Sample records for fcm clustering algorithms

  1. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.

    PubMed

    Zhu, Lin; Chung, Fu-Lai; Wang, Shitong

    2009-06-01

    The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.

  2. Research on the precise positioning of customers in large data environment

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; He, Lili

    2018-04-01

    Customer positioning has always been a problem that enterprises focus on. In this paper, FCM clustering algorithm is used to cluster customer groups. However, due to the traditional FCM clustering algorithm, which is susceptible to the influence of the initial clustering center and easy to fall into the local optimal problem, the short board of FCM is solved by the gray optimization algorithm (GWO) to achieve efficient and accurate handling of a large number of retailer data.

  3. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    PubMed Central

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  4. Cloud classification from satellite data using a fuzzy sets algorithm: A polar example

    NASA Technical Reports Server (NTRS)

    Key, J. R.; Maslanik, J. A.; Barry, R. G.

    1988-01-01

    Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.

  5. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  6. The cascaded moving k-means and fuzzy c-means clustering algorithms for unsupervised segmentation of malaria images

    NASA Astrophysics Data System (ADS)

    Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida

    2015-05-01

    Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.

  7. A robust fuzzy local Information c-means clustering algorithm with noise detection

    NASA Astrophysics Data System (ADS)

    Shang, Jiayu; Li, Shiren; Huang, Junwei

    2018-04-01

    Fuzzy c-means clustering (FCM), especially with spatial constraints (FCM_S), is an effective algorithm suitable for image segmentation. Its reliability contributes not only to the presentation of fuzziness for belongingness of every pixel but also to exploitation of spatial contextual information. But these algorithms still remain some problems when processing the image with noise, they are sensitive to the parameters which have to be tuned according to prior knowledge of the noise. In this paper, we propose a new FCM algorithm, combining the gray constraints and spatial constraints, called spatial and gray-level denoised fuzzy c-means (SGDFCM) algorithm. This new algorithm conquers the parameter disadvantages mentioned above by considering the possibility of noise of each pixel, which aims to improve the robustness and obtain more detail information. Furthermore, the possibility of noise can be calculated in advance, which means the algorithm is effective and efficient.

  8. Classification of posture maintenance data with fuzzy clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1991-01-01

    Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various conditions were collected in conjunction with JSC postural control studies using a Tilt-Translation Device (TTD). The University of West Florida proposed applying the Fuzzy C-Means Clustering (FCM) Algorithms to this data with a view towards identifying various states and stages. Data supplied by NASA/JSC were submitted to the FCM algorithms in an attempt to identify and characterize cluster substructure in a mixed ensemble of pre- and post-adaptational TTD data. Following several unsuccessful trials with FCM using a full 11 dimensional data set, a set of two channels (features) were found to enable FCM to separate pre- from post-adaptational TTD data. The main conclusions are that: (1) FCM seems able to separate pre- from post-TTD subject no. 2 on the one trial that was used, but only in certain subintervals of time; and (2) Channels 2 (right rear transducer force) and 8 (hip sway bar) contain better discrimination information than other supersets and combinations of the data that were tried so far.

  9. Efficient architecture for spike sorting in reconfigurable hardware.

    PubMed

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-11-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  10. Hyperspectral Image Classification for Land Cover Based on an Improved Interval Type-II Fuzzy C-Means Approach

    PubMed Central

    Li, Zhao-Liang

    2018-01-01

    Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548

  11. Possibilistic clustering for shape recognition

    NASA Technical Reports Server (NTRS)

    Keller, James M.; Krishnapuram, Raghu

    1993-01-01

    Clustering methods have been used extensively in computer vision and pattern recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector to a given class is not required at each iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in noisy environments. Recently, the clustering problem was cast into the framework of possibility theory. Our approach was radically different from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. An appropriate objective function whose minimum will characterize a good possibilistic partition of the data was constructed, and the membership and prototype update equations from necessary conditions for minimization of our criterion function were derived. The ability of this approach to detect linear and quartic curves in the presence of considerable noise is shown.

  12. Possibilistic clustering for shape recognition

    NASA Technical Reports Server (NTRS)

    Keller, James M.; Krishnapuram, Raghu

    1992-01-01

    Clustering methods have been used extensively in computer vision and pattern recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector to a given class is not required at each iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in noisy environments. Recently, we cast the clustering problem into the framework of possibility theory. Our approach was radically different from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We constructed an appropriate objective function whose minimum will characterize a good possibilistic partition of the data, and we derived the membership and prototype update equations from necessary conditions for minimization of our criterion function. In this paper, we show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.

  13. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI.

    PubMed

    Lin, Muqing; Chan, Siwa; Chen, Jeon-Hor; Chang, Daniel; Nie, Ke; Chen, Shih-Ting; Lin, Cheng-Ju; Shih, Tzu-Ching; Nalcioglu, Orhan; Su, Min-Ying

    2011-01-01

    Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3+FCM > FCM) in 2 breasts. The results of the second reading session were similar. The performance in each pairwise Wilcoxon signed-rank test is significant, showing N3+FCM superior to both N3 and FCM, and N3 superior to FCM. The performance of the new N3+FCM algorithm was comparable to that of CLIC, showing equivalent quality in 57/60 breasts. Choosing an appropriate bias field correction method is a very important preprocessing step to allow an accurate segmentation of fibroglandular tissues based on breast MRI for quantitative measurement of breast density. The proposed algorithm combining N3+FCM and CLIC both yield satisfactory results.

  14. Reference set design for relational modeling of fuzzy systems

    NASA Astrophysics Data System (ADS)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    One of the keys to the successful relational modeling of fuzzy systems is the proper design of fuzzy reference sets. This has been discussed throughout the literature. In the frame of modeling a stochastic system, we analyze the problem numerically. First, we briefly describe the relational model and present the performance of the modeling in the most trivial case: the reference sets are triangle shaped. Next, we present a known fuzzy reference set generator algorithm (FRSGA) which is based on the fuzzy c-means (Fc-M) clustering algorithm. In the second section of this chapter we improve the previous FRSGA by adding a constraint to the Fc-M algorithm (modified Fc-M or MFc-M): two cluster centers are forced to coincide with the domain limits. This is needed to obtain properly shaped extreme linguistic reference values. We apply this algorithm to uniformly discretized domains of the variables involved. The fuzziness of the reference sets produced by both Fc-M and MFc-M is determined by a parameter, which in our experiments is modified iteratively. Each time, a new model is created and its performance analyzed. For certain algorithm parameter values both of these two algorithms have shortcomings. To eliminate the drawbacks of these two approaches, we develop a completely new generator algorithm for reference sets which we call Polyline. This algorithm and its performance are described in the last section. In all three cases, the modeling is performed for a variety of operators used in the inference engine and two defuzzification methods. Therefore our results depend neither on the system model order nor the experimental setup.

  15. Self-organization and clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1991-01-01

    Kohonen's feature maps approach to clustering is often likened to the k or c-means clustering algorithms. Here, the author identifies some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or ISODATA algorithms and Kohonen's self-organizing approach. The author concludes that some differences are significant, but at the same time there may be some important unknown relationships between the two methodologies. Several avenues of research are proposed.

  16. A possibilistic approach to clustering

    NASA Technical Reports Server (NTRS)

    Krishnapuram, Raghu; Keller, James M.

    1993-01-01

    Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering methods in that total commitment of a vector to a given class is not required at each image pattern recognition iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from the 'Fuzzy C-Means' (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Recently, we cast the clustering problem into the framework of possibility theory using an approach in which the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.

  17. Fuzzy C-mean clustering on kinetic parameter estimation with generalized linear least square algorithm in SPECT

    NASA Astrophysics Data System (ADS)

    Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan

    2006-03-01

    Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.

  18. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  19. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  20. Comparison of K-means and fuzzy c-means algorithm performance for automated determination of the arterial input function.

    PubMed

    Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong

    2014-01-01

    The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection.

  1. Comparison of K-Means and Fuzzy c-Means Algorithm Performance for Automated Determination of the Arterial Input Function

    PubMed Central

    Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong

    2014-01-01

    The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection. PMID:24503700

  2. Comparison of optimized algorithms in facility location allocation problems with different distance measures

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Chandrawat, Rajesh Kumar; Garg, B. P.; Joshi, Varun

    2017-07-01

    Opening the new firm or branch with desired execution is very relevant to facility location problem. Along the lines to locate the new ambulances and firehouses, the government desires to minimize average response time for emergencies from all residents of cities. So finding the best location is biggest challenge in day to day life. These type of problems were named as facility location problems. A lot of algorithms have been developed to handle these problems. In this paper, we review five algorithms that were applied to facility location problems. The significance of clustering in facility location problems is also presented. First we compare Fuzzy c-means clustering (FCM) algorithm with alternating heuristic (AH) algorithm, then with Particle Swarm Optimization (PSO) algorithms using different type of distance function. The data was clustered with the help of FCM and then we apply median model and min-max problem model on that data. After finding optimized locations using these algorithms we find the distance from optimized location point to the demanded point with different distance techniques and compare the results. At last, we design a general example to validate the feasibility of the five algorithms for facilities location optimization, and authenticate the advantages and drawbacks of them.

  3. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    PubMed

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model.

  4. A Spacecraft Electrical Characteristics Multi-Label Classification Method Based on Off-Line FCM Clustering and On-Line WPSVM

    PubMed Central

    Li, Ke; Liu, Yi; Wang, Quanxin; Wu, Yalei; Song, Shimin; Sun, Yi; Liu, Tengchong; Wang, Jun; Li, Yang; Du, Shaoyi

    2015-01-01

    This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively. PMID:26544549

  5. Query by example video based on fuzzy c-means initialized by fixed clustering center

    NASA Astrophysics Data System (ADS)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  6. Research on a pulmonary nodule segmentation method combining fast self-adaptive FCM and classification.

    PubMed

    Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai

    2015-01-01

    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.

  7. Joint inversion of multiple geophysical and petrophysical data using generalized fuzzy clustering algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Li, Yaoguo

    2017-02-01

    Joint inversion that simultaneously inverts multiple geophysical data sets to recover a common Earth model is increasingly being applied to exploration problems. Petrophysical data can serve as an effective constraint to link different physical property models in such inversions. There are two challenges, among others, associated with the petrophysical approach to joint inversion. One is related to the multimodality of petrophysical data because there often exist more than one relationship between different physical properties in a region of study. The other challenge arises from the fact that petrophysical relationships have different characteristics and can exhibit point, linear, quadratic, or exponential forms in a crossplot. The fuzzy c-means (FCM) clustering technique is effective in tackling the first challenge and has been applied successfully. We focus on the second challenge in this paper and develop a joint inversion method based on variations of the FCM clustering technique. To account for the specific shapes of petrophysical relationships, we introduce several different fuzzy clustering algorithms that are capable of handling different shapes of petrophysical relationships. We present two synthetic and one field data examples and demonstrate that, by choosing appropriate distance measures for the clustering component in the joint inversion algorithm, the proposed joint inversion method provides an effective means of handling common petrophysical situations we encounter in practice. The jointly inverted models have both enhanced structural similarity and increased petrophysical correlation, and better represent the subsurface in the spatial domain and the parameter domain of physical properties.

  8. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  9. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    PubMed Central

    Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai

    2015-01-01

    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms. PMID:25945120

  10. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.

    PubMed

    Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A

    2012-02-01

    Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.

  11. Research on the lesion segmentation of breast tumor MR images based on FCM-DS theory

    NASA Astrophysics Data System (ADS)

    Zhang, Liangbin; Ma, Wenjun; Shen, Xing; Li, Yuehua; Zhu, Yuemin; Chen, Li; Zhang, Su

    2017-03-01

    Magnetic resonance imaging (MRI) plays an important role in the treatment of breast tumor by high intensity focused ultrasound (HIFU). The doctors evaluate the scale, distribution and the statement of benign or malignancy of breast tumor by analyzing variety modalities of MRI, such as the T2, DWI and DCE images for making accurate preoperative treatment plan and evaluating the effect of the operation. This paper presents a method of lesion segmentation of breast tumor based on FCM-DS theory. Fuzzy c-means clustering (FCM) algorithm combined with Dempster-Shafer (DS) theory is used to process the uncertainty of information, segmenting the lesion areas on DWI and DCE modalities of MRI and reducing the scale of the uncertain parts. Experiment results show that FCM-DS can fuse the DWI and DCE images to achieve accurate segmentation and display the statement of benign or malignancy of lesion area by Time-Intensity Curve (TIC), which could be beneficial in making preoperative treatment plan and evaluating the effect of the therapy.

  12. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536

  13. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.

  14. Two generalizations of Kohonen clustering

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.; Pal, Nikhil R.; Tsao, Eric C. K.

    1993-01-01

    The relationship between the sequential hard c-means (SHCM), learning vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms is discussed. LVQ and SHCM suffer from several major problems. For example, they depend heavily on initialization. If the initial values of the cluster centers are outside the convex hull of the input data, such algorithms, even if they terminate, may not produce meaningful results in terms of prototypes for cluster representation. This is due in part to the fact that they update only the winning prototype for every input vector. The impact and interaction of these two families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method, but which often leads ideas to clustering algorithms is discussed. Then two generalizations of LVQ that are explicitly designed as clustering algorithms are presented; these algorithms are referred to as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to optimize an objective function whose goal is to produce 'good clusters'. GLVQ/FLVQ (may) update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends upon a choice for the update neighborhood or learning rate distribution - these are taken care of automatically. Segmentation of a gray tone image is used as a typical application of these algorithms to illustrate the performance of GLVQ/FLVQ.

  15. Breast density quantification with cone-beam CT: A post-mortem study

    PubMed Central

    Johnson, Travis; Ding, Huanjun; Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2014-01-01

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The percent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson’s r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate (SEE) was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation. PMID:24254317

  16. Elucidation of Seventeen Human Peripheral Blood B cell Subsets and Quantification of the Tetanus Response Using a Density-Based Method for the Automated Identification of Cell Populations in Multidimensional Flow Cytometry Data

    PubMed Central

    Qian, Yu; Wei, Chungwen; Lee, F. Eun-Hyung; Campbell, John; Halliley, Jessica; Lee, Jamie A.; Cai, Jennifer; Kong, Megan; Sadat, Eva; Thomson, Elizabeth; Dunn, Patrick; Seegmiller, Adam C.; Karandikar, Nitin J.; Tipton, Chris; Mosmann, Tim; Sanz, Iñaki; Scheuermann, Richard H.

    2011-01-01

    Background Advances in multi-parameter flow cytometry (FCM) now allow for the independent detection of larger numbers of fluorochromes on individual cells, generating data with increasingly higher dimensionality. The increased complexity of these data has made it difficult to identify cell populations from high-dimensional FCM data using traditional manual gating strategies based on single-color or two-color displays. Methods To address this challenge, we developed a novel program, FLOCK (FLOw Clustering without K), that uses a density-based clustering approach to algorithmically identify biologically relevant cell populations from multiple samples in an unbiased fashion, thereby eliminating operator-dependent variability. Results FLOCK was used to objectively identify seventeen distinct B cell subsets in a human peripheral blood sample and to identify and quantify novel plasmablast subsets responding transiently to tetanus and other vaccinations in peripheral blood. FLOCK has been implemented in the publically available Immunology Database and Analysis Portal – ImmPort (http://www.immport.org) for open use by the immunology research community. Conclusions FLOCK is able to identify cell subsets in experiments that use multi-parameter flow cytometry through an objective, automated computational approach. The use of algorithms like FLOCK for FCM data analysis obviates the need for subjective and labor intensive manual gating to identify and quantify cell subsets. Novel populations identified by these computational approaches can serve as hypotheses for further experimental study. PMID:20839340

  17. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems

    PubMed Central

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data. PMID:28806754

  18. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems.

    PubMed

    Almaraashi, Majid

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data.

  19. Classification of posture maintenance data with fuzzy clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1992-01-01

    Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various sensory organization test (SOT) conditions were collected in conjunction with Johnson Space Center postural control studies using a tilt-translation device (TTD). The University of West Florida applied the fuzzy c-meams (FCM) clustering algorithms to this data with a view towards identifying various states and stages of subjects experiencing such changes. Feature analysis, time step analysis, pooling data, response of the subjects, and the algorithms used are discussed.

  20. Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.

    PubMed

    Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán

    2008-01-01

    Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.

  1. Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means

    PubMed Central

    Sabit, Hakilo; Al-Anbuky, Adnan

    2014-01-01

    Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495

  2. A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift

    NASA Astrophysics Data System (ADS)

    Arfan Jaffar, M.

    2017-01-01

    In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.

  3. An interactive method based on the live wire for segmentation of the breast in mammography images.

    PubMed

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  4. Classification of arrhythmia using hybrid networks.

    PubMed

    Haseena, Hassan H; Joseph, Paul K; Mathew, Abraham T

    2011-12-01

    Reliable detection of arrhythmias based on digital processing of Electrocardiogram (ECG) signals is vital in providing suitable and timely treatment to a cardiac patient. Due to corruption of ECG signals with multiple frequency noise and presence of multiple arrhythmic events in a cardiac rhythm, computerized interpretation of abnormal ECG rhythms is a challenging task. This paper focuses a Fuzzy C- Mean (FCM) clustered Probabilistic Neural Network (PNN) and Multi Layered Feed Forward Network (MLFFN) for the discrimination of eight types of ECG beats. Parameters such as fourth order Auto Regressive (AR) coefficients along with Spectral Entropy (SE) are extracted from each ECG beat and feature reduction has been carried out using FCM clustering. The cluster centers form the input of neural network classifiers. The extensive analysis of Massachusetts Institute of Technology- Beth Israel Hospital (MIT-BIH) arrhythmia database shows that FCM clustered PNNs is superior in cardiac arrhythmia classification than FCM clustered MLFFN with an overall accuracy of 99.05%, 97.14%, respectively.

  5. Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation

    NASA Astrophysics Data System (ADS)

    Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.

    2010-02-01

    Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.

  6. Semisupervised GDTW kernel-based fuzzy c-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series

    NASA Astrophysics Data System (ADS)

    Jia, Duo; Wang, Cangjiao; Lei, Shaogang

    2018-01-01

    Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.

  7. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Change detection of bitemporal multispectral images based on FCM and D-S theory

    NASA Astrophysics Data System (ADS)

    Shi, Aiye; Gao, Guirong; Shen, Shaohong

    2016-12-01

    In this paper, we propose a change detection method of bitemporal multispectral images based on the D-S theory and fuzzy c-means (FCM) algorithm. Firstly, the uncertainty and certainty regions are determined by thresholding method applied to the magnitudes of difference image (MDI) and spectral angle information (SAI) of bitemporal images. Secondly, the FCM algorithm is applied to the MDI and SAI in the uncertainty region, respectively. Then, the basic probability assignment (BPA) functions of changed and unchanged classes are obtained by the fuzzy membership values from the FCM algorithm. In addition, the optimal value of fuzzy exponent of FCM is adaptively determined by conflict degree between the MDI and SAI in uncertainty region. Finally, the D-S theory is applied to obtain the new fuzzy partition matrix for uncertainty region and further the change map is obtained. Experiments on bitemporal Landsat TM images and bitemporal SPOT images validate that the proposed method is effective.

  9. Analysis of Intergrade Variables In The Fuzzy C-Means And Improved Algorithm Cat Swarm Optimization(FCM-ISO) In Search Segmentation

    NASA Astrophysics Data System (ADS)

    Saragih, Jepronel; Salim Sitompul, Opim; Situmorang, Zakaria

    2017-12-01

    One of the techniques known in Data Mining namely clustering. Image segmentation process does not always represent the actual image which is caused by a combination of algorithms as long as it has not been able to obtain optimal cluster centers. In this research will search for the smallest error with the counting result of a Fuzzy C Means process optimized with Cat swam Algorithm Optimization that has been developed by adding the weight of the energy in the process of Tracing Mode.So with the parameter can be determined the most optimal cluster centers and most closely with the data will be made the cluster. Weigh inertia in this research, namely: (0.1), (0.2), (0.3), (0.4), (0.5), (0.6), (0.7), (0.8) and (0.9). Then compare the results of each variable values inersia (W) which is different and taken the smallest results. Of this weighting analysis process can acquire the right produce inertia variable cost function the smallest.

  10. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application.

    PubMed

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-06-06

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information's relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection.

  11. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application

    PubMed Central

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-01-01

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information’s relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection. PMID:28587299

  12. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.

    PubMed

    Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip

    2014-11-01

    This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.

  13. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  14. Application of affinity propagation algorithm based on manifold distance for transformer PD pattern recognition

    NASA Astrophysics Data System (ADS)

    Wei, B. G.; Huo, K. X.; Yao, Z. F.; Lou, J.; Li, X. Y.

    2018-03-01

    It is one of the difficult problems encountered in the research of condition maintenance technology of transformers to recognize partial discharge (PD) pattern. According to the main physical characteristics of PD, three models of oil-paper insulation defects were set up in laboratory to study the PD of transformers, and phase resolved partial discharge (PRPD) was constructed. By using least square method, the grey-scale images of PRPD were constructed and features of each grey-scale image were 28 box dimensions and 28 information dimensions. Affinity propagation algorithm based on manifold distance (AP-MD) for transformers PD pattern recognition was established, and the data of box dimension and information dimension were clustered based on AP-MD. Study shows that clustering result of AP-MD is better than the results of affinity propagation (AP), k-means and fuzzy c-means algorithm (FCM). By choosing different k values of k-nearest neighbor, we find clustering accuracy of AP-MD falls when k value is larger or smaller, and the optimal k value depends on sample size.

  15. Automatic quantitative analysis of in-stent restenosis using FD-OCT in vivo intra-arterial imaging.

    PubMed

    Mandelias, Kostas; Tsantis, Stavros; Spiliopoulos, Stavros; Katsakiori, Paraskevi F; Karnabatidis, Dimitris; Nikiforidis, George C; Kagadis, George C

    2013-06-01

    A new segmentation technique is implemented for automatic lumen area extraction and stent strut detection in intravascular optical coherence tomography (OCT) images for the purpose of quantitative analysis of in-stent restenosis (ISR). In addition, a user-friendly graphical user interface (GUI) is developed based on the employed algorithm toward clinical use. Four clinical datasets of frequency-domain OCT scans of the human femoral artery were analyzed. First, a segmentation method based on fuzzy C means (FCM) clustering and wavelet transform (WT) was applied toward inner luminal contour extraction. Subsequently, stent strut positions were detected by utilizing metrics derived from the local maxima of the wavelet transform into the FCM membership function. The inner lumen contour and the position of stent strut were extracted with high precision. Compared to manual segmentation by an expert physician, the automatic lumen contour delineation had an average overlap value of 0.917 ± 0.065 for all OCT images included in the study. The strut detection procedure achieved an overall accuracy of 93.80% and successfully identified 9.57 ± 0.5 struts for every OCT image. Processing time was confined to approximately 2.5 s per OCT frame. A new fast and robust automatic segmentation technique combining FCM and WT for lumen border extraction and strut detection in intravascular OCT images was designed and implemented. The proposed algorithm integrated in a GUI represents a step forward toward the employment of automated quantitative analysis of ISR in clinical practice.

  16. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less

  17. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less

  18. An adaptive Fuzzy C-means method utilizing neighboring information for breast tumor segmentation in ultrasound images.

    PubMed

    Feng, Yuan; Dong, Fenglin; Xia, Xiaolong; Hu, Chun-Hong; Fan, Qianmin; Hu, Yanle; Gao, Mingyuan; Mutic, Sasa

    2017-07-01

    Ultrasound (US) imaging has been widely used in breast tumor diagnosis and treatment intervention. Automatic delineation of the tumor is a crucial first step, especially for the computer-aided diagnosis (CAD) and US-guided breast procedure. However, the intrinsic properties of US images such as low contrast and blurry boundaries pose challenges to the automatic segmentation of the breast tumor. Therefore, the purpose of this study is to propose a segmentation algorithm that can contour the breast tumor in US images. To utilize the neighbor information of each pixel, a Hausdorff distance based fuzzy c-means (FCM) method was adopted. The size of the neighbor region was adaptively updated by comparing the mutual information between them. The objective function of the clustering process was updated by a combination of Euclid distance and the adaptively calculated Hausdorff distance. Segmentation results were evaluated by comparing with three experts' manual segmentations. The results were also compared with a kernel-induced distance based FCM with spatial constraints, the method without adaptive region selection, and conventional FCM. Results from segmenting 30 patient images showed the adaptive method had a value of sensitivity, specificity, Jaccard similarity, and Dice coefficient of 93.60 ± 5.33%, 97.83 ± 2.17%, 86.38 ± 5.80%, and 92.58 ± 3.68%, respectively. The region-based metrics of average symmetric surface distance (ASSD), root mean square symmetric distance (RMSD), and maximum symmetric surface distance (MSSD) were 0.03 ± 0.04 mm, 0.04 ± 0.03 mm, and 1.18 ± 1.01 mm, respectively. All the metrics except sensitivity were better than that of the non-adaptive algorithm and the conventional FCM. Only three region-based metrics were better than that of the kernel-induced distance based FCM with spatial constraints. Inclusion of the pixel neighbor information adaptively in segmenting US images improved the segmentation performance. The results demonstrate the potential application of the method in breast tumor CAD and other US-guided procedures. © 2017 American Association of Physicists in Medicine.

  19. A research of road centerline extraction algorithm from high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  20. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    PubMed

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  1. Image segmentation using fuzzy LVQ clustering networks

    NASA Technical Reports Server (NTRS)

    Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.

    1992-01-01

    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.

  2. Artificial bee colony algorithm with dynamic multi-population

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Ji, Zhicheng; Wang, Yan

    2017-07-01

    To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.

  3. Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466

  4. Remote sensing imagery classification using multi-objective gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2016-10-01

    Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.

  5. flowAI: automatic and interactive anomaly discerning tools for flow cytometry data.

    PubMed

    Monaco, Gianni; Chen, Hao; Poidinger, Michael; Chen, Jinmiao; de Magalhães, João Pedro; Larbi, Anis

    2016-08-15

    Flow cytometry (FCM) is widely used in both clinical and basic research to characterize cell phenotypes and functions. The latest FCM instruments analyze up to 20 markers of individual cells, producing high-dimensional data. This requires the use of the latest clustering and dimensionality reduction techniques to automatically segregate cell sub-populations in an unbiased manner. However, automated analyses may lead to false discoveries due to inter-sample differences in quality and properties. We present an R package, flowAI, containing two methods to clean FCM files from unwanted events: (i) an automatic method that adopts algorithms for the detection of anomalies and (ii) an interactive method with a graphical user interface implemented into an R shiny application. The general approach behind the two methods consists of three key steps to check and remove suspected anomalies that derive from (i) abrupt changes in the flow rate, (ii) instability of signal acquisition and (iii) outliers in the lower limit and margin events in the upper limit of the dynamic range. For each file analyzed our software generates a summary of the quality assessment from the aforementioned steps. The software presented is an intuitive solution seeking to improve the results not only of manual but also and in particular of automatic analysis on FCM data. R source code available through Bioconductor: http://bioconductor.org/packages/flowAI/ CONTACTS: mongianni1@gmail.com or Anis_Larbi@immunol.a-star.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Hybrid approach for detection of dental caries based on the methods FCM and level sets

    NASA Astrophysics Data System (ADS)

    Chaabene, Marwa; Ben Ali, Ramzi; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    This paper presents a new technique for detection of dental caries that is a bacterial disease that destroys the tooth structure. In our approach, we have achieved a new segmentation method that combines the advantages of fuzzy C mean algorithm and level set method. The results obtained by the FCM algorithm will be used by Level sets algorithm to reduce the influence of the noise effect on the working of each of these algorithms, to facilitate level sets manipulation and to lead to more robust segmentation. The sensitivity and specificity confirm the effectiveness of proposed method for caries detection.

  7. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.

    PubMed

    Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin

    2013-12-01

    The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.

  8. Advanced soft computing diagnosis method for tumour grading.

    PubMed

    Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N

    2006-01-01

    To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.

  9. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms.

    PubMed

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-02-01

    The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1

  10. Computational methods for evaluation of cell-based data assessment--Bioconductor.

    PubMed

    Le Meur, Nolwenn

    2013-02-01

    Recent advances in miniaturization and automation of technologies have enabled cell-based assay high-throughput screening, bringing along new challenges in data analysis. Automation, standardization, reproducibility have become requirements for qualitative research. The Bioconductor community has worked in that direction proposing several R packages to handle high-throughput data including flow cytometry (FCM) experiment. Altogether, these packages cover the main steps of a FCM analysis workflow, that is, data management, quality assessment, normalization, outlier detection, automated gating, cluster labeling, and feature extraction. Additionally, the open-source philosophy of R and Bioconductor, which offers room for new development, continuously drives research and improvement of theses analysis methods, especially in the field of clustering and data mining. This review presents the principal FCM packages currently available in R and Bioconductor, their advantages and their limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Infrared Ship Target Segmentation Based on Spatial Information Improved FCM.

    PubMed

    Bai, Xiangzhi; Chen, Zhiguo; Zhang, Yu; Liu, Zhaoying; Lu, Yi

    2016-12-01

    Segmentation of infrared (IR) ship images is always a challenging task, because of the intensity inhomogeneity and noise. The fuzzy C-means (FCM) clustering is a classical method widely used in image segmentation. However, it has some shortcomings, like not considering the spatial information or being sensitive to noise. In this paper, an improved FCM method based on the spatial information is proposed for IR ship target segmentation. The improvements include two parts: 1) adding the nonlocal spatial information based on the ship target and 2) using the spatial shape information of the contour of the ship target to refine the local spatial constraint by Markov random field. In addition, the results of K -means are used to initialize the improved FCM method. Experimental results show that the improved method is effective and performs better than the existing methods, including the existing FCM methods, for segmentation of the IR ship images.

  12. Abdominal adipose tissue quantification on water-suppressed and non-water-suppressed MRI at 3T using semi-automated FCM clustering algorithm

    NASA Astrophysics Data System (ADS)

    Valaparla, Sunil K.; Peng, Qi; Gao, Feng; Clarke, Geoffrey D.

    2014-03-01

    Accurate measurements of human body fat distribution are desirable because excessive body fat is associated with impaired insulin sensitivity, type 2 diabetes mellitus (T2DM) and cardiovascular disease. In this study, we hypothesized that the performance of water suppressed (WS) MRI is superior to non-water suppressed (NWS) MRI for volumetric assessment of abdominal subcutaneous (SAT), intramuscular (IMAT), visceral (VAT), and total (TAT) adipose tissues. We acquired T1-weighted images on a 3T MRI system (TIM Trio, Siemens), which was analyzed using semi-automated segmentation software that employs a fuzzy c-means (FCM) clustering algorithm. Sixteen contiguous axial slices, centered at the L4-L5 level of the abdomen, were acquired in eight T2DM subjects with water suppression (WS) and without (NWS). Histograms from WS images show improved separation of non-fatty tissue pixels from fatty tissue pixels, compared to NWS images. Paired t-tests of WS versus NWS showed a statistically significant lower volume of lipid in the WS images for VAT (145.3 cc less, p=0.006) and IMAT (305 cc less, p<0.001), but not SAT (14.1 cc more, NS). WS measurements of TAT also resulted in lower fat volumes (436.1 cc less, p=0.002). There is strong correlation between WS and NWS quantification methods for SAT measurements (r=0.999), but poorer correlation for VAT studies (r=0.845). These results suggest that NWS pulse sequences may overestimate adipose tissue volumes and that WS pulse sequences are more desirable due to the higher contrast generated between fatty and non-fatty tissues.

  13. Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks.

    PubMed

    Dinov, Martin; Leech, Robert

    2017-01-01

    Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses.

  14. Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks

    PubMed Central

    Dinov, Martin; Leech, Robert

    2017-01-01

    Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses. PMID:29163110

  15. Investigation of the accuracy of breast tissue segmentation methods for the purpose of developing breast deformation models for use in adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Juneja, P.; Harris, E. J.; Evans, P. M.

    2014-03-01

    Realistic modelling of breast deformation requires the breast tissue to be segmented into fibroglandular and fatty tissue and assigned suitable material properties. There are a number of breast tissue segmentation methods proposed and used in the literature. The purpose of this study was to validate and compare the accuracy of various segmentation methods and to investigate the effect of the tissue distribution on the segmentation accuracy. Computed tomography (CT) data for 24 patients, both in supine and prone positions were segmented into fibroglandular and fatty tissue. The segmentation methods explored were: physical density thresholding; interactive thresholding; fuzzy c-means clustering (FCM) with three classes (FCM3) and four classes (FCM4); and k-means clustering. Validation was done in two-stages: firstly, a new approach, supine-prone validation based on the assumption that the breast composition should appear the same in the supine and prone scans was used. Secondly, outlines from three experts were used for validation. This study found that FCM3 gave the most accurate segmentation of breast tissue from CT data and that the segmentation accuracy is adversely affected by the sparseness of the fibroglandular tissue distribution.

  16. Load forecast method of electric vehicle charging station using SVR based on GA-PSO

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Sun, Wenxue; Ma, Changhui; Yang, Shenquan; Zhu, Zijian; Zhao, Pengfei; Zhao, Xin; Xu, Nan

    2017-06-01

    This paper presents a Support Vector Regression (SVR) method for electric vehicle (EV) charging station load forecast based on genetic algorithm (GA) and particle swarm optimization (PSO). Fuzzy C-Means (FCM) clustering is used to establish similar day samples. GA is used for global parameter searching and PSO is used for a more accurately local searching. Load forecast is then regressed using SVR. The practical load data of an EV charging station were taken to illustrate the proposed method. The result indicates an obvious improvement in the forecasting accuracy compared with SVRs based on PSO and GA exclusively.

  17. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  18. Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Kuan-Hao; Hu, Lingzhi; Traughber, Melanie

    Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spreadmore » functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2{sup ∗} images (1/T2{sup ∗}) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2{sup ∗}, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (−22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. Conclusions: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.« less

  19. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') andmore » vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.« less

  20. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    PubMed Central

    Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies. PMID:22894417

  1. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.

    PubMed

    Keller, Brad M; Nathan, Diane L; Wang, Yan; Zheng, Yuanjie; Gee, James C; Conant, Emily F; Kontos, Despina

    2012-08-01

    The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., "FOR PROCESSING") and vendor postprocessed (i.e., "FOR PRESENTATION"), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.

  2. Eigenspace-based fuzzy c-means for sensing trending topics in Twitter

    NASA Astrophysics Data System (ADS)

    Muliawati, T.; Murfi, H.

    2017-07-01

    As the information and communication technology are developed, the fulfillment of information can be obtained through social media, like Twitter. The enormous number of internet users has triggered fast and large data flow, thus making the manual analysis is difficult or even impossible. An automated methods for data analysis is needed, one of which is the topic detection and tracking. An alternative method other than latent Dirichlet allocation (LDA) is a soft clustering approach using Fuzzy C-Means (FCM). FCM meets the assumption that a document may consist of several topics. However, FCM works well in low-dimensional data but fails in high-dimensional data. Therefore, we propose an approach where FCM works on low-dimensional data by reducing the data using singular value decomposition (SVD). Our simulations show that this approach gives better accuracies in term of topic recall than LDA for sensing trending topic in Twitter about an event.

  3. Fuzzy C-means classification for corrosion evolution of steel images

    NASA Astrophysics Data System (ADS)

    Trujillo, Maite; Sadki, Mustapha

    2004-05-01

    An unavoidable problem of metal structures is their exposure to rust degradation during their operational life. Thus, the surfaces need to be assessed in order to avoid potential catastrophes. There is considerable interest in the use of patch repair strategies which minimize the project costs. However, to operate such strategies with confidence in the long useful life of the repair, it is essential that the condition of the existing coatings and the steel substrate can be accurately quantified and classified. This paper describes the application of fuzzy set theory for steel surfaces classification according to the steel rust time. We propose a semi-automatic technique to obtain image clustering using the Fuzzy C-means (FCM) algorithm and we analyze two kinds of data to study the classification performance. Firstly, we investigate the use of raw images" pixels without any pre-processing methods and neighborhood pixels. Secondly, we apply Gaussian noise to the images with different standard deviation to study the FCM method tolerance to Gaussian noise. The noisy images simulate the possible perturbations of the images due to the weather or rust deposits in the steel surfaces during typical on-site acquisition procedures

  4. Computer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter

    NASA Astrophysics Data System (ADS)

    B. Shokouhi, Shahriar; Fooladivanda, Aida; Ahmadinejad, Nasrin

    2017-12-01

    A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed points for the seeded region-growing algorithm. A new and robust region-growing algorithm incorporating with Fuzzy C-means (FCM) clustering and vesselness filter is proposed to segment any potential lesion regions. Subsequently, the false positive detections are reduced by applying a discrimination step. This is based on 3D morphological characteristics of the potential lesion regions and kinetic features which are fed to the support vector machine (SVM) classifier. The performance of the proposed CAD system is evaluated using the free-response operating characteristic (FROC) curve. We introduce our collected dataset that includes 76 DCE-MRI studies, 63 malignant and 107 benign lesions. The prepared dataset has been used to verify the accuracy of the proposed CAD system. At 5.29 false positives per case, the CAD system accurately detects 94% of the breast lesions.

  5. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps

    NASA Astrophysics Data System (ADS)

    Farsadnia, F.; Rostami Kamrood, M.; Moghaddam Nia, A.; Modarres, R.; Bray, M. T.; Han, D.; Sadatinejad, J.

    2014-02-01

    One of the several methods in estimating flood quantiles in ungauged or data-scarce watersheds is regional frequency analysis. Amongst the approaches to regional frequency analysis, different clustering techniques have been proposed to determine hydrologically homogeneous regions in the literature. Recently, Self-Organization feature Map (SOM), a modern hydroinformatic tool, has been applied in several studies for clustering watersheds. However, further studies are still needed with SOM on the interpretation of SOM output map for identifying hydrologically homogeneous regions. In this study, two-level SOM and three clustering methods (fuzzy c-mean, K-mean, and Ward's Agglomerative hierarchical clustering) are applied in an effort to identify hydrologically homogeneous regions in Mazandaran province watersheds in the north of Iran, and their results are compared with each other. Firstly the SOM is used to form a two-dimensional feature map. Next, the output nodes of the SOM are clustered by using unified distance matrix algorithm and three clustering methods to form regions for flood frequency analysis. The heterogeneity test indicates the four regions achieved by the two-level SOM and Ward approach after adjustments are sufficiently homogeneous. The results suggest that the combination of SOM and Ward is much better than the combination of either SOM and FCM or SOM and K-mean.

  6. Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients

    NASA Astrophysics Data System (ADS)

    Baraldi, Piero; Di Maio, Francesco; Rigamonti, Marco; Zio, Enrico; Seraoui, Redouane

    2015-06-01

    Empirical methods for fault diagnosis usually entail a process of supervised training based on a set of examples of signal evolutions "labeled" with the corresponding, known classes of fault. However, in practice, the signals collected during plant operation may be, very often, "unlabeled", i.e., the information on the corresponding type of occurred fault is not available. To cope with this practical situation, in this paper we develop a methodology for the identification of transient signals showing similar characteristics, under the conjecture that operational/faulty transient conditions of the same type lead to similar behavior in the measured signals evolution. The methodology is founded on a feature extraction procedure, which feeds a spectral clustering technique, embedding the unsupervised fuzzy C-means (FCM) algorithm, which evaluates the functional similarity among the different operational/faulty transients. A procedure for validating the plausibility of the obtained clusters is also propounded based on physical considerations. The methodology is applied to a real industrial case, on the basis of 148 shut-down transients of a Nuclear Power Plant (NPP) steam turbine.

  7. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange

    NASA Astrophysics Data System (ADS)

    Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa

    2018-01-01

    One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.

