection of the movements in respect to the joint. The proposed solution was tested using a prototype that was built to evaluate the device under different condition tests and also to assess the system's consistency. The designed and fabricated system demonstrates clear advantages in medical fields like physical therapy applications as optical fiber is not affected by electromagnetic interference nor does the system needs complex and expensive electronic systems and mechanical parts. Another advantage is the possibility to measure, record and evaluate specific mechanical parameters of the limbs' motion. Patients with bone, muscular and joint related health conditions, as well as athletes, are within the most important end-user applications.
NASA Astrophysics Data System (ADS)
Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya
2018-02-01
We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser.
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-06-22
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-01-01
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%. PMID:28640187
NASA Astrophysics Data System (ADS)
Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong
2017-04-01
A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.
Femtosecond FBG Written through the Coating for Sensing Applications.
Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Trépanier, François; Bernier, Martin
2017-11-02
Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented.
Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies
Fu, Hongyan; Chen, Daru; Cai, Zhiping
2012-01-01
Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591
An approach to improve the spatial resolution of a force mapping sensing system
NASA Astrophysics Data System (ADS)
Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José
2016-02-01
This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.
Research on the demodulation techniques of long-period fiber gratings strain sensing with low cost
NASA Astrophysics Data System (ADS)
Wang, Qingwei; Liu, Yueming; Tian, Weijian; Feng, Guilan
2012-10-01
The working principle of LPFG(Long-Period Fiber Grating) is based on coupling effect between propagating core-mode and co-propagating cladding-modes. The effective refractive index of cladding-modes could be obviously influenced by the environmental changes resulting in LPFG more sensitive than FBG (Fiber Bragg Grating) in sensing areas, such as temperature, strain, concentration, bending and etc. LPFG should have more potential in the field of sensors compared with FBG. One of the challenges in using LPFG for environmental sensing is how to interrogate the signal from the LPFG transmission spectrum, due to the large spectral range of the resonant dip. Nowadays the application of LPFG is normally limited in signal interrogation of FBG as optical edge filter. The signal interrogation of LPFG itself needs further research. Presently research on signal interrogation of fiber grating focuses on wavelength interrogation. The aim of wavelength interrogation is to get the wavelength shift caused by environmental change. To solve these problems, a kind of strain sensing interrogation technique for LPFG with low-cost based on tunable FBGs has been developed. Comparing with the method using Fabry-Perot cavity, tunable FBGs can lower the cost with the guarantee of sensing precision. The cost is further lowered without using expensive optical instruments such as optical switch. The problem of temperature cross-sensitivity was solved by using reference gratings. An experiment was performed to demonstrate the interrogation system. And in the experiment, the sensing signal of LPFG applied 0-1300μɛ was successfully interrogated. The results of the interrogation system and OSA are similar.
Femtosecond FBG Written through the Coating for Sensing Applications
Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Bernier, Martin
2017-01-01
Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented. PMID:29099077
Experimental investigation of leak detection using mobile distributed monitoring system
NASA Astrophysics Data System (ADS)
Chen, Jiang; Zheng, Junli; Xiong, Feng; Ge, Qi; Yan, Qixiang; Cheng, Fei
2018-01-01
The leak detection of rockfill dams is currently hindered by spatial and temporal randomness and wide monitoring range. The spatial resolution of fiber Bragg grating (FBG) temperature sensing technology is related to the distance between measuring points. As a result, the number of measuring points should be increased to ensure that the precise location of the leak is detected. However, this leads to a higher monitoring cost. Consequently, it is difficult to promote and apply this technology to effectively monitor rockfill dam leakage. In this paper, a practical mobile distributed monitoring system with dual-tubes is used by combining the FBG sensing system and hydrothermal cycling system. This dual-tube structure is composed of an outer polyethylene of raised temperature resistance heating pipe, an inner polytetrafluoroethylene tube, and a FBG sensor string, among which, the FBG sensor string can be dragged freely in the internal tube to change the position of the measuring points and improve the spatial resolution. In order to test the effectiveness of the system, the large-scale model test of concentrated leakage in 13 working conditions is carried out by identifying the location, quantity, and leakage rate of leakage passage. Based on Newton’s law of cooling, the leakage state is identified using the seepage identification index ζ v that was confirmed according to the cooling curve. Results suggested that the monitoring system shows high sensitivity and can improve the spatial resolution with limited measuring points, and thus better locate the leakage area. In addition, the seepage identification index ζ v correlated well with the leakage rate qualitatively.
NASA Astrophysics Data System (ADS)
Srimannarayana, K.; Vengal Rao, P.; Sai Shankar, M.; Kishore, P.
2014-05-01
A temperature independent high sensitive pressure sensing system using fiber Bragg grating (FBG) and `C' shaped Bourdon tube (CBT) is demonstrated. The sensor is configured by firmly fixing the FBG (FBG1) between free and fixed ends of the CBT. Additional FBG (FBG2) in line to the FBG1 is introduced which is shielded from the external pressure, tend to measure only the ambient temperature fluctuations. The CBT has an elliptical cross section where its free end is sealed and the fixed end is open for subjecting the liquid or gas pressure to be measured. With the application of pressure, the free end of CBT tends to straighten out results in an axial strain in FBG1 causes red shift in Bragg wavelength. The pressure can be determined by measuring the shift of the Bragg wavelength. The experimental pressure sensitivity is found to be 66.9 pm/psi over a range of 0 to 100 psi. The test results show that the Bragg wavelength shift is linear corresponds to change in applied pressure and well agreed with the simulated results. This simple and high sensitive design is capable of measuring static/dynamic pressure and temperature simultaneously which suits for industrial applications.
Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon
2013-11-12
A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.
Wei, Heming; Krishnaswamy, Sridhar
2017-05-01
Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.
Fiber Bragg grating sensors for real-time monitoring of evacuation process
NASA Astrophysics Data System (ADS)
Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.
2010-03-01
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
Pham, Thanh Binh; Bui, Huy; Le, Huu Thang; Pham, Van Hoi
2016-01-01
The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe—which integrated in fiber laser structure—are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0–80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10−3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work. PMID:28025512
Pham, Thanh Binh; Bui, Huy; Le, Huu Thang; Pham, Van Hoi
2016-12-22
The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe-which integrated in fiber laser structure-are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0-80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10 -3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.
Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials.
Yang, Minghong; Dai, Jixiang; Zhou, Ciming; Jiang, Desheng
2009-11-09
Different from usually-used bulk magnetostrictive materials, magnetostrictive TbDyFe thin films were firstly proposed as sensing materials for fiber-optic magnetic field sensing characterization. By magnetron sputtering process, TbDyFe thin films were deposited on etched side circle of a fiber Bragg Grating (FBG) as sensing element. There exists more than 45pm change of FBG wavelength when magnet field increase up to 50 mT. The response to magnetic field is reversible, and could be applicable for magnetic and current sensing.
Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.
Cheng, Rui; Xia, Li
2016-11-15
It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.
Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler
NASA Astrophysics Data System (ADS)
Li, Wei; Zhang, Jian
2018-06-01
A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.
Fiber-optically sensorized composite wing
NASA Astrophysics Data System (ADS)
Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George
2014-04-01
Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.
Temperature sensors based on multimode chalcogenide fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Zhang, Qian; Zeng, Jianghui; Zhu, Liang; Yang, Dandan; Zhang, Peiqing; Xu, Yinsheng; Wang, Xunsi; Nie, Qiuhua; Dai, Shixun
2018-04-01
In this work, a theoretical study was conducted on temperature sensing in Ge-Sb-Se multimode fibre Bragg grating (MM-FBG). The sensing characteristics of the designed MM-FBGs with different fibre parameters and operating wavelengths were calculated using a coupled model method. The temperature sensitivity of this MM-FBG was found to improve significantly by shifting the operating wavelength from telecom range to mid-infrared (MIR) and utilizing the wide transmission range of Ge-Sb-Se glasses. The temperature sensitivity of the proposed Ge-Sb-Se MM-FBG was calculated to be 0.0758 nm/°C at 1550 nm, which is 7.58 times higher than silica FBGs at 1550 nm, and the temperature sensitivity was calculated to be more than 0.16 nm/°C at 3390 nm, which is 2.2 times higher than that at 1550 nm. In addition, the proposed MM-FBGs provided multi-peak information, and the sensitivity of each peak was calculated to be comparable to the single-mode FBG. The proposed Ge-Sb-Se MM-FBG has great potential for temperature sensing in MIR because of its advantages of simple preparation, high coupling efficiency, multi-peak information and wide working window.
Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki
2015-02-10
In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.
Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network
NASA Astrophysics Data System (ADS)
Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei
2018-06-01
A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.
He, Xingchi; Handa, James; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian
2013-01-01
Vitreoretinal surgery requires very fine motor control to perform precise manipulation of the delicate tissue in the interior of the eye. Besides physiological hand tremor, fatigue, poor kinesthetic feedback, and patient movement, the absence of force sensing is one of the main technical challenges. Previous two degrees of freedom (DOF) force sensing instruments have demonstrated robust force measuring performance. The main design challenge is to incorporate high sensitivity axial force sensing. This paper reports the development of a sub-millimetric 3-DOF force sensing pick instrument based on fiber Bragg grating (FBG) sensors. The configuration of the four FBG sensors is arranged to maximize the decoupling between axial and transverse force sensing. A super-elastic nitinol flexure is designed to achieve high axial force sensitivity. An automated calibration system was developed for repeatability testing, calibration, and validation. Experimental results demonstrate a FBG sensor repeatability of 1.3 pm. The linear model for calculating the transverse forces provides an accurate global estimate. While the linear model for axial force is only locally accurate within a conical region with a 30° vertex angle, a second-order polynomial model can provide a useful global estimate for axial force. Combining the linear model for transverse forces and nonlinear model for axial force, the 3-DOF force sensing instrument can provide sub-millinewton resolution for axial force and a quarter millinewton for transverse forces. Validation with random samples show the force sensor can provide consistent and accurate measurement of three dimensional forces. PMID:24108455
Optic fiber sensor-based smart bridge cable with functionality of self-sensing
NASA Astrophysics Data System (ADS)
He, Jianping; Zhou, Zhi; Jinping, Ou
2013-02-01
Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.
[Development of a simultaneous strain and temperature sensor with small-diameter FBG].
Liu, Rong-mei; Liang, Da-kai
2011-03-01
Manufacture of the small diameter FBG was designed. Cross sensitivity of temperature and strain at sensing point was solved. Based on coupled-mode theory, optical properties of the designed FBG were studied. The reflection and transmission spectra of the designed FBG in small diameter were studied A single mode optical fiber, whose cladding diameter is 80 microm, was manufactured to a fiber Bragg grating (phi80FBG). According to spectrum simulation, the grating length and period were chosen as the wavelength was 1528 nm. The connector of the small diameter FBG with demodulation was designed too. In applications, the FBG measures the total deformation including strain due to forces applied to the structures as well as thermal expansion. In order to overcome this inconvenience and to measure both parameters at the same time and location, a novel scheme for simultaneous strain and temperature sensor was presented. Since the uniform strength beam has same deformation at all points, a pair of phi80 FBG was attached on a uniform strength cantilever. One of the FBG was on the upper surface, with the other one on the below. Therefore, the strains at the monitoring points were equal in magnitude but of opposite sign. The strain and temperature in sensing point could be discriminated by matrix equation. The determination of the K is not null and thus matrix inversion is well conditioned, even the values for the K elements are close. Consequently, the cross sensitivity of the FBG with temperature and strain can be experimentally solved. Experiments were carried out to study the strain discriminability of small-diameter FBG sensors. The temperature and strain were calculated and the errors were, respectively, 5% and 6%.
A cost effective FBG-based security fence with fire alarm function
NASA Astrophysics Data System (ADS)
Wu, H. J.; Li, S. S.; Lu, X. L.; Wu, Y.; Rao, Y. J.
2012-02-01
Fiber Bragg Grating (FBG) is sensitive to the temperature as well when it is measuring the strain change, which is always avoided in most measurement applications. However, in this paper strain/temperature dual sensitivity is utilized to construct a special security fence with a second function of fire threat prediction. In an FBG-based fiber fence configuration, only by characteristics analysis and identification method, it can intelligently distinguish the different effects of personal threats and fires from their different trends of the wavelength drifts. Thus without any additional temperature sensing fittings or other fire alarm systems integrated, a normal perimeter security system can possess a second function of fire prediction, which can not only monitor the intrusion induced by personal actions but also predict fire threats in advance. The experimental results show the effectiveness of the method.
Monolithic integrated optic fiber Bragg grating sensor interrogator
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian
2010-04-01
Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.
Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram
2005-01-01
Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.
NASA Astrophysics Data System (ADS)
Hudson, Tyler Blake
An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS-FBG throughout the cure cycle. Also, the residual strain can be readily determined at the end of the cure. This system demonstrated a real-time, in-situ, cure monitoring system using embedded multiplexed FBG/PS-FBG sensors to record both guided wave-based signals and strain. The distinct advantages of a fiber optic-based system include multiplexing, small size, embedding, utilization in harsh environments, electrically passive operation, and electromagnetic interference (EMI) immunity. The embedded multiplexed FBG/PS-FBG fiber optic sensor can monitor the entire life-cycle of the composite structure from curing, post-cure/assembly, and in-service for creating "smart structures".
Microstructured FBG hydrogen sensor based on Pt-loaded WO3.
Zhou, Xian; Dai, Yutang; Karanja, Joseph Muna; Liu, Fufei; Yang, Minghong
2017-04-17
Hydrogen gas sensing properties of Pt-WO3 films on spiral microstructured fiber Bragg grating (FBG) has been demonstrated. Pt-WO3 film was prepared by hydrothermal method. The spiral microsturctured FBG was fabricated using femtosecond laser. Spiral microstructure FBG hydrogen sensor can detect hydrogen concentration from 0.02% H2 to 4% H2 at room temperature, and the response time is shortened from a few minutes to 10~30 s. Double spiral microstructure at pitch 60 μm and sputtered with 2 μm Pt-WO3 film recorded hydrogen sensitivity of 522 pm/%(v/v) H2 responding to hydrogen gas in air. This translated to approximately 2~4 times higher than the unprocessed standard FBG. The humidity has little effect on the sensing property. The sensor has fast response time, good stability, large detection range and has the good prospect of practical application for hydrogen leak detection.
Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil
Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun
2016-01-01
Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis. PMID:27782034
Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.
Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun
2016-10-04
Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.
Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application.
Zou, Meng; Dai, Yutang; Zhou, Xian; Dong, Ke; Yang, Minghong
2016-12-01
A composite microstructure in fiber Bragg grating (FBG) with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd-Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.
NASA Astrophysics Data System (ADS)
Kishore, P. V. N.; Sai Shankar, M.
2017-04-01
This paper describes a fiber optics based pH sensor by using wavelength modulated techniques. Fiber Bragg grating (FBG) is functionalized with a stimulus responsive hydrogel which induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of Poly (vinyl alcohol)/Poly (acrylic acid). The induced strain results in a shift of FBG reflected peak which is monitored by an interrogator. The sensor system shows a good linearity in acidic pH range of 3 to 7 with a sensitivity of 12.16pm/pH. Besides that it shows good repeatability which proves it to be fit for pH sensing applications.
Hydrogel-coated fiber Bragg grating sensor for pH monitoring
NASA Astrophysics Data System (ADS)
Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar
2016-06-01
We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.
NASA Astrophysics Data System (ADS)
Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.
2016-05-01
A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.
Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.
Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie
2017-03-15
By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.
Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope
Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie
2017-01-01
By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes. PMID:28294995
NASA Astrophysics Data System (ADS)
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2014-05-01
In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.
Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.
Study on the weighing system based on optical fiber Bragg grating
NASA Astrophysics Data System (ADS)
Wang, Xiaona; Yu, Qingxu; Li, Yefang
2010-10-01
The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.
Development of an FBG-based low temperature measurement system for cargo containment of LNG tankers
NASA Astrophysics Data System (ADS)
Kim, D. G.; Yoo, W.; Swinehart, P.; Jiang, B.; Haber, T.; Mendez, A.
2007-09-01
Given the growing demand for oil and natural gas to meet the world's energy needs, there is nowadays renewed interest in the use of liquefied natural gas (LNG) systems. For LNG to remain in its liquid phase, the gas has to be kept at cryogenic temperatures (< 160°C). And, as part of the LNG supply process, it becomes necessary to transport it using massive carrier tankers with cargo hulls operating at low temperatures and using special insulating double-wall construction. The safe and reliable storage and transportation of LNG products calls for low temperature monitoring of said containers to detect the onset of any potential leaks and possible thermal insulation degradation. Because of the hazardous nature of this cargo, only intrinsically-safe, explosion proof devices can be used. Optical fiber sensors-- such as fiber Bragg gratings-- are ideal for this application given their dielectric nature and multi-point sensing telemetry capability. In this paper, we describe the development of an on-line, multi-point FBG-based low temperature monitoring system based on a network of specially packaged FBG temperature and strain sensors mounted at critical locations within the inner hull, cofferdam and secondary barriers of a LNG carrier tanker. Given the stringent cryogenic operating temperature conditions, pertinent FBG designs, coatings and packaging approaches were formulated along with adequate installation techniques and integration of the interrogating FBG electronics into the tanker's overall SCADA monitoring system. FBG temperature sensors were demonstrated to be stable and sensitive over the 80-480K range. Stability is +/- 0.25K or better with repeated calibrations, and long term stability at 480K is ~0.2mK/hour.
Coelho, Luís; Viegas, Diana; Santos, José Luís; de Almeida, José Manuel Marques Martins
2016-01-01
A hybrid optical sensing scheme based on a fiber Bragg grating (FBG) combined with a titanium dioxide coated long period fiber grating (LPFG) for monitoring organic solvents in high refractive index edible oils is reported. In order to investigate and optimize the sensor performance, two different FBG/LPFG interrogation systems were investigated. The readout of the sensor was implemented using either the wavelength shift of the LPFG resonance dip or the variation in the optical power level of the reflected/transmitted light at the FBG wavelength peak, which in turn depends on the wavelength position of the LPFG resonance. Hexane concentrations up to 20%V/V, corresponding to the refractive index range from 1.451 to 1.467, were considered. For the transmission mode of operation, sensitivities of 1.41 nm/%V/V and 0.11 dB/%V/V, with resolutions of 0.58%V/V and 0.29%V/V, were achieved when using the LPFG wavelength shift and the FBG transmitted optical power, respectively. For the FBG reflection mode of operation, a sensitivity of 0.07 dB/%V/V and a resolution better than 0.16%V/V were estimated. Copyright © 2015 Elsevier B.V. All rights reserved.
An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors
Catalano, Angelo; Bruno, Francesco Antonio; Pisco, Marco; Cutolo, Antonello; Cusano, Andrea
2014-01-01
We demonstrate the ability of Fiber Bragg Gratings (FBGs) sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology. PMID:25268920
Aluminum alloy material structure impact localization by using FBG sensors
NASA Astrophysics Data System (ADS)
Zhu, Xiubin
2014-12-01
The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang
2010-04-01
A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.
Abushagur, Abdulfatah A.G.; Arsad, Norhana; Ibne Reaz, Mamun; Ashrif, A.; Bakar, A.
2014-01-01
The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients. PMID:24721774
Application of fiber-Bragg-grating-based strain sensors for civil infrastructure health monitoring
NASA Astrophysics Data System (ADS)
Tjin, Swee C.; Rupali, S.; Moyo, Pilate; Brownjohn, James M. W.; Ngo, Nam Quoc
2003-10-01
Over past few years, the concept of structural health monitoring has been emerging as a new area of research. Fiber Bragg grating (FBG) based sensor offers a new sensing approach with a number of advantages over conventional sensors. This new sensing technology is suitable for the harsh environment of construction industry due to its robustness, ruggedness and ease of installation. Two unique advantages of FBG based sensors are immunity to electromagnetic interference and multiplexing capability. This paper reports some of the results of a multi-disciplinary program on the FBG based sensors involving the School of Electrical and Electronic Engineering and the School of Civil and Environment Engineering at Nanyang Technological University, Singapore.
Fiber optic sensing subsystem for temperature monitoring in space in-flight applications
NASA Astrophysics Data System (ADS)
Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.
2017-11-01
Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.
Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring
NASA Astrophysics Data System (ADS)
Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang
2016-10-01
3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun
2017-02-01
Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.
Fibre Bragg grating encapted with no-core fibre sensors for SRI and temperature monitoring
NASA Astrophysics Data System (ADS)
Daud, S.; Amiri, I. S.; Noorden, A. F. A.; Ali, J.; Yupapin, P.
2018-06-01
In this work, a Fibre Bragg grating (FBG) encapted with no-core fibre (NCF) as surrounding refractive index (SRI) and temperature sensors are practically demonstrated. A FBG with 1550 nm wavelength was attached with 5 cm length of no-core fibre (NCF) is used as SRI and temperature sensing probe. The change of temperature and SRI induced the wavelength shift in FBG. The wavelength shift in FBG reacts directly proportional to the temperature with a sensitivity of while the sensitivity of NCF was measured as 13.13 pm °C-1.
Two Interrogated FBG Spectral Linewidth for Strain Sensing through Correlation.
Hsu, Shih-Hsiang; Chuang, Kuo-Wei; Chen, Ci-Syu; Lin, Ching-Yu; Chang, Che-Chang
2017-12-07
The spectral linewidth from two cross-correlated fiber Bragg gratings (FBGs) are interrogated and characterized using a delayed self-homodyne method for fiber strain sensing. This approach employs a common higher frequency resolution instead of wavelength. A sensitivity and resolution of 166 MHz/με and 50 nε were demonstrated from 4 GHz spectral linewidth characterization on the electric spectrum analyzer. A 10 nε higher resolution can be expected through random noise analyses when the spectral linewidth from two FBG correlations is reduced to 1 GHz. Moreover, the FBG spectrum is broadened during strain and experimentally shows a 0.44 pm/με sensitivity, which is mainly caused by the photo elastic effect from the fiber grating period stretch.
NASA Astrophysics Data System (ADS)
Yan, Guofeng; Zhang, Liang; He, Sailing
2016-04-01
In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.
NASA Astrophysics Data System (ADS)
Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng
2018-03-01
The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.
Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.
Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L; Cutkosky, Mark R
2014-09-01
This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).
Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle
Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L.; Cutkosky, Mark R.
2015-01-01
This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024). PMID:26509101
Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA
NASA Technical Reports Server (NTRS)
Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance
2015-01-01
An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.
High-sensitivity bend angle measurements using optical fiber gratings.
Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang
2013-07-20
We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.
Analysis, compensation, and correction of temperature effects on FBG strain sensors
NASA Astrophysics Data System (ADS)
Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis
2013-05-01
One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.
Smart sensing of aviation structures with fiber optic Bragg grating sensors
NASA Astrophysics Data System (ADS)
Trutzel, Michael N.; Wauer, Karsten; Betz, Daniel; Staudigel, Lothar; Krumpholz, Oskar; Muehlmann, Hans-Christian; Muellert, Thomas; Gleine, Wolfgang
2000-06-01
We developed a surface mounting technique where fiber-optic Bragg grating (FBG) sensors are glued to the surface of structures and tested the technique on the surface of a CFRP- wing at the DASA Airbus test center Hamburg for over one year. The FBG sensors were interrogated with a measurement system capable of determining the Bragg wavelength in a few seconds over a spectral range of 60 nm (around 1.53 μm) with an absolute accuracy better than 1 pm. A polarization scrambler was used to account for polarization effects. Excellent consistence between the values of electrical strain gauges and the FBG sensors were found during all measurements. However because this method shows drawbacks in a harsher environment such as a flight test, we are currently investigating the possibilities of integrating FBG sensors into the varnish of the structures. For reasons of their better mechanical performance we use FBG sensors produced on the fiber draw-tower with a special UV-curable coating. The sensors are integrated into an original Airbus varnish build- up. We observed linear strain sensitivities in a temperature range between -50 and +100 °C. Furthermore, at negative temperatures we found a vanish- induced polarization dependence which could be used to differentiate between strain and temperature effects.
A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement.
Jia, Dagong; Chao, Jing; Li, Shuai; Zhang, Hongxia; Yan, Yingzhan; Liu, Tiegen; Sun, Ye
2018-04-01
In this paper, we report the design and experimental validation of a novel optical sensor for radial artery pulse measurement based on fiber Bragg grating (FBG) and lever amplification mechanism. Pulse waveform analysis is a diagnostic tool for clinical examination and disease diagnosis. High fidelity radial artery pulse waveform has been investigated in clinical studies for estimating central aortic pressure, which is proved to be predictors of cardiovascular diseases. As a three-dimensional cylinder, the radial artery needs to be examined from different locations to achieve optimal pulse waveform for estimation and diagnosis. The proposed optical sensing system is featured as high sensitivity and immunity to electromagnetic interference for multilocation radial artery pulse waveform measurement. The FBG sensor can achieve the sensitivity of 8.236 nm/N, which is comparable to a commonly used electrical sensor. This FBG-based system can provide high accurate measurement, and the key characteristic parameters can be then extracted from the raw signals for clinical applications. The detecting performance is validated through experiments guided by physicians. In the experimental validation, we applied this sensor to measure the pulse waveforms at various positions and depths of the radial artery in the wrist according to the diagnostic requirements. The results demonstrate the high feasibility of using optical systems for physiological measurement and using this FBG sensor for radial artery pulse waveform in clinical applications.
A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements
NASA Astrophysics Data System (ADS)
Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Cripton, Peter A.
2008-08-01
We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm2, respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics.
NASA Astrophysics Data System (ADS)
Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian
2016-05-01
A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.
A Monitoring Method Based on FBG for Concrete Corrosion Cracking
Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong
2016-01-01
Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972
A Monitoring Method Based on FBG for Concrete Corrosion Cracking.
Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong
2016-07-14
Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.
Damage sensing and mechanical characteristics of CFRP strengthened steel plate
NASA Astrophysics Data System (ADS)
Mieda, Genki; Nakano, Daiki; Fuji, Yuya; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro; Matsui, Takahiro; Ochi, Yutaka; Matsumoto, Yukihiro
2017-10-01
In recent years, a large number of structures that were built during the period of high economic growth in Japan is beginning to show signs of aging. For example, the structural performance of steel structures has degraded due to corrosion. One measure that has been proposed and studied to address this issue is the adhesive bonding method, which can be used to repair and reinforce these structures. However, this method produces brittle fracture in the adhesive layer and is difficult to maintain after bonding. To solve the problem faced by this method, a clarification of the mechanical properties inside the adhesive is necessary. Then this background, a fiber Bragg grating (FBG) sensor has been used in this study. This sensor can be embedded within the building material that needs repairing and reinforcing because an FBG sensor is extremely small. Eventually based on this, a three-point bending test of a carbon fiber reinforced plastic (CFRP) strengthened steel plate that was embedded with an FBG sensor was conducted. This paper demonstrates that an FBG sensor is effectively applicable for sensing when damage occurs.
Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows
Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen
2012-01-01
This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616
Dual-point reflective refractometer based on parallel no-core fiber/FBG structure
NASA Astrophysics Data System (ADS)
Guo, Cuijuan; Niu, Panpan; Wang, Juan; Zhao, Junfa; Zhang, Cheng
2018-01-01
A novel dual-point reflective fiber-optic refractometer based on multimode interference (MMI) effect and fiber Bragg grating (FBG) reflection is proposed and experimentally demonstrated, which adopts parallel structure. Each point of the refractometer consists of a single mode-no core-single mode fiber (SNS) structure cascaded with a FBG. Assisted by the reflection of FBG, refractive index (RI) measurement can be achieved by monitoring the peak power variation of the reflected FBG spectrum. By selecting different length of the no core fiber and center wavelength of the FBG, independent dual-point refractometer is easily realized. Experiment results show that the refractometer has a nonlinear relationship between the surrounding refractive index (SRI) and the peak power of the reflected FBG spectrum in the RI range of 1.3330-1.4086. Linear relationship can be approximately obtained by dividing the measuring range into 1.3330-1.3611 and 1.3764-1.4086. In the RI range of 1.3764-1.4086, the two sensing points have higher RI sensitivities of 319.34 dB/RIU and 211.84 dB/RIU, respectively.
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.
Yu, Fengming; Okabe, Yoji
2017-12-14
Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.
NASA Astrophysics Data System (ADS)
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2013-09-01
In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.
Remote sensing of liquid level measurement using Fiber Bragg grating sensor
NASA Astrophysics Data System (ADS)
Sengupta, Dipankar; Shankar, M. Sai; Srimannarayana, K.; Vengal Rao, P.
2013-09-01
The present work proposes a simple low cost sensor head design making use of FBG sensor, for the measurement of liquid level. The sensor head consists of a lever, a buoyancy tube and an FBG. The lever is used to transfer the buoyancy force due to change in liquid level to the FBG resulting in shift in Bragg wavelength. The Flexibility of this design enables to measure the liquid level in an open or closed tank. The arrangement shows that liquid level sensitivity is high and is 10.7pm/mm.
A fiber Bragg grating acceleration sensor for ground surveillance
NASA Astrophysics Data System (ADS)
Jiang, Shaodong; Zhang, Faxiang; Lv, Jingsheng; Ni, Jiasheng; Wang, Chang
2017-10-01
Ground surveillance system is a kind of intelligent monitoring equipment for detecting and tracking the ground target. This paper presents a fiber Bragg grating (FBG) acceleration sensor for ground surveillance, which has the characteristics of no power supply, anti-electromagnetic interference, easy large-scale networking, and small size. Which make it able to achieve the advantage of the ground surveillance system while avoiding the shortcoming of the electric sensing. The sensor has a double cantilever beam structure with a sensitivity of 1000 pm/g. Field experiment has been carried out on a flood beach to examine the sensor performance. The result shows that the detection distance on the walking of personnel reaches 70m, and the detection distance on the ordinary motor vehicle reaches 200m. The performance of the FBG sensor can satisfy the actual needs of the ground surveillance system.
Design of a fiber-optic interrogator module for telecommunication satellites
NASA Astrophysics Data System (ADS)
Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus
2017-11-01
In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.
Huang, Xue-Feng; Chen, Zhe-Min; Shao, Li-Yang; Cen, Ke-Fa; Sheng, De-Ren; Chen, Jun; Zhou, Hao
2008-02-01
A refractive index sensor based on the thinned and microstructure fiber Bragg grating (ThMs-FBG) was proposed and realized as a chemical sensing. The numerical simulation for the reflectance spectrum of the ThMs-FBG was calculated and the phase shift down-peak could be observed from the reflectance spectrum. Many factors influencing the reflectance spectrum were considered in detail for simulation, including the etched depth, length, and position. The sandwich-solution etching method was utilized to realize the microstructure of the ThMs-FBG, and the photographs of the microstructure were obtained. Experimental results demonstrated that the reflectance spectrum, phase shift down-peak wavelength, and reflected optical intensity of the ThMs-FBG all depended on the surrounding refractive index. However, only the down-peak wavelength of the ThMs-FBG changed with the surrounding temperature. Under the condition that the length and cladding diameter of the ThMs-FBG microstructure were 800 and 14 mum, respectively, and the position of the microstructure of the ThMs-FBG is in the middle of grating region, the refractive index sensitivity of the ThMs-FBG was 0.79 nm/refractive index unit with the wide range of 1.33-1.457 and a high resolution of 1.2 x 10(-3). The temperature sensitivity was 0.0103 nm/ degrees C, which was approximately equal to that of common FBG.
Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology
NASA Astrophysics Data System (ADS)
Konishi, Tsuyoshi; Yamasaki, Yu
2018-02-01
Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.
NASA Astrophysics Data System (ADS)
Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.