  8. The evaluation of correction algorithms of intensity nonuniformity in breast MRI images: a phantom study

    NASA Astrophysics Data System (ADS)

    Borys, Damian; Serafin, Wojciech; Gorczewski, Kamil; Kijonka, Marek; Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    The aim of this work was to test the most popular and essential algorithms of the intensity nonuniformity correction of the breast MRI imaging. In this type of MRI imaging, especially in the proximity of the coil, the signal is strong but also can produce some inhomogeneities. Evaluated methods of signal correction were: N3, N3FCM, N4, Nonparametric, and SPM. For testing purposes, a uniform phantom object was used to obtain test images using breast imaging MRI coil. To quantify the results, two measures were used: integral uniformity and standard deviation. For each algorithm minimum, average and maximum values of both evaluation factors have been calculated using the binary mask created for the phantom. In the result, two methods obtained the lowest values in these measures: N3FCM and N4, however, for the second method visually phantom was the most uniform after correction.

  9. Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method

    NASA Astrophysics Data System (ADS)

    Bog, Tino; Zander, Nils; Kollmannsberger, Stefan; Rank, Ernst

    2018-04-01

    The finite cell method (FCM) is a fictitious domain approach that greatly simplifies simulations involving complex structures. Recently, the FCM has been applied to contact problems. The current study continues in this field by extending the concept of weakly enforced boundary conditions to inequality constraints for frictionless contact. Furthermore, it formalizes an approach that automatically recovers high-order contact surfaces of (implicitly defined) embedded geometries by means of an extended Marching Cubes algorithm. To further improve the accuracy of the discretization, irregularities at the boundary of contact zones are treated with multi-level hp-refinements. Numerical results and a systematic study of h-, p- and hp-refinements show that the FCM can efficiently provide accurate results for problems involving contact.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, J; Su, K; Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio

    Purpose: Accurate and robust photon attenuation derived from MR is essential for PET/MR and MR-based radiation treatment planning applications. Although the fuzzy C-means (FCM) algorithm has been applied for pseudo-CT generation, the input feature combination and the number of clusters have not been optimized. This study aims to optimize both for clinically practical pseudo-CT generation. Methods: Nine volunteers were recruited. A 190-second, single-acquisition UTE-mDixon with 25% (angular) sampling and 3D radial readout was performed to acquire three primitive MR features at TEs of 0.1, 1.5, and 2.8 ms: the free-induction-decay (FID), the first and the second echo images. Three derivedmore » images, Dixon-fat and Dixon-water generated by two-point Dixon water/fat separation, and R2* (1/T2*) map, were also created. To identify informative inputs for generating a pseudo-CT image volume, all 63 combinations, choosing one to six of the feature images, were used as inputs to FCM for pseudo-CT generation. Further, the number of clusters was varied from four to seven to find the optimal approach. Mean prediction deviation (MPD), mean absolute prediction deviation (MAPD), and correlation coefficient (R) of different combinations were compared for feature selection. Results: Among the 63 feature combinations, the four that resulted in the best MAPD and R were further compared along with the set containing all six features. The results suggested that R2* and Dixon-water are the most informative features. Further, including FID also improved the performance of pseudo-CT generation. Consequently, the set containing FID, Dixon-water, and R2* resulted in the most accurate, robust pseudo-CT when the number of cluster equals to five (5C). The clusters were interpreted as air, fat, bone, brain, and fluid. The six-cluster Result additionally included bone marrow. Conclusion: The results suggested that FID, Dixon-water, R2* are the most important features. The findings can be used to facilitate pseudo-CT generation for unsupervised clustering. Please note that the project was completed with partial funding from the Ohio Department of Development grant TECH 11-063 and a sponsored research agreement with Philips Healthcare that is managed by Case Western Reserve University. As noted in the affiliations, some of the authors are Philips employees.« less

  11. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  12. Unsupervised fuzzy segmentation of 3D magnetic resonance brain images

    NASA Astrophysics Data System (ADS)

    Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.

    1993-07-01

    Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.

  13. Application of cryopreservation to genetic analyses of a photosynthetic picoeukaryote community.

    PubMed

    Kawachi, Masanobu; Kataoka, Takafumi; Sato, Mayumi; Noël, Mary-Hélène; Kuwata, Akira; Demura, Mikihide; Yamaguchi, Haruyo

    2016-02-01

    Cryopreservation is useful for long-term maintenance of living strains in microbial culture collections. We applied this technique to environmental specimens from two monitoring sites at Sendai Bay, Japan and compared the microbial diversity of photosynthetic picoeukaryotes in samples before and after cryopreservation. Flow cytometry (FCM) showed no considerable differences between specimens. We used 2500 cells sorted with FCM for next-generation sequencing of 18S rRNA gene amplicons and after removing low-quality sequences obtained 10,088-37,454 reads. Cluster analysis and comparative correlation analysis of observed high-level operational taxonomic units indicated similarity between specimens before and after cryopreservation. The effects of cryopreservation on cells were assessed with representative culture strains, including fragile cryptophyte cells. We confirmed the usefulness of cryopreservation for genetic studies on environmental specimens, and found that small changes in FCM cytograms after cryopreservation may affect biodiversity estimation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  15. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Liu, Shanjun; Zhang, Peina; Wu, Lixin; Zhou, Wenhui; Yu, Yinan

    2017-06-01

    Obtaining accurate information on rock mass discontinuities for deformation analysis and the evaluation of rock mass stability is important. Obtaining measurements for high and steep zones with the traditional compass method is difficult. Photogrammetry, three-dimensional (3D) laser scanning and other remote sensing methods have gradually become mainstream methods. In this study, a method that is based on a 3D point cloud is proposed to semi-automatically extract rock mass structural plane information. The original data are pre-treated prior to segmentation by removing outlier points. The next step is to segment the point cloud into different point subsets. Various parameters, such as the normal, dip/direction and dip, can be calculated for each point subset after obtaining the equation of the best fit plane for the relevant point subset. A cluster analysis (a point subset that satisfies some conditions and thus forms a cluster) is performed based on the normal vectors by introducing the firefly algorithm (FA) and the fuzzy c-means (FCM) algorithm. Finally, clusters that belong to the same discontinuity sets are merged and coloured for visualization purposes. A prototype system is developed based on this method to extract the points of the rock discontinuity from a 3D point cloud. A comparison with existing software shows that this method is feasible. This method can provide a reference for rock mechanics, 3D geological modelling and other related fields.

  16. Flow Cytometry Data Preparation Guidelines for Improved Automated Phenotypic Analysis.

    PubMed

    Jimenez-Carretero, Daniel; Ligos, José M; Martínez-López, María; Sancho, David; Montoya, María C

    2018-05-15

    Advances in flow cytometry (FCM) increasingly demand adoption of computational analysis tools to tackle the ever-growing data dimensionality. In this study, we tested different data input modes to evaluate how cytometry acquisition configuration and data compensation procedures affect the performance of unsupervised phenotyping tools. An analysis workflow was set up and tested for the detection of changes in reference bead subsets and in a rare subpopulation of murine lymph node CD103 + dendritic cells acquired by conventional or spectral cytometry. Raw spectral data or pseudospectral data acquired with the full set of available detectors by conventional cytometry consistently outperformed datasets acquired and compensated according to FCM standards. Our results thus challenge the paradigm of one-fluorochrome/one-parameter acquisition in FCM for unsupervised cluster-based analysis. Instead, we propose to configure instrument acquisition to use all available fluorescence detectors and to avoid integration and compensation procedures, thereby using raw spectral or pseudospectral data for improved automated phenotypic analysis. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. Application of fuzzy c-means clustering to PRTR chemicals uncovering their release and toxicity characteristics.

    PubMed

    Xue, Mianqiang; Zhou, Liang; Kojima, Naoya; Dos Muchangos, Leticia Sarmento; Machimura, Takashi; Tokai, Akihiro

    2018-05-01

    Increasing manufacture and usage of chemicals have not been matched by the increase in our understanding of their risks. Pollutant release and transfer register (PRTR) is becoming a popular measure for collecting chemical data and enhancing the public right to know. However, these data are usually in high dimensionality which restricts their wider use. The present study partitions Japanese PRTR chemicals into five fuzzy clusters by fuzzy c-mean clustering (FCM) to explore the implicit information. Each chemical with membership degrees belongs to each cluster. Cluster I features high releases from non-listed industries and the household sector and high environmental toxicity. Cluster II is characterized by high reported releases and transfers from 24 listed industries above the threshold, mutagenicity, and high environmental toxicity. Chemicals in cluster III have characteristics of high releases from non-listed industries and low toxicity. Cluster IV is characterized by high reported releases and transfers from 24 listed industries above the threshold and extremely high environmental toxicity. Cluster V is characterized by low releases yet mutagenicity and high carcinogenicity. Chemicals with the highest membership degree were identified as representatives for each cluster. For the highest membership degree, half of the chemicals have a value higher than 0.74. If we look at both the highest and the second highest membership degrees simultaneously, about 94% of the chemicals have a value higher than 0.5. FCM can serve as an approach to uncover the implicit information of highly complex chemical dataset, which subsequently supports the strategy development for efficient and effective chemical management. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sensitivity and specificity of univariate MRI analysis of experimentally degraded cartilage

    PubMed Central

    Lin, Ping-Chang; Reiter, David A.; Spencer, Richard G.

    2010-01-01

    MRI is increasingly used to evaluate cartilage in tissue constructs, explants, and animal and patient studies. However, while mean values of MR parameters, including T1, T2, magnetization transfer rate km, apparent diffusion coefficient ADC, and the dGEMRIC-derived fixed charge density, correlate with tissue status, the ability to classify tissue according to these parameters has not been explored. Therefore, the sensitivity and specificity with which each of these parameters was able to distinguish between normal and trypsin- degraded, and between normal and collagenase-degraded, cartilage explants were determined. Initial analysis was performed using a training set to determine simple group means to which parameters obtained from a validation set were compared. T1 and ADC showed the greatest ability to discriminate between normal and degraded cartilage. Further analysis with k-means clustering, which eliminates the need for a priori identification of sample status, generally performed comparably. Use of fuzzy c-means (FCM) clustering to define centroids likewise did not result in improvement in discrimination. Finally, a FCM clustering approach in which validation samples were assigned in a probabilistic fashion to control and degraded groups was implemented, reflecting the range of tissue characteristics seen with cartilage degradation. PMID:19705467

  19. Design of double fuzzy clustering-driven context neural networks.

    PubMed

    Kim, Eun-Hu; Oh, Sung-Kwun; Pedrycz, Witold

    2018-08-01

    In this study, we introduce a novel category of double fuzzy clustering-driven context neural networks (DFCCNNs). The study is focused on the development of advanced design methodologies for redesigning the structure of conventional fuzzy clustering-based neural networks. The conventional fuzzy clustering-based neural networks typically focus on dividing the input space into several local spaces (implied by clusters). In contrast, the proposed DFCCNNs take into account two distinct local spaces called context and cluster spaces, respectively. Cluster space refers to the local space positioned in the input space whereas context space concerns a local space formed in the output space. Through partitioning the output space into several local spaces, each context space is used as the desired (target) local output to construct local models. To complete this, the proposed network includes a new context layer for reasoning about context space in the output space. In this sense, Fuzzy C-Means (FCM) clustering is useful to form local spaces in both input and output spaces. The first one is used in order to form clusters and train weights positioned between the input and hidden layer, whereas the other one is applied to the output space to form context spaces. The key features of the proposed DFCCNNs can be enumerated as follows: (i) the parameters between the input layer and hidden layer are built through FCM clustering. The connections (weights) are specified as constant terms being in fact the centers of the clusters. The membership functions (represented through the partition matrix) produced by the FCM are used as activation functions located at the hidden layer of the "conventional" neural networks. (ii) Following the hidden layer, a context layer is formed to approximate the context space of the output variable and each node in context layer means individual local model. The outputs of the context layer are specified as a combination of both weights formed as linear function and the outputs of the hidden layer. The weights are updated using the least square estimation (LSE)-based method. (iii) At the output layer, the outputs of context layer are decoded to produce the corresponding numeric output. At this time, the weighted average is used and the weights are also adjusted with the use of the LSE scheme. From the viewpoint of performance improvement, the proposed design methodologies are discussed and experimented with the aid of benchmark machine learning datasets. Through the experiments, it is shown that the generalization abilities of the proposed DFCCNNs are better than those of the conventional FCNNs reported in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. SPEQTACLE: An automated generalized fuzzy C-means algorithm for tumor delineation in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapuyade-Lahorgue, Jérôme; Visvikis, Dimitris; Hatt, Mathieu, E-mail: hatt@univ-brest.fr

    Purpose: Accurate tumor delineation in positron emission tomography (PET) images is crucial in oncology. Although recent methods achieved good results, there is still room for improvement regarding tumors with complex shapes, low signal-to-noise ratio, and high levels of uptake heterogeneity. Methods: The authors developed and evaluated an original clustering-based method called spatial positron emission quantification of tumor—Automatic Lp-norm estimation (SPEQTACLE), based on the fuzzy C-means (FCM) algorithm with a generalization exploiting a Hilbertian norm to more accurately account for the fuzzy and non-Gaussian distributions of PET images. An automatic and reproducible estimation scheme of the norm on an image-by-image basismore » was developed. Robustness was assessed by studying the consistency of results obtained on multiple acquisitions of the NEMA phantom on three different scanners with varying acquisition parameters. Accuracy was evaluated using classification errors (CEs) on simulated and clinical images. SPEQTACLE was compared to another FCM implementation, fuzzy local information C-means (FLICM) and fuzzy locally adaptive Bayesian (FLAB). Results: SPEQTACLE demonstrated a level of robustness similar to FLAB (variability of 14% ± 9% vs 14% ± 7%, p = 0.15) and higher than FLICM (45% ± 18%, p < 0.0001), and improved accuracy with lower CE (14% ± 11%) over both FLICM (29% ± 29%) and FLAB (22% ± 20%) on simulated images. Improvement was significant for the more challenging cases with CE of 17% ± 11% for SPEQTACLE vs 28% ± 22% for FLAB (p = 0.009) and 40% ± 35% for FLICM (p < 0.0001). For the clinical cases, SPEQTACLE outperformed FLAB and FLICM (15% ± 6% vs 37% ± 14% and 30% ± 17%, p < 0.004). Conclusions: SPEQTACLE benefitted from the fully automatic estimation of the norm on a case-by-case basis. This promising approach will be extended to multimodal images and multiclass estimation in future developments.« less

  1. Optimized face recognition algorithm using radial basis function neural networks and its practical applications.

    PubMed

    Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold

    2015-09-01

    In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy.

    PubMed

    Kawata, Yasuo; Arimura, Hidetaka; Ikushima, Koujirou; Jin, Ze; Morita, Kento; Tokunaga, Chiaki; Yabu-Uchi, Hidetake; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki

    2017-10-01

    The aim of this study was to investigate the impact of pixel-based machine learning (ML) techniques, i.e., fuzzy-c-means clustering method (FCM), and the artificial neural network (ANN) and support vector machine (SVM), on an automated framework for delineation of gross tumor volume (GTV) regions of lung cancer for stereotactic body radiation therapy. The morphological and metabolic features for GTV regions, which were determined based on the knowledge of radiation oncologists, were fed on a pixel-by-pixel basis into the respective FCM, ANN, and SVM ML techniques. Then, the ML techniques were incorporated into the automated delineation framework of GTVs followed by an optimum contour selection (OCS) method, which we proposed in a previous study. The three-ML-based frameworks were evaluated for 16 lung cancer cases (six solid, four ground glass opacity (GGO), six part-solid GGO) with the datasets of planning computed tomography (CT) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images using the three-dimensional Dice similarity coefficient (DSC). DSC denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those estimated using the automated framework. The FCM-based framework achieved the highest DSCs of 0.79±0.06, whereas DSCs of the ANN-based and SVM-based frameworks were 0.76±0.14 and 0.73±0.14, respectively. The FCM-based framework provided the highest segmentation accuracy and precision without a learning process (lowest calculation cost). Therefore, the FCM-based framework can be useful for delineation of tumor regions in practical treatment planning. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Automatic classification of atypical lymphoid B cells using digital blood image processing.

    PubMed

    Alférez, S; Merino, A; Mujica, L E; Ruiz, M; Bigorra, L; Rodellar, J

    2014-08-01

    There are automated systems for digital peripheral blood (PB) cell analysis, but they operate most effectively in nonpathological blood samples. The objective of this work was to design a methodology to improve the automatic classification of abnormal lymphoid cells. We analyzed 340 digital images of individual lymphoid cells from PB films obtained in the CellaVision DM96:150 chronic lymphocytic leukemia (CLL) cells, 100 hairy cell leukemia (HCL) cells, and 90 normal lymphocytes (N). We implemented the Watershed Transformation to segment the nucleus, the cytoplasm, and the peripheral cell region. We extracted 44 features and then the clustering Fuzzy C-Means (FCM) was applied in two steps for the lymphocyte classification. The images were automatically clustered in three groups, one of them with 98% of the HCL cells. The set of the remaining cells was clustered again using FCM and texture features. The two new groups contained 83.3% of the N cells and 71.3% of the CLL cells, respectively. The approach has been able to automatically classify with high precision three types of lymphoid cells. The addition of more descriptors and other classification techniques will allow extending the classification to other classes of atypical lymphoid cells. © 2013 John Wiley & Sons Ltd.

  4. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Jie; Sawada, Kazuhide; Moriguchi, Shuji

    2013-08-01

    Several mathematical models are used to predict the spatial distribution characteristics of landslides to mitigate damage caused by landslide disasters. Although some studies have achieved excellent results around the world, few studies take the inter-relationship of the selected points (training points) into account. In this paper, we present the Fuzzy c-means (FCM) algorithm as an optimal method for choosing the appropriate input landslide points as training data. Based on different combinations of the Fuzzy exponent (m) and the number of clusters (c), five groups of sampling points were derived from formal seed cells points and applied to analyze the landslide susceptibility in Mizunami City, Gifu Prefecture, Japan. A logistic regression model is applied to create the models of the relationships between landslide-conditioning factors and landslide occurrence. The pre-existing landslide bodies and the area under the relative operative characteristic (ROC) curve were used to evaluate the performance of all the models with different m and c. The results revealed that Model no. 4 (m=1.9, c=4) and Model no. 5 (m=1.9, c=5) have significantly high classification accuracies, i.e., 90.0%. Moreover, over 30% of the landslide bodies were grouped under the very high susceptibility zone. Otherwise, Model no. 4 and Model no. 5 had higher area under the ROC curve (AUC) values, which were 0.78 and 0.79, respectively. Therefore, Model no. 4 and Model no. 5 offer better model results for landslide susceptibility mapping. Maps derived from Model no. 4 and Model no. 5 would offer the local authorities crucial information for city planning and development.

  5. Bearing performance degradation assessment based on a combination of empirical mode decomposition and k-medoids clustering

    NASA Astrophysics Data System (ADS)

    Rai, Akhand; Upadhyay, S. H.

    2017-09-01

    Bearing is the most critical component in rotating machinery since it is more susceptible to failure. The monitoring of degradation in bearings becomes of great concern for averting the sudden machinery breakdown. In this study, a novel method for bearing performance degradation assessment (PDA) based on an amalgamation of empirical mode decomposition (EMD) and k-medoids clustering is encouraged. The fault features are extracted from the bearing signals using the EMD process. The extracted features are then subjected to k-medoids based clustering for obtaining the normal state and failure state cluster centres. A confidence value (CV) curve based on dissimilarity of the test data object to the normal state is obtained and employed as the degradation indicator for assessing the health of bearings. The proposed outlook is applied on the vibration signals collected in run-to-failure tests of bearings to assess its effectiveness in bearing PDA. To validate the superiority of the suggested approach, it is compared with commonly used time-domain features RMS and kurtosis, well-known fault diagnosis method envelope analysis (EA) and existing PDA classifiers i.e. self-organizing maps (SOM) and Fuzzy c-means (FCM). The results demonstrate that the recommended method outperforms the time-domain features, SOM and FCM based PDA in detecting the early stage degradation more precisely. Moreover, EA can be used as an accompanying method to confirm the early stage defect detected by the proposed bearing PDA approach. The study shows the potential application of k-medoids clustering as an effective tool for PDA of bearings.

  6. Practical way to develop 10-color flow cytometry protocols for the clinical laboratory

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Bocsi, Jozsef

    2010-02-01

    The latest development of commercial routine flow cytometers (FCM) is that they are equipped with three (blue, red, violet) or more lasers and many PMT detectors. Nowadays routine clinical instruments are capable of detecting 10 or more fluorescence colors simultaneously. Thereby, presenting opportunities for getting detailed information on the single cell level for cytomics and systems biology for improve diagnostics and monitoring of patients. The University Leipzig, Germany) recently started a cluster of excellence to study the molecular background of life style and environment associated diseases, enrolling 25000 individuals (LIFE). To this end the most comprehensive FCM protocol has to be developed for this study. We aimed to optimize fluorochrome and antibody combinations to the characteristics of the instrument for successful 10-color FCM. Systematic review of issues related to sampling, preparation, instrument settings, spillover and compensation matrix, reagent performance, and general principles of panel construction was performed. 10-color FCM enables for increased accuracy in cell subpopulation identification, the ability to obtain detailed information from blood specimens, improved laboratory efficiency, and the means to consistently detect major and rare cell populations. Careful attention to details of instrument and reagent performance allows for the development of panels suitable for screening of samples from healthy and diseased donors. The characteristics of this technique are particularly well suited for the analysis of broad human population cohorts and have the potential to reach the everyday practice in a standardized way for the clinical laboratory.

  7. BP network identification technology of infrared polarization based on fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Zeng, Haifang; Gu, Guohua; He, Weiji; Chen, Qian; Yang, Wei

    2011-08-01

    Infrared detection system is frequently employed on surveillance operations and reconnaissance mission to detect particular targets of interest in both civilian and military communities. By incorporating the polarization of light as supplementary information, the target discrimination performance could be enhanced. So this paper proposed an infrared target identification method which is based on fuzzy theory and neural network with polarization properties of targets. The paper utilizes polarization degree and light intensity to advance the unsupervised KFCM (kernel fuzzy C-Means) clustering method. And establish different material pol1arization properties database. In the built network, the system can feedback output corresponding material types of probability distribution toward any input polarized degree such as 10° 15°, 20°, 25°, 30°. KFCM, which has stronger robustness and accuracy than FCM, introduces kernel idea and gives the noise points and invalid value different but intuitively reasonable weights. Because of differences in characterization of material properties, there will be some conflicts in classification results. And D - S evidence theory was used in the combination of the polarization and intensity information. Related results show KFCM clustering precision and operation rate are higher than that of the FCM clustering method. The artificial neural network method realizes material identification, which reasonable solved the problems of complexity in environmental information of infrared polarization, and improperness of background knowledge and inference rule. This method of polarization identification is fast in speed, good in self-adaption and high in resolution.

  8. Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves

    NASA Technical Reports Server (NTRS)

    Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid

    2018-01-01

    An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.

  9. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement.

    PubMed

    Futamura, Koji; Sekino, Masashi; Hata, Akihiro; Ikebuchi, Ryoyo; Nakanishi, Yasutaka; Egawa, Gyohei; Kabashima, Kenji; Watanabe, Takeshi; Furuki, Motohiro; Tomura, Michio

    2015-09-01

    Flow cytometric analysis with multicolor fluoroprobes is an essential method for detecting biological signatures of cells. Here, we present a new full-spectral flow cytometer (spectral-FCM). Unlike conventional flow cytometer, this spectral-FCM acquires the emitted fluorescence for all probes across the full-spectrum from each cell with 32 channels sequential PMT unit after dispersion with prism, and extracts the signals of each fluoroprobe based on the spectral shape of each fluoroprobe using unique algorithm in high speed, high sensitive, accurate, automatic and real-time. The spectral-FCM detects the continuous changes in emission spectra from green to red of the photoconvertible protein, KikGR with high-spectral resolution and separates spectrally-adjacent fluoroprobes, such as FITC (Emission peak (Em) 519 nm) and EGFP (Em 507 nm). Moreover, the spectral-FCM can measure and subtract autofluorescence of each cell providing increased signal-to-noise ratios and improved resolution of dim samples, which leads to a transformative technology for investigation of single cell state and function. These advances make it possible to perform 11-color fluorescence analysis to visualize movement of multilinage immune cells by using KikGR-expressing mice. Thus, the novel spectral flow cytometry improves the combinational use of spectrally-adjacent various FPs and multicolor fluorochromes in metabolically active cell for the investigation of not only the immune system but also other research and clinical fields of use. © 2015 International Society for Advancement of Cytometry.

  10. Categorizing document by fuzzy C-Means and K-nearest neighbors approach

    NASA Astrophysics Data System (ADS)

    Priandini, Novita; Zaman, Badrus; Purwanti, Endah

    2017-08-01

    Increasing of technology had made categorizing documents become important. It caused by increasing of number of documents itself. Managing some documents by categorizing is one of Information Retrieval application, because it involve text mining on its process. Whereas, categorization technique could be done both Fuzzy C-Means (FCM) and K-Nearest Neighbors (KNN) method. This experiment would consolidate both methods. The aim of the experiment is increasing performance of document categorize. First, FCM is in order to clustering training documents. Second, KNN is in order to categorize testing document until the output of categorization is shown. Result of the experiment is 14 testing documents retrieve relevantly to its category. Meanwhile 6 of 20 testing documents retrieve irrelevant to its category. Result of system evaluation shows that both precision and recall are 0,7.

  11. Identification of food spoilage in the smart home based on neural and fuzzy processing of odour sensor responses.

    PubMed

    Green, Geoffrey C; Chan, Adrian D C; Goubran, Rafik A

    2009-01-01

    Adopting the use of real-time odour monitoring in the smart home has the potential to alert the occupant of unsafe or unsanitary conditions. In this paper, we measured (with a commercial metal-oxide sensor-based electronic nose) the odours of five household foods that had been left out at room temperature for a week to spoil. A multilayer perceptron (MLP) neural network was trained to recognize the age of the samples (a quantity related to the degree of spoilage). For four of these foods, median correlation coefficients (between target values and MLP outputs) of R > 0.97 were observed. Fuzzy C-means clustering (FCM) was applied to the evolving odour patterns of spoiling milk, which had been sampled more frequently (4h intervals for 7 days). The FCM results showed that both the freshest and oldest milk samples had a high degree of membership in "fresh" and "spoiled" clusters, respectively. In the future, as advancements in electronic nose development remove the present barriers to acceptance, signal processing methods like those explored in this paper can be incorporated into odour monitoring systems used in the smart home.

  12. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    PubMed

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-06-29

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).

  13. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing.

    PubMed

    Hsieh, Thomas M; Liu, Yi-Min; Liao, Chun-Chih; Xiao, Furen; Chiang, I-Jen; Wong, Jau-Min

    2011-08-26

    In recent years, magnetic resonance imaging (MRI) has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images.This paper uses an algorithm integrating fuzzy-c-mean (FCM) and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain. The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT) on a pixel level. Overall data were then evaluated using a quantified system. The quantified parameters, including the "percent match" (PM) and "correlation ratio" (CR), suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain.Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related. Results indicated that, even when using only two sets of non-contrasted MR images, the system is a reliable and efficient method of brain-tumor detection. With further development the system demonstrates high potential for practical clinical use.

  14. WE-G-204-07: Automated Characterization of Perceptual Quality of Clinical Chest Radiographs: Improvements in Lung, Spine, and Hardware Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J; Zhang, L; Samei, E

    Purpose: To develop and validate more robust methods for automated lung, spine, and hardware detection in AP/PA chest images. This work is part of a continuing effort to automatically characterize the perceptual image quality of clinical radiographs. [Y. Lin et al. Med. Phys. 39, 7019–7031 (2012)] Methods: Our previous implementation of lung/spine identification was applicable to only one vendor. A more generalized routine was devised based on three primary components: lung boundary detection, fuzzy c-means (FCM) clustering, and a clinically-derived lung pixel probability map. Boundary detection was used to constrain the lung segmentations. FCM clustering produced grayscale- and neighborhood-based pixelmore » classification probabilities which are weighted by the clinically-derived probability maps to generate a final lung segmentation. Lung centerlines were set along the left-right lung midpoints. Spine centerlines were estimated as a weighted average of body contour, lateral lung contour, and intensity-based centerline estimates. Centerline estimation was tested on 900 clinical AP/PA chest radiographs which included inpatient/outpatient, upright/bedside, men/women, and adult/pediatric images from multiple imaging systems. Our previous implementation further did not account for the presence of medical hardware (pacemakers, wires, implants, staples, stents, etc.) potentially biasing image quality analysis. A hardware detection algorithm was developed using a gradient-based thresholding method. The training and testing paradigm used a set of 48 images from which 1920 51×51 pixel{sup 2} ROIs with and 1920 ROIs without hardware were manually selected. Results: Acceptable lung centerlines were generated in 98.7% of radiographs while spine centerlines were acceptable in 99.1% of radiographs. Following threshold optimization, the hardware detection software yielded average true positive and true negative rates of 92.7% and 96.9%, respectively. Conclusion: Updated segmentation and centerline estimation methods in addition to new gradient-based hardware detection software provide improved data integrity control and error-checking for automated clinical chest image quality characterization across multiple radiography systems.« less

  15. Appearance Constrained Semi-Automatic Segmentation from DCE-MRI is Reproducible and Feasible for Breast Cancer Radiomics: A Feasibility Study.

    PubMed

    Veeraraghavan, Harini; Dashevsky, Brittany Z; Onishi, Natsuko; Sadinski, Meredith; Morris, Elizabeth; Deasy, Joseph O; Sutton, Elizabeth J

    2018-03-19

    We present a segmentation approach that combines GrowCut (GC) with cancer-specific multi-parametric Gaussian Mixture Model (GCGMM) to produce accurate and reproducible segmentations. We evaluated GCGMM using a retrospectively collected 75 invasive ductal carcinoma with ERPR+ HER2- (n = 15), triple negative (TN) (n = 9), and ER-HER2+ (n = 57) cancers with variable presentation (mass and non-mass enhancement) and background parenchymal enhancement (mild and marked). Expert delineated manual contours were used to assess the segmentation performance using Dice coefficient (DSC), mean surface distance (mSD), Hausdorff distance, and volume ratio (VR). GCGMM segmentations were significantly more accurate than GrowCut (GC) and fuzzy c-means clustering (FCM). GCGMM's segmentations and the texture features computed from those segmentations were the most reproducible compared with manual delineations and other analyzed segmentation methods. Finally, random forest (RF) classifier trained with leave-one-out cross-validation using features extracted from GCGMM segmentation resulted in the best accuracy for ER-HER2+ vs. ERPR+/TN (GCGMM 0.95, expert 0.95, GC 0.90, FCM 0.92) and for ERPR + HER2- vs. TN (GCGMM 0.92, expert 0.91, GC 0.77, FCM 0.83).

  16. Novel full‐spectral flow cytometry with multiple spectrally‐adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement

    PubMed Central

    Futamura, Koji; Sekino, Masashi; Hata, Akihiro; Ikebuchi, Ryoyo; Nakanishi, Yasutaka; Egawa, Gyohei; Kabashima, Kenji; Watanabe, Takeshi; Furuki, Motohiro

    2015-01-01

    Abstract Flow cytometric analysis with multicolor fluoroprobes is an essential method for detecting biological signatures of cells. Here, we present a new full‐spectral flow cytometer (spectral‐FCM). Unlike conventional flow cytometer, this spectral‐FCM acquires the emitted fluorescence for all probes across the full‐spectrum from each cell with 32 channels sequential PMT unit after dispersion with prism, and extracts the signals of each fluoroprobe based on the spectral shape of each fluoroprobe using unique algorithm in high speed, high sensitive, accurate, automatic and real‐time. The spectral‐FCM detects the continuous changes in emission spectra from green to red of the photoconvertible protein, KikGR with high‐spectral resolution and separates spectrally‐adjacent fluoroprobes, such as FITC (Emission peak (Em) 519 nm) and EGFP (Em 507 nm). Moreover, the spectral‐FCM can measure and subtract autofluorescence of each cell providing increased signal‐to‐noise ratios and improved resolution of dim samples, which leads to a transformative technology for investigation of single cell state and function. These advances make it possible to perform 11‐color fluorescence analysis to visualize movement of multilinage immune cells by using KikGR‐expressing mice. Thus, the novel spectral flow cytometry improves the combinational use of spectrally‐adjacent various FPs and multicolor fluorochromes in metabolically active cell for the investigation of not only the immune system but also other research and clinical fields of use. © 2015 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC PMID:26217952

  17. Use of genetic algorithm for the selection of EEG features

    NASA Astrophysics Data System (ADS)

    Asvestas, P.; Korda, A.; Kostopoulos, S.; Karanasiou, I.; Ouzounoglou, A.; Sidiropoulos, K.; Ventouras, E.; Matsopoulos, G.

    2015-09-01

    Genetic Algorithm (GA) is a popular optimization technique that can detect the global optimum of a multivariable function containing several local optima. GA has been widely used in the field of biomedical informatics, especially in the context of designing decision support systems that classify biomedical signals or images into classes of interest. The aim of this paper is to present a methodology, based on GA, for the selection of the optimal subset of features that can be used for the efficient classification of Event Related Potentials (ERPs), which are recorded during the observation of correct or incorrect actions. In our experiment, ERP recordings were acquired from sixteen (16) healthy volunteers who observed correct or incorrect actions of other subjects. The brain electrical activity was recorded at 47 locations on the scalp. The GA was formulated as a combinatorial optimizer for the selection of the combination of electrodes that maximizes the performance of the Fuzzy C Means (FCM) classification algorithm. In particular, during the evolution of the GA, for each candidate combination of electrodes, the well-known (Σ, Φ, Ω) features were calculated and were evaluated by means of the FCM method. The proposed methodology provided a combination of 8 electrodes, with classification accuracy 93.8%. Thus, GA can be the basis for the selection of features that discriminate ERP recordings of observations of correct or incorrect actions.

  18. Pomegranate MR images analysis using ACM and FCM algorithms

    NASA Astrophysics Data System (ADS)

    Morad, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation of an image plays an important role in image processing applications. In this paper segmentation of pomegranate magnetic resonance (MR) images has been explored. Pomegranate has healthy nutritional and medicinal properties for which the maturity indices and quality of internal tissues play an important role in the sorting process in which the admissible determination of features mentioned above cannot be easily achieved by human operator. Seeds and soft tissues are the main internal components of pomegranate. For research purposes, such as non-destructive investigation, in order to determine the ripening index and the percentage of seeds in growth period, segmentation of the internal structures should be performed as exactly as possible. In this paper, we present an automatic algorithm to segment the internal structure of pomegranate. Since its intensity of stem and calyx is close to the internal tissues, the stem and calyx pixels are usually labeled to the internal tissues by segmentation algorithm. To solve this problem, first, the fruit shape is extracted from its background using active contour model (ACM). Then stem and calyx are removed using morphological filters. Finally the image is segmented by fuzzy c-means (FCM). The experimental results represent an accuracy of 95.91% in the presence of stem and calyx, while the accuracy of segmentation increases to 97.53% when stem and calyx are first removed by morphological filters.

  19. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images

    NASA Astrophysics Data System (ADS)

    Liu, Likun

    2018-01-01

    In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.

  20. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow Potential and Impound Water Upstream Flow Potential. The FCM is constructed using what is currently our understanding of how glacier lake outbursts occur, whereas the causal connection between concepts is defined to capture the expertise of glacier scientists. The proposed graph contains 27 nodes and a network of connections that represent the causal link between concepts. To test the developed FCM, we defined three scenarios representing glacier lake environmental conditions that either occurred or that are likely to occur in such highly dynamic environments. For each case, the FCM has been initialized using observables extracted from hypothesized remote sensing imagery. The map, which converges to a fixed point for all of the test scenarios within 15 iterations, shows reasoning consistent with that of glacier experts. The FCM-based cognitive approach has the potential to be the AI core of real-time operational hazards assessment and detection systems.

  1. An advanced method for classifying atmospheric circulation types based on prototypes connectivity graph

    NASA Astrophysics Data System (ADS)

    Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros

    2012-11-01

    Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.

  2. Full color emitting fluorescent carbon material as reversible pH sensor with multicolor live cell imaging.

    PubMed

    Sharma, Vinay; Kaur, Navpreet; Tiwari, Pranav; Mobin, Shaikh M

    2018-05-01

    Carbon-based nano materials are developed as a cytocompatible alternative to semiconducting quantum dots for bioimaging and fluorescence-based sensing. The green alternatives for the synthesis of carbon materials are imminent. The present study demonstrates microwave based one step quick synthesis of fluorescent carbon material (FCM) having three variants: (i) un-doped fluorescent carbon material (UFCM) (ii) nitrogen doped FCM (N@FCM), and (iii) nitrogen & phosphorus co-doped FCM (N-P@FCM) using sugarcane extract as a carbon source. The N doping was performed using ethylenediamine and phosphoric acid was used for P doping. The heteroatom doped FCM were synthesized due to insolubility of UFCM in water. Unlike, UFCM, the N@FCM and N-P@FCM were found to be highly soluble in water. The N-P@FCM shows highest quantum yield among the three. The N-P@FCM was explored for alkaline pH sensing and it shows a quenching of fluorescence in the pH range 09-14. The sensing behaviour shows reversibility and high selectivity. Further, the sensor was also investigated for their biocompatibility and hence employed as a promising multicolour probe for cancer cell imaging. The generality in cell imaging was investigated by flow cytometry. The hetero-atom doped green carbon-dots may open new avenues for sensing and selective cellular targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT

    PubMed Central

    Guo, Wei; Li, Qiang

    2014-01-01

    Purpose: The purpose of this study is to reveal how the performance of lung nodule segmentation algorithm impacts the performance of lung nodule detection, and to provide guidelines for choosing an appropriate segmentation algorithm with appropriate parameters in a computer-aided detection (CAD) scheme. Methods: The database consisted of 85 CT scans with 111 nodules of 3 mm or larger in diameter from the standard CT lung nodule database created by the Lung Image Database Consortium. The initial nodule candidates were identified as those with strong response to a selective nodule enhancement filter. A uniform viewpoint reformation technique was applied to a three-dimensional nodule candidate to generate 24 two-dimensional (2D) reformatted images, which would be used to effectively distinguish between true nodules and false positives. Six different algorithms were employed to segment the initial nodule candidates in the 2D reformatted images. Finally, 2D features from the segmented areas in the 24 reformatted images were determined, selected, and classified for removal of false positives. Therefore, there were six similar CAD schemes, in which only the segmentation algorithms were different. The six segmentation algorithms included the fixed thresholding (FT), Otsu thresholding (OTSU), fuzzy C-means (FCM), Gaussian mixture model (GMM), Chan and Vese model (CV), and local binary fitting (LBF). The mean Jaccard index and the mean absolute distance (Dmean) were employed to evaluate the performance of segmentation algorithms, and the number of false positives at a fixed sensitivity was employed to evaluate the performance of the CAD schemes. Results: For the segmentation algorithms of FT, OTSU, FCM, GMM, CV, and LBF, the highest mean Jaccard index between the segmented nodule and the ground truth were 0.601, 0.586, 0.588, 0.563, 0.543, and 0.553, respectively, and the corresponding Dmean were 1.74, 1.80, 2.32, 2.80, 3.48, and 3.18 pixels, respectively. With these segmentation results of the six segmentation algorithms, the six CAD schemes reported 4.4, 8.8, 3.4, 9.2, 13.6, and 10.4 false positives per CT scan at a sensitivity of 80%. Conclusions: When multiple algorithms are available for segmenting nodule candidates in a CAD scheme, the “optimal” segmentation algorithm did not necessarily lead to the “optimal” CAD detection performance. PMID:25186393

  4. Model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, M. M.; Shklovskii, B. I.

    2011-12-01

    Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that the large volumetric capacitances C≳100F/cm3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  5. A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, Michael; Shklovskii, Boris

    2012-02-01

    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted ``spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  6. Ferric carboxymaltose-induced hypophosphataemia after kidney transplantation.

    PubMed

    Sari, V; Atiqi, R; Hoorn, E J; Heijboer, A C; van Gelder, T; Hesselink, D A

    2017-03-01

    Ferric carboxymaltose (FCM) can induce hypophosphataemia in the general population and patients with chronic kidney disease (CKD). Less is known about the effect of FCM in the kidney transplant population. It has been suggested that fibroblast growth factor 23 (FGF-23)-mediated renal phosphate wasting may be the most likely cause of this phenomenon. In the current study, the effects of FCM on phosphate metabolism were studied in a cohort of kidney transplant recipients. Two index patients receiving FCM are described. Additionally, data of 23 kidney transplant recipients who received a single dose of FCM intravenously between 1 January 2014 and 1 July 2015 were collected. Changes in the serum phosphate concentration were analysed in all subjects. Change in plasma FGF-23 concentrations was analysed in the index patients. In the two index patients an increase in FGF-23 and a decrease in phosphate concentrations were observed after FCM administration. In the 23 kidney transplant patients, median estimated glomerular filtration rate was 42 ml/min/1.73 m2 ( range 10-90 ml/ min/1.73 m2). Mean phosphate concentration before and after FCM administration was 1.05 ±; 0.35 mmol/l and 0.78 ±; 0.41 mmol/l, respectively (average decrease of 0.27 mmol/l; p = 0.003). In the total population, 13 (56.5%) patients showed a transient decline in phosphate concentration after FCM administration. Hypophosphataemia following FCM administration was severe (i.e. < 0.5 mmol/l) in 8 (34.8%) patients. Administration of a single dose of FCM may induce transient and mostly asymptomatic renal phosphate wasting and hypophosphataemia in kidney transplant recipients. This appears to be explained by an increase in FGF-23 concentration.

  7. Microbial-sized, carboxylate-modified microspheres as surrogate tracers in a variety of subsurface environments: An overview

    USGS Publications Warehouse

    Harvey, Ronald W.; Metge, David W.; LeBlanc, Denis R.

    2017-01-01

    Since 1986, fluorescent carboxylate-modified polystyrene/latex microspheres (FCM) have been co-injected into aquifers along with conservative tracers and viruses, bacteria, and (or) protozoa. Use of FCM has resulted in new information about subsurface transport behaviors of microorganisms in fractured crystalline rock, karst limestone, soils, and granular aquifers. FCM have been used as surrogates for oocysts of the pathogenic protist Cryptosporidium parvum in karst limestone and granular drinking-water aquifers. The advantages of FCM in subsurface transport studies are that they are safe in tracer applications, negatively charged, easy to detect, chemically inert, and available in wide range of sizes. The limitations of FCM are that the quantities needed for some field transport studies can be prohibitively expensive and that their surface characteristics may not match the microorganisms of interest. These limitations may be ameliorated, in part by using chemically modified FCM so that their surface characteristics are a better match to that of the organisms. Also, more sensitive methods of detection may allow using smaller quantities of FCM. To assess how the transport behaviors of FCM and pathogens might compare at the field scale, it is helpful to conduct side-by-side comparisons of their transport behaviors using the geologic media and site-specific conditions that characterize the field site.

  8. Data Standards for Flow Cytometry

    PubMed Central

    SPIDLEN, JOSEF; GENTLEMAN, ROBERT C.; HAALAND, PERRY D.; LANGILLE, MORGAN; MEUR, NOLWENN LE; OCHS, MICHAEL F.; SCHMITT, CHARLES; SMITH, CLAYTON A.; TREISTER, ADAM S.; BRINKMAN, RYAN R.

    2009-01-01

    Flow cytometry (FCM) is an analytical tool widely used for cancer and HIV/AIDS research, and treatment, stem cell manipulation and detecting microorganisms in environmental samples. Current data standards do not capture the full scope of FCM experiments and there is a demand for software tools that can assist in the exploration and analysis of large FCM datasets. We are implementing a standardized approach to capturing, analyzing, and disseminating FCM data that will facilitate both more complex analyses and analysis of datasets that could not previously be efficiently studied. Initial work has focused on developing a community-based guideline for recording and reporting the details of FCM experiments. Open source software tools that implement this standard are being created, with an emphasis on facilitating reproducible and extensible data analyses. As well, tools for electronic collaboration will assist the integrated access and comprehension of experiments to empower users to collaborate on FCM analyses. This coordinated, joint development of bioinformatics standards and software tools for FCM data analysis has the potential to greatly facilitate both basic and clinical research—impacting a notably diverse range of medical and environmental research areas. PMID:16901228

  9. Methods for microbiological quality assessment in drinking water: a comparative study.

    PubMed

    Helmi, K; Barthod, F; Méheut, G; Henry, A; Poty, F; Laurent, F; Charni-Ben-Tabassi, N

    2015-03-01

    The present study aimed to compare several methods for quantifying and discriminating between the different physiological states of a bacterial population present in drinking water. Flow cytometry (FCM), solid-phase cytometry (SPC), epifluorescence microscopy (MSP) and culture method performances were assessed by comparing the results obtained for different water samples. These samples, including chlorinated and non-chlorinated water, were collected in a drinking water treatment plant. Total bacteria were quantified by using SYBR Green II (for FCM) and 4',6'-diamino-2-phenylindole (DAPI) (for MSP), viable and non-viable bacteria were distinguished by using SYBR Green II and propidium iodide dual staining (for FCM), and active cells were distinguished by using CTC (for MSP) and Chemchrome V6 (for FCM and SPC). In our conditions, counts using microscopy and FCM were significantly correlated regarding total bacteria and active cells. Conversely, counts were not significantly similar using solid-phase and FCM for active bacteria. Moreover, the R2A medium showed that bacterial culturability could be recovered after chlorination. This study highlights that FCM appears to be a useful and powerful technique for drinking water production monitoring.

  10. SVM Pixel Classification on Colour Image Segmentation

    NASA Astrophysics Data System (ADS)

    Barui, Subhrajit; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.

    2018-04-01

    The aim of image segmentation is to simplify the representation of an image with the help of cluster pixels into something meaningful to analyze. Segmentation is typically used to locate boundaries and curves in an image, precisely to label every pixel in an image to give each pixel an independent identity. SVM pixel classification on colour image segmentation is the topic highlighted in this paper. It holds useful application in the field of concept based image retrieval, machine vision, medical imaging and object detection. The process is accomplished step by step. At first we need to recognize the type of colour and the texture used as an input to the SVM classifier. These inputs are extracted via local spatial similarity measure model and Steerable filter also known as Gabon Filter. It is then trained by using FCM (Fuzzy C-Means). Both the pixel level information of the image and the ability of the SVM Classifier undergoes some sophisticated algorithm to form the final image. The method has a well developed segmented image and efficiency with respect to increased quality and faster processing of the segmented image compared with the other segmentation methods proposed earlier. One of the latest application result is the Light L16 camera.

  11. Electrical Load Profile Analysis Using Clustering Techniques

    NASA Astrophysics Data System (ADS)

    Damayanti, R.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.

    2017-03-01

    Data mining is one of the data processing techniques to collect information from a set of stored data. Every day the consumption of electricity load is recorded by Electrical Company, usually at intervals of 15 or 30 minutes. This paper uses a clustering technique, which is one of data mining techniques to analyse the electrical load profiles during 2014. The three methods of clustering techniques were compared, namely K-Means (KM), Fuzzy C-Means (FCM), and K-Means Harmonics (KHM). The result shows that KHM is the most appropriate method to classify the electrical load profile. The optimum number of clusters is determined using the Davies-Bouldin Index. By grouping the load profile, the demand of variation analysis and estimation of energy loss from the group of load profile with similar pattern can be done. From the group of electric load profile, it can be known cluster load factor and a range of cluster loss factor that can help to find the range of values of coefficients for the estimated loss of energy without performing load flow studies.

  12. Utilization of flow cytometry for diagnosis of hematologic malignancies in Thailand: increasing trends and diagnostic yields in 7,982 samples.

    PubMed

    Promsuwicha, Orathai; Kankhao, Supattra; Songmuang, Wayuree; Auewarakul, Chirayu U

    2014-12-01

    Diagnosis of hematologic malignancies requires a multidisciplinary approach. Flow cytometry (FCM) has become an essential tool for immunophenotypic studies of malignant hematopoietic cells. To evaluate the utilization trend of FCM and its diagnostic yields for hematologic malignancy at a major teaching hospital in Thailand. FCM results of bone marrow (BM) and peripheral blood (PB) specimens during 2000-2013 were analyzed and compared to clinical diagnosis. Overall, 7,982 specimens were submitted for diagnostic FCM including 6,561 BM and 1,421 PB. The number of specimens analyzedwas 121, 142, 164, 299, 491, 431, 690, 611, 719, 744, 725, 863, 955 and 1,027, respectively, from 2000 to 2013. The most common clinical diagnoses requested for FCM were acute leukemia (5,911 cases, 74%) followed by lymphoma (1,419 cases, 17.8%), and chronic lymphocytic leukemia (CLL) (634 cases, 7.94%). The highest diagnostic yield of FCM was found in acute leukemia cases (69.71%) followed by CLL (35.33%). Only 15.43% of clinically suspected lymphoma cases were positive by FCM. Overutilization of PB (35.6% of cases) instead of BM for lymphoma staging significantly contributed to low diagnostic yields of lymphoma by FCM as circulating tumor cells may not be present in such cases. FCM has an increasing role in the diagnosis of hematologic malignancies in Thai patients over the past 14 years with the highest diagnostic yield in acute leukemia. Appropriate specimen types and study indications are required in order to reduce futility of costly diagnostic tests and improve diagnostic yields.

  13. Drug‐specific hypophosphatemia and hypersensitivity reactions following different intravenous iron infusions

    PubMed Central

    Hvas, Christian L.; Dahlerup, Jens F.

    2017-01-01

    Aims Intravenous (IV) iron infusions have been associated with hypophosphataemia (HP) and hypersensitivity reactions (HSRs). No studies have compared the side effects of ferric carboxymaltose (FCM) with those of isomaltoside 1000 (ISM). This study aimed to describe the occurrence of HP and HSRs following the administration of either FCM or ISM. Methods Data on 231 outpatients treated with IV iron infusions, between November 2011 and April 2014, were collected. During that period, the department made a switch from FCM to ISM and then back to FCM. Of the 231 patients, 39 received both FCM and ISM during the period. The prevalences of HP and HSRs were compared between the two drugs. Results We found more HP events when FCM was given (64 vs. 9; P < 0.01). In contrast, more patients had mild HSRs when ISM was given (2.5% vs. 10.7%; P < 0.01). A comparison of the two drugs in the subpopulation who received both drug types (n = 39) revealed a difference in phosphate decrease (P < 0.01), with the most marked decrease occurring with FCM. Nine patients who had HSRs were exposed to both drugs. No potential HSR crossover between the two drugs was found. Conclusion We found a higher risk of HP with FCM administration when compared to ISM administration. Conversely, we found a higher risk of mild HSRs with ISM administration when compared to FCM administration. The impacts of the two types of side effects should be considered when choosing an IV iron drug. PMID:27859495

  14. Drug-specific hypophosphatemia and hypersensitivity reactions following different intravenous iron infusions.

    PubMed

    Bager, Palle; Hvas, Christian L; Dahlerup, Jens F

    2017-05-01

    Intravenous (IV) iron infusions have been associated with hypophosphataemia (HP) and hypersensitivity reactions (HSRs). No studies have compared the side effects of ferric carboxymaltose (FCM) with those of isomaltoside 1000 (ISM). This study aimed to describe the occurrence of HP and HSRs following the administration of either FCM or ISM. Data on 231 outpatients treated with IV iron infusions, between November 2011 and April 2014, were collected. During that period, the department made a switch from FCM to ISM and then back to FCM. Of the 231 patients, 39 received both FCM and ISM during the period. The prevalences of HP and HSRs were compared between the two drugs. We found more HP events when FCM was given (64 vs. 9; P < 0.01). In contrast, more patients had mild HSRs when ISM was given (2.5% vs. 10.7%; P < 0.01). A comparison of the two drugs in the subpopulation who received both drug types (n = 39) revealed a difference in phosphate decrease (P < 0.01), with the most marked decrease occurring with FCM. Nine patients who had HSRs were exposed to both drugs. No potential HSR crossover between the two drugs was found. We found a higher risk of HP with FCM administration when compared to ISM administration. Conversely, we found a higher risk of mild HSRs with ISM administration when compared to FCM administration. The impacts of the two types of side effects should be considered when choosing an IV iron drug. © 2016 The British Pharmacological Society.

  15. Comparison of quantitative flow cytometric data provided by panels with lower and increased color number

    NASA Astrophysics Data System (ADS)

    Bocsi, József; Mittag, Anja; Pierzchalski, Arkadiusz; Baumgartner, Adolf; Dähnert, Ingo; Tárnok, Attila

    2012-03-01

    To date the flow cytometry (FCM) industry is booming with new generations of commercial clinical instruments. Long-term clinical studies have the dilemma that moving to new instruments being capable of more complex cell-analysis makes it difficult to compare new data with those obtained on older instruments with less complex analysis panels. Since 15 years we conduct follow-up studies on children with congenital heart diseases. In this period we moved from 2- to 3- and now to 10-color FCM immunophenotyping panels. Questions arise how to compare and transfer data from lower to higher level of complexity. Two comparable antibody panels for leukocyte immunophenotyping (12-tube 2-colors, and 9-tube 4-colors) were measured on a BD FACScalibur FCM (calibration: Spherotech beads) in 19 blood samples from children with congenital heart disease. This increase of colors was accompanied by moving antibodies that were in the 2-color panel either FITC or PE labeled to red dyes such as PerCP or APC. Algorithms were developed for bridging data for quantitative characterization of antigen expression (mean fluorescence intensity) and frequency of different cell subpopulations in combination with rainbow bead standard data. This approach worked for the most relevant antibodies (CD3, CD4, CD8 etc.) well, but rendered substantial uncertainty for activation markers (CD69 etc.). Our techniques are particularly well suited to the analysis in long-term studies and have the potential to compare older and recent results in a standardized way.

  16. Modifications of haematology analyzers to improve cell counting and leukocyte differentiating in cerebrospinal fluid controls of the Joint German Society for Clinical Chemistry and Laboratory Medicine.

    PubMed

    Kleine, Tilmann O; Nebe, C Thomas; Löwer, Christa; Lehmitz, Reinhard; Kruse, Rolf; Geilenkeuser, Wolf-Jochen; Dorn-Beineke, Alexandra

    2009-08-01

    Flow cytometry (FCM) is used with haematology analyzers (HAs) to count cells and differentiate leukocytes in cerebrospinal fluid (CSF). To evaluate the FCM techniques of HAs, 10 external DGKL trials with CSF controls were carried out in 2004 to 2008. Eight single platform HAs with and without CSF equipment were evaluated with living blood leukocytes and erythrocytes in CSF like DGKL controls: Coulter (LH750,755), Abbott CD3200, CD3500, CD3700, CD4000, Sapphire, ADVIA 120(R) CSF assay, and Sysmex XE-2100(R). Results were compared with visual counting of native cells in Fuchs-Rosenthal chamber, unstained, and absolute values of leukocyte differentiation, assayed by dual platform analysis with immune-FCM (FACSCalibur, CD45, CD14) and the chamber counts. Reference values X were compared with HA values Y by statistical evaluation with Passing/Bablock (P/B) linear regression analysis to reveal conformity of both methods. The HAs, studied, produced no valid results with DGKL CSF controls, because P/B regression revealed no conformity with the reference values due to:-blank problems with impedance analysis,-leukocyte loss with preanalytical erythrocyte lysis procedures, especially of monocytes,-inaccurate results with ADVIA cell sphering and cell differentiation with algorithms and enzyme activities (e.g., peroxidase). HA techniques have to be improved, e.g., using no erythrocyte lysis and CSF adequate techniques, to examine CSF samples precise and accurate. Copyright 2009 International Society for Advancement of Cytometry.

  17. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  18. Genome-wide association study of the four-constitution medicine.

    PubMed

    Yin, Chang Shik; Park, Hi Joon; Chung, Joo-Ho; Lee, Hye-Jung; Lee, Byung-Cheol

    2009-12-01

    Four-constitution medicine (FCM), also known as Sasang constitutional medicine, and the heritage of the long history of individualized acupuncture medicine tradition, is one of the holistic and traditional systems of constitution to appraise and categorize individual differences into four major types. This study first reports a genome-wide association study on FCM, to explore the genetic basis of FCM and facilitate the integration of FCM with conventional individual differences research. Healthy individuals of the Korean population were classified into the four constitutional types (FCTs). A total of 353,202 single nucleotide polymorphisms (SNPs) were typed using whole genome amplified samples, and six-way comparison of FCM types provided lists of significantly differential SNPs. In one-to-one FCT comparisons, 15,944 SNPs were significantly differential, and 5 SNPs were commonly significant in all of the three comparisons. In one-to-two FCT comparisons, 22,616 SNPs were significantly differential, and 20 SNPs were commonly significant in all of the three comparison groups. This study presents the association between genome-wide SNP profiles and the categorization of the FCM, and it could further provide a starting point of genome-based identification and research of the constitutions of FCM.

  19. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  20. Financial impact of intravenous iron treatments on the management of anaemia inpatients: a 1 year observational study.

    PubMed

    Delpeuch, Amina; Ruivard, Marc; Abergel, Armand; Aumaitre, Olivier; Boisgard, Stéphane; Bagel, Sandrine; Sautou, Valérie

    2018-03-08

    Background Intravenous (IV) iron preparations bypass the difficulties (malabsorption and side effects) associated with oral iron for the treatment of iron deficiency anaemia (IDA). Ferric carboxymaltose (FCM) can be administered as a single infusion over short periods of time but is more expensive than iron sucrose (IS) when the patients are hospitalized. Objectives To evaluate the appropriateness of FCM prescriptions and to establish the economic impact of this management (including disease coding) compared to the use of IV IS. Setting This study was conducted for inpatients in all departments (orthopaedic department, gastroenterology department and two units of the internal medicine department) where FCM was widely prescribed. Method We retrospectively identified 224 patients, diagnosed with IDA using laboratory parameters and/or disease coding, who received FCM between January and December 2014. Main outcome measure The primary outcome was the rate of appropriateness of FCM prescriptions and the financial impact compared to IV IS. Results 89 Patients were included. The total additional cost for an inappropriate prescription of IV FCM (68% of cases) was of 6053 €. The total incremental cost of unsuitable disease coding was estimated at 31,688 €. Indications for IV FCM were categorized: intestinal bleeding (31%), malabsorption (17%), intolerance (9%) and refractory to oral iron (7%). The majority of patients (62%) received 1000 mg of FCM per week. The average length of hospital stay was of 10 days. Conclusion The prescription of IV iron was appropriate in most cases but did not necessarily require FCM. The use of IV IS, in many cases, could present a cost-saving option for inpatients with IDA. The lack of an IDA coding generated incremental costs.

  1. Clinical experience with ferric carboxymaltose in the treatment of cancer- and chemotherapy-associated anaemia

    PubMed Central

    Steinmetz, T.; Tschechne, B.; Harlin, O.; Klement, B.; Franzem, M.; Wamhoff, J.; Tesch, H.; Rohrberg, R.; Marschner, N.

    2013-01-01

    Background Intravenous (i.v.) iron can improve anaemia of chronic disease and response to erythropoiesis-stimulating agents (ESAs), but data on its use in practice and without ESAs are limited. This study evaluated effectiveness and tolerability of ferric carboxymaltose (FCM) in routine treatment of anaemic cancer patients. Patients and methods Of 639 patients enrolled in 68 haematology/oncology practices in Germany, 619 received FCM at the oncologist's discretion, 420 had eligible baseline haemoglobin (Hb) measurements, and 364 at least one follow-up Hb measurement. Data of transfused patients were censored from analysis before transfusion. Results The median total iron dose was 1000 mg per patient (interquartile range 600–1500 mg). The median Hb increase was comparable in patients receiving FCM alone (1.4 g/dl [0.2–2.3 g/dl; N = 233]) or FCM + ESA (1.6 g/dl [0.7–2.4 g/dl; N = 46]). Patients with baseline Hb up to 11.0 g/dl and serum ferritin up to 500 ng/ml benefited from FCM treatment (stable Hb ≥11.0 g/dl). Also patients with ferritin >500 ng/ml but low transferrin saturation benefited from FCM treatment. FCM was well tolerated, 2.3% of patients reported putative drug-related adverse events. Conclusions The substantial Hb increase and stabilisation at 11–12 g/dl in FCM-treated patients suggest a role for i.v. iron alone in anaemia correction in cancer patients. PMID:23071262

  2. Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network.

    PubMed

    Duraisamy, Baskar; Shanmugam, Jayanthi Venkatraman; Annamalai, Jayanthi

    2018-02-19

    An early intervention of Alzheimer's disease (AD) is highly essential due to the fact that this neuro degenerative disease generates major life-threatening issues, especially memory loss among patients in society. Moreover, categorizing NC (Normal Control), MCI (Mild Cognitive Impairment) and AD early in course allows the patients to experience benefits from new treatments. Therefore, it is important to construct a reliable classification technique to discriminate the patients with or without AD from the bio medical imaging modality. Hence, we developed a novel FCM based Weighted Probabilistic Neural Network (FWPNN) classification algorithm and analyzed the brain images related to structural MRI modality for better discrimination of class labels. Initially our proposed framework begins with brain image normalization stage. In this stage, ROI regions related to Hippo-Campus (HC) and Posterior Cingulate Cortex (PCC) from the brain images are extracted using Automated Anatomical Labeling (AAL) method. Subsequently, nineteen highly relevant AD related features are selected through Multiple-criterion feature selection method. At last, our novel FWPNN classification algorithm is imposed to remove suspicious samples from the training data with an end goal to enhance the classification performance. This newly developed classification algorithm combines both the goodness of supervised and unsupervised learning techniques. The experimental validation is carried out with the ADNI subset and then to the Bordex-3 city dataset. Our proposed classification approach achieves an accuracy of about 98.63%, 95.4%, 96.4% in terms of classification with AD vs NC, MCI vs NC and AD vs MCI. The experimental results suggest that the removal of noisy samples from the training data can enhance the decision generation process of the expert systems.

  3. An analysis of the health service efficiency and patient experience with two different intravenous iron preparations in a UK anaemia clinic.

    PubMed

    Wilson, Paul D; Hutchings, Adam; Jeans, Aruna; Macdougall, Iain C

    2013-01-01

    Historically, the Renal Unit at King's College Hospital used intravenous (IV) iron sucrose (IS) to treat iron deficiency anaemia in patients with chronic kidney disease who were not on dialysis (CKD-ND). As part of a service initiative to improve patient experience, new products were considered as alternatives. This study investigated the potential impact on patient experience and service costs by switching from IS to ferric carboxymaltose (FCM). A decision analytical model was used to calculate the impact of switching from IS to FCM for a cohort of CKD-ND patients. Service provision data were collected for 365 patients who received 600 mg IS within a 12 month period, creating the IS data set. The service provision data, along with a clinically relevant FCM administration protocol (stipulating total doses of 500 mg FCM), were used to calculate a corresponding theoretical data set for FCM for the same cohort of patients. The FCM protocol saved each patient two hospital visits and 2.66 hours of time (equating to approximately a saving of £36.21 in loss of earnings) and £19 in travel costs. Direct attributable costs for iron administration (which included drug, disposables, nursing staff, and hospital-provided patient transport costs) were £58,646 for IS vs £46,473 for FCM. Direct overhead costs (which included nursing preparation time, administration staff, clinic space, and consultant time costs) were £40,172 for the IS service vs £15,174 for the FCM service. Based on clinical experience with the products, this analysis assumes that 500 mg FCM is therapeutically equivalent to 600 mg IS. Consultant time costs are assumed to be the same between the two treatment groups. IV iron administration protocols and data are specific to King's College Hospital. The design is retrospective and changes to the management of the clinic, including service delivery optimization, may also affect real costs. FCM was associated with fewer hospital visits and reduced transport costs for CKD-ND patients receiving IV iron and has the potential to save 19-37% in service costs. Owing to increased administration efficiency, FCM can improve the overall patient experience while reducing the total cost of the King's College Hospital IV iron service for CKD-ND patients, compared with treatment with IS.

  4. Fluorescence Confocal Microscopy for Ex Vivo Diagnosis of Conjunctival Tumors: A Pilot Study.

    PubMed

    Iovieno, Alfonso; Longo, Caterina; De Luca, Mariacarla; Piana, Simonetta; Fontana, Luigi; Ragazzi, Moira

    2016-08-01

    To evaluate the potential use of fluorescence confocal microscopy (FCM) for ex vivo diagnosis and excision margin assessment of conjunctival neoplasms. Validity study. setting: Single institution. Consecutive patients with clinically suspicious conjunctival lesions. Conjunctival lesions were excised in toto using a standard "no-touch technique" by a single surgeon (A.I.). Collected specimens were examined with a commercially available laser scanning fluorescence confocal microscope after immersion in a 0.6 mM solution of acridine orange dye for 10-20 seconds. Specimens were subsequently processed with standard histologic analysis. FCM diagnosis of the nature and extension of conjunctival lesions. Sixteen consecutive patients were included in the study (11 male, 5 female; mean age 58.1 ± 26.1 years, range 10-90 years). The median time needed to process and analyze a sample with FCM was 15 minutes. Eleven of 16 lesions were identified by FCM as squamous (2 benign papillomas, 2 grade 2 conjunctival intraepithelial neoplasias, 7 in situ squamous carcinomas) and 5 as nonsquamous (1 pingueculum, 1 dermolipoma, 2 melanocytic nevi, 1 melanoma). In all cases FCM was able to detect horizontal and vertical extension of the lesion. All FCM findings were confirmed by corresponding subsequent histologic examination. FCM provides a fast ex vivo preliminary diagnosis of suspicious conjunctival lesions with good histologic details and margin assessment, and may represent a novel tool for intraoperative and postsurgical management of conjunctival tumors. This is the first study to investigate ex vivo FCM application in ophthalmology. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Choice of High-Dose Intravenous Iron Preparation Determines Hypophosphatemia Risk

    PubMed Central

    Schaefer, Benedikt; Würtinger, Philipp; Finkenstedt, Armin; Braithwaite, Vickie; Viveiros, André; Effenberger, Maria; Sulzbacher, Irene; Moschen, Alexander; Griesmacher, Andrea; Tilg, Herbert; Vogel, Wolfgang; Zoller, Heinz

    2016-01-01

    Background Ferric carboxymaltose (FCM) and iron isomaltoside 1000 (IIM) are increasingly used because they allow correction of severe iron deficiency in a single infusion. A transient decrease in serum phosphate concentrations is a frequent side effect of FCM. Aim To characterize this adverse event and search for its predictors in a gastroenterology clinic patient cohort. Methods Electronic medical records of patients attending the University Hospital of Innsbruck were searched for the keywords ferric carboxymaltose or iron isomaltoside. Eighty-one patients with documented administration of FCM or IIM with plasma phosphate concentrations before and after treatment were included. Results The prevalence of hypophosphatemia (<0.8 mmol/L) increased from 11% to 32.1% after treatment with i.v. iron. The hypophosphatemia risk was greater after FCM (45.5%) compared with IIM (4%). Severe hypophosphatemia (<0.6 mmol/L) occurred exclusively after FCM (32.7%). The odds for hypophosphatemia after i.v. iron treatment were independently determined by baseline phosphate and the choice of i.v. iron preparation (FCM vs. IIM—OR = 20.8; 95% CI, 2.6–166; p = 0.004). The median time with hypophosphatemia was 41 days, but prolonged hypophosphatemia of ≥ 2 months was documented in 13 of 17 patients in whom follow-up was available. A significant increase in the phosphaturic hormone intact FGF-23 in hypophosphatemic patients shows that this adverse event is caused by FCM-induced hormone dysregulation. Conclusion Treatment with FCM is associated with a high risk of developing severe and prolonged hypophosphatemia and should therefore be monitored. Hypophosphatemia risk appears to be substantially lower with IIM. PMID:27907058

  6. Choice of High-Dose Intravenous Iron Preparation Determines Hypophosphatemia Risk.

    PubMed

    Schaefer, Benedikt; Würtinger, Philipp; Finkenstedt, Armin; Braithwaite, Vickie; Viveiros, André; Effenberger, Maria; Sulzbacher, Irene; Moschen, Alexander; Griesmacher, Andrea; Tilg, Herbert; Vogel, Wolfgang; Zoller, Heinz

    2016-01-01

    Ferric carboxymaltose (FCM) and iron isomaltoside 1000 (IIM) are increasingly used because they allow correction of severe iron deficiency in a single infusion. A transient decrease in serum phosphate concentrations is a frequent side effect of FCM. To characterize this adverse event and search for its predictors in a gastroenterology clinic patient cohort. Electronic medical records of patients attending the University Hospital of Innsbruck were searched for the keywords ferric carboxymaltose or iron isomaltoside. Eighty-one patients with documented administration of FCM or IIM with plasma phosphate concentrations before and after treatment were included. The prevalence of hypophosphatemia (<0.8 mmol/L) increased from 11% to 32.1% after treatment with i.v. iron. The hypophosphatemia risk was greater after FCM (45.5%) compared with IIM (4%). Severe hypophosphatemia (<0.6 mmol/L) occurred exclusively after FCM (32.7%). The odds for hypophosphatemia after i.v. iron treatment were independently determined by baseline phosphate and the choice of i.v. iron preparation (FCM vs. IIM-OR = 20.8; 95% CI, 2.6-166; p = 0.004). The median time with hypophosphatemia was 41 days, but prolonged hypophosphatemia of ≥ 2 months was documented in 13 of 17 patients in whom follow-up was available. A significant increase in the phosphaturic hormone intact FGF-23 in hypophosphatemic patients shows that this adverse event is caused by FCM-induced hormone dysregulation. Treatment with FCM is associated with a high risk of developing severe and prolonged hypophosphatemia and should therefore be monitored. Hypophosphatemia risk appears to be substantially lower with IIM.

  7. Application of flow cytometry to wine microorganisms.

    PubMed

    Longin, Cédric; Petitgonnet, Clément; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2017-04-01

    Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Important differences between faculties of medicine. Implications for family and community medicine].

    PubMed

    González Lopez-Valcarcel, Beatriz; Ortún, Vicente; Barber, Patricia; Harris, Jeffrey E

    2014-03-01

    To determine if there are significant differences between universities in the proclivity to choose Family and Community Medicine (FCM), given the constraints imposed by the number of choice. To test the hypothesis that the Schools of Medicine that have the FCM as a compulsory subject in the degree (3 of 27) had the highest preference for this specialty. Observational study on the data file of all the individuals taking the MIR examination between 2003 and 2011. Spain. All those who sat the examinations called by MIR 2003-2011. Position in the ranking of each candidate, elected position (specialty and center), post code of residence, sex, nationality and university in which they studied, and post code location for the residence chosen. The percentage electing FCM is highly correlated with the position in the ranking: 8% of graduates for the 'best' college, 46% for the worst. Very noticeable and consistent differences in the preparation for the MIR among the 27 medical schools. Ranking in the exam, female and foreigner, help predict the choice of FCM. The FCM compulsory curriculum from three universities does not seem to exert any influence. The convenient yardstick competition between the schools of medicine, FCM in their curriculum and the emphasis on the most attractive attributes of the specialty can contribute to the necessary renewal of FCM. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  9. Improved Ant Colony Clustering Algorithm and Its Performance Study

    PubMed Central

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  10. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    PubMed

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. IP-FCM measures physiologic protein-protein interactions modulated by signal transduction and small-molecule drug inhibition.

    PubMed

    Smith, Stephen E P; Bida, Anya T; Davis, Tessa R; Sicotte, Hugues; Patterson, Steven E; Gil, Diana; Schrum, Adam G

    2012-01-01

    Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition.

  12. Finite cover method with mortar elements for elastoplasticity problems

    NASA Astrophysics Data System (ADS)

    Kurumatani, M.; Terada, K.

    2005-06-01

    Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.

  13. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer.

    PubMed

    Malkassian, Anthony; Nerini, David; van Dijk, Mark A; Thyssen, Melilotus; Mante, Claude; Gregori, Gerald

    2011-04-01

    Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A submersible version of the CytoSense flow cytometer (the CytoSub) has been designed for in situ autonomous sampling and analysis, making it possible to monitor phytoplankton at a short temporal scale and obtain accurate information about its dynamics. For data analysis, a manual clustering is usually performed a posteriori: data are displayed on histograms and scatterplots, and group discrimination is made by drawing and combining regions (gating). The purpose of this study is to provide greater objectivity in the data analysis by applying a nonmanual and consistent method to automatically discriminate clusters of particles. In other words, we seek for partitioning methods based on the optical fingerprints of each particle. As the CytoSense is able to record the full pulse shape for each variable, it quickly generates a large and complex dataset to analyze. The shape, length, and area of each curve were chosen as descriptors for the analysis. To test the developed method, numerical experiments were performed on simulated curves. Then, the method was applied and validated on phytoplankton cultures data. Promising results have been obtained with a mixture of various species whose optical fingerprints overlapped considerably and could not be accurately separated using manual gating. Copyright © 2011 International Society for Advancement of Cytometry.

  14. A novel complex networks clustering algorithm based on the core influence of nodes.

    PubMed

    Tong, Chao; Niu, Jianwei; Dai, Bin; Xie, Zhongyu

    2014-01-01

    In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster's core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.

  15. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    PubMed

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms. Copyright © 2016. Published by Elsevier B.V.

  16. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulbaqi, Hayder Saad; Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya; Jafri, Mohd Zubir Mat

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introducemore » a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.« less

  17. Comparative safety of intravenous ferumoxytol versus ferric carboxymaltose in iron deficiency anemia: A randomized trial.

    PubMed

    Adkinson, N Franklin; Strauss, William E; Macdougall, Iain C; Bernard, Kristine E; Auerbach, Michael; Kaper, Robert F; Chertow, Glenn M; Krop, Julie S

    2018-05-01

    Few trials have examined rates of hypersensitivity reactions (HSRs) with intravenous iron formulations used to treat iron deficiency anemia (IDA). This randomized, multicenter, double-blind clinical trial compared the safety, and efficacy of ferumoxytol versus ferric carboxymaltose (FCM), focusing on rates of HSRs and hypotension as the primary end point. Patients with IDA of any etiology in whom oral iron was unsatisfactory or intolerable received ferumoxytol (n = 997) or FCM (n = 1000) intravenously over ≥15 minutes on days 1 and 8 or 9 for total respective doses of 1.02 g and 1.50 g. Composite incidences of moderate-to-severe HSRs, including anaphylaxis, or moderate-to-severe hypotension from baseline to week 5 (primary safety end point) were 0.6% and 0.7% in the ferumoxytol and FCM groups, respectively, with ferumoxytol noninferior to FCM. No anaphylaxis was reported in either group. The secondary safety end point of incidences of moderate-to-severe HSRs, including anaphylaxis, serious cardiovascular events, and death from baseline to week 5 were 1.3% and 2.0% in the ferumoxytol and FCM groups, respectively (noninferiority test P < .0001). Least-squares mean changes in hemoglobin at week 5 were 1.4 g/dL and 1.6 g/dL in the ferumoxytol and FCM groups, respectively (noninferiority test P < .0001). Incidence of hypophosphatemia was 0.4% for ferumoxytol and 38.7% for FCM. © 2018 The Authors American Journal of Hematology Published by Wiley Periodicals, Inc.

  18. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    ERIC Educational Resources Information Center

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  19. Cost-minimization analysis favours intravenous ferric carboxymaltose over ferric sucrose or oral iron as preoperative treatment in patients with colon cancer and iron deficiency anaemia.

    PubMed

    Calvet, Xavier; Gené, Emili; ÀngelRuíz, Miquel; Figuerola, Ariadna; Villoria, Albert; Cucala, Mercedes; Mearin, Fermín; Delgado, Salvadora; Calleja, Jose Luis

    2016-01-01

    Ferric Carboxymaltose (FCM), Iron Sucrose (IS) and Oral Iron (OI) are alternative treatments for preoperative anaemia. To compare the cost implications, using a cost-minimization analysis, of three alternatives: FCM vs. IS vs. OI for treating iron-deficient anaemia before surgery in patients with colon cancer. Data from 282 patients with colorectal cancer and anaemia were obtained from a previous study. One hundred and eleven received FCS, 16 IS and 155 OI. Costs of intravenous iron drugs were obtained from the Spanish Regulatory Agency. Direct and indirect costs were obtained from the analytical accounting unit of the Hospital. In the base case mean costs per patient were calculated. Sensitivity analysis and probabilistic Monte Carlo simulation were performed. Total costs per patient were 1827® in the FCM group, 2312® in the IS group and 2101® in the OI group. Cost savings per patient for FCM treatment were 485® compared to IS and 274® compared to OI. A Monte Carlo simulation favoured the use of FCM in 84.7% and 84.4% of simulations when compared to IS and OI, respectively. FCM infusion before surgery reduced costs in patients with colon cancer and iron-deficiency anaemia when compared with OI and IS.

  20. The relative value of cytometry and cytology in the management of bladder cancer: the Memorial Sloan-Kettering Cancer Center experience.

    PubMed

    Badalament, R A; Fair, W R; Whitmore, W F; Melamed, M R

    1988-02-01

    The flow cytometric studies presented herein are based almost entirely on DNA measurements and represent an early application of this diagnostic test. Nevertheless, the MSKCC experience with FCM has demonstrated that it is technically feasible and clinically useful. The sensitivity of FCM is in the range of 80% to 85% overall, and is superior to that of conventional voided or bladder wash cytology. In the absence of inflammation secondary to infection, calculi, or intravesical agents such as BCG, the specificity is greater than 90%. In the presence of inflammation, FCM appears to be less specific than conventional cytology. A potential advantage of FCM over cytology is the quantitative nature of the examination permitting comparisons of sequential examinations. Also, there are refinements in technique that hold promise of increasing the accuracy or clinical usefulness of FCM, eg, the joint measurements of DNA and differentiation antigens defined by monoclonal antibodies. Yet, despite the current and potential advantages of FCM, voided urinary cytology continues to be the procedure of choice for detection and monitoring urothelial carcinoma, not only because of our long experience and better understanding of this test, but because of its proven high specificity, because it is noninvasive, widely available, and may help to detect upper tract or urethral tumors.

  1. Use of bioassays to assess hazard of food contact material extracts: State of the art.

    PubMed

    Severin, Isabelle; Souton, Emilie; Dahbi, Laurence; Chagnon, Marie Christine

    2017-07-01

    This review focuses on the use of in vitro bioassays for the hazard assessment of food contact materials (FCM) as a relevant strategy, in complement to analytical methods. FCM may transfer constituents to foods, not always detected by analytical chemistry, resulting in low but measurable human exposures. Testing FCM extracts with bioassays represents the biological response of a combination of substances, able to be released from the finished materials. Furthermore, this approach is particularly useful regarding the current risk assessment challenges with unpredicted/unidentified non-intentionally added substances (NIAS) that can be leached from the FCM in the food. Bioassays applied to assess hazard of different FCM types are described for, to date, the toxicological endpoints able to be expressed at low levels; cytotoxicity, genotoxicity and endocrine disruption potential. The bioassay strengths and relative key points needed to correctly use and improve the performance of bioassays for an additional FCM risk assessment is developed. This review compiles studies showing that combining both chemical and toxicological analyses presents a very promising and pragmatic tool for identifying new undesirable NIAS (not predicted) which can represent a great part of the migrating substances and/or "cocktail effect". Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  3. SOTXTSTREAM: Density-based self-organizing clustering of text streams.