2016-05-01
The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.
Sensitivity Enhancement of FBG-Based Strain Sensor.
Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian
2018-05-17
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.
Sensitivity Enhancement of FBG-Based Strain Sensor
Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian
2018-01-01
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826
Analysis of multimode BDK doped POF gratings for temperature sensing
NASA Astrophysics Data System (ADS)
Luo, Yanhua; Wu, Wenxuan; Wang, Tongxin; Cheng, Xusheng; Zhang, Qijin; Peng, Gang-Ding; Zhu, Bing
2012-10-01
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from -79.5 pm/°C to -104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from -0.097 nm/°C to -0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.
NASA Astrophysics Data System (ADS)
Hiche, Cristobal; Liu, Kuang C.; Seaver, Mark; Wei, Jun; Chattopadhyay, Aditi
2009-03-01
Woven fiber composites are currently being investigated due to their advantages over other materials, making them suitable for low weight, high stiffness, and high interlaminar fracture toughness applications such as missiles, body armor, satellites, and many other aerospace applications. Damage characterization of woven fabrics is a complex task due to their tendency to exhibit different failure modes based on the weave configuration, orientation, ply stacking and other variables. A multiscale model is necessary to accurately predict progressive damage. The present research is an experimental study on damage characterization of three different woven fiber laminates under low energy impact using Fiber Bragg Grating (FBG) sensors and flash thermography. A correlation between the measured strain from FBG sensors and the damaged area obtained from flash thermography imaging has been developed. It was observed that the peak strain in the fabrics were strongly dependent on the weave geometry and decreased at different rates as damage area increased due to dissimilar failure modes. Experimental observations were validated with the development of a multiscale model. A FBG sensor placement model was developed which showed that FBG sensor location and orientation plays a key role in the sensing capabilities of strain on the samples.
Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement
NASA Astrophysics Data System (ADS)
Park, Jinwoo; Kwon, Yong Seok; Ko, Myeong Ock; Jeon, Min Yong
2017-11-01
We demonstrate a 1550 nm band resonance Fourier-domain mode-locked (FDML) fiber laser with fiber Bragg grating (FBG) array. Using the FDML fiber laser, we successfully demonstrate real-time monitoring of dynamic FBG strain sensor interrogation for structural health monitoring. The resonance FDML fiber laser consists of six multiplexed FBGs, which are arranged in series with delay fiber lengths. It is operated by driving the fiber Fabry-Perot tunable filter (FFP-TF) with a sinusoidal waveform at a frequency corresponding to the round-trip time of the laser cavity. Each FBG forms a laser cavity independently in the FDML fiber laser because the light travels different length for each FBG. The very closely positioned two FBGs in a pair are operated simultaneously with a frequency in the FDML fiber laser. The spatial positions of the sensing pair can be distinguished from the variation of the applied frequency to the FFP-TF. One of the FBGs in the pair is used as a reference signal and the other one is fixed on the piezoelectric transducer stack to apply the dynamic strain. We successfully achieve real-time measurement of the abrupt change of the frequencies applied to the FBG without any signal processing delay. The real-time monitoring system is displayed simultaneously on the monitor for the variation of the two peaks, the modulation interval of the two peaks, and their fast Fourier transform spectrum. The frequency resolution of the dynamic variation could reach up to 0.5 Hz for 2 s integration time. It depends on the integration time to measure the dynamic variation. We believe that the real-time monitoring system will have a potential application for structural health monitoring.
An arm wearable haptic interface for impact sensing on unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul
2017-04-01
In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.
Fiber Bragg Grating vibration sensor with DFB laser diode
NASA Astrophysics Data System (ADS)
Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir
2012-01-01
The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.
NASA Astrophysics Data System (ADS)
Cheng, Lun; Ahlers, Berit
2017-11-01
Europe is developing a new generation launcher, called Vega, a small launcher with a capacity to place satellites into polar and low-Earth orbits, which are used for many scientific and Earth observation missions. Its first launch is scheduled for early 2008. Dutch Space is responsible for the development, qualification and manufacturing of the Vega Interstage 1/2. This all-aluminium conically shaped section is designed as a monocoque structure. This subsystem of Vega has undergone its first qualification tests of force loading combined with an extensive programme of measurements (forces, displacements and strains), at TNO in Delft. In parallel to conventional strain gauges Fibre Optic Sensors (FOS) in the form of Fibre Bragg Grating (FBG) sensor arrays, consisting of five strain sensors and one temperature sensor, have been installed on different locations of the interstage. Direct comparisons of the results with conventional sensors during load tests up to several hundred tons are therefore possible. A self-evident benefit of FBG sensors in an array application is that each sensing FBG can have a different Bragg wavelength to reflect. Thus, Wavelength Division Multiplexing (WDM) can conveniently be used to distinguish the different sensing FBG's at the receiving side. First test results from load measurements performed on the Qualification Model (QM) of the Vega Interstage 1/2 are presented in this paper as well as an outlook to future integration of the FBG in this field.
Casing pipe damage detection with optical fiber sensors: a case study in oil well constructions
NASA Astrophysics Data System (ADS)
Zhou, Zhi; He, Jianping; Huang, Minghua; He, Jun; Ou, Jinping; Chen, Genda
2010-04-01
Casing pipes in oil well constructions may suddenly buckle inward as their inside and outside hydrostatic pressure difference increases. For the safety of construction workers and the steady development of oil industries, it is critically important to measure the stress state of a casing pipe. This study develops a rugged, real-time monitoring, and warning system that combines the distributed Brillouin Scattering Time Domain Reflectometry (BOTDR) and the discrete fiber Bragg grating (FBG) measurement. The BOTDR optical fiber sensors were embedded with no optical fiber splice joints in a fiber reinforced polymer (FRP) rebar and the FBG sensors were wrapped in epoxy resins and glass clothes, both installed during the segmental construction of casing pipes. In-situ tests indicate that the proposed sensing system and installation technique can survive the downhole driving process of casing pipes, withstand a harsh service environment, and remain in tact with the casing pipes for compatible strain measurements. The relative error of the measured strains between the distributed and discrete sensors is less than 12%. The FBG sensors successfully measured the maximum horizontal principal stress with a relative error of 6.7% in comparison with a cross multi-pole array acoustic instrument.
Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William A
2014-12-04
The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less
NASA Astrophysics Data System (ADS)
Rocco, Alessandra S.; Coppola, Giuseppe; Ferraro, Pietro; Foti, Giuseppe; Iodice, Mario
2004-09-01
Optical fiber sensors are the ideal system to monitor "smart structures" and on-site/real time stress measurements: they can be in fact easily embedded or attached to the structures under test and are not affected by electro- magnetic noise. In particular a signal from a Fiber Bragg grating sensor (FBG) may be processed such that its information remains immune to optical power fluctuations. Different interrogation methods can be used for reading out Bragg wavelength shifts. In this paper we propose a very simple interferometric method for interrogating FBG sensors, based on bi-polished silicon sample acting like an etalon tuneable filter (ETF). The Bragg wavelength shift can be evaluated by analyzing the spectral response of signal reflected by the FBG sensor and filtered by the ETF that is continuously and rapidly tuned. Tuning was obtained by rotating the ETF. Variation in the strain at the FBG causes a phase shift in the analyzed signal. The overall spectral signal, collected with time, consists in an interferometric figure which finesse and fringe contrast depending on the geometrical sizes and facets reflectivity of the silicon sample. The fringe pattern, expressed by the Airy's formula, depends on the wavelength l of the incident radiation and on the angle of incidence. The phase of fringe pattern can be retrieved by a standard FFT method giving quantitative measurements of the quasi-static strain variation sensed by the FBG. In this way, the method allows a valuable visualization of the time-evolution of the incremental strain applied to the FBG. Principle of functioning of this method is described and first results obtained employing such configuration, are reported.
Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng
2014-06-01
This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.
Optical fibre sensing: a solution for industry
NASA Astrophysics Data System (ADS)
Sun, T.; Fabian, M.; Chen, Y.; Vidakovic, M.; Javdani, S.; Grattan, K. T. V.; Carlton, J.; Gerada, C.; Brun, L.
2017-04-01
Optical fibres have been explored widely for their sensing capability to meet increasing industrial needs, building on their success in telecommunications. This paper provides a review of research activities at City University of London in response to industrial challenges through the development of a range of fibre Bragg grating (FBG)-based sensors for transportation structural monitoring. For marine propellers, arrays of FBGs mapped onto the surface of propeller blades allow for capturing vibrational modes, with reference to simulation data. The research funded by EU Cleansky programme enables the development of self-sensing electric motor drives to support `More Electric Aircraft' concept. The partnership with Faiveley Brecknell Willis in the UK enables the integration of FBG sensors into the railway current-collecting pantographs for real-time condition monitoring when they are operating under 25kV conditions.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Toutian, Golnoush
2017-10-01
Fiber Bragg grating (FBG) of different configurations used as sensing devices are vulnerable to environmental factors, such as static pressures and thermal loading, which cause their characteristic Bragg reflecting wavelengths to up/down-shift. In this paper, by considering double-coated FBG with different primary and secondary coating materials, the effects of thermal loading and hydrostatic pressure on FBG with different coating-layer thicknesses are analyzed to find design criteria for controlling the Bragg wavelength shift. The obtained results of the analysis may be employed as criteria to design pressure and temperature sensors when using double-coated FBGs.
NASA Astrophysics Data System (ADS)
Hann, Swook; Kim, Dong-Hwan; Park, Chang-Soo
2006-04-01
A monitoring technique for multiple power splitter-passive optical networks (PS-PON) is presented. The technique is based on the remote sensing of fiber Bragg grating (FBG) using a tunable OTDR. To monitor the multiple PS-PON, the FBG can be used for a wavelength dependent reflective reference on each branch end of the PS. The FBG helps discern an individual event of the multiple PS-PON for the monitoring in collaborate with information of Rayleigh backscattered power. The multiple PS-PON can be analyzed by the monitoring method at the central office under 10-Gbit/s in-service.
Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines
NASA Astrophysics Data System (ADS)
Moghadas, Amin
2011-12-01
A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.
Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines
Moghadas, Amin A.; Shadaram, Mehdi
2010-01-01
In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416
Shape sensing for torsionally compliant concentric-tube robots
NASA Astrophysics Data System (ADS)
Xu, Ran; Yurkewich, Aaron; Patel, Rajni V.
2016-03-01
Concentric-tube robots (CTR) consist of a series of pre-curved flexible tubes that make up the robot structure and provide the high dexterity required for performing surgical tasks in constrained environments. This special design introduces new challenges in shape sensing as large twisting is experienced by the torsionally compliant structure. In the literature, fiber Bragg grating (FBG) sensors are attached to needle-sized continuum robots for curvature sensing, but they are limited to obtaining bending curvatures since a straight sensor layout is utilized. For a CTR, in addition to bending curvatures, the torsion along the robots shaft should be determined to calculate the shape and pose of the robot accurately. To solve this problem, in our earlier work, we proposed embedding FBG sensors in a helical pattern into the tube wall. The strain readings are converted to bending curvatures and torsion by a strain-curvature model. In this paper, a modified strain-curvature model is proposed that can be used in conjunction with standard shape reconstruction algorithms for shape and pose calculation. This sensing technology is evaluated for its accuracy and resolution using three FBG sensors with 1 mm sensing segments that are bonded into the helical grooves of a pre-curved Nitinol tube. The results show that this sensorized robot can obtain accurate measurements: resolutions of 0.02 rad/m with a 100 Hz sampling rate. Further, the repeatability of the obtained measurements during loading and unloading conditions are presented and analyzed.
Bend measurement using an etched fiber incorporating a fiber Bragg grating.
Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang; Jiang, Yajun; Jiang, Wei
2013-01-15
A fiber Bragg grating (FBG) based bend measurement method using an etched fiber is proposed that utilizes the coupling of the core mode to the cladding and radiation modes at the bending region. An etching region of 99 µm diameter that serves as bend sensing head is achieved at 10 mm upstream the FBG through processing in 40% hydrofluoric acid, while the FBG acts as a narrowband reflector to enhance the sensitivity. The power variation curves are obtained for a wide range of bend angles, but the performance is limited due to the presence of the loss peaks. The sensing response is improved by immersing the etching region in a refractive index matching gel. The results are analyzed by using curve fitting formulas and are in good agreement. A large dynamic range of -27° to +27° and sensitivity of 0.43 dBm/deg is achieved, which can be enhanced by reducing the etched diameter.
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-01-01
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-07-09
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.
EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal
NASA Astrophysics Data System (ADS)
Chen, Yong; Wu, Chun-ting; Liu, Huan-lin
2017-07-01
Noise may reduce the demodulation accuracy of fiber Bragg grating (FBG) sensing signal so as to affect the quality of sensing detection. Thus, the recovery of a signal from observed noisy data is necessary. In this paper, a precise self-adaptive algorithm of selecting relevant modes is proposed to remove the noise of signal. Empirical mode decomposition (EMD) is first used to decompose a signal into a set of modes. The pseudo modes cancellation is introduced to identify and eliminate false modes, and then the Mutual Information (MI) of partial modes is calculated. MI is used to estimate the critical point of high and low frequency components. Simulation results show that the proposed algorithm estimates the critical point more accurately than the traditional algorithms for FBG spectral signal. While, compared to the similar algorithms, the signal noise ratio of the signal can be improved more than 10 dB after processing by the proposed algorithm, and correlation coefficient can be increased by 0.5, so it demonstrates better de-noising effect.
NASA Astrophysics Data System (ADS)
Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).
Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks
NASA Technical Reports Server (NTRS)
Richards, Lance
2013-01-01
The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry
Pressure sensitivity analysis of fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex
2014-09-01
Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
Study of the technics of coating stripping and FBG writing on polyimide fiber
NASA Astrophysics Data System (ADS)
Song, ZhiQiang; Qi, HaiFeng; Ni, JiaSheng; Wang, Chang
2017-10-01
Compared with ordinary optical fiber, polyimide fiber has the characteristics of high temperature resistance and high strength, which has important application in the field of optical fiber sensing. The common methods of polyimide coating stripping were introduced in this paper, including high temperature stripping, chemical stripping and arc ablation. In order to meet the requirements of FBG writing technology, a method using argon ion laser ablation coating was proposed. The method can precisely control the stripping length of the coating and completely does not affect the tensile strength of the optical fiber. According to the experiment, the fabrication process of polyimide FBG is stripping-hydrogen loadingwriting. Under the same conditions, 10 FBG samples were fabricated with good uniformity of wavelength bandwidth and reflectivity. UV laser ablation of polyimide coating has been proved to be a safe, reliable and efficient method.
A linear stepping endovascular intervention robot with variable stiffness and force sensing.
He, Chengbin; Wang, Shuxin; Zuo, Siyang
2018-05-01
Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.
Al-Fakih, Ebrahim; Abu Osman, Noor Azuan; Mahamd Adikan, Faisal Rafiq
2012-09-25
In recent years, fiber Bragg gratings (FBGs) are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI). They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensitivity biochemical analysis. FBG-based sensors demonstrated their feasibility for specific sensing applications in aeronautic, automotive, civil engineering structure monitoring and undersea oil exploration; however, their use in the field of biomechanics and rehabilitation applications is very recent and its practicality for full-scale implementation has not yet been fully established. They could be used for detecting strain in bones, pressure mapping in orthopaedic joints, stresses in intervertebral discs, chest wall deformation, pressure distribution in Human Machine Interfaces (HMIs), forces induced by tendons and ligaments, angles between body segments during gait, and many others in dental biomechanics. This article aims to provide a comprehensive overview of all the possible applications of FBG sensing technology in biomechanics and rehabilitation and the status of ongoing researches up-to-date all over the world, demonstrating the FBG advances over other existing technologies.
Al-Fakih, Ebrahim; Osman, Noor Azuan Abu; Adikan, Faisal Rafiq Mahamd
2012-01-01
In recent years, fiber Bragg gratings (FBGs) are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI). They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensitivity biochemical analysis. FBG-based sensors demonstrated their feasibility for specific sensing applications in aeronautic, automotive, civil engineering structure monitoring and undersea oil exploration; however, their use in the field of biomechanics and rehabilitation applications is very recent and its practicality for full-scale implementation has not yet been fully established. They could be used for detecting strain in bones, pressure mapping in orthopaedic joints, stresses in intervertebral discs, chest wall deformation, pressure distribution in Human Machine Interfaces (HMIs), forces induced by tendons and ligaments, angles between body segments during gait, and many others in dental biomechanics. This article aims to provide a comprehensive overview of all the possible applications of FBG sensing technology in biomechanics and rehabilitation and the status of ongoing researches up-to-date all over the world, demonstrating the FBG advances over other existing technologies. PMID:23201977
A novel fiber-optical vibration defending system with on-line intelligent identification function
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Xie, Xin; Li, Hanyu; Li, Xiaoyu; Wu, Yu; Gong, Yuan; Rao, Yunjiang
2013-09-01
Capacity of the sensor network is always a bottleneck problem for the novel FBG-based quasi-distributed fiberoptical defending system. In this paper, a highly sensitive sensing network with FBG vibration sensors is presented to relieve stress of the capacity and the system cost. However, higher sensitivity may cause higher Nuisance Alarm Rates (NARs) in practical uses. It is necessary to further classify the intrusion pattern or threat level and determine the validity of an unexpected event. Then an intelligent identification method is proposed by extracting the statistical features of the vibration signals in the time domain, and inputting them into a 3-layer Back-Propagation(BP) Artificial Neural Network to classify the events of interest. Experiments of both simulation and field tests are carried out to validate its effectiveness. The results show the recognition rate can be achieved up to 100% for the simulation signals and as high as 96.03% in the real tests.
Strain sensors for high field pulse magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Christian; Zheng, Yan; Easton, Daniel
2009-01-01
In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Threemore » operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.« less
Development of fiber optic sensing interrogators for launchers
NASA Astrophysics Data System (ADS)
Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.
2017-11-01
We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible future application for the SL interrogator.
Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman
2017-04-01
We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.
NASA Astrophysics Data System (ADS)
Ramalingam, Rajinikumar; Atrey, M. D.
2017-12-01
Use of Fiber Bragg Grating (FBG) sensor is very appealing for sensing low temperature and strain in superconducting magnets because of their miniature size and the possibility of accommodating many sensors in a single fiber. The main drawback is their low intrinsic thermal sensitivity at low temperatures below 120 K. Approaching cryogenic temperatures, temperature changes lower than a few degrees Kelvin cannot be resolved, since they do not cause an appreciable shift of the wavelength diffracted by a bare FBG sensor. To improve the thermal sensitivity and thermal inertia below 77 K, the Bare FBG (BFBG) sensor can be coated with high thermal expansion coefficient materials. In this work, different metal were considered for coating the FBG sensor. For theoretical investigation, a double layered circular thick wall tube model has been considered to study the effect on sensitivity due to the mechanical properties like Young’s modulus, Thermal expansion coefficient, Poisson’s ratio of selected materials at a various cryogenic temperatures. The primary and the secondary coating thickness for a dual layer metal coated FBG sensor have been determined from the above study. The sensor was then fabricated and tested at cryogenic temperature range from 4-300 K. The cryogenic temperature characteristics of the tested sensors are reported.
Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun
2011-12-01
We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.
Long-term monitoring FBG-based cable load sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping
2006-03-01
Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.
Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Juergens, Jeffrey; Adamovsky, Grigory; Floyd, Bertram
2004-01-01
The development of integrated fiber optic sensors for smart propulsion systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor s limits and how it responds under various environmental conditions. The sensor evaluation currently involves examining the performance of fiber Bragg gratings at elevated temperatures. Fiber Bragg gratings (FBG) are periodic variations of the refractive index of an optical fiber. These periodic variations allow the FBG to act as an embedded optical filter passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change what wavelengths are transmitted and what wavelengths are reflected by the grating. Both thermal and mechanical forces acting on the grating will alter its physical characteristics allowing the FBG sensor to detect both temperature variations and physical stresses, strain, placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. This paper reports on test results of the performance of FBGs at elevated temperatures. The gratings looked at thus far have been either embedded in polymer matrix materials or freestanding with the primary focus of this paper being on the freestanding FBGs. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. These parameters include the peak Bragg wavelength, the power of the Bragg wavelength, and total power returned by the FBG. Several test samples were subjected to identical test conditions to allow for statistical analysis of the data. Test procedures, calibrations, and referencing techniques are presented in the paper along with directions for future research.
A civil structural monitoring system based on fiber grating sensors
NASA Astrophysics Data System (ADS)
Zhang, Yan; Cai, Haiwen; Pastore, Robert; Ju, Jing; Zeng, Debing; Yin, Zhifan; Cui, Hong-Liang
2003-08-01
Optical fiber sensors based on Fiber Bragg Grating (FBG) technology have found many applications in the area of civil structural monitoring systems, such as in bridge monitoring and maintenance. FBG sensors can measure the deformation, overload and cracks on bridge with a high sensitivity. In this paper we report on our recent work a structural monitoring system using FBG sensors. Basic theoretical background and design of the system is described here, including the light source, FBG sensors, demodulator sensors, signal detection and processing schemes. The system will be installed on a major arch bridge currently under construction in Shanghai, China for long-term in situ health monitoring. The system schematic arrangement on the bridge is introduced in brief. Simulation experiments in the laboratory were carried out to test the performance of FBG strain sensors. The sensor response shows excellent linearity against the strain imposed on it. Traffic and overload monitoring on bridge using FBG sensors is also discussed and planned for the near future.
High-sensitivity cryogenic temperature sensors using pressurized fiber Bragg gratings
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; DeHaven, Stanton L.
2006-01-01
Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.
High-sensitivity Cryogenic Temperature Sensors using Pressurized Fiber Bragg Gratings
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; DeHaven, Stanton L.
2006-01-01
Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.
Wang, Kai; Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao
2017-10-30
A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1-2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area.
Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao
2017-01-01
A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157
NASA Technical Reports Server (NTRS)
Richards, Lance
2014-01-01
The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.
Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin
2015-01-01
In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively. PMID:26184195
Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin
2015-07-08
In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.
Al-Fakih, Ebrahim A.; Abu Osman, Noor Azuan; Eshraghi, Arezoo; Adikan, Faisal Rafiq Mahamd
2013-01-01
This study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee's Patellar Tendon (PT) bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ∼0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction. PMID:23941909
Al-Fakih, Ebrahim A; Osman, Noor Azuan Abu; Eshraghi, Arezoo; Adikan, Faisal Rafiq Mahamd
2013-08-12
This study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee's Patellar Tendon (PT) bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ~0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction.
Application of Multiplexed FBG and PZT Impedance Sensors for Health Monitoring of Rocks.
Yang, Yaowen; Annamdas, Venu Gopal Madhav; Wang, Chao; Zhou, Yingxin
2008-01-21
Reliable structural health monitoring (SHM) including nondestructiveevaluation (NDE) is essential for safe operation of infrastructure systems. Effectivemonitoring of the rock components of civil infrastructures such as tunnels and cavernsremains challenging. The feasibility of employing smart optical fibre sensor (OFS) andpiezoelectric impedance sensor made up of lead zirconate titanate (PZT) forcomprehensive health monitoring of rocks, covering load history monitoring/retrieval aswell as damage assessment is presented in this paper. The rock specimens are subjected tocyclic loading and their conditions are continuously monitored using OFS and PZTsensors. OFS based multiplexed fibre Bragg grating (FBG) sensors are surface bonded onthe rock specimens. Their strain sensing performance is compared with the conventionalelectric strain gauges (ESGs). In addition, PZT patches are also bonded on the specimensto study the damage pattern during different loading cycles. Unlike the FBGs or ESGs,PZT patches are used as bi-functional sensors and actuators, enabling them to be efficientdetectors of incipient damages using the principle of electromechanical impedance. Theexperimental study demonstrated superior performance of these smart FBG and PZTimpedance sensors. This work is expected to be useful for SHM based NDE application ofrock structures such as caverns and tunnels.
Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.
Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou
2015-10-19
In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.
Pham, Ngot Thi; Lee, Seul Lee; Park, Suhyun; Lee, Yong Wook; Kang, Hyun Wook
2017-04-01
High-sensitivity temperature sensors have been used to validate real-time thermal responses in tissue during photothermal treatment. The objective of the current study was to evaluate the feasible application of a fiber Bragg grating (FBG) sensor for diffuser-assisted laser-induced interstitial thermotherapy (LITT) particularly to treat tubular tissue disease. A 600 - ? m core-diameter diffuser was employed to deliver 980-nm laser light for coagulation treatment. Both a thermocouple and a FBG were comparatively tested to evaluate temperature measurements in ex vivo liver tissue. The degree of tissue denaturation was estimated as a function of irradiation times and quantitatively compared with light distribution as well as temperature development. At the closer distance to a heat source, the thermocouple measured up to 41% higher maximum temperature than the FBG sensor did after 120-s irradiation (i.e., 98.7 ° C ± 6.1 ° C for FBG versus 131.0 ° C ± 5.1 ° C for thermocouple; p < 0.001 ). Ex vivo porcine urethra tests confirmed the real-time temperature measurements of the FBG sensor as well as consistently circumferential tissue denaturation after 72-s irradiation ( coagulation thickness = 2.2 ± 0.3 ?? mm ). The implementation of FBG can be a feasible sensing technique to instantaneously monitor the temperature developments during diffuser-assisted LITT for treatment of tubular tissue structure.
Health monitoring for subway station structure by fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Zhou, Yao; Wang, Yuan-Feng; Han, Bing; Zhou, Zhi
2008-03-01
Fiber Bragg grating (FBG) sensors hold a great deal of potential for structural monitoring because of their high sensitivity and exceptional stability for long-term monitoring. FBG sensors have been applied to sense a number of physical measurands including strain, temperature, pressure etc. These applications are based on the same principle, i.e. the measurement of Bragg wavelength shift caused by the measurands. The characters and principle of FBG sensors have been introduced in detail. The relative experiment is done. The results show that FBG sensors have high sensitivity and long-term stability. It is feasible to use the sensors to the structural health monitoring (SHM). Cement hydration produces heat, which may provoke important temperature rises in massive structures. Such a high temperature may be a factor for cracking during the cooling phase. Thus, it is important to be able to calculate and control the heat to be produced by a given concrete at the mixture-proportioning stage. Theory of heat of hydration is also introduced in this paper. FBG sensors have been applied successfully in health monitoring for Guomao subway station structure. Compared with results measured by vibrating wire sensors and computed by finite element method, the monitoring results show temperature and strains can be accurately measured by FBG sensors. It is convenient to study on heat of hydration of massive concrete and guide structural design.
NASA Astrophysics Data System (ADS)
Wang, Li; Wang, Jun; Bao, Dong; Yang, Rong; Yan, Qing; Gao, Fei; Hua, Dengxin
2018-01-01
All fiber Raman temperature lidar for space borne platform has been proposed for profiling of the temperature with high accuracy. Fiber Bragg grating (FBG) is proposed as the spectroscopic system of Raman lidar because of good wavelength selectivity, high spectral resolution and high out-of-band rejection rate. Two sets of FBGs at visible wavelength 532 nm as Raman spectroscopy system are designed for extracting the rotational Raman spectra of atmospheric molecules, which intensities depend on the atmospheric temperature. The optimization design of the tuning method of an all-fiber rotational Raman spectroscopy system is analyzed and tested for estimating the potential temperature inversion error caused by the instability of FBG. The cantilever structure with temperature control device is designed to realize the tuning and stabilization of the central wavelengths of FBGs. According to numerical calculation of FBG and finite element analysis of the cantilever structure, the center wavelength offset of FBG is 11.03 nm/°C with the temperature change in the spectroscopy system. By experimental observation, the center wavelength offset of surface-bonded FBG is 9.80 nm/°C with temperature changing when subjected to certain strain for the high quantum number channel, while 10.01 nm/°C for the low quantum number channel. The tunable wavelength range of FBG is from 528.707 nm to 529.014 nm for the high quantum number channel and from 530.226 nm to 530.547 nm for the low quantum number channel. The temperature control accuracy of the FBG spectroscopy system is up to 0.03 °C, the corresponding potential atmospheric temperature inversion error is 0.04 K based on the numerical analysis of all-fiber Raman temperature lidar. The fine tuning and stabilization of the FBG wavelength realize the elaborate spectroscope of Raman lidar system. The conclusion is of great significance for the application of FBG spectroscopy system for space-borne platform Raman lidar.
Space Gator: a giant leap for fiber optic sensing
NASA Astrophysics Data System (ADS)
Evenblij, R. S.; Leijtens, J. A. P.
2017-11-01
Fibre Optic Sensing is a rapidly growing application field for Photonics Integrated Circuits (PIC) technology. PIC technology is regarded enabling for required performances and miniaturization of next generation fibre optic sensing instrumentation. So far a number of Application Specific Photonics Integrated Circuits (ASPIC) based interrogator systems have been realized as operational system-on-chip devices. These circuits have shown that all basic building blocks are working and complete interrogator on chip solutions can be produced. Within the Saristu (FP7) project several high reliability solutions for fibre optic sensing in Aeronautics are being developed, combining the specifically required performance aspects for the different sensing applications: damage detection, impact detection, load monitoring and shape sensing (including redundancy aspects and time division features). Further developments based on devices and taking into account specific space requirements (like radiation aspects) will lead to the Space Gator, which is a radiation tolerant highly integrated Fibre Bragg Grating (FBG) interrogator on chip. Once developed and qualified the Space Gator will be a giant leap for fibre optic sensing in future space applications.
Fiber Bragg grating ring resonators under rotation for angular velocity sensing.
Campanella, C E; De Leonardis, F; Passaro, V M N
2015-05-20
In this paper we investigate the possibility of using hybrid resonators based on fiber Bragg grating ring resonators (FBGRRs) and π-shifted FBGRRs (i.e., defective FBGRRs) as rotation sensitive elements for gyroscope applications. In particular, we model the conventional fiber Bragg grating (FBG) with the coupled mode theory by taking into account how the Sagnac effect, induced by the rotation, modifies the eigenvalues, the photonic band gap, and the spectral response of the FBG. Then, on the basis of the FBG model under rotation conditions, the spectral responses of the FBGRR and π-FBGRR have been evaluated, confirming that the Sagnac effect manifests itself with a spectral shift of the eigensolutions. This physical investigation can be exploited for opening new ways in the optical gyroscope platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
Smart Photonic Carbon Brush: FBG Length as Sensing Parameter
NASA Astrophysics Data System (ADS)
Morozov, O. G.; Nureev, I. I.; Kuznetsov, A. A.; Artemiev, V. I.
2018-04-01
This article deals with problem of carbon brush’s length measurements. There are many applications where regular inspection is not feasible because of a number of factors including, for example, time, labor, cost and disruptions due to down time. Thus, there is a need for a system that can monitor the brush’s length to calculate it’s wear rate, while the component is in operation or without removing of the component from its operational position. We propose a novel method for characterization of carbon brush’s length. This method based on the usage of advantages of the multiplicative response of FBGs and FBG arrays: spectral parameters depend on several aspects, such as grating’s period, refractive index, it’s physical length and so on. We are the first, in our point of view, who proposed to use third parameter for sensing application and prospectively all three parameters for complex measurement: the change of FBG’s length is used to measure length of the brush and it’s wear rate, grating’s central wavelength shift for temperature (due to refractive index change) and mechanical stress (due to grating’s period variations) measurements. The results of modelling and experiments are presented.