    PubMed

    Bryant, Avory C; Cios, Krzysztof J

    2017-01-01

    A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets.

  4. Adrenal activity in maned wolves is higher on farmlands and park boundaries than within protected areas.

    PubMed

    Spercoski, Katherinne M; Morais, Rosana N; Morato, Ronaldo G; de Paula, Rogério C; Azevedo, Fernanda C; May-Júnior, Joares A; Santos, Jean P; Reghelin, Angela L; Wildt, David E; Songsasen, Nucharin

    2012-11-01

    In this study we measured excreted fecal corticoid metabolites (FCM) in maned wolves (Chrysocyon brachyurus) living within a protected reserve, on farmlands or in a boundary zone between the two habitats, and determined the impacts of season and reproductive status on adrenal activity. Feces were collected within a national park (n=191 samples), a park boundary zone (n=39) and on nearby farmlands (n=27), processed and analyzed by enzyme immunoassay. FCM amounts from samples collected on farmlands were higher (P<0.05) than in those collected inside the reserve and from the boundary zone. In relation to seasonality, FCM were elevated (P<0.05) in spring (September-November) when wolf pairs were raising young. We then divided the samples collected during breeding season (March-August) into cycling females and male/non-cycling females based on fecal progesterone: fecal testosterone ratio. FCM concentrations of the former collected inside the park were higher than (P<0.05) than the latter group. However, there were no differences in FCM levels between the two groups for samples collected in the boundary zone and on farmlands. Furthermore, FCM concentrations of male/non-cycling females samples collected on farmlands were 2- to 5-fold higher (P<0.05) than in counterparts collected inside the park. The consistently high FCM concentrations in samples collected on farmlands indicate that, in addition to seasonality, gender and reproductive status, anthropogenic pressures also contribute to elevating adrenal steroid for individuals living in altered habitat. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Accurate live and dead bacterial cell enumeration using flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ou, Fang; McGoverin, Cushla; Swift, Simon; Vanholsbeeck, Frédérique

    2017-03-01

    Flow cytometry (FCM) is based on the detection of scattered light and fluorescence to identify cells with particular characteristics of interest. However most FCM cannot precisely control the flow through its interrogation point and hence the volume and concentration of the sample cannot be immediately obtained. The easiest, most reliable and inexpensive way of obtaining absolute counts with FCM is by using reference beads. We investigated a method of using FCM with reference beads to measure live and dead bacterial concentration over the range of 106 to 108 cells/mL and ratio varying from 0 to 100%. We believe we are the first to use this method for such a large cell concentration range while also establishing the effect of varying the live/dead bacteria ratios. Escherichia coli solutions with differing ratios of live:dead cells were stained with fluorescent dyes SYTO 9 and propidium iodide (PI), which label live and dead cells, respectively. Samples were measured using a LSR II Flow Cytometer (BD Biosciences); using 488 nm excitation with 20 mW power. Both SYTO 9 and PI fluorescence were collected and threshold was set to side scatter. Traditional culture-based plate count was done in parallel to the FCM analysis. The concentration of live bacteria from FCM was compared to that obtained by plate counts. Preliminary results show that the concentration of live bacteria obtained by FCM and plate counts correlate well with each other and indicates this may be extended to a wider concentration range or for studying other cell characteristics.

  6. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.

    PubMed

    Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2014-10-15

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de; Büttner, Robert, E-mail: Robert-Buettner@gmx.net; Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared tomore » the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify CAF as promising new therapeutic targets in OSCC.« less

  8. Flow cytometry for immediate follow-up of drinking water networks after maintenance.

    PubMed

    Van Nevel, Sam; Buysschaert, Benjamin; De Roy, Karen; De Gusseme, Bart; Clement, Lieven; Boon, Nico

    2017-03-15

    Drinking water networks need maintenance every once in a while, either planned interventions or emergency repairs. When this involves opening of the water pipes, precautionary measures need to be taken to avoid contamination of the drinking water at all time. Drinking water suppliers routinely apply plating for faecal indicator organisms as quality control in such a situation. However, this takes at least 21 h of waiting time, which can be crucial when dealing with major supply pipes. A combination of flow cytometric (FCM) bacterial cell counts with FCM fingerprinting techniques is proposed in this study as a fast and sensitive additional technique. In three full scale situations, major supply pipes with 400-1050 mm diameter were emptied for maintenance, shock-chlorinated and flushed with large amounts of clean drinking water before taking back in operation. FCM measurements of the discharged flushing water revealed fast lowering and stabilizing bacterial concentrations once flushing is initiated. Immediate comparison with clean reference drinking water used for flushing was done, and the moment when both waters had similar bacterial concentrations was considered as the endpoint of the necessary flushing works. This was usually after 2-4 h of flushing. FCM fingerprinting, based on both bacteria and FCM background, was used as additional method to verify how similar flushing and reference samples were and yielded similar results. The FCM approved samples were several hours later approved as well by the drinking water supplier after plating and incubation for total Coliforms and Enterococci. These were used as decisive control to set the pipes back in operation. FCM proved to be a more conservative test than plating, yet it yielded immediate results. Application of these FCM methods can therefore avoid long unnecessary waiting times and large drinking water losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of Ferric Carboxymaltose on Exercise Capacity in Patients With Chronic Heart Failure and Iron Deficiency.

    PubMed

    van Veldhuisen, Dirk J; Ponikowski, Piotr; van der Meer, Peter; Metra, Marco; Böhm, Michael; Doletsky, Artem; Voors, Adriaan A; Macdougall, Iain C; Anker, Stefan D; Roubert, Bernard; Zakin, Lorraine; Cohen-Solal, Alain

    2017-10-10

    Iron deficiency is common in patients with heart failure (HF) and is associated with reduced exercise capacity and poor outcomes. Whether correction of iron deficiency with (intravenous) ferric carboxymaltose (FCM) affects peak oxygen consumption [peak VO 2 ], an objective measure of exercise intolerance in HF, has not been examined. We studied patients with systolic HF (left ventricular ejection fraction ≤45%) and mild to moderate symptoms despite optimal HF medication. Patients were randomized 1:1 to treatment with FCM for 24 weeks or standard of care. The primary end point was the change in peak VO 2 from baseline to 24 weeks. Secondary end points included the effect on hematinic and cardiac biomarkers, quality of life, and safety. For the primary analysis, patients who died had a value of 0 imputed for 24-week peak VO 2 . Additional sensitivity analyses were performed to determine the impact of imputation of missing peak VO 2 data. A total of 172 patients with HF were studied and received FCM (n=86) or standard of care (control group, n=86). At baseline, the groups were well matched; mean age was 64 years, 75% were male, mean left ventricular ejection fraction was 32%, and peak VO 2 was 13.5 mL/min/kg. FCM significantly increased serum ferritin and transferrin saturation. At 24 weeks, peak VO 2 had decreased in the control group (least square means -1.19±0.389 mL/min/kg) but was maintained on FCM (-0.16±0.387 mL/min/kg; P =0.020 between groups). In a sensitivity analysis, in which missing data were not imputed, peak VO 2 at 24 weeks decreased by -0.63±0.375 mL/min/kg in the control group and by -0.16±0.373 mL/min/kg in the FCM group; P =0.23 between groups). Patients' global assessment and functional class as assessed by the New York Heart Association improved on FCM versus standard of care. Treatment with intravenous FCM in patients with HF and iron deficiency improves iron stores. Although a favorable effect on peak VO 2 was observed on FCM, compared with standard of care in the primary analysis, this effect was highly sensitive to the imputation strategy for peak VO 2 among patients who died. Whether FCM is associated with an improved outcome in these high-risk patients needs further study. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01394562. © 2017 The Authors.

  10. Effect of Ferric Carboxymaltose on Exercise Capacity in Patients With Chronic Heart Failure and Iron Deficiency

    PubMed Central

    Ponikowski, Piotr; van der Meer, Peter; Metra, Marco; Böhm, Michael; Doletsky, Artem; Voors, Adriaan A.; Macdougall, Iain C.; Anker, Stefan D.; Roubert, Bernard; Zakin, Lorraine; Cohen-Solal, Alain

    2017-01-01

    Background: Iron deficiency is common in patients with heart failure (HF) and is associated with reduced exercise capacity and poor outcomes. Whether correction of iron deficiency with (intravenous) ferric carboxymaltose (FCM) affects peak oxygen consumption [peak VO2], an objective measure of exercise intolerance in HF, has not been examined. Methods: We studied patients with systolic HF (left ventricular ejection fraction ≤45%) and mild to moderate symptoms despite optimal HF medication. Patients were randomized 1:1 to treatment with FCM for 24 weeks or standard of care. The primary end point was the change in peak VO2 from baseline to 24 weeks. Secondary end points included the effect on hematinic and cardiac biomarkers, quality of life, and safety. For the primary analysis, patients who died had a value of 0 imputed for 24-week peak VO2. Additional sensitivity analyses were performed to determine the impact of imputation of missing peak VO2 data. Results: A total of 172 patients with HF were studied and received FCM (n=86) or standard of care (control group, n=86). At baseline, the groups were well matched; mean age was 64 years, 75% were male, mean left ventricular ejection fraction was 32%, and peak VO2 was 13.5 mL/min/kg. FCM significantly increased serum ferritin and transferrin saturation. At 24 weeks, peak VO2 had decreased in the control group (least square means −1.19±0.389 mL/min/kg) but was maintained on FCM (−0.16±0.387 mL/min/kg; P=0.020 between groups). In a sensitivity analysis, in which missing data were not imputed, peak VO2 at 24 weeks decreased by −0.63±0.375 mL/min/kg in the control group and by −0.16±0.373 mL/min/kg in the FCM group; P=0.23 between groups). Patients’ global assessment and functional class as assessed by the New York Heart Association improved on FCM versus standard of care. Conclusions: Treatment with intravenous FCM in patients with HF and iron deficiency improves iron stores. Although a favorable effect on peak VO2 was observed on FCM, compared with standard of care in the primary analysis, this effect was highly sensitive to the imputation strategy for peak VO2 among patients who died. Whether FCM is associated with an improved outcome in these high-risk patients needs further study. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01394562. PMID:28701470

  11. The global Minmax k-means algorithm.

    PubMed

    Wang, Xiaoyan; Bai, Yanping

    2016-01-01

    The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.

  12. Noise-enhanced clustering and competitive learning algorithms.

    PubMed

    Osoba, Osonde; Kosko, Bart

    2013-01-01

    Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters.

    PubMed

    Bunthof, Christine J; Abee, Tjakko

    2002-06-01

    Flow cytometry (FCM) is a rapid and sensitive technique that can determine cell numbers and measure various physiological characteristics of individual cells by using appropriate fluorescent probes. Previously, we developed an FCM assay with the viability probes carboxyfluorescein diacetate (cFDA) and TOTO-1 [1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3dihydro(benzo-1,3-oxazole)-2-methylidene]-1-(3'-trimethylammoniumpropyl)-pyridinium tetraiodide] for (stressed) lactic acid bacteria (C. J. Bunthof, K. Bloemen, P. Breeuwer, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 67:2326-2335, 2001). cFDA stains intact cells with enzymatic activity, and TOTO-1 stains membrane-permeabilized cells. Here we used this assay to study the viability of bacterial suspensions in milk, dairy fermentation starters, and probiotic products. To facilitate FCM analysis of bacteria in milk, a commercially available milk-clearing solution was used. The procedure was optimized to increase the signal-to-noise ratio. FCM enumerations were accurate down to a concentration of 10(5) cells ml(-1). The level of retrieval of Lactobacillus plantarum WCFS 1 suspended in milk was high, and viability was not affected by the procedure. The plate counts for cleared samples of untreated cell suspensions were nearly as high as the total FCM counts, and the correlation was strong (r > 0.99). In dairy fermentation starters and in probiotic products the FCM total cell counts were substantially higher than the numbers of CFU. Three functional populations could be distinguished: culturable cells, cells that are intact and metabolically active but not culturable, and permeabilized cells. The proportions of the populations differed in the products tested. This FCM method provides tools to assess the functionality of different populations in fermentation starters and probiotic products.

  14. Development of a Flow Cytometric Method To Analyze Subpopulations of Bacteria in Probiotic Products and Dairy Starters

    PubMed Central

    Bunthof, Christine J.; Abee, Tjakko

    2002-01-01

    Flow cytometry (FCM) is a rapid and sensitive technique that can determine cell numbers and measure various physiological characteristics of individual cells by using appropriate fluorescent probes. Previously, we developed an FCM assay with the viability probes carboxyfluorescein diacetate (cFDA) and TOTO-1 {1′-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3dihydro(benzo-1,3-oxazole)-2-methylidene]-1-(3′-trimethylammoniumpropyl)-pyridinium tetraiodide} for (stressed) lactic acid bacteria (C. J. Bunthof, K. Bloemen, P. Breeuwer, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 67:2326-2335, 2001). cFDA stains intact cells with enzymatic activity, and TOTO-1 stains membrane-permeabilized cells. Here we used this assay to study the viability of bacterial suspensions in milk, dairy fermentation starters, and probiotic products. To facilitate FCM analysis of bacteria in milk, a commercially available milk-clearing solution was used. The procedure was optimized to increase the signal-to-noise ratio. FCM enumerations were accurate down to a concentration of 105 cells ml−1. The level of retrieval of Lactobacillus plantarum WCFS 1 suspended in milk was high, and viability was not affected by the procedure. The plate counts for cleared samples of untreated cell suspensions were nearly as high as the total FCM counts, and the correlation was strong (r > 0.99). In dairy fermentation starters and in probiotic products the FCM total cell counts were substantially higher than the numbers of CFU. Three functional populations could be distinguished: culturable cells, cells that are intact and metabolically active but not culturable, and permeabilized cells. The proportions of the populations differed in the products tested. This FCM method provides tools to assess the functionality of different populations in fermentation starters and probiotic products. PMID:12039752

  15. Reactor physics behavior of transuranic-bearing TRISO-particle fuel in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; Sen, R. S.; Ougouag, A. M.

    2012-07-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) - only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space availablemore » for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is retained. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint. (authors)« less

  16. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag

    2012-04-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel,more » the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.« less

  17. Clustering PPI data by combining FA and SHC method.

    PubMed

    Lei, Xiujuan; Ying, Chao; Wu, Fang-Xiang; Xu, Jin

    2015-01-01

    Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value.

  18. Clustering PPI data by combining FA and SHC method

    PubMed Central

    2015-01-01

    Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value. PMID:25707632

  19. Results of the randomized phase IIB ARCTIC trial of low-dose rituximab in previously untreated CLL.

    PubMed

    Howard, D R; Munir, T; McParland, L; Rawstron, A C; Milligan, D; Schuh, A; Hockaday, A; Allsup, D J; Marshall, S; Duncombe, A S; O'Dwyer, J L; Smith, A F; Longo, R; Varghese, A; Hillmen, P

    2017-11-01

    ARCTIC was a multicenter, randomized-controlled, open, phase IIB non-inferiority trial in previously untreated chronic lymphocytic leukemia (CLL). Conventional frontline therapy in fit patients is fludarabine, cyclophosphamide and rituximab (FCR). The trial hypothesized that including mitoxantrone with low-dose rituximab (FCM-miniR) would be non-inferior to FCR. A total of 200 patients were recruited to assess the primary end point of complete remission (CR) rates according to IWCLL criteria. Secondary end points were progression-free survival (PFS), overall survival (OS), overall response rate, minimal residual disease (MRD) negativity, safety and cost-effectiveness. The trial closed following a pre-planned interim analysis. At final analysis, CR rates were 76 FCR vs 55% FCM-miniR (adjusted odds ratio: 0.37; 95% confidence interval: 0.19-0.73). MRD-negativity rates were 54 FCR vs 44% FCM-miniR. More participants experienced serious adverse reactions with FCM-miniR (49%) compared to FCR (41%). There are no significant differences between the treatment groups for PFS and OS. FCM-miniR is not expected to be cost-effective over a lifetime horizon. In summary, FCM-miniR is less well tolerated than FCR with an inferior response and MRD-negativity rate and increased toxicity, and will not be taken forward into a confirmatory trial. The trial demonstrated that oral FCR yields high response rates compared to historical series with intravenous chemotherapy.

  20. Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue.

    PubMed

    Longo, C; Rajadhyaksha, M; Ragazzi, M; Nehal, K; Gardini, S; Moscarella, E; Lallas, A; Zalaudek, I; Piana, S; Argenziano, G; Pellacani, G

    2014-09-01

    Fluorescence confocal microscopy (FCM) is an emerging technology for rapid imaging of excised tissue, without the need for frozen- or fixed-section processing. Basal cell carcinomas (BCCs) can be detected in Mohs excisions although few studies have described the major BCC findings as seen on FCM. To describe the major BCC findings of excised tissue during Mohs surgery and to correlate them with histopathology. Freshly excised tumours and frozen-thawed discarded tissue of BCC during Mohs surgery were analysed by means of FCM. A side-by-side correlation between FCM images and histological sections was performed. The FCM features of overlying skin and adnexal structures were also described. Sixty-four BCC cases were analysed. Distinct BCC types appeared unique in terms of shape and size of tumour islands [bigger in nodular (18/25), smaller and rounded in micronodular (7/7) and tiny cords for infiltrative ones (24/30)] and for the presence of clefting, palisading and increased nucleus/cytoplasm ratio. An excellent correlation was found between FCM and histological findings (Cohen's κ statistics = 0·9). In six cases, the presence of sebaceous glands and intense stroma reaction represented possible confounders. Fluorescence confocal microscopy is a fast and new imaging technique that allows an excellent visualization of skin structures and BCC findings during Mohs surgery. © 2014 British Association of Dermatologists.

  1. Enumeration of residual white blood cells in leukoreduced blood products: Comparing flow cytometry with a portable microscopic cell counter.

    PubMed

    Castegnaro, Silvia; Dragone, Patrizia; Chieregato, Katia; Alghisi, Alberta; Rodeghiero, Francesco; Astori, Giuseppe

    2016-04-01

    Transfusion of blood components is potentially associated to the risk of cell-mediated adverse events and current guidelines require a reduction of residual white blood cells (rWBC) below 1 × 10(6) WBC/unit. The reference method to enumerate rare events is the flow cytometry (FCM). The ADAM-rWBC microscopic cell counter has been proposed as an alternative: it measures leukocytes after their staining with propidium iodide. We have tested the Adam-rWBC for the ability to enumerate rWBC in red blood cells and concentrates. We have validated the flow cytometry (FCM) for linearity, precision accuracy and robustness and then the ADAM-rWBC results have been compared with the FCM. Our data confirm the linearity, accuracy, precision and robustness of the FCM. The ADAM-rWBC has revealed an adequate precision and accuracy. Even if the Bland-Altman analysis of the paired data has indicated that the two systems are comparable, it should be noted that the rWBC values obtained by the ADAM-rWBC were significantly higher compared to FCM. In conclusion, the Adam-rWBC cell counter could represent an alternative where FCM technology expertise is not available, even if the risk that borderline products could be misclassified exists. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evaluating physiological stress in Sumatran tigers (Panthera tigris ssp. sumatrae) managed in Australian zoos.

    PubMed

    Parnell, Tempe; Narayan, Edward J; Magrath, Michael J L; Roe, Sheila; Clark, Giles; Nicolson, Vere; Martin-Vegue, Patrick; Mucci, Al; Hero, Jean-Marc

    2014-01-01

    Glucocorticoid quantification using non-invasive methods provides a powerful tool for assessing the health and welfare of wildlife in zoo-based programmes. In this study, we provide baseline data on faecal-based glucocorticoid (cortisol) monitoring of Sumatran tigers (Panthera tigris ssp. sumatrae) managed at the Melbourne Zoo in Victoria, Australia. We sampled five tigers daily for 60 days. Faecal cortisol metabolites (FCMs) in tiger faecal extracts were quantified using enzyme immunoassays that were successfully validated using parallelism and accuracy recovery checks. Two female tigers had significantly higher mean FCM levels than the two males and another female, suggesting that females may have higher FCM levels. A significant elevation was noted in the FCM levels for one female 2 days after she was darted and anaesthetized; however, the FCM levels returned to baseline levels within 3 days after the event. Comparative analysis of FCM levels of tigers sampled at Melbourne Zoo with tigers sampled earlier at two other Australian Zoos (Dreamworld Themepark and Australia Zoo) showed that FCM levels varied between zoos. Differences in the enclosure characteristics, timing of sampling, size and composition of groupings and training procedures could all contribute to this variation. Overall, we recommend the use of non-invasive sampling for the assessment of adrenocortical activity of felids managed in zoos in Australia and internationally in order to improve the welfare of these charismatic big cats.

  3. Evaluating physiological stress in Sumatran tigers (Panthera tigris ssp. sumatrae) managed in Australian zoos

    PubMed Central

    Parnell, Tempe; Narayan, Edward J.; Magrath, Michael J. L.; Roe, Sheila; Clark, Giles; Nicolson, Vere; Martin-Vegue, Patrick; Mucci, Al; Hero, Jean-Marc

    2014-01-01

    Glucocorticoid quantification using non-invasive methods provides a powerful tool for assessing the health and welfare of wildlife in zoo-based programmes. In this study, we provide baseline data on faecal-based glucocorticoid (cortisol) monitoring of Sumatran tigers (Panthera tigris ssp. sumatrae) managed at the Melbourne Zoo in Victoria, Australia. We sampled five tigers daily for 60 days. Faecal cortisol metabolites (FCMs) in tiger faecal extracts were quantified using enzyme immunoassays that were successfully validated using parallelism and accuracy recovery checks. Two female tigers had significantly higher mean FCM levels than the two males and another female, suggesting that females may have higher FCM levels. A significant elevation was noted in the FCM levels for one female 2 days after she was darted and anaesthetized; however, the FCM levels returned to baseline levels within 3 days after the event. Comparative analysis of FCM levels of tigers sampled at Melbourne Zoo with tigers sampled earlier at two other Australian Zoos (Dreamworld Themepark and Australia Zoo) showed that FCM levels varied between zoos. Differences in the enclosure characteristics, timing of sampling, size and composition of groupings and training procedures could all contribute to this variation. Overall, we recommend the use of non-invasive sampling for the assessment of adrenocortical activity of felids managed in zoos in Australia and internationally in order to improve the welfare of these charismatic big cats. PMID:27293659

  4. Information Clustering Based on Fuzzy Multisets.

    ERIC Educational Resources Information Center

    Miyamoto, Sadaaki

    2003-01-01

    Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…

  5. An improved clustering algorithm based on reverse learning in intelligent transportation

    NASA Astrophysics Data System (ADS)

    Qiu, Guoqing; Kou, Qianqian; Niu, Ting

    2017-05-01

    With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.

  6. A roadmap of clustering algorithms: finding a match for a biomedical application.

    PubMed

    Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael

    2009-05-01

    Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.

  7. Saliency-Guided Change Detection of Remotely Sensed Images Using Random Forest

    NASA Astrophysics Data System (ADS)

    Feng, W.; Sui, H.; Chen, X.

    2018-04-01

    Studies based on object-based image analysis (OBIA) representing the paradigm shift in change detection (CD) have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF), as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA). Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA) algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy c-means (FCM) clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3) multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.

  8. Efficient clustering aggregation based on data fragments.

    PubMed

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  9. The new generation of intravenous iron: chemistry, pharmacology, and toxicology of ferric carboxymaltose.

    PubMed

    Funk, Felix; Ryle, Peter; Canclini, Camillo; Neiser, Susann; Geisser, Peter

    2010-01-01

    An ideal preparation for intravenous iron replacement therapy should balance effectiveness and safety. Compounds that release iron rapidly tend to cause toxicity, while large molecules can induce antibody formation and cause anaphylactic reactions. There is therefore a need for an intravenous iron preparation that delivers appropriate amounts of iron in a readily available form but with minimal side effects and thus with an excellent safety profile. In this paper, a review is given on the chemistry, pharmacology, and toxicology of ferric carboxymaltose (FCM, Ferinject), a stable and robust complex formulated as a colloidal solution with a physiological pH. The complex is gradually taken up mainly from the hepatic reticulo-endothelial system (RES), followed by effective delivery of iron to the endogeneous transport system for the haem synthesis in new erythrocytes, as shown in studies on the pharmacodynamics and pharmacokinetics with radio-labelled FCM. Studies with radio-labelled FCM also demonstrated a barrier function of the placenta and a low transfer of iron into the milk of lactating rats. Safety pharmacology studies indicated a favourable profile with regard to cardiovascular, central nervous, respiratory, and renal toxicity. A high maximum non-lethal dose was demonstrated in the single-dose toxicity studies. Furthermore, based on the No-Observed-Adverse-Effect-Levels (NOAELs) found in repeated-dose toxicity studies and on the cumulative doses administered, FCM has good safety margins. Reproductive and developmental toxicity studies did not reveal any direct or indirect harmful effects. No genotoxic potential was found in in vitro or in vivo studies. Moreover, antigenicity studies showed no cross-reactivity of FMC with anti-dextran antibodies and also suggested that FCM does not possess sensitizing potential. Lastly, no evidence of irritation was found in local tolerance studies with FCM. This excellent toxicity profile and the high effectiveness of FCM allow the administration of high doses as a single infusion or bolus injection, which will enhance the cost-effectiveness and convenience of iron replacement therapy. In conclusion, FCM has many of the characteristics of an ideal intravenous iron preparation.

  10. Renal function in patients with non-dialysis chronic kidney disease receiving intravenous ferric carboxymaltose: an analysis of the randomized FIND-CKD trial.

    PubMed

    Macdougall, Iain C; Bock, Andreas H; Carrera, Fernando; Eckardt, Kai-Uwe; Gaillard, Carlo; Van Wyck, David; Meier, Yvonne; Larroque, Sylvain; Roger, Simon D

    2017-01-17

    Preclinical studies demonstrate renal proximal tubular injury after administration of some intravenous iron preparations but clinical data on renal effects of intravenous iron are sparse. FIND-CKD was a 56-week, randomized, open-label, multicenter study in which patients with non-dialysis dependent chronic kidney disease (ND-CKD), anemia and iron deficiency without erythropoiesis-stimulating agent therapy received intravenous ferric carboxymaltose (FCM), targeting either higher (400-600 μg/L) or lower (100-200 μg/L) ferritin values, or oral iron. Mean (SD) eGFR at baseline was 34.9 (11.3), 32.8 (10.8) and 34.2 (12.3) mL/min/1.73 m 2 in the high ferritin FCM (n = 97), low ferritin FCM (n = 89) and oral iron (n = 167) groups, respectively. Corresponding values at month 12 were 35.6 (13.8), 32.1 (12.7) and 33.4 (14.5) mL/min/1.73 m 2 . The pre-specified endpoint of mean (SE) change in eGFR from baseline to month 12 was +0.7 (0.9) mL/min/1.73 m 2 with high ferritin FCM (p = 0.15 versus oral iron), -0.9 (0.9) mL/min/1.73 m 2 with low ferritin FCM (p = 0.99 versus oral iron) and -0.9 (0.7) mL/min/1.73 m 2 with oral iron. No significant association was detected between quartiles of FCM dose, change in ferritin or change in TSAT versus change in eGFR. Dialysis initiation was similar between groups. Renal adverse events were rare, with no indication of between-group differences. Intravenous FCM at doses that maintained ferritin levels of 100-200 μg/L or 400-600 μg/L did not negatively impact renal function (eGFR) in patients with ND-CKD over 12 months versus oral iron, and eGFR remained stable. These findings show no evidence of renal toxicity following intravenous FCM over a 1-year period. ClinicalTrials.gov NCT00994318 (first registration 12 October 2009).

  11. A clustering method of Chinese medicine prescriptions based on modified firefly algorithm.

    PubMed

    Yuan, Feng; Liu, Hong; Chen, Shou-Qiang; Xu, Liang

    2016-12-01

    This paper is aimed to study the clustering method for Chinese medicine (CM) medical cases. The traditional K-means clustering algorithm had shortcomings such as dependence of results on the selection of initial value, trapping in local optimum when processing prescriptions form CM medical cases. Therefore, a new clustering method based on the collaboration of firefly algorithm and simulated annealing algorithm was proposed. This algorithm dynamically determined the iteration of firefly algorithm and simulates sampling of annealing algorithm by fitness changes, and increased the diversity of swarm through expansion of the scope of the sudden jump, thereby effectively avoiding premature problem. The results from confirmatory experiments for CM medical cases suggested that, comparing with traditional K-means clustering algorithms, this method was greatly improved in the individual diversity and the obtained clustering results, the computing results from this method had a certain reference value for cluster analysis on CM prescriptions.

  12. Change Detection of Remote Sensing Images by Dt-Cwt and Mrf

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.

    2017-05-01

    Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.

  13. Laser Scanning Cytometry: Principles and Applications—An Update

    PubMed Central

    Pozarowski, Piotr; Holden, Elena; Darzynkiewicz, Zbigniew

    2012-01-01

    Laser scanning cytometer (LSC) is the microscope-based cytofluorometer that offers a plethora of unique analytical capabilities, not provided by flow cytometry (FCM). This review describes attributes of LSC and covers its numerous applications derived from plentitude of the parameters that can be measured. Among many LSC applications the following are emphasized: (a) assessment of chromatin condensation to identify mitotic, apoptotic cells, or senescent cells; (b) detection of nuclear or mitochondrial translocation of critical factors such as NF-κB, p53, or Bax; (c) semi-automatic scoring of micronuclei in mutagenicity assays; (d) analysis of fluorescence in situ hybridization (FISH) and use of the FISH analysis attribute to measure other punctuate fluorescence patterns such as γH2AX foci or receptor clustering; (e) enumeration and morphometry of nucleoli and other cell organelles; (f) analysis of progeny of individual cells in clonogenicity assay; (g) cell immunophenotyping; (h) imaging, visual examination, or sequential analysis using different probes of the same cells upon their relocation; (i) in situ enzyme kinetics, drug uptake, and other time-resolved processes; (j) analysis of tissue section architecture using fluorescent and chromogenic probes; (k) application for hypocellular samples (needle aspirate, spinal fluid, etc.); and (l) other clinical applications. Advantages and limitations of LSC are discussed and compared with FCM. PMID:23027005

  14. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.

    PubMed

    Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi

    2015-01-01

    Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks.

  15. Functional grouping of similar genes using eigenanalysis on minimum spanning tree based neighborhood graph.

    PubMed

    Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita

    2016-04-01

    Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    PubMed

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  17. Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection

    PubMed Central

    Liu, Wenfen

    2017-01-01

    Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447

  18. Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators.

    PubMed

    Karayiannis, N B

    2000-01-01

    This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.

  19. A Ranking Analysis/An Interlinking Approach of New Triangular Fuzzy Cognitive Maps and Combined Effective Time Dependent Matrix

    NASA Astrophysics Data System (ADS)

    Adiga, Shreemathi; Saraswathi, A.; Praveen Prakash, A.

    2018-04-01

    This paper aims an interlinking approach of new Triangular Fuzzy Cognitive Maps (TrFCM) and Combined Effective Time Dependent (CETD) matrix to find the ranking of the problems of Transgenders. Section one begins with an introduction that briefly describes the scope of Triangular Fuzzy Cognitive Maps (TrFCM) and CETD Matrix. Section two provides the process of causes of problems faced by Transgenders using Fuzzy Triangular Fuzzy Cognitive Maps (TrFCM) method and performs the calculations using the collected data among the Transgender. In Section 3, the reasons for the main causes for the problems of the Transgenders. Section 4 describes the Charles Spearmans coefficients of rank correlation method by interlinking of Triangular Fuzzy Cognitive Maps (TrFCM) Method and CETD Matrix. Section 5 shows the results based on our study.

  20. The finite cell method for polygonal meshes: poly-FCM

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2016-10-01

    In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

  1. A Survey of Flow Cytometry Data Analysis Methods

    PubMed Central

    Bashashati, Ali; Brinkman, Ryan R.

    2009-01-01

    Flow cytometry (FCM) is widely used in health research and in treatment for a variety of tasks, such as in the diagnosis and monitoring of leukemia and lymphoma patients, providing the counts of helper-T lymphocytes needed to monitor the course and treatment of HIV infection, the evaluation of peripheral blood hematopoietic stem cell grafts, and many other diseases. In practice, FCM data analysis is performed manually, a process that requires an inordinate amount of time and is error-prone, nonreproducible, nonstandardized, and not open for re-evaluation, making it the most limiting aspect of this technology. This paper reviews state-of-the-art FCM data analysis approaches using a framework introduced to report each of the components in a data analysis pipeline. Current challenges and possible future directions in developing fully automated FCM data analysis tools are also outlined. PMID:20049163

  2. Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty

    NASA Astrophysics Data System (ADS)

    Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.

    This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.

  3. Analysis of subcellular sized particles. Capillary electrophoresis with post-column laser-induced fluorescence detection versus flow cytometry.

    PubMed

    Poe, Bobby G; Navratil, Marian; Arriaga, Edgar A

    2006-12-29

    Flow cytometry (FCM) and more recently capillary electrophoresis with post-column laser-induced fluorescence detection (CE-LIF) have both been used for subcellular particle analysis but their analytical performance has not been compared. In this work, we compare a commercial FCM with an in-house built CE-LIF instrument using fluorescently labeled microspheres and isolated mitochondria. As evidenced by the relative standard deviation (RSD) of the individual fluorescence intensities, FCM is two-fold better than CE-LIF for microspheres with > or =1.5 x 10(6) molecules of equivalent soluble fluorescein (MESF). However, FCM has a comparatively low signal-to-noise ratio (S/N) and high RSD for microspheres with <1.5 x 10(6) MESF. CE-LIF, on the other hand, produces S/N ratios that are >25 times higher than FCM for all the microspheres tested and a lower RSD for microspheres with <1.5 x 10(6) MESF. When 10-N-nonyl acridine orange (NAO)-labeled mitochondria are analyzed, the S/N ratios of both techniques are similar. This appears to result from photobleaching of NAO-labeled mitochondria as they are detected by the LIF detector of the CE-LIF instrument. Both techniques have a niche in subcellular analysis; FCM has the advantage of collecting data for thousands of particles quickly, whereas CE-LIF consumes less than a nanoliter of sample and provides the electrophoretic mobility for individual particles.

  4. Faecal corticosterone metabolite concentrations are not a good predictor of habitat suitability for common gartersnakes.

    PubMed

    Halliday, William D; Gilmour, Kathleen M; Blouin-Demers, Gabriel

    2015-01-01

    Measuring habitat suitability is important in conservation and in wildlife management. Measuring the abundance or presence-absence of a species in various habitats is not sufficient to measure habitat suitability because these metrics can be poor predictors of population success. Therefore, having some measure of population success is essential in assessing habitat suitability, but estimating population success is difficult. Identifying suitable proxies for population success could thus be beneficial. We examined whether faecal corticosterone metabolite (fCM) concentrations could be used as a proxy for habitat suitability in common gartersnakes (Thamnophis sirtalis). We conducted a validation study and confirmed that fCM concentrations indeed reflect circulating corticosterone concentrations. We estimated abundance, reproductive output and growth rate of gartersnakes in field and in forest habitat and we also measured fCM concentrations of gartersnakes from these same habitats. Common gartersnakes were more abundant and had higher reproductive outputs and higher growth rates in field habitat than in forest habitat, but fCM concentrations did not differ between the same two habitats. Our results suggest either that fCM concentrations are not a useful metric of habitat suitability in common gartersnakes or that the difference in suitability between the two habitats was too small to induce changes in fCM concentrations. Incorporating fitness metrics in estimates of habitat suitability is important, but these metrics of fitness have to be sensitive enough to vary between habitats.

  5. Hierarchical Dirichlet process model for gene expression clustering

    PubMed Central

    2013-01-01

    Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447

  6. Canonical PSO Based K-Means Clustering Approach for Real Datasets.

    PubMed

    Dey, Lopamudra; Chakraborty, Sanjay

    2014-01-01

    "Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.

  7. Faecal cortisol metabolites in Bengal (Panthera tigris tigris) and Sumatran tigers (Panthera tigris sumatrae).

    PubMed

    Narayan, Edward J; Parnell, Tempe; Clark, Giles; Martin-Vegue, Patrick; Mucci, Al; Hero, Jean-Marc

    2013-12-01

    The tiger (Panthera tigris) faces a great risk of extinction as its wild numbers have plummeted due to poaching and habitat destruction so ex-situ conservation programs are becoming ever more necessary. Reliable non-invasive biomarkers of the stress hormone (cortisol) are necessary for assessing the health and welfare of tigers in captivity. To our knowledge, non-invasive stress endocrinology methods have not been tested as widely in tigers. The first aim of this study was to describe and validate a faecal cortisol metabolite enzyme-immmunoassay (FCM EIA) for two tiger sub-species, the Bengal tiger (Panthera tigris tigris) and the Sumatran tiger (Panthera tigris sumatrae). Individual tigers (n=22) were studied in two large Zoos in Queensland, Australia (Dreamworld Theme Park and Australia Zoo). Fresh faecal samples (<12 h old) were collected each morning from both Zoos over a study period of 21 days. Biological validation was conducted separately by collecting feces 5 days before and 5 days after blood was taken from four male and five female tigers. Results showed that mean FCM levels increased by 138% and 285% in the male and female tigers within 1 day after bloods were taken, returning to baseline in 5 days. Laboratory validations of the FCM EIA were done using an extraction efficiency test and parallelism. Results showed >89% recovery of the cortisol standard that was added to tiger faecal extract. We also obtained parallel displacement of the serially diluted cortisol standard against serially diluted tiger faecal extract. Our second aim was to determine whether the FCM levels were significantly different between tiger sub-species and sex. Results showed no significant difference in mean FCM levels between the Bengal and Sumatran tiger sub-species. Mean levels of FCMs were significantly higher in females than in male tigers. Those male and female tigers with reported health issues during the study period expressed higher FCM levels than the reportedly healthy tigers. Interestingly, those tigers that took part in some activity (such as walks, photos, presentations and guest feeds) expressed moderately higher FCM levels at Dreamworld and lower FCM levels at Australia Zoo in comparison to those tigers that did not take part in such activities. These results indicate potential habituation in some tigers for routine activity through specialized training and pre-conditioning. In conclusion, the FCM EIA described in this study provides a reliable non-invasive method for evaluating the stress status of tigers in Zoos. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Interlaboratory assessment of mitotic index by flow cytometry confirms superior reproducibility relative to microscopic scoring.

    PubMed

    Roberts, D J; Spellman, R A; Sanok, K; Chen, H; Chan, M; Yurt, P; Thakur, A K; DeVito, G L; Murli, H; Stankowski, L F

    2012-05-01

    A flow cytometric procedure for determining mitotic index (MI) as part of the metaphase chromosome aberrations assay, developed and utilized routinely at Pfizer as part of their standard assay design, has been adopted successfully by Covance laboratories. This method, using antibodies against phosphorylated histone tails (H3PS10) and nucleic acid stain, has been evaluated by the two independent test sites and compared to manual scoring. Primary human lymphocytes were treated with cyclophosphamide, mitomycin C, benzo(a)pyrene, and etoposide at concentrations inducing dose-dependent cytotoxicity. Deming regression analysis indicates that the results generated via flow cytometry (FCM) were more consistent between sites than those generated via microscopy. Further analysis using the Bland-Altman modification of the Tukey mean difference method supports this finding, as the standard deviations (SDs) of differences in MI generated by FCM were less than half of those generated manually. Decreases in scoring variability owing to the objective nature of FCM, and the greater number of cells analyzed, make FCM a superior method for MI determination. In addition, the FCM method has proven to be transferable and easily integrated into standard genetic toxicology laboratory operations. Copyright © 2012 Wiley Periodicals, Inc.

  9. A hybrid monkey search algorithm for clustering analysis.

    PubMed

    Chen, Xin; Zhou, Yongquan; Luo, Qifang

    2014-01-01

    Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.

  10. Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means

    NASA Astrophysics Data System (ADS)

    Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.