A Code Division Design Strategy for Multiplexing Fiber Bragg Grating Sensing Networks
Varón, Margarita
2017-01-01
In this paper, an encoding strategy is used to design specialized fiber Bragg grating (FBG) sensors. The encoding of each sensor requires two binary codewords to define the amplitude and phase patterns of each sensor. The combined pattern (amplitude and phase) makes each sensor unique and therefore two or more sensors can be identified under spectral overlapping. In this way, we add another dimension to the multiplexing of FBG sensors, obtaining an increase factor ‘n’ to enhance the number of sensors that the system can handle. A proof-of-concept scenario with three sensors was performed, including the manufacturing of the encoded sensors. Furthermore, an interrogation setup to detect the sensors central wavelength was proposed and its working principle was theoretically developed. Results show that total identification of the central wavelength is performed under spectral overlapping between the manufactured sensors, achieving a three-time improvement of the system capacity. Finally, the error due to overlapping between the sensors was assessed obtaining approximately 3 pm, which makes the approach suitable for use in real measurement systems. PMID:29104231
Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer.
Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu
2017-02-15
In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.
Huang, Wenzhu; Zhang, Wentao; Li, Fang
2015-04-01
This Letter presents a static strain demodulation technique for FBG-FP sensors using a suppressed carrier LiNbO(3) (LN) optical single sideband (SSB-SC) modulator. A narrow-linewidth tunable laser source is generated by driving the modulator using a linear chirp signal. Then this tunable single-frequency laser is used to interrogate the FBG-FP sensors with the Pound-Drever-Hall (PDH) technique, which is beneficial to eliminate the influence of light intensity fluctuation of the modulator at different tuning frequencies. The static strain is demodulated by calculating the wavelength difference of the PDH signals between the sensing FBG-FP sensor and the reference FBG-FP sensor. As an experimental result using the modulator, the linearity (R2) of the time-frequency response increases from 0.989 to 0.997, and the frequency-swept range (dynamic range) increases from hundreds of MHz to several GHz compared with commercial PZT-tunable lasers. The high-linearity time-wavelength relationship of the modulator is beneficial for improving the strain measurement resolution, as it can solve the problem of the frequency-swept nonlinearity effectively. In the laboratory test, a 0.67 nanostrain static strain resolution, with a 6 GHz dynamic range, is demonstrated.
Zheng, Yulong; Bremer, Kort
2018-01-01
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing. PMID:29734734
NASA Astrophysics Data System (ADS)
Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .
Zheng, Yulong; Bremer, Kort; Roth, Bernhard
2018-05-05
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.
Multi-resonance peaks fiber Bragg gratings based on largely-chirped structure
NASA Astrophysics Data System (ADS)
Chen, Chao; Zhang, Xuan-Yu; Wei, Wei-Hua; Chen, Yong-Yi; Qin, Li; Ning, Yong-Qiang; Yu, Yong-Sen
2018-04-01
A composite fiber Bragg grating (FBG) with multi-resonance peaks (MRPs) has been realized by using femtosecond (fs) laser point-by-point inscription in single-mode fiber. This device contains a segment of largely-chirped gratings with the ultrahigh chirp coefficients and a segment of uniform high-order gratings. The observed MRPs are distributed in an ultra-broadband wavelength range from 1200 nm to 1700 nm in the form of quasi-period or multi-peak-group. For the 8th-order MRPs-FBG, we studied the axial strain and high-temperature sensing characteristics of different resonance peaks experimentally. Moreover, we have demonstrated a multi-wavelength fiber lasers with three-wavelength stable output by using a 9th-order MRPs-FBG as the wavelength selector. This work is significant for the fabrication and functionalization of FBGs with complicated spectra characteristics.
Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio
2016-09-01
We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.
Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors
NASA Astrophysics Data System (ADS)
Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita
2016-02-01
Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.
A Fiber Bragg Grating Temperature Sensor for 2-400 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaynetdinov, Madrakhim; See, Erich M.; Geist, Brian
2015-03-01
We demonstrate fiber optic, multiplexible temperature sensing using a fiber Bragg grating (FBG) with an operational range of 2-400 K, and a temperature resolution better than 10 mK for temperatures < 12 K. This represents a significant reduction in the lowest usable temperature as well as a significant increase in sensitivity at cryogenic temperatures compared with previously reported multiplexible solutions. This is accomplished by mounting the section of the fiber with a FBG on a polytetrafluoroethylene coupon, which has a non-negligible coefficient of thermal expansion down to < 4 K. The sensors exhibit a good stability over multiple temperature cyclesmore » and acceptable sensor-to-sensor repeatability. Possible applications for this sensor include distributed temperature sensing across superconducting elements and cryogenic temperature measurements in environments where electrical measurements are impractical or unsafe.« less
NASA Astrophysics Data System (ADS)
Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2017-02-01
Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Nazmi A.; Ali, Taha A., E-mail: Taha25@gmail.com; Aly, Moustafa H.
2013-12-15
In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A “New” apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSRmore » of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of −45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of −60.1, very low SLav of −63.6 dB, and very high SLSR of −57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.« less
NASA Astrophysics Data System (ADS)
Mohammed, Nazmi A.; Ali, Taha A.; Aly, Moustafa H.
2013-12-01
In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A "New" apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSR of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of -45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of -60.1, very low SLav of -63.6 dB, and very high SLSR of -57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.
Self-sensing concrete-filled FRP tubes using FBG strain sensors
NASA Astrophysics Data System (ADS)
Yan, Xin; Li, Hui
2007-07-01
Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.
NASA Astrophysics Data System (ADS)
Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald
2009-05-01
A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.
Application of Multiplexed FBG and PZT Impedance Sensors for Health Monitoring of Rocks
Yang, Yaowen; Annamdas, Venu Gopal Madhav; Wang, Chao; Zhou, Yingxin
2008-01-01
Reliable structural health monitoring (SHM) including nondestructive evaluation (NDE) is essential for safe operation of infrastructure systems. Effective monitoring of the rock components of civil infrastructures such as tunnels and caverns remains challenging. The feasibility of employing smart optical fibre sensor (OFS) and piezoelectric impedance sensor made up of lead zirconate titanate (PZT) for comprehensive health monitoring of rocks, covering load history monitoring/retrieval as well as damage assessment is presented in this paper. The rock specimens are subjected to cyclic loading and their conditions are continuously monitored using OFS and PZT sensors. OFS based multiplexed fibre Bragg grating (FBG) sensors are surface bonded on the rock specimens. Their strain sensing performance is compared with the conventional electric strain gauges (ESGs). In addition, PZT patches are also bonded on the specimens to study the damage pattern during different loading cycles. Unlike the FBGs or ESGs, PZT patches are used as bi-functional sensors and actuators, enabling them to be efficient detectors of incipient damages using the principle of electromechanical impedance. The experimental study demonstrated superior performance of these smart FBG and PZT impedance sensors. This work is expected to be useful for SHM based NDE application of rock structures such as caverns and tunnels. PMID:27879708
[Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].
Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang
2014-03-01
In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.
Fiber Bragg Grating Based System for Temperature Measurements
NASA Astrophysics Data System (ADS)
Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly
In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.
NASA Astrophysics Data System (ADS)
Pachava, Vengal Rao; Kamineni, Srimannarayana; Madhuvarasu, Sai Shankar; Putha, Kishore; Mamidi, Venkata Reddy
2015-12-01
A fiber Bragg grating (FBG) pressure sensor with high sensitivity and resolution has been designed and demonstrated. The sensor is configured by firmly fixing the FBG with a metal bellows structure. The sensor works by means of measuring the Bragg wavelength shift of the FBG with respect to pressure change. From the experimental results, the pressure sensitivity of the sensor is found to be 90.6 pm/psi, which is approximately 4000 times as that of a bare fiber Bragg grating. A very good linearity of 99.86% is observed between the Bragg wavelength of the FBG and applied pressure. The designed sensor shows good repeatability with a negligible hysteresis error of ± 0.29 psi. A low-cost interrogation system that includes a long period grating (LPG) and a photodiode (PD) accompanied with simple electronic circuitry is demonstrated for the FBG sensor, which enables the sensor to attain high resolution of up to 0.025 psi. Thermal-strain cross sensitivity of the FBG pressure sensor is compensated using a reference FBG temperature sensor. The designed sensor can be used for liquid level, specific gravity, and static/dynamic low pressure measurement applications.
Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs
Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo
2016-01-01
Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043
Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.
Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo
2016-11-26
Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.
NASA Astrophysics Data System (ADS)
Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin
2015-08-01
Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Qian, Ya; Zhang, Wei; Li, Hanyu; Xie, Xin
2015-12-01
A real-time intelligent fiber-optic perimeter intrusion detection system (PIDS) based on the fiber Bragg grating (FBG) sensor network is presented in this paper. To distinguish the effects of different intrusion events, a novel real-time behavior impact classification method is proposed based on the essential statistical characteristics of signal's profile in the time domain. The features are extracted by the principal component analysis (PCA), which are then used to identify the event with a K-nearest neighbor classifier. Simulation and field tests are both carried out to validate its effectiveness. The average identification rate (IR) for five sample signals in the simulation test is as high as 96.67%, and the recognition rate for eight typical signals in the field test can also be achieved up to 96.52%, which includes both the fence-mounted and the ground-buried sensing signals. Besides, critically high detection rate (DR) and low false alarm rate (FAR) can be simultaneously obtained based on the autocorrelation characteristics analysis and a hierarchical detection and identification flow.
Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying
2016-03-01
Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor.
Hopf, Barbara; Dutz, Franz J; Bosselmann, Thomas; Willsch, Michael; Koch, Alexander W; Roths, Johannes
2018-04-30
A new iterative matrix algorithm has been applied to improve the precision of temperature and force decoupling in multi-parameter FBG sensing. For the first time, this evaluation technique allows the integration of nonlinearities in the sensor's temperature characteristic and the temperature dependence of the sensor's force sensitivity. Applied to a sensor cable consisting of two FBGs in fibers with 80 µm and 125 µm cladding diameter installed in a 7 m-long coiled PEEK capillary, this technique significantly reduced the uncertainties in friction-compensated temperature measurements. In the presence of high friction-induced forces of up to 1.6 N the uncertainties in temperature evaluation were reduced from several degrees Celsius if using a standard linear matrix approach to less than 0.5°C if using the iterative matrix approach in an extended temperature range between -35°C and 125°C.
Pressure sensing of Fabry-Perot interferometer with a microchannel demodulated by a FBG
NASA Astrophysics Data System (ADS)
Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen
2015-07-01
A novel and compact fiber-probe pressure sensor was demonstrated based on micro Fabry-Perot interferometer (FPI). The device was fabricated by splicing both ends of a short section simplified hollow-core photonic crystal fiber (SHCPCF) with single mode fibers (SMFs), and then a micro channel was drilled by femtosecond laser micromachining in the SHC-PCF to significantly enhance the pressure sensitivity. The pressure sensing characteristics based on micro-FPI have been investigated by measuring the signals through the demodulation of phase since the external signal imposing on the interferometer will induce the phase change of interference signal. Then a FBG was cascaded to demodulate the signal. A micro FPI demonstrates a maximum pressure sensitivity of 32 dB/MPa, while a low temperature cross-sensitivity of 0.27 KPa/°C. Hence it may have potential for pressure applications in harsh environment.
Zaghloul, Mohamed A S; Wang, Mohan; Huang, Sheng; Hnatovsky, Cyril; Grobnic, Dan; Mihailov, Stephen; Li, Ming-Jun; Carpenter, David; Hu, Lin-Wen; Daw, Joshua; Laffont, Guillaume; Nehr, Simon; Chen, Kevin P
2018-04-30
This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 10 14 n/cm 2 /s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 10 20 n/cm 2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.
Enabling technologies for fiber optic sensing
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.
2016-04-01
In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.
Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors
NASA Astrophysics Data System (ADS)
Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.
2018-05-01
Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5 × 10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.
Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig
2007-04-01
This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.
A distributed fluid level sensor suitable for monitoring fuel load on board a moving fuel tank
NASA Astrophysics Data System (ADS)
Arkwright, John W.; Parkinson, Luke A.; Papageorgiou, Anthony W.
2018-02-01
A temperature insensitive fiber Bragg grating sensing array has been developed for monitoring fluid levels in a moving tank. The sensors are formed from two optical fibers twisted together to form a double helix with pairs of fiber Bragg gratings located above one another at the points where the fibers are vertically disposed. The sensing mechanism is based on a downwards deflection of the section of the double helix containing the FBGs which causes the tension in the upper FBG to decrease and the tension in the lower FBG to increase with concomitant changes in Bragg wavelength in each FBG. Changes in ambient temperature cause a common mode increase in Bragg wavelength, thus monitoring the differential change in wavelength provides a temperature independent measure of the applied pressure. Ambient temperature can be monitored simultaneously by taking the average wavelength of the upper and lower FBGs. The sensors are able to detect variations in pressure with resolutions better than 1 mmH2O and when placed on the bottom of a tank can be used to monitor fluid level based on the recorded pressure. Using an array of these sensors located along the bottom of a moving tank it was possible to monitor the fluid level at multiple points and hence dynamically track the total fluid volume in the tank. The outer surface of the sensing array is formed from a thin continuous Teflon sleeve, making it suitable for monitoring the level of volatile fluids such as aviation fuel and gasoline.
Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides.
Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin
2016-09-02
Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as "hard sensors" (Sensor 1 and Sensor 2), the other two are referred to as "soft sensors" (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm.
Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides
Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin
2016-01-01
Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as “hard sensors” (Sensor 1 and Sensor 2), the other two are referred to as “soft sensors” (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm. PMID:27598163
An optical fiber expendable seawater temperature/depth profile sensor
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan
2017-10-01
Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.
Design challenges of a tunable laser interrogator for geo-stationary communication satellites
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus
2017-09-01
Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across <20 sensors connected to two separate optical channels. In order to achieve the required temperature specifications of +/-0.5°C across a temperature range of -20°C to +65°C using femtosecond inscribed FBGs (fs-FBG), a polarization switch is used to mitigate for the polarization dependent frequency shift (PDFS) induced from fs-FBG which could be in the order of < 20 pm causing < 2°C error in the measurement. Also special transducers were designed to isolate the strain from the FBGs to reduce any strain influence on the FBG temperature measurements while ensuring high thermal conductivity. In this paper we demonstrate the operation of an optical FBG interrogator as part of a hybrid sensor bus (HSB) engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.
Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.
Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios
2012-05-01
A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.
Impact damage monitoring in CFRP using fiber Bragg grating ultrasound sensors
NASA Astrophysics Data System (ADS)
Tsuda, Hiroshi; Lee, Jung-Ryul; Eguchi, Shunji
2006-03-01
Impact damage in CFRP was monitored by ultrasonic inspection method using small-diameter fiber Bragg grating (FBG) sensors. The FBG ultrasound detection system consisted of broadband light source, FBG sensor and tunable optical filter. Broadband light was launched into the FBG sensor. Light reflected from the FBG sensor was transmitted through the tunable optical filter whose transmissive wavelength range is comparable to the reflected wavelength range of the FBG sensor. The operating wavelength of tunable filter was set to optimize the sensitivity of ultrasound detection. Ultrasound vibration was converted into change in intensity of light transmitted through the filter. A cross-ply carbon fiber-reinforced plastic (CFRP) plate was used as a test specimen for impact damage monitoring. A 6.3 X 9mm2 impact damage was introduced by ball dropping. Both FBG ultrasound sensor and piezoelectric ultrasound transmitter were attached on the CFRP surface. The change in responses to ultrasound excited by either spike signal or toneburst signal before and after impact damage was investigated. In response to ultrasound excited by spike signal, the response after impact damage showed a scattered behavior where the period of response signal got longer. In response to ultrasound excited by toneburst signal, damage signal features scattered and distorted waveform. Experimental results proved that the FBG inspection system could monitor a 6.3 X 9mm2 impact damage in CFRP.
Novel glucose fiber sensor combining ThFBG with GOD
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Zhou, Ciming; Fan, Dian; Ou, Yiwen
2016-10-01
We propose a novel glucose fiber optic sensor combining a thinned cladding fiber Bragg grating (ThFBG) with glucose oxidase (GOD). By immobilizing GOD on the surface of a ThFBG, the fabricated sensor can obtain a high specificity to glucose. Because of the evanescent field, the sensor is very sensitive to the ambient refractive index change arising from the catalytic reaction between glucose and GOD. A four-level fiber model was simulated and verified the precision of the sensing principle. Two methods, glutaraldehyde crosslinking method (GCM) and 3-aminopropyl triethoxysilane covalent coupling method (ATCCM), were experimentally utilized to immobilize GOD. And sensor fabricated with the method ATCCM shows a measurement range of 0-0.82 mg/mL which is better than the sensor fabricated with the method GCM with measurement range of 0-0.67 mg/mL under the same condition. By using ATCCM to immobilize GOD with different concentrations, three sensors were fabricated and used for glucose measurement by monitoring the Bragg wavelength (λb) shifts, the results indicate a good linear relationship between wavelength shift and glucose concentration within a specific range, and the measurement range increases as GOD concentration increases. The highest sensitivity of sensor reaches up to 0.0549 nm/(mg.mL-1). The proposed sensor has distinct advantages in sensing structure, cost and specificity.
Lamberti, Alfredo; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Kaufmann, Markus; Vanlanduit, Steve
2015-01-01
The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e., it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified. PMID:26516854
NASA Astrophysics Data System (ADS)
Méndez, Alexis
2017-06-01
Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.
Intensity liquid level sensor based on multimode interference and fiber Bragg grating
NASA Astrophysics Data System (ADS)
Oliveira, Ricardo; Aristilde, Stenio; Osório, Jonas H.; Franco, Marcos A. R.; Bilro, Lúcia; Nogueira, Rogério N.; Cordeiro, Cristiano M. B.
2016-12-01
In this paper an intensity liquid level sensor based on a single-mode—no-core—single-mode (SMS) fiber structure together with a Bragg grating inscribed in the later single mode fiber is proposed. As the no-core fiber is sensitive to the external refractive index, the SMS spectral response will be shifted related to the length of no-core fiber that is immersed in a liquid. By positioning the FBG central wavelength at the spectral region of the SMS edge filter, it is possible to measure the liquid level using the reflected FBG peak power through an intensity-based approach. The sensor is also self-referenced using the peak power of another FBG that is placed before and far from the sensing part. The temperature error analysis was also studied revealing that the sensor can operate in environments where the temperature changes are minimal. The possibility to use a second setup that makes the whole device temperature insensitive is also discussed.
Laser interrogation techniques for high-sensitivity strain sensing by fiber-Bragg-grating structures
NASA Astrophysics Data System (ADS)
Gagliardi, G.; Salza, M.; Ferraro, P.; De Natale, P.
2017-11-01
Novel interrogation methods for static and dynamic measurements of mechanical deformations by fiber Bragg-gratings (FBGs) structures are presented. The sensor-reflected radiation gives information on suffered strain, with a sensitivity dependent on the interrogation setup. Different approaches have been carried out, based on laser-frequency modulation techniques and near-IR lasers, to measure strain in single-FBG and in resonant high-reflectivity FBG arrays. In particular, for the fiber resonator, the laser frequency is actively locked to the cavity resonances by the Pound-Drever-Hall technique, thus tracking any frequency change due to deformations. The loop error and correction signals fed back to the laser are used as strain monitor. Sensitivity limits vary between 200 nɛ/√Hz in the quasi-static domain (0.5÷2 Hz), and between 1 and 4 nɛ/√Hz in the 0.4-1 kHz range for the single-FBG scheme, while strain down to 50 pɛ can be detected by using the laser-cavity-locked method.
Sampath, Umesh; Kim, Daegil; Kim, Hyunjin; Song, Minho
2018-01-20
A polymer-coated fiber Bragg grating (PCFBG) is examined for real-time temperature and strain monitoring in composite materials at cryogenic temperatures. The proposed sensor enables the simultaneous measurement of temperature and strain at extremely low temperatures by tracking the changes in the reflected center wavelengths from a pair of PCFBGs embedded in a composite material. The cryogenic temperature sensing was realized by introducing polymer coatings onto bare FBGs, which resulted in high temperature sensitivity under cryogenic conditions. A comparison of wavelength responses of the Bragg grating with and without a polymer coating toward temperatures ranging from 25°C to -180°C was performed. The polymer-coated FBG exhibited a sensitivity of 48 pm/°C, which is 10 times greater than that of the bare FBGs. In addition, the encapsulation of the FBG in a capillary tube made it possible to evaluate the strain accumulated within the composite during operation under cryogenic conditions.
Design, manufacture and testing of an FBG-instrumented composite wing
NASA Astrophysics Data System (ADS)
Abouzeida, E.; Quinones, V.; Gowayed, Y.; Soobramaney, P.; Flowers, G.; Black, R. J.; Costa, J. M.; Faridian, F.; Moslehi, B.
2014-02-01
In this work, our research team investigated the efficacy of using optical static and dynamic strain sensing with embedded Fiber Bragg Gratings (FBGs) in structural health monitoring (SHM) of a model composite airplane wing. A one-fourth scale model of a T38 airplane wing was designed and manufactured using fabric reinforced polymer matrix composites with FBG sensors embedded under the top layer of the composite. The accuracy and durability of the sensors were evaluated at the coupon and structural levels utilizing static and dynamic testing. Strain measurements using embedded FBGs with an optical interrogator were found to be in agreement with values measured using other strain measuring devices and with results obtained using finite element analysis (ANSYS®). Preferred locations for the FBG sensors were identified in accordance with contour maps of internal strain distributions resulting from critical load cases. Manufacturing techniques used to address handling, survivability and durability of the embedded sensors during and post manufacturing of the composites were evaluated and optimized.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar
2018-07-01
One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.
A fiber optic multi-stress monitoring system for power transformer
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-04-01
A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.
Hassan, Muhammad Rosdi Abu; Bakar, Muhammad Hafiz Abu; Dambul, Katrina; Adikan, Faisal Rafiq Mahamd
2012-01-01
In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed. PMID:23202233
Lu, Ji-Yun; Liang, Da-Kai; Zhang, Xiao-Li; Zhu, Zhu
2009-12-01
Spectrum of fiber bragg grating (FBG) sensor modulated by double long period grating (LPFG) is proposed in the paper. Double LPFG consists of two LPFGS whose center wavelengths are the same and reflection spectrum of FBG sensor is located in linear range of double LPFG transmission spectrum. Based on spectral analysis of FBG and double LPFG, reflection spectrum of FBG modulated by double LPFG is obtained and studied by use of band-hider filter characteristics for double LPFG. An FBG sensor is attached on the surface of thin steel beam, which is strained by bending, and the center wavelength of FBG sensor will shift. The spectral peak of FBG sensor modulated by double LPFG is changed correspondingly, and the spectral change will lead to variation in exit light intensity from double LPFG. Experiment demonstrates that the relation of filtering light intensity from double LPFG monitored by optical power meter to center wavelength change of FBG sensor is linear and the minimum strain of material (steel beam) detected by the modulation and demodulation system is 1.05 microepsilon. This solution is used in impact monitoring of optical fibre smart structure, and FBG sensor is applied for impulse response signal monitoring induced by low-velocity impact, when impact pendulum is loaded to carbon fiber-reinforced plastics (CFP). The acquired impact response signal and fast Fourier transform of the signal detected by FBG sensor agree with the measurement results of eddy current displacement meter attached to the FBG sensor. From the results, the present method using FBG sensor is found to be effective for monitoring the impact. The research provides a practical reference in dynamic monitoring of optical fiber smart structure field.
Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong
2017-01-01
In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T-matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring. PMID:28772949
Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong
2017-05-27
In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T -matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring.
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny
2017-09-01
The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all sensors recording an accuracy within 0.35% FS over the full temperature range of -70°C to +180°C. The pressure measurements were performed over a 0 to 5 bar absolute pressure range and over different temperatures across a -40°C to +80°C range. The tests concluded that the optical pressure sensors performed on par with the electrical pressure sensor for each temperature set, where both sensor technologies measured a pressure accuracy of 1.2% FS. As for the strain measurements, the results show the optical and electrical sensors can measure to within 1% FS (Full Scale) of measurement range +/-1,200 μstrain. The proposed hybrid system can be potentially used for next generation launcher applications delivering weight reduction, improvement in measurement coverage and reduction in Assembly, Integration and Testing (AIT) over traditional electrical systems.
NASA Astrophysics Data System (ADS)
Staveley, Chris
2014-06-01
With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.
Lamberti, Alfredo; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Kaufmann, Markus; Vanlanduit, Steve
2015-10-26
The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
Distributed FBG sensors apply in spacecraft health monitoring
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Zhang, Cuicui; Shi, Dele; Shen, Jingshi
2017-10-01
At present, Spacecraft manufacturing face with high adventure for its complicate structure, serious space environment and not maintained on orbit. When something wrong with spacecraft, monitoring its health state, supply health data in real time would assure quickly locate error and save more time to rescue it. For FBG sensor can distributed test several parameters such as temperature, strain, vibration and easily construct net. At same time, it has more advantages such as ant-radiate, anti-jamming, rodent-resistant and with long lifetime, which more fit for applying in space. In this paper, a spacecraft health monitor system based on FBG sensors is present, Firstly, spacecraft health monitor system and its development are introduced. Then a four channels FBG demodulator is design. At last, Temperature and strain detecting experiment is done. The result shows that the demodulator fully satisfied the need of spacecraft health monitor system.
Fiber-bragg grating-loop ringdown method and apparatus
Wang, Chuji [Starkville, MS
2008-01-29
A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.
Compact multichannel MEMS based spectrometer for FBG sensing
NASA Astrophysics Data System (ADS)
Ganziy, D.; Rose, B.; Bang, O.
2017-04-01
We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.
Optical fiber pressure sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Song, Dongcao
In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon fiber ribbon-wound composite cylindrical shell is proposed. The mechanical characteristics are analyzed. Due to the smaller longitudinal Young's modulus of this novel material, the sensitivity is improved to 0.452nm/MPa and the measurement range can reach 8MPa. The experimental results indicated excellent repeatability of the material and a good linearity between Bragg wavelength shift and the applied pressure. The sensor has the potential to find many industrial low pressure applications.
NASA Astrophysics Data System (ADS)
Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan
2017-04-01
In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.
In the trail of a new bio-sensor for measuring strain in bone: osteoblastic biocompatibility.
Carvalho, Lídia; Alberto, Nélia J; Gomes, Pedro S; Nogueira, Rogério N; Pinto, João L; Fernandes, Maria H
2011-06-15
Fibre Bragg Grating (FBG) is an optical sensor recorded within the core of a standard optical fibre, which responds faithfully to strain and temperature. FBG sensors are a promising alternative to other sensing methodologies to assess bone mechanics in vivo. However, response of bone cells/bone tissue to FBGs and its sensing capability in this environment have not been recorded yet. The present study addressed these issues in long-term human osteoblastic cell cultures. Results showed that osteoblastic cells were able to adhere and proliferate over the fibre and, also, the protective polymer coating. RT-PCR analysis showed the expression of Col I, ALP, BMP-2, M-CSF, RANKL and OPG. In addition, cultures presented high ALP activity and the formation of a calcium phosphate mineralized extracellular matrix. Cell behavior over the fibre without and with the coating polymer was similar to that found in cultures grown in standard tissue culture plates (control). In addition to the excellent osteoblastic cytocompatibility, FBGs maintained the physical integrity and functionality, as its sensing capability was not affected through the culture period. Results suggest the possibility of in vivo osseointegration of the optical fibre/FBGs anticipating a variety of applications in bone mechanical dynamics. Copyright © 2011 Elsevier B.V. All rights reserved.
Towards development of a fiber optic-based transmission monitoring system
NASA Astrophysics Data System (ADS)
Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.
2011-06-01
There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.
Use of FBG sensors for health monitoring of pipelines
NASA Astrophysics Data System (ADS)
Felli, Ferdinando; Paolozzi, Antonio; Vendittozzi, Cristian; Paris, Claudio; Asanuma, Hiroshi
2016-04-01
The infrastructures for oil and gas production and distribution need reliable monitoring systems. The risks for pipelines, in particular, are not only limited to natural disasters (landslides, earthquakes, extreme environmental conditions) and accidents, but involve also the damages related to criminal activities, such as oil theft. The existing monitoring systems are not adequate for detecting damages from oil theft, and in several occasion the illegal activities resulted in leakage of oil and catastrophic environmental pollution. Systems based on fiber optic FBG (Fiber Bragg Grating) sensors present a number of advantages for pipeline monitoring. FBG sensors can withstand harsh environment, are immune to interferences, and can be used to develop a smart system for monitoring at the same time several physical characteristics, such as strain, temperature, acceleration, pressure, and vibrations. The monitoring station can be positioned tens of kilometers away from the measuring points, lowering the costs and the complexity of the system. This paper describes tests on a sensor, based on FBG technology, developed specifically for detecting damages of pipeline due to illegal activities (drilling of the pipes), that can be integrated into a smart monitoring chain.
Real-time weigh-in-motion measurement using fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Huang, Ying; Palek, Leonard; Strommen, Robert; Worel, Ben; Chen, Genda
2014-03-01
Overloading truck loads have long been one of the key reasons for accelerating road damage, especially in rural regions where the design loads are expected to be small and in the cold regions where the wet-and-dry cycle places a significant role. To control the designed traffic loads and further guide the road design in future, periodical weight stations have been implemented for double check of the truck loads. The weight stations give chances for missing measurement of overloaded vehicles, slow down the traffic, and require additional labors. Infrastructure weight-in-motion sensors, on the other hand, keep consistent traffic flow and monitor all types of vehicles on roads. However, traditional electrical weight-in-motion sensors showed high electromagnetic interference (EMI), high dependence on environmental conditions such as moisture, and relatively short life cycle, which are unreliable for long-term weigh-inmotion measurements. Fiber Bragg grating (FBG) sensors, with unique advantages of compactness, immune to EMI and moisture, capability of quasi-distributed sensing, and long life cycle, will be a perfect candidate for long-term weigh-in-motion measurements. However, the FBG sensors also surfer from their frangible nature of glass materials for a good survive rate during sensor installation. In this study, the FBG based weight-in-motion sensors were packaged by fiber reinforced polymer (FRP) materials and further validated at MnROAD facility, Minnesota DOT (MnDOT). The design and layout of the FRP-FBG weight-in-motion sensors, their field test setup, data acquisition, and data analysis will be presented. Upon validation, the FRP-FBG sensors can be applied weigh-in-motion measurement to assistant road managements.
Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test
NASA Astrophysics Data System (ADS)
Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.
2017-11-01
Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical strain transducer to generate strain via a dedicated feed through in the chamber. Thermocouples are used to log the temperature for comparison to the temperature FBG sensor. Extreme temperature ranges from -150°C and +70°C at a pressure down to 10-4 Pa (10-6 mbar) are covered as well as testing under ambient conditions. In total five thermal cycles during a week test are performed. The FBG temperature sensor test results performed in the ESA/ESTEC TV chamber reveal high reproducibility (within 1 °C) within the test temperature range without any evidence of hysteresis. Differences are detected to the previous calibration curve. Investigation is performed to find the cause of the discrepancy. Differences between the test set-ups are identified. Equipment of the TNO test is checked and excluded to be the cause. Additional experiments are performed. The discrepancy is most likely caused by a 'thermal shock' due to rapid cooling down to LN2 temperature, which results in a wavelength shift. Test data of the FBG strain sensor is analysed. The read-out of the FBG strain sensor varies with the temperature during the test. This can be caused by temperature induced changes in the mechanical setup (fastening of the mechanical parts) or impact of temperature to the mechanical strain transfer to the FBG. Improvements are identified and recommendations given for future activities.
Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors
NASA Technical Reports Server (NTRS)
Osei, Albert J.