    2018-04-01

    This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.

  11. Canonical PSO Based K-Means Clustering Approach for Real Datasets

    PubMed Central

    Dey, Lopamudra; Chakraborty, Sanjay

    2014-01-01

    “Clustering” the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms. PMID:27355083

  12. A method of operation scheduling based on video transcoding for cluster equipment

    NASA Astrophysics Data System (ADS)

    Zhou, Haojie; Yan, Chun

    2018-04-01

    Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.

  13. [Cluster analysis in biomedical researches].

    PubMed

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

  14. Data depth based clustering analysis

    DOE PAGES

    Jeong, Myeong -Hun; Cai, Yaping; Sullivan, Clair J.; ...

    2016-01-01

    Here, this paper proposes a new algorithm for identifying patterns within data, based on data depth. Such a clustering analysis has an enormous potential to discover previously unknown insights from existing data sets. Many clustering algorithms already exist for this purpose. However, most algorithms are not affine invariant. Therefore, they must operate with different parameters after the data sets are rotated, scaled, or translated. Further, most clustering algorithms, based on Euclidean distance, can be sensitive to noises because they have no global perspective. Parameter selection also significantly affects the clustering results of each algorithm. Unlike many existing clustering algorithms, themore » proposed algorithm, called data depth based clustering analysis (DBCA), is able to detect coherent clusters after the data sets are affine transformed without changing a parameter. It is also robust to noises because using data depth can measure centrality and outlyingness of the underlying data. Further, it can generate relatively stable clusters by varying the parameter. The experimental comparison with the leading state-of-the-art alternatives demonstrates that the proposed algorithm outperforms DBSCAN and HDBSCAN in terms of affine invariance, and exceeds or matches the ro-bustness to noises of DBSCAN or HDBSCAN. The robust-ness to parameter selection is also demonstrated through the case study of clustering twitter data.« less

  15. Comparison of BALB/c and CBA/J mice for the local lymph node assay using bromodeoxyuridine with flow cytometry (LLNA: BrdU-FCM).

    PubMed

    Lee, Yong Sun; Yi, Jung-Sun; Seo, Souk Jin; Kim, Joo Hwan; Jung, Mi-Sook; Seo, Im-Kwon; Ahn, Ilyoung; Ko, Kyungyuk; Kim, Tae Sung; Lim, Kyung Min; Sohn, Soojung

    2017-02-01

    The local lymph node assay using 5-bromo-2-deoxyuridine (BrdU) with flow cytometry (LLNA: BrdU-FCM) is a modified LLNA that is used to identify skin sensitizers by counting BrdU-incorporated lymph node cells (LNCs) with flow cytometry. Unlike other LLNA methods (OECD TG 429, 442A and 442B) in which the CBA/J mouse strain is used, LLNA: BrdU-FCM was originally designed to be compatible with BALB/c, a mouse strain that is more widely used in many countries. To justify the substitution of CBA/J for BALB/c, the equivalence of the test results between two strains shall be established prior to the official implementation of LLNA: BrdU-FCM. This study aims to compare the test results of LLNA: BrdU-FCM produced in BALB/c mice with those in CBA/J mice for 18 reference substances, including 13 sensitizers and 5 non-sensitizers, listed in OECD Test Guideline 429. Based on the LLNA: BrdU-FCM test procedure, we selected an appropriate solvent and then performed preliminary tests to determine the non-irritating dose ranges for the main study, which revealed the difference in the irritation responses to 8 of the 18 chemicals between the two strains. In the main study, we measured the changes in the number of total LNCs, which indicated differences in the responses to test chemicals between the two strains. However, the stimulation index obtained with the counts of BrdU-incorporated LNCs with 7-AAD using flow cytometry yielded comparable results and 100% concordance between the BALB/c and CBA/J mouse strains was achieved, suggesting that the performance of LLNA: BrdU-FCM using BALB/c mice was equivalent to that with CBA/J mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia.

    PubMed

    Macdougall, Iain C; Bock, Andreas H; Carrera, Fernando; Eckardt, Kai-Uwe; Gaillard, Carlo; Van Wyck, David; Roubert, Bernard; Nolen, Jacqueline G; Roger, Simon D

    2014-11-01

    The optimal iron therapy regimen in patients with non-dialysis-dependent chronic kidney disease (CKD) is unknown. Ferinject® assessment in patients with Iron deficiency anaemia and Non-Dialysis-dependent Chronic Kidney Disease (FIND-CKD) was a 56-week, open-label, multicentre, prospective and randomized study of 626 patients with non-dialysis-dependent CKD, anaemia and iron deficiency not receiving erythropoiesis-stimulating agents (ESAs). Patients were randomized (1:1:2) to intravenous (IV) ferric carboxymaltose (FCM), targeting a higher (400-600 µg/L) or lower (100-200 µg/L) ferritin or oral iron therapy. The primary end point was time to initiation of other anaemia management (ESA, other iron therapy or blood transfusion) or haemoglobin (Hb) trigger of two consecutive values <10 g/dL during Weeks 8-52. The primary end point occurred in 36 patients (23.5%), 49 patients (32.2%) and 98 patients (31.8%) in the high-ferritin FCM, low-ferritin FCM and oral iron groups, respectively [hazard ratio (HR): 0.65; 95% confidence interval (CI): 0.44-0.95; P = 0.026 for high-ferritin FCM versus oral iron]. The increase in Hb was greater with high-ferritin FCM versus oral iron (P = 0.014) and a greater proportion of patients achieved an Hb increase ≥1 g/dL with high-ferritin FCM versus oral iron (HR: 2.04; 95% CI: 1.52-2.72; P < 0.001). Rates of adverse events and serious adverse events were similar in all groups. Compared with oral iron, IV FCM targeting a ferritin of 400-600 µg/L quickly reached and maintained Hb level, and delayed and/or reduced the need for other anaemia management including ESAs. Within the limitations of this trial, no renal toxicity was observed, with no difference in cardiovascular or infectious events. NCT00994318. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA.

  17. Impact of pre-transplantation minimal residual disease determined by multiparameter flow cytometry on the outcome of AML patients with FLT3-ITD after allogeneic stem cell transplantation.

    PubMed

    Zhao, Xiaosu; Wang, Zhidong; Ruan, Guorui; Liu, Yanrong; Wang, Yu; Zhang, Xiaohui; Xu, Lanping; Huang, Xiaojun; Chang, Yingjun

    2018-06-01

    In this study, using multiparameter flow cytometry (FCM), we investigate the impact of minimal residual disease prior to transplantation (pre-MRD) on the transplant outcomes of AML patients with fms-related tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) mutation. A total of 20 patients who received HLA-matched sibling donor transplantation (MSDT) and 63 patients who received unmanipulated haploidentical hematopoietic stem cell transplantation (haplo-HSCT) were enrolled. Patients were classified into four groups based on the status of pre-FCM: group 1 with positive pre-FCM before MSDT, group 2 with negative pre-FCM before MSDT, group 3 with positive pre-FCM before haplo-HSCT, and group 4 with positive pre-FCM before haplo-HSCT. The results showed that patients in group 1 had the highest cumulative incidence of relapse (2-year CIR, 75.0%), the lowest leukemia-free survival (2-year LFS, 33.3%), and the overall survival (2-year OS, 25.0%) among all four groups. The other three groups of patients had comparable CIR (2-year CIR: group 2 vs. 3 vs. 4, 12.5% vs. 31.3% vs. 22.2%, P > 0.05) and LFS (2-year LFS: group 2 vs. 3 vs. 4, 87.5% vs. 62.5% vs. 66.5%, P > 0.05). Multivariate analysis indicated that disease status (> CR) and pre-MRD were associated with a higher CIR and a lower LFS when patients were classified by pre-MRD and transplant type. Our results suggested that AML patients with FLT3-ITD were able to be separated into high-risk and low-risk relapse groups based on pre-MRD, as determined by multiparameter FCM. Haplo-HSCT might overcome the negative impact of pre-MRD on patient outcomes compared to MSDT. These results require further investigation in prospective study with large numbers of cases.

  18. Clustering analysis of moving target signatures

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto

    2010-04-01

    Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.

  19. Plastic fiber optics for micro-imaging of fluorescence signals in living cells

    NASA Astrophysics Data System (ADS)

    Sakurai, Takashi; Natsume, Mitsuo; Koida, Kowa

    2015-03-01

    The fiber-coupled microscope (FCM) enables in vivo imaging at deep sites in the tissues or organs that other optical techniques are unable to reach. To develop FCM-based intravital imaging, we employed a plastic optical fiber (POF) bundle that included more than 10,000-units of polystyrene core and polymethyl methacrylate cladding. Each POF had a diameter of less than 5 μm the tip of the bundle was less than 0.5 mm wide, and the flexible wire had a length of 1,000 mm. The optical performance of the plastic FCM was sufficient for detection of significant signal changes in an acinus of rat pancreas labeled with a calcium ion-sensitive fluorescent dye. In the future, the potential power of plastic FCM is expected to increase, enabling analysis of structure and organization of specific functions in live cells within vulnerable organs.

  20. Long Term Uncertainty Investigations of 1 MN Force Calibration Machine at NPL, India (NPLI)

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Kumar, Harish; Kumar, Anil; Vikram

    2012-01-01

    The present paper is an attempt to study the long term uncertainty of 1 MN hydraulic multiplication system (HMS) force calibration machine (FCM) at the National Physical Laboratory, India (NPLI), which is used for calibration of the force measuring instruments in the range of 100 kN - 1 MN. The 1 MN HMS FCM was installed at NPLI in 1993 and was built on the principle of hydraulic amplifications of dead weights. The best measurement capability (BMC) of the machine is ± 0.025% (k = 2) and it is traceable to national standards by means of precision force transfer standards (FTS). The present study discusses the uncertainty variations of the 1 MN HMS FCM over the years and describes the other parameters in detail, too. The 1 MN HMS FCM was calibrated in the years 2004, 2006, 2007, 2008, 2009 and 2010 and the results have been reported.

  1. Application of hybrid clustering using parallel k-means algorithm and DIANA algorithm

    NASA Astrophysics Data System (ADS)

    Umam, Khoirul; Bustamam, Alhadi; Lestari, Dian

    2017-03-01

    DNA is one of the carrier of genetic information of living organisms. Encoding, sequencing, and clustering DNA sequences has become the key jobs and routine in the world of molecular biology, in particular on bioinformatics application. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combined two type clustering i.e. K-Means (partitioning clustering) and DIANA (hierarchical clustering), therefore it called Hybrid clustering. Application of hybrid clustering using Parallel K-Means algorithm and DIANA algorithm used to clustering DNA sequences of Human Papillomavirus (HPV). The clustering process is started with Collecting DNA sequences of HPV are obtained from NCBI (National Centre for Biotechnology Information), then performing characteristics extraction of DNA sequences. The characteristics extraction result is store in a matrix form, then normalize this matrix using Min-Max normalization and calculate genetic distance using Euclidian Distance. Furthermore, the hybrid clustering is applied by using implementation of Parallel K-Means algorithm and DIANA algorithm. The aim of using Hybrid Clustering is to obtain better clusters result. For validating the resulted clusters, to get optimum number of clusters, we use Davies-Bouldin Index (DBI). In this study, the result of implementation of Parallel K-Means clustering is data clustered become 5 clusters with minimal IDB value is 0.8741, and Hybrid Clustering clustered data become 13 sub-clusters with minimal IDB values = 0.8216, 0.6845, 0.3331, 0.1994 and 0.3952. The IDB value of hybrid clustering less than IBD value of Parallel K-Means clustering only that perform at 1ts stage. Its means clustering using Hybrid Clustering have the better result to clustered DNA sequence of HPV than perform parallel K-Means Clustering only.

  2. Qualitative and quantitative analysis of monomers in polyesters for food contact materials.

    PubMed

    Brenz, Fabrian; Linke, Susanne; Simat, Thomas

    2017-02-01

    Polyesters (PESs) are gaining more importance on the food contact material (FCM) market and the variety of properties and applications is expected to be wide. In order to acquire the desired properties manufacturers can combine several FCM-approved polyvalent carboxylic acids (PCAs) and polyols as monomers. However, information about the qualitative and quantitative composition of FCM articles is often limited. The method presented here describes the analysis of PESs with the identification and quantification of 25 PES monomers (10 PCA, 15 polyols) by HPLC with diode array detection (HPLC-DAD) and GC-MS after alkaline hydrolysis. Accurate identification and quantification were demonstrated by the analysis of seven different FCM articles made of PESs. The results explained between 97.2% and 103.4% w/w of the polymer composition whilst showing equal molar amounts of PCA and polyols. Quantification proved to be precise and sensitive with coefficients of variation (CVs) below 6.0% for PES samples with monomer concentrations typically ranging from 0.02% to 75% w/w. The analysis of 15 PES samples for the FCM market revealed the presence of five different PCAs and 11 different polyols (main monomers, co-monomers, non-intentionally added substances (NIAS)) showing the wide variety of monomers in modern PESs. The presented method provides a useful tool for commercial, state and research laboratories as well as for producers and distributors facing the task of FCM risk assessment. It can be applied for the identification and quantification of migrating monomers and the prediction of oligomer compositions from the identified monomers, respectively.

  3. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  4. Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm.

    PubMed

    Gaber, Tarek; Ismail, Gehad; Anter, Ahmed; Soliman, Mona; Ali, Mona; Semary, Noura; Hassanien, Aboul Ella; Snasel, Vaclav

    2015-08-01

    The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%.

  5. Clustering algorithm evaluation and the development of a replacement for procedure 1. [for crop inventories

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Johnson, J. K.

    1979-01-01

    An efficient procedure which clusters data using a completely unsupervised clustering algorithm and then uses labeled pixels to label the resulting clusters or perform a stratified estimate using the clusters as strata is developed. Three clustering algorithms, CLASSY, AMOEBA, and ISOCLS, are compared for efficiency. Three stratified estimation schemes and three labeling schemes are also considered and compared.

  6. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets

    PubMed Central

    Wernisch, Lorenz

    2017-01-01

    Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm. PMID:29036190

  7. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.

    PubMed

    Gabasova, Evelina; Reid, John; Wernisch, Lorenz

    2017-10-01

    Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm.

  8. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    PubMed

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  9. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks

    PubMed Central

    Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin

    2017-01-01

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211

  10. Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models

    NASA Technical Reports Server (NTRS)

    Mjoisness, Eric; Castano, Rebecca; Gray, Alexander

    1999-01-01

    We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.

  11. Fast detection of the fuzzy communities based on leader-driven algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He

    2018-03-01

    In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.

  12. Research on retailer data clustering algorithm based on Spark

    NASA Astrophysics Data System (ADS)

    Huang, Qiuman; Zhou, Feng

    2017-03-01

    Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.

  13. UN TRISO Compaction in SiC for FCM Fuel Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A.; Trammell, Michael P.; Kiggans, James O.

    2016-11-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.

  14. Printed paper and board food contact materials as a potential source of food contamination.

    PubMed

    Van Bossuyt, Melissa; Van Hoeck, Els; Vanhaecke, Tamara; Rogiers, Vera; Mertens, Birgit

    2016-11-01

    Food contact materials (FCM) are estimated to be the largest source of food contamination. Apart from plastics, the most commonly used FCM are made of printed paper and board. Unlike their plastic counterparts, these are not covered by a specific European regulation. Several contamination issues have raised concerns towards potential adverse health effects caused by exposure to substances migrating from printed paper and board FCM. In the current study, an inventory combining the substances which may be used in printed paper and board FCM, was created. More than 6000 unique compounds were identified, the majority (77%) considered non-evaluated in terms of potential toxicity. Based on a preliminary study of their physicochemical properties, it is estimated that most of the non-evaluated single substances have the potential to migrate into the food and become bioavailable after oral intake. Almost all are included in the FACET tool, indicating that their use in primary food packaging has been confirmed by industry. Importantly, 19 substances are also present in one of the lists with substances of concern compiled by the European Chemicals Agency (ECHA). To ensure consumer safety, the actual use of these substances in printed paper and board FCM should be investigated urgently. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. First identification of the herpes simplex virus by skin-dedicated ex vivo fluorescence confocal microscopy during herpetic skin infections.

    PubMed

    Cinotti, E; Perrot, J L; Labeille, B; Campolmi, N; Thuret, G; Naigeon, N; Bourlet, T; Pillet, S; Cambazard, F

    2015-06-01

    Skin-dedicated ex vivo fluorescence confocal microscopy (FCM) has so far been used to identify cutaneous tumours on freshly excised samples using acridine orange as fluorochrome. To use FCM for a new indication, namely, the identification of the herpes simplex virus (HSV) in skin lesions, using fluorescent antibodies. Six roof samples from skin vesicles suspicious for HSV lesions were incubated with anti-HSV-1 and anti-HSV-2 antibodies coupled with fluorescein isothiocyanate, and examined under skin-dedicated ex vivo FCM. The positive controls were swabs taken from the floor of each vesicle and observed under conventional direct fluorescence assay (DFA) and by viral cultures. Roof samples from three bullae of bullous pemphigoid were the negative controls. Using ex vivo FCM, the samples from the lesions clinically suspicious for HSV infection were seen to be fluorescent after incubation with anti-HSV-1, and were negative after incubation with anti-HSV-2 antibodies. Conventional DFA with an optical microscope and cultures confirmed the presence of HSV-1 infection. By using fluorescent antibodies to identify precise structures, ex vivo FCM can be used for indications other than tumour identification. More specifically, it can be an additional diagnostic tool for HSV infection. © 2014 British Association of Dermatologists.

  16. Evaluating Stress Physiology and Parasite Infection Parameters in the Translocation of Critically Endangered Woylies (Bettongia penicillata).

    PubMed

    Hing, Stephanie; Northover, Amy S; Narayan, Edward J; Wayne, Adrian F; Jones, Krista L; Keatley, Sarah; Thompson, R C Andrew; Godfrey, Stephanie S

    2017-03-01

    Translocation can be stressful for wildlife. Stress may be important in fauna translocation because it has been suggested that it can exacerbate the impact of infectious disease on translocated wildlife. However, few studies explore this hypothesis by measuring stress physiology and infection indices in parallel during wildlife translocations. We analysed faecal cortisol metabolite (FCM) concentration and endoparasite parameters (nematodes, coccidians and haemoparasites) in a critically endangered marsupial, the woylie (Bettongia penicillata), 1-3 months prior to translocation, at translocation, and 6 months later. FCM for both translocated and resident woylies was significantly higher after translocation compared to before or at translocation. In addition, body condition decreased with increasing FCM after translocation. These patterns in host condition and physiology may be indicative of translocation stress or stress associated with factors independent of the translocation. Parasite factors also influenced FCM in translocated woylies. When haemoparasites were detected, there was a significant negative relationship between strongyle egg count and FCM. This may reflect the influence of glucocorticoids on the immune response to micro- and macro-parasites. Our results indicate that host physiology and infection patterns can change significantly during translocation, but further investigation is required to determine how these patterns influence translocation success.

  17. [Intravenous ferric carboxymaltose-associated hypophosphatemia in patients with iron deficiency anemia. A common side effect].

    PubMed

    Sánchez González, Rebeca; Ternavasio-de la Vega, Hugo Guillermo; Moralejo Alonso, Leticia; Inés Revuelta, Sandra; Fuertes Martín, Aurelio

    2015-08-07

    To determine the frequency, severity, time of onset and factors associated with the development of hypophosphatemia (HF) in patients with iron deficiency anemia treated with intravenous ferric carboxymatose (ivFCM). Retrospective cohort study in patients iron deficiency anemia who received ivFCM and had an a prior and subsequent determination of serum phosphate. We carried out a comparative analysis between baseline and post-ivFCM levels of serum phosphate. In order to identify variables independently associated with HF a logistic regression analysis was also performed. One hundred twenty-five patients were included. HF frequency was 58%. The median time to onset of HF was 18 days. Age, baseline ferritin levels and baseline phosphate levels were independently associated with the development of HF. The risk of HF in patients with baseline phosphate levels ≤ 3.1mg/dl was 67% higher than patients with ≥ 3.7 mg/dl. ivFCM-associated HF is a frequent, early and, sometimes, prolonged effect in patients with iron deficiency anemia. Serum phosphate levels should be monitored after ivFCM administration, especially in older patients and in those with lower baseline phosphate or ferritin levels. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  18. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  19. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  20. GDPC: Gravitation-based Density Peaks Clustering algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin

    2018-07-01

    The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.

  1. Mining the National Career Assessment Examination Result Using Clustering Algorithm

    NASA Astrophysics Data System (ADS)

    Pagudpud, M. V.; Palaoag, T. T.; Padirayon, L. M.

    2018-03-01

    Education is an essential process today which elicits authorities to discover and establish innovative strategies for educational improvement. This study applied data mining using clustering technique for knowledge extraction from the National Career Assessment Examination (NCAE) result in the Division of Quirino. The NCAE is an examination given to all grade 9 students in the Philippines to assess their aptitudes in the different domains. Clustering the students is helpful in identifying students’ learning considerations. With the use of the RapidMiner tool, clustering algorithms such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), k-means, k-medoid, expectation maximization clustering, and support vector clustering algorithms were analyzed. The silhouette indexes of the said clustering algorithms were compared, and the result showed that the k-means algorithm with k = 3 and silhouette index equal to 0.196 is the most appropriate clustering algorithm to group the students. Three groups were formed having 477 students in the determined group (cluster 0), 310 proficient students (cluster 1) and 396 developing students (cluster 2). The data mining technique used in this study is essential in extracting useful information from the NCAE result to better understand the abilities of students which in turn is a good basis for adopting teaching strategies.

  2. Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing

    PubMed Central

    Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud

    2015-01-01

    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309

  3. The application of mixed recommendation algorithm with user clustering in the microblog advertisements promotion

    NASA Astrophysics Data System (ADS)

    Gong, Lina; Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-03-01

    The traditional microblog recommendation algorithm has the problems of low efficiency and modest effect in the era of big data. In the aim of solving these issues, this paper proposed a mixed recommendation algorithm with user clustering. This paper first introduced the situation of microblog marketing industry. Then, this paper elaborates the user interest modeling process and detailed advertisement recommendation methods. Finally, this paper compared the mixed recommendation algorithm with the traditional classification algorithm and mixed recommendation algorithm without user clustering. The results show that the mixed recommendation algorithm with user clustering has good accuracy and recall rate in the microblog advertisements promotion.

  4. Procedure of Partitioning Data Into Number of Data Sets or Data Group - A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    The goal of clustering is to decompose a dataset into similar groups based on a objective function. Some already well established clustering algorithms are there for data clustering. Objective of these data clustering algorithms are to divide the data points of the feature space into a number of groups (or classes) so that a predefined set of criteria are satisfied. The article considers the comparative study about the effectiveness and efficiency of traditional data clustering algorithms. For evaluating the performance of the clustering algorithms, Minkowski score is used here for different data sets.

  5. Android Malware Classification Using K-Means Clustering Algorithm

    NASA Astrophysics Data System (ADS)

    Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah

    2017-08-01

    Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.

  6. An extended affinity propagation clustering method based on different data density types.

    PubMed

    Zhao, XiuLi; Xu, WeiXiang

    2015-01-01

    Affinity propagation (AP) algorithm, as a novel clustering method, does not require the users to specify the initial cluster centers in advance, which regards all data points as potential exemplars (cluster centers) equally and groups the clusters totally by the similar degree among the data points. But in many cases there exist some different intensive areas within the same data set, which means that the data set does not distribute homogeneously. In such situation the AP algorithm cannot group the data points into ideal clusters. In this paper, we proposed an extended AP clustering algorithm to deal with such a problem. There are two steps in our method: firstly the data set is partitioned into several data density types according to the nearest distances of each data point; and then the AP clustering method is, respectively, used to group the data points into clusters in each data density type. Two experiments are carried out to evaluate the performance of our algorithm: one utilizes an artificial data set and the other uses a real seismic data set. The experiment results show that groups are obtained more accurately by our algorithm than OPTICS and AP clustering algorithm itself.

  7. Scalable Parallel Density-based Clustering and Applications

    NASA Astrophysics Data System (ADS)

    Patwary, Mostofa Ali

    2014-04-01

    Recently, density-based clustering algorithms (DBSCAN and OPTICS) have gotten significant attention of the scientific community due to their unique capability of discovering arbitrary shaped clusters and eliminating noise data. These algorithms have several applications, which require high performance computing, including finding halos and subhalos (clusters) from massive cosmology data in astrophysics, analyzing satellite images, X-ray crystallography, and anomaly detection. However, parallelization of these algorithms are extremely challenging as they exhibit inherent sequential data access order, unbalanced workload resulting in low parallel efficiency. To break the data access sequentiality and to achieve high parallelism, we develop new parallel algorithms, both for DBSCAN and OPTICS, designed using graph algorithmic techniques. For example, our parallel DBSCAN algorithm exploits the similarities between DBSCAN and computing connected components. Using datasets containing up to a billion floating point numbers, we show that our parallel density-based clustering algorithms significantly outperform the existing algorithms, achieving speedups up to 27.5 on 40 cores on shared memory architecture and speedups up to 5,765 using 8,192 cores on distributed memory architecture. In our experiments, we found that while achieving the scalability, our algorithms produce clustering results with comparable quality to the classical algorithms.

  8. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  9. Removal of impulse noise clusters from color images with local order statistics

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  10. Recognition of Naegleriae ameba surface protein epitopes by anti-human CD45 antibodies.

    PubMed

    Ravine, Terrence J; Polski, Jacek M; Jenkins, James

    2010-04-01

    Phagocytosis is a highly conserved mechanism exhibited by both free-living amebas and mammalian blood cells. Similarities demonstrated by either cell type during engulfment of the same bacterial species may imply analogous surface proteins involved in receptor-mediated endocytosis. The increased availability of anti-human leukocyte antibodies or clusters of differentiation (CD) markers used in conjunction with flow cytometric (FCM) and/or immunohistochemical (IHC) analysis provides investigators with a relatively easy method to screen different cell populations for comparable plasma membrane proteins. In this study, we incubated Naegleria and Acanthamoeba amebas with several directly conjugated anti-human leukocyte monoclonal antibodies (mAb) for similarly recognized amebic epitopes. CD marker selection was based upon a recognized role of each mAb in phagocyte activation and/or uptake of bacteria. These included CD14, CD45, and CD206. In FCM, only one CD45 antibody demonstrated strong reactivity with both Naegleria fowleri and Naegleria gruberi that was not expressed in similarly tested Acanthamoeba species. Additional testing of N. gruberi by IHC demonstrated reactivity to a different CD45 antibody. Our results suggest a possible utility of using anti-human leukocyte antibodies to screen amebic cells for similarly expressed protein epitopes. In doing so, several important items must be considered when selecting potential mAbs for testing to increase the probability of a positive result.

  11. Study of parameters of the nearest neighbour shared algorithm on clustering documents

    NASA Astrophysics Data System (ADS)

    Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni

    2018-03-01

    Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well with different parameter values.

  12. Older mothers follow conservative strategies under predator pressure: the adaptive role of maternal glucocorticoids in yellow-bellied marmots.

    PubMed

    Monclús, Raquel; Tiulim, Justin; Blumstein, Daniel T

    2011-11-01

    When the maternal environment is a good predictor of the offspring environment, maternal glucocorticoid (GC) levels might serve to pre-program offspring to express certain phenotypes or life-history characteristics that will increase their fitness. We conducted a field study to assess the effects of naturally occurring maternal GC levels on their offspring in yellow-bellied marmots (Marmota flaviventris) subjected to different predator pressures. Maternal fecal corticosteroid metabolites (FCM) were positively correlated with predator pressure. Predators had both direct and indirect effects on pups. We found that older mothers with higher FCM levels had smaller and female-biased litters. Moreover, sons from older mothers with high FCM levels dispersed significantly more than those from older mothers with low FCM levels, whereas the opposite pattern was found in pups from younger mothers. These age-related effects may permit females to make adaptive decisions that increase their pups' fitness according to their current situation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Correlative cryogenic tomography of cells using light and soft x-rays

    PubMed Central

    Smith, Elizabeth A.; Cinquin, Bertrand P.; Do, Myan; McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.

    2013-01-01

    Correlated imaging is the process of imaging a specimen with two complementary modalities, and then combining the two data sets to create a highly informative, composite view. A recent implementation of this concept has been the combination of soft x-ray tomography (SXT) with fluorescence cryogenic microscopy (FCM). SXT-FCM is used to visualize cells that are held in a near-native, cryo-preserved state. The resultant images are, therefore, highly representative of both the cellular architecture and molecular organization in vivo. SXT quantitatively visualizes the cell and sub-cellular structures; FCM images the spatial distribution of fluorescently labeled molecules. Here, we review the characteristics of SXT-FCM, and briefly discuss how this method compares with existing correlative imaging techniques. We also describe how the incorporation of a cryo-rotation stage into a cryogenic fluorescence microscope allows acquisition of fluorescence cryogenic tomography (FCT) data. FCT is optimally suited to correlation with SXT, since both techniques image the specimen in 3-D, potentially with similar, isotropic spatial resolution. PMID:24355261

  14. Algorithms of maximum likelihood data clustering with applications

    NASA Astrophysics Data System (ADS)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  15. A new clustering algorithm applicable to multispectral and polarimetric SAR images

    NASA Technical Reports Server (NTRS)

    Wong, Yiu-Fai; Posner, Edward C.

    1993-01-01

    We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.

  16. Spatial cluster detection using dynamic programming.

    PubMed

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.

  17. Spatial cluster detection using dynamic programming

    PubMed Central

    2012-01-01

    Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103

  18. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance

    PubMed Central

    Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600

  19. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.

    PubMed

    Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.

  20. Multi-Optimisation Consensus Clustering

    NASA Astrophysics Data System (ADS)

    Li, Jian; Swift, Stephen; Liu, Xiaohui

    Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.

  1. Swarm Intelligence in Text Document Clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Potok, Thomas E

    2008-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior. The research field that attempts to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies is called Swarm Intelligence. Compared to the traditional algorithms, the swarm algorithms are usually flexible, robust, decentralized and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document collection clustering. The major challenge of today's information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role inmore » helping users to effectively navigate, summarize, and organize the overwhelmed information. In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. These clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools and ant food forage.« less

  2. Non-invasive evaluation of physiological stress in an iconic Australian marsupial: the Koala (Phascolarctos cinereus).

    PubMed

    Narayan, Edward J; Webster, Koa; Nicolson, Vere; Mucci, Al; Hero, Jean-Marc

    2013-06-15

    Koalas (Phascolarctos cinereus) are the only extant representatives of Australia's unique marsupial family Phascolarctidae and were listed as nationally Vulnerable in 2012. Causes of mortality are diverse, although the disease chlamydiosis, dog attacks, collisions with cars, and loss of habitat represent the principal reasons for the continued species decline. Koala breeding facilities in Queensland and New South Wales, Australia have been established for conservation and tourism. Non-invasive monitoring of physiological stress is important for determining the sub-lethal effects of environmental stressors on the well-being, reproduction and survival of Koalas in Zoos and also in the wild. In this study, we developed a faecal cortisol metabolite (FCM) enzyme-immunoassay (EIA) for monitoring physiological stress in Koalas from two established Zoos in Australia and also within a free-living sub-population from Queensland. Biological validation of the FCM EIA was done using an adrenocorticotropic hormone (ACTH) challenge. We discovered excretory lag-times of FCM of 24 h in females (n=2) and 48 h in male (n=2) Koalas in response to the ACTH challenge. FCM levels showed an episodic and delayed peak response lasting up to 9 days post ACTH challenge. This finding should be taken into consideration when designing future experiments to study the impacts of short-term (acute) and chronic stressors on the Koalas. Laboratory validations were done using parallelism and recovery checks (extraction efficiency) of the cortisol standard against pooled Koala faecal extracts. Greater than 99% recovery of the cortisol standard was obtained as well as a parallel displacement curve against Koala faecal extracts. FCM levels of the captive Koalas (n=10 males and 13 females) significantly differed by sex, reproductive condition (lactating versus non-lactating Koalas) and the handling groups. Handled male Koalas had 200% higher FCM levels than their non-handled counterparts, while females were not affected by handling as long they were not undergoing lactation. There was no significant difference in FCM levels between the captive and wild Koalas (n=9 males and 7 females). Overall, these results provide foundation knowledge on non-invasive FCM analysis in this iconic Australian marsupial. Non-invasive stress endocrinology opens up opportunities for evaluating the sub-lethal physiological effects of management activities (including caging, translocation) on the nutritional status, reproductive behaviors and disease status of captive and managed in situ Koala populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mapping of rock types using a joint approach by combining the multivariate statistics, self-organizing map and Bayesian neural networks: an example from IODP 323 site

    NASA Astrophysics Data System (ADS)

    Karmakar, Mampi; Maiti, Saumen; Singh, Amrita; Ojha, Maheswar; Maity, Bhabani Sankar

    2017-07-01

    Modeling and classification of the subsurface lithology is very important to understand the evolution of the earth system. However, precise classification and mapping of lithology using a single framework are difficult due to the complexity and the nonlinearity of the problem driven by limited core sample information. Here, we implement a joint approach by combining the unsupervised and the supervised methods in a single framework for better classification and mapping of rock types. In the unsupervised method, we use the principal component analysis (PCA), K-means cluster analysis (K-means), dendrogram analysis, Fuzzy C-means (FCM) cluster analysis and self-organizing map (SOM). In the supervised method, we use the Bayesian neural networks (BNN) optimized by the Hybrid Monte Carlo (HMC) (BNN-HMC) and the scaled conjugate gradient (SCG) (BNN-SCG) techniques. We use P-wave velocity, density, neutron porosity, resistivity and gamma ray logs of the well U1343E of the Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. While the SOM algorithm allows us to visualize the clustering results in spatial domain, the combined classification schemes (supervised and unsupervised) uncover the different patterns of lithology such of as clayey-silt, diatom-silt and silty-clay from an un-cored section of the drilled hole. In addition, the BNN approach is capable of estimating uncertainty in the predictive modeling of three types of rocks over the entire lithology section at site U1343. Alternate succession of clayey-silt, diatom-silt and silty-clay may be representative of crustal inhomogeneity in general and thus could be a basis for detail study related to the productivity of methane gas in the oceans worldwide. Moreover, at the 530 m depth down below seafloor (DSF), the transition from Pliocene to Pleistocene could be linked to lithological alternation between the clayey-silt and the diatom-silt. The present results could provide the basis for the detailed study to get deeper insight into the Bering Sea' sediment deposition and sequence.

  5. Detection of activated basophils using flow cytometry for diagnosis in atopic patients.

    PubMed

    Cozon, G; Ferrándiz, J; Peyramond, D; Brunet, J

    1999-01-01

    human basophils release mediators of allergy after cross-linking of IgE receptors by allergens. Specific activation of basophils is detectable through flow cytometry (FCM) using an anti-CD63 fluorescein-conjugated monoclonal antibody. this study evaluate the detection of activated basophils by FCM in routine diagnosis of atopic diseases as regard to skin prick tests and specific immunoglobulin E antibodies. whole blood from twenty patients suspected of atopy was preincubated with interleukin-3 (IL-3), then incubated with specific allergens. After staining using anti-CD63 antibodies, activated basophils were detected through FCM. IL-3-preincubation increases the spontaneous expression of CD63 even at low concentrations (0.1 ng/ml) on the basophils of 2 patients out of 20. The sensitivity and specificity of FCM were respectively 0.56 +/- 0.17 (m +/- SD) and 1.0 +/- 0.0 for the detection of dust mite-activated basophils without IL-3 preincubation, and 0.73 +/- 0.13 and 1.0 +/- 0.0 for the detention of grass pollen-activated basophils. IL-3-preincubation increased the sensitivity in a dose-dependent manner but decreased the specificity fo FCM for detecting dust mite hypersensitivity. this method allow for rapid and easy detection of activated basophils from whole blood, and could be of interest for detecting allergies to non-conventional allergens such as pharmaceutical drugs.

  6. Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.

    PubMed

    Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai

    2016-03-01

    Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.

  7. Analysis of basic clustering algorithms for numerical estimation of statistical averages in biomolecules.

    PubMed

    Anandakrishnan, Ramu; Onufriev, Alexey

    2008-03-01

    In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.

  8. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    PubMed

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  9. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    PubMed Central

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  10. Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine.

    PubMed

    Lei, Yang; Yu, Dai; Bin, Zhang; Yang, Yang

    2017-01-01

    Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K -means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.

  11. Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.

    PubMed

    Wang, Haizhou; Song, Mingzhou

    2011-12-01

    The heuristic k -means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp . We demonstrate its advantage in optimality and runtime over the standard iterative k -means algorithm.

  12. Inference from clustering with application to gene-expression microarrays.

    PubMed

    Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M

    2002-01-01

    There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.

  13. Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm

    NASA Astrophysics Data System (ADS)

    Frisca, Bustamam, Alhadi; Siswantining, Titin

    2017-03-01

    Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.

  14. Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Korayem, L.; Khorsid, M.; Kassem, S. S.

    2015-05-01

    The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.

  15. Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.

    2018-06-01

    We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.

  16. Clustering performance comparison using K-means and expectation maximization algorithms.

    PubMed

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  17. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters.

    PubMed

    Lukashin, A V; Fuchs, R

    2001-05-01

    Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.

  18. Basic firefly algorithm for document clustering

    NASA Astrophysics Data System (ADS)

    Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza

    2015-12-01

    The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).

  19. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images.

    PubMed

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-10-01

    To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors' classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors' automatic classification and manual segmentation were 91.6% ± 2.0%. A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution.

  20. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images

    PubMed Central

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-01-01

    Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675

  1. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.

    PubMed

    Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg

    2017-11-03

    In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.

  2. Weighted graph cuts without eigenvectors a multilevel approach.

    PubMed

    Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian

    2007-11-01

    A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.

  3. Inserting ex vivo fluorescence confocal microscopy perioperatively in Mohs micrographic surgery expedites bedside assessment of excision margins in recurrent basal cell carcinoma.

    PubMed

    Longo, Caterina; Ragazzi, Moira; Castagnetti, Fabio; Gardini, Stefano; Palmieri, Tamara; Lallas, Aimilios; Moscarella, Elvira; Piana, Simonetta; Pellacani, Giovanni; Zalaudek, Iris; Argenziano, Giuseppe

    2013-01-01

    Mohs micrographic surgery can be employed in recurrent basal cell carcinoma, although it is a time-consuming technique. Recently, ex vivo fluorescence confocal microscopy (FCM) has been employed to obtain a fast assessment of tumor margins at the bedside. In our case we successfully employed ex vivo FCM to assess the tumor margins and we treated the persistent tumor with intensity-modulated radiation therapy. Our case demonstrates that a multidisciplinary approach is very efficient in managing complex and recurrent tumors and highlights the benefits of FCM as a new technique that can be used in the surgical theater to speed up the entire procedure.

  4. Model-based clustering for RNA-seq data.

    PubMed

    Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P

    2014-01-15

    RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org

  5. An improved initialization center k-means clustering algorithm based on distance and density

    NASA Astrophysics Data System (ADS)

    Duan, Yanling; Liu, Qun; Xia, Shuyin

    2018-04-01

    Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.

  6. Diametrical clustering for identifying anti-correlated gene clusters.

    PubMed

    Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman

    2003-09-01

    Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.

  7. A novel harmony search-K means hybrid algorithm for clustering gene expression data

    PubMed Central

    Nazeer, KA Abdul; Sebastian, MP; Kumar, SD Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms. PMID:23390351

  8. A novel harmony search-K means hybrid algorithm for clustering gene expression data.

    PubMed

    Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.

  9. m-BIRCH: an online clustering approach for computer vision applications

    NASA Astrophysics Data System (ADS)

    Madan, Siddharth K.; Dana, Kristin J.

    2015-03-01

    We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.

  10. Correlative cryogenic tomography of cells using light and soft x-rays.

    PubMed

    Smith, Elizabeth A; Cinquin, Bertrand P; Do, Myan; McDermott, Gerry; Le Gros, Mark A; Larabell, Carolyn A

    2014-08-01

    Correlated imaging is the process of imaging a specimen with two complementary modalities, and then combining the two data sets to create a highly informative, composite view. A recent implementation of this concept has been the combination of soft x-ray tomography (SXT) with fluorescence cryogenic microscopy (FCM). SXT-FCM is used to visualize cells that are held in a near-native, cryopreserved. The resultant images are, therefore, highly representative of both the cellular architecture and molecular organization in vivo. SXT quantitatively visualizes the cell and sub-cellular structures; FCM images the spatial distribution of fluorescently labeled molecules. Here, we review the characteristics of SXT-FCM, and briefly discuss how this method compares with existing correlative imaging techniques. We also describe how the incorporation of a cryo-rotation stage into a cryogenic fluorescence microscope allows acquisition of fluorescence cryogenic tomography (FCT) data. FCT is optimally suited for correlation with SXT, since both techniques image the specimen in 3-D, potentially with similar, isotropic spatial resolution. © 2013 Elsevier B.V. All rights reserved.

  11. Lack of anodic capacitance causes power overshoot in microbial fuel cells.

    PubMed

    Peng, Xinhong; Yu, Han; Yu, Hongbing; Wang, Xin

    2013-06-01

    Power overshoot commonly makes the performance evaluation of microbial fuel cells (MFCs) inaccurate. Here, three types of carbon with different capacitance (ultracapacitor activated carbon (UAC), plain activated carbon (PAC) and carbon black (CB)) rolled on stainless steel mesh (SSM) as anodes to investigate the relationship between overshoot and anodic capacitance. It was not observed in all cycles of UAC-MFCs (from Cycle 2 to 4) due to the largest abiotic capacitance (Cm(abiotic)) of 2.1F/cm(2), while this phenomenon was eliminated in PAC-MFCs (Cm(abiotic)=1.6 F/cm(2)) from Cycle 3 and in CB-MFCs (Cm(abiotic)=0.5F/cm(2)) from Cycle 4, indicated that the Cm(abiotic) of the anode stored charges and functioned as electron shuttle to overcome the power overshoot. With bacterial colonization, the transient charge storage in biofilm resulted in a 0.1-0.4F/cm(2) increase in total capacitance for anodes, which was the possible reason for the elimination of power overshoot in PAC/CB-MFCs after multi cycle acclimation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications.

    PubMed

    Hammes, Frederik; Egli, Thomas

    2010-06-01

    Rapid detection of microbial cells is a challenge in microbiology, particularly when complex indigenous communities or subpopulations varying in viability, activity and physiological state are investigated. Flow cytometry (FCM) has developed during the last 30 years into a multidisciplinary technique for analysing bacteria. When used correctly, FCM can provide a broad range of information at the single-cell level, including (but not limited to) total counts, size measurements, nucleic acid content, cell viability and activity, and detection of specific bacterial groups or species. The main advantage of FCM is that it is fast and easy to perform. It is a robust technique, which is adaptable to different types of samples and methods, and has much potential for automation. Hence, numerous FCM applications have emerged in industrial biotechnology, food and pharmaceutical quality control, routine monitoring of drinking water and wastewater systems, and microbial ecological research in soils and natural aquatic habitats. This review focuses on the information that can be gained from the analysis of bacteria in water, highlighting some of the main advantages, pitfalls and applications.

  13. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  14. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  15. The Mucciardi-Gose Clustering Algorithm and Its Applications in Automatic Pattern Recognition.

    DTIC Science & Technology

    A procedure known as the Mucciardi- Gose clustering algorithm, CLUSTR, for determining the geometrical or statistical relationships among groups of N...discussion of clustering algorithms is given; the particular advantages of the Mucciardi- Gose procedure are described. The mathematical basis for, and the

  16. A multicolour flow cytometric assay for c-MYC protein in B-cell lymphoma.

    PubMed

    Alayed, Khaled; Schweitzer, Karen; Awadallah, Amad; Shetty, Shashirekha; Turakhia, Samir; Meyerson, Howard

    2018-05-16

    Develop an objective assay to detect c-MYC protein expression using multiparametric flow cytometry (FCM) as an alternative to immunohistochemistry (IHC). 57 patient samples and 11 cell line samples were evaluated. Cell suspensions were obtained and c-MYC staining was performed in combination with CD45 and CD19 and, in some samples, CD10. The percentage of c-MYC+ cells by FCM was correlated with the percentage determined by IHC. The relationship between c-MYC protein expression and the presence of a c-MYC gene rearrangement in aggressive and high-grade lymphomas was also assessed. c-MYC expression by FCM and IHC demonstrated a high degree of correlation in a training set of 33 patient cases, r=0.92, 11 cell line samples, r=0.81 and in a validation set of 24 aggressive and high-grade B-cell lymphomas, r=0.85. c-MYC gene was rearranged by fluorescence in situ hybridisation in 6/9 samples with high c-MYC expression (>40%) by FCM and 6/14 by IHC. We have developed a reliable multicolour FCM assay to detect c-MYC expression suitable for clinical laboratories that should be helpful to accurately quantify c-MYC expression in B-cell lymphomas. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Security clustering algorithm based on reputation in hierarchical peer-to-peer network

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Luo, Xin; Wu, Guowen; Tan, Yang; Kita, Kenji

    2013-03-01

    For the security problems of the hierarchical P2P network (HPN), the paper presents a security clustering algorithm based on reputation (CABR). In the algorithm, we take the reputation mechanism for ensuring the security of transaction and use cluster for managing the reputation mechanism. In order to improve security, reduce cost of network brought by management of reputation and enhance stability of cluster, we select reputation, the historical average online time, and the network bandwidth as the basic factors of the comprehensive performance of node. Simulation results showed that the proposed algorithm improved the security, reduced the network overhead, and enhanced stability of cluster.

  18. Robust continuous clustering

    PubMed Central

    Shah, Sohil Atul

    2017-01-01

    Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank. PMID:28851838

  19. Cytochemistry and C-values: The Less-well-known World of Nuclear DNA Amounts

    PubMed Central

    Greilhuber, J.

    2008-01-01

    Background In the plant sciences there are two widely applied technologies for measuring nuclear DNA content: Feulgen absorbance cytophotometry and flow cytometry (FCM). While FCM is, with good reasons, increasingly popular among plant scientists, absorbance-cytophotometric techniques lose ground. This results in a narrowing of the methodological repertoire, which is neither desirable nor beneficial. Both approaches have their advantages, but static cytophotometry seems to pose more instrumental difficulties and material-based problems than FCM, so that Feulgen-based data in the literature are often less reliable than one would expect. Scope The purpose of this article is to present a selective overview of the field of nuclear DNA content measurement, and C-values in particular, with a focus on the technical difficulties imposed by the characteristics of the biological material and with some comments on the photometrical aspects of the work. For over 20 years it has been known that plant polyphenols cause problems in Feulgen DNA cytophotometry, since they act as major staining inhibitors leading to unreliable results. However, little information is available about the chemical classes of plant metabolites capable of DNA staining interference and the mechanisms of their inhibition. Plant slimes are another source of concern. Conclusions In FCM research to uncover the effects of secondary metabolites on measurement results has begun only recently. In particular, the analysis of intraspecific genome size variation demands a stringent methodology which accounts for inhibitors. FCM tests for inhibitory effects of endogenous metabolites should become obligatory. The use of dry seeds for harvesting embryo and endosperm nuclei for FCM and Feulgen densitometry may often provide a means of circumventing staining inhibitors. The importance of internal standardization is highlighted. Our goal is a better understanding of phytochemical/cytochemical interactions in plant DNA photometry for the benefit of an ever-growing list of plant genome sizes. PMID:17951594

  20. Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial.

    PubMed

    Roger, Simon D; Gaillard, Carlo A; Bock, Andreas H; Carrera, Fernando; Eckardt, Kai-Uwe; Van Wyck, David B; Cronin, Maureen; Meier, Yvonne; Larroque, Sylvain; Macdougall, Iain C

    2017-09-01

    The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open-label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient-years was performed to assess the safety of FCM versus oral iron over an extended period. The safety population included 616 patients. The incidence of one or more adverse events was 91.0, 100.0 and 105.0 per 100 patient-years in the high ferritin FCM, low ferritin FCM and oral iron groups, respectively. The incidence of adverse events with a suspected relation to study drug was 15.9, 17.8 and 36.7 per 100 patient-years in the three groups; for serious adverse events, the incidence was 28.2, 27.9 and 24.3 per 100 patient-years. The incidence of cardiac disorders and infections was similar between groups. At least one ferritin level ≥800 µg/L occurred in 26.6% of high ferritin FCM patients, with no associated increase in adverse events. No patient with ferritin ≥800 µg/L discontinued the study drug due to adverse events. Estimated glomerular filtration rate remained the stable in all groups. These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA.

  1. A budget impact analysis of parenteral iron treatments for iron deficiency anemia in the UK: reduced resource utilization with iron isomaltoside 1000.

    PubMed

    Pollock, Richard F; Muduma, Gorden

    2017-01-01

    The reported prevalence of iron deficiency anemia (IDA) varies widely but estimates suggest that 3% of men and 8% of women have IDA in the UK. Parenteral iron is indicated for patients intolerant or unresponsive to oral iron or requiring rapid iron replenishment. This study evaluated differences in the cost of treating these patients with iron isomaltoside (Monofer ® , IIM) relative to other intravenous iron formulations. A budget impact model was developed to evaluate the cost of using IIM relative to ferric carboxymaltose (Ferinject ® , FCM), low molecular weight iron dextran (Cosmofer ® , LMWID), and iron sucrose (Venofer ® , IS) in patients with IDA. To establish iron need, iron deficits were modeled using a simplified dosing table. The base case analysis was conducted over 1 year in patients with IDA with mean bodyweight of 82.4 kg (SD 22.5 kg) and hemoglobin levels of 9.99 g/dL (SD 1.03 g/dL) based on an analysis of patient characteristics in IDA trials. Costs were modeled using UK health care resource groups. Using IIM required 1.3 infusions to correct the mean iron deficit, compared with 1.3, 1.8, and 7.7 with LMWID, FCM, and IS, respectively. Patients using IIM required multiple infusions in 35% of cases, compared with 35%, 77%, and 100% of patients with LMWID, FCM, and IS, respectively. Total costs were estimated to be GBP 451 per patient with IIM or LMWID, relative to GBP 594 with FCM (a GBP 143 or 24% saving with IIM) or GBP 2,600 with IS (a GBP 2,149 or 83% saving with IIM). Using IIM or LMWID in place of FCM or IS resulted in a marked reduction in the number of infusions required to correct iron deficits in patients with IDA. The reduction in infusions was accompanied by substantial reductions in cost relative to FCM and IS over 1 year.

  2. Determining open cluster membership. A Bayesian framework for quantitative member classification

    NASA Astrophysics Data System (ADS)

    Stott, Jonathan J.

    2018-01-01

    Aims: My goal is to develop a quantitative algorithm for assessing open cluster membership probabilities. The algorithm is designed to work with single-epoch observations. In its simplest form, only one set of program images and one set of reference images are required. Methods: The algorithm is based on a two-stage joint astrometric and photometric assessment of cluster membership probabilities. The probabilities were computed within a Bayesian framework using any available prior information. Where possible, the algorithm emphasizes simplicity over mathematical sophistication. Results: The algorithm was implemented and tested against three observational fields using published survey data. M 67 and NGC 654 were selected as cluster examples while a third, cluster-free, field was used for the final test data set. The algorithm shows good quantitative agreement with the existing surveys and has a false-positive rate significantly lower than the astrometric or photometric methods used individually.

  3. Random Walk Quantum Clustering Algorithm Based on Space

    NASA Astrophysics Data System (ADS)

    Xiao, Shufen; Dong, Yumin; Ma, Hongyang

    2018-01-01

    In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.

  4. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  5. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained clustering, in which some partial information about item assignments or other components of the resulting output are already known and must be accommodated by the solution. Some algorithms seek a partition of the data set into distinct clusters, while others build a hierarchy of nested clusters that can capture taxonomic relationships. Some produce a single optimal solution, while others construct a probabilistic model of cluster membership. More formally, clustering algorithms operate on a data set X composed of items represented by one or more features (dimensions). These could include physical location, such as right ascension and declination, as well as other properties such as brightness, color, temporal change, size, texture, and so on. Let D be the number of dimensions used to represent each item, xi ∈ RD. The clustering goal is to produce an organization P of the items in X that optimizes an objective function f : P -> R, which quantifies the quality of solution P. Often f is defined so as to maximize similarity within a cluster and minimize similarity between clusters. To that end, many algorithms make use of a measure d : X x X -> R of the distance between two items. A partitioning algorithm produces a set of clusters P = {c1, . . . , ck} such that the clusters are nonoverlapping (c_i intersected with c_j = empty set, i != j) subsets of the data set (Union_i c_i=X). Hierarchical algorithms produce a series of partitions P = {p1, . . . , pn }. For a complete hierarchy, the number of partitions n’= n, the number of items in the data set; the top partition is a single cluster containing all items, and the bottom partition contains n clusters, each containing a single item. For model-based clustering, each cluster c_j is represented by a model m_j , such as the cluster center or a Gaussian distribution. The wide array of available clustering algorithms may seem bewildering, and covering all of them is beyond the scope of this chapter. Choosing among them for a particular application involves considerations of the kind of data being analyzed, algorithm runtime efficiency, and how much prior knowledge is available about the problem domain, which can dictate the nature of clusters sought. Fundamentally, the clustering method and its representations of clusters carries with it a definition of what a cluster is, and it is important that this be aligned with the analysis goals for the problem at hand. In this chapter, I emphasize this point by identifying for each algorithm the cluster representation as a model, m_j , even for algorithms that are not typically thought of as creating a “model.” This chapter surveys a basic collection of clustering methods useful to any practitioner who is interested in applying clustering to a new data set. The algorithms include k-means (Section 25.2), EM (Section 25.3), agglomerative (Section 25.4), and spectral (Section 25.5) clustering, with side mentions of variants such as kernel k-means and divisive clustering. The chapter also discusses each algorithm’s strengths and limitations and provides pointers to additional in-depth reading for each subject. Section 25.6 discusses methods for incorporating domain knowledge into the clustering process. This chapter concludes with a brief survey of interesting applications of clustering methods to astronomy data (Section 25.7). The chapter begins with k-means because it is both generally accessible and so widely used that understanding it can be considered a necessary prerequisite for further work in the field. EM can be viewed as a more sophisticated version of k-means that uses a generative model for each cluster and probabilistic item assignments. Agglomerative clustering is the most basic form of hierarchical clustering and provides a basis for further exploration of algorithms in that vein. Spectral clustering permits a departure from feature-vector-based clustering and can operate on data sets instead represented as affinity, or similarity matrices—cases in which only pairwise information is known. The list of algorithms covered in this chapter is representative of those most commonly in use, but it is by no means comprehensive. There is an extensive collection of existing books on clustering that provide additional background and depth. Three early books that remain useful today are Anderberg’s Cluster Analysis for Applications [3], Hartigan’s Clustering Algorithms [25], and Gordon’s Classification [22]. The latter covers basics on similarity measures, partitioning and hierarchical algorithms, fuzzy clustering, overlapping clustering, conceptual clustering, validations methods, and visualization or data reduction techniques such as principal components analysis (PCA),multidimensional scaling, and self-organizing maps. More recently, Jain et al. provided a useful and informative survey [27] of a variety of different clustering algorithms, including those mentioned here as well as fuzzy, graph-theoretic, and evolutionary clustering. Everitt’s Cluster Analysis [19] provides a modern overview of algorithms, similarity measures, and evaluation methods.

  6. Mapping cell populations in flow cytometry data for cross‐sample comparison using the Friedman–Rafsky test statistic as a distance measure

    PubMed Central

    Hsiao, Chiaowen; Liu, Mengya; Stanton, Rick; McGee, Monnie; Qian, Yu

    2015-01-01

    Abstract Flow cytometry (FCM) is a fluorescence‐based single‐cell experimental technology that is routinely applied in biomedical research for identifying cellular biomarkers of normal physiological responses and abnormal disease states. While many computational methods have been developed that focus on identifying cell populations in individual FCM samples, very few have addressed how the identified cell populations can be matched across samples for comparative analysis. This article presents FlowMap‐FR, a novel method for cell population mapping across FCM samples. FlowMap‐FR is based on the Friedman–Rafsky nonparametric test statistic (FR statistic), which quantifies the equivalence of multivariate distributions. As applied to FCM data by FlowMap‐FR, the FR statistic objectively quantifies the similarity between cell populations based on the shapes, sizes, and positions of fluorescence data distributions in the multidimensional feature space. To test and evaluate the performance of FlowMap‐FR, we simulated the kinds of biological and technical sample variations that are commonly observed in FCM data. The results show that FlowMap‐FR is able to effectively identify equivalent cell populations between samples under scenarios of proportion differences and modest position shifts. As a statistical test, FlowMap‐FR can be used to determine whether the expression of a cellular marker is statistically different between two cell populations, suggesting candidates for new cellular phenotypes by providing an objective statistical measure. In addition, FlowMap‐FR can indicate situations in which inappropriate splitting or merging of cell populations has occurred during gating procedures. We compared the FR statistic with the symmetric version of Kullback–Leibler divergence measure used in a previous population matching method with both simulated and real data. The FR statistic outperforms the symmetric version of KL‐distance in distinguishing equivalent from nonequivalent cell populations. FlowMap‐FR was also employed as a distance metric to match cell populations delineated by manual gating across 30 FCM samples from a benchmark FlowCAP data set. An F‐measure of 0.88 was obtained, indicating high precision and recall of the FR‐based population matching results. FlowMap‐FR has been implemented as a standalone R/Bioconductor package so that it can be easily incorporated into current FCM data analytical workflows. © 2015 International Society for Advancement of Cytometry PMID:26274018

  7. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure.

    PubMed

    Hsiao, Chiaowen; Liu, Mengya; Stanton, Rick; McGee, Monnie; Qian, Yu; Scheuermann, Richard H

    2016-01-01

    Flow cytometry (FCM) is a fluorescence-based single-cell experimental technology that is routinely applied in biomedical research for identifying cellular biomarkers of normal physiological responses and abnormal disease states. While many computational methods have been developed that focus on identifying cell populations in individual FCM samples, very few have addressed how the identified cell populations can be matched across samples for comparative analysis. This article presents FlowMap-FR, a novel method for cell population mapping across FCM samples. FlowMap-FR is based on the Friedman-Rafsky nonparametric test statistic (FR statistic), which quantifies the equivalence of multivariate distributions. As applied to FCM data by FlowMap-FR, the FR statistic objectively quantifies the similarity between cell populations based on the shapes, sizes, and positions of fluorescence data distributions in the multidimensional feature space. To test and evaluate the performance of FlowMap-FR, we simulated the kinds of biological and technical sample variations that are commonly observed in FCM data. The results show that FlowMap-FR is able to effectively identify equivalent cell populations between samples under scenarios of proportion differences and modest position shifts. As a statistical test, FlowMap-FR can be used to determine whether the expression of a cellular marker is statistically different between two cell populations, suggesting candidates for new cellular phenotypes by providing an objective statistical measure. In addition, FlowMap-FR can indicate situations in which inappropriate splitting or merging of cell populations has occurred during gating procedures. We compared the FR statistic with the symmetric version of Kullback-Leibler divergence measure used in a previous population matching method with both simulated and real data. The FR statistic outperforms the symmetric version of KL-distance in distinguishing equivalent from nonequivalent cell populations. FlowMap-FR was also employed as a distance metric to match cell populations delineated by manual gating across 30 FCM samples from a benchmark FlowCAP data set. An F-measure of 0.88 was obtained, indicating high precision and recall of the FR-based population matching results. FlowMap-FR has been implemented as a standalone R/Bioconductor package so that it can be easily incorporated into current FCM data analytical workflows. © The Authors. Published by Wiley Periodicals, Inc. on behalf of ISAC.

  8. Identification of cryovolcanism on Titan using fuzzy cognitive maps

    NASA Astrophysics Data System (ADS)

    Furfaro, Roberto; Kargel, Jeffrey S.; Lunine, Jonathan I.; Fink, Wolfgang; Bishop, Michael P.

    2010-04-01

    Future planetary exploration of Titan will require higher degrees of on-board automation, including autonomous determination of sites where the probability of significant scientific findings is the highest. In this paper, a novel Artificial Intelligence (AI) method for the identification and interpretation of sites that yield the highest potential of cryovolcanic activity is presented. We introduce the theory of fuzzy cognitive maps (FCM) as a tool for the analysis of remotely collected data in planetary exploration. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction of planetary scientists and AI experts. As an application example, we show how FCM can be employed to solve the challenging problem of recognizing cryovolcanism from Synthetic Aperture Radar (SAR) Cassini data. The fuzzy cognitive map is constructed using what is currently known about cryovolcanism on Titan and relies on geological mapping performed by planetary scientists to interpret different locales as cryovolcanic in nature. The system is not conceived to replace the human scientific interpretation, but to enhance the scientists' ability to deal with large amounts of data, and it is a first step in designing AI systems that will be able, in the future, to autonomously make decisions in situations where human analysis and interpretation is not readily available or could not be sufficiently timely. The proposed FCM is tested on Cassini radar data to show the effectiveness of the system in reaching conclusions put forward by human experts and published in the literature. Four tests are performed using the Ta SAR image (October 2004 fly-by). Two regions (i.e. Ganesa Macula and the lobate high backscattering region East of Ganesa) are interpreted by the designed FCM as exhibiting cryovolcanism in agreement with the initial interpretation of the regions by Stofan et al. (2006). Importantly, the proposed FCM is shown to be flexible and adaptive as new data and knowledge are acquired during the course of exploration. Subsequently, the FCM has been modified to include topographic information derived from SAR stereo data. With this additional information, the map concludes that Ganesa Macula is not a cryovolcanic region. In conclusion, the FCM methodology is shown to be a critical and powerful component of future autonomous robotic spacecraft (e.g., orbiter(s), balloon(s), surface/lake lander(s), rover(s)) that will be deployed for the exploration of Titan.

  9. Contributions to "k"-Means Clustering and Regression via Classification Algorithms

    ERIC Educational Resources Information Center

    Salman, Raied

    2012-01-01

    The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…

  10. Multi scales based sparse matrix spectral clustering image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  11. An AK-LDMeans algorithm based on image clustering

    NASA Astrophysics Data System (ADS)

    Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan

    2018-03-01

    Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.

  12. Hierarchical trie packet classification algorithm based on expectation-maximization clustering.

    PubMed

    Bi, Xia-An; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

  13. Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.

    PubMed

    Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin

    2018-05-03

    Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.

  14. A fuzzy clustering algorithm to detect planar and quadric shapes

    NASA Technical Reports Server (NTRS)

    Krishnapuram, Raghu; Frigui, Hichem; Nasraoui, Olfa

    1992-01-01

    In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and it overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications.

  15. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    PubMed Central

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  16. A fast density-based clustering algorithm for real-time Internet of Things stream.

    PubMed

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.

  17. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.

  18. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  19. A clustering algorithm for determining community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  20. Investigating the Potential of the Flipped Classroom Model in K-12 Mathematics Teaching and Learning

    ERIC Educational Resources Information Center

    Katsa, Maria; Sergis, Stylianos; Sampson, Demetrios G.

    2016-01-01

    The Flipped Classroom model (FCM) is a promising blended educational innovation aiming to improve the teaching and learning practice in various subject domains and educational levels. However, despite this encouraging evidence, research on the explicit benefits of the FCM on K-12 Mathematics education is still scarce and, in some cases, even…

  1. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  2. A new clustering strategy

    NASA Astrophysics Data System (ADS)

    Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing

    2007-04-01

    On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.

  3. Parallel Clustering Algorithm for Large-Scale Biological Data Sets

    PubMed Central

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Backgrounds Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Methods Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. Result A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies. PMID:24705246

  4. Measuring Constraint-Set Utility for Partitional Clustering Algorithms

    NASA Technical Reports Server (NTRS)

    Davidson, Ian; Wagstaff, Kiri L.; Basu, Sugato

    2006-01-01

    Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms.

  5. An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing

    PubMed Central

    Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing

    2014-01-01

    With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971

  6. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    PubMed

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  7. Efficient Record Linkage Algorithms Using Complete Linkage Clustering

    PubMed Central

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604

  8. A comparative study of DIGNET, average, complete, single hierarchical and k-means clustering algorithms in 2D face image recognition

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

    2014-06-01

    The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.

  9. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink.

    PubMed

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-04-26

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  10. Efficient implementation of parallel three-dimensional FFT on clusters of PCs

    NASA Astrophysics Data System (ADS)

    Takahashi, Daisuke

    2003-05-01

    In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.

  11. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation.

    PubMed

    Blessy, S A Praylin Selva; Sulochana, C Helen

    2015-01-01

    Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.

  12. Adaptive density trajectory cluster based on time and space distance

    NASA Astrophysics Data System (ADS)

    Liu, Fagui; Zhang, Zhijie

    2017-10-01

    There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.

  13. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  14. The effect of different distance measures in detecting outliers using clustering-based algorithm for circular regression model

    NASA Astrophysics Data System (ADS)

    Di, Nur Faraidah Muhammad; Satari, Siti Zanariah

    2017-05-01

    Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.

  15. A Fast Implementation of the ISOCLUS Algorithm

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline

    2003-01-01

    Unsupervised clustering is a fundamental tool in numerous image processing and remote sensing applications. For example, unsupervised clustering is often used to obtain vegetation maps of an area of interest. This approach is useful when reliable training data are either scarce or expensive, and when relatively little a priori information about the data is available. Unsupervised clustering methods play a significant role in the pursuit of unsupervised classification. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points (or samples) in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute a set of cluster centers in d-space. Although there is no specific optimization criterion, the algorithm is similar in spirit to the well known k-means clustering method in which the objective is to minimize the average squared distance of each point to its nearest center, called the average distortion. One significant feature of ISOCLUS over k-means is that clusters may be merged or split, and so the final number of clusters may be different from the number k supplied as part of the input. This algorithm will be described in later in this paper. The ISOCLUS algorithm can run very slowly, particularly on large data sets. Given its wide use in remote sensing, its efficient computation is an important goal. We have developed a fast implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm, the filtering algorithm, by Kanungo et al.. They showed that, by storing the data in a kd-tree, it was possible to significantly reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm. For technical reasons, which are explained later, it is necessary to make a minor modification to the ISOCLUS specification. We provide empirical evidence, on both synthetic and Landsat image data sets, that our algorithm's performance is essentially the same as that of ISOCLUS, but with significantly lower running times. We show that our algorithm runs from 3 to 30 times faster than a straightforward implementation of ISOCLUS. Our adaptation of the filtering algorithm involves the efficient computation of a number of cluster statistics that are needed for ISOCLUS, but not for k-means.

  16. Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.

  17. Accurate Grid-based Clustering Algorithm with Diagonal Grid Searching and Merging

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Ye, Chengcheng; Zhu, Erzhou

    2017-09-01

    Due to the advent of big data, data mining technology has attracted more and more attentions. As an important data analysis method, grid clustering algorithm is fast but with relatively lower accuracy. This paper presents an improved clustering algorithm combined with grid and density parameters. The algorithm first divides the data space into the valid meshes and invalid meshes through grid parameters. Secondly, from the starting point located at the first point of the diagonal of the grids, the algorithm takes the direction of “horizontal right, vertical down” to merge the valid meshes. Furthermore, by the boundary grid processing, the invalid grids are searched and merged when the adjacent left, above, and diagonal-direction grids are all the valid ones. By doing this, the accuracy of clustering is improved. The experimental results have shown that the proposed algorithm is accuracy and relatively faster when compared with some popularly used algorithms.

  18. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    NASA Astrophysics Data System (ADS)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  19. Robust MST-Based Clustering Algorithm.

    PubMed

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  20. A Clustering Algorithm for Ecological Stream Segment Identification from Spatially Extensive Digital Databases

    NASA Astrophysics Data System (ADS)

    Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.

    2005-05-01

    Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.

  1. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.

    PubMed

    Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.

  2. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to Simulated Food Processing Treatments, Determined Using Fluorescence-Activated Cell Sorting and Plate Counting▿

    PubMed Central

    Kennedy, Deirdre; Cronin, Ultan P.; Wilkinson, Martin G.

    2011-01-01

    Three common food pathogenic microorganisms were exposed to treatments simulating those used in food processing. Treated cell suspensions were then analyzed for reduction in growth by plate counting. Flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) were carried out on treated cells stained for membrane integrity (Syto 9/propidium iodide) or the presence of membrane potential [DiOC2(3)]. For each microbial species, representative cells from various subpopulations detected by FCM were sorted onto selective and nonselective agar and evaluated for growth and recovery rates. In general, treatments giving rise to the highest reductions in counts also had the greatest effects on cell membrane integrity and membrane potential. Overall, treatments that impacted cell membrane permeability did not necessarily have a comparable effect on membrane potential. In addition, some bacterial species with extensively damaged membranes, as detected by FCM, appeared to be able to replicate and grow after sorting. Growth of sorted cells from various subpopulations was not always reflected in plate counts, and in some cases the staining protocol may have rendered cells unculturable. Optimized FCM protocols generated a greater insight into the extent of the heterogeneous bacterial population responses to food control measures than did plate counts. This study underlined the requirement to use FACS to relate various cytometric profiles generated by various staining protocols with the ability of cells to grow on microbial agar plates. Such information is a prerequisite for more-widespread adoption of FCM as a routine microbiological analytical technique. PMID:21602370

  3. Monitoring stress in captive and free-ranging African wild dogs (Lycaon pictus) using faecal glucocorticoid metabolites.

    PubMed

    Van der Weyde, L K; Martin, G B; Paris, M C J

    2016-01-15

    An understanding of stress physiology is important for species management because high levels of stress can hamper reproduction and affect an individual's ability to cope with threats to their survival, such as disease and human-wildlife conflict. A commonly used indicator of stress, faecal concentrations of cortisol metabolites (FCM), can be used to assess the impact of social, biological and environmental factors. Measurements of FCM are particularly valuable for endangered species that are logistically challenging to study and where non-invasive techniques are preferred. As the second most endangered canid in Africa, the African wild dog (Lycaon pictus) has been the focus of considerable conservation research, yet there is still little understanding of factors associated with stress, in either captive or free-ranging populations. The present study therefore aimed to determine whether stress levels differ between captive and free-ranging populations, and to detect social, biological and environmental factors that are stressful in these populations. Faecal samples were collected from 20 captive and 62 free-ranging animals. Within free-ranging populations, the sexes differed significantly, but there was no effect of social status, age or breeding period for either sex. Captive females had higher FCM concentrations than free-ranging females. In captive populations, FCM concentrations differed among zoos and with reproductive status in females, but were not related to age class or group-housing structure. In conclusion, FCM is a useful indicator of stress and should be considered an integrative aspect of management, for both in situ and ex situ African wild dog populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery.

    PubMed

    Bennàssar, A; Vilata, A; Puig, S; Malvehy, J

    2014-02-01

    Ex vivo fluorescence confocal microscopy (FCM) enables real-time imaging of skin morphology directly in freshly excised tissue. FCM displays wide field-of-view mosaics with cellular resolution, thus enabling a rapid bedside pathology. An application of interest is rapid detection of residual basal cell carcinoma (BCC) in skin excisions during Mohs surgery. We sought to evaluate the sensitivity and specificity of ex vivo imaging with FCM for the detection of residual BCC in Mohs tissue excisions, and to calculate the time invested up to the diagnosis for both FCM and frozen sections. Eighty consecutive BCCs were prospectively collected and the margins scanned with ex vivo FCM, including excisions with and without residual BCC of all major subtypes. Each mosaic was divided into two or four, resulting in 480 submosaics for study. Every confocal submosaic was assessed for the presence or absence of BCC and compared with standard frozen sections as the gold standard. Furthermore, the time spent for each technique was calculated and compared. The overall sensitivity and specificity of detecting residual BCC were 88% and 99%, respectively. Moreover, the new technique reduced by almost two-thirds the time invested when compared with the processing of a frozen section (P < 0·001). The results demonstrate the feasibility of confocal mosaicing microscopy in fresh tissue for rapid surgical pathology, potentially to expedite and guide Mohs surgery with high accuracy. This observation is an important step towards the goal of using real-time surgical pathology for skin tumours. © 2013 British Association of Dermatologists.

  5. Integrating bioassays and analytical chemistry as an improved approach to support safety assessment of food contact materials.

    PubMed

    Veyrand, Julien; Marin-Kuan, Maricel; Bezencon, Claudine; Frank, Nancy; Guérin, Violaine; Koster, Sander; Latado, Hélia; Mollergues, Julie; Patin, Amaury; Piguet, Dominique; Serrant, Patrick; Varela, Jesus; Schilter, Benoît

    2017-10-01

    Food contact materials (FCM) contain chemicals which can migrate into food and result in human exposure. Although it is mandatory to ensure that migration does not endanger human health, there is still no consensus on how to pragmatically assess the safety of FCM since traditional approaches would require extensive toxicological and analytical testing which are expensive and time consuming. Recently, the combination of bioassays, analytical chemistry and risk assessment has been promoted as a new paradigm to identify toxicologically relevant molecules and address safety issues. However, there has been debate on the actual value of bioassays in that framework. In the present work, a FCM anticipated to release the endocrine active chemical 4-nonyphenol (4NP) was used as a model. In a migration study, the leaching of 4NP was confirmed by LC-MS/MS and GC-MS. This was correlated with an increase in both estrogenic and anti-androgenic activities as measured with bioassays. A standard risk assessment indicated that according to the food intake scenario applied, the level of 4NP measured was lower, close or slightly above the acceptable daily intake. Altogether these results show that bioassays could reveal the presence of an endocrine active chemical in a real-case FCM migration study. The levels reported were relevant for safety assessment. In addition, this work also highlighted that bioactivity measured in migrate does not necessarily represent a safety issue. In conclusion, together with analytics, bioassays contribute to identify toxicologically relevant molecules leaching from FCM and enable improved safety assessment.

  6. Intravenous Iron Administration and Hypophosphatemia in Clinical Practice

    PubMed Central

    Hardy, S.; Vandemergel, X.

    2015-01-01

    Introduction. Parenteral iron formulations are frequently used to correct iron deficiency anemia (IDA) and iron deficiency (ID). Intravenous formulation efficacy on ferritin and hemoglobin level improvement is greater than that of oral formulations while they are associated with lower gastrointestinal side effects. Ferric carboxymaltose- (FCM-) related hypophosphatemia is frequent and appears without clinical significance. The aim of this study was to assess the prevalence, duration, and potential consequences of hypophosphatemia after iron injection. Patients and Methods. The medical records of all patients who underwent parenteral iron injection between 2012 and 2014 were retrospectively reviewed. Pre- and postinjection hemoglobin, ferritin, plasma phosphate, creatinine, and vitamin D levels were assessed. Patients who developed moderate (range: 0.32–0.80 mmol/L) or severe (<0.32 mmol/L) hypophosphatemia were questioned for symptoms. Results. During the study period, 234 patients received iron preparations but 104 were excluded because of missing data. Among the 130 patients included, 52 received iron sucrose (FS) and 78 FCM formulations. Among FS-treated patients, 22% developed hypophosphatemia versus 51% of FCM-treated patients, including 13% who developed profound hypophosphatemia. Hypophosphatemia severity correlated with the dose of FCM (p = 0.04) but not with the initial ferritin, hemoglobin, or vitamin D level. Mean hypophosphatemia duration was 6 months. No immediate clinical consequence was found except for persistent fatigue despite anemia correction in some patients. Conclusions. Hypophosphatemia is frequent after parenteral FCM injection and may have clinical consequences, including persistent fatigue. Further studies of chronic hypophosphatemia long-term consequences, especially bone assessments, are needed. PMID:26000018

  7. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    PubMed

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the 'stress of subordination' and the 'stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  8. Phthalates and food-contact materials: enforcing the 2008 European Union plastics legislation.

    PubMed

    Petersen, J H; Jensen, L K

    2010-11-01

    The migration of phthalates into foodstuffs from food-contact materials (FCM) is a well-known source of food contamination. In 2005, the European Food Safety Authority finalized its risk assessment for several of the classical phthalate plasticizers. In their risk management procedure the European Commission transformed the tolerable daily intakes established by the Authority into legislative limits for phthalates in both plastic and food simulants, while taking exposure from other sources into consideration. These limits have been into force since 1 July 2008. A detailed interpretation of the regulation of these substances was agreed upon in the European network of FCM reference laboratories. This paper reports results from a Danish control campaign of samples collected by official food inspectors and analysed by a newly validated analytical method run under accreditation. Samples were from FCM producers, FCM importers and importers of packed foodstuffs from third-party countries. Products containing phthalates above the current limits were found in several categories of FCM: conveyor belts (six of six), lids from packed foodstuffs in glasses (eight of 28), tubes for liquid foodstuffs (four of five) and gloves (five of 14). More than 20% of the samples analysed contained dibutylphthalate (DBP) or di-(2-ethylhexyl)phthalate (DEHP) above the compositional limits of 0.05% and 0.1%, respectively. Analysis of residual phthalates in metal lid gaskets instead of analysis of phthalates in the food when controlling foodstuffs packed outside the European Union proved to be an efficient and simple control method. All findings of phthalates were associated with the use of plasticized polyvinylchloride (PVC).

  9. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    NASA Astrophysics Data System (ADS)

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the `stress of subordination' and the `stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  10. Cumulative asbestos exposure for US automobile mechanics involved in brake repair (circa 1950s-2000).

    PubMed

    Finley, Brent L; Richter, Richard O; Mowat, Fionna S; Mlynarek, Steve; Paustenbach, Dennis J; Warmerdam, John M; Sheehan, Patrick J

    2007-11-01

    We analyzed cumulative lifetime exposure to chrysotile asbestos experienced by brake mechanics in the US during the period 1950-2000. Using Monte Carlo methods, cumulative exposures were calculated using the distribution of 8-h time-weighted average exposure concentrations for brake mechanics and the distribution of job tenure data for automobile mechanics. The median estimated cumulative exposures for these mechanics, as predicted by three probabilistic models, ranged from 0.16 to 0.41 fibers per cubic centimeter (f/cm(3)) year for facilities with no dust-control procedures (1970s), and from 0.010 to 0.012 f/cm(3) year for those employing engineering controls (1980s). Upper-bound (95%) estimates for the 1970s and 1980s were 1.96 to 2.79 and 0.07-0.10 f/cm(3) year, respectively. These estimates for US brake mechanics are consistent with, but generally slightly lower than, those reported for European mechanics. The values are all substantially lower than the cumulative exposure of 4.5 f/cm(3) year associated with occupational exposure to 0.1 f/cm(3) of asbestos for 45 years that is currently permitted under the current occupational exposure limits in the US. Cumulative exposures were usually about 100- to 1,000-fold less than those of other occupational groups with asbestos exposure for similar time periods. The cumulative lifetime exposure estimates presented here, combined with the negative epidemiology data for brake mechanics, could be used to refine the risk assessments for chrysotile-exposed populations.