2002-01-01
Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2005-03-15
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.
Fiber optical sensing on-board communication satellites
NASA Astrophysics Data System (ADS)
Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.
2017-11-01
Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB Controller Module, the Interrogator Controller Module and the Analog Front-End for the fiber-optical interrogation. The Interrogator Controller Module handles both, the electrical and fiber-optical sensor network. For the latter it is to be completed by the Analog Front-End. On this front-end, a tunable laser diode is implemented for the scanning of the FBG sensors. The reflected spectra are measured on multiple fiber channels and are then evaluated by use of a peak detection algorithm in order to obtain a precise temperature measurement. The precise operation of the photonic system on long terms can be guaranteed thanks to an inorbit calibration concept.
Photonic sensors review recent progress of fiber sensing technologies in Tianjin University
NASA Astrophysics Data System (ADS)
Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Li, Enbang; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo
2011-03-01
The up to date progress of fiber sensing technologies in Tianjin University are proposed in this paper. Fiber-optic temperature sensor based on the interference of selective higher-order modes in circular optical fiber is developed. Parallel demodulation for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is realized based on white light interference. Gas concentration detection is realized based on intra-cavity fiber laser spectroscopy. Polarization maintaining fiber (PMF) is used for distributed position or displacement sensing. Based on the before work and results, we gained National Basic Research Program of China on optical fiber sensing technology and will develop further investigation in this area.
Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks
NASA Astrophysics Data System (ADS)
Takeda, Nobuo; Mizutani, Tadahito; Hayashi, Kentaro; Okabe, Yoji
2003-08-01
Although many researches of strain measurement using fiber Bragg grating (FBG) sensors were conducted, there were few applications of FBG sensors to spacecraft in operation. It is very significant to develop an onboard system for the real-time strain measurement during the flight operation. In the present research, the real-time strain measurement of a composite liquid hydrogen (LH2) tank, which consisted of CFRP and aluminum liner, was attempted. Adhesive property of the FBG sensors was investigated first of all. As a result, UV coated FBG sensors and polyurethane adhesive were adopted. Then, reflection spectra from FBG sensors were measured through the tensile test at liquid helium (LHe) temperature. Since the center wavelength shifted in proportion to the applied strain, the FBG sensor was suitable as a precise strain sensor even at LHe temperature. Next, the development of an onboard FBG demodulator was discussed. This onboard demodulator was designed for weight saving to be mounted on a reusable rocket vehicle test (RVT) operated by the Institute of Space and Astronautical Science (ISAS). FBG sensors were bonded on the surface of the composite LH2 tank for the RVT. Then, strain measurement using the onboard demodulator was conducted through the cryogenic pressure test of the tank and compared with the result measured using the optical spectrum analyzer (OSA).
Qi, Liang; Zhao, Chun-Liu; Kang, Juan; Jin, Yongxing; Wang, Jianfeng; Ye, Manping; Jin, Shangzhong
2013-07-01
A solution refractive index (SRI) and temperature simultaneous measurement sensor with intensity-demodulation system based on matching grating method were demonstrated. Long period grating written in a photonic crystal fiber (LPG-PCF), provides temperature stable and wavelength dependent optical intensity transmission. The reflective peaks of two fiber Bragg gratings (FBGs), one of which is etched then sensitive to both SRI and temperature, another (FBG2) is only sensitive to temperature, were located in the same linear range of the LPG-PCF's transmission spectrum. An identical FBG with FBG2 was chosen as a matching FBG. When environments (SRI and temperature) change, the wavelength shifts of the FBGs are translated effectively to the reflection intensity changes. By monitoring output lights of unmatching and matching paths, the SRI and temperature were deduced by a signal processing unit. Experimental results show that the simultaneous refractive index and temperature measurement system work well. The proposed sensor system is compact and suitable for in situ applications at lower cost.
Optical Fiber Thermometer Based on Fiber Bragg Gratings
NASA Astrophysics Data System (ADS)
Rosli, Ekbal Bin; Mohd. Noor, Uzer
2018-03-01
Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.
Research on the novel FBG detection system for temperature and strain field distribution
NASA Astrophysics Data System (ADS)
Liu, Zhi-chao; Yang, Jin-hua
2017-10-01
In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.
NASA Astrophysics Data System (ADS)
Peng, Te; Yang, Yangyang; Ma, Lina; Yang, Huayong
2016-10-01
A sensor system based on fiber Bragg grating (FBG) is presented which is to estimate the deflection of a lightweight flexible beam, including the tip position and the tip rotation angle. In this paper, the classical problem of the deflection of a lightweight flexible beam of linear elastic material is analysed. We present the differential equation governing the behavior of a physical system and show that this equation although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. We used epoxy glue to attach the FBG sensors to specific locations upper and lower surface of the beam in order to measure local strain measurements. A quasi-distributed FBG static strain sensor network is designed and established. The estimation results from FBG sensors are also compared to reference displacements from the ANSYS simulation results and the experimental results obtained in the laboratory in the static case. The errors of the estimation by FBG sensors are analysed for further error-correction and option-design. When the load weight is 20g, the precision is the highest, the position errors ex and ex are 0.19%, 0.14% respectively, the rotation error eθ, is 1.23%.
Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System.
Ye, Xiao-Wei; Su, You-Hua; Xi, Pei-Sen
2018-02-07
In this paper, a fiber Bragg grating (FBG)-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA)-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC). Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW). The stochastic characteristic of stress concentration factor (SCF) of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.
Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures.
Jiang, Mingshun; Sai, Yaozhang; Geng, Xiangyi; Sui, Qingmei; Liu, Xiaohui; Jia, Lei
2016-10-24
We proposed and studied an impact detection system based on a fiber Bragg grating (FBG) sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts. The edge-filter method was employed for signal demodulation. Shannon wavelet transform was used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results show that the maximum error and average error of the multi-impacts' localization are 9.2 mm and 7.4 mm, respectively.
NASA Astrophysics Data System (ADS)
Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri
2016-02-01
In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.
Study on dynamic response measurement of the submarine pipeline by full-term FBG sensors.
Zhou, Jinghai; Sun, Li; Li, Hongnan
2014-01-01
The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement.
Study on Dynamic Response Measurement of the Submarine Pipeline by Full-Term FBG Sensors
Zhou, Jinghai; Sun, Li; Li, Hongnan
2014-01-01
The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement. PMID:24971391
Liu, Chao; Pei, Li; Li, Zhuoxuan; Ning, Tigang; Yu, Shaowei; Kang, Zexin
2013-05-10
Fourier mode coupling theory was first employed in the spectral analysis of several nonuniform fiber Bragg grating (FBG)-based acousto-optic modulators (NU-FBG-AOMs) with the effects of Gaussian-apodization (GA), phase shift (PS), and linear chirp (LC). Because of the accuracy and simplicity of the algorithm applied in this model, the modulation performances of these modulators can be acquired effectively and efficiently. Based on the model, the reflected spectra of these modulators were simulated under various acoustic frequencies and acoustically induced strains. The simulation results of the GA-FBG-AOM and PS-FBG-AOM showed that the wavelength spacing between the primary reflection peak and the secondary reflection peak is proportional to the acoustic frequency, and the reflectivity of reflection peaks depends on the acoustically induced strains. But for the LC-FBG-AOM, the wavelength spacing between the neighboring reflection peaks increased linearly and inversely with the acoustic frequency, and the extinction ratio of each peak relates to the acoustically induced strain. These numerical analysis results, which were effectively used in the designs and fabrications of these NU-FBG-AOMs, can broaden the AOM-based application scope and shed light on the performance optimization of optical wavelength-division multiplex system.
NASA Astrophysics Data System (ADS)
Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen
2017-04-01
We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.
Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping
2010-03-01
Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.
Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok
2014-01-01
A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803
NASA Astrophysics Data System (ADS)
Jelbuldina, Madina; Korobeinyk, Alina V.; Korganbayev, Sanzhar; Inglezakis, Vassilis J.; Tosi, Daniele
2018-07-01
In this work, we report the real-time temperature profiling performed with a fiber Bragg grating (FBG) sensing system, applied to a ferromagnetic nanoparticles (NP)-enhanced radiofrequency ablation (RFA) for interventional cancer care. A minimally invasive RFA setup has been prepared and applied ex vivo on a liver phantom; NPs (with concentrations of 5 and 10 mg/mL) have been synthesized and injected within the tissue prior to ablation, in order to facilitate the heat distribution to the peripheral sides of the treated tissue. A network of 15 FBG sensors has been deployed in situ in order to detect the parenchymal temperature distribution and estimate the thermal profiles in real time during the ablation, highlighting the impact of the NPs on the RFA mechanism. The results confirm that NP-enhanced ablation with 5 mg/mL density shows a better heat penetration that a standard RFA achieving an almost double-sized lesion, while a higher density (10 mg/mL) does not improve the heat distribution. Thermal data are reported highlighting both spatial and temporal gradients, evaluating the capability of NPs to deliver sufficient heating to the peripheral sides of the tumor borders.
NASA Astrophysics Data System (ADS)
Kirikera, G. R.; Balogun, O.; Krishnaswamy, S.
2008-02-01
A network of Fiber-Bragg Grating (FBG) sensors is developed as part of a Structural Health Monitoring system to identify impact damage. The sensor signals are adaptively demodulated using two-wave mixing (TWM) technology. The signals from multiple FBG sensors are multiplexed into a single TWM demodulator. The FBG sensor network is mounted on a plate, and the structure is subjected to impacts generated by dropping small ball bearings. Impact locations are identified based on time frequency analysis.
NASA Astrophysics Data System (ADS)
Willsch, Reinhardt; Ecke, Wolfgang; Schwotzer, Gunter
2005-09-01
Different types of advanced optical fibre sensor systems using similar spectral interrogation principles and potential low-cost polychromator optoelectronic signal processing instrumentation will be presented, and examples of their industrial application are demonstrated. These are such sensors as multimode fibre based humidity, temperature, and pressure sensors with extrinsic microoptical Fabry-Perot transducers for process control in gas industry, UV absorption evanescent field sensors for organic pollution monitoring in groundwater, and single mode fibre Bragg grating (FBG) multiplexed strain & vibration and temperature sensor networks for structural health monitoring applications in electric power facilities, aerospace, railways, geotechnical and civil engineering. Recent results of current investigations applying FBGs and microstructured fibres for chemical sensing will be discussed.
Sensorization of a surgical robotic instrument for force sensing
NASA Astrophysics Data System (ADS)
Shahzada, Kaspar S.; Yurkewich, Aaron; Xu, Ran; Patel, Rajni V.
2016-03-01
This paper presents the development and application of an approach for sensorizing a surgical robotic instrument for two degree-of-freedom (DOF) lateral force sensing. The sensorized instrument is compatible with the da Vinci® Surgical System and can be used for skills assessment and force control in specific surgical tasks. The sensing technology utilizes a novel layout of four fiber Bragg grating (FBG) sensors attached to the shaft of a da Vinci® surgical instrument. The two cross-section layout is insensitive to error caused by combined force and torque loads, and the orientation of the sensors minimizes the condition number of the instrument's compliance matrix. To evaluate the instrument's sensing capabilities, its performance was tested using a commercially available force-torque sensor, and showed a resolution of 0.05N at 1 kHz sampling rate. The performance of the sensorized instrument was evaluated by performing three surgical tasks on phantom tissue using the da Vinci® system with the da Vinci Research Kit (dVRK): tissue palpation, knot tightening during suturing and Hem-O-Lok® tightening during knotless suturing. The tasks were designed to demonstrate the robustness of the sensorized force measurement approach. The paper reports the results of further evaluation by a group of expert and novice surgeons performing the three tasks mentioned above.
Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting
2016-01-01
The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry. PMID:27589754
Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting
2016-08-30
The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry.
Analysis and control of the METC fluid bed gasifier. Quarterly report, July 1--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data; (2) review of the literature on fluid bed gasifier operation and control; and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) observation of the FBG during the week of July 17 to July 21; (2) suggested improvements to the control of FBG backpressure and MGCR pressure; and (3) data collection from FBGmore » run No. 11 and transfer of data to USC.« less
Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System
Ye, Xiao-Wei; Xi, Pei-Sen
2018-01-01
In this paper, a fiber Bragg grating (FBG)-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA)-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC). Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW). The stochastic characteristic of stress concentration factor (SCF) of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges. PMID:29414850
Test of FBG sensors for monitoring high pressure pipes
NASA Astrophysics Data System (ADS)
Paolozzi, Antonio; Paris, Claudio; Vendittozzi, Cristian; Felli, Ferdinando; Mongelli, Marialuisa; De Canio, Gerardo; Colucci, Alessandro; Asanuma, Hiroshi
2017-04-01
Fibre Bragg Grating (FBG) sensors are increasingly being used on a wide range of civil, industrial and aerospace structures. The sensors are created inside optical fibres (usually standard telecommunication fibres); the optical fibres technology allows to install the sensors on structures working in harsh environments, since the materials are almost insensitive to corrosion, the monitoring system can be positioned far away from the sensors without sensible signal losses, and there is no risk of electric discharge. FBG sensors can be used to create strain gages, thermometers or accelerometers, depending on the coating on the grating, on the way the grating is fixed to the structure, and on the presence of a specifically designed interface that can act as a transducer. This paper describes a test of several different FBG sensors to monitor an high pressure pipe that feeds the hydraulic actuators of a 6 degrees-of-freedom shaking table at the ENEA Casaccia research centre. A bare FBG sensor and a copper coated FBG sensor have been glued on the pipe. A third sensor has been mounted on a special interface to amplify the vibrations; this last sensor can be placed on the steel pipe by a magnetic mounting system, that also allows the its removal. All the sensor are placed parallel to the axis of the pipe. The analysis of the data recorded when the shaking table is operated will allow to determine which kind of sensor is best suited for structural monitoring of high pressure pipelines.
NASA Astrophysics Data System (ADS)
Dar, Aasif Bashir; Jha, Rakesh Kumar
2017-03-01
Various dispersion compensation units are presented and evaluated in this paper. These dispersion compensation units include dispersion compensation fiber (DCF), DCF merged with fiber Bragg grating (FBG) (joint technique), and linear, square root, and cube root chirped tanh apodized FBG. For the performance evaluation 10 Gb/s NRZ transmission system over 100-km-long single-mode fiber is used. The three chirped FBGs are optimized individually to yield pulse width reduction percentage (PWRP) of 86.66, 79.96, 62.42% for linear, square root, and cube root, respectively. The DCF and Joint technique both provide a remarkable PWRP of 94.45 and 96.96%, respectively. The performance of optimized linear chirped tanh apodized FBG and DCF is compared for long-haul transmission system on the basis of quality factor of received signal. For both the systems maximum transmission distance is calculated such that quality factor is ≥ 6 at the receiver and result shows that performance of FBG is comparable to that of DCF with advantages of very low cost, small size and reduced nonlinear effects.
NASA Astrophysics Data System (ADS)
Chen, Ye; Vidakovic, Miodrag; Fabian, Matthias; Swift, Martin; Brun, Lee; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
This paper presents the results obtained from fibre Bragg grating (FBG) sensors integrated into a railway current-collecting pantograph for accurate measurement of contact force and contact location when it is subjected to various temperature conditions. The temperature change of the pantograph is simulated, at the industrial laboratory of Brecknell Willis in the UK, by changing the DC current applied to pantograph from 0 to 1500 A. This test is primarily designed to verify the effectiveness of the temperature compensation mechanism built in the FBG sensor design. For this verification, 3 thermocouples co-located with the FBG sensor packages are used to measure the temperature change seen from 25 °C to 55 °C. The tests were repeated several times and the sensor system has shown its temperatureindependence, confirming that the intrinsic cross-sensitivity of FBGs to temperature variation for strain measurement has been fully compensated through the use of this innovative sensor design and data processing.
High strain FBG sensors for structural fatigue testing of military aircraft
NASA Astrophysics Data System (ADS)
Tejedor, S.; Kopczyk, J.; Nuyens, T.; Davis, C.
2012-02-01
This paper reports on a series of tests investigating the performance of Draw Tower Gratings (DTGs) combined with custom-designed broad area packaging and bonding techniques for high-strain sensing applications on Defence platforms. The sensors and packaging were subjected to a series of high-strain static and cyclic loading tests and a summary of these results is presented.
NASA Astrophysics Data System (ADS)
Walker, Robert B.; Ding, Huimin; Coulas, David; Grobnic, Dan; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan
2015-09-01
Femtosecond written fiber Bragg gratings, have shown great potential for sensing in extreme environments. This paper discusses the fabrication and deployment of several fs-IR written FBG arrays, for monitoring main-spool skin temperatures of an entrained-flow gasifier, as well as the internal temperature gradient of a fluidized bed combustor.
Experimental investigation on mass flow rate measurements using fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Thekkethil, S. R.; Thomas, R. J.; Neumann, H.; Ramalingam, R.
2017-02-01
Flow measurement and control of cryogens is one of the major requirements of systems such as superconductor magnets for fusion reactors, MRI magnets etc. They can act as an early diagnostic tool for detection of any faults and ensure correct distribution of cooling load while also accessing thermal performance of the devices. Fibre Bragg Grating (FBG) sensors provide compact and accurate measurement systems which have added advantages such as immunity towards electrical and magnetic interference, low attenuation losses and remote sensing. This paper summarizes the initial experimental investigations and calibration of a novel FBG based mass flow meter. This design utilizes the viscous drag due to the flow to induce a bending strain on the fibre. The strain experienced by the fibre will be proportional to the flowrate and can be measured in terms of Bragg wavelength shift. The flowmeter is initially tested at atmospheric conditions using helium. The results are summarized and the performance parameters of the sensor are estimated. The results were also compared to a numerical model and further results for liquid helium is also reported. An overall sensitivity of 29 pm.(g.s-1)-1 was obtained for a helium flow, with a resolution of 0.2 g.s-1. A hysteresis error of 8 pm was also observed during load-unload cycles. The sensor is suitable for further tests using cryogens.
A MHz speed wavelength sweeping for ultra-high speed FBG interrogation
NASA Astrophysics Data System (ADS)
Kim, Gyeong Hun; Lee, Hwi Don; Eom, Tae Joong; Jeong, Myung Yung; Kim, Chang-Seok
2015-09-01
We demonstrated a MHz speed wavelength-swept fiber laser based on the active mode locking (AML) technique and applied to interrogation system of an array of fiber Bragg grating (FBG) sensors. MHz speed wavelength sweeping of wavelength-swept fiber laser can be obtained by programmable frequency modulation of the semiconductor optical amplifier (SOA) without any wavelength tunable filter. Both static and dynamic strain measurement of FBG sensors were successfully characterized with high linearity of an R-square value of 0.9999 at sweeping speed of 50 kHz.
Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A
2015-06-01
In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.
Study on the Optimal Groove Shape and Glue Material for Fiber Bragg Grating Measuring Bolts.
Zhao, Yiming; Zhang, Nong; Si, Guangyao; Li, Xuehua
2018-06-02
Fiber Bragg grating (FBG) measuring bolts, as a useful tool to evaluate the behaviors of steel bolts in underground engineering, can be manufactured by gluing the FBG sensors inside the grooves, which are usually symmetrical cuts along the steel bolt rod. The selection of the cut shape and the glue types could perceivably affect the final supporting strength of the bolts. Unfortunately, the impact of cut shape and glue type on bolting strength is not yet clear. In this study, based on direct tension tests, full tensile load⁻displacement curves of rock bolts with different groove shapes were obtained and analyzed. The effects of groove shape on the bolt strength were discussed, and the stress redistribution in the cross-section of a rock bolt with different grooves was simulated using ANSYS. The results indicated that the trapezoidal groove is best for manufacturing the FBG bolt due to its low reduction of supporting strength. Four types of glues commonly used for the FBG sensors were assessed by conducting tensile tests on the mechanical testing and simulation system and the static and dynamic optical interrogators system. Using linear regression analysis, the relationship between the reflected wavelength of FBG sensors and tensile load was obtained. Practical recommendations for glue selection in engineering practice are also provided.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Early-age monitoring of cement structures using FBG sensors
NASA Astrophysics Data System (ADS)
Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping
2006-03-01
With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.
Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor
NASA Astrophysics Data System (ADS)
Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.
2016-10-01
Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.
Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang
2011-05-01
The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.
NASA Astrophysics Data System (ADS)
Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.
2012-04-01
In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.
NASA Astrophysics Data System (ADS)
Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.; Aizzuddin, A. M.
2017-10-01
Fibre Bragg Grating (FBG) sensors have been widely utilized in the structural health monitoring (SHM) of structures. However, one of the main challenges of FBGs is the existence of inconsistency in output voltage during wavelength intensity demodulation utilizing photodetector (PD) to convert the light signal into digital voltage readings. Thus, the designation of this experimental work is to develop a robust FBG real-time monitoring system with the benefit of MATLAB graphical user interface (GUI) and voltage normalization algorithm to scale down the voltage inconsistency. Low-cost edge filter interrogation system has been practiced in the experimentation and splitter optical component is make use to reduce the intensity of the high power light source that leads to the formation of noise due to unwanted reflected wavelengths. The results revealed that with the advancement of the proposed monitoring system, the sensitivity of the FBG has been increased from 2.4 mV/N to 3.8 mV/N across the range of 50 N. The redundancy in output voltage variation data points has been reduced from 26 data/minute to 17 data/minute. The accuracy of the FBG in detecting the load induced falls in the acceptable range of total average error which is 1.38 %.
Method for Reducing the Refresh Rate of Fiber Bragg Grating Sensors
NASA Technical Reports Server (NTRS)
Parker, Allen R., Jr. (Inventor)
2014-01-01
The invention provides a method of obtaining the FBG data in final form (transforming the raw data into frequency and location data) by taking the raw FBG sensor data and dividing the data into a plurality of segments over time. By transforming the raw data into a plurality of smaller segments, processing time is significantly decreased. Also, by defining the segments over time, only one processing step is required. By employing this method, the refresh rate of FBG sensor systems can be improved from about 1 scan per second to over 20 scans per second.
NASA Astrophysics Data System (ADS)
Zhang, Zhenglin; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; You, Zewei; Huang, Xiaodi
2017-01-01
The precision of the encapsulated fiber optic sensor embedded into a host suffers from the influences of encapsulating materials. Furthermore, an interface transfer effect of strain sensing exists. This study uses an embedded basalt fiber-encapsulated fiber Bragg grating (FBG) sensor as the research object to derive an expression in a multilayer interface strain transfer coefficient by considering the mechanical properties of the host material. The direct impact of the host material on the strain transfer at an embedded multipoint continuous FBG (i.e., multiple gratings written on a single optical fiber) monitoring strain sensor, which was self-developed and encapsulated with basalt fiber, is studied to present the strain transfer coefficients corresponding to the positions of various gratings. The strain transfer coefficients of the sensor are analyzed based on the experiments designed for this study. The error of the experimental results is ˜2 μɛ when the strain is at 60 μɛ and below. Moreover, the measured curves almost completely coincide with the theoretical curves. The changes in the internal strain field inside the embedded structure of the basalt fiber-encapsulated FBG strain sensor could be easily monitored. Hence, important references are provided to measure the internal stress strain of the sensor.
NASA Astrophysics Data System (ADS)
Arkwright, J. W.; Blenman, N. G.; Underhill, I. D.; Maunder, S. A.; Spencer, N. J.; Costa, M.; Brooks, S. J.; Szczesniak, M. M.; Dinning, P. G.
2010-09-01
Diagnostic catheters based on fibre Bragg gratings (FBG's) are proving to be highly effective for measurement of the muscular activity associated with peristalsis in the human gut. The primary muscular contractions that generate peristalsis are circumferential in nature; however, it has long been known that there is also a component of longitudinal contractility present, acting in harmony with the circumferential component to improve the overall efficiency of material movement. To date, there have been relatively few reports on the measurement or inference of longitudinal contractions in humans and all have been limited to detection at a single location only. This is due to the lack of a viable recording technique suitable for real-time in-vivo measurement of this type of activity over extended lengths of the gut. We report the detection of longitudinal motion in lengths of excised mammalian colon using an FBG technique that should be viable for similar detection in humans. The longitudinal sensors have been combined with our previously reported FBG pressure sensing elements to form a composite catheter that allows the relative phase between the two components to be detected. The catheter output has been validated using digital video mapping in an ex-vivo animal preparation using lengths of rabbit ileum.
Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis
Tosi, Daniele
2015-01-01
The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975
Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.
Tosi, Daniele
2015-10-29
The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.
Enlarged-taper tailored Fiber Bragg grating with polyvinyl alcohol coating for humidity sensing
NASA Astrophysics Data System (ADS)
Liang, Yanhong; Yan, Guofeng; He, Sailing
2015-08-01
In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2005-01-01
Composite Over-Wrap Vessels are widely used in the aerospace community. They are made of thin-walled bottles that are over wrapped with high strength fibers embedded in a matrix material. There is a strong drive to reduce the weight of space borne vehicles and thus pushes designers to adopt COPVs that are over wrapped with graphite fibers embedded in its epoxy matrix. Unfortunately, this same fiber-matrix configuration is more susceptible to impact damage than others and to make matters worse; there is a regime where impacts that damage the over wrap leave no visible scar on the COPV surface. In this paper FBG sensors are presented as a means of monitoring and detecting these types of damage. The FBG sensors are surface mounted to the COPVs and optically interrogated to explore the structural properties of these composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in the composite matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 4500 psi. A Fiber Optic Demodulation System built by Blue Road Research, is used for interrogation of the Bragg gratings.
Field test investigation of high sensitivity fiber optic seismic geophone
NASA Astrophysics Data System (ADS)
Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu
2017-10-01
Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.
A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm.
Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei; Wang, Hongxun; Dai, Wei
2018-04-08
A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry-Perot (F-P) filter and optical switch. To improve system resolution, the F-P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.
A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm
Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei
2018-01-01
A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry–Perot (F–P) filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed. PMID:29642507
Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok
2014-01-01
A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. PMID:24489440
A novel MUX/DEMUX based on few-mode FBG for mode division multiplexing system
NASA Astrophysics Data System (ADS)
Han, Yueyu; Hu, Guijun
2016-05-01
In this paper, a novel mode multiplexer/demultiplexer (MUX/DEMUX) based on few-mode fiber Bragg gratings (FBG) has been proposed. The principle of the MUX/DEMUX based on few-mode FBG has been described in detail, and crosstalk of better than -20 dB is obtained experimentally. Then a 2×2 division multiplexing (MDM) system has been established with the MUX/DEMUX we proposed. The transmission experiment of 2×10 Gbps PRBS has been achieved successfully, which are carried by LP01 mode and LP11 mode, respectively. When the receiver sensitivity is greater than -14 dB m and -10 dB m, the BER can both reach 10-3 for B2B and 10 km transmission, respectively.
Kefal, Adnan; Yildiz, Mehmet
2017-11-30
This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2018-03-01
In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.
The characteristic of gap FBG and its application
NASA Astrophysics Data System (ADS)
Yang, Yuanhong; Hu, Jun; Liu, Xuejing; Jin, Wei
2015-07-01
A gap fiber Bragg grating (g-FBG) is fabricated by cutting a uniform FBG in the middle to introduce a small air gap between the two sections. Numerical and experimental investigations show that the g-FBG has the characteristics of both a phase shifted FBG and a Fizeau interferometer. The influence of the air-gap shift longitudinally or transversely with respect to the fiber central axis and temperature to g-FBG's spectrums are investigated with numerical simulation and experiments, and the mathematic models are made. Based on g-FBG's different sensitivity to gap width and temperature, a micro-gap and temperature simultaneous measurement sensor was demonstrated. And a g-FBG based tunable fiber ring laser with a narrow line-width is demonstrated.
Development and Commissioning Results of the Hybrid Sensor Bus Engineering Qualification Model
NASA Astrophysics Data System (ADS)
Hurni, Andreas; Putzer, Phillipp; Roner, Markus; Gurster, Markus; Hulsemeyer, Christian; Lemke, Norbert M. K.
2016-08-01
In order to reduce mass, AIT effort and overall costs of classical point-to-point wired temperature sensor harness on-board spacecraft OHB System AGhas introduced the Hybrid Sensor Bus (HSB) system which interrogates sensors connected in a bus architecture. To use the advantages of electrical as wellas of fiber-optical sensing technologies, HSB is designed as a modular measurement system interrogating digital sensors connected on electricalsensor buses based on I2C and fiber-optical sensor buses based on fiber Bragg grating (FBG) sensors inscribed in optical fibers. Fiber-optical sensor bus networks on-board satellites are well suited for temperature measurement due to low mass, electro-magnetic insensitivity and the capability to embed them inside structure parts. The lightweight FBG sensors inscribed in radiation tolerant fibers can reach every part of the satellite. HSB has been developed in the frame of the ESA ARTES program with European and German co- funding and will be verified as flight demonstrator on- board the German Heinrich Hertz satellite (H2Sat).In this paper the Engineering Qualification Model (EQM) development of HSB and first commissioning results are presented. For the HSB development requirements applicable for telecommunication satellite platforms have been considered. This includes an operation of at least 15 years in a geostationary orbit.In Q3/2016 the qualification test campaign is planned to be carried out. The HSB EQM undergoes a full qualification according to ECSS. The paper concludes with an outlook regarding this HSB flight demonstrator development and its in-orbit verification (IOV) on board H2Sat.
Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.
Ye, Qing; Qu, Ronghui; Fang, Zujie
2007-04-10
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.
Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung
2018-05-23
Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.
Guided wave and damage detection in composite laminates using different fiber optic sensors.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro
2009-01-01
Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.
Low-cost and high-resolution interrogation scheme for LPG-based temperature sensor
NASA Astrophysics Data System (ADS)
Venkata Reddy, M.; Srimannarayana, K.; Venkatappa Rao, T.; Vengal Rao, P.
2015-09-01
A low-cost and high-resolution interrogation scheme for a long-period fiber grating (LPG) temperature sensor with adjustable temperature range has been designed, developed and tested. In general LPGs are widely used as optical sensors and can be used as optical edge filters to interrogate the wavelength encoded signal from sensors such as fiber Bragg grating (FBG) by converting it into intensity modulated signal. But the interrogation of LPG sensors using FBG is a bit novel and it is to be studied experimentally. The sensor works based on measurement of shift in attenuation band of LPG corresponding to the applied temperature. The wavelength shift of LPG attenuation band is monitored using an optical spectrum analyser (OSA). Further the bulk and expensive OSA is replaced with a low-cost interrogation system that employ an FBG, photodiode and a transimpedance amplifier (TIA). The designed interrogation scheme makes the system low-cost, fast in response, and also enhances its resolution up to 0.1°C. The measurable temperature range using the proposed scheme is limited to 120 °C. However this range can be shifted within 15-450 °C by means of adjusting the Bragg wavelength of FBG.
Development of optical FBG force measurement system for the medical application
NASA Astrophysics Data System (ADS)
Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju
2010-03-01
Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.
Development of optical FBG force measurement system for the medical application
NASA Astrophysics Data System (ADS)
Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju
2009-12-01
Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.
Hsiao, Tony W.; Swarup, Vimal P.; Kuberan, Balagurunathan; Tresco, Patrick A.; Hlady, Vladimir
2013-01-01
Surface-adsorbed fibrinogen (FBG) was recognized by adhering astrocytes and removed from the substrates in vitro by a two-phase removal process. The cells removed adsorbed FBG from binary proteins surface patterns (FBG + laminin, or FBG + albumin) while leaving the other protein behind. Astrocytes preferentially expressed chondroitin sulfate proteoglycan (CSPG) at the loci of fibrinogen stimuli; however no differences in overall CSPG production as a function of FBG surface coverage were identified. Removal of FBG by astrocytes was also found to be independent of transforming growth factor type β (TGF-β) receptor based signaling as cells maintained CSPG production in the presence of TGF-β receptor kinase inhibitor, SB 431542. The inhibitor decreased CSPG expression, but did not abolicsh it entirely. Because blood contact and subsequent FBG adsorption are unavoidable in neural implantations, the results indicate that implant-adsorbed FBG may contribute to reactive astrogliosis around the implant as astrocytes specifically recognize adsorbed FBG. PMID:23499985
Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.
Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara
2017-09-01
Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.
PWAS EMIS-ECIS Active Carbon Filter Residual Life Estimation Methodology
2013-09-23
change in the EMIS spectrum. This method is similar to the full width at half maximum (FWHM) method implemented in the fiber Bragg grating ( FBG ), where...the intensity of the light reflected by the FBG at the half peak frequency is used to detect the strain change in the FBG . 4 W911NF-11-1-0210...grating ( FBG ), where the intensity of the light reflected by the FBG at the half peak frequency is used to detect the strain change in the FBG . A brief
NASA Astrophysics Data System (ADS)
Zhang, Yuanzhong; Xiao, Lizhi; Fu, Jianwei; Chen, Haifeng; Zhao, Xiaoliang
2005-12-01
Most of the onshore oilfields in China are in the middle and late development stages, and great deals of residual oil are waiting for exploitation. Downhole permanent sensor monitoring technology is an effective means to enhance oil and gas recovery. The concept of the downhole permanent sensor network is introduced, and the research status was reviewed. The measurement principle, application and some issues of the Distribute Temperature System (DTS) and Fiber Bragg Grating (FBG) sensor are discussed. Some potential applications of permanent monitoring with FBG sensors in oil and gas production, including enhancing oil and gas recovery and realtime monitoring of casing damaging were reviewed.
High normal fasting blood glucose is associated with dementia in Chinese elders
Mortimer, J.A.; Borenstein, A.R.; Ding, D.; DeCarli, C.; Zhao, Q.; Copenhaver, C.; Guo, Q.; Chu, S.; Galasko, D.; Salmon, D.P.; Dai, Q.; Wu, Y.; Petersen, R.; Hong, Z.
2010-01-01
Background Diabetes is a risk factor for MCI and dementia. However, the association between high normal fasting blood glucose (FBG) and dementia has not been studied. Methods Polytomous logistic regression was used to assess the association of dementia and MCI with FBG in an age- and sex-matched sample of 32 dementia patients, 27 amnestic MCI (aMCI) patients and 31 normal controls (NC). Analyses were repeated for those with normal FBG. Correlations between FBG and cognitive test scores were obtained. Results Controlling for age, sex, education, body mass index, Hachinski Ischemic Score, MRI stroke, and normalized brain, hippocampal and white matter hyperintensity MRI volumes; higher FBG was associated with dementia vs. aMCI status (OR= 3.13; 95% CI:1.28–7.69). This association remained (OR= 7.75; 95% CI:1.10–55.56) when analyses were restricted to subjects with normal FBG. When dementia patients were compared with NC adjusting for age, sex and education a significant association with FBG also was seen (OR=1.83; 95%CI:1.09–3.08), but the association was lost when vascular covariates were added to the model. FBG was not associated with aMCI status vs. NC. Higher FBG was correlated with poorer performance on the Trailmaking Test Part B (p=0.003). The percentage of dementia patients with high normal FBG (90%) was significantly higher than that of aMCI patients with high normal FBG (32.9%) (χ2=13.9, p<0.001). Conclusions Higher FBG was associated with dementia (vs. aMCI) independent of vascular risk factors and MRI indicators of vascular disease, and remained a significant risk factor when analyses were restricted to subjects with normal FBG. The results of this cross-sectional study suggest that a high normal level of FBG may be a risk factor for dementia. PMID:21044774
Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplishedmore » during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.« less
Fiber-Optic Thermal Sensor for TiN Film Crack Monitoring
Hsu, Hsiang-Chang; Hsieh, Tso-Sheng; Chen, Yi-Chian; Chen, Hung-En; Tsai, Liren
2017-01-01
The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN)-coated fiber Bragg grating (FBG) sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA). The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400–500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures. PMID:29137131
High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang
2009-10-01
A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.
Development of an Automated Impact Hammer for Modal Analysis of Structures
2012-02-01
6 3.5 Integration with FBG interrogation system . . . . . . . . . . . . . . . . . 7 4 Experimental...distributed Fibre Bragg Gratings ( FBGs ) in optical fibres. The modified approach to SIDER has been given the name iSIDER or inverse SIDER to reflect the...response is measured at many locations using a large array of surface mounted FBG strain sensors [2]. FBGs are ideally suited to the roving response approach
NASA Astrophysics Data System (ADS)
Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.
2013-05-01
In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).
High speed strain measurement of active mode locking FBG laser sensor using chirped FBG cavity
NASA Astrophysics Data System (ADS)
Kim, Gyeong Hun; Kim, Joon Young; Park, Chang Hyun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo
2017-04-01
We propose a high speed strain measurement method using an active mode locking (AML) fiber Bragg grating (FBG) laser sensor with a chirped FBG cavity. The mode-locked frequency of the AML laser depends on both the position and Bragg wavelength of the FBG. Thus, the mode-locked frequency of cascaded FBGs can be detected independently along the cavity length of cascaded FBGs. The strain across FBGs can be interrogated dynamically by monitoring the change in mode-locked frequency. In this respect, the chirped FBG critically improves the frequency sensitivity to Bragg wavelength shift as a function of increasing dispersion in the AML cavity. The strain measurement of the FBG sensor shows a highly linear response, with an R-squared value of 0.9997.
Rajangam, Thanavel; An, Seong Soo A
2013-01-01
The aim of this study was to fabricate fibrinogen (Fbg) microfibers with different structural characteristics for the development of 3-D tissue-engineering scaffolds. Fabricated Fbg microfibers were investigated for their biomolecule encapsulation, cell adhesion, and proliferations. Microfibers with three different concentrations of Fbg (5, 10, and 15 wt%) were prepared by a gel solvent-extraction method using a silicone rubber tube. Fbg microfibers were covalently modified with fibronectin (FN) by using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as the cross-linking agent. Fbg microfibers were characterized by their FN cross-linking properties, structural morphology, and in vitro degradation. Furthermore, FN/Fbg microfibers were evaluated for cell attachment and proliferation. The bio-compatibility and cell proliferation of the microfibers were assessed by measuring adenosine triphosphate activity in C2C12 fibroblast cells. Cell attachment and proliferation on microfibers were further examined using fluorescence and scanning electron microscopic images. FN loading on the microfibers was confirmed by fluorescence and infrared spectroscopy. Surface morphology was characterized by scanning electron microscopy, and showed highly aligned nanostructures for fibers made with 15 wt% Fbg, a more porous structure for fibers made with 10 wt% Fbg, and a less porous structure for those made with 5 wt% Fbg. Controlled biodegradation of the fiber was observed for 8 weeks by using an in vitro proteolytic degradation assay. Fbg microfibers with highly aligned nanostructures (15 wt%) showed enhanced biomolecule encapsulation, as well as higher cell adhesion and proliferation than another two types of FN/Fbg fibers (5 and 10 wt%) and unmodified Fbg fibers. The promising results obtained from the present study reveal that optimal structure of Fbg microfibers could be used as a potential substratum for growth factors or drug release, especially in wound healing and vascular tissue engineering, in which fibers could be applied to promote and orient cell adhesion and proliferation. PMID:23515334
Spatial Compressive Sensing for Strain Data Reconstruction from Sparse Sensors
2014-10-01
optical fiber Bragg grating (or FBG ) sensors embedded in the plate. For the sake of simplicity, we assume that the FBGs are embedded in the radial...direction, as shown by the yellow lines in Fig. 10. The yellow lines are the direction along which strain is being measured. We considered FBGs here...however, strain gages emplaced along these lines can also be envisioned. FBGs are strain-measuring sensors that use the principle of low coherence
Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks
NASA Astrophysics Data System (ADS)
Choi, H. B.; Oh, J. M.; Lee, D.; Ahn, S. J.; Park, B. S.; Lee, S. B.
2002-11-01
The performance of L-band erbium-doped fiber amplifier (EDFA) of a simple structure with a fiber Bragg grating (FBG) was investigated. The injected C-band ASE by the FBG offers low-cost amplification and greatly improves the efficiency of the EDFA. There are 9 and 4 dB improvements with the FBG at 1587 nm, at low and high input, respectively. The flat gain of 18 dB, up to a total input of -5 dBm at 150 mW of 980 nm pump, is obtained over 30 nm with less than ±0.5 dB gain variations without any gain equalizer. The proposed EDFA provides a cost-effective solution for wavelength division multiplexing systems.
NASA Astrophysics Data System (ADS)
Shimizu, Takayuki; Yari, Takashi; Nagai, Kanehiro; Takeda, Nobuo
2001-07-01
We conducted theoretical and experimental approaches for applying Brillouin optical time domain reflectometer (BOTDR) to aircraft and spacecraft structure health monitoring system. Firstly, distributed strain was measured by BOTDR under 3-point bending test and a spatial resolution was enhanced up to 0.5m using Brillouin spectrum analysis and processing though the device used in this experiment had a spatial resolution of 2m normally. Secondly, dynamic strain measurement was executed under cyclic loading conditions. Brillouin spectrum measured under dynamic conditions is equivalent to superposed spectrum using many spectra measured under static loading conditions. As the measured spectrum was decomposed into many spectra in static loading state, the strain amplitude and its ratio could be estimated. Thirdly, strain and temperature could be measured independently using combined system of BOTDR and fiber Bragg grating (FBG) with wavelength division multiplexing (WDM). Additionally, the application of BOTDR sensing system was shown for a prototype carbon fiber reinforced plastic (CFRP) liquid hydrogen (LH2) tank under cryogenic condition.
In situ FBG inscription during fiber laser operation.
Leich, Martin; Fiebrandt, Julia; Jetschke, Sylvia; Rothhardt, Manfred; Jäger, Matthias
2013-03-01
We demonstrate the inscription of a 266 nm UV femtosecond pulse-induced fiber Bragg grating (FBG) in an Yb-doped fiber during optical pumping at 976 nm and the initiation of lasing with increasing grating reflectivity. Output spectra show the emission of the pumped fiber changing from the broad-ranged amplified spontaneous emission in the nonlasing case to the narrow-range laser operation due to the enhancement of FBG reflectivity during inscription. The proposed technique enables the direct characterization and control of FBG performance in fiber lasers. After FBG fabrication, we investigate the spectral characteristics of the fiber laser for different laser powers and study the influence of a thermal treatment of the FBG.
Fiber Bragg grating strain sensors to monitor and study active volcanoes
NASA Astrophysics Data System (ADS)
Sorrentino, Fiodor; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvo; Giacomelli, Umberto; Grassi, Renzo; Maccioni, Enrico; Morganti, Mauro
2016-04-01
Stress and strain changes are among the best indicators of impending volcanic activity. In volcano geodesy, borehole volumetric strain-meters are mostly utilized. However, they are not easy to install and involve high implementation costs. Advancements in opto-electronics have allowed the development of low-cost sensors, reliable, rugged and compact, thus particularly suitable for field application. In the framework of the EC FP7 MED-SUV project, we have developed strain sensors based on the fiber Bragg grating (FBG) technology. In comparison with previous implementation of the FBG technology to study rock deformations, we have designed a system that is expected to offer a significantly higher resolution and accuracy in static measurements and a smooth dynamic response up to 100 Hz, implying the possibility to observe seismic waves. The system performances are tailored to suit the requirements of volcano monitoring, with special attention to power consumption and to the trade-off between performance and cost. Preliminary field campaigns were carried out on Mt. Etna (Italy) using a prototypal single-axis FBG strain sensor, to check the system performances in out-of-the-lab conditions and in the harsh volcanic environment (lack of mains electricity for power, strong diurnal temperature changes, strong wind, erosive ash, snow and ice during the winter time). We also designed and built a FBG strain sensor featuring a multi-axial configuration which was tested and calibrated in the laboratory. This instrument is suitable for borehole installation and will be tested on Etna soon.
Finite element modelling of fibre Bragg grating strain sensors and experimental validation
NASA Astrophysics Data System (ADS)
Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.
2009-03-01
Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.
Effect of fibrinogen on blood coagulation detected by optical coherence tomography.
Xu, Xiangqun; Teng, Xiangshuai
2015-05-21
Our previous work demonstrated that an optical coherence tomography (OCT) technique and the parameter 1/e light penetration depth (d1/e) were able to characterize the whole blood coagulation process in contrast to existing optical tests that are performed on plasma samples. To evaluate the feasibility of the technique for quantifying the effect of fibrinogen (Fbg) on blood coagulation, a dynamic study of d1/e of blood in various Fbg concentrations was performed in static state. Two groups of blood samples of hematocrit (HCT) in 35, 45, and 55% were reconstituted of red blood cells with: 1) treated plasma with its intrinsic Fbg removed and commercial Fbg added (0-8 g L(-1)); and 2) native plasma with commercial Fbg added (0-8 g L(-1)). The results revealed a typical behavior due to coagulation induced by calcium ions and the clotting time is Fbg concentration-dependent. The clotting time was decreased by the increasing amount of Fbg in both groups. Besides, the blood of lower HCT with various levels of Fbg took shorter time to coagulate than that of higher HCT. Consequently, the OCT method is a useful and promising tool for the detection of blood-coagulation processes induced with different Fbg levels.
Liu, Xiaoyun; Sun, Ningling; Yu, Tao; Fan, Fangfang; Zheng, Meili; Qian, Geng; Wang, Binyan; Wang, Yu; Tang, Genfu; Li, Jianping; Qin, Xianhui; Hou, Fanfan; Xu, Xiping; Yang, Xinchun; Chen, Yundai; Wang, Xiaobin; Huo, Yong
2016-09-28
This study aimed to investigate the independent and joint association of blood pressure (BP), homocysteine (Hcy), and fasting blood glucose (FBG) levels with brachial-ankle pulse wave velocity (baPWV, a measure of arterial stiffness) in Chinese hypertensive adults.The analyses included 3967 participants whose BP, Hcy, FBG, and baPWV were measured along with other covariates. Systolic BP (SBP) was analyzed as 3 categories (SBP < 160 mmHg; 160 to 179 mmHg; ≥ 180 mmHg); Hcy as 3 categories (< 10 μmol/L; 10 to 14.9 μmol/L; ≥ 15.0 μmol/L) and FBG: normal (FBG < 5.6 mmol/L), impaired (5.6 mmol/L ≤ FBG < 7.0 mmol/L), and diabetes mellitus (FBG ≥ 7.0 mmol/L). We performed linear regression analyses to evaluate their associations with baPWV with adjustment for covariables.When analyzed individually, BP, Hcy, and FBG were each associated with baPWV. When BP and FBG were analyzed jointly, the highest baPWV value (mean ± SD: 2227 ± 466 cm/s) was observed in participants with FBG ≥ 7.0 mmol/L and SBP ≥ 180 mmHg (β = 432.5, P < 0.001), and the lowest baPWV value (mean ± SD: 1692 ± 289 cm/s) was seen in participants with NFG and SBP < 160 mmHg. When Hcy and FBG were analyzed jointly, the highest baPWV value (2072 ± 480 cm/s) was observed in participants with FBG ≥ 7.0 mmol/L and Hcy ≥ 15.0 μmol/L (β = 167.6, P < 0.001), while the lowest baPWV value (mean ± SD: 1773 ± 334 cm/s) was observed in participants with NFG and Hcy < 10 μmol/L.In Chinese hypertensive adults, SBP, Hcy, and FBG are individually and jointly associated with baPWV.Our findings underscore the importance of identifying individuals with multiple risk factors of baPWV including high SBP, FBG, and Hcy.
Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan
2005-05-01
Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
NASA Astrophysics Data System (ADS)
Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun
2014-07-01
The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.
Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Kien, Fam; Hakuta, K.
2010-02-15
We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finessemore » is moderate, the cavity is long, and the probe field is weak.« less
Analysis and control of the METC fluid-bed gasifier. Quarterly report, October 1994--January 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farell, A.E.; Reddy, S.
1995-03-01
This document summarizes work performed for the period 10/1/94 to 2/1/95. The initial phase of the work focuses on developing a simple transfer function model of the Fluidized Bed Gasifier (FBG). This transfer function model will be developed based purely on the gasifier responses to step changes in gasifier inputs (including reactor air, convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model will represent a linear, dynamic model that is valid near the operating point at which the data was taken. In addition, a similar transfer function model will be developed using MGAS in order tomore » assess MGAS for use as a model of the FBG for control systems analysis.« less
Application of FBG sensors in strengthening and maintenance monitoring of old bridges
NASA Astrophysics Data System (ADS)
Yue, Li-na; Huang, Jun; Yang, Yan
2009-10-01
The various fiber Bragg grating(FBG)sensors such as FBG force rings, differential FBG displacement cells, FBG strain sensors and FBG temperature sensors had been used to monitor the strengthening and maintenance process of the continuous concrete beam bridges and the continuous concrete rigid frame bridges which are the part of Wuhan Second Yangtze River Bridge. In the strengthening and maintenance process, the tension force of the external prestressed tendons, the cracks change and intensity of cross sections had been monitored to insure the instruction safety, study the effect of strengthening and maintenance, and verify the design theories of strengthening and maintenance. Also the reference state criterion for long-term bridge health monitoring had been provided according to the monitoring results.
Reannealed Fiber Bragg Gratings Demonstrated High Repeatability in Temperature Measurements
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.
2004-01-01
Fiber Bragg gratings (FBGs) are formed by periodic variations of the refractive index of an optical fiber. These periodic variations allow an FBG to act as an embedded optical filter, passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change the wavelengths that are transmitted and reflected by it. Both thermal and mechanical forces acting on the grating will alter its physical characteristics, allowing the FBG sensor to detect both the temperature variations and the physical stresses and strains placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. To assess the feasibility of using Bragg gratings as temperature sensors for propulsion applications, researchers at the NASA Glenn Research Center evaluated the performance of Bragg gratings at elevated temperatures for up to 300 C. For these purposes, commercially available polyimide-coated high-temperature gratings were used that were annealed by the manufacturer to 300 C. To assure the most thermally stable gratings at the operating temperatures, we reannealed the gratings to 400 C at a very slow rate for 12 to 24 hr until their reflected optical powers were stabilized. The reannealed gratings were then subjected to periodic thermal cycling from room temperature to 300 C, and their peak reflected wavelengths were monitored. The setup shown is used for reannealing and thermal cycling the FBGs. Signals from the photodetectors and the spectrum analyzer were fed into a computer equipped with LabVIEW software. The software synchronously monitored the oven/furnace temperature and the optical spectrum analyzer as well as processed the data. Experimental results presented in the following graph show typical wavelength versus temperature dependence of a reannealed FBG through six thermal cycles (80 hr). The average standard deviation of the temperature-to-wavelength relationship ranged from 1.86 to 2.92 C over the six thermal cycles each grating was subjected to. This is an error of less than 1.0 percent of full scale throughout the entire evaluation temperature range from ambient to 300 C.
NASA Astrophysics Data System (ADS)
Sierra-Calderon, A.; Rodriguez-Novelo, J. C.; Gamez-Aviles, E.; May-Alarcon, M.; Toral-Cruz, H.; Alvarez-Chavez, J. A.
2016-09-01
The spectral noise characteristic and relative intensity noise of an all fibre Sagnac interferometer system consisting of a 980nm pump source at 130mW maximum output power, a 980/1550nm wavelength division multiplexer, a 10m-piece of Erbium-doped fibre, a fibre Bragg grating (FBG) centered at 1.548um, an optical circulator at 1550nm and a 50/50 fibre coupler, were measured with an optical spectrum analyzer (OSA) for fine tuning for a range of temperature between 5 and 180 degrees Celsius in step of 1 degree Celsius. At the probing end, a high-bi piece of fibre and a Peltier were employed for temperature variation of the system. Spectral and temperature response of the noise reduction due to temperature variation was performed remotely using and Arduino micro-controller and a DS18B20 digital sensor, into a local area network. Full optical and thermal characterization of the system will be included in the presentation.
Influence of metal bonding layer on strain transfer performance of FBG
NASA Astrophysics Data System (ADS)
Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun
2013-01-01
Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.
Interferometric interrogation of π-phase shifted fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab
2018-03-01
Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.
Quantitative method for gait pattern detection based on fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Ding, Lei; Tong, Xinglin; Yu, Lie
2017-03-01
This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.
NASA Technical Reports Server (NTRS)
Osei, Albert J.
2003-01-01
Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Annual maintenance costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). This is a periodic perturbation in the refractive index of the fiber core. When a broadband light is coupled into the optical fiber sensor, a reflection peak will be obtained centered around a wavelength called Bragg-wavelength. The Bragg-wavelength depends on the refractive index and the period of the grating, which both change due to mechanical and thermal strain applied to the sensor. The shift in the Bragg-wavelength is directly proportional to the strain. Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.
NASA Astrophysics Data System (ADS)
Wu, Jing; Huang, Junbing; Wu, Hanping; Gu, Hongcan; Tang, Bo
2014-12-01
In order to verify the validity of the regional reference grating method in solve the strain/temperature cross sensitive problem in the actual ship structural health monitoring system, and to meet the requirements of engineering, for the sensitivity coefficients of regional reference grating method, national standard measurement equipment is used to calibrate the temperature sensitivity coefficient of selected FBG temperature sensor and strain sensitivity coefficient of FBG strain sensor in this modal. And the thermal expansion sensitivity coefficient of the steel for ships is calibrated with water bath method. The calibration results show that the temperature sensitivity coefficient of FBG temperature sensor is 28.16pm/°C within -10~30°C, and its linearity is greater than 0.999, the strain sensitivity coefficient of FBG strain sensor is 1.32pm/μɛ within -2900~2900μɛ whose linearity is almost to 1, the thermal expansion sensitivity coefficient of the steel for ships is 23.438pm/°C within 30~90°C, and its linearity is greater than 0.998. Finally, the calibration parameters are used in the actual ship structure health monitoring system for temperature compensation. The results show that the effect of temperature compensation is good, and the calibration parameters meet the engineering requirements, which provide an important reference for fiber Bragg grating sensor is widely used in engineering.
A new kind of high durable traffic weighbridge based on FBG sensors
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Liu, Jing; Li, Hui; Ou, Jinping
2005-05-01
Durability is the key problem of traditional traffic weighbridge based on electrical gauges. In this paper, a new kind of high durable traffic weighbridge based on FBG (Fiber Bragg Grating) sensors has been studied and developed. The principle of the smart FBG-weighbridge is based on that the traffic weight can be gotten from the deformation of the reinforced concrete beam with embedded FRP (Fiber Reinforced Polymer) - packaged FBG strain sensors. The FBG-based weighbridge is designed to be a reinforced concrete board supported by composite beams, and the truck load is shared by the composite beams. A 30-ton full scale FBG-based weighbridge has been set up, and the results from the tests and calibration analysis show that this kind of weighbridge features high durability, simplicity, convenience, low cost, etc. This new kind of FBG-based weighbridge shows good prospect in future to replace the traditional traffic weighbridge for long-term monitoring of traffic load.
Three-axis force sensor with fiber Bragg grating.
Hyundo Choi; Yoan Lim; Junhyung Kim
2017-07-01
Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.
NASA Astrophysics Data System (ADS)
Dreyer, Uilian José; Vagner da Silva, Erlon; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2017-08-01
In this paper, we propose a new multiparametric optical fiber transducer applied to an electric generator of 370 MVA. The optical transducer has three multiplexed FBGs in the same optical fiber as the sensing element. The FBG sensors can simultaneously measure both the temperature and vibration independently of the other multiplexed FBGs. The installation in the power plant was performed using six transducers and it was obtained 23 hours of simultaneous vibration and temperature measurement. All the FBGs used to monitor generator vibration were able to monitor the frequency of mechanical and electromagnetic vibrations, which were measured at 2 Hz and 120 Hz, respectively. During the measurement, the machine was turned off due to a failure and all the FBGs sensed temperature changes, as well as frequency vibration changes. The largest temperature difference measured between the FBGs during the test is approximately 2°C.
Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.
Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei
2013-05-06
We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.
Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches
NASA Astrophysics Data System (ADS)
Zubel, Michal G.; Sugden, Kate; Webb, David J.; Sáez-Rodríguez, David; Nielsen, Kristian; Bang, Ole
2016-04-01
This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μɛ for SOFBG embedded in ABS, 0.38 pm/μɛ for POFBG in PLA, and 0.15 pm/μɛ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.
The influence of adhesive on fiber Bragg grating strain sensor
NASA Astrophysics Data System (ADS)
Chen, Jixuan; Gong, Huaping; Jin, Shangzhong; Li, Shuhua
2009-08-01
A fiber Bragg grating (FBG) sensor was fixed on the uniform strength beam with three adhesives, which were modified acrylate, glass glue and epoxy resin. The influence of adhesive on FBG strain sensor was investigated. The strain of FBG sensor was varied by loading weight to the uniform strength beam. The wavelength shift of the FBG sensor fixed by the three kinds of adhesive were measured with different weight at the temperatures 0°C, 10°C, 20°C, 30°C, 40°C. The linearity, sensitivity and their stability at different temperature of FBG sensor which fixed by every kind of adhesives were analyzed. The results show that, the FBG sensor fixed by the modified acrylate has a high linearity, and the linear correlation coefficient is 0.9996. It also has a high sensitivity which is 0.251nm/kg. The linearity and the sensitivity of the FBG sensor have a high stability at different temperatures. The FBG sensor fixed by the glass glue also has a high linearity, and the linear correlation coefficient is 0.9986, but it has a low sensitivity which is only 0.041nm/kg. The linearity and the sensitivity of the FBG sensor fixed by the glass glue have a high stability at different temperatures. When the FBG sensor is fixed by epoxy resin, the sensitivity and linearity is affected significantly by the temperature. When the temperature changes from 0°C to 40°C, the sensitivity decreases from 0.302nm/kg to 0.058nm/kg, and the linear correlation coefficient decreases from 0.9999 to 0.9961.
A novel fiber Bragg grating wavelength demodulation system based on F-P etalon
NASA Astrophysics Data System (ADS)
Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan
2014-10-01
This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation
Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.
Das, Bhargab; Chandra, Vikash
2016-10-10
We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2006-01-20
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.
Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver.
Ando, Hitoshi; Ushijima, Kentaro; Shimba, Shigeki; Fujimura, Akio
2016-02-01
Fasting blood glucose (FBG) and hepatic glucose production are regulated according to a circadian rhythm. An early morning increase in FBG levels, which is pronounced among diabetic patients, is known as the dawn phenomenon. Although the intracellular circadian clock generates various molecular rhythms, whether the hepatic clock is involved in FBG rhythm remains unclear. To address this issue, we investigated the effects of phase shift and disruption of the hepatic clock on the FBG rhythm. In both C57BL/6J and diabetic ob/ob mice, FBG exhibited significant daily rhythms with a peak at the beginning of the dark phase. Light-phase restricted feeding altered the phase of FBG rhythm mildly in C57BL/6J mice and greatly in ob/ob mice, in concert with the phase shifts of mRNA expression rhythms of the clock and glucose production-related genes in the liver. Moreover, the rhythmicity of FBG and Glut2 expression was not detected in liver-specific Bmal1-deficient mice. Furthermore, treatment with octreotide suppressed the plasma growth hormone concentration but did not affect the hepatic mRNA expression of the clock genes or the rise in FBG during the latter half of the resting phase in C57BL/6J mice. These results suggest that the hepatic circadian clock plays a critical role in regulating the daily FBG rhythm, including the dawn phenomenon.
NASA Astrophysics Data System (ADS)
Al-Fakih, Ebrahim; Arifin, Nooranida; Pirouzi, Gholamhossein; Mahamd Adikan, Faisal Rafiq; Shasmin, Hanie Nadia; Abu Osman, Noor Azuan
2017-08-01
This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Zhang, Zhichun; Wang, Chuan; Ou, Jinping
2006-03-01
FRP ( Fiber Reinforced Polymer ) has become the popular material to alternate steel in civil engineering under harsh corrosion environment. But due to its low shear strength ability, the anchor for FRP is most important for its practical application. However, the strain state of the surface between FRP and anchor is not fully understood due to that there is no proper sensor to monitor the inner strain in the anchor by traditional method. In this paper, a new smart FBG-based FRP anchor is brought forward, and the inner strain distribution of FRP anchor has been monitored using FRP-OFBG sensors, a smart FBG-embedded FRP rebar, which is pre-embedded in the FRP rod and cast in the anchor. Based on the strain distribution information the bonding shear stress on the surface of FRP rod along the anchor can also be obtained. This method can supply important information for FRP anchor design and can also monitor the anchorage system, which is useful for the application of FRP in civil engineering. The experimental results also show that the smart FBG-based FRP anchor can give direct information of the load and damage of the FRP anchor.
Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.
Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador
2017-10-02
This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.
In-ground optical fibre Bragg grating pressure switch for security applications
NASA Astrophysics Data System (ADS)
Allwood, Gary; Wild, Graham; Hinckley, Steven
2012-02-01
In this study, a fibre Bragg grating (FBG) was embedded beneath three common flooring materials acting as a pressure switch for in-ground intrusion detection. This is achieved using an intensiometric detection system, where a laser diode and FBG were optically mismatched so that there was a static dc offset from the transmitted and reflected optical power signals. As pressure was applied, in the form of a footstep, a strain induced wavelength shift occurred that could then be detected by converting the wavelength shift into an intensity change. The change in intensity caused a significant change in the DC offset which behaved as on optical switch. This switch could easily be configured to trigger an alarm if required. The intention is to use the FBG sensor as an in-ground intrusion detection pressure switch to detect an intruder walking within range of the sensor. This type of intrusion detection system can be applied to both external (in soil, etc) and internal (within the foundations or flooring of the home) security systems. The results show that a person's footstep can clearly be detected through solid wood flooring, laminate flooring, and ceramic floor tiles.
NASA Astrophysics Data System (ADS)
Chen, Y.; Ni, Y. Q.; Ye, X. W.; Yang, H. X.; Zhu, S.
2012-04-01
Wind energy utilization as a reliable energy source has become a large industry in the last 20 years. Nowadays, wind turbines can generate megawatts of power and have rotor diameters that are on the order of 100 meters in diameter. One of the key components in a wind turbine is the blade which could be damaged by moisture absorption, fatigue, wind gusts or lighting strikes. The wind turbine blades should be routinely monitored to improve safety, minimize downtime, lower the risk of sudden breakdowns and associated huge maintenance and logistics costs, and provide reliable power generation. In this paper, a real-time wind turbine blade monitoring system using fiber Bragg grating (FBG) sensors with the fiber optic rotary joint (FORJ) is proposed, and applied to monitor the structural responses of a 600 W small scale wind turbine. The feasibility and effectiveness of the FORJ is validated by continuously transmitting the optical signals between the FBG interrogator at the stationary side and the FBG sensors on the rotating part. A comparison study between the measured data from the proposed system and those from an IMote2-based wireless strain measurement system is conducted.
2012-08-15
Bragg grating ( FBG ) sensors within these composite structures allows one to correlate sensor response features to “critical damage events” within the...material. The unique capabilities of this identification strategy are due to the detailed information obtained from the FBG sensors and the... FBG sensors relate to damage states not merely strain amplitudes. The research objectives of this project were therefore to: demonstrate FBG
Photonic instantaneous frequency measurement of wideband microwave signals.
Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin; Ning, Tigang
2017-01-01
We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.
Temperature compensated liquid level sensor using FBGs and a Bourdon tube
NASA Astrophysics Data System (ADS)
Sengupta, D.; Shankar, M. Sai; Rao, P. Vengal; Reddy, P. Saidi; Sai Prasad, R. L. N.; Kishore, P.; Srimannarayana, K.
2011-12-01
A temperature compensated liquid level sensor using FBGs and a bourdon tube that works on hydrostatic pressure is presented. An FBG (FBG1) is fixed between free end and a fixed end of the bourdon tube. When hydrostatic pressure applied to the bourdon tube FBG1 experience an axial strain due to the movement of free end. Experimental result shows, a good linearity in shift in Bragg wavelength with the applied pressure. The performance of this arrangement is tested for 21metre water column pressure. Another FBG (FBG2) is included for temperature compensation. The design of the sensor head is simple and easy mountable external to any tank for liquid level measurements.
Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito José; Ribeiro, Richardson; Bertotti, Fábio Luiz; Assmann, Tangriani Simioni
2015-11-11
Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%.
Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito José; Ribeiro, Richardson; Bertotti, Fábio Luiz; Assmann, Tangriani Simioni
2015-01-01
Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%. PMID:26569250
Wang, Xue-Ping; Mao, Min-Jie; He, Zhong-Lian; Zhang, Lin; Chi, Pei-Dong; Su, Jia-Rui; Dai, Shu-Qin; Liu, Wan-Li
2017-01-01
Aims: The levels of coagulation system tests have been studied in various cancers. In this study, our aim is to evaluate the prognostic value of pretreatment plasma coagulation tests in hepatocellular carcinoma (HCC) patients. Patient and methods: A retrospective study was performed in 539 patients with HCC, and follow-up period was at least 60 months until recurrence or death. The prognostic significance of coagulation system tests (prothrombin time, activated partial thromboplastin time, thrombin time, fibrinogen) were determined by univariate and multivariate Cox hazard models. Then, according to the results of the multivariate analyses, we proposed the coagulation-Based Stage, which combined the independent risk factors (prothrombin time and fibrinogen). Results: Coagulation system tests including prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (Fbg) were analyzed. Patients with prolonged PT (≥12.1 sec) levels had significantly poor overall survival (OS) and disease-free survival (DFS), not only in the entire cohort (HR: 1.661, 95%CI: 1.125-2.451, p= 0.011 vs. HR: 1.660, 95%CI: 1.125-2.451, p= 0.011), but also in the subgroups stratified by pathological stage (stage I-II and stage III-IV). Additionally, high Fbg (≥2.83 g/L) levels experienced significantly decreased OS and DFS (HR: 2.158, 95%CI: 1.427-3.263, p< 0.001 vs. HR: 2.161, 95%CI: 1.429-3.267, p< 0.001), not only in the entire cohort but also in the subgroups stratified by pathological stage (stage I-II and stage III-IV). All the patients were then stratified (based on combined PT and Fbg) into three groups, The OS for HCC patients were (41.37±17.76), (31.83±19.84) and (18.68±18.41) months, and the DFS for HCC patients were (41.15±17.88), (31.65±19.81) and (18.66±18.39) months. Conclusions: Our findings suggest that the combination of plasma PT and Fbg levels should be evaluated as the valuable predictor of survival in patients with HCC.
Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.
2004-07-01
Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Gratingmore » (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10{sup 19} cm{sup -2} fast neutron (E > 1 MeV) fluence and 8.7 x 10{sup 8} Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research Center. (authors)« less
NASA Astrophysics Data System (ADS)
Nguyen, HoangViet
2015-03-01
We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Miniature and low cost fiber Bragg grating interrogator for structural monitoring in nano-satellites
NASA Astrophysics Data System (ADS)
Toet, P. M.; Hagen, R. A. J.; Hakkesteegt, H. C.; Lugtenburg, J.; Maniscalco, M. P.
2017-11-01
In this paper we present a newly developed Fiber Optic measurement system, consisting of Fiber Bragg Grating (FBG) sensors and an FBG interrogator. The development of the measuring system is part of the PiezoElectric Assisted Smart Satellite Structure (PEASSS) project, which was initiated at the beginning of 2013 and is financed by the Seventh Framework Program (FP7) of the European Commission. Within the PEASSS project, a Nano-Satellite is being designed and manufactured to be equipped with new technology that will help keep Europe on the cutting edge of space research, potentially reducing the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. After on ground testing the satellite is planned to be launched at the end of 2015. Within the satellite, different technologies will be demonstrated on orbit to show their capabilities for different in-space applications. For our application the FBG interrogator monitors the structural and thermal behaviour of a so called "smart panel". These panels will enable fine angle control and thermal and vibration compensation in order to improve all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. The Fiber Optic (FO) system in PEASSS includes four FBG strain sensors and two FBG temperature sensors. The 3 channel interrogator has to have a small footprint (110x50x40mm), is low cost, low in mass and has a low power consumption. In order to meet all these requirements, an interrogator has been designed based on a tunable Vertical-Cavity Surface-Emitting Laser (VCSEL) enabling a wavelength sweep of around 7 nm. To guarantee the absolute and relative performance, two reference methods are included internally in the interrogator. First, stabilized reference FBG sensors are used to obtain absolute wavelength calibrations. This method is used for the temperature sensors in the system, which will be measured with an accuracy of +/-1°C. Second, the strain sensors will be used to monitor deformation of piezo actuators (bimorph plates) in a way that temperature compensation is not required. Using FBGs on top and on the bottom of the plates, relative wavelength differences are measured. In order to have a high accuracy, inside the interrogator a fiber interferometer is used to track the wavelength change. Using this reference technology we are able to measure the (relative) wavelength difference between two FBGs well below 0.1pm.
Temperature-stabilized, narrowband tunable fiber-Bragg gratings for matched-filter receiver
NASA Astrophysics Data System (ADS)
Roth, Jeffrey M.; Kummer, Joseph W.; Minch, Jeffrey R.; Malinsky, Bryan G.; Scalesse, Vincent; Walther, Frederick G.
2017-02-01
We report on a 1550-nm matched filter based on a pair of fiber Bragg gratings (FBGs) that is actively stabilized over temperature. The filter is constructed of a cascaded pair of athermally-packaged FBGs. The tandem FBG pair produces an aggregate 3-dB bandwidth of 3.9-GHz that is closely matched to a return-to-zero, 2.880-GHz differential-phase-shift-keyed optical waveform. The FBGs comprising the filter are controlled in wavelength using a custom-designed, pulse-width modulation (PWM) heater controller. The controllers allow tuning of the FBGs over temperature to compensate and cancel out native temperature dependence of the athermal FBG (AFBG) package. Two heaters are bonded to each FBG device, one on each end. One heater is a static offset that biases the FBG wavelength positively. The second heater is a PWM controller that actively moves the FBG wavelength negatively. A temperature sensor measures the FBGs' temperature, and a feed-forward control loop adjusts the PWM signal to hold the wavelength within a desired range. This stabilization technique reduces the device's native temperature dependence from approximately 0.65 pm/°C to 0.06 pm/°C, improving the temperature stability by tenfold, while retaining some control for poten- tial long-term drifts. The technique demonstrates that the FBGs can be held to +/-1.5 pm (+/-188 MHz) of the target wavelength over a 0 to +50°C temperature range. The temperature-stabilized FBGs are integrated into a low-noise, optical pre-amplifier that operates over a wide temperature range for a laser communication system.
Analysis and control of the METC fluid bed gasifier. Quarterly progress report, January--March 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
This document summarizes work performed for the period 10/1/94 to 3/31/95. In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Below we summarize work accomplished to data in each of these areas.
Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S
2016-07-01
This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid evaluation of fibrinogen levels using the CG02N whole blood coagulation analyzer.
Hayakawa, Mineji; Gando, Satoshi; Ono, Yuichi; Mizugaki, Asumi; Katabami, Kenichi; Maekawa, Kunihiko; Miyamoto, Daisuke; Wada, Takeshi; Yanagida, Yuichiro; Sawamura, Atsushi
2015-04-01
Rapid evaluation of fibrinogen (Fbg) levels is essential for maintaining homeostasis in patients with massive bleeding during severe trauma and major surgery. This study evaluated the accuracy of fibrinogen levels measured by the CG02N whole blood coagulation analyzer (A&T Corporation, Kanagawa, Japan) using heparinized blood drawn for blood gas analysis (whole blood-Fbg). A total of 100 matched pairs of heparinized blood samples and citrated blood samples were simultaneously collected from patients in the intensive care unit. Whole blood-Fbg results were compared with those of citrated plasma (standard-Fbg). The whole blood coagulation analyzer measured fibrinogen levels within 2 minutes. Strong correlations between standard-Fbg and whole blood-Fbg were observed (ρ = 0.91, p < 0.001). Error grid analysis showed that 88% of the values were clinically acceptable, and 12% were in a range with possible effects on clinical decision-making; none were in a clinically dangerous range without appropriate treatment. Using a fibrinogen cutoff value of 1.5 g/L for standard-Fbg, the area under the receiver operating characteristic curve of whole blood-Fbg was 0.980 (95% confidence interval 0.951-1.000, p < 0.001). The whole blood coagulation analyzer can rapidly measure fibrinogen levels in heparinized blood and could be useful in critical care settings where excessive bleeding is a concern. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya
2017-09-01
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
An etched fiber optic vibration sensor to monitor the simply supported beam
NASA Astrophysics Data System (ADS)
Putha, Kishore; Dinakar, Dantala; Rao, Pachava V.; Sengupta, Dipankar; Srimannarayana, K.; Sai Shankar, M.
2012-04-01
A single mode fiber optic vibration senor is designed and demonstrated to monitor the vibration of a simply supported beam. A rectangular beam (length 30.8 cm, width 2.5cm and thickness 0.5mm) made of spring-steel is arranged as simply supported beam and is made to vibrate periodically. To sense the vibrations a telecommunication fiber is chemically etched such that its diameter reaches 50μm and is glued using an epoxy at the centre of the beam. A broadband light (1550nm) is launched into Fiber Bragg Grating (FBG) through a circulator. The light reflected by the FBG (1540.32nm) is coupled into the centre etched fibre through the circulator and is detected by photodiode connected to a transimpedance amplifier. The electrical signal is logged into the computer through NI-6016 DAQ. The sensor works on transmission power loss due to the mode volume mismatch and flexural strain (field strength) of the fiber due to the bending in the fiber with respect to the bending of the spring-steel beam. The beam is made to vibrate and the corresponding intensity of light is recorded. Fast Fourier transform (FFT) technique is used to measure the frequencies of vibration. The results show that this sensor can sense vibration of low frequency accurately and repeatability is high. The sensor has high linear response to axial displacement of about 0.8 mm with sensitivity of 32mV/10μm strain. This lowcost sensor may find a place in industry to monitor the vibrations of the beam structures and bridges.
Remote (250 km) fiber Bragg grating multiplexing system.
Fernandez-Vallejo, Montserrat; Rota-Rodrigo, Sergio; Lopez-Amo, Manuel
2011-01-01
We propose and demonstrate two ultra-long range fiber Bragg grating (FBG) sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6-8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system.
MBM fuel feeding system design and evaluation for FBG pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, William A., E-mail: bill.campbell@usask.ca; Fonstad, Terry; Pugsley, Todd
2012-06-15
Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designedmore » for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics.« less
An optical fiber Bragg grating and piezoelectric ceramic voltage sensor
NASA Astrophysics Data System (ADS)
Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui
2017-10-01
Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.
An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.
Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui
2017-10-01
Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.
DOT National Transportation Integrated Search
2012-04-01
The goal of this study was to evaluate the performance of Fiber Bragg Grating (FBG) sensors able to detect impacts with : different frequencies on a bridge pier. The FBG technology was evaluated under controlled conditions in a laboratory : flume set...
Chaotic LIDAR for Naval Applications
2012-09-30
experimental output power is shown in the following figure. Fabry-Perot Fiber Laser PD ^^ /--"^ —► -(YDF\\ {SMFV X FBG 1 0 r utput FBG 70 60 3...Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium Doped Fiber; SMF: Single Mode Fiber.) Preamplifier
Thermal Curing Process Monitoring of the Composite Material Using the FBG sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
The raw composite material will suffer complex chemical and morphological changes during the thermal curing process, and it is difficult to monitor the curing process and curing effect. In this paper, the FBG sensor was embedded in the raw composite material to monitor the whole curing process. The experiment results showed that the FBG sensor can monitor the resin transformation and residual deformation of the composite material, and the FBG sensor can be applied to monitor the thermal curing process of the composite structure.
2011-09-01
Fbg αC 242-424. DNA for expressing Fbg αC 242-424 and FXIII A2 in Ecoli have been obtained from collaborators. Strategies for expressing and...the coming months. It will be important to 11 verify that the expressed FXIII A2 is active and that the Fbg αC 242-424 can serve as an effective...optimized. For the larger substrate Fbg αC 242-424, we will need to proteolytically digest the quenched kinetic samples with chymotrypsin prior to
Asymmetric transmission and reflection spectra of FBG in single-multi-single mode fiber structure.
Chai, Quan; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Chen, Yujin; Yuan, Libo; Peng, Gang-Ding
2015-05-04
We give a comprehensive theoretical analysis and simulation of a FBG in single-multi-single mode fiber structure (FBG-in-SMS), based on the coupled mode analysis and the mode interference analysis. This enables us to explain the experimental observations, its asymmetric transmission and reflection spectra with the similar temperature responses near the spectral range of Bragg wavelengths. The transmission spectrum shift during FBG written-in process is observed and discussed. The analysis results are useful in the design of the SMS structure based sensors and filters.
Application of small-diameter FBG sensors for detection of damages in composites
NASA Astrophysics Data System (ADS)
Okabe, Yoji; Mizutani, Tadahito; Yashiro, Shigeki; Takeda, Nobuo
2001-08-01
Small-diameter fiber Bragg grating (FBG) sensors have been developed by Hitachi Cable Ltd. and the authors. Since the outside diameter of polyimide coating is 52 micrometers , embedding of the sensors into carbon fiber reinforced plastic (CFRP) composites prepregs of 125 micrometers in thickness does not deteriorate the mechanical properties of the composite laminates. In this research, the small-diameter FBG sensor was applied for the detection of transverse cracks in CFRP composites. The FBG sensor was embedded in 0 degree(s) ply of a CFRP cross-ply laminate.
Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration
He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing
2016-01-01
We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090
Fiber Bragg Grating based bite force measurement.
Umesh, Sharath; Padma, Srivani; Asokan, Sundarrajan; Srinivas, Talabattula
2016-09-06
The present study reports an in vivo, novel methodology for the dynamic measurement of the bite force generated by individual tooth using a Fiber Bragg Grating Bite Force Recorder (FBGBFR). Bite force is considered as one of the major indicators of the functional state of the masticatory system, which is dependent on the craniomandibular structure comprising functional components such as muscles of mastication, joints and teeth. The proposed FBGBFR is an intra-oral device, developed for the transduction of the bite force exerted at the occlusal surface, into strain variations on a base plate, which in turn is sensed by the FBG sensor bonded over it. The FBGBFR is calibrated against a Micro Universal Testing Machine (UTM) for 0-900N range and the resolution of the developed FBGBFR is found to be 0.54N. 36 volunteers (20 males and 16 females) performed the bite force measurement test at molar, premolar and incisor tooth on either side of the dental arch and the obtained results show clinically relevant bite forces varying from 176N to 635N. The bite forces obtained from the current study for a substantial sample size, show that the bite forces increases along the dental arch from the incisors towards the molars and are found to be higher in male than in female. The FBG sensor element utilized in FBGBFR is electrically passive, which makes it a safe in vivo intra-oral device. Hence the FBGBFR is viable to be employed in clinical studies on biomechanics of oral function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Flood scour monitoring system using fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Lin, Yung Bin; Lai, Jihn Sung; Chang, Kuo Chun; Li, Lu Sheng
2006-12-01
The exposure and subsequent undermining of pier/abutment foundations through the scouring action of a flood can result in the structural failure of a bridge. Bridge scour is one of the leading causes of bridge failure. Bridges subject to periods of flood/high flow require monitoring during those times in order to protect the traveling public. In this study, an innovative scour monitoring system using button-like fiber Bragg grating (FBG) sensors was developed and applied successfully in the field during the Aere typhoon period in 2004. The in situ FBG scour monitoring system has been demonstrated to be robust and reliable for real-time scour-depth measurements, and to be valid for indicating depositional depth at the Dadu Bridge. The field results show that this system can function well and survive a typhoon flood.
Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach
NASA Astrophysics Data System (ADS)
Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola
2016-05-01
Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen
2013-06-01
In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.
Chaotic LIDAR for Naval Applications
2014-08-29
Perot Fiber Laser PD ^^ /- x —► -(YDF\\ {SMFV X — FBG 1 0 r utput FBG 70 Fabry-Perot Laser Output Pump Power (mW) Fig 2. Fabry-Perot...chaotic fiber laser. Left: Block diagram of the laser. Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium
Salazar-Flores, Margarita; Rivera-Rodríguez, Rosa María; Vázquez-Manriquez, María Eugenia; Arenas-Huertero, Francisco
2009-08-01
In order to evaluate the synergistic effect of habitual smoking and air pollution in Mexico City on the retention of inorganic fibers, ferruginous bodies (FB) were quantified as markers of exposure to inorganic fibers in lung digests from 426 autopsy cases. FB were isolated from 426 lung digests from cases with several lung diseases. The results revealed more retention of FB in the smokers group than in non-smokers: 38 FB per gram (FB/g) versus 11.2 FB/g, respectively (p < 0.05). Male smokers living in Mexico City increased their median to 54 FB/g. This contrasts with the median of outside residents: 11.2 FB/g (p < 0.002). Housewives and manual laborers increased their medians when the smoking habit was positive: from 11 to 14 FB/g, and from 16 to 21.5 FB/g, respectively. There is an effect of tobacco smoke on the retention of more fibers identified as FB when the individuals are males and Mexico City residents.
Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²⁺-doped optical fiber.
Liu, Zhengyong; Tse, Ming-Leung Vincent; Zhang, A Ping; Tam, Hwa-Yaw
2014-10-15
A novel microfluidic flowmeter integrated with microfiber Bragg grating (µFBG) is presented. Two glass capillaries and a short length of high-light-absorption Co²⁺-doped optical fiber were stacked inside a larger outer capillary tube. The stack was then drawn into a tapered device. Two microchannels with the diameter of ~50 μm were formed inside the capillaries for flowing of microfluidics. An FBG was inscribed in the tapered Co²⁺-doped fiber with waist diameter of ~70 μm, and acts as a flow-rate sensor. A pump laser with wavelength of 1480 nm was utilized to locally heat the µFBG, rendering the µFBG as miniature "hot-wire" flowmeter. The flow rate of the liquid in the microchannels is determined by the induced wavelength shift of the µFBG. The experimental results achieve a minimum detectable change of ~16 nL/s in flow rate, which is very promising in the use as part of biochips.
Al-Fakih, Ebrahim; Arifin, Nooranida; Pirouzi, Gholamhossein; Mahamd Adikan, Faisal Rafiq; Shasmin, Hanie Nadia; Abu Osman, Noor Azuan
2017-08-01
This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Effects of Coating and Diametric Load on Fiber Bragg Gratings as Cryogenic Temperature Sensors
NASA Technical Reports Server (NTRS)
Wu, meng-Chou; Pater, Ruth H.; DeHaven, Stanton L.
2008-01-01
Cryogenic temperature sensing was demonstrated using pressurized fiber Bragg gratings (PFBGs) with polymer coating of various thicknesses. The PFBG was obtained by applying a small diametric load to a regular fiber Bragg grating (FBG). The Bragg wavelengths of FBGs and PFBG were measured at temperatures from 295 K to 4.2 K. The temperature sensitivities of the FBGs were increased by the polymer coating. A physical model was developed to relate the Bragg wavelength shifts to the thermal expansion coefficients, Young's moduli, and thicknesses of the coating polymers. When a diametric load of no more than 15 N was applied to a FBG, a pressure-induced transition occurred at 200 K during the cooling cycle. The pressure induced transition yielded PFBG temperature sensitivities three times greater than conventional FBGs for temperatures ranging from 80 to 200 K, and ten times greater than conventional fibers for temperatures below 80 K. PFBGs were found to produce an increased Bragg wavelength shift of 2.2 nm compared to conventional FBGs over the temperature range of 4.2 to 300 K. This effect was independent of coating thickness and attributed to the change of the fiber thermo-optic coefficient.
Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang
2016-05-30
We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.
Optical fiber sensors based on novel polyimide for humidity monitoring of building materials
NASA Astrophysics Data System (ADS)
Chai, Jing; Liu, Qi; Liu, Jinxuan; Zhang, Dingding
2018-03-01
This paper presents novel preparation methods of polyimide and coupling agent, coated on the fiber Bragg grating (FBG) sensor for monitoring relative humidity (RH). The sensing mechanism that the volume change of the moisture-sensitive polyimide induces the shift of the Bragg wavelength of FBG is used in the RH sensor. The performance of the polymer-coated RH sensor was evaluated under laboratory conditions of temperature over a range of values (20.0-80.0 °C) and humidity over a range of RH values (25.0-95.0%). The time response and RH sensitivity of the sensor based on novel polyimide and coupling agent was improved, compared to the previous. A new packaged RH sensor was designed, which was used in detecting the moisture diffusion and evolutions inside of sample made of building materials which exposed to a controlled environment in the lab after casting. Relative humidity inside of sample with time was 100% in the first phase of vapor-saturated, slowly reduced in the latter phase. The results indicate the RH sensor developed provides a feasible method to detect the influence of environment on moisture inside the material in the drying process.
Ji, Chongke; Zhao, Chun-Liu; Kang, Juan; Dong, Xinyong; Jin, Shangzhong
2012-05-01
A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded tapered fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 × 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/μm for displacement in the range of 0-400 μm, and ∼0.0097 nm/°C for temperature between 20 °C and 70 °C.
Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie
2018-01-26
In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.
Sensing and splicing applications of small core Ge-doped photonic crystal fibers
NASA Astrophysics Data System (ADS)
Wang, Yiping; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Ecke, Wolfgang; Willsch, Reinhardt; Bartelt, Hartmut
2008-04-01
Sensor related properties of a small core (4.1μm) Ge-doped photonic crystal fiber (PCF) are being reported. Fiber Bragg gratings with 35% and almost 100 % reflectivity were written in the Ge-doped PCF before and after hydrogen loading, respectively, by use of a UV laser. A 5.6pm/°C temperature sensitivity of the FBG was observed. Additionally, a novel method is demonstrated to splice such PCF by use of a commercial fusion splicer with default splice parameters for standard single mode fibers (SMF). No parameter adjustments are required to splice the PCF to various SMFs and a low splice loss of 1.0 ~ 1.4dB can be achieved. No splice interface emerges at the splice joint, which is of advantage for the sensing applications of such a PCF.
Zhang, Jing; Yang, Lifeng; Anand, Ganesh Srinivasan; Ho, Bow; Ding, Jeak Ling
2011-10-01
Although homeostatic disturbance of the blood pH and calcium in the vicinity of tissue injury/malignancy/local infection seems subtle, it can cause substantial pathophysiological consequences, a phenomenon which has remained largely unexplored. The fibrinogen-related proteins (FREPs) containing fibrinogen-like domain (FBG) represent a conserved protein family with a common calcium-binding region, implying the presence of elements responsive to physiological perturbation. Here, we studied the molecular interaction between a representative FREP, the M-ficolin, and an acute phase blood protein, the C-reactive protein (CRP), both of which are known to trigger and control seminal pathways in infection and injury. Using hydrogen-deuterium exchange mass spectrometry, we showed that the C-terminal region of M-ficolin FBG underwent dramatic conformational change upon pH and calcium perturbations. Biochemical and biophysical assays showed that under defined pathophysiological condition (pH 6.5, 2.0 mM calcium), the FBG:CRP interaction occurred more strongly compared to that under physiological condition (pH 7.4, 2.5 mM calcium). We identified the binding interface between CRP and FBG, locating it to the pH- and calcium-sensitive C-terminal region of FBG. By site-directed mutagenesis, we determined H284 in the N-acetylglucosamine (GlcNAc)-binding pocket of the FBG, to be the critical CRP-binding residue. This conformational switch involving H284, explains how the pathophysiologically-driven FBG:CRP interaction diverts the M-ficolin away from GlcNAc/pathogen-recognition to host protein-protein interaction, thus enabling the host to regain homeostatic control. Our elucidation of the binding interface at the flexible FBG domain provides insights into the bioactive centre of the M-ficolin, and possibly other FREPs, which might aid future development of immunomodulators. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Evidence based study of antidiabetic potential of C. maxima seeds - In vivo.
Kushawaha, Devesh Kumar; Yadav, Manjulika; Chatterji, Sanjukta; Srivastava, Amrita Kumari; Watal, Geeta
2017-10-01
In vitro antidiabetic efficacy of Cucurbita maxima seed extract (CMSE) has already been studied in our previous findings. Thus, in order to validate these findings in biological system, in vivo antidiabetic activity of aqueous extract was investigated in normal as well as diabetic experimental models. Variable doses of extract were administered orally to normal and STZ induced mild diabetic rats during fasting blood glucose (FBG) and glucose tolerance test (GTT) studies. In order to determine the extract's antidiabetic potential long-term FBG and post prandial glucose (PPG) studies were also carried out. Most effective dose of 200 mg kg -1 of CMSE decreases the blood glucose level (BGL) in normal rats by 29.02% at 6 h during FBG studies and 23.23% at 3 h during GTT. However, the maximum reduction observed in BGL of mild diabetic rats during GTT the same interval of time was 26.15%. Moreover, in case of severely diabetic rats a significant reduction of 39.33% was observed in FBG levels whereas, in case of positive control, rats treated with 2.5 mg kg -1 of glipizide, a fall of 42.9% in FBG levels was observed after 28 days. Results of PPG level also showed a fall of 33.20% in severely diabetic rats as compared to the positive control showing a fall of 44.2% at the end of the 28 days. Thus, the present study validate the hypoglycemic and antidiabetic effect of CMSE and hence this extract could be explored further for developing as a novel antidiabetic agent.
A multi-parameter optical fiber sensor with interrogation and discrimination capabilities
NASA Astrophysics Data System (ADS)
Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun
2009-11-01
A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.
Optical high temperature sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Bowei
The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.
Orthodontic mechanics using mini-implant measured by FBG
NASA Astrophysics Data System (ADS)
Trannin, Pamela G.; Milczewski, Maura S.; de Oliveira, Walmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.
2015-07-01
The magnitude of the force generated during orthodontic mechanics anchored in mini-implant in a maxilla model was analyzed. Data was collected during the insertion of the mini-implant and at the moment of applying forces to the structure of the maxilla and dentition. To obtain quantitative results, the Fibre Bragg Gratings (FBG) were inserted in an elastomeric material reproducing a maxilla model. It was observed levels of forces of approximately 3,78N next to the root of first premolar by the insertion of the mini-implant and different levels of the force to different orthodontic mechanics applied on the dental system.
Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs
NASA Astrophysics Data System (ADS)
Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo
2006-05-01
A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.
An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications
Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard
2017-01-01
A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727
NASA Astrophysics Data System (ADS)
Fu, Meixia; Zhang, Min; Wang, Danshi; Cui, Yue; Han, Huanhuan
2016-10-01
We propose a scheme of optical duobinary-modulated upstream transmission system for reflective semiconductor optical amplifier-based colorless optical network units in 10-Gbps wavelength-division multiplexed passive optical network (WDM-PON), where a fiber Bragg grating (FBG) is adopted as an optical equalizer for better performance. The demodulation module is extremely simple, only needing a binary intensity modulation direct detection receiver. A better received sensitivity of -16.98 dBm at bit rate error (BER)=1.0×10-4 can be achieved at 120 km without FBG, and the BER at the sensitivity of -18.49 dBm can be up to 2.1×10-5 at the transmission distance of 160 km with FBG, which demonstrates the feasibility of our proposed scheme. Moreover, it could be a high cost-effectiveness scheme for WDM-PON in the future.
Feng, Xiaoshuang; Wang, Gang; Li, Ni; Lyu, Zhangyan; Chen, Shuohua; Wei, Luopei; Chen, Yuheng; Xie, Shuanghua; Yang, Wenjing; Yin, Jian; Cui, Hong; Chen, Hongda; Ren, Jiansong; Shi, Jufang; Wu, Shouling; Dai, Min; He, Jie
2017-10-24
To investigate the association between fasting blood glucose (FBG) levels and the risk of incident primary liver cancer (PLC) in Chinese males, a large prospective cohort was performed in the current study. A total of 109 169 males participating in the routine checkups every two years were recruited in the Kailuan male cohort study since May 2006. Cox proportional hazards regression models and restricted cubic spline (RCS) were used to evaluate the association between levels of baseline FBG and the risk of incident PLC. Compared to the males with normal FBG (3.9⩽FBG<6.1 mmol l -1 ), the males with impaired fasting glucose (IFG: 6.1⩽FBG<7.0 mmol l -1 ) and diabetes mellitus (DM: FBG ⩾7.0 mmol l -1 ) had a 60% (95% CI: 1.09-2.35) and a 58% (95% CI: 1.07-2.34) higher risk of incident PLC, respectively. Subgroup analysis found that IFG increased the risk of PLC among the non-smoker (HR=1.73, 95% CI: 1.01-2.98) and current alcohol drinker (HR=1.80, 95% CI: 1.03-3.16). While DM increased the risk of PLC especially among the males with normal BMI (<25 kg m -2 ) (HR=1.76, 95% CI: 1.05-2.94) and the HBV negativity (HR=1.89, 95% CI: 1.16-3.09), RCS analysis showed a positive non-linearly association between the FBG levels and the risk of PLC (p-overall=0.041, p-non-linear=0.049). Increased FBG may be an important and potentially modifiable exposure that could have key scientific and clinical importance for preventing PLC development.
Fiber Bragg Grating Sensors for the Oil Industry.
Qiao, Xueguang; Shao, Zhihua; Bao, Weijia; Rong, Qiangzhou
2017-02-23
With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group's research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for seismic exploration in the oil and gas industry need to be capable of measuring multiple physical parameters such as temperature, pressure, and acoustic waves in a hostile environment. This application requires that the FBG sensors display high sensitivity over the broad vibration frequency range of 5 Hz to 2.5 kHz, which contains the important geological information. We report the incorporation of mechanical transducers in the FBG sensors to enable enhance the sensors' amplitude and frequency response. Whenever the FBG sensors are working within a well, they must withstand high temperatures and high pressures, up to 175 °C and 40 Mpa or more. We use femtosecond laser side-illumination to ensure that the FBGs themselves have the high temperature resistance up to 1100 °C. Using FBG sensors combined with suitable metal transducers, we have experimentally realized high- temperature and pressure measurements up to 400 °C and 100 Mpa. We introduce a novel technology of ultrasonic imaging of seismic physical models using FBG sensors, which is superior to conventional seismic exploration methods. Compared with piezoelectric transducers, FBG ultrasonic sensors demonstrate superior sensitivity, more compact structure, improved spatial resolution, high stability and immunity to electromagnetic interference (EMI). In the last section, we present a case study of a well-logging field to demonstrate the utility of FBG sensors in the oil and gas industry.