  11. Hierarchical trie packet classification algorithm based on expectation-maximization clustering

    PubMed Central

    Bi, Xia-an; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476

  12. A fast parallel clustering algorithm for molecular simulation trajectories.

    PubMed

    Zhao, Yutong; Sheong, Fu Kit; Sun, Jian; Sander, Pedro; Huang, Xuhui

    2013-01-15

    We implemented a GPU-powered parallel k-centers algorithm to perform clustering on the conformations of molecular dynamics (MD) simulations. The algorithm is up to two orders of magnitude faster than the CPU implementation. We tested our algorithm on four protein MD simulation datasets ranging from the small Alanine Dipeptide to a 370-residue Maltose Binding Protein (MBP). It is capable of grouping 250,000 conformations of the MBP into 4000 clusters within 40 seconds. To achieve this, we effectively parallelized the code on the GPU and utilize the triangle inequality of metric spaces. Furthermore, the algorithm's running time is linear with respect to the number of cluster centers. In addition, we found the triangle inequality to be less effective in higher dimensions and provide a mathematical rationale. Finally, using Alanine Dipeptide as an example, we show a strong correlation between cluster populations resulting from the k-centers algorithm and the underlying density. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  13. Cell-production rates estimated by the use of vincristine sulphate and flow cytometry. I. An in vitro study using murine tumour cell lines.

    PubMed

    Barfod, I H; Barfod, N M

    1980-01-01

    A method for the evaluation of cell-production rates is described which combines flow cytometry (FCM) and the stathmokinetic method. By means of FCM it is possible to estimate the distribution of cells with G1, S and (G2 + M) DNA content in a population. As this method gives the relative (G2 + M) DNA content of cells within the cell cycle, it may be possible to evaluate cell-production rates by this technique. In the present study it was found that administration of a metaphase-arresting (stathmokinetic) agent, vincristine sulphate (VS), to asynchronous cell populations of three different murine tumour cell lines in vitro increased the peak representing cells with (G2 + M) DNA content as the number of mitotic (M) cells increased during the period of treatment. The accumulation of mitotic cells was determined by cell counts on smears under the microscope and compared with increase in the (G2 + M) DNA peak measured by FCM as a function of time after the administration of VS. Good agreement was obtained between the cell-production rates as estimated by FCM and by mitotic counts in all three cell lines investigated.

  14. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE PAGES

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  15. Comparison between Flow Cytometry and Traditional Culture Methods for Efficacy Assessment of Six Disinfectant Agents against Nosocomial Bacterial Species

    PubMed Central

    Massicotte, Richard; Mafu, Akier A.; Ahmad, Darakhshan; Deshaies, Francis; Pichette, Gilbert; Belhumeur, Pierre

    2017-01-01

    The present study was undertaken to compare the use of flow cytometry (FCM) and traditional culture methods for efficacy assessment of six disinfectants used in Quebec hospitals including: two quaternary ammonium-based, two activated hydrogen peroxide-based, one phenol-based, and one sodium hypochlorite-based. Four nosocomial bacterial species, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Vancomycin-resistant Enterococci faecalis, were exposed to minimum lethal concentrations (MLCs) and sublethal concentrations (1/2 MLCs) of disinfectants under study. The results showed a strong correlation between the two techniques for the presence of dead and live cell populations, as well as, evidence of injured populations with the FCM. The only exception was observed with sodium hypochlorite at higher concentrations where fluorescence was diminished and underestimating dead cell population. The results also showed that FCM can replace traditional microbiological methods to study disinfectant efficacy on bacteria. Furthermore, FCM profiles for E. coli and E. faecalis cells exposed to sublethal concentrations exhibited distinct populations of injured cells, opening a new aspect for future research and investigation to elucidate the role of injured, cultural/noncuturable/resuscitable cell populations in infection control. PMID:28217115

  16. A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.

    PubMed

    Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong

    2015-12-01

    Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.

  17. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  18. A multi-populations multi-strategies differential evolution algorithm for structural optimization of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua

    2016-11-01

    Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.

  19. Response to "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra".

    PubMed

    Griss, Johannes; Perez-Riverol, Yasset; The, Matthew; Käll, Lukas; Vizcaíno, Juan Antonio

    2018-05-04

    In the recent benchmarking article entitled "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra", Rieder et al. compared several different approaches to cluster MS/MS spectra. While we certainly recognize the value of the manuscript, here, we report some shortcomings detected in the original analyses. For most analyses, the authors clustered only single MS/MS runs. In one of the reported analyses, three MS/MS runs were processed together, which already led to computational performance issues in many of the tested approaches. This fact highlights the difficulties of using many of the tested algorithms on the nowadays produced average proteomics data sets. Second, the authors only processed identified spectra when merging MS runs. Thereby, all unidentified spectra that are of lower quality were already removed from the data set and could not influence the clustering results. Next, we found that the authors did not analyze the effect of chimeric spectra on the clustering results. In our analysis, we found that 3% of the spectra in the used data sets were chimeric, and this had marked effects on the behavior of the different clustering algorithms tested. Finally, the authors' choice to evaluate the MS-Cluster and spectra-cluster algorithms using a precursor tolerance of 5 Da for high-resolution Orbitrap data only was, in our opinion, not adequate to assess the performance of MS/MS clustering approaches.

  20. A Novel Artificial Bee Colony Based Clustering Algorithm for Categorical Data

    PubMed Central

    2015-01-01

    Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data. PMID:25993469

  1. A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fung, Richard Y. K.

    2018-02-01

    This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.

  2. A novel artificial bee colony based clustering algorithm for categorical data.

    PubMed

    Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang

    2015-01-01

    Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.

  3. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    PubMed Central

    Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong

    2013-01-01

    This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875

  4. The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    PubMed Central

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148

  5. A genetic graph-based approach for partitional clustering.

    PubMed

    Menéndez, Héctor D; Barrero, David F; Camacho, David

    2014-05-01

    Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments.

  6. Exploratory Item Classification Via Spectral Graph Clustering

    PubMed Central

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2017-01-01

    Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476

  7. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    PubMed

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  8. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  9. Machine-learned cluster identification in high-dimensional data.

    PubMed

    Ultsch, Alfred; Lötsch, Jörn

    2017-02-01

    High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a cluster structure in homogenously distributed data or assign data points to incorrect clusters. We analyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM). Data sets with different degrees of complexity were submitted to ESOM analysis with large numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the distance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix. Clustering results were compared with those provided by classical common cluster algorithms including single linkage, Ward and k-means. Ward clustering imposed cluster structures on cluster-less "golf ball", "cuboid" and "S-shaped" data sets that contained no structure at all (random data). Ward clustering also imposed structures on permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical data truly containing subgroups. It was always correct in cluster structure identification in further canonical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely to perform erroneously on high dimensional biomedical data. The present analyses emphasized that generally established classical hierarchical clustering algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a viable, unbiased method to identify true clusters in the high-dimensional space of complex data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    PubMed

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink

    PubMed Central

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-01-01

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434

  12. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.

    PubMed

    Nidheesh, N; Abdul Nazeer, K A; Ameer, P M

    2017-12-01

    Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Determining the Number of Clusters in a Data Set Without Graphical Interpretation

    NASA Technical Reports Server (NTRS)

    Aguirre, Nathan S.; Davies, Misty D.

    2011-01-01

    Cluster analysis is a data mining technique that is meant ot simplify the process of classifying data points. The basic clustering process requires an input of data points and the number of clusters wanted. The clustering algorithm will then pick starting C points for the clusters, which can be either random spatial points or random data points. It then assigns each data point to the nearest C point where "nearest usually means Euclidean distance, but some algorithms use another criterion. The next step is determining whether the clustering arrangement this found is within a certain tolerance. If it falls within this tolerance, the process ends. Otherwise the C points are adjusted based on how many data points are in each cluster, and the steps repeat until the algorithm converges,

  14. Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values.

    PubMed

    Bhattacharya, Anindya; De, Rajat K

    2010-08-01

    Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to be consulted before installation and execution of the software. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Reducing the time requirement of k-means algorithm.

    PubMed

    Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou

    2012-01-01

    Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space R(d) and an integer k. The problem is to determine a set of k points in R(d), called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARI(HA)). We found that when k is close to d, the quality is good (ARI(HA)>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARI(HA)>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data.

  16. Reducing the Time Requirement of k-Means Algorithm

    PubMed Central

    Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou

    2012-01-01

    Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the quality is good (ARIHA>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data. PMID:23239974

  17. Cluster analysis based on dimensional information with applications to feature selection and classification

    NASA Technical Reports Server (NTRS)

    Eigen, D. J.; Fromm, F. R.; Northouse, R. A.

    1974-01-01

    A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.

  18. Block clustering based on difference of convex functions (DC) programming and DC algorithms.

    PubMed

    Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai

    2013-10-01

    We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.

  19. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  20. CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.

    PubMed

    Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B

    2011-08-15

    Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.

  1. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.

    PubMed

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-11-12

    The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.

  2. A novel segmentation approach for implementation of MRAC in head PET/MRI employing Short-TE MRI and 2-point Dixon method in a fuzzy C-means framework

    NASA Astrophysics Data System (ADS)

    Khateri, Parisa; Rad, Hamidreza Saligheh; Jafari, Amir Homayoun; Ay, Mohammad Reza

    2014-01-01

    Quantitative PET image reconstruction requires an accurate map of attenuation coefficients of the tissue under investigation at 511 keV (μ-map), and in order to correct the emission data for attenuation. The use of MRI-based attenuation correction (MRAC) has recently received lots of attention in the scientific literature. One of the major difficulties facing MRAC has been observed in the areas where bone and air collide, e.g. ethmoidal sinuses in the head area. Bone is intrinsically not detectable by conventional MRI, making it difficult to distinguish air from bone. Therefore, development of more versatile MR sequences to label the bone structure, e.g. ultra-short echo-time (UTE) sequences, certainly plays a significant role in novel methodological developments. However, long acquisition time and complexity of UTE sequences limit its clinical applications. To overcome this problem, we developed a novel combination of Short-TE (ShTE) pulse sequence to detect bone signal with a 2-point Dixon technique for water-fat discrimination, along with a robust image segmentation method based on fuzzy clustering C-means (FCM) to segment the head area into four classes of air, bone, soft tissue and adipose tissue. The imaging protocol was set on a clinical 3 T Tim Trio and also 1.5 T Avanto (Siemens Medical Solution, Erlangen, Germany) employing a triple echo time pulse sequence in the head area. The acquisition parameters were as follows: TE1/TE2/TE3=0.98/4.925/6.155 ms, TR=8 ms, FA=25 on the 3 T system, and TE1/TE2/TE3=1.1/2.38/4.76 ms, TR=16 ms, FA=18 for the 1.5 T system. The second and third echo-times belonged to the Dixon decomposition to distinguish soft and adipose tissues. To quantify accuracy, sensitivity and specificity of the bone segmentation algorithm, resulting classes of MR-based segmented bone were compared with the manual segmented one by our expert neuro-radiologist. Results for both 3 T and 1.5 T systems show that bone segmentation applied in several slices yields average accuracy, sensitivity and specificity higher than 90%. Results indicate that FCM is an appropriate technique for tissue classification in the sinusoidal area where there is air-bone interface. Furthermore, using Dixon method, fat and brain tissues were successfully separated.

  3. Cooperative network clustering and task allocation for heterogeneous small satellite network

    NASA Astrophysics Data System (ADS)

    Qin, Jing

    The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple subtasks. The DBRB algorithm is deployed on the head node of a cluster. It gathers the status from each cluster member and calculates their Node Importance Factors (NIFs) from the carried resources, residue power and compute capacity. The algorithm calculates the number of concurrent subtasks based on the deadlines, and allocates the subtasks to the nodes according to their NIF values. The simulation results show that when cluster members carry multiple resources, resource are more balanced and rare resources serve longer in DBRB than in the Earliest Deadline First algorithm. We also show that the algorithm performs well in service isolation by serving multiple tasks with different deadlines. Moreover, the average task response time with various cluster size settings is well controlled within deadlines as well. Except non-realtime tasks, small satellites may execute realtime tasks as well. The location-dependent tasks, such as image capturing, data transmission and remote sensing tasks are realtime tasks that are required to be started / finished on specific time. The resource energy balancing algorithm for realtime and non-realtime mixed workload is developed to efficiently schedule the tasks for best system performance. It calculates the residue energy for each resource type and tries to preserve resources and node availability when distributing tasks. Non-realtime tasks can be preempted by realtime tasks to provide better QoS to realtime tasks. I compared the performance of proposed algorithm with a random-priority scheduling algorithm, with only realtime tasks, non-realtime tasks and mixed tasks. It shows the resource energy reservation algorithm outperforms the latter one with both balanced and imbalanced workloads. Although the resource energy balancing task allocation algorithm for mixed workload provides preemption mechanism for realtime tasks, realtime tasks can still fail due to resource exhaustion. For LEO small satellite flies around the earth on stable orbits, the location-dependent realtime tasks can be considered as periodical tasks. Therefore, it is possible to reserve energy for these realtime tasks. The resource energy reservation algorithm preserves energy for the realtime tasks when the execution routine of periodical realtime tasks is known. In order to reserve energy for tasks starting very early in each period that the node does not have enough energy charged, an energy wrapping mechanism is also designed to calculate the residue energy from the previous period. The simulation results show that without energy reservation, realtime task failure rate can reach more than 60% when the workload is highly imbalanced. In contrast, the resource energy reservation produces zero RT task failures and leads to equal or better aggregate system throughput than the non-reservation algorithm. The proposed algorithm also preserves more energy because it avoids task preemption. (Abstract shortened by ProQuest.).

  4. Fuzzy-C-Means Clustering Based Segmentation and CNN-Classification for Accurate Segmentation of Lung Nodules

    PubMed

    K, Jalal Deen; R, Ganesan; A, Merline

    2017-07-27

    Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. Creative Commons Attribution License

  5. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    PubMed Central

    2017-01-01

    Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1) preprocessing stage in order to prepare dataset for segmentation; (2) an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3) a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM) in order to get binary vessel map; and (4) a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems. PMID:29065611

  6. Fuzzy-C-Means Clustering Based Segmentation and CNN-Classification for Accurate Segmentation of Lung Nodules

    PubMed Central

    K, Jalal Deen; R, Ganesan; A, Merline

    2017-01-01

    Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. PMID:28749127

  7. Quantitative detection of the colloidal gold immunochromatographic strip in HSV color space

    NASA Astrophysics Data System (ADS)

    Wu, Yuanshu; Gao, Yueming; Du, Min

    2014-09-01

    In this paper, a fast, reliable and accurate quantitative detection method for the colloidal gold immunochromatographic strip(GICA) is presented. An image acquisition device which is mainly composed of annular LED source, zoom ratio lens, and 10bit CMOS image sensors with 54.5dB SNR is designed for the detection. Firstly, the test line is extracted from the strip window through using the H component peak points of the HSV space as the clustering centers via the Fuzzy C-Means(FCM) clustering method. Then, a two dimensional eigenvalue composed with the hue(H) and saturation(S) of HSV space was proposed to improve the accuracy of the quantitative detection. At last, the experiment of human chorionic gonadotropin(HCG) with the concentration range 0-500mIU/mL is carried out. The results show that the linear correlation coefficient between this method and optical density(OD) values measured by the fiber optical sensor reach 96.74%. Meanwhile, the linearity of fitting curve constructed with concentration was greater than 95.00%.

  8. A graph-based watershed merging using fuzzy C-means and simulated annealing for image segmentation

    NASA Astrophysics Data System (ADS)

    Vadiveloo, Mogana; Abdullah, Rosni; Rajeswari, Mandava

    2015-12-01

    In this paper, we have addressed the issue of over-segmented regions produced in watershed by merging the regions using global feature. The global feature information is obtained from clustering the image in its feature space using Fuzzy C-Means (FCM) clustering. The over-segmented regions produced by performing watershed on the gradient of the image are then mapped to this global information in the feature space. Further to this, the global feature information is optimized using Simulated Annealing (SA). The optimal global feature information is used to derive the similarity criterion to merge the over-segmented watershed regions which are represented by the region adjacency graph (RAG). The proposed method has been tested on digital brain phantom simulated dataset to segment white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) soft tissues regions. The experiments showed that the proposed method performs statistically better, with average of 95.242% regions are merged, than the immersion watershed and average accuracy improvement of 8.850% in comparison with RAG-based immersion watershed merging using global and local features.

  9. Multi-Patches IRIS Based Person Authentication System Using Particle Swarm Optimization and Fuzzy C-Means Clustering

    NASA Astrophysics Data System (ADS)

    Shekar, B. H.; Bhat, S. S.

    2017-05-01

    Locating the boundary parameters of pupil and iris and segmenting the noise free iris portion are the most challenging phases of an automated iris recognition system. In this paper, we have presented person authentication frame work which uses particle swarm optimization (PSO) to locate iris region and circular hough transform (CHT) to device the boundary parameters. To undermine the effect of the noise presented in the segmented iris region we have divided the candidate region into N patches and used Fuzzy c-means clustering (FCM) to classify the patches into best iris region and not so best iris region (noisy region) based on the probability density function of each patch. Weighted mean Hammimng distance is adopted to find the dissimilarity score between the two candidate irises. We have used Log-Gabor, Riesz and Taylor's series expansion (TSE) filters and combinations of these three for iris feature extraction. To justify the feasibility of the proposed method, we experimented on the three publicly available data sets IITD, MMU v-2 and CASIA v-4 distance.

  10. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale

    PubMed Central

    Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Overview Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. Cluster Quality Metrics We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Network Clustering Algorithms Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters. PMID:27391786

  11. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions

    NASA Astrophysics Data System (ADS)

    Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.

    2016-10-01

    Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.

  12. Discovering shared segments on the migration route of the bar-headed goose by time-based plane-sweeping trajectory clustering

    USGS Publications Warehouse

    Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.

    2012-01-01

    We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.

  13. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  14. Numerical modeling of flow and transport in the far-field of a generic nuclear waste repository in fractured crystalline rock using updated fracture continuum model

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2016-12-01

    Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method by McKenna and Reeves (2005) has been updated to provide capabilities that enhance representation of fractured rock. As reported in Hadgu et al. (2015) the method was first modified to include fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation. More recently the FCM has been extended to include three different methods. (1) The Sequential Gaussian Simulation (SGSIM) method uses spatial correlation to generate fractures and define their properties for FCM (2) The ELLIPSIM method randomly generates a specified number of ellipses with properties defined by probability distributions. Each ellipse represents a single fracture. (3) Direct conversion of discrete fracture network (DFN) output. Test simulations were conducted to simulate flow and transport using ELLIPSIM and direct conversion of DFN methods. The simulations used a 1 km x 1km x 1km model domain and a structured with grid block of size of 10 m x 10m x 10m, resulting in a total of 106 grid blocks. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the different methods were applied to generate representative permeability fields. The PFLOTRAN (Hammond et al., 2014) code was used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains. SAND2016-7509 A

  15. Intracellular flow cytometry may be combined with good quality and high sensitivity RT-qPCR analysis.

    PubMed

    Sandstedt, Mikael; Jonsson, Marianne; Asp, Julia; Dellgren, Göran; Lindahl, Anders; Jeppsson, Anders; Sandstedt, Joakim

    2015-12-01

    Flow cytometry (FCM) has become a well-established method for analysis of both intracellular and cell-surface proteins, while quantitative RT-PCR (RT-qPCR) is used to determine gene expression with high sensitivity and specificity. Combining these two methods would be of great value. The effects of intracellular staining on RNA integrity and RT-qPCR sensitivity and quality have not, however, been fully examined. We, therefore, intended to assess these effects further. Cells from the human lung cancer cell line A549 were fixed, permeabilized and sorted by FCM. Sorted cells were analyzed using RT-qPCR. RNA integrity was determined by RNA quality indicator analysis. A549 cells were then mixed with cells of the mouse cardiomyocyte cell line HL-1. A549 cells were identified by the cell surface marker ABCG2, while HL-1 cells were identified by intracellular cTnT. Cells were sorted and analyzed by RT-qPCR. Finally, cell cultures from human atrial biopsies were used to evaluate the effects of fixation and permeabilization on RT-qPCR analysis of nonimmortalized cells stored prior to analysis by FCM. A large amount of RNA could be extracted even when cells had been fixed and permeabilized. Permeabilization resulted in increased RNA degradation and a moderate decrease in RT-qPCR sensitivity. Gene expression levels were also affected to a moderate extent. Sorted populations from the mixed A549 and HL-1 cell samples showed gene expression patterns that corresponded to FCM data. When samples were stored before FCM sorting, the RT-qPCR analysis could still be performed with high sensitivity and quality. In summary, our results show that intracellular FCM may be performed with only minor impairment of the RT-qPCR sensitivity and quality when analyzing sorted cells; however, these effects should be considered when comparing RT-qPCR data of not fixed samples with those of fixed and permeabilized samples. © 2015 International Society for Advancement of Cytometry.

  16. A budget impact analysis of parenteral iron treatments for iron deficiency anemia in the UK: reduced resource utilization with iron isomaltoside 1000

    PubMed Central

    Pollock, Richard F; Muduma, Gorden

    2017-01-01

    Background and aims The reported prevalence of iron deficiency anemia (IDA) varies widely but estimates suggest that 3% of men and 8% of women have IDA in the UK. Parenteral iron is indicated for patients intolerant or unresponsive to oral iron or requiring rapid iron replenishment. This study evaluated differences in the cost of treating these patients with iron isomaltoside (Monofer®, IIM) relative to other intravenous iron formulations. Methods A budget impact model was developed to evaluate the cost of using IIM relative to ferric carboxymaltose (Ferinject®, FCM), low molecular weight iron dextran (Cosmofer®, LMWID), and iron sucrose (Venofer®, IS) in patients with IDA. To establish iron need, iron deficits were modeled using a simplified dosing table. The base case analysis was conducted over 1 year in patients with IDA with mean bodyweight of 82.4 kg (SD 22.5 kg) and hemoglobin levels of 9.99 g/dL (SD 1.03 g/dL) based on an analysis of patient characteristics in IDA trials. Costs were modeled using UK health care resource groups. Results Using IIM required 1.3 infusions to correct the mean iron deficit, compared with 1.3, 1.8, and 7.7 with LMWID, FCM, and IS, respectively. Patients using IIM required multiple infusions in 35% of cases, compared with 35%, 77%, and 100% of patients with LMWID, FCM, and IS, respectively. Total costs were estimated to be GBP 451 per patient with IIM or LMWID, relative to GBP 594 with FCM (a GBP 143 or 24% saving with IIM) or GBP 2,600 with IS (a GBP 2,149 or 83% saving with IIM). Conclusion Using IIM or LMWID in place of FCM or IS resulted in a marked reduction in the number of infusions required to correct iron deficits in patients with IDA. The reduction in infusions was accompanied by substantial reductions in cost relative to FCM and IS over 1 year. PMID:28848355

  17. A scalable and practical one-pass clustering algorithm for recommender system

    NASA Astrophysics Data System (ADS)

    Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali

    2015-12-01

    KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.

  18. A Differential Evolution-Based Routing Algorithm for Environmental Monitoring Wireless Sensor Networks

    PubMed Central

    Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.

    2010-01-01

    The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670

  19. A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment

    PubMed Central

    Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong

    2015-01-01

    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440

  20. A new collaborative recommendation approach based on users clustering using artificial bee colony algorithm.

    PubMed

    Ju, Chunhua; Xu, Chonghuan

    2013-01-01

    Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.

  1. A New Collaborative Recommendation Approach Based on Users Clustering Using Artificial Bee Colony Algorithm

    PubMed Central

    Ju, Chunhua

    2013-01-01

    Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods. PMID:24381525

  2. Convalescing Cluster Configuration Using a Superlative Framework

    PubMed Central

    Sabitha, R.; Karthik, S.

    2015-01-01

    Competent data mining methods are vital to discover knowledge from databases which are built as a result of enormous growth of data. Various techniques of data mining are applied to obtain knowledge from these databases. Data clustering is one such descriptive data mining technique which guides in partitioning data objects into disjoint segments. K-means algorithm is a versatile algorithm among the various approaches used in data clustering. The algorithm and its diverse adaptation methods suffer certain problems in their performance. To overcome these issues a superlative algorithm has been proposed in this paper to perform data clustering. The specific feature of the proposed algorithm is discretizing the dataset, thereby improving the accuracy of clustering, and also adopting the binary search initialization method to generate cluster centroids. The generated centroids are fed as input to K-means approach which iteratively segments the data objects into respective clusters. The clustered results are measured for accuracy and validity. Experiments conducted by testing the approach on datasets from the UC Irvine Machine Learning Repository evidently show that the accuracy and validity measure is higher than the other two approaches, namely, simple K-means and Binary Search method. Thus, the proposed approach proves that discretization process will improve the efficacy of descriptive data mining tasks. PMID:26543895

  3. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms

    PubMed Central

    He, Li; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546

  4. A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua

    2018-04-01

    In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.

  5. Function Clustering Self-Organization Maps (FCSOMs) for mining differentially expressed genes in Drosophila and its correlation with the growth medium.

    PubMed

    Liu, L L; Liu, M J; Ma, M

    2015-09-28

    The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.

  6. An agglomerative hierarchical clustering approach to visualisation in Bayesian clustering problems

    PubMed Central

    Dawson, Kevin J.; Belkhir, Khalid

    2009-01-01

    Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals, - the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. Since the number of possible partitions grows very rapidly with the sample size, we can not visualise this probability distribution in its entirety, unless the sample is very small. As a solution to this visualisation problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package Partition View. The exact linkage algorithm takes the posterior co-assignment probabilities as input, and yields as output a rooted binary tree, - or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306

  7. A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.

    PubMed

    Shen, Lili; Guo, Jiming; Wang, Lei

    2018-06-06

    The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.

  8. Adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo

    2018-04-01

    Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.

  9. The applicability and effectiveness of cluster analysis

    NASA Technical Reports Server (NTRS)

    Ingram, D. S.; Actkinson, A. L.

    1973-01-01

    An insight into the characteristics which determine the performance of a clustering algorithm is presented. In order for the techniques which are examined to accurately cluster data, two conditions must be simultaneously satisfied. First the data must have a particular structure, and second the parameters chosen for the clustering algorithm must be correct. By examining the structure of the data from the Cl flight line, it is clear that no single set of parameters can be used to accurately cluster all the different crops. The effectiveness of either a noniterative or iterative clustering algorithm to accurately cluster data representative of the Cl flight line is questionable. Thus extensive a prior knowledge is required in order to use cluster analysis in its present form for applications like assisting in the definition of field boundaries and evaluating the homogeneity of a field. New or modified techniques are necessary for clustering to be a reliable tool.

  10. Aneuploidy in benign tumors and nonneoplastic lesions of musculoskeletal tissues.

    PubMed

    Alho, A; Skjeldal, S; Pettersen, E O; Melvik, J E; Larsen, T E

    1994-02-15

    Aneuploidy in DNA flow cytometry (FCM) of musculoskeletal tumors is generally considered to be a sign of malignancy. Previously, giant cell tumor of the bone has been reported to contain aneuploid (near-diploid) DNA stemlines. Otherwise, only spordic cases have been reported. The authors wanted to study the relationships among DNA FCM, histology, and clinical course of nonmalignant musculoskeletal lesions. Twenty-eight histologically benign tumors and seven nonneoplastic lesions were subjected to DNA FCM: After tissue preparation mechanically and with ribonuclease and trypsin, the isolated nuclei were stained with propidium iodine using chicken and rainbow trout erythrocytes as controls. In the DNA FCM histograms, ploidy and cell cycle fractions were determined using a computerized mathematical model. The histologic diagnoses were made without knowledge of the DNA FCM results. Aneuploidy was found in eight lesions. A shoulder in the diploid peak, suggesting a diploid and a near-diploid population, was found in DNA histograms of a condensing osteitis of the clavicle (a benign inflammatory process) and of a giant cell tumor of bone. The latter lesion also had a tetraploid population. Six benign tumors--two enchondromas, one osteochondroma, one subcutaneous and one intramuscular lipoma, and a calcifying aponeurotic fibroma--showed clear aneuploidy with separate peaks. The S-phase fraction was less than 10% in all cases. The highest aneuploid population, DNA index = 1.70, in a subcutaneous lipoma, was small, with an undetectable S phase. Despite nonradical operations in seven lesions, no recurrences were observed during a median follow-up of 49 months (range, 28-73 months). Small aneuploid populations with low DNA synthetic activity may be compatible with a benign histologic picture and uneventful clinical course of the musculoskeletal lesion.

  11. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.

    PubMed

    Prest, E I; Hammes, F; Kötzsch, S; van Loosdrecht, M C M; Vrouwenvelder, J S

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Properties of human blood monocytes. I. CD91 expression and log orthogonal light scatter provide a robust method to identify monocytes that is more accurate than CD14 expression.

    PubMed

    Hudig, Dorothy; Hunter, Kenneth W; Diamond, W John; Redelman, Doug

    2014-03-01

    This study was designed to improve identification of human blood monocytes by using antibodies to molecules that occur consistently on all stages of monocyte development and differentiation. We examined blood samples from 200 healthy adults without clinically diagnosed immunological abnormalities by flow cytometry (FCM) with multiple combinations of antibodies and with a hematology analyzer (Beckman LH750). CD91 (α2 -macroglobulin receptor) was expressed only by monocytes and to a consistent level among subjects [mean median fluorescence intensity (MFI) = 16.2 ± 3.2]. Notably, only 85.7 ± 5.82% of the CD91(+) monocytes expressed high levels of the classical monocyte marker CD14, with some CD91(+) CD16(+) cells having negligible CD14, indicating that substantial FCM under-counts will occur when monocytes are identified by high CD14. CD33 (receptor for sialyl conjugates) was co-expressed with CD91 on monocytes but CD33 expression varied by nearly ten-fold among subjects (mean MFI = 17.4 ± 7.7). In comparison to FCM analyses, the hematology analyzer systematically over-counted monocytes and eosinophils while lymphocyte and neutrophil differential values generally agreed with FCM methods. CD91 is a better marker to identify monocytes than CD14 or CD33. Furthermore, FCM (with anti-CD91) identifies monocytes better than a currently used clinical CBC instrument. Use of anti-CD91 together with anti-CD14 and anti-CD16 supports the identification of the diagnostically significant monocyte populations with variable expression of CD14 and CD16. Copyright © 2013 Clinical Cytometry Society.

  13. Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    NASA Technical Reports Server (NTRS)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter

    2018-01-01

    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.

  14. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data.

    PubMed

    Hsu, Arthur L; Tang, Sen-Lin; Halgamuge, Saman K

    2003-11-01

    Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). JAVA software of dynamic SOM tree algorithm is available upon request for academic use. A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf

  15. Internal Cluster Validation on Earthquake Data in the Province of Bengkulu

    NASA Astrophysics Data System (ADS)

    Rini, D. S.; Novianti, P.; Fransiska, H.

    2018-04-01

    K-means method is an algorithm for cluster n object based on attribute to k partition, where k < n. There is a deficiency of algorithms that is before the algorithm is executed, k points are initialized randomly so that the resulting data clustering can be different. If the random value for initialization is not good, the clustering becomes less optimum. Cluster validation is a technique to determine the optimum cluster without knowing prior information from data. There are two types of cluster validation, which are internal cluster validation and external cluster validation. This study aims to examine and apply some internal cluster validation, including the Calinski-Harabasz (CH) Index, Sillhouette (S) Index, Davies-Bouldin (DB) Index, Dunn Index (D), and S-Dbw Index on earthquake data in the Bengkulu Province. The calculation result of optimum cluster based on internal cluster validation is CH index, S index, and S-Dbw index yield k = 2, DB Index with k = 6 and Index D with k = 15. Optimum cluster (k = 6) based on DB Index gives good results for clustering earthquake in the Bengkulu Province.

  16. Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William

    2006-01-01

    We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.

  17. Analysis of precipitation data in Bangladesh through hierarchical clustering and multidimensional scaling

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Habibur; Matin, M. A.; Salma, Umma

    2017-12-01

    The precipitation patterns of seventeen locations in Bangladesh from 1961 to 2014 were studied using a cluster analysis and metric multidimensional scaling. In doing so, the current research applies four major hierarchical clustering methods to precipitation in conjunction with different dissimilarity measures and metric multidimensional scaling. A variety of clustering algorithms were used to provide multiple clustering dendrograms for a mixture of distance measures. The dendrogram of pre-monsoon rainfall for the seventeen locations formed five clusters. The pre-monsoon precipitation data for the areas of Srimangal and Sylhet were located in two clusters across the combination of five dissimilarity measures and four hierarchical clustering algorithms. The single linkage algorithm with Euclidian and Manhattan distances, the average linkage algorithm with the Minkowski distance, and Ward's linkage algorithm provided similar results with regard to monsoon precipitation. The results of the post-monsoon and winter precipitation data are shown in different types of dendrograms with disparate combinations of sub-clusters. The schematic geometrical representations of the precipitation data using metric multidimensional scaling showed that the post-monsoon rainfall of Cox's Bazar was located far from those of the other locations. The results of a box-and-whisker plot, different clustering techniques, and metric multidimensional scaling indicated that the precipitation behaviour of Srimangal and Sylhet during the pre-monsoon season, Cox's Bazar and Sylhet during the monsoon season, Maijdi Court and Cox's Bazar during the post-monsoon season, and Cox's Bazar and Khulna during the winter differed from those at other locations in Bangladesh.

  18. An adaptive clustering algorithm for image matching based on corner feature

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  19. Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things

    PubMed Central

    Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao

    2015-01-01

    Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices’ service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes’ life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN. PMID:26703619

  20. Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things.

    PubMed

    Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao

    2015-12-23

    Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices' service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes' life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN.

  1. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    PubMed Central

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  2. Convex clustering: an attractive alternative to hierarchical clustering.

    PubMed

    Chen, Gary K; Chi, Eric C; Ranola, John Michael O; Lange, Kenneth

    2015-05-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/.

  3. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks

    PubMed Central

    Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal

    2015-01-01

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191

  4. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    PubMed

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  5. Fast clustering algorithm for large ECG data sets based on CS theory in combination with PCA and K-NN methods.

    PubMed

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-01-01

    Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.

  6. Computer-aided diagnostic approach of dermoscopy images acquiring relevant features

    NASA Astrophysics Data System (ADS)

    Castillejos-Fernández, H.; Franco-Arcega, A.; López-Ortega, O.

    2016-09-01

    In skin cancer detection, automated analysis of borders, colors, and structures of a lesion relies upon an accurate segmentation process and it is an important first step in any Computer-Aided Diagnosis (CAD) system. However, irregular and disperse lesion borders, low contrast, artifacts in images and variety of colors within the interest region make the problem difficult. In this paper, we propose an efficient approach of automatic classification which considers specific lesion features. First, for the selection of lesion skin we employ the segmentation algorithm W-FCM.1 Then, in the feature extraction stage we consider several aspects: the area of the lesion, which is calculated by correlating axes and we calculate the specific the value of asymmetry in both axes. For color analysis we employ an ensemble of clusterers including K-Means, Fuzzy K-Means and Kohonep maps, all of which estimate the presence of one or more colors defined in ABCD rule and the values for each of the segmented colors. Another aspect to consider is the type of structures that appear in the lesion Those are defined by using the ell-known GLCM method. During the classification stage we compare several methods in order to define if the lesion is benign or malignant. An important contribution of the current approach in segmentation-classification problem resides in the use of information from all color channels together, as well as the measure of each color in the lesion and the axes correlation. The segmentation and classification measures have been performed using sensibility, specificity, accuracy and AUC metric over a set of dermoscopy images from ISDIS data set

  7. Diagnostic Flow Cytometry and the AIDS Pandemic.

    PubMed

    Clift, Ian C

    2015-01-01

    The onset of the AIDS pandemic in the early 1980s coincided with the convergence of technologies now collectively known as flow cytometry (FCM). Major advances in FCM led significantly toward our understanding of the pathogenicity of the disease, which in turn led to wider adoption of the technology, including using it effectively in a variety of diagnostics. CD4+ T lymphocyte population counts, along with human immunodeficiency virus (HIV) viral load, remain the gold standard in diagnosis and continue to play a major role in the monitoring of advanced retroviral therapies. Arguably, the spread of AIDS (acquired immunodeficiency syndrome), the HIV virus, and the toll of the virus on humanity have been considerably altered by the concurrent development of FCM, the details of which are presented herein. Copyright© by the American Society for Clinical Pathology (ASCP).

  8. Rapid flow cytometry analysis of antimicrobial properties of nettle powder and cranberry powder

    NASA Astrophysics Data System (ADS)

    Hattuniemi, Maarit; Korhonen, Johanna; Jaakkola, Mari; Räty, Jarkko; Virtanen, Vesa

    2010-11-01

    Both nettle (Urtica dioica) and cranberry (Vaccinium oxycoccus) are widely known to have good influence on health. The aim of this study was to investigate antimicrobial properties of nettle powder and cranberry powder against Escherichia coli (E. coli) and monitor the growth of the bacteria by a rapid flow cytometry (FCM) method. For FCM measurements samples were stained with fluorescent dyes. The inhibitory effects of plant material on growth of E. coli were estimated by comparing the results of control sample (E. coli) to E. coli samples with plant material. FCM offers both a brilliant tool to investigate the kinetics of the growth of bacterium, since subsamples can be taken from the same liquid medium during the growing period and with fluorescent dyes a rapid method to investigate viability of the bacterium.

  9. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  10. The comparison of automated clustering algorithms for resampling representative conformer ensembles with RMSD matrix.

    PubMed

    Kim, Hyoungrae; Jang, Cheongyun; Yadav, Dharmendra K; Kim, Mi-Hyun

    2017-03-23

    The accuracy of any 3D-QSAR, Pharmacophore and 3D-similarity based chemometric target fishing models are highly dependent on a reasonable sample of active conformations. Since a number of diverse conformational sampling algorithm exist, which exhaustively generate enough conformers, however model building methods relies on explicit number of common conformers. In this work, we have attempted to make clustering algorithms, which could find reasonable number of representative conformer ensembles automatically with asymmetric dissimilarity matrix generated from openeye tool kit. RMSD was the important descriptor (variable) of each column of the N × N matrix considered as N variables describing the relationship (network) between the conformer (in a row) and the other N conformers. This approach used to evaluate the performance of the well-known clustering algorithms by comparison in terms of generating representative conformer ensembles and test them over different matrix transformation functions considering the stability. In the network, the representative conformer group could be resampled for four kinds of algorithms with implicit parameters. The directed dissimilarity matrix becomes the only input to the clustering algorithms. Dunn index, Davies-Bouldin index, Eta-squared values and omega-squared values were used to evaluate the clustering algorithms with respect to the compactness and the explanatory power. The evaluation includes the reduction (abstraction) rate of the data, correlation between the sizes of the population and the samples, the computational complexity and the memory usage as well. Every algorithm could find representative conformers automatically without any user intervention, and they reduced the data to 14-19% of the original values within 1.13 s per sample at the most. The clustering methods are simple and practical as they are fast and do not ask for any explicit parameters. RCDTC presented the maximum Dunn and omega-squared values of the four algorithms in addition to consistent reduction rate between the population size and the sample size. The performance of the clustering algorithms was consistent over different transformation functions. Moreover, the clustering method can also be applied to molecular dynamics sampling simulation results.

  11. A Modified MinMax k-Means Algorithm Based on PSO.

    PubMed

    Wang, Xiaoyan; Bai, Yanping

    The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.

  12. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope; R. Sonat Sen; Brian Boer

    2011-09-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code tomore » assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.« less

  13. Immuno-analysis of microparticles: probing at the limits of detection

    PubMed Central

    Latham, Sharissa L.; Tiberti, Natalia; Gokoolparsadh, Naveena; Holdaway, Karen; Olivier Couraud, Pierre; Grau, Georges E. R.; Combes, Valery

    2015-01-01

    Microparticle (MP) research is clouded by debate regarding the accuracy and validity of flow cytometry (FCM) as an analytical methodology, as it is influenced by many variables including the pre-analytical conditions, instruments physical capabilities and detection parameters. This study utilises a simplistic in vitro system for generating MP, and through comparative analysis with immuno-electron microscopy (Immuno-EM) assesses the strengths and limitations of probe selection and high-sensitivity FCM. Of the markers examined, MP were most specifically labelled with phosphatidylserine ligands, annexin V and lactadherin, although only ~60% MP are PS positive. Whilst these two ligands detect comparable absolute MP numbers, they interact with the same population in distinct manners; annexin V binding is enhanced on TNF induced MP. CD105 and CD54 expression were, as expected, consistent and enhanced following TNF activation respectively. Their labelling however accounted for as few as 30–40% of MP. The greatest discrepancies between FCM and I-EM were observed in the population solely labelled for the surface antigen. These findings demonstrate that despite significant improvements in resolution, high-sensitivity FCM remains limited in detecting small-size MP expressing low antigen levels. This study highlights factors to consider when selecting endothelial MP probes, as well as interpreting and representing data. PMID:26553743

  14. New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2018-07-01

    We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.

  15. Learner Typologies Development Using OIndex and Data Mining Based Clustering Techniques

    ERIC Educational Resources Information Center

    Luan, Jing

    2004-01-01

    This explorative data mining project used distance based clustering algorithm to study 3 indicators, called OIndex, of student behavioral data and stabilized at a 6-cluster scenario following an exhaustive explorative study of 4, 5, and 6 cluster scenarios produced by K-Means and TwoStep algorithms. Using principles in data mining, the study…

  16. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    PubMed

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  17. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  18. Validating clustering of molecular dynamics simulations using polymer models.

    PubMed

    Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn

    2011-11-14

    Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.

  19. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218

  20. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China

    PubMed Central

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-01-01

    The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283

  1. Assessment of economic status in trauma registries: A new algorithm for generating population-specific clustering-based models of economic status for time-constrained low-resource settings.

    PubMed

    Eyler, Lauren; Hubbard, Alan; Juillard, Catherine

    2016-10-01

    Low and middle-income countries (LMICs) and the world's poor bear a disproportionate share of the global burden of injury. Data regarding disparities in injury are vital to inform injury prevention and trauma systems strengthening interventions targeted towards vulnerable populations, but are limited in LMICs. We aim to facilitate injury disparities research by generating a standardized methodology for assessing economic status in resource-limited country trauma registries where complex metrics such as income, expenditures, and wealth index are infeasible to assess. To address this need, we developed a cluster analysis-based algorithm for generating simple population-specific metrics of economic status using nationally representative Demographic and Health Surveys (DHS) household assets data. For a limited number of variables, g, our algorithm performs weighted k-medoids clustering of the population using all combinations of g asset variables and selects the combination of variables and number of clusters that maximize average silhouette width (ASW). In simulated datasets containing both randomly distributed variables and "true" population clusters defined by correlated categorical variables, the algorithm selected the correct variable combination and appropriate cluster numbers unless variable correlation was very weak. When used with 2011 Cameroonian DHS data, our algorithm identified twenty economic clusters with ASW 0.80, indicating well-defined population clusters. This economic model for assessing health disparities will be used in the new Cameroonian six-hospital centralized trauma registry. By describing our standardized methodology and algorithm for generating economic clustering models, we aim to facilitate measurement of health disparities in other trauma registries in resource-limited countries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    NASA Astrophysics Data System (ADS)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root mean square error (RMSE), absolute error mean (AEM) and scatter index (SI) between target and predicted sand fraction values. The achieved estimation accuracy may diverge minutely depending on geological characteristics of a particular study area. The documented results in this study demonstrate acceptable resemblance between target and predicted variables, and hence, encourage the application of integrated machine learning approaches such as Neuro-Fuzzy in reservoir characterization domain. Furthermore, visualization of the variation of sand probability in the study area would assist in identifying placement of potential wells for future drilling operations.

  3. An effective fuzzy kernel clustering analysis approach for gene expression data.

    PubMed

    Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao

    2015-01-01

    Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.

  4. Implementation of hybrid clustering based on partitioning around medoids algorithm and divisive analysis on human Papillomavirus DNA

    NASA Astrophysics Data System (ADS)

    Arimbi, Mentari Dian; Bustamam, Alhadi; Lestari, Dian

    2017-03-01

    Data clustering can be executed through partition or hierarchical method for many types of data including DNA sequences. Both clustering methods can be combined by processing partition algorithm in the first level and hierarchical in the second level, called hybrid clustering. In the partition phase some popular methods such as PAM, K-means, or Fuzzy c-means methods could be applied. In this study we selected partitioning around medoids (PAM) in our partition stage. Furthermore, following the partition algorithm, in hierarchical stage we applied divisive analysis algorithm (DIANA) in order to have more specific clusters and sub clusters structures. The number of main clusters is determined using Davies Bouldin Index (DBI) value. We choose the optimal number of clusters if the results minimize the DBI value. In this work, we conduct the clustering on 1252 HPV DNA sequences data from GenBank. The characteristic extraction is initially performed, followed by normalizing and genetic distance calculation using Euclidean distance. In our implementation, we used the hybrid PAM and DIANA using the R open source programming tool. In our results, we obtained 3 main clusters with average DBI value is 0.979, using PAM in the first stage. After executing DIANA in the second stage, we obtained 4 sub clusters for Cluster-1, 9 sub clusters for Cluster-2 and 2 sub clusters in Cluster-3, with the BDI value 0.972, 0.771, and 0.768 for each main cluster respectively. Since the second stage produce lower DBI value compare to the DBI value in the first stage, we conclude that this hybrid approach can improve the accuracy of our clustering results.

  5. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  6. Using experimental data to test an n -body dynamical model coupled with an energy-based clusterization algorithm at low incident energies

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Puri, Rajeev K.

    2018-03-01

    Employing the quantum molecular dynamics (QMD) approach for nucleus-nucleus collisions, we test the predictive power of the energy-based clusterization algorithm, i.e., the simulating annealing clusterization algorithm (SACA), to describe the experimental data of charge distribution and various event-by-event correlations among fragments. The calculations are constrained into the Fermi-energy domain and/or mildly excited nuclear matter. Our detailed study spans over different system masses, and system-mass asymmetries of colliding partners show the importance of the energy-based clusterization algorithm for understanding multifragmentation. The present calculations are also compared with the other available calculations, which use one-body models, statistical models, and/or hybrid models.

  7. Nearest neighbor-density-based clustering methods for large hyperspectral images

    NASA Astrophysics Data System (ADS)

    Cariou, Claude; Chehdi, Kacem

    2017-10-01

    We address the problem of hyperspectral image (HSI) pixel partitioning using nearest neighbor - density-based (NN-DB) clustering methods. NN-DB methods are able to cluster objects without specifying the number of clusters to be found. Within the NN-DB approach, we focus on deterministic methods, e.g. ModeSeek, knnClust, and GWENN (standing for Graph WatershEd using Nearest Neighbors). These methods only require the availability of a k-nearest neighbor (kNN) graph based on a given distance metric. Recently, a new DB clustering method, called Density Peak Clustering (DPC), has received much attention, and kNN versions of it have quickly followed and showed their efficiency. However, NN-DB methods still suffer from the difficulty of obtaining the kNN graph due to the quadratic complexity with respect to the number of pixels. This is why GWENN was embedded into a multiresolution (MR) scheme to bypass the computation of the full kNN graph over the image pixels. In this communication, we propose to extent the MR-GWENN scheme on three aspects. Firstly, similarly to knnClust, the original labeling rule of GWENN is modified to account for local density values, in addition to the labels of previously processed objects. Secondly, we set up a modified NN search procedure within the MR scheme, in order to stabilize of the number of clusters found from the coarsest to the finest spatial resolution. Finally, we show that these extensions can be easily adapted to the three other NN-DB methods (ModeSeek, knnClust, knnDPC) for pixel clustering in large HSIs. Experiments are conducted to compare the four NN-DB methods for pixel clustering in HSIs. We show that NN-DB methods can outperform a classical clustering method such as fuzzy c-means (FCM), in terms of classification accuracy, relevance of found clusters, and clustering speed. Finally, we demonstrate the feasibility and evaluate the performances of NN-DB methods on a very large image acquired by our AISA Eagle hyperspectral imaging sensor.

  8. Optimized data fusion for K-means Laplacian clustering

    PubMed Central

    Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves

    2011-01-01

    Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271

  9. Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres.

    PubMed

    Banerjee, Arindam; Ghosh, Joydeep

    2004-05-01

    Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.

  10. A hybrid algorithm for clustering of time series data based on affinity search technique.

    PubMed

    Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza

    2014-01-01

    Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.

  11. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system.

    PubMed

    Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang

    2017-10-30

    In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.

  12. A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique

    PubMed Central

    Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza

    2014-01-01

    Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966

  13. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    PubMed

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  14. Performance Analysis of Combined Methods of Genetic Algorithm and K-Means Clustering in Determining the Value of Centroid

    NASA Astrophysics Data System (ADS)

    Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna

    2017-12-01

    The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.

  15. Hebbian self-organizing integrate-and-fire networks for data clustering.

    PubMed

    Landis, Florian; Ott, Thomas; Stoop, Ruedi

    2010-01-01

    We propose a Hebbian learning-based data clustering algorithm using spiking neurons. The algorithm is capable of distinguishing between clusters and noisy background data and finds an arbitrary number of clusters of arbitrary shape. These properties render the approach particularly useful for visual scene segmentation into arbitrarily shaped homogeneous regions. We present several application examples, and in order to highlight the advantages and the weaknesses of our method, we systematically compare the results with those from standard methods such as the k-means and Ward's linkage clustering. The analysis demonstrates that not only the clustering ability of the proposed algorithm is more powerful than those of the two concurrent methods, the time complexity of the method is also more modest than that of its generally used strongest competitor.

  16. Impact of heuristics in clustering large biological networks.

    PubMed

    Shafin, Md Kishwar; Kabir, Kazi Lutful; Ridwan, Iffatur; Anannya, Tasmiah Tamzid; Karim, Rashid Saadman; Hoque, Mohammad Mozammel; Rahman, M Sohel

    2015-12-01

    Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  18. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  19. Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-yu; Zhang, Li-jie

    2017-10-01

    Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s

  20. A Modified MinMax k-Means Algorithm Based on PSO

    PubMed Central

    2016-01-01

    The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201

  1. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  2. A Comparative Evaluation of Anomaly Detection Algorithms for Maritime Video Surveillance

    DTIC Science & Technology

    2011-01-01

    of k-means clustering and the k- NN Localized p-value Estimator ( KNN -LPE). K-means is a popular distance-based clustering algorithm while KNN -LPE...implemented the sparse cluster identification rule we described in Section 3.1. 2. k-NN Localized p-value Estimator ( KNN -LPE): We implemented this using...Average Density ( KNN -NAD): This was implemented as described in Section 3.4. Algorithm Parameter Settings The global and local density-based anomaly

  3. Study on text mining algorithm for ultrasound examination of chronic liver diseases based on spectral clustering

    NASA Astrophysics Data System (ADS)

    Chang, Bingguo; Chen, Xiaofei

    2018-05-01

    Ultrasonography is an important examination for the diagnosis of chronic liver disease. The doctor gives the liver indicators and suggests the patient's condition according to the description of ultrasound report. With the rapid increase in the amount of data of ultrasound report, the workload of professional physician to manually distinguish ultrasound results significantly increases. In this paper, we use the spectral clustering method to cluster analysis of the description of the ultrasound report, and automatically generate the ultrasonic diagnostic diagnosis by machine learning. 110 groups ultrasound examination report of chronic liver disease were selected as test samples in this experiment, and the results were validated by spectral clustering and compared with k-means clustering algorithm. The results show that the accuracy of spectral clustering is 92.73%, which is higher than that of k-means clustering algorithm, which provides a powerful ultrasound-assisted diagnosis for patients with chronic liver disease.

  4. Node Self-Deployment Algorithm Based on an Uneven Cluster with Radius Adjusting for Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Xu, Yiming; Wu, Feng

    2016-01-01

    Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS) based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption. PMID:26784193

  5. Orbit Clustering Based on Transfer Cost

    NASA Technical Reports Server (NTRS)

    Gustafson, Eric D.; Arrieta-Camacho, Juan J.; Petropoulos, Anastassios E.

    2013-01-01

    We propose using cluster analysis to perform quick screening for combinatorial global optimization problems. The key missing component currently preventing cluster analysis from use in this context is the lack of a useable metric function that defines the cost to transfer between two orbits. We study several proposed metrics and clustering algorithms, including k-means and the expectation maximization algorithm. We also show that proven heuristic methods such as the Q-law can be modified to work with cluster analysis.

  6. Clustering by reordering of similarity and Laplacian matrices: Application to galaxy clusters

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Shoukry, A.; Takey, A.

    2018-04-01

    Similarity metrics, kernels and similarity-based algorithms have gained much attention due to their increasing applications in information retrieval, data mining, pattern recognition and machine learning. Similarity Graphs are often adopted as the underlying representation of similarity matrices and are at the origin of known clustering algorithms such as spectral clustering. Similarity matrices offer the advantage of working in object-object (two-dimensional) space where visualization of clusters similarities is available instead of object-features (multi-dimensional) space. In this paper, sparse ɛ-similarity graphs are constructed and decomposed into strong components using appropriate methods such as Dulmage-Mendelsohn permutation (DMperm) and/or Reverse Cuthill-McKee (RCM) algorithms. The obtained strong components correspond to groups (clusters) in the input (feature) space. Parameter ɛi is estimated locally, at each data point i from a corresponding narrow range of the number of nearest neighbors. Although more advanced clustering techniques are available, our method has the advantages of simplicity, better complexity and direct visualization of the clusters similarities in a two-dimensional space. Also, no prior information about the number of clusters is needed. We conducted our experiments on two and three dimensional, low and high-sized synthetic datasets as well as on an astronomical real-dataset. The results are verified graphically and analyzed using gap statistics over a range of neighbors to verify the robustness of the algorithm and the stability of the results. Combining the proposed algorithm with gap statistics provides a promising tool for solving clustering problems. An astronomical application is conducted for confirming the existence of 45 galaxy clusters around the X-ray positions of galaxy clusters in the redshift range [0.1..0.8]. We re-estimate the photometric redshifts of the identified galaxy clusters and obtain acceptable values compared to published spectroscopic redshifts with a 0.029 standard deviation of their differences.

  7. Improving clustering with metabolic pathway data.

    PubMed

    Milone, Diego H; Stegmayer, Georgina; López, Mariana; Kamenetzky, Laura; Carrari, Fernando

    2014-04-10

    It is a common practice in bioinformatics to validate each group returned by a clustering algorithm through manual analysis, according to a-priori biological knowledge. This procedure helps finding functionally related patterns to propose hypotheses for their behavior and the biological processes involved. Therefore, this knowledge is used only as a second step, after data are just clustered according to their expression patterns. Thus, it could be very useful to be able to improve the clustering of biological data by incorporating prior knowledge into the cluster formation itself, in order to enhance the biological value of the clusters. A novel training algorithm for clustering is presented, which evaluates the biological internal connections of the data points while the clusters are being formed. Within this training algorithm, the calculation of distances among data points and neurons centroids includes a new term based on information from well-known metabolic pathways. The standard self-organizing map (SOM) training versus the biologically-inspired SOM (bSOM) training were tested with two real data sets of transcripts and metabolites from Solanum lycopersicum and Arabidopsis thaliana species. Classical data mining validation measures were used to evaluate the clustering solutions obtained by both algorithms. Moreover, a new measure that takes into account the biological connectivity of the clusters was applied. The results of bSOM show important improvements in the convergence and performance for the proposed clustering method in comparison to standard SOM training, in particular, from the application point of view. Analyses of the clusters obtained with bSOM indicate that including biological information during training can certainly increase the biological value of the clusters found with the proposed method. It is worth to highlight that this fact has effectively improved the results, which can simplify their further analysis.The algorithm is available as a web-demo at http://fich.unl.edu.ar/sinc/web-demo/bsom-lite/. The source code and the data sets supporting the results of this article are available at http://sourceforge.net/projects/sourcesinc/files/bsom.

  8. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  9. A similarity based agglomerative clustering algorithm in networks

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  10. Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data

    PubMed Central

    Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin

    2014-01-01

    Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563

  11. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    PubMed Central

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  12. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    PubMed

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  13. Identification of chronic rhinosinusitis phenotypes using cluster analysis.

    PubMed

    Soler, Zachary M; Hyer, J Madison; Ramakrishnan, Viswanathan; Smith, Timothy L; Mace, Jess; Rudmik, Luke; Schlosser, Rodney J

    2015-05-01

    Current clinical classifications of chronic rhinosinusitis (CRS) have been largely defined based upon preconceived notions of factors thought to be important, such as polyp or eosinophil status. Unfortunately, these classification systems have little correlation with symptom severity or treatment outcomes. Unsupervised clustering can be used to identify phenotypic subgroups of CRS patients, describe clinical differences in these clusters and define simple algorithms for classification. A multi-institutional, prospective study of 382 patients with CRS who had failed initial medical therapy completed the Sino-Nasal Outcome Test (SNOT-22), Rhinosinusitis Disability Index (RSDI), Medical Outcomes Study Short Form-12 (SF-12), Pittsburgh Sleep Quality Index (PSQI), and Patient Health Questionnaire (PHQ-2). Objective measures of CRS severity included Brief Smell Identification Test (B-SIT), CT, and endoscopy scoring. All variables were reduced and unsupervised hierarchical clustering was performed. After clusters were defined, variations in medication usage were analyzed. Discriminant analysis was performed to develop a simplified, clinically useful algorithm for clustering. Clustering was largely determined by age, severity of patient reported outcome measures, depression, and fibromyalgia. CT and endoscopy varied somewhat among clusters. Traditional clinical measures, including polyp/atopic status, prior surgery, B-SIT and asthma, did not vary among clusters. A simplified algorithm based upon productivity loss, SNOT-22 score, and age predicted clustering with 89% accuracy. Medication usage among clusters did vary significantly. A simplified algorithm based upon hierarchical clustering is able to classify CRS patients and predict medication usage. Further studies are warranted to determine if such clustering predicts treatment outcomes. © 2015 ARS-AAOA, LLC.

  14. Quantum annealing for combinatorial clustering

    NASA Astrophysics Data System (ADS)

    Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph

    2018-02-01

    Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.

  15. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  16. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  17. Performance standard-based validation study for local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method.

    PubMed

    Ahn, Ilyoung; Kim, Tae-Sung; Jung, Eun-Sun; Yi, Jung-Sun; Jang, Won-Hee; Jung, Kyoung-Mi; Park, Miyoung; Jung, Mi-Sook; Jeon, Eun-Young; Yeo, Kyeong-Uk; Jo, Ji-Hoon; Park, Jung-Eun; Kim, Chang-Yul; Park, Yeong-Chul; Seong, Won-Keun; Lee, Ai-Young; Chun, Young Jin; Jeong, Tae Cheon; Jeung, Eui Bae; Lim, Kyung-Min; Bae, SeungJin; Sohn, Soojung; Heo, Yong

    2016-10-01

    Local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) is a modified non-radioisotopic technique with the additional advantages of accommodating multiple endpoints with the introduction of FCM, and refinement and reduction of animal use by using a sophisticated prescreening scheme. Reliability and accuracy of the LLNA: BrdU-FCM was determined according to OECD Test Guideline (TG) No. 429 (Skin Sensitization: Local Lymph Node Assay) performance standards (PS), with the participation of four laboratories. Transferability was demonstrated through successfully producing stimulation index (SI) values for 25% hexyl cinnamic aldehyde (HCA) consistently greater than 3, a predetermined threshold, by all participating laboratories. Within- and between-laboratory reproducibility was shown using HCA and 2,4-dinitrochlorobenzene, in which EC2.7 values (the estimated concentrations eliciting an SI of 2.7, the threshold for LLNA: BrdU-FCM) fell consistently within the acceptance ranges, 0.025-0.1% and 5-20%, respectively. Predictive capacity was tested using the final protocol version 1.3 for the 18 reference chemicals listed in OECD TG 429, of which results showed 84.6% sensitivity, 100% specificity, and 88.9% accuracy compared with the original LLNA. The data presented are considered to meet the performance criteria for the PS, and its predictive capacity was also sufficiently validated. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fast evaluation of 69 basal cell carcinomas with ex vivo fluorescence confocal microscopy: criteria description, histopathological correlation, and interobserver agreement.

    PubMed

    Bennàssar, Antoni; Carrera, Cristina; Puig, Susana; Vilalta, Antoni; Malvehy, Josep

    2013-07-01

    Fluorescence confocal microscopy (FCM) represents a first step toward a rapid "bedside pathology" in the Mohs surgery setting and in other fields of general pathology. To describe and validate FCM criteria for the main basal cell carcinoma (BCC) subtypes and to demonstrate the overall agreement with classic pathologic analysis of hematoxylin-eosin-stained samples. DESIGN A total of 69 BCCs from 66 patients were prospectively imaged using ex vivo FCM. Confocal mosaics were evaluated in real time and compared with classic pathologic analysis. Department of Dermatology, Hospital Clínic of Barcelona, Barcelona, Spain, between November 2010 and July 2011. Patients with BCC attending the Mohs Surgery Unit. Presence or absence of BCC and histological subtype (superficial, nodular, and infiltrating) in the confocal mosaics. Eight criteria for BCC were described, evaluated, and validated. Although there were minor differences among BCC subtypes, the most BCC-defining criteria were peripheral palisading, clefting, nuclear pleomorphism, and presence of stroma. These criteria were validated with independent observers (κ values >0.7 [corrected] for most criteria). We herein propose, describe, and validate FCM criteria for BCC diagnosis. Fluorescence confocal microscopy is an attractive alternative to histopathologic analysis of frozen sections during Mohs surgery because large areas of freshly excised tissue can be assessed in real time without the need for tissue processing while minimizing labor and costs.

  19. Long-term safety and outcome of fludarabine, cyclophosphamide and mitoxantrone (FCM) regimen in previously untreated patients with advanced follicular lymphoma: 12 years follow-up of a phase 2 trial.

    PubMed

    Magnano, Laura; Montoto, Silvia; González-Barca, Eva; Briones, Javier; Sancho, Juan Manuel; Muntañola, Ana; Salar, Antonio; Besalduch, Joan; Escoda, Lourdes; Moreno, Carol; Domingo-Domenech, Eva; Estany, Cristina; Oriol, Albert; Altés, Albert; Pedro, Carmen; Gardella, Santiago; Asensio, Antoni; Vivancos, Pilar; Fernández de Sevilla, Alberto; Ribera, Josep María; Colomer, Dolors; Campo, Elias; López-Guillermo, Armando

    2017-04-01

    Fludarabine combinations are very affective in follicular lymphoma (FL) with high rates of complete response and prolonged survival. However, late toxicities could be a concern. The aim of the present study was to analyze the long-term impact on survival, relapse and late toxicities of a trial of treatment with fludarabine, mitoxantrone and cyclophosphamide (FCM regimen) for untreated patients with advanced stage FL. One hundred and twenty patients enrolled in a phase 2 trial of treatment with FCM regimen between 2000 and 2003 were evaluated. After a median follow-up of 12 years, 52 patients eventually relapsed/progressed with 10 year progression-free survival (PFS) of 46 %. Ten patients showed histological transformation to aggressive lymphoma with a risk of transformation of 2 and 9 % at 5 and 10 years, respectively. Three patients developed therapy-related myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML) and seven solid neoplasms with an overall risk of 3 and 8 % at 5 and 10 years, respectively. Twenty-six patients eventually died during the follow-up. Overall survival at 10 years was 83 %. In conclusion, FCM regimen allows excellent long-lasting response in previously untreated patients with FL. The incidence of late events including histological transformation and secondary neoplasia is low but not negligible.

  20. Intravenous iron treatments for iron deficiency anemia in inflammatory bowel disease: a budget impact analysis of iron isomaltoside 1000 (Monofer) in the UK.

    PubMed

    Pollock, R F; Muduma, G

    2017-12-01

    Iron deficiency is the leading cause of anemia in patients with inflammatory bowel disease (IBD). Intravenous iron is the first-line treatment for clinically active IBD or previous oral iron intolerance. The aim of the present study was to develop a comparative model of iron deficiency and delivery for iron isomaltoside (IIM), ferric carboxymaltose (FCM), low molecular weight iron dextran (LMWID), and iron sucrose (IS) in the treatment of iron deficiency anemia associated with IBD. Areas covered: A model was developed to evaluate iron delivery characteristics, resource use and costs associated with IIM, FCM, LMWID and IS. Iron deficiency was modeled using dosing tables and retreatments were modeled based on a pooled retrospective analysis. The analyses were conducted over 5 years in patients with IBD with mean bodyweight of 75.4 kg and hemoglobin levels of 10.77 g/dL based on observational data. Expert opinion: The modeling analysis showed that using IIM required 1.2 infusions (per treatment) to correct the mean iron deficit, compared with 1.6, 1.2, and 7.1 with FCM, LMWID and IS, respectively. Costs were estimated to be 2,518 pounds sterling (GBP) per patient with IIM or LMWID, relative to GBP 3,309 with FCM or GBP 14,382 with IS.

  1. Immunophenotyping by slide-based cytometry and by flow cytometry are comparable

    NASA Astrophysics Data System (ADS)

    Gerstner, Andreas O.; Laffers, Wiebke; Mittag, Anja; Daehnert, Ingo; Lenz, Domnik; Bootz, Friedrich; Bocsi, Jozsef; Tarnok, Attila

    2005-03-01

    Immunophenotyping of peripheral blood leukocytes (PBLs) is performed by flow cytometry (FCM) as the golden standard. Slide based cytometry systems for example laser scanning cytometer (LSC) can give additional information (repeated staining and scanning, morphology). In order to adequately judge on the clinical usefulness of immunophenotyping by LSC it is obligatory to compare it with the long established FCM assays. We performed this study to systematically compare the two methods, FCM and LSC for immunophenotyping and to test the correlation of the results. Leucocytes were stained with directly labeled monoclonal antibodies with whole blood staining method. Aliquots of the same paraformaldehyde fixed specimens were analyzed in a FACScan (BD-Biosciences) using standard protocols and parallel with LSC (CompuCyte) after placing to glass slide, drying and fixation by aceton and 7-AAD staining. Calculating the percentage distribution of PBLs obtained by LSC and by FCM shows very good correlation with regression coefficients close to 1.0 for the major populations (neutrophils, lymphocytes, and monocytes), as well as for the lymphocyte sub-populations (T-helper-, T-cytotoxic-, B-, NK-cells). LSC can be recommended for immunophenotyping of PBLs especially in cases where only very limited sample volumes are available or where additional analysis of the cells" morphology is important. There are limitations in the detection of rare leucocytes or weak antigens where appropriate amplification steps for immunofluorescence should be engaged.

  2. Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco

    2018-06-01

    We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.

  3. PCA based clustering for brain tumor segmentation of T1w MRI images.

    PubMed

    Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay

    2017-03-01

    Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Weighted community detection and data clustering using message passing

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Yanchen; Zhang, Pan

    2018-03-01

    Grouping objects into clusters based on the similarities or weights between them is one of the most important problems in science and engineering. In this work, by extending message-passing algorithms and spectral algorithms proposed for an unweighted community detection problem, we develop a non-parametric method based on statistical physics, by mapping the problem to the Potts model at the critical temperature of spin-glass transition and applying belief propagation to solve the marginals corresponding to the Boltzmann distribution. Our algorithm is robust to over-fitting and gives a principled way to determine whether there are significant clusters in the data and how many clusters there are. We apply our method to different clustering tasks. In the community detection problem in weighted and directed networks, we show that our algorithm significantly outperforms existing algorithms. In the clustering problem, where the data were generated by mixture models in the sparse regime, we show that our method works all the way down to the theoretical limit of detectability and gives accuracy very close to that of the optimal Bayesian inference. In the semi-supervised clustering problem, our method only needs several labels to work perfectly in classic datasets. Finally, we further develop Thouless-Anderson-Palmer equations which heavily reduce the computation complexity in dense networks but give almost the same performance as belief propagation.

  5. Automatic detection of erythemato-squamous diseases using k-means clustering.

    PubMed

    Ubeyli, Elif Derya; Doğdu, Erdoğan

    2010-04-01

    A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases.

  6. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space.

    PubMed

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-07-01

    UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request.

  7. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    PubMed

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  8. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  9. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  10. An adaptive tracker for ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2015-05-01

    A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and the gating of the selected target to further improve tracker performance. This paper will describe a new adaptive tracker algorithm added to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). The new adaptive tracking algorithm is an optional feature used with any of the existing internal NTCS or user-defined seeker algorithms (e.g., binary centroid, intensity centroid, and threshold intensity centroid). The algorithm segments the detected pixels into clusters, and the smallest set of clusters that meet the detection criterion is obtained by using a knapsack algorithm to identify the set of clusters that should not be used. The rectangular area containing the chosen clusters defines an inner boundary, from which a weighted centroid is calculated as the aim-point. A track-gate is then positioned around the clusters, taking into account the rate of change of the bounding area and compensating for any gimbal displacement. A sequence of scenarios is used to test the new tracking algorithm on a generic unclassified DDG ShipIR model, with and without flares, and demonstrate how some of the key seeker signals are impacted by both the ship and flare intrinsic signatures.

  11. Tissue Probability Map Constrained 4-D Clustering Algorithm for Increased Accuracy and Robustness in Serial MR Brain Image Segmentation

    PubMed Central

    Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen

    2010-01-01

    The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399

  12. Mining subspace clusters from DNA microarray data using large itemset techniques.

    PubMed

    Chang, Ye-In; Chen, Jiun-Rung; Tsai, Yueh-Chi

    2009-05-01

    Mining subspace clusters from the DNA microarrays could help researchers identify those genes which commonly contribute to a disease, where a subspace cluster indicates a subset of genes whose expression levels are similar under a subset of conditions. Since in a DNA microarray, the number of genes is far larger than the number of conditions, those previous proposed algorithms which compute the maximum dimension sets (MDSs) for any two genes will take a long time to mine subspace clusters. In this article, we propose the Large Itemset-Based Clustering (LISC) algorithm for mining subspace clusters. Instead of constructing MDSs for any two genes, we construct only MDSs for any two conditions. Then, we transform the task of finding the maximal possible gene sets into the problem of mining large itemsets from the condition-pair MDSs. Since we are only interested in those subspace clusters with gene sets as large as possible, it is desirable to pay attention to those gene sets which have reasonable large support values in the condition-pair MDSs. From our simulation results, we show that the proposed algorithm needs shorter processing time than those previous proposed algorithms which need to construct gene-pair MDSs.

  13. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  14. Prevalence and determinants of stereotypic behaviours and physiological stress among tigers and leopards in Indian zoos

    PubMed Central

    Vaz, Janice; Narayan, Edward J.; Dileep Kumar, R.; Thenmozhi, K.; Thiyagesan, Krishnamoorthy

    2017-01-01

    India’s charismatic wildlife species are facing immense pressure from anthropogenic-induced environmental perturbations. Zoos play a major role in the conservation of threatened species, but their adaptation in captivity is posing a major challenge globally. Stress from inadequate adaptation could lead to suppression of cognitive functioning and increased display of stereotypic behaviour. It is thus necessary to measure biological traits like behaviour, stress physiology, and contextual factors driving the animals maintained at zoos. In this study, we assessed stereotypic behaviour and stress physiology employing standard behaviour scoring, non-invasive stress monitoring, and their contextual drivers in a sub-population of two large felid species managed in six Indian zoos. The prevalence and intensity of stereotypic behaviours and levels of faecal corticosterone metabolites (FCM) were ascertained among 41 Royal Bengal tigers Panthera tigris tigris and 21 Indian leopards Panthera pardus fusca between April 2014 and March 2015. Behavioural observations showed that tigers spent more time stereotyping (12%) than leopards (7%) during daylight hours. Stress levels assessed using FCM revealed that tigers (23.6 ± 1.62 ng/g) had marginally lower level of corticosterone metabolites than leopards (27.2 ±1.36 ng/g). Stereotypic behaviour increased significantly with FCM level when the effect of heath status was controlled in tigers, and the effects tree cover, stone, den and keeper attitude controlled in leopards. Comparison of stereotypes of tigers with various biological and environmental factors using binary logistic regression revealed that stereotypic prevalence decreased with increased enclosure size, and enclosure enrichments like presence of pools and stones, when managed socially with conspecifics, and with positive keeper attitude, these factors accounting for 43% of variations in stereotypic prevalence among tigers. Stereotype among leopards was significantly absent when associated with increased tree cover and presence of pool, and den in the enclosure, age and among zoo-born than wild-born ones. These factors explain 81% of variations in stereotypic prevalence in them. A comparison of FCM levels with context-dependent factors revealed that stress levels among tigers decreased significantly with enclosure size and with individuals from nil to low, and severity of health issues. These factors explain 64% of variations in FCM levels. In leopards, the presence of stones in the enclosure and keepers with positive attitude resulted in significant decrease in FCM levels, these factors together accounting for 94% of variations. Multiple regressions on selected variables based on Factor Analysis of Mixed Data showed that in tigers the intensity of stereotype decreased significantly with enclosure size, sociality and positive keeper attitude and FCM level with health problems. Similarly, analyses in leopards revealed that intensity of stereotype decreased significantly with tree cover, age and FCM level with positive keeper attitude. Overall, our study suggests that to reduce stereotypes and stress level, tigers in captivity should be managed in larger enclosures enriched with pool, and stones, and in appropriate social conditions with adequate veterinary care. Leopards should be managed in enclosures with dense tree cover, pool, stones and den. Positive keeper attitude plays a crucial role in the welfare of both the species in captivity. Our study is promising and is comparable with their natural behaviour in the wild; for example, tigers require larger natural habitats, while leopards can manage even with smaller isolated patches but with dense vegetation cover. PMID:28414723

  15. Prevalence and determinants of stereotypic behaviours and physiological stress among tigers and leopards in Indian zoos.

    PubMed

    Vaz, Janice; Narayan, Edward J; Dileep Kumar, R; Thenmozhi, K; Thiyagesan, Krishnamoorthy; Baskaran, Nagarajan

    2017-01-01

    India's charismatic wildlife species are facing immense pressure from anthropogenic-induced environmental perturbations. Zoos play a major role in the conservation of threatened species, but their adaptation in captivity is posing a major challenge globally. Stress from inadequate adaptation could lead to suppression of cognitive functioning and increased display of stereotypic behaviour. It is thus necessary to measure biological traits like behaviour, stress physiology, and contextual factors driving the animals maintained at zoos. In this study, we assessed stereotypic behaviour and stress physiology employing standard behaviour scoring, non-invasive stress monitoring, and their contextual drivers in a sub-population of two large felid species managed in six Indian zoos. The prevalence and intensity of stereotypic behaviours and levels of faecal corticosterone metabolites (FCM) were ascertained among 41 Royal Bengal tigers Panthera tigris tigris and 21 Indian leopards Panthera pardus fusca between April 2014 and March 2015. Behavioural observations showed that tigers spent more time stereotyping (12%) than leopards (7%) during daylight hours. Stress levels assessed using FCM revealed that tigers (23.6 ± 1.62 ng/g) had marginally lower level of corticosterone metabolites than leopards (27.2 ±1.36 ng/g). Stereotypic behaviour increased significantly with FCM level when the effect of heath status was controlled in tigers, and the effects tree cover, stone, den and keeper attitude controlled in leopards. Comparison of stereotypes of tigers with various biological and environmental factors using binary logistic regression revealed that stereotypic prevalence decreased with increased enclosure size, and enclosure enrichments like presence of pools and stones, when managed socially with conspecifics, and with positive keeper attitude, these factors accounting for 43% of variations in stereotypic prevalence among tigers. Stereotype among leopards was significantly absent when associated with increased tree cover and presence of pool, and den in the enclosure, age and among zoo-born than wild-born ones. These factors explain 81% of variations in stereotypic prevalence in them. A comparison of FCM levels with context-dependent factors revealed that stress levels among tigers decreased significantly with enclosure size and with individuals from nil to low, and severity of health issues. These factors explain 64% of variations in FCM levels. In leopards, the presence of stones in the enclosure and keepers with positive attitude resulted in significant decrease in FCM levels, these factors together accounting for 94% of variations. Multiple regressions on selected variables based on Factor Analysis of Mixed Data showed that in tigers the intensity of stereotype decreased significantly with enclosure size, sociality and positive keeper attitude and FCM level with health problems. Similarly, analyses in leopards revealed that intensity of stereotype decreased significantly with tree cover, age and FCM level with positive keeper attitude. Overall, our study suggests that to reduce stereotypes and stress level, tigers in captivity should be managed in larger enclosures enriched with pool, and stones, and in appropriate social conditions with adequate veterinary care. Leopards should be managed in enclosures with dense tree cover, pool, stones and den. Positive keeper attitude plays a crucial role in the welfare of both the species in captivity. Our study is promising and is comparable with their natural behaviour in the wild; for example, tigers require larger natural habitats, while leopards can manage even with smaller isolated patches but with dense vegetation cover.

  16. Blocked inverted indices for exact clustering of large chemical spaces.

    PubMed

    Thiel, Philipp; Sach-Peltason, Lisa; Ottmann, Christian; Kohlbacher, Oliver

    2014-09-22

    The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.

  17. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.

  18. Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region

    PubMed Central

    Penn, Alexandra S.; Knight, Christopher J. K.; Lloyd, David J. B.; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case and in general. We conclude by proposing an extended FCM methodology, including multiple functional mappings within one participant-constructed graph. PMID:24244303

  19. Single‐dose intravenous iron in Southeast Asian heart failure patients: A pilot randomized placebo‐controlled study (PRACTICE‐ASIA‐HF)

    PubMed Central

    Yeo, Poh Shuan Daniel; Hadi, Farid Abdul; Cushway, Timothy; Lee, Kim Yee; Yin, Fang Fang; Ching, Anne; Li, Ruili; Loh, Seet Yoong; Lim, Shir Lynn; Wong, Raymond Ching‐Chiew; Tai, Bee Choo; Richards, Arthur Mark; Lam, Carolyn S.P.

    2018-01-01

    Abstract Aims Iron deficiency is highly prevalent in Southeast Asians with heart failure (HF) and associated with worse outcomes. This trial aimed to assess the effect of intravenous iron in Southeast Asians hospitalized with decompensated HF. Methods and results Fifty patients hospitalized for acute decompensated HF, regardless of ejection fraction, with iron deficiency (defined as serum ferritin <300 ng/mL if transferrin saturation is <20%) were randomized to receive either one dose of intravenous ferric carboxymaltose (FCM) 1000 mg or placebo (0.9% saline) following HF stabilization and before discharge in two Singapore tertiary centres. The primary endpoint was difference in 6‐min walk test (6MWT) distance over 12 weeks, while secondary endpoints were quality of life assessed using validated Kansas City Cardiomyopathy Questionnaire (KCCQ) and Visual Analogue Scale (VAS). Improvement in 6MWT distance at Week 12 was observed in both FCM and placebo groups (from 252 ± 123 to 334 ± 128 m and from 243 ± 67 to 301 ± 83 m, respectively). Unadjusted analysis showed 6MWT distance for FCM exceeded that for placebo, but adjustment for baseline covariates and time attenuated this effect {adjusted mean difference between groups: 0.88 m [95% confidence interval (CI) −30.2 to 32.0, P = 0.956]}. KCCQ overall summary and VAS were similar in both groups [adjusted mean difference: KCCQ −1.48 (95% CI −8.27 to 5.31, P = 0.670) and VAS 0.26 (95% CI −0.33 to 0.86, P = 0.386)]. FCM was well tolerated with no serious treatment‐related adverse events. Conclusions Intravenous FCM administered pre‐discharge in Southeast Asians hospitalized with decompensated HF is clinically feasible. Changes in 6MWT distance should be measured beyond Week 12 to account for background therapy effects. PMID:29345426

  20. Rapid Estimation of Astaxanthin and the Carotenoid-to-Chlorophyll Ratio in the Green Microalga Chromochloris zofingiensis Using Flow Cytometry.

    PubMed

    Chen, Junhui; Wei, Dong; Pohnert, Georg

    2017-07-19

    The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis . The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis . The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry.

Top