Fiber Bragg Grating Sensors for the Oil Industry
Qiao, Xueguang; Shao, Zhihua; Bao, Weijia; Rong, Qiangzhou
2017-01-01
With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group’s research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for seismic exploration in the oil and gas industry need to be capable of measuring multiple physical parameters such as temperature, pressure, and acoustic waves in a hostile environment. This application requires that the FBG sensors display high sensitivity over the broad vibration frequency range of 5 Hz to 2.5 kHz, which contains the important geological information. We report the incorporation of mechanical transducers in the FBG sensors to enable enhance the sensors’ amplitude and frequency response. Whenever the FBG sensors are working within a well, they must withstand high temperatures and high pressures, up to 175 °C and 40 Mpa or more. We use femtosecond laser side-illumination to ensure that the FBGs themselves have the high temperature resistance up to 1100 °C. Using FBG sensors combined with suitable metal transducers, we have experimentally realized high- temperature and pressure measurements up to 400 °C and 100 Mpa. We introduce a novel technology of ultrasonic imaging of seismic physical models using FBG sensors, which is superior to conventional seismic exploration methods. Compared with piezoelectric transducers, FBG ultrasonic sensors demonstrate superior sensitivity, more compact structure, improved spatial resolution, high stability and immunity to electromagnetic interference (EMI). In the last section, we present a case study of a well-logging field to demonstrate the utility of FBG sensors in the oil and gas industry. PMID:28241460
Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors
2017-01-01
Fiber Bragg Grating (FBG) sensors are among the most popular elements for fiber optic sensor networks used for the direct measurement of temperature and strain. Modern FBG interrogation setups measure the FBG spectrum in real-time, and determine the shift of the Bragg wavelength of the FBG in order to estimate the physical parameters. The problem of determining the peak wavelength of the FBG from a spectral measurement limited in resolution and noise, is referred as the peak-tracking problem. In this work, the several peak-tracking approaches are reviewed and classified, outlining their algorithmic implementations: the methods based on direct estimation, interpolation, correlation, resampling, transforms, and optimization are discussed in all their proposed implementations. Then, a simulation based on coupled-mode theory compares the performance of the main peak-tracking methods, in terms of accuracy and signal to noise ratio resilience. PMID:29039804
Relationship between fluid bed aerosol generator operation and the aerosol produced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.L.; Yerkes, K.
1980-12-01
The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less
NASA Astrophysics Data System (ADS)
Jia, Xin-Hong
2006-12-01
The theoretical model on gain-clamped semiconductor optical amplifiers (GC-SOAs) based on compensating light has been constructed. Using this model, the effects of insertion position and peak reflectivity of the fiber Bragg grating (FBG) on the gain clamping and noise figure (NF) characteristics of GC-SOA are analyzed. The results show that the effect of the FBG insertion position on gain clamping is slight, but the lower NF can be obtained for input FBG-type GC-SOA; when the FBG peak wavelength is designed to close the signal wavelength, the gain clamping and NF characteristics that can be reached are better. Further study shows that, with the increased peak reflectivity of the FBG, the critical input power is broadened and the gain tends to be varied slowly; the larger bias current is helpful to raise gain and decrease the noise figure but is harmful to a gain flatness characteristic.
NASA Astrophysics Data System (ADS)
Saad, Said; Hassine, Lotfi; Elfahem, Wassim
2014-09-01
The high efficiency hydrogen fiber Bragg grating (FBG) sensor is presented. The sensitive film was a new alliance of palladium-silver (Pd-Ag). In addition, the titanium (Ti) layer was used as the adhesive layer. The presented sensor showed the resolution of more than 60 pm/1% H2, and a fast response time of 4 s-5 s was guaranteed in the 0.1% H2-4% H2 range. Moreover, the life time of the sensor was investigated. The obtained results showed that the sensor had an enhanced life time. Furthermore, the sensor was applied in the propulsion system fuel tank model of the aerospace vehicle. The obtained results indicated that it is a prevention system against the disaster aerospace due to hydrogen leakage.
Zhang, Ailing; Li, Changxiu
2012-10-08
In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array.
NASA Astrophysics Data System (ADS)
Kosaka, Tatsuro; Osaka, Katsuhiko; Nakakita, Satoru; Fukuda, Takehito
2003-08-01
This paper describes cure and health monitoring of glass fiber reinforced plastics (GFRP) textile composites both during a resin transfer molding (RTM) process and in loading tests. Carbon fiber reinforced plastics (CFRP) textile composites also were used for a comparative study. Fiber Bragg grating (FBG) fiber optic sensors were embedded in FRP to monitor internal strain. From the results of cure monitoring, it was found that the embedded FBG sensors were useful to know when cured resin constrained fibers. It also appeared that specimens were subjected to friction stress resulted from difference of coefficient of thermal expansion between FRP and a stainless steel mold in cooling process of RTM molding. After the molding, tensile and fatigue tests were conducted. The results of tensile tests showed that output of the embedded FBG sensors agreed well that of surface-bonded strain gauges despite deterioration of reflected spectra form the sensors. From the results of fatigue tests, the FBG sensors showed good status until 100,000 cycles when specimens had no damage. From these results, it can be concluded that embedded FBG sensors have good capability of monitoring internal strain in textile FRP both during RTM process and in service.
Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm
NASA Astrophysics Data System (ADS)
Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng
2018-06-01
Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.
Reduction of Fasting Blood Glucose and Hemoglobin A1c Using Oral Aloe Vera: A Meta-Analysis.
Dick, William R; Fletcher, Emily A; Shah, Sachin A
2016-06-01
Diabetes mellitus is a global epidemic and one of the leading causes of morbidity and mortality. Additional medications that are novel, affordable, and efficacious are needed to treat this rampant disease. This meta-analysis was performed to ascertain the effectiveness of oral aloe vera consumption on the reduction of fasting blood glucose (FBG) and hemoglobin A1c (HbA1c). PubMed, CINAHL, Natural Medicines Comprehensive Database, and Natural Standard databases were searched. Studies of aloe vera's effect on FBG, HbA1c, homeostasis model assessment-estimated insulin resistance (HOMA-IR), fasting serum insulin, fructosamine, and oral glucose tolerance test (OGTT) in prediabetic and diabetic populations were examined. After data extraction, the parameters of FBG and HbA1c had appropriate data for meta-analyses. Extracted data were verified and then analyzed by StatsDirect Statistical Software. Reductions of FBG and HbA1c were reported as the weighted mean differences from baseline, calculated by a random-effects model with 95% confidence intervals. Subgroup analyses to determine clinical and statistical heterogeneity were also performed. Publication bias was assessed by using the Egger bias statistic. Nine studies were included in the FBG parameter (n = 283); 5 of these studies included HbA1c data (n = 89). Aloe vera decreased FBG by 46.6 mg/dL (p < 0.0001) and HbA1c by 1.05% (p = 0.004). Significant reductions of both endpoints were maintained in all subgroup analyses. Additionally, the data suggest that patients with an FBG ≥200 mg/dL may see a greater benefit. A mean FBG reduction of 109.9 mg/dL was observed in this population (p ≤ 0.0001). The Egger statistic showed publication bias with FBG but not with HbA1c (p = 0.010 and p = 0.602, respectively). These results support the use of oral aloe vera for significantly reducing FBG (46.6 mg/dL) and HbA1c (1.05%). Further clinical studies that are more robust and better controlled are warranted to further explore these findings.
Smithard, Joel; Rajic, Nik; van der Velden, Stephen; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor
2017-07-20
A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.
Smithard, Joel; Rajic, Nik; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor
2017-01-01
A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module+ (AUSAM+). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz–5 MHz. The AUSAM+ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application. PMID:28773193
NASA Astrophysics Data System (ADS)
Zheng, Yong; Huang, Da; Shi, Lin
2018-05-01
Landslide monitoring is critical for predicting the stability of slopes to ensure the safety of life and property. Considering the potential advantages of fiber Bragg gratings (FBGs), such as immunity to electromagnetic interference, resistance to hostile environments, light weight, and high measurement precision and real time response, a self-designed, FBG-based in situ inclinometer combining a traditional inclinometer and FBG technology was designed to monitor the inner deformation of a slope. In practical landslide monitoring, the inclinometer can be regarded as a cantilever beam with one end fixed. Based on the deflection curve equation of a normal beam and the composite Simpson integral equation, a theoretical deflection equation of the FBG-based inclinometer versus longitudinal strain was established. A FBG-based inclinometer was fabricated and calibrated in the laboratory and a calibration strain sensitivity coefficient was obtained. The results of calibration tests show that the displacements measured by dial indicators are in good agreement with the theoretical displacements calculated using the proposed equation. A series of FBG-based inclinometers were installed into three vertical boreholes located at different points on the profile of an actual reinforced slope. The in situ monitoring results show that the FBG-based inclinometer can effectively capture the real-time internal displacements and potential sliding surface of the slope, proving the validity of the proposed theoretical equation as well the reliability and practicality of the proposed FBG-based inclinometer in engineering applications.
Lower fasting blood glucose in neurofibromatosis type 1
Martins, Aline Stangherlin; Jansen, Ann Kristine; Rodrigues, Luiz Oswaldo Carneiro; Matos, Camila Maria; Souza, Marcio Leandro Ribeiro; de Souza, Juliana Ferreira; Diniz, Maria de Fátima Haueisen Sander; Barreto, Sandhi Maria; Diniz, Leonardo Mauricio; de Rezende, Nilton Alves; Riccardi, Vincent Michael
2015-01-01
Studies indicate a lower occurrence of diabetes mellitus (DM) in patients with neurofibromatosis type 1 (NF1). Fasting blood glucose (FBG) level is the main criterion used to diagnose DM and glucose intolerance. Therefore, this study compared FBG level between adults with NF1 and non-NF1 controls. We selected clinical records of 57 out of 701 individuals attending the Neurofibromatosis Outpatient Reference Center of the Clinics Hospital of the Federal University of Minas Gerais in Brazil. The selected patients with NF1 were matched to non-NF1 controls selected from the Brazilian Longitudinal Study of Adult Health according to sex, age (range, 35–74 years) and BMI at a ratio of 1:3. In both groups, individuals with DM were excluded. Median FBG level in the NF1 group (86 mg/dl (range, 56–127 mg/dl)) was lower than that in the non-NF1 control group (102 mg/dl (range, 85–146 mg/dl)) (P<0.001). Prevalence of FBG level ≥100 mg/dl in the NF1 group (16%) was lower than that in the non-NF1 control group (63%) (P<0.05). The chance of a high FBG level was 89% lower in the NF1 group (odds ratio, 0.112; 95% CI, 0.067–0.188) (P<0.05). In conclusion, adults with NF1 showed a lower FBG level and a lower prevalence of high FBG level compared with non-NF1 controls. PMID:26631381
Lower fasting blood glucose in neurofibromatosis type 1.
Martins, Aline Stangherlin; Jansen, Ann Kristine; Rodrigues, Luiz Oswaldo Carneiro; Matos, Camila Maria; Souza, Marcio Leandro Ribeiro; de Souza, Juliana Ferreira; Diniz, Maria de Fátima Haueisen Sander; Barreto, Sandhi Maria; Diniz, Leonardo Mauricio; de Rezende, Nilton Alves; Riccardi, Vincent Michael
2016-01-01
Studies indicate a lower occurrence of diabetes mellitus (DM) in patients with neurofibromatosis type 1 (NF1). Fasting blood glucose (FBG) level is the main criterion used to diagnose DM and glucose intolerance. Therefore, this study compared FBG level between adults with NF1 and non-NF1 controls. We selected clinical records of 57 out of 701 individuals attending the Neurofibromatosis Outpatient Reference Center of the Clinics Hospital of the Federal University of Minas Gerais in Brazil. The selected patients with NF1 were matched to non-NF1 controls selected from the Brazilian Longitudinal Study of Adult Health according to sex, age (range, 35-74 years) and BMI at a ratio of 1:3. In both groups, individuals with DM were excluded. Median FBG level in the NF1 group (86 mg/dl (range, 56-127 mg/dl)) was lower than that in the non-NF1 control group (102 mg/dl (range, 85-146 mg/dl)) (P<0.001). Prevalence of FBG level ≥100 mg/dl in the NF1 group (16%) was lower than that in the non-NF1 control group (63%) (P<0.05). The chance of a high FBG level was 89% lower in the NF1 group (odds ratio, 0.112; 95% CI, 0.067-0.188) (P<0.05). In conclusion, adults with NF1 showed a lower FBG level and a lower prevalence of high FBG level compared with non-NF1 controls. © 2016 The authors.
Dose titration of repaglinide in patients with inadequately controlled type 2 diabetes.
Kølendorf, Klaus; Eriksson, Johan; Birkeland, Kåre I; Kjellström, Thomas; Hreidarsson, Astradur B
2004-04-01
A total of 385 drug-therapy naïve patients, with inadequately controlled type 2 diabetes, were randomised into a multinational, parallel-group study to compare two strategies for dose titration of the oral hypoglycaemic agent repaglinide. Patients were allocated to either a fasting blood glucose (FBG) monitoring group with titration target 4.4-6.1 mmol/l or to a post-prandial blood glucose (PPBG) monitoring group with titration target 4.4-8.0 mmol/l. An initial titration period of up to 8 weeks was followed by a 12-week treatment period. Glycaemic control and hypoglycaemic outcomes were compared for the respective groups. HbA(1c) decreased significantly more in the FBG monitoring group by a mean of 1.38% compared to the PPBG group by a mean of 1.22% (P=0.03). The glycaemic control targets were met by fewer patients in the FBG group than in the PPBG group (57% versus 86% (P<0.001)) despite a higher mean dose of repaglinide in the FBG group. The within-patient blood glucose variability was significantly lower in the FBG group than in the PPBG group (P<0.001). In conclusion, repaglinide lowered the HbA(1c) effectively and safely in both groups and self-monitored FBG is a suitable parameter for titration of repaglinide. Whether a lower PPBG target might be as good a guide as FBG for titration of repaglinide should be addressed in a future study.
NASA Astrophysics Data System (ADS)
Palumbo, Giovanna; Tosi, Daniele; Schena, Emiliano; Massaroni, Carlo; Ippolito, Juliet; Verze, Paolo; Carlomagno, Nicola; Tammaro, Vincenzo; Iadicicco, Agostino; Campopiano, Stefania
2017-05-01
Fiber Bragg Grating (FBG) sensors applied to bio-medical procedures such as surgery and rehabilitation are a valid alternative to traditional sensing techniques due to their unique characteristics. Herein we propose the use of FBG sensor arrays for accurate real-time temperature measurements during multi-step RadioFrequency Ablation (RFA) based thermal tumor treatment. Real-time temperature monitoring in the RF-applied region represents a valid feedback for the success of the thermo-ablation procedure. In order to create a thermal multi-point map around the tumor area to be treated, a proper sensing configuration was developed. In particular, the RF probe of a commercial medical instrumentation, has been equipped with properly packaged FBGs sensors. Moreover, in order to discriminate the treatment areas to be ablated as precisely as possible, a second array 3.5 cm long, made by several FBGs was used. The results of the temperature measurements during the RFA experiments conducted on ex-vivo animal liver and kidney tissues are presented herein. The proposed FBGs based solution has proven to be capable of distinguish different and consecutive discharges and for each of them, to measure the temperature profile with a resolution of 0.1 °C and a minimum spatial resolution of 5mm. Based upon our experiments, it is possible to confirm that the temperature decreases with distance from a RF peak ablation, in accordance with RF theory. The proposed solution promises to be very useful for the surgeon because a real-time temperature feedback allows for the adaptation of RFA parameters during surgery and better delineates the area under treatment.
2011-01-01
based demodulation approach for the measurement of strains, induced by structural vibrations, using Fiber Bragg Gratings ( FBG ). This companion...provide the Frequency Response Functions from a series of FBG arrays attached to a vibrating structure. RELEASE LIMITATION Approved for... FBG arrays attached to a vibrating structure. Both this technical note and its companion technical report are formal contributions to an
A simultaneous pressure and temperature sensor based on a superstructure fiber grating
NASA Astrophysics Data System (ADS)
Lin, Chia-Min; Liu, Wen-Fung; Fu, Ming-Yue; Sheng, Hao-Jan; Bor, Sheau-Shung; Tien, Chuen-Lin
2004-12-01
We demonstrated that a high-sensitivity fiber sensor based on a superstructure fiber grating (SFG) can simultaneously measure the pressure and temperature by encapsulating the grating in a polymer-half-filled metal cylinder, in which there are two openings on opposite sides of the wall filled with the polymer to sense the pressure. The mechanism of sensing pressure is to transfer the pressure into the axial extended-strain. According to the optical characteristics of an SFG composed of a fiber Bragg grating (FBG) and long period grating (LPG), the various pressure and temperature will cause the variation of the center-wavelength and reflection simultaneously. Thus, the sensor can be used for the measurement both of the pressure and temperature. The pressure sensitivity of 2.28×10-2MPa-1 and the temperature sensitivity both of 0.015nm/°C and -0.143dB/°C are obtained.
NASA Astrophysics Data System (ADS)
Li, Jin; Correia, Ricardo P.; Chehura, Edmon; Staines, Stephen; James, Stephen W.; Tatam, Ralph; Butcher, Antony P.; Fuentes, Raul
2009-10-01
Pile loading test plays an important role in the field of piling engineering. In order to gain further insight into the load transfer mechanism, strain gauges are often used to measure local strains along the piles. This paper reports a case whereby FBG strain sensors was employed in a field trial conducted on three different types of pile loading tests in a glacial till. The instrumentation systems were configured to suit the specific characteristic of each type of test. Typical test results are presented. The great potential of using FBG sensors for pile testing is shown.
Resolution enhancement of fiber Bragg grating temperature sensor using a cavity ring-down technique
NASA Astrophysics Data System (ADS)
Yarai, Atsushi; Hara, Katsuyuki
2018-02-01
A new technique for enhancing the measurement resolution of a fiber Bragg grating (FBG) temperature sensor is proposed. This technique uses a cavity ring-down approach to amplify optical intensity by accumulating unremarkable intensity changes. A wavelength-stabilized optical pulse with a width of 10 ns rotates several times inside an optical fiber loop that contains a FBG sensor. In other words, the loop system functions as an integrator of slight intensity transition. A temperature resolution of at least 0.02 °C was achieved at 20.0 °C. Resolution with this technique is at least five times higher than previous techniques.
MBM fuel feeding system design and evaluation for FBG pilot plant.
Campbell, William A; Fonstad, Terry; Pugsley, Todd; Gerspacher, Regan
2012-06-01
A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kurasawa, Shintaro; Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun
2017-11-23
This paper describes and verifies a non-invasive blood glucose measurement method using a fiber Bragg grating (FBG) sensor system. The FBG sensor is installed on the radial artery, and the strain (pulse wave) that is propagated from the heartbeat is measured. The measured pulse wave signal was used as a collection of feature vectors for multivariate analysis aiming to determine the blood glucose level. The time axis of the pulse wave signal was normalized by two signal processing methods: the shortest-time-cut process and 1-s-normalization process. The measurement accuracy of the calculated blood glucose level was compared with the accuracy of these signal processing methods. It was impossible to calculate a blood glucose level exceeding 200 mg/dL in the calibration curve that was constructed by the shortest-time-cut process. In the 1-s-normalization process, the measurement accuracy of the blood glucose level was improved, and a blood glucose level exceeding 200 mg/dL could be calculated. By verifying the loading vector of each calibration curve to calculate the blood glucose level with a high measurement accuracy, we found the gradient of the peak of the pulse wave at the acceleration plethysmogram greatly affected.
Tunable Optical Assembly with Vibration Dampening
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Allison, Sidney G.; Fox, Robert L.
2008-01-01
Since their market introduction in 1995, fiber Bragg gratings (FBGs) have emerged as excellent means of measuring such parameters as strain and temperature. Distributed-grating sensing is particularly beneficial for such structural-health monitoring applications such as those of 'smart' structures or integrated vehicle health management in aerospace vehicles. Because of the variability of their output wavelengths, tunable lasers have become widely used as means of measuring FBGs. Several versions of a lightweight assembly for strain-tuning an FBG and dampening its vibrations have been constructed. The main components of such an assembly are one or more piezoelectric actuators, an optical fiber containing one or more Bragg grating(s), a Bragg-grating strain-measurement system, and a voltage source for actuation. The piezoelectric actuators are, more specifically, piezoceramic fiber composite actuators and, can be, still more specifically, of a type known in the art as macro-fiber composite (MFC) actuators. In fabrication of one version of the assembly, the optical fiber containing the Bragg grating(s) is sandwiched between the piezoelectric actuators along with an epoxy that is used to bond the optical fiber to both actuators, then the assembly is placed in a vacuum bag and kept there until the epoxy is cured. Bonding an FBG directly into an MFC actuator greatly reduces the complexity, relative to assemblies, that include piezoceramic fiber composite actuators, hinges, ferrules, and clamp blocks with setscrews. Unlike curved actuators, MFC actuators are used in a flat configuration and are less bulky. In addition, the MFC offers some vibration dampening and support for the optical fiber whereas, in a curved piezoelectric actuator assembly, the optical fiber is exposed, and there is nothing to keep the exposed portion from vibrating.
Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery
Joo, Jae Yeon; Park, Gil Yong; An, Seong Soo A
2015-01-01
In the development of effective drug delivery carriers, many researchers have focused on the usage of nontoxic and biocompatible materials and surface modification with targeting molecules for tumor-specific drug delivery. Fibrinogen (Fbg), an abundant glycoprotein in plasma, could be a potential candidate for developing drug carriers because of its biocompatibility and tumor-targeting property via arginine–glycine–aspartate (RGD) peptide sequences. Doxorubicin (DOX), a chemotherapeutic agent, was covalently conjugated to Fbg, and the microspheres were prepared. Acid-labile and non-cleavable linkers were used for the conjugation of DOX to Fbg, resulting in an acid-triggered drug release under a mild acidic condition and a slow-controlled drug release, respectively. In vitro cytotoxicity tests confirmed low cytotoxicity in normal cells and high antitumor effect toward cancer cells. In addition, it was discovered that a longer linker could make the binding of cells to Fbg drug carriers easier. Therefore, DOX–linker–Fbg microspheres could be a suitable drug carrier for safer and effective drug delivery. PMID:26366073
High resolution strain sensor for earthquake precursor observation and earthquake monitoring
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang
2016-05-01
We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.
NASA Astrophysics Data System (ADS)
Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo
2013-12-01
One of the most common way to collect the traction current needed for the underground vehicle operation is by using the pantograph-overhead line system. The periodically check of pantographs and overhead lines is important to assure the correct interaction between the two systems in terms of good current collection quality. The main diagnostic tools are the monitoring of the vertical force between the overhead line and the pantograph head, and the vertical acceleration on the pantograph head. The pantograph system works under high voltage (1500 V, DC, in our tests) and high electromagnetic disturbances are present. For this reason, traditional electrical sensors can be used only with particular precautions that complicate the measurement set up; fibre optic sensors, and in particular fibre Bragg grating (FBG) sensors, are particularly suitable for this application. In this paper, the application of the FBG sensors on a pantograph for the monitoring of underground pantograph-catenary system is presented. FBG sensors are used to measure both the contact force and the vertical acceleration of the pantograph head. The same measurements are also gathered with a traditional electrical system, allowing a comparison. The result is a very good agreement between electrical and optical measurements, except in particular frequency ranges where the different positioning of the sensors influences the output, limiting the comparison. Moreover, some interesting results on the dynamic behaviour of the pantograph and its interaction with the overhead line are presented. Finally, a method to point out the main defects on the overhead line is shown.
Optimal Sensor Fusion for Structural Health Monitoring of Aircraft Composite Components
2011-09-01
sensor networks combine or fuse different types of sensors. Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to...consideration. This paper describes an example of optimal sensor fusion, which combines FBG sensors and PZT sensors. Optimal sensor fusion tries to find...Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to provide local damage detection, while surface mounted
Cai, Q; Luo, X; Liang, Y; Rao, H; Fang, X; Jiang, W; Lin, T; Lin, T; Huang, H
2013-01-01
Background: Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTL) is an aggressive disease with poor prognosis, requiring risk stratification. However, the prognosis of ENKTL is not fully defined and needs supplementation. We hypothesised that fasting blood glucose (FBG) may be a new prognostic factor for ENKTL. Methods: We retrospectively analysed 130 patients newly diagnosed with ENKTL. Results: Both univariate analysis and multivariate analysis revealed that FBG >100 mg dl−1 was associated with a poor outcome. Patients with FBG >100 mg dl−1 at diagnosis had more adverse clinical features, achieved lower complete remission rates (P=0.003) and had worse overall survival (P<0.001) and progression-free survival (P<0.001) compared with low-FBG patients. Measurement of FBG was helpful in differentiating between low-risk patients using the International Prognostic Index (IPI) and Prognosis Index for peripheral T-cell lymphoma (PIT) scoring and patients in a different category using the Korean Prognostic Index (KPI) scores with different survival outcomes (P<0.05). Conclusion: Our data suggest that measuring FBG levels at diagnosis is a novel, independent predictor of prognosis in ENKTL and helps to distinguish low-risk patients with poor survival, and this holds true in patients considered low-risk by IPI, PIT and KPI. PMID:23299534
Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum
2014-06-10
In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.
NASA Astrophysics Data System (ADS)
Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming
2014-03-01
A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.
NASA Astrophysics Data System (ADS)
Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming
2014-11-01
We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.
Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery
NASA Astrophysics Data System (ADS)
He, Xingchi; Balicki, Marcin A.; Kang, Jin U.; Gehlbach, Peter L.; Handa, James T.; Taylor, Russell H.; Iordachita, Iulian I.
2012-01-01
Vitreoretinal surgery is a technically demanding ophthalmologic discipline. One of the main technical challenges in vitreoretinal surgery is the lack of force sensing since the surgical maneuvers fall below the human sensory threshold. Previously, a 2-degree-of-freedom (DOF) force sensing instrument with a surgical pick was developed and tested. However, a more commonly used instrument for vitreoretinal surgery is the forceps, with which a surgeon can easily grasp and delaminate the scar tissue. We have designed, fabricated and calibrated a novel 20-gauge (Ga) microsurgical instrument with a 2-DOF force sensing forceps. Three fiber Bragg grating (FBG) sensors are integrated into the customized AlconTM forceps tip. The redundant sensor configuration provides good compensation for temperature-related drift. The calibration data show that the tool can provide a force resolution of 0.25 mN. In order to test the functionality and performance, the forceps was evaluated in inner shell membrane peeling experiments with chicken embryos as well as in in-vivo rabbit experiments. The instrument has demonstrated the capability of being applied in the clinical environment, with consistent force measurements. The force exerted in inner shell membrane peeling is from 6.07 to 34.65 mN. The development of the 2-DOF force sensing micro-forceps has shown that the fabrication process is feasible and reliable, and it can be used to develop a future 3-DOF force sensing tool.
Fiber Bragg grating sensor-based communication assistance device
NASA Astrophysics Data System (ADS)
Padma, Srivani; Umesh, Sharath; Pant, Shweta; Srinivas, Talabattula; Asokan, Sundarrajan
2016-08-01
Improvements in emergency medicine in the form of efficient life supporting systems and intensive care have increased the survival rate in critically injured patients; however, in some cases, severe brain and spinal cord injuries can result in a locked-in syndrome or other forms of paralysis, and communication with these patients may become restricted or impossible. The present study proposes a noninvasive, real-time communication assistive methodology for those with restricted communication ability, employing a fiber Bragg grating (FBG) sensor. The communication assistive methodology comprises a breath pattern analyzer using an FBG sensor, which acquires the exhalation force that is converted into strain variations on a cantilever. The FBG breath pattern analyzer along with specific breath patterns, which are programmed to give specific audio output commands, constitutes the proposed fiber Bragg grating sensor-based communication assistive device. The basic communication can be carried out by instructing the patients with restricted communication ability to perform the specific breath patterns. The present approach is intended to be an alternative to the common approach of brain-computer interface in which an instrument is utilized for learning of brain responses.
One Year of FOS Measurements in CMS Experiment at CERN
NASA Astrophysics Data System (ADS)
Szillási, Zoltán; Buontempo, Salvatore; Béni, Noémi; Breglio, Giovanni; Cusano, Andrea; Laudati, Armando; Giordano, Michele; Saccomanno, Andrea; Druzhkin, Dmitry; Tsirou, Andromachi
Results are presented on the activity carried out by our research group, in collaboration with the SME Optosmart s.r.l. (an Italian spin-off company), on the application of Fiber Optic Sensor (FOS) techniques to monitor high-energy physics (HEP) detectors. Assuming that Fiber Bragg Grating sensors (FBGs) radiation hardness has been deeply studied for other field of application, we have applied the FBG technology to the HEP research domain. We present here the experimental evidences of the solid possibility to use such a class of sensors also in HEP detector very complex environmental side conditions. In particular we present more than one year data results of FBG measurements in the Compact Muon Solenoid (CMS) experiment set up at the CERN, where we have monitored temperatures (within CMS core) and strains in different locations by using FBG sensors during the detector operation with the Large Hadron Collider (LHC) collisions and high magnetic field. FOS data and FOS readout system stability and reliability is demonstrated, with continuous 24/24 h 7/7d data taking under severe and complex side conditions.
Health monitoring system for a tall building with Fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.
2009-03-01
Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.
A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications
Moraleda, Alberto Tapetado; Montero, David Sánchez; Webb, David J.; García, Carmen Vázquez
2014-01-01
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown. PMID:25615736
NASA Astrophysics Data System (ADS)
Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan
2017-04-01
Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.
A self-referenced optical intensity sensor network using POFBGs for biomedical applications.
Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen
2014-12-12
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.
2013-05-10
13. SUPPLEMENTARY NOTES 14. ABSTRACT In this research, fiber Bragg grating ( FBG ) optical temperature sensors are used for structural health...surface of a composite structure. FBG sensors also respond to axial strain in the optical fiber, thus any structural strain experienced by the composite...features. First, a three-dimensional array of FBG temperature sensors has been embedded in a carbon/epoxy composite structure, consisting of both in
2012-02-01
available for interrogation. Although commercially available fibre Bragg grating ( FBG ) sensors have emerged in the marketplace over the past decade...the results from a preliminary trial investigating the feasibility of using embedded FBG arrays in a shape adaptive composite foil to characterise...The response from the FBG sensors was also monitored during fabrication of the foil during the resin infusion and curing stages of the process
On-Orbit Assessment of Satellite Structural Properties via Robust Structural Health Monitoring
2012-07-23
4-5] in aerospace applications. Compared to traditional SHM approaches using strain gages or Fiber Bragg Grating ( FBG ) sensors, the advantage of...decay model [20], principle stress directions for impact locations [21], use of Laser Doppler Vibrometer (LDV) [22] and FBG sensors [16, 23]. These...for Damage Localization in Flexural Structures Using Long-Gage FBG Sensors,” Structural Control Health Monitoring, Vol. 18, pp. 341-360, 2010. [24
Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications
NASA Astrophysics Data System (ADS)
Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.
2011-05-01
Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.
A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates.
Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong
2017-01-22
To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7-20 Hz range.
Effects of the inclined femto laser incidence at the phase mask on FBG carving
NASA Astrophysics Data System (ADS)
Wang, Jian; Wu, Shengli; Zhang, Jintao; Ren, Wenyi
2015-12-01
The inclined incidence of the femto laser on the phase mask in fiber Bragg grating (FBG) carving has a significant effect on the quality of FBG fabrication. Based on that the infrared femto laser has highly spatial coherence and the order walk-off will happen behind the phase mask, the interferogram generated at the fiber core by the inclined femto laser beam has been analyzed using the multi-beam interference principle. The influence of beam inclination on the coherence of the 0th and ± 1st orders diffraction with different exposure distance, the visibility of interferogram and the frequency component of the transverse interferogram intensity has also been analyzed. It is meaningful for the FBG fabricating with the femto laser.
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Walendziuk, Wojciech
2017-08-01
Authors of this article focused on the use of fiber-optic technology for monitoring heart and respiratory rate of the human body. The article describes an innovative method of encapsulating fiber Bragg grating (FBG) into polymer polydimethylsiloxane (PDMS) and comparison of this measuring probe with an FBG sensor glued on the plexiglass pad. The team of authors offers a solution which is basically focused on the monitoring of long-term ill patients with a minimum of physical movement load. Real data were acquired from a group of 10 volunteers with their written consent in the laboratory environment. Acquired data was compared by the Bland-Altman method.
Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin
2015-10-01
A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.
Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah
2017-01-27
Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Chongke; Zhao Chunliu; Kang Juan
2012-05-15
A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded taperedmore » fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 x 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/{mu}m for displacement in the range of 0-400 {mu}m, and {approx}0.0097 nm/ deg. C for temperature between 20 deg. C and 70 deg. C.« less
Jenkins, R. Brian; Joyce, Peter; Mechtel, Deborah
2017-01-01
Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay. PMID:28134815
NASA Astrophysics Data System (ADS)
Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui
2017-10-01
Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, M.; Botsis, J.; Coric, D.
2008-08-28
The increasing needs of extending the lifetime in high-technology fields, such as space and aerospace, rail transport and naval systems, require quality enhancing of the composite materials either from a processing standing point or in the sense of resistance to service conditions. It is well accepted that the final quality of composite materials and structures is strongly influenced by processing parameters like curing and post-curing temperatures, rate of heating and cooling, applied vacuum, etc. To optimize manufacturing cycles, residual strains evolution due to chemical shrinkage and other physical parameters of the constituent materials must be characterized in situ. Such knowledgemore » can lead to a sensible reduction in defects and to improved physical and mechanical properties of final products. In this context continuous monitoring of strains distribution developed during processing is important in understanding and retrieving components' and materials' characteristics such as local strains gradients, degree of curing, coefficient of thermal expansion, moisture absorption, etc.« less
Bharathan, Gayathri; Woodward, Robert I; Ams, Martin; Hudson, Darren D; Jackson, Stuart D; Fuerbach, Alex
2017-11-27
We report the development of a widely tunable all-fiber mid-infrared laser system based on a mechanically robust fiber Bragg grating (FBG) which was inscribed through the polymer coating of a Ho 3+ -Pr 3+ co-doped double clad ZBLAN fluoride fiber by focusing femtosecond laser pulses into the core of the fiber without the use of a phase mask. By applying mechanical tension and compression to the FBG while pumping the fiber with an 1150 nm laser diode, a continuous wave (CW) all-fiber laser with a tuning range of 37 nm, centered at 2870 nm, was demonstrated with up to 0.29 W output power. These results pave the way for the realization of compact and robust mid-infrared fiber laser systems for real-world applications in spectroscopy and medicine.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-08-31
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-01-01
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction. PMID:26404287
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2015-11-01
One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.
Castillo, Gerardo M.; Nishimoto-Ashfield, Akiko; Banerjee, Aryamitra A.; Landolfi, Jennifer A.; Lyubimov, Alexander V.; Bolotin, Elijah M.
2013-01-01
Purpose Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/− PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice. Method HBEGF, PGC-HBEGF, Omeprazole, Omeprazole+PGC-HBEGF, Omeprazole+PGC-gastrin+PGC-HBEGF and epidermal growth factor (EGF)+gastrin were tested in multiple low dose streptozotocin diabetic mice. Results Omeprazole+PGC-HBEGF normalized FBG and is better than EGF+gastrin at improving islet function and decreasing insulitis. Groups treated with Omeprazole, Omeprazole+PGC-HBEGF, or EGF+gastrin have significantly improved islet function versus saline control. All animals that received PGC-HBEGF had significantly reduced islet insulitis versus saline control. Non-FBG was lower for Omeprazole+PGC-gastrin+PGC-HBEGF but Omeprazole+PGC-HBEGF alone showed better FBG and glucose tolerance. Conclusions Omeprazole+PGC-HBEGF provides a sustained exposure to both EGFRA and gastrin, improves islet function, and decreases insulitis in multiple low dose streptozotocin diabetic mice. Although HBEGF or EGF elevates non-FBG, it facilitates a reduction of insulitis and, in the presence of Omeprazole, provides normalization of FBG at the end of treatment. The study demonstrates Omeprazole and PGC-HBEGF is a viable treatment for diabetes. PMID:23793991
Castillo, Gerardo M; Nishimoto-Ashfield, Akiko; Banerjee, Aryamitra A; Landolfi, Jennifer A; Lyubimov, Alexander V; Bolotin, Elijah M
2013-11-01
Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/- PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice. HBEGF, PGC-HBEGF, Omeprazole, Omeprazole + PGC-HBEGF, Omeprazole + PGC-gastrin + PGC-HBEGF and epidermal growth factor (EGF) + gastrin were tested in multiple low dose streptozotocin diabetic mice. Omeprazole + PGC-HBEGF normalized FBG and is better than EGF + gastrin at improving islet function and decreasing insulitis. Groups treated with Omeprazole, Omeprazole + PGC-HBEGF, or EGF + gastrin have significantly improved islet function versus saline control. All animals that received PGC-HBEGF had significantly reduced islet insulitis versus saline control. Non-FBG was lower for Omeprazole + PGC-gastrin + PGC-HBEGF but Omeprazole + PGC-HBEGF alone showed better FBG and glucose tolerance. Omeprazole + PGC-HBEGF provides a sustained exposure to both EGFRA and gastrin, improves islet function, and decreases insulitis in multiple low dose streptozotocin diabetic mice. Although HBEGF or EGF elevates non-FBG, it facilitates a reduction of insulitis and, in the presence of Omeprazole, provides normalization of FBG at the end of treatment. The study demonstrates Omeprazole and PGC-HBEGF is a viable treatment for diabetes.
Complementary and alternative medicine for the treatment of type 2 diabetes.
Nahas, Richard; Moher, Matthew
2009-06-01
To review clinical evidence supporting complementary and alternative medicine interventions for improving glycemic control in type 2 diabetes mellitus. MEDLINE and EMBASE were searched from January 1966 to August 2008 using the term type 2 diabetes in combination with each of the following terms for specific therapies selected by the authors: cinnamon, fenugreek, gymnema, green tea, fibre, momordica, chromium, and vanadium. Only human clinical trials were selected for review. Chromium reduced glycosylated hemoglobin (HbA(1c)) and fasting blood glucose (FBG) levels in a large meta-analysis. Gymnema sylvestre reduced HbA(1c) levels in 2 small open-label trials. Cinnamon improved FBG but its effects on HbA(1c) are unknown. Bitter melon had no effect in 2 small trials. Fibre had no consistent effect on HbA(1c) or FBG in 12 small trials. Green tea reduced FBG levels in 1 of 3 small trials. Fenugreek reduced FBG in 1 of 3 small trials. Vanadium reduced FBG in small, uncontrolled trials. There were no trials evaluating microvascular or macrovascular complications or other clinical end points. Chromium, and possibly gymnema, appears to improve glycemic control. Fibre, green tea, and fenugreek have other benefits but there is little evidence that they substantially improve glycemic control. Further research on bitter melon and cinnamon is warranted. There is no complementary and alternative medicine research addressing microvascular or macrovascular clinical outcomes.
Test-bed for the remote health monitoring system for bridge structures using FBG sensors
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog
2009-05-01
This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.
Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field
NASA Astrophysics Data System (ADS)
Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng
2017-12-01
A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.
THz-bandwidth photonic Hilbert transformers based on fiber Bragg gratings in transmission.
Fernández-Ruiz, María R; Wang, Lixian; Carballar, Alejandro; Burla, Maurizio; Azaña, José; LaRochelle, Sophie
2015-01-01
THz-bandwidth photonic Hilbert transformers (PHTs) are implemented for the first time, to the best of our knowledge, based on fiber Bragg grating (FBG) technology. To increase the practical bandwidth limitation of FBGs (typically <200 GHz), a superstructure based on two superimposed linearly-chirped FBGs operating in transmission has been employed. The use of a transmission FBG involves first a conversion of the non-minimum phase response of the PHT into a minimum-phase response by adding an anticipated instantaneous component to the desired system temporal impulse response. Using this methodology, a 3-THz-bandwidth integer PHT and a fractional (order 0.81) PHT are designed, fabricated, and successfully characterized.
Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback.
Li, Yan; Wu, Zheng-Mao; Zhong, Zhu-Qiang; Yang, Xian-Jie; Mao, Song; Xia, Guang-Qiong
2014-08-11
Based on the framework of spin-flip model (SFM), the output characteristics of a 1550 nm vertical-cavity surface-emitting laser (VCSEL) subject to variable-polarization fiber Bragg grating (FBG) feedback (VPFBGF) have been investigated. With the aid of the self-correlation function (SF) and the permutation entropy (PE) function, the time-delay signature (TDS) of chaos in the VPFBGF-VCSEL is evaluated, and then the influences of the operation parameters on the TDS of chaos are analyzed. The results show that the TDS of chaos can be suppressed efficiently through selecting suitable coupling coefficient and feedback rate of the FBG, and is weaker than that of chaos generated by traditional variable-polarization mirror feedback VCSELs (VPMF-VCSELs) or polarization-preserved FBG feedback VCSELs (PPFBGF-VCSELs).
NASA Astrophysics Data System (ADS)
Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.
2011-07-01
Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT. To sense Lamb waves a high speed, high precision sensing technique is required to acquire data from embedded FBGs due to the high velocities and small strain amplitudes of these guided waves. A technique based on a filter consisting of a tunable FBG was developed. Since this filter is not dependant on moving parts, tests executed with this filter concluded with the detection of Lamb waves, removing the influence of temperature and operational strains. A damage detection algorithm was developed to detect and localize cracks and delaminations.
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
Full-Scale Measurement and Prediction of the Dynamics of High-Speed Helicopter Tow Cables
2014-02-14
fairing at tow speeds up to 17 knots. The technique for measuring vibration amplitudes along the cable is based on fiber Bragg grating ( FBG ) sensors...cm long. As light propagates through a FBG , it is partially reflected at each interface between the bands of high and low refractive index. If the...slightly, which can be measured by a change in the Bragg wavelength. State-of-the-art FBG interrogators can resolve Bragg wavelength shifts down to 0.001 nm
2011-09-01
strain data provided by in-situ strain sensors. The application focus is on the stain data obtained from FBG (Fiber Bragg Grating) sensor arrays...sparsely distributed lines to simulate strain data from FBG (Fiber Bragg Grating) arrays that provide either single-core (axial) or rosette (tri...when the measured strain data are sparse, as it is often the case when FBG sensors are used. For an inverse element without strain-sensor data, the
Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Investigation of hydrogen sulfide gas using Pd/Pt material based fiber Bragg grating sensor
NASA Astrophysics Data System (ADS)
Bedi, Amna; Rao, Dusari Nageswara; Kumar, Santosh
2018-02-01
In this work, Pd/Pt material based fiber Bragg grating (FBG) sensors has been proposed for detection of hydrogen sulfide gas. Here, characteristics of FBG parameters were numerically calculated and simulated. The variation in reflectivity based on refractive index has been shown. The reflectivity of FBG can be varied when refractive index is changed. The proposed sensor works on very low concentration i.e., 0% to 1%, which has the capability to detect in the early stage.
Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques
NASA Astrophysics Data System (ADS)
Chung, Kit Man
Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one of the best-performing commercial contact force sensors in catheterization applications. The proposed sensor features extremely high sensitivity up to 1.37-mN, miniature size (2.4-mm) that meets standard specification, excellent linearity, low hysteresis, and magnetic resonance imaging compatibility.
Suresh, R; Bhalla, S; Hao, J; Singh, C
2015-01-01
High importance is given to plantar pressure monitoring in the field of biomedical engineering for the diagnosis of posture related ailments associated with diseases such as diabetes and gonarthrosis. This paper presents the proof-of-concept development of a new high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors. In the proposed configuration, the FBG sensors are embedded within layers of carbon composite material (CCM) in turn conforming to an arc shape. A total of four such arc shaped sensors are instrumented in the pad at the locations of the forefoot and the hind foot. As a test of the pad, static plantar pressure is monitored on normal subjects under various posture conditions. The pad is evaluated both as a standalone platform as well as a pad inserted inside a standard shoe. An average pressure sensitivity of 1.2 pm/kPa and a resolution of approximately 0.8 kPa is obtained in this special configuration. The pad is found to be suitable in both configurations- stand-alone pad as well as an insert inside a standard shoe. The proposed set up offers a cost-effective high resolution and accurate plantar pressure measurement system suitable for clinical deployment. The novelty of the developed pressure pad lies in its ability to be used both as platform type as well as inserted in-sole type sensor system.
Determinants of blood levels of some thrombogenic biomarkers in healthy Arab adolescent subjects.
Akanji, Abayomi O; Al-Isa, Abdulwahab N; Thalib, Lukman
2011-10-01
Acute coronary syndromes present clinically as a consequence of plaque rupture and thrombosis possibly related to altered homeostasis of thrombogenic factors. It is speculated that this vulnerability in adults should be predictable from blood levels of thrombogenic biomarkers in children and adolescents. This study aims to examine the determinants and blood levels of lipoprotein(a) [Lp(a)], fibrinogen (FBG) and plasminogen activator inhibitor-1 (PAI-1) in healthy adolescents stratified according to age group, gender and body mass. A total of 774 (316 males 458 females) healthy adolescent Arab subjects aged 10-19 years and attending secondary schools in Kuwait were interviewed by a validated questionnaire for variables relating to socio-demographic variables, diet and physical activity. They also had anthropometry, BP measurement and determination of fasting blood levels of Lp(a), low density lipoprotein (LDL)-cholesterol, apolipoprotein (apo) B, PAI-1 activity and FBG. The median (interquartile range, IQR) plasma levels of PAI-1 activity, FBG, Lp(a) and apoB were respectively 1.59 (0.58-3.78) U/mL, 296 (190-417) mg/dL, 10.0 (4.8-21.0) mg/dL and 0.72 (0.60-0.85) g/L. Boys had significantly higher PAI-1, FBG and apoB concentrations than the girls, although Lp(a) levels were greater in the latter. The overweight and obese subjects tended to have higher levels of LDL, apoB, FBG and PAI-1 but not Lp(a). Furthermore, the younger adolescent males and females (age <14 years) consistently had higher FBG levels than the older ones (age >14 years). Lp(a) and PAI-1 levels did not appear significantly influenced by this age stratification. Bivariate and multivariate analyses with adjustment for putative body mass index (BMI) confounders indicated that the independent determinants of these biomarkers were (i) Lp(a): apoB, gender; (ii) PAI-1: BMI, apoB, diet; (iii) FBG: BMI, gender, age, family income; and (iv) apoB: BMI, gender and PAI-1. The blood levels of the prothrombotic biomarkers ;ibLp(a), PAI-1, and FBG;ic in healthy Kuwaiti adolescent subjects are variably influenced by age, gender, body mass and socio-demographic factors.
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed Mohammed Maim
This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.
Environmental and reliability test of FBG based geophone as geophysical exploration instrument
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Min, Li; Li, Ming; Jiang, Shaodong; Zhang, Faxiang; Sun, Zhihui; Ni, Jiasheng; Peng, Gangding; Wang, Chang
2017-10-01
A fiber Bragg grating (FBG) based geophone is designed for low-frequency signal detection has high acceleration response of about 60 dB re pm/g in a low frequency range of 5 Hz 60 Hz. To Guarantee normal operation in field test and practical application, an acceleration amplitude restriction is added in the mechanical design of the FBG geophone. Then a series of environmental and reliability test have been proceeded with online or offline monitoring of its working performance, including high and low temperature test, vibration test, shock test and free drop test. All the tests are planned according to National standard or Oil & Gas Industry Standard. And the experimental results indicate that our FBG geophone meet the criterion of oil and gas industry product and is capable of field application.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.
NASA Astrophysics Data System (ADS)
Wang, Tongxin; Luo, Yanhua; Peng, Gang-Ding; Zhang, Qijin
2012-02-01
Bragg grating in a single-mode photosensitive polymer optical fiber (POF) with benzil dimethyl ketal (BDK)-doped in core has been inscribed through the Sagnac ring interference method. The Bragg wavelength of grating is about 1570nm. The stress and strain response of fiber Bragg grating (FBG) has been studied respectively. By fitting the experimental result, the strain sensitivity of FBG in POF has been found to be almost same to that of conventional silica fiber Bragg gratings. However, the stress sensitivity of FBG in POF is measured to be 421pm/MPa, which is 28 times higher than FBG in silica fiber. And such high stress sensitivity makes Bragg grating in a single-mode BDK-doped POF appear to be very attractive for constructing stress sensor with high resolution.
NASA Astrophysics Data System (ADS)
Ren, Liang; Li, Hong-Nan; Sun, Li; Li, Dong-Sheng
2005-05-01
Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability of explosion proof, immunity to electromagnetic interference and high accuracy, especially fitting for measurement applications in harsh environment. In this paper, a novel FBG (fiber Bragg grating) strain sensor, which was packaged in a 1.2mm stainless steel tube by epoxy resin, was developed. Experiments were conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and demonstrates promising potentials. Ten of tube-packaged strain FBG sensors were applied in the vibration experiment of submarine pipeline model. The strain measured by FBG sensor agrees well with the electric resistance strain sensor.
NASA Astrophysics Data System (ADS)
Ren, Liang; Li, Hong-Nan; Sun, Li; Li, Dong-Sheng
2005-02-01
Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability of explosion proof, immunity to electromagnetic interference and high accuracy, especially fitting for measurement applications in harsh environment. In this paper, a novel FBG (fiber Bragg grating) strain sensor, which was packaged in a 1.2mm stainless steel tube by epoxy resin, was developed. Experiments were conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and demonstrates promising potentials. Ten of tube-packaged strain FBG sensors were applied in the vibration experiment of submarine pipeline model. The strain measured by FBG sensor agrees well with the electric resistance strain sensor.
Tunable fiber Bragg grating ring lasers using macro fiber composite actuators
NASA Astrophysics Data System (ADS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-10-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.
Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-01-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.
Complementary and alternative medicine for the treatment of type 2 diabetes
Nahas, Richard; Moher, Matthew
2009-01-01
ABSTRACT OBJECTIVE To review clinical evidence supporting complementary and alternative medicine interventions for improving glycemic control in type 2 diabetes mellitus. QUALITY OF EVIDENCE MEDLINE and EMBASE were searched from January 1966 to August 2008 using the term type 2 diabetes in combination with each of the following terms for specific therapies selected by the authors: cinnamon, fenugreek, gymnema, green tea, fibre, momordica, chromium, and vanadium. Only human clinical trials were selected for review. MAIN MESSAGE Chromium reduced glycosylated hemoglobin (HbA1c) and fasting blood glucose (FBG) levels in a large meta-analysis. Gymnema sylvestre reduced HbA1c levels in 2 small open-label trials. Cinnamon improved FBG but its effects on HbA1c are unknown. Bitter melon had no effect in 2 small trials. Fibre had no consistent effect on HbA1c or FBG in 12 small trials. Green tea reduced FBG levels in 1 of 3 small trials. Fenugreek reduced FBG in 1 of 3 small trials. Vanadium reduced FBG in small, uncontrolled trials. There were no trials evaluating microvascular or macrovascular complications or other clinical end points. CONCLUSION Chromium, and possibly gymnema, appears to improve glycemic control. Fibre, green tea, and fenugreek have other benefits but there is little evidence that they substantially improve glycemic control. Further research on bitter melon and cinnamon is warranted. There is no complementary and alternative medicine research addressing microvascular or macrovascular clinical outcomes. PMID:19509199
Air pollution and fasting blood glucose: A longitudinal study in China.
Chen, Linping; Zhou, Yong; Li, Shanshan; Williams, Gail; Kan, Haidong; Marks, Guy B; Morawska, Lidia; Abramson, Michael J; Chen, Shuohua; Yao, Taicheng; Qin, Tianbang; Wu, Shouling; Guo, Yuming
2016-01-15
Limited studies have examined the associations between air pollutants [particles with diameters of 10 μm or less (PM10), sulphur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days' average of concentrations, a 100 μg/m(3) increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95% CI: 0.15-0.19), 0.53 mmol/L (95% CI: 0.42-0.65), and 0.11 mmol/L (95% CI: 0.07-0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues. Copyright © 2015 Elsevier B.V. All rights reserved.
Veghari, Gholamreza; Sedaghat, Mehdi; Joshaghani, Hamidreza; Banihashem, Samieh; Moharloei, Pooneh; Angizeh, Abdolhamid; Tazik, Ebrahim; Moghaddami, Abbas; Hajian-Tilaki, Karimollah; Zahedpasha, Yedolla
2014-01-06
The aim of this study was to evaluate the association between Fasting Blood Glucose (FBG) level and Waist Circumference (WC) in men and women among 25-65 years old people in the north of Iran. This was a cross-sectional and analytical research gender that carried out on the 1797 subjects (941 males and 856 females) between 25-65 years old using multistage cluster sampling technique. FBG was measured in the morning after a 12-hour fast and was determined by using laboratory kits (enzymatic methods) and spectrophotometry technique. Central obesity was defined based on World Health Organization criteria: waist circumference ≥102 cm and ≥88 cm in men and women, respectively. The SPSS.16 software was used for statistical analysis. As whole, the mean of FBG in women (98.3 ± 40.1 mg/dl) was higher than in men (94.6 ± 32.2 mg/dl). Also, the mean of WC in men 4.5 cm was lower than in women. In men, the mean of FBG statistically differs between normal and central obese subjects both in 35-45 year-age group (P = 0.001) and in 45-55 year-age group (P = 0.042). As whole, in men, the FBG level increased up 2.82 mg/dl in each 10 cm of WC with the highest rate in 35-45 year-age group. In totally, in women, the FBG level increased up 3.48 mg/dl in each 10 cm of WC and in 25-35 year-age group and it was higher than in other age groups. In men, the regression coefficients were constant with age increasing while in women it was decreased. Constant trend in men and decreasing trend in women with age was shown between FBG and WC. The cut-off point of WC for detecting of diabetes obtained 89 cm and 107 cm in men and women, respectively. The positive correlation was seen between WC and FBG level and it was declined with age in women. Cut-off point for detecting of diabetes in men was less than in women. WC is useable as a predictor of type 2 diabetes mellitus risk among adults in the north of Iran.
Xu, Ou; Zhang, Jiejun; Yao, Jianping
2016-11-01
High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.
Research on a new type of fiber Bragg grating based corrosion sensor
NASA Astrophysics Data System (ADS)
Li, Peng; Song, Shide; Wang, Xiaona; Zhou, Weijie; Zhang, Zuocai
2015-08-01
Investigations of the corrosion of rebars in concrete structures are widely studied because of the serious damage to concrete caused by rebar corrosion. The rebar corrosion products in reinforced concrete take up 2~6 times the volume of the rebar. Based on this principle, a new type of fiber Bragg grating (FBG) corrosion sensor is proposed in this paper, which consists of two sensors, an FBG corrosion measurement sensor to measure the expansion strain caused by rebar corrosion, and a temperature compensation sensor to eliminate the cross-sensitivity of FBG corrosion sensor. The corrosion rate is derived by the wavelength shift of FBG corrosion sensor, so rebar corrosion can be monitored and assessed by the FBG wavelength shift. A customized rebar with epoxy fixing groove is designed to install a corrosion sensor on its surface and an embedded temperature compensation sensor. The corrosion sensor is embedded in cement mortar and subsequently casted in concrete. The performance of the corrosion sensor is studied in an accelerated electrochemical corrosion test. Experimental results show that the new type of corrosion sensor has advantage of relatively large measurement range of corrosion rate. The corrosion sensor is suitable to monitor slightly and moderately corroded rebars.
NASA Astrophysics Data System (ADS)
Luo, Bin-bin; Zhao, Ming-fu; Zhou, Xiao-jun; Huang, De-yi; Wang, Shao-fei; Cao, Xue-mei
2011-12-01
Based on the fiber waveguide models, a modified transfer matrix method was utilized to calculate the reflection spectrum of the thinned fiber Bragg grating (ThFBG) under the uneven surrounding refractive index (SRI) environment. Tow SRI ranges, including the high SRI region (from 1.42 to the fiber cladding index) and the low ones (from 1.33 to about 1.36), were considered. Numerical results showed that the responsive characteristics of the reflectance spectrum of the ThFBG were closely related to the properties of the SRI distribution, first, the original reflection spectrum of the ThFBG would split into many tinny resonant peaks and the reflectance spectrums are asymmetric since the uneven SRI distributions, second, the number of the resonant peaks, the decline of the amplitude, and the degree of the asymmetric of the reflectance spectrums would increase as the increase in the SRI gradient and the D-value of the SRI between the tow ends of the ThFBG. The same numerical approach could be used to analyze the responsive characteristics of the ThFBG under the uneven medium environment where the SRI distribution was any other functions.
Temperature-compensated strain measurement using FBG sensors embedded in composite laminates
NASA Astrophysics Data System (ADS)
Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo
2002-07-01
For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named hybrid sensor and laminate sensor, respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic (GFRP). Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glue to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion (CTEs), both strain and temperature can be measured. The latter sensor is a laminate of two 90 degree(s) plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors were experimentally confirmed.
Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S; Turkmen, Halit S; Yildiz, Mehmet
2016-09-19
The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson's ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson's ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes.
Sensitive detection of C-reactive protein using optical fiber Bragg gratings.
Sridevi, S; Vasu, K S; Asokan, S; Sood, A K
2015-03-15
An accurate and highly sensitive sensor platform has been demonstrated for the detection of C-reactive protein (CRP) using optical fiber Bragg gratings (FBGs). The CRP detection has been carried out by monitoring the shift in Bragg wavelength (ΔλB) of an etched FBG (eFBG) coated with an anti-CRP antibody (aCRP)-graphene oxide (GO) complex. The complex is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. A limit of detection of 0.01mg/L has been achieved with a linear range of detection from 0.01mg/L to 100mg/L which includes clinical range of CRP. The eFBG sensor coated with only aCRP (without GO) show much less sensitivity than that of aCRP-GO complex coated eFBG. The eFBG sensors show high specificity to CRP even in the presence of other interfering factors such as urea, creatinine and glucose. The affinity constant of ∼1.1×10(10)M(-1) has been extracted from the data of normalized shift (ΔλB/λB) as a function of CRP concentration. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-04-27
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S.; Turkmen, Halit S.; Yildiz, Mehmet
2016-01-01
The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson’s ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson’s ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes. PMID:28773901
Volume I: fluidized-bed code documentation, for the period February 28, 1983-March 18, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piperopoulou, H.; Finson, M.; Bloomfield, D.
1983-03-01
This documentation supersedes the previous documentation of the Fluidized-Bed Gasifier code. Volume I documents a simulation program of a Fluidized-Bed Gasifier (FBG), and Volume II documents a systems model of the FBG. The FBG simulation program is an updated version of the PSI/FLUBED code which is capable of modeling slugging beds and variable bed diameter. In its present form the code is set up to model a Westinghouse commercial scale gasifier. The fluidized bed gasifier model combines the classical bubbling bed description for the transport and mixing processes with PSI-generated models for coal chemistry. At the distributor plate, the bubblemore » composition is that of the inlet gas and the initial bubble size is set by the details of the distributor plate. Bubbles grow by coalescence as they rise. The bubble composition and temperature change with height due to transport to and from the cloud as well as homogeneous reactions within the bubble. The cloud composition also varies with height due to cloud/bubble exchange, cloud/emulsion, exchange, and heterogeneous coal char reactions. The emulsion phase is considered to be well mixed.« less
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Wang, Chujun; Chen, Yong
2018-01-01
Large-capacity encoding fiber Bragg grating (FBG) sensor network is widely used in modern long-term health monitoring system. Encoding FBG sensors have greatly improved the capacity of distributed FBG sensor network. However, the error of addressing increases correspondingly with the enlarging of capacity. To address the issue, an improved algorithm called genetic tracking algorithm (GTA) is proposed in the paper. In the GTA, for improving the success rate of matching and reducing the large number of redundant matching operations generated by sequential matching, the individuals are designed based on the feasible matching. Then, two kinds of self-crossover ways and a dynamic variation during mutation process are designed to increase the diversity of individuals and to avoid falling into local optimum. Meanwhile, an assistant decision is proposed to handle the issue that the GTA cannot solve when the variation of sensor information is highly overlapped. The simulation results indicate that the proposed GTA has higher accuracy compared with the traditional tracking algorithm and the enhanced tracking algorithm. In order to address the problems of spectrum fragmentation and low sharing degree of spectrum resources in survivable.
Oil pipeline geohazard monitoring using optical fiber FBG strain sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Salazar-Ferro, Andres; Mendez, Alexis
2016-04-01
Pipelines are naturally vulnerable to operational, environmental and man-made effects such as internal erosion and corrosion; mechanical deformation due to geophysical risks and ground movements; leaks from neglect and vandalism; as well as encroachments from nearby excavations or illegal intrusions. The actual detection and localization of incipient and advanced faults in pipelines is a very difficult, expensive and inexact task. Anything that operators can do to mitigate the effects of these faults will provide increased reliability, reduced downtime and maintenance costs, as well as increased revenues. This talk will review the on-line monitoring of an extensive network of oil pipelines in service in Colombia using optical fiber Bragg grating (FBG) strain sensors for the measurement of strains and bending caused by geohazard risks such as soil movements, landslides, settlements, flooding and seismic activity. The FBG sensors were mounted on the outside of the pipelines at discrete locations where geohazard risk was expected. The system has been in service for the past 3 years with over 1,000 strain sensors mounted. The technique has been reliable and effective in giving advanced warning of accumulated pipeline strains as well as possible ruptures.
Selection of fiber-optical components for temperature measurement for satellite applications
NASA Astrophysics Data System (ADS)
Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.
2017-11-01
The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to investigate the radiation induced wavelength shift. The FBGs react on temperature and strain change, so a decoupling of both physical effects must be assured to allow a precise measurement over large temperature ranges and corresponding potential mechanical stress, passed from the structure to the sensor. This potential source of error is addressed with the design of a strain-decoupled temperature transducer to which the FBGs are glued. The design of the transducer and measurement results of a bending test are provided within this paper. An outlook of the usage of fiber-optical sensing in space applications will be given. One promising field of application are the so called photonically-wired spacecraft panels, where optical fibers with integrated FBGs are being integrated in panels for temperature measurements and high-speed data transfer at the same time.
First Deminsys (high speed FBG interrogator) flight
NASA Astrophysics Data System (ADS)
van Els, Thomas J.
2009-03-01
Deminsys is the world's fastest multi sensor / multi channel FBG interrogator, identifies one till four channels with typically 8 sensors per channel. The system is especially developed for the interrogation of signals up to 19,3 kHz for each sensor and the sample frequency is independent of the number of sensors. By having multiple sensors per fibre you can create a very compact network of sensors. Due to its revolutionary (light weight, compact and solid state) design, Deminsys seems to fit perfectly into (research) programs for aerospace, medic & life science, maritime, industrial, crash test and all other fast detection applications. Technobis Fibre Technologies (TFT) and NLR made a first test flight with the Deminsys optical fibre measurement system using the NLR test aircraft on October 24th 2008. This flight was a first step in the further development of the current system in order to make it suitable for operation on-board an aircraft and bring it from TRL3 towards TRL5, a functional model for aerospace applications